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Message from the 
NSDI ’21 Program Co-Chairs 

Welcome to NSDI ’21!

It is an understatement to say that the past year has been a stressful and difficult time for us all. The pandemic, the associ-
ated economic disruption, and the large-scale social movements for racial equality have given us reasons for both hope and 
grief during the last 12 months. Placed in this context, our academic work as computer scientists can feel small. Many of us 
struggled with our health (mental, physical, or otherwise) in the past year, as we grappled with the era in which we live. The 
fact that NSDI is still happening this year is a testament to the graciousness with which our community has treated each other 
during these hard times. As paper submitters, paper reviewers, PC members, and conference organizers, we helped each other 
with our kindness and our flexibility; by showing compassion in the face of last-minute schedule disruptions and requests for 
a little extra time, we made it possible for a huge undertaking like NSDI to move forward in uncertain circumstances.

NSDI ’21 received 369 papers in total: 114 in the spring deadline, and 255 in the fall deadline. 59 papers were accepted, for 
an acceptance rate of 16%. Papers were reviewed by a group of 70 experts from both academia and industry. We sincerely 
thank those reviewers, who provided thoughtful feedback during an enormously disruptive time. We also thank the paper 
authors; your submissions are what make NSDI such a great venue, and we hope that you will enjoy the conference program.

We’d like to thank all of the USENIX staff who helped us to organize this year’s conference amidst such extraordinarily 
challenging circumstances. At every step in the process, from configuring the HotCRP server to dealing with camera-ready 
production, the USENIX staff provided invaluable advice and implementation. So, we send a heartfelt thanks to Casey  
Henderson, Olivia Vernetti, Camille Mulligan, Arnold Gatilao, Jasmine Murcia, Jessica Kim, Julia Hendrickson, and the rest 
of the USENIX team. Our community is lucky to have support from such dedicated USENIX staff.

We are excited that NSDI ’21 will be held, even if the conference presentations will be virtual. We thank the efforts of every-
one who made this possible, whether you submitted papers, reviewed papers, helped with the organization of the conference, 
or will just be attending the conference. We hope that you are safe and healthy, and that the next year will be easier and more 
joyful than the last.

James Mickens, Harvard University 
Renata Teixeira, Netflix 
NSDI ’21 Program Co-Chairs
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Accessing Cloud with Disaggregated Software-Defined Router
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Abstract
The last decade has witnessed a rapid growth of public

clouds. More and more enterprises are deploying their appli-
cations on the cloud platform. As one of the largest public
cloud providers, Tencent cloud serves tens of Tbps inbound-
/outbound traffic via cloud gateways for customers with di-
verse cloud access requirements. Traditionally, cloud gate-
ways were built with proprietary routers. From years of ex-
perience operating cloud network, we found that commodity
router based cloud gateways are hard to scale, lack of exten-
sibility and are difficult to inter-operate with the SDN-based
cloud networks. To this end, we build our own Disaggregated
Software-defined Router (DSR) to serve cloud access traf-
fic. We architecturally split cloud router functionalities into
several disjoint modules: 1) an access module built out of
off-the-shelf commodity switches; 2) a software-based fast
and scalable forwarding module; 3) a robust and scalable rout-
ing module built with commodity servers; 4) an SDN control
module for traffic management and devices configuration. All
the components can be independently scaled and maintained.
DSR can deliver new network features at high velocity and
has sustained the rapid growth of the cloud access traffic. In
this paper, we present the design, implementation and our
years of operational experiences of DSR.

1 Introduction

With customers increasingly deploying their computation
and storage services in the cloud, public cloud services have
achieved rapid growth in recent years [11, 16, 18, 35, 37]. As
one of the largest cloud providers, Tencent cloud has provided
a wide range of services including computing, storage and
CDN to support a diverse set of customizable solutions across
multiple industries such as e-commerce, online education and
mobile games. To satisfy the cloud access requirements of
worldwide customers and their end-users, it is critical for the
cloud provider to set up fast, secure, stable and low-latency

∗Joint first authors
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connection among cloud customer’s on-premise datacenters,
distributed sites, Internet end-users and the cloud resources.

Tencent cloud supports various types of solutions to facil-
itate customers’ cloud access requirements, namely Private
Connect Service (PCS), Elastic Internet Service (EIS) and
Software Defined WAN (i.e. SD-WAN) Service (SWS).

Private Connect Service. PCS establishes a direct connec-
tion between customers’ on-premise datacenters and pub-
lic cloud. It bypasses the Internet and offers higher reliabil-
ity, faster speed and lower latency than public Internet con-
nections. As demonstrated in Figure 1, customers access to
their virtual private clouds (VPCs) hosted in the public cloud
through PCS gateways. In our network, each PCS gateway
supports ∼10K tenants, one of which has up to 20K routes.
PCS provides guaranteed network quality, like consistent net-
work performance on latency and bandwidth with low cost.

Elastic Internet Service. Many customers, e.g. content
providers and online education institutes, run their comput-
ing and storage services in our cloud datacenters. EIS allows
global end users to access these online services. As shown in
Figure 1, EIS gateways are widely deployed at the Points of
Presence (PoPs), interconnecting with multiple Autonomous
Systems (AS). EIS gateway needs to fulfill several important
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tasks, e.g. BGP peering with different ISPs, management for
inbound/outbound traffic across optimized network routes and
forming demilitarized zone (DMZ). As the main entrance of a
cloud region, EIS gateway needs to support a large forwarding
table. In our settings, EIS gateway needs to support up to 10M
longest prefix match (LPM) entries.

SD-WAN Service. Software-defined WAN Service (SWS)
allows enterprise’s branch offices to access their resources on
the cloud through encrypted connections over any mixed trans-
port services, such as LTE, Internet broadband, and MPLS,
as illustrated in Figure 1. By leveraging IPSec VPN, WAN
optimization (e.g. application-aware QoS, robust redundant
packet transmission and data compression) and software-
defined management/orchestration technologies, SWS simpli-
fies IT infrastructure deployment and network management to
connect users at distributed sites to applications on the cloud
securely.

Cloud gateway is the main component in the access sites to
meet these access requirements. Traditionally, the cloud gate-
way applies proprietary commodity routers to provide large-
scale port extension, high speed traffic routing and forwarding,
as well as access control against illegal connections or DDoS
attack. However, with the rapid increase of customers, the
traditional solution can not sustain anymore. First, we can not
deploy millions of forwarding table entries in the commodity
routers to meet our customers’ requirements. Second, the lack
of programmability of the proprietary devices slows down
the feature roll-out velocity. We have to count on vendors’
development plan which can be months or even years. Third,
it is hard to inter-operate between the cloud SDN network and
the edge BGP network. To meet these operational challenges,
we provide ingenious solution for diverse types of customers
to access the cloud (see § 2.2 for more details).

We set out to build a Disaggregated Software-defined
Router (DSR) to address the above challenges. It enables
cost-effective scaling to keep up with the fast growth of traffic
volume. It leverages software feature velocity to provide fast
response to user requirements. To be specific, DSR consists
of a high performance data plane forwarding module, which
is responsible for operations like routing table lookup, tun-
nel traffic encapsulation/decapsulation, IPSec encryption/de-
cryption and packets forwarding. A standalone BGP routing
module is built to exchange routing information between
cloud network and external peers. SDN controllers are used
to realize configuration, state management and orchestration
of different components. Last but not the least, it performs
routing decisions in a centralized fashion, thus yields better
traffic steering. We leverage a disaggregated architecture, i.e.
each component can be scaled independently and released on
demand.

DSR serves tens of Tbps traffic, which has been deployed
in Tencent cloud for over 3 years. In this paper, we introduce
the design and implementation of the scalable and flexible
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system to access the cloud. We first use an example of the
PCS connection to demonstrate the limitation of commodity
routers based gateways (§ 2). Referring to the structure of
commodity devices, we explain the architecture of DSR (§ 3).
We present the system design details (§ 4, § 5, § 6) and share
our operational experiences to the community (§ 8).

2 Background and Motivation

For ease of understanding, we first demonstrate the original
solution of PCS using commodity devices. Then, we introduce
the limitation of commodity router-based architecture which
motivates the design of DSR.

2.1 Commodity Routers based PCS

Previously, PCS service is built by leveraging the MPLS VPN
technique [7]. Figure 2 shows the architecture of the original
version of PCS, which consists of the following components:

• Access Router (AR): It is a commodity router supporting
various types of electrical or optical interfaces with differ-
ent rates, e.g. 1Gbps/10Gbps/100Gbps. AR sets up BGP
sessions for routing between customers’ on-premise dat-
acenters and public cloud. Tenants are isolated based on
Virtual Routing and Forwarding (VRF) tables. AR works
as an MPLS provider edge (PE) router of the cloud MPLS
backbone network.

• Cloud Gateway (CG): CG is deployed in cloud datacen-
ters as another MPLS PE node of the backbone network.
It is built by leveraging a commodity switch and a server-
based Virtual Network Function (VNF) cluster. The com-
modity switch is the gateway between datacenter network
and MPLS backbone network. Tenants are isolated through
the switch build-in VRF. Due to the limitation of routing
entries in switch, the routing table from the on-premise
datacenters to tenant Virtual Machines (VMs) are stored in
the VNF cluster.

• Route Reflector (RR): RR is a commodity router. RR
establishes MP-BGP sessions with AR and CG respectively.
It conveys customer’s on-premise IP routes to the cloud
switch and vice versa.
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• Controller: Controller is introduced to manage and config-
ure network components. For example, controller installs
a default route to CG at virtual switch (vSwitch) of each
server for traffic destined for on-premise datacenters.

Now we explain how a packet is forwarded from a tenant
virtual machine to its on-premise datacenter. For the outbound
traffic, the vSwitch first encapsulates packets with GRE [13]
header (The VPC id assigned to the tenant is encoded in the
GRE header) and forwards the packet to VNF deployed in
a server cluster. The VNF decapsulates the GRE tunnel and
encapsulates the packet with a VLAN header which embeds
a certain VLAN id according to the VPC id. Then the packet
is forwarded to the cloud switch, which forwards the packet
to the MPLS backbone based on the forwarding table. When-
ever AR receives the packet, it forwards the packet to the
destination.

For the inbound traffic, the main difference is at the cloud
gateway. The cloud switch is configured with a default route to
forward all traffic to the VNF cluster, which stores all the rout-
ing information for VMs in the cloud datacenter. The gateway
supports the access control through firewall and safeguards
applications through Distributed Denial of Service (DDoS)
protection service running on dedicated servers. Finally, the
VNF cluster encapsulates the packet with GRE tunnels and
forwards it to certain physical machines according to its rout-
ing decision.

2.2 Motivation

Based on production experiences of operating the network,
we found many limitations of the commodity router to meet
the rapidly growing customers and their rising demands.

For AR, though the commodity devices can forward a large
volume of traffic, e.g. Cisco ASR 9000 series routers [5] sup-
port tens of Tbps throughput, it cannot scale to support a large
number of tenants, i.e., the number of VRFs and LPM table
entries are rather limited. The commodity access router only
supports less than 1K of VRF elements and 1M FIB entries
which cannot satisfy the requirements of PCS which needs to
support ∼10K tenants and EIS which requires ∼10M forward-
ing tables. We have to expand network by using additional
routers. It is not cost-effective and substantially increases the
management and control complexity.

We usually need to roll out new network features in few
weeks to meet our customers’ requirements, e.g., support-
ing jumbo frames or 4B-length AS-path attribute. In addi-
tion, the cloud providers usually deploy new functions to
improve operation and maintenance capabilities, e.g. mea-
surement of top-N largest flows. However, due to the lack
of programmability and limited device management API of
proprietary commodity routers, it can take several months or
years if we need vendors to make change to device software
or hardware [35, 41]. The slow feature velocity significantly

affects the user experiences and the reputation of the cloud
provider.

BGP protocol is widely used to interconnect autonomous
networks in the Internet [35,41]. For instance, MPBGP proto-
col is used to exchange routing information between access
router and cloud switch. On the other hand, the cloud net-
works have increasingly adopted the SDN technique for effi-
cient traffic steering and fast network failure convergence. We
found many problems for inter-operation between the cloud
SDN network and the external BGP network. For example,
in commodity router based PCS, the controller should update
the state of the direct connection in real time, such that if the
direct connection fails, vSwitch can carry out corresponding
routing updates and quickly switch to the backup path. To
achieve that, the controller has to periodically pull the rout-
ing tables from CG. However, due to the slow NETCONF
messages processing, the long pulling interval leads to slow
routing convergence.

3 Design

We target at building a general platform, i.e. a disaggregated
software-defined router (DSR), to meet various types of cloud
access requirements.

3.1 Design Rationale
DSR should meet the following requirements:

• Simplicity. The commodity router needs to support all
kinds of network standards and a variety of customized
protocols for cloud network, enterprise network or campus
network, etc. In cloud access scenarios, many features inte-
grated in the commodity routers are not required. We can
simplify the design by supporting a minimum set of func-
tionalities, e.g., BGP and static routing for inter-operation
with external network, Bidirectional Forwarding Detection
(BFD) [23], Internet Protocol Service Level Agreement
(IPSLA) [10] for fast convergence, and VXLAN [27] and
GRE [19] for tunneling.

• Scalability. To meet various cloud access requirements of
Internet users, customer on-premise datacenters and enter-
prise branch-sites, the key components of the cloud gate-
way, i.e. data plane, routing and control plane should be
able to scale independently without affecting each other.

• Reliability. All the key components are built in the cluster
with redundancy such that no single point failure can cause
performance degradation. Specifically, the key components
can be deployed cross available zones for remote disaster
recovery.

• Elasticity. The system should support high feature velocity
and realize efficient inter-operation between the external
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BGP network and the internal software defined cloud net-
work in real time.

3.2 System Overview

3.2.1 The disaggregated design

We review the architecture of a typical commodity router. As
shown in Figure 3 (a), it consists of three major components:

• Processor: Processor acts as the control plane, which runs
network protocols like BGP, OSPF and BFD. Usually, there
is a secondary processor for high availability.

• Switching Fabric: Switching fabric is responsible for high
speed internal inter-connection.

• Line Card: Line card is intended to connect many users
with different types of interfaces. It forwards and filters
packets based on routing tables and access control lists
(ACLs) respectively.

The three components are tightly coupled in the commod-
ity router. The processor capability, routing table sizes and
bandwidth are configured with a fixed ratio. We can not inde-
pendently scale any component on demand.

Consequently, we turn the router into a disaggregated ar-
chitecture, as illustrated in Figure 3 (b):

(i) The functions of line card are divided into two components:
the access plane and the forwarding plane. The access
plane provides various types of interfaces and supports
layer 2 forwarding. Based on the operational experiences,
the access plane is stable, i.e. we do not need to frequently
update the access plane. As a result, we build the access
system with a group of small-scale commodity switches.
The forwarding plane deals with layer 3 packets processing
with large scale forwarding tables (FIB, IPSec, QoS, etc).
We introduce the software-defined forwarding module to
achieve high feature velocity and scalability.
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Figure 4: Overview of DSR

(ii) The functions of the processors are divided into two com-
ponents: the routing plane and the control plane. They
are implemented with software over common servers. The
routing plane takes charge of the protocol and routing man-
agement, like BGP, BFD, IP-SLA and static routing pro-
tocols. The routing information is delivered to the control
plane through RPC messaging. The control plane stores the
routes, generates the forwarding tables, and then installs
the FIB/ARP tables to the forwarding plane. This design
is based on the observation that the routing plane and con-
trol plane require different resource settings. For example,
the routing plane requires high computational capacity for
complex protocol processing. Meanwhile, the control plane
deals with performant management and ensures consistent
forwarding processing during upgrade. We use different
software suites (DPDK, ONOS&ODL) there. As a result,
the development and release cycles are different for these
two planes.

(iii) We use the standard VXLAN protocol for the intercon-
nection of different planes. Tenants are isolated based on
VXLAN VNI. All the components are decoupled and de-
ployed in different fault domains which allows independent
scaling. Generally, the access plane is deployed at the ac-
cess sites, e.g. PoPs or remote user sites. The others are
deployed in the cloud datacenter.

(iv) The forwarding, routing and control planes are built using
multiple servers in a cluster. No single server failure can
cause the break down of the entire system.

3.2.2 System architecture

The architecture of DSR is shown in Figure 4. It includes the
following components.

Access module. We apply commodity off-the-shelf switches
for the inter-connection between the internal cloud net-
work and the external peers. It supports protocols of BG-
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P/OSPF/BFD/LACP (Link Aggregation Control Protocol) at
underlay network. It provides various types of physical ports
with different rates, e.g. 1GE/10GE/100GE. For the overlay
network, it realizes layer 2 isolation for tenants using the
switch built-in VLAN functionality. VXLAN tunnels are es-
tablished for communication between the access module and
the forwarding module.

Forwarding module. The forwarding module is responsible
for high performance packet processing and routing with large
forwarding tables. It sends BGP/BFD messages to the routing
module via layer 2 VXLAN tunnel and forwards data path
traffic VPCs via self-defined GRE tunnel in the cloud datacen-
ter. We build the forwarding module using a group of servers.
With the server built-in large memory, it can support a large
number of VRFs and large LPM tables for tenant isolation and
packet forwarding. Forwarding module also supports IPSec
processing and WAN optimization functionalities.

Routing module. The key purposes of the routing module
are: (i) inter-connecting with the external peers (commodity
devices) through dynamic routing using BGP; (ii) supporting
a large amount of customers and maintaining the neighbors
information; (iii) realizing fast convergence and failover when
routing information updates and network failure happens. The
core of the routing module is a high performance home-made
BGP speaker. We optimize the BGP speaker performance and
customize it for different scenarios. For example, in PCS, we
embed the bandwidth allocation ratio for customers’ traffic
in the BGP header. While, in ISP peering scenario, we select
the routing path based on the network state through SDN con-
troller. It supports Non-Stop Routing & Forwarding (NSR&
NSF) for high availability. We optimize its ability to handle a
large number of BGP updates. For outbound traffic, the con-
trol module feeds VPC routes into the routing module, which
in turn conveys the routes to the external peer. As the BGP
messages are carried over VXLAN tunnels, they are able to
establish BGP sessions directly between the external peer and
routing module.

Control module. Control module acts as a local controller. It
stores the routing information and is responsible for optimal
traffic steering computation. Apart from that, control module
provides distributed message queues in order to efficiently
synchronize dynamic forwarding rules among forwarding
module clusters and routing module clusters.

Orchestrator. The orchestrator acts as a global controller.
It is responsible for distributing operator’s configuration re-
quests to corresponding control modules. The Orchestrator
collects particular traffic scheduling requests from external
management system and synchronizes them to the control
module. It is a centralized routing computation platform by
taking into consideration of various kinds of metrics, e.g.
network latency, bandwidth capacity and monetary costs, to
achieve consistent performance while reduce costs for cus-

VIP 2 VIP 5 VIP 3 VIP 4

VIP 1

node node node node node node node node node

Cluster 1 Cluster 2 Cluster 3

Figure 5: Scaling out forwarding plane through multiple VIPs

tomers [35, 41].

3.2.3 Challenges

Since DSR components are loosely coupled with each other,
we can easily add or remove one instance in any component
independently for scaling or upgrading purposes without af-
fecting the whole system. For the design and implementation
of each specific module, we meet the following challenges:

• We need to ensure high forwarding and routing capacity
in software given a large number of tenants and highly fre-
quent routing updates. To be specific, DSR serves 10Ks of
tenants and maintains 10M entries routing tables at line rate.
We have optimized the forwarding module and the BGP
speaker of the routing module to address this challenge.
Meanwhile, we provide low latency packet forwarding by
minimizing the impact of system call, CPU scheduling and
packet losses.

• Originally, the commodity router is a single device to serve
the arrival traffic. However, the DSR is a distributed archi-
tecture consisting of multiple components. The instances
of each components are deployed in the cluster, which are
connected through multiple-path Clos network. The dis-
aggregated design makes the management more complex
than managing an individual commodity router. We need
to carefully schedule and route the arrival traffic and con-
trol messaging inside DSR, which can easily affect the
performance and stability of the whole system.

4 Scalability

We explain the optimization on forwarding module and the
routing module to address the scalability issues.

4.1 Scalable Forwarding Plane
In order to provide a scalable forwarding module to meet the
packet processing requirements, our efforts go along two di-
rections: (i) Scaling out the packet processing components by
adding new cluster of servers; (ii) Optimizing the program of
packet processing and LPM lookup to ensure fast forwarding
at large scale.
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4.1.1 Scale out with multi-VIP

For building a scalable forwarding module based on com-
mon servers, a straightforward approach is to expose a single
virtual IP (VIP) for all servers in the cluster. We announce
the VIP to all tenants. All servers are then configured with
the same forwarding tables. By doing so, arrival traffic are
balanced to servers using ECMP hashing at a per flow basis.
With this stateless load balancing, the system’s processing
ability can be easily scaled out/in by adding/removing servers.
However, with more and more VRFs are configured, the for-
warding capability of the cluster is limited since each server
has to support the entire routing tables of VPCs in the region.

In fact, in our production network, the tenants’ require-
ments on bandwidth are diverse. Most tenants require traffic
bandwidth less than 10Gbps. Only a few tenants have traffic
around 100Gbps. We seldom see tenants have traffic more
than 500Gbps or over the forwarding capability of a single
cluster. To this end, we introduce a flexible multi-VIP struc-
ture. As shown in Figure 5, each cluster is configured with
multiple VIPs shared by tenants. For example, VIP 2 belongs
to cluster 1, which serves multiple tenants with little traffic.
Meanwhile, VIP 5 is applied to cluster 1 and cluster 2, which
are assigned to users with large amount of traffic, i.e., these
users can deploy forwarding tables in both cluster 1 and clus-
ter 2. Similarly, a tenant with an extremely large amount of
traffic can be fulfilled by using VIP 1. Consequently, there
is no needs for a single server to store routing tables of all
tenants. We can improve the scalability of the system while
retaining the benefits of the stateless load balance.

4.1.2 Fast datapath route lookup

We have leveraged the DPDK suites [12] to develop the high
performance dataplane forwarding module. As illustrated in
Figure 6, the arrival packets are forwarded directly from the
NIC to user space bypassing kernel overhead. To efficiently
utilize the modern multi-core CPU architecture, traffic need
to be balanced to multiple cores, we apply the NIC built-in
RSS functionality to uniformly distribute the traffic to differ-

ent dispatchers which run on dedicated CPU cores. To avoid
packet out-of-order, packets belong to the same overlay flow
should be processed on the same core. To achieve that, the
dispatchers decapsulate packets’ outer tunnels and distribute
packets to different forwarding threads based on the overlay
5-tuple. The forwarding threads encapsulate packets with an-
other tunnel according to packets’ destination. Packets are
then forwarded to external WAN network. We plan to acceler-
ate this procedure with advanced NICs which support overlay
packet header hashing.

Short packet processing pipeline. In high performance
packet processing, a long pipeline will likely lead to more
cache misses and causes performance degradation. The packet
processing cost mainly stems from the LPM lookups. Gener-
ally, a packet would require two LPM lookups, i.e. the packet
first does LPM lookup for underlay encapsulation header
based on the overlay IP, then the encapsulated packet does
LPM look up for the output physical port based on the under-
lay IP. We have shortened this pipeline by saving the second
LPM lookup. To achieve that, we combine the second LPM
lookup results i.e. the output physical port and the the first
LPM lookup results i.e. the encapsulation header into one uni-
fied action. The action is pre-programmed into the action field
of the first LPM lookup entry. After the first LPM lookup, the
packet is encapsulated and forwarded to the corresponding
physical port following the pre-programmed rules. With the
shorter pipeline, the packet processing performance is largely
improved.

Fast route lookup at large scale. When dealing with 10M
routing entries, we need to take care of the storage and the
lookup speed. At first, we leverage the LPM library in DPDK
suites [1] to implement the forwarding function. Unfortu-
nately, the original DPDK LPM library is not efficient to store
routing entries. We encountered performance issues with the
increasing amount of tenants.

To illustrate the problem, we first briefly introduce how the
DPDK LPM library works. The library uses a classic trie-tree
structure to store the routing entries. As shown in Figure 7(a),
for IPv4 lookup, it uses two stages. The first stage is an array
with 224 entries. The higher 24-bit of an IPv4 address is used
as the array index. Each entry stores the base address of a
secondary stage array. The lower 8-bit of an IPv4 address
acts as the index into the secondary stage array. Based on the
address in the first array, a routing result can be identified.
Each IPv4 lookup requires at most two memory lookups in
this design. However, to achieve this, DPDK LPM library
needs to pre-allocate a large memory to store the entire 224

entries no matter whether there exists an IP route or not. This
leads to severe memory waste and limits the ability to support
a large number of VRFs. For example, to store 64K IPv4
routes, the first stage would require 224 ·4B = 64MB memory
for each VRF. In the worst case, to store 64K routes in the
second stage, it requires 64K · 28 · 4B = 64MB, i.e. 128MB
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Figure 7: LPM table data structure

memory in total. To support 10K VRFs, 1.28TB memory is
required. Moreover, the first stage requires a large continuous
memory, the memory fragmentation makes it hard to fulfill
the need especially when the system has been up for a long
time.

The root cause of this problem is the static memory allo-
cation mechanism. In fact, only few tenants would require a
large routing table. Most of our customers has a small rout-
ing table. Based on this observation, we design a dynamic
memory allocation mechanism for LPM tables (Figure 7(b)).

First, we turn the DPDK LPM first stage array into one
directory table (28 entries) and many sub-tables (each with
216 entries). Only the directory table is pre-allocated. Thus the
minimum memory required for a VRF is only 28 ·8B = 2KB.
With the same amount of memory, the number of VRFs we
can support increases by 3 orders of magnitude. Furthermore,
with the same amount of memory, the maximum table size
that can be used by a VRF is also enlarged.

Second, in the original DPDK LPM design, the memory of
both the first and the second stages are pre-allocated. In con-
trast, in our design, the first stage sub-tables and the seconds
stage tables are both allocated on demand. This significantly
improves the memory efficiency. However, this design leads
to problem when considering the route modification and dele-
tion. When a route is deleted, we can not free the memory
taken by this route because there may be arrival packets at
the same time. A lock mechanism can help solve the prob-
lem but with a large overhead. Instead, we have designed an
user-space RCU (Read-Copy Update) mechanism to solve
this problem without using any lock. To be specific, when

updating a forwarding entry, we first do a copy of the original
data and make changes on the new copy. Then we modify
the corresponding pointer to point at the new copy. The old
entry is deleted only when there is no other threads access-
ing it. We implemented the RCU as a Quiescent-State-Based
Reclamation (QSBR) flavor one [20]. Our evaluation shows
that we can provide high performance packet processing and
high route updates speed at 64K entries/s simultaneously.

Hardware acceleration With the rapid growth of traffic and
slowing down of Moore’s law, the CPU becomes the bottle-
neck for packet processing in software-based routing modules.
To address this problem, prior studies have applied the cost-
efficient hardware acceleration technique [16,21,28,29]. With
regard to the limited forwarding table, e.g. Barefoot Tofino
chips have ∼60MB on-chip memory [6, 16, 28, 32], which
can only support 100K of LPM entries according to our eval-
uation, we have designed a large flow offloading scheme for
the forwarding module. Based on the historical information
of the cloud traffic, we found that the top 1% largest flows
contribute 70% of overall traffic. We maintain a small group
of prefixes in switch hardware for those large flows and for-
wards them with the hardware. By pushing the flexible and
complex logic to software while leveraging the stable hard-
ware offloading features, this approach saves more than 50%
CPUs and greatly reduces the cost1.

4.2 Highly Scalable Routing Module

Traditionally, in commodity router based PCS, standard
MPLS-VPN technique [42] is used (§ 2). To differentiate
BGP routes of different tenants, BGP messages from each
tenant is configured to export m distinct BGP Routing Target
(RT) attributes. At the cloud side, different tenants are sepa-
rated via VRFs, say n VRFs. A tenant VRF only learns BGP
routes from the corresponding remote on-premise datacenter,
which is achieved by importing certain RTs. The process of
route insertion is rather slow for traditional routers. Once re-
ceiving a BGP route update, the corresponding VRF is located
by comparing each RT attribute with all VRF’s RT values. m
RTs (m is around 10) and n VRFs (n is around 10K) result in
an insertion complexity of O(mn). The performance can not
sustain highly frequent BGP routes insertion.

In DSR, with the help of the connect module switch, BGP
import/export RT features are no longer required. Specifically,
DSR leverages the connect module switch to tag routes from
different tenants based on VXLAN tunnels. The VNI in the
VXLAN tunnel is pre-determined for each tenant. Then the
BGP module can insert the route to the corresponding VRF
using the VNI number. This design reduces the route insertion
complexity to O(n).

Some PCS customers have multiple datacenters. The newly
built datacenters use the latest DSR based PCS while others

1The detail of the implementation is beyond the scope of this paper.
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may still use commodity router based PCS. For availability
purpose, the routing module of DSR needs to learn the routes
to certain datacenters from commodity routers. This induces
a requirement of inserting BGP routes into VRFs based on
the RT attributes. As aforementioned, this would take O(mn)
time complexity for m RT attributes and n VRFs, leading to
scalability issue.

To optimize the BGP insertion performance in this scenario,
we use a hash function based solution to speed up the process
of VRFs lookup. The key idea is that we store the RT-to-VRF
information in a hash table where the RT value serves as the
key. The value of each item is organized as a linked list of
VRFs based on the RT. With this optimization, the capability
of route insertion is significantly improved.

The routing plane needs to exchange keep-alive messages
with a huge number of BGP neighbors, e.g. 10K. Traditionally,
the keep-alive function is implemented in the same thread
with the routing message processing function. When the
thread is heavily loaded with routing updates, the keep-alive
messages can not be processed in real time, leading to BGP
timeout at remote side. We separate the keep-alive message
handling and BGP message processing into different threads
to solve the problem. As a result, we can maintain stable BGP
neighbor relations even under the most heavy BGP message
processing workload.

In summary, with all the above optimizations, DSR can
improve the routing module BGP performance by ∼20 times.
The BGP module can perform 500K routes insertions per
second and support 10Ks of VRFs (see § 7.2 for more details).

5 Reliability

We have deliberately designed several techniques to enhance
the system reliability.

5.1 Forwarding Path Failure Detection
Conventionally, when peering with commodity routers, we en-
able BFD protocol [23] to provide fast and consistent forward-
ing path failure detection. However, with the disaggregated
design, components of DSR are deployed in different avail-
ability zones. There are multiple paths available between the
peering devices and the routing module. The BFD messages
will transmit along only one single path. If one link of the path
failed, the BFD message will be lost. Then the BGP module
would regard that the remote peer is not reachable and delete
the corresponding routes for fast convergence. In fact, because
there are many paths available from the access module to the
routing module, the data path is not disconnected.

To address this problem, we should distribute the BFD
messages into multiple paths. We have modified the hash
function of ECMP in the access module. In detail, for an
arriving BFD packet, instead of using the fixed five-tuple of
the message to generate the source UDP port value in the

NIC
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BGP_daemon
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NIC

TCP/IP Stack
Kernel
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pkt_sync

BGP_daemon
Active Standby

Figure 8: The NSR mechanism of the BGP module

VXLAN header, we apply the IP ID field to compute the
ECMP hashing. The hash key is then encoded into the UDP
source port of the VXLAN header. As a result, BFD packets
will traverse different paths along the network. We apply the
similar idea at the forwarding module and routing module
for BFD ECHO packets in the reverse route. When a link
fails, there are still enough BFD packets available to report
the healthy state of the remote peer.

5.2 BGP Non-Stop Routing
We developed a Non-Stop Routing (NSR) [42] mechanism
against single BGP module failure. NSR mechanism requires
that the failure of the BGP speaker to be transparent to the
peering devices. This allows the failed BGP speaker immedi-
ately switch-over to a backup BGP speaker, and the backup
device have all the information required to take over.

Traditionally, the commodity routers use a backup proces-
sor to implement the NSR functionality, as shown in Figure 3.
They customize the protocol processors in the Linux kernel
stack to enable this feature. However, in our case, the cloud
resource manager requires that the kernel software should be
homogeneous for all cloud servers to avoid operational issues.

We come up with a solution without kernel modification.
As shown in Figure 8, the key idea behind our NSR design is
to make the active BGP module synchronise its TCP states,
e.g. sequence number and window size, with the standby BGP
module before the active BGP speaker sends acknowledge-
ments to the remote peer. We introduce a reliable database in
the control plane to synchronize the neighbors information.
Once the backup BGP speaker receives the TCP states, it
initiates a socket system-call with TCP repair option, which
keeps the TCP states in correct accordance without sending
or receiving any TCP packet. Thus the standby module can
have the same TCP states with its active counterpart.

Moreover, during BGP software upgrade, we need to make
sure the data path traffic is not affected. This is accomplished
by employing the NSR mechanism to proactively stop the
active one and hand over BGP processing to the standby mod-
ule. When the software upgrade is done, the active module
is restored. It is notable that this process allows us to scale
out/in the routing module easily.
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6 Fast Development of New Features

Public cloud users mainly rely on their providers to provide
an elastic, reliable, scalable and safe networking environment.
Customers have diverse requirements in terms of latency,
bandwidth, self-defined protocol, etc. DSR is proposed to
achieve fast feature velocity to satisfy customers’ require-
ments. Through a few examples we demonstrate the benefits
of using DSR for the operation of cloud network.

DSR based PCS gateway. We revisit the example introduced
in § 2.1 and show that a more scalable and elastic PCS can
be built with DSR compared with previous commodity router
based design. As shown in Figure 9, once the tenant network is
connected to the cloud network via PCS, the customer router
can directly set up BGP sessions with the routing module of
the cloud gateway. The routing module announces the routes
of tenant on-premise datacenters to its VPC network through
the control module. Similarly through the BGP sessions, the
tenant on-premise datacenter can learn the VPC routes and
VM routes from the routing module. We are able to provide
real-time routing updates between the cloud SDN network
and the external BGP network.

Customizing egress routing. A PCS customer may set up
multiple PCS channels with the cloud through multiple DSR
instances deployed at different sites. We can provide network
quality aware traffic steering for our customers in this sce-
nario. In detail, beside propagating the peering routes to the
control module, DSR measures and informs the control mod-
ule the quality of each path, including bandwidth, delay and
packet loss rate. With both the routing information and net-
work quality information, the control module can choose the
optimal egress route for the traffic. Moreover, customers can
customize their own routing policy to choose a specific path
for certain traffic.

Fast failure recovery. Beside a PCS channel, the on-premise
datacenter can configure another IPSec VPN channel over
Internet as a backup. By default, traffic are forwarded through
the PCS channel. When network failure is detected, e.g. a
broken cable, the BGP module quickly reports the failure
to the control module and withdraws the route. The control
module then modifies the next hop of the routing on the for-
warding module to the IPSec channel. The whole procedure
can be done within 10ms, which is two orders of magnitude

lower than traditional solution with commodity routers which
requires periodically checking the routing updates from the
commodity routers through the slow NETCONF interface.

On-premise to on-premise datacenters traffic accelera-
tion. Through PCS, customers can transfer data among multi-
ple on-premise datacenters via a hub-spoke model, where the
cloud gateway acts as the hub. Previously, this is enabled by
the route reflector, which reflects BGP routes among multiple
cloud access routers. The scalability to support a large amount
of customers are limited by the route reflector’s BGP process-
ing ability. With the home-made BGP module, the constraint
is relaxed as the routing module can be horizontally scaled.

Protection against DDoS attack. DDoS traffic are short-
bursts with high volume. When DDoS traffic are identified
by the DDoS detection engine, those traffic need to be redi-
rected to a DDoS traffic cleaning center. Notice that DSR is
built on commodity servers, it can be potentially affected by
DDoS traffic. We aim to redirect the suspicious DDoS traffic
at the access module before they come to the software-based
forwarding module. Unfortunately, the attack traffic are iden-
tified based on layer 3 routing information, but the current
access switch works as a layer 2 switch for simplicity. To en-
able layer 3 packets forwarding for the DDoS traffic only, we
introduce an ARP-spoofing scheme. To be specific, we first
install the suspicious DDoS traffic routes as advertised by the
DDoS detection engine in the access switch. And whenever
an ARP request message of the DDoS traffic arrives, DSR
can send an ARP reply with the MAC of the access module
instead of the MAC of the DSR routing module. By so doing,
all the inbound DDoS traffic will be encoded with the MAC
of the access module as the destination MAC. Then the access
switch can work as a layer 3 switch, and forwards suspicious
DDoS traffic based on layer 3 routing table. Notice that as we
only do ARP spoofing for DDoS traffic, the normal inbound
traffic and outbound traffic are still directly forwarded to the
forwarding module of DSR.

7 Evaluation

We demonstrate the capability of packet processing and BGP
convergence time of DSR. The servers we used for evalu-
ation are Dell PowerEdge R740 with 192GB memory and
80 cores (Intel(R) Xeon(R) Gold 6133 CPU@2.50GHz with
hyper threading enabled). Each server is equipped with a dual
40Gbps port NIC.

7.1 Forwarding Module Evaluation

The host-based DSR forwarding module is able to process
packets at line rate with low latency. In the experiment, we
generate VXLAN packets and the forwarding module decap-
sulates a total of 68B from the header of the arrival packet.
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To maintain low latency and high throughput, we have intro-
duced many software optimization techniques in the forward-
ing plane, e.g. kernel bypassing, minimizing cache miss and
short pipeline. We measure the CPU consumption of the for-
warding plane under moderate 50% and high 99% workloads
with various packet sizes ranging from 128B to 1500B. For
the load of 50% workload, the generated traffic consume 50%
of the CPU while for 99% workload, the traffic consume 99%
of the CPU. We can effectively utilize the CPU resource to
provide high rate packet processing.

Dataplane throughput under different workloads. As
shown in Figure 10, at 99% load, the datapath can process
traffic at high rate under different packet sizes ranging from
128B to 1500B. It can achieve 24Mpps for packets of 128B.
The throughput decreases proportionally with the workloads
which shows graceful scaling property. The good performance
stems from our optimizations, i.e. short pipeline design and
FIB lookup optimization, as introduced in § 3.

Dataplane latency under different workloads. We measure
the per-packet processing latency of DSR. As shown in Fig-
ure 11, the data plane can provide low and stable latency of
50-70µs for both 50% and 99% workloads. The minimum
latency identifies the packet processing delay without ring-
buffer queueing delay. It is 10µs. For average latency, it is
stable across different packet sizes. With the increase of work-
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Figure 12: DSR BGP performance compared with FRR

loads, the software ring-buffer queue size also slightly in-
creases which leads to a moderate increase in latency.

Dataplane throughput during FIB update. To demonstrate
the effectiveness of the datapath lockless design, we compare
datapath throughput with and without FIB updates. The FIB
update rate is 64Kbps. We generate VXLAN traffic for 30s
and records the packet processing rate. The throughput can
achieve 20Mpps with or without FIB updates, i.e. supporting
lin-rate packet processing. This demonstrates that the lock-
free design enables fast routing updates without impacting
the datapath forwarding performance. We omit the figure due
to space limit.

7.2 Routing Module Evaluation

We compare the routing module with the open source FRR [3]
solution under 300 RTs, and demonstrate the performance of
our home-made BGP speaker under a large number of VRFs
and neighbors.

BGP advertising and withdrawal convergence time is the
key metric to be reported. As shown in Figure 12, the DSR
routing module outperforms the FRR under different number
of routes, e.g. 0.1M, 0.4M, 1M and 4M. For BGP advertise-
ment, when there are 0.1M routes, the convergence time of
DSR is 33.3% lower than FRR. When the number of routes is
4M, DSR converges ∼2.2× faster than FRR. For BGP with-
draw, DSR has 1.5-2× lower convergence time than FRR.
The performance gain is achieved based on the optimization
introduced in § 4.2 which reduces the complexity for route
insertion from O(mn) to O(n).

We then evaluate the performance of DSR routing module
when there are 1K VRFs and each VRF has 8 neighbors. It
is notable that the traditional commodity router deployed in
our system can not support 1K VRFs. We record the time to
advertise, withdraw and report different amounts of routes to
the controller. As shown in Figure 13, the time increases mod-
erately when the amount of routes increases, which demon-
strates excellent scalability of the home-made BGP speaker.
This performance gain mainly stems from the BGP optimiza-
tion techniques introduced in § 4.2.
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7.3 Control Module Evaluation

The control module is responsible for computing FIB based on
the routes collected from the routing module and installs the
FIB entries to the datapath forwarding plane. We evaluate the
effectiveness of control module for BGP routing configuration.
As shown in Figure 14(a), it takes less than 200ms to add or
withdraw 1K routes. For adding and withdrawing 10K routes,
it takes about 3.4 seconds and 1.8 seconds respectively. More
VRFs will add a little more overhead during the VRF insertion
process. We then evaluate the control module’s performance
for updating the FIB entries of the underlying forwarding
module. As shown in Figure 14(b), it takes ∼7.5 seconds to
configure 320K routes, which meets our needs in most cases.

8 Operational Experiences

The DSR system has been in production for over three years
and deployed at over 30 sites replacing the commodity routers
there. We has delivered tens of new features with a release cy-
cles of 2∼4 weeks. In contrast, the typical commodity router
based solution releases new feature in several months or years.
As a result, DSR can save an order of magnitude of mone-
tary costs compared with the traditional solution. Now we
introduce the efforts we have taken to operate DSR.

8.1 vNetVerifier System
DSR consists of multiple components built on x86 servers.
During the operation, we found that x86 servers are not as
reliable as commodity router. Despite the techniques we have
used to improve reliability, we need a health monitoring sys-
tem to discover and locate the failure. We have proposed a
virtual network verification system, i.e. vNetVerifier, to solve
the problem. We discuss some useful features of the system.

Transparent monitoring plane. We aim to achieve active
monitoring without interfering with the customer traffic. For
this purpose, we have created multiple virtual testing tenants
and added monitoring rules in corresponding components.
They act like real tenants using the same control and data
paths as normal cloud tenants. We generate probing traffic
continuously to monitor system faults.

Fine-grained probing. We carry out fine-grained datapath
probing at single server granularity and single processing
core granularity. As the datapath servers of the same forward-
ing fleets share the same Virtual IP using ECMP hashing, to
monitor a targeted server, we craft probing packets with the
underlay IP of the targeted server as the destination IP. For
single core monitoring, we encode the processing core ID
into the probing packets. Then the dispatchers on the data-
path server examine the core ID and forward the packet to
the targeted processing core. In this way, we achieved fine
grained probing at server-level and core-level. As the decou-
pled components of DSR are connected via multiple paths. A
single-path failure may lead to a wrong reaction as discussed
in § 5.1. As a result, we intentionally eliminate the effect of
single-path failure through multi-path probing similar to the
operation introduced in § 5.1.

Online testing. Conventionally, before we update network
components, e.g. software upgrade or hardware replacement,
we test the components intensively in the small-scale test-
ing environment. However, it is hard to mimic the realistic
environment to find all the problems. To this end, we carry
out online testing by leveraging the testing tenant in our pro-
duction environment. To be specific, we convert different
testing cases into corresponding network configurations and
customized probing packets. Then we carry out online testing
before and after the network updates. When abnormal traffic
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are detected, the ongoing network upgrading will be stopped
and reverted. We are also investigating at high fidelity network
emulation approaches similar as CrystalNet [26].

8.2 Fault Isolation and Localization

Fault domain isolation. An important principle during our
operation is to guarantee that the datapath forwards packets
correctly and continuously even when the control module and
routing module fails. To achieve that, we need to do fault
domain isolation for different components. A fault domain
is defined as the "blast range" of a certain system failure,
e.g. the failure of one BGP module node may affect the rout-
ing decision of a datapath forwarding node which may drop
user traffic. The disaggregated design and deployment of con-
trol module, routing module and forwarding module makes
it possible to isolate different fault domains. Since the con-
trol module stores all the routing information in a persistent
database, if the BGP modules fail, the datapath can forwards
traffic using the control module’s routing information.

BGP events and traffic paths analysis. When fault happens,
we need sufficient information to identify the root cause. The
BGP events and traffic paths are two most important types
of information. We have recorded all the BGP events in the
database for post-mortem analysis. Since traffic paths can be
dynamically changed, we use traceroute like tools to identify
the path.

9 Related Work

To overcome the limitation of the traditional BGP protocol,
Facebook [35] and Google [41] have developed SDN-based
systems to control egress traffic routing for peering edges.
Facebook EDGE FABRIC relies on vendor routers, which
overrides the routers’ normal BGP selection in each individual
Points of Presence (PoP). Google Espresso removes the need
for commodity BGP routers by employing centralized traffic
engineering, which selects egress at distant PoPs. It is notable
that DSR faces more complicated scenarios, including not
only the peering routing for Internet users, which is the focus
of EDGE FABRIC and Espresso, but also inter-connection
between public cloud and customers’ on-premise datacenters
as well as customers’ branch offices. Though we share the
same idea with Espresso that separating the logic of the con-
trol plane from the data plane, DSR targets a different set of
challenges on scalability, flexibility and reliability. In order to
satisfy the requirements of diverse cloud access scenarios, the
proposed disaggregated software router architecture is a gen-
eral platform that is capable of customizing and scaling each
module independently. DSR meets more stringent scalability
requirements to support 10Ks VRF tables for PCS and 10M
FIB entries for EIS. Therefore, we demonstrated the optimiza-
tion for scaling the forwarding and routing plane, which is not

addressed in Espresso. For flexibility, Espresso introduce the
application-aware routing to serve Internet users. In contrast,
DSR focuses on fast feature delivery to satisfy the demands
of cloud customers, like self-defined routing policy and GRE
encapsulation, etc. Furthermore, we solved multiple reliability
issues when introducing the disaggregated software-defined
router whose components are implemented in a distributed
environment, which is not addressed in Espresso either.

NFV technologies are widely used to replace traditional
proprietary middle boxes and switching devices. NFV tech-
nique reduces cost and provides high feature velocity [17,
24, 25, 30–34, 36, 40]. Previous works focus on several differ-
ent aspects of the NFV, e.g. elastic scaling [22, 34, 40], NFV
management [30, 39], performance optimization and imple-
mentation [9, 30], etc. DSR is an integration of multiple NFV
techniques at cloud gateway. DSR applies DPDK [12] and
VPP [8, 14] for the high performance data module. For the
BGP speaker, we have evaluated the open source candidates
like Quagga [2], GoBGP [4], BIRD [15] and FRR [3]. We
developed our high performance BGP speaker based on FRR,
which supports multiple functions like IPv6, BFD, etc. For
IPSec gateway in the SWS scenario, both the control and data
path of the IPSec protocol are coupled on the forwarding fleet.
We plan to investigate similar approach as in [38] to separate
the control and data plane of the IPSec protocol in order to
achieve high scalability.

10 Conclusion

Cloud gateways play a significant role for enterprise cus-
tomers and Internet users to access the resources in the cloud.
With the rapid growth of users, we introduce DSR to re-
place the commodity routers based cloud gateways in Tencent
Cloud. It employs a disaggregated software-defined architec-
ture which provides high scalability and accelerates the fea-
tures rollout velocity. Meanwhile, integration with the SDN
technique achieves smart traffic steering and fast failure con-
vergence. DSR has been deployed in production for over 3
years and has served tens of Tbps traffic for our customers.
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Abstract
This paper presents CodedBulk, a system for high-throughput
inter-datacenter bulk transfers. At its core, CodedBulk uses
network coding, a technique from the coding theory commu-
nity, that guarantees optimal throughput for individual bulk
transfers. Prior attempts to using network coding in wired
networks have faced several pragmatic and fundamental bar-
riers. CodedBulk resolves these barriers by exploiting the
unique properties of inter-datacenter networks, and by using
a custom-designed hop-by-hop flow control mechanism that
enables efficient realization of network coding atop existing
transport protocols. An end-to-end CodedBulk implementa-
tion running on a geo-distributed inter-datacenter network
improves bulk transfer throughput by 1.2−2.5× compared to
state-of-the-art mechanisms that do not use network coding.

1 Introduction

Inter-datacenter wide-area network (WAN) traffic is estimated
to quadruple over the next five years, growing 1.3× faster
than global WAN traffic [2]. In the past, such an increase
in demand has been matched by physical-layer technologi-
cal advancements that allowed more data to be pumped on
top of WAN fibers, thus increasing the capacity of existing
inter-datacenter links [14]. However, we are now approaching
the fundamental non-linear Shannon limit on the number of
bits/Hz that can be practically carried across fibers [14]. This
leaves datacenter network providers with the expensive and
painfully slow proposition of deploying new fibers in order to
keep up with increasing demands.

Several studies have reported that inter-datacenter traffic
is dominated by geo-replication of large files (e.g., videos,
databases, etc.) for fault tolerance, availability, and improved
latency to the user [3, 6, 8, 23, 25, 26, 31, 39, 40, 47, 49].
We thus revisit the classical multicast question: given a fixed
network topology, what is the most throughput-efficient mech-
anism for transferring data from a source to multiple desti-
nations? The answer to this question is rooted in network
coding, a technique from the coding theory community that

generalizes the classical max-flow min-cut theorem to the
case of (multicast) bulk transfers [9, 30, 33]. Network coding
guarantees optimal throughput for individual bulk transfers
by using in-network computations [9, 24, 30, 33]; in contrast,
achieving optimal throughput using mechanisms that do not
perform in-network computations is a long-standing open
problem [34]. We provide a primer on network coding in §2.2.
While network coding has been successful applied in wireless
networks [28, 29], its applications to wired networks have
faced several pragmatic and fundamental barriers.

On the practical front, there are three challenges. First,
network coding requires network routers to buffer and to
perform computations on data, which requires storage and
computation resources. Second, computing “network codes”
that define computations at routers not only requires a pri-
ori knowledge about the network topology and individual
transfers, but also does not scale to networks with millions of
routers and/or links. Finally, network coding requires a single
entity controlling the end-hosts as well as the network.

In traditional ISP networks, these challenges proved to be
insurmountable but the equation is quite different for inter-
datacenter WANs. The structure of typical inter-datacenter
WAN topologies means that, instead of coding at all routers
in the network, coding can be done only at resource-rich
datacenters—either at border routers or on servers inside the
datacenter—without any reduction in coding gains (§2.1).
Inter-datacenter WAN operators already deploy custom border
routers, so increase in computation and storage resources at
these routers to achieve higher throughput using the available
WAN bandwidth (that is expensive and increasingly hard-to-
scale) is a good trade-off to make. The second and third chal-
lenges are also alleviated by unique characteristics [23, 25]
of inter-datacenter WANs: (1) network sizes limited to hun-
dreds of routers and links enables efficient computation of
network codes and implementation of network coding; (2)
SDN-enabled routers combined with the fact that transfers are
known a-priori [39, 40] allow for centralized code computa-
tions which can, in turn, be programmed into routers; and (3)
a single entity controlling end-hosts as well as the network.
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While inter-datacenter WAN features lower the pragmatic
barriers, one fundamental challenge still needs to be resolved.
Traditional network coding assumes that there is no other traf-
fic in the network, either foreground (e.g., interactive traffic)
or background (e.g., other bulk transfers). More generally,
network coding assumes that all links have the same latency
and bandwidth, and that link latencies and bandwidths remain
static over time. This assumption does not hold in practice,
e.g., due to sporadic high-priority interactive traffic, and due
to multiple concurrent bulk transfers atop inter-datacenter
WANs. We refer to this as the asymmetric link problem.

CodedBulk is an end-to-end system for high-throughput
inter-datacenter bulk transfers that resolves the asymmetric
link problem using a simple Hop-by-hop Flow Control (HFC)
mechanism. The core idea in HFC mechanisms is to partition
available buffer space at routers among active flows, so as to
avoid buffer overflow [41, 45]. HFC mechanisms have been
explored for traditional non-coded traffic [37, 41, 42, 51];
however, using HFC mechanisms for network coding imposes
an additional constraint: all flows that need to be coded at any
router must converge to the same rate. Simultaneously, routers
need to work with limited storage and compute resources in
the data plane. We show that any buffer partitioning scheme
that assigns non-zero buffers to each (coded) flow achieves
the following desirable properties: (i) for each individual bulk
transfer, all incoming flows that need to be coded at a router
converge to the same rate; (ii) for all bulk transfers sharing a
link, the rate for all their flows through the link converge to
the max-min fair rate; and (iii) the network is deadlock-free.

The use of network coding, coupled with HFC, also means
that flow control at a router is correlated across multiple flows.
While this could be implemented via modifications in the
network stack, we introduce a virtual link abstraction which
enables CodedBulk without any modifications to existing
flow control-enabled transport layer and multipath-enabled
network layer implementations. For instance, CodedBulk cur-
rently runs on top of unmodified TCP and MPLS-enabled net-
work layer mechanisms supported by existing inter-datacenter
WANs. Our implementation requires no special traffic shaping
mechanism, allows co-existence of high-priority interactive
traffic, and handles failures transparently.

We envision two deployment scenarios for CodedBulk.
First, an infrastructure provider can provide CodedBulk as
a service to geo-distributed services (including its own).
In the second scenario, a geo-distributed service renting
compute, storage and inter-datacenter bandwidth resources
from an infrastructure provider can use CodedBulk to im-
prove bulk transfer throughput without any support from the
provider. We have implemented CodedBulk for both scenar-
ios — an overlay service, a software proxy and a hardware
proxy. The first two implementations currently run on geo-
distributed inter-datacenter WAN. All the three implemen-
tations, along with a CodedBulk simulator, are available at:
https://github.com/SynergyLab-Cornell/codedbulk.

The benefits of network coding depend on the underlying
network topology, the number of destinations in individual
bulk transfers, the source and set of destinations in each bulk
transfer, the number of concurrent transfers and interactive
traffic load. To understand the envelope of settings where
CodedBulk provides benefits, we evaluate CodedBulk over a
testbed comprising 13 geo-distributed datacenters organized
around the B4 [25] and Internet2 [5] inter-datacenter WAN
topologies, and perform sensitivity analysis of CodedBulk
performance against all of the above factors. Our evalua-
tion demonstrates that CodedBulk achieves 1.2−2.5× higher
throughput for bulk transfers when compared to existing state-
of-the-art mechanisms that do not perform network coding.
All the results presented in this paper are for real implementa-
tions of CodedBulk; this paper uses no simulation results.

2 CodedBulk Overview
We begin by describing our model for inter-datacenter WANs
(§2.1). We then provide a primer for network coding (§2.2).
Next, we discuss several pragmatic challenges that have posed
a barrier to adoption of network coding in wired networks and
how unique characteristics of inter-datacenter WANs enable
overcoming these barriers (§2.3). We close the section with a
high-level description of the CodedBulk design (§2.4).

2.1 Preliminaries
We follow the same terminology as in existing inter-datacenter
WAN literature [26, 27, 31, 32, 39, 40, 49, 52]. Specifically,
we model the inter-datacenter WAN as a directed graph G =
(V,E), where V is the set of nodes denoting datacenters and
E is the set of links between pairs of datacenters. To account
for the full-duplex nature of inter-datacenter WAN links, we
create two links u→ v and v→ u for each pair of nodes
(u,v) ∈V with a physical link between them. Each link has a
capacity equal to its bandwidth available for bulk transfers.

We discuss two important aspects of the network model.
First, while links in wired networks are full-duplex, the graph
in inter-datacenter literature is usually modeled as a directed
graph since links in two directions can have different avail-
able bandwidths at different times, e.g., due to high-priority
interactive traffic using (a fraction of) the bandwidth in one
direction. Second, in practice, geo-distributed datacenters are
often connected via intermediate routers operating at layer-1
or layer-3; these routers either operate exactly like a relay
(have degree two, with incoming bandwidth equal to outgo-
ing bandwidth), or have their bandwidth statically partitioned
across multiple outgoing links. Both these cases are equiva-
lent to having a direct link with a specific capacity in each
direction between each pair of datacenters with a physical
link between them.

We define bulk transfers as in prior work [23, 25, 26,
27, 31, 32, 38, 39, 40, 49, 52]: transfers that are bandwidth-
intensive. A bulk transfer is a source s sending a file to a
subset of nodes T ⊆V −{s}.
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Figure 1: Understanding benefits of network coding. (a) An instance of the inter-datacenter bulk transfer problem on the Internet2 topology [5],
with one source (marked by a circle with a ?) and three destinations (marked by circles). The network model is as described in §2.1. (b, c, d)
Existing solutions based on single-path, multi-path and Steiner arborescence packing can be suboptimal (detailed discussion in §2.2). (e) An
optimal solution with Steiner arborescence packing (computed by hand); today, computing such a solution requires brute force search which is
unlikely to scale to inter-datacenter deployment sizes (tens to hundreds of datacenters) [23, 25]. (f) CodedBulk, using network coding, not only
achieves optimal throughput but also admits efficient algorithms to compute the corresponding network codes. More discussion in §2.2.

2.2 Network coding background
Suppose a source wants to send a large file to a single desti-
nation, and that it is allowed to use as many paths as possible.
If there are no other flows in the network, the maximum
achievable throughput (the amount of data received by the
destination per unit time) is given by the well-known max-
flow min-cut theorem—the achievable throughput is equal to
the capacity of the min-cut between the source and the desti-
nation in the induced graph. The corresponding problem for
a source sending a file to multiple destinations was an open
problem for decades. In 2000, a now celebrated paper [9]
established that, for a multicast transfer, the maximum achiev-
able throughput is equal to the minimum of the min-cuts
between the source and individual destinations. This is also
optimal. For general directed graphs, achieving this through-
put is not possible using solutions where intermediate nodes
simply forward or mirror the incoming data—it necessarily
requires intermediate nodes to perform certain computations
over the incoming data before forwarding the data [9, 30, 33].

For our network model that captures full-duplex links, net-
work coding achieves optimal throughput (since it subsumes
solutions that do not perform coding); however, it is currently
not known whether optimal throughput can be achieved with-
out network coding [10, 34]. Figure 1 demonstrates the space
of existing solutions, using a bulk transfer instance from our
evaluation (§4) on the Internet2 topology. We present ad-

ditional discussion and examples in [46]. Single-path (also
referred to as multiple unicast) solutions, where the source
transfers data along a single path to each individual desti-
nation, can be suboptimal because they neither utilize all
the available network bandwidth, nor do they allow inter-
mediate nodes to forward/mirror data to other destinations.
Multi-path solutions, where the source transfers data along
all edge-disjoint paths to each individual destinations (paths
across destinations do not need to be edge disjoint), can be
suboptimal because they do not allow intermediate nodes to
forward/mirror data to other destinations.

The current state-of-the-art solutions for our network model
are based on Steiner tree (or, more precisely, Steiner arbores-
cence) packing [7, 18, 34]. These solutions use multiple paths,
and allow intermediate nodes to mirror and forward the data;
however, they can be suboptimal because the problem of
computing optimal Steiner tree (or arborescence) packing is
NP-hard, and approximation algorithms need to be used [12].
To demonstrate the limitations of existing Steiner packing so-
lutions, consider the example shown in Figure 1(d): here, once
the shown Steiner tree is constructed, no additional Steiner
trees can be packed in a manner that higher throughput can
be achieved. Figure 1(e) demonstrates the complexity of com-
puting an optimal solution (that we constructed by hand)—to
achieve the optimal solution shown in the figure, one must
explore intermediate solutions that use a suboptimal Steiner
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tree (shown in blue color). Today, computing such an optimal
solution requires a brute force approach, which is unlikely to
scale to inter-datacenter network sizes. Thus, we must use ap-
proximate suboptimal solutions; to the best of our knowledge,
the state-of-the-art algorithms for computing approximate
Steiner packing solutions for our network model do not even
admit polylogarithmic approximation factors [11, 21].

Network coding avoids the aforementioned limitations of
existing solutions by allowing intermediate nodes to perform
certain computations, which subsume forwarding and mirror-
ing, on data (as shown in the Figure 1(f) example)—it utilizes
multiple paths, guarantees optimal throughput, and admits
efficient computation of network codes that achieve optimal
throughput [24]. Thus, while designing optimal non-coded
solutions for bulk transfers remains an open problem, we can
efficiently achieve throughput optimality for inter-datacenter
bulk transfers today using network coding.

2.3 Resolving pragmatic barriers
While network coding is a powerful technique, its applica-
tions to wired networks have been limited in the past due to
several pragmatic challenges. In this subsection, we use the
example in Figure 1(f) to discuss these challenges, and how
inter-datacenter WANs allow overcoming these challenges.

Buffering and computation at intermediate nodes. Net-
work coding requires intermediate nodes to buffer data and
perform computations. For instance, the bottom-center node
in Figure 1(f) needs to perform XOR operations on packets
from two flows A and A⊕B. This requires the node to have
storage (to buffer packets from A and A⊕B), and compu-
tation resources (to compute A⊕ (A⊕B) = B) in the data
plane. While this was challenging in traditional ISP networks,
inter-datacenter WANs allow overcoming this barrier easily:
as noted in prior studies [31], each node in an inter-datacenter
WAN is a datacenter with compute and storage resources that
are significantly cheaper, more scalable and faster to deploy
than inter-datacenter bandwidth.

Computing and installing network codes. Nodes in Fig-
ure 1(f) perform specific actions (forward, mirror, code-and-
forward and code-and-mirror). These actions are specified us-
ing network codes, computing which requires a priori knowl-
edge of the network topology, and the source and the set
of destinations for each bulk transfer. This information was
hard to get in ISP networks; however, inter-datacenter WANs
already collect and use this information [23, 25, 31, 49]. Net-
work coding also requires transmissions from end-hosts to be
coordinated by the controller. In inter-datacenter WAN sce-
narios, this is feasible as a single entity controls the end-hosts
as well as the network. Existing SDN infrastructure [23, 25]
is also useful for this purpose—a centralized controller can
compute the code, and can populate the forwarding tables of
intermediate nodes (using existing support for MPLS tags and
multi-path routing) before the bulk transfer is initiated.

f

f

(a) Forward.

f

f f

(b) Mirror.

f1 . . . fk

f1 ⊕·· ·⊕ fk

(c) Code-and-Forward.

f1 . . . fk

f1 ⊕·· ·⊕ fk f1 ⊕·· ·⊕ fk

(d) Code-and-Mirror.

Figure 2: Four basic coding functions available at each intermediate
node to implement the network code generated by CodedBulk.

Existing algorithms [24] for computing network codes run
in polynomial time, but may not scale to networks with mil-
lions of nodes and edges; however, this is not a concern for
CodedBulk since inter-datacenter WANs comprise of only
hundreds of nodes and links. Computation and installation of
network codes, and buffering of data at intermediate nodes
may also lead to increased latency for bulk transfers. However,
since bulk transfers are not latency-sensitive [23, 25], a slight
increase in latency to achieve significantly higher throughput
for bulk transfers is a favorable tradeoff [31].

2.4 CodedBulk design overview
The high-level CodedBulk design for a single bulk transfer
case can be described using the following five steps:

1. The source node, upon receiving a bulk transfer request,
notifies the controller of the bulk transfer. The notifica-
tion contains the source identifier, the identifiers for each
destination, and an optional policy on the set of links or
intermediate nodes not to be used (e.g., for security and
isolation purposes).

2. The controller maintains a static topology of the inter-
datacenter network graph. While optimizations are possi-
ble to exploit real-time traffic information, the current Cod-
edBulk implementation does not use such optimizations.
The controller computes, for each destination, the set of
edge-disjoint paths between the source and the destination,
along with the bandwidth for each path. Using these paths,
the controller computes the network code for the bulk
transfer using the network coding algorithm from [24]1.
The network code comprises of the routing and forwarding

1The network coding algorithm in [24] requires as input a directed acyclic
graph. However, the multipath set in our construction may lead to a cyclic
graph. We use an extension similar to the original network coding paper [9]
to generate network codes for cyclic graphs. Please see [46] for details.
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(c) Reason: Multiple bulk transfers.

Figure 3: Understanding asymmetric link problem. (a) Due to sporadic high-priority interactive traffic (e.g., the one shown in red), different
links may have different (time-varying) bandwidths; (b) If network links have significantly different round trip times, naïvely implementing
traditional network coding would require large amount of fast data plane storage to buffer data that arrives early at nodes; (c) multiple concurrent
bulk transfers, especially those that end up sharing links, make it hard to efficiently realize traditional network coding solutions that assume a
single bulk transfer at all times. Detailed discussion in §3.1.

information for each flow, and the computations done at
each intermediate node for the flows arriving at that node.
These codes can be expressed as a combination of four
basic functions shown in Figure 2.

3. Once the network code is computed, the controller installs
the network code on each node that participates in the
bulk transfer. We discuss, in §3.3, a mechanism to imple-
ment the forwarding and routing functions that requires no
changes in existing inter-datacenter WAN infrastructure.

4. Once the code is installed, the controller notifies the source.
The source partitions the bulk transfer file into multiple
subfiles (defined by the code) and then initiates the bulk
transfer using CodedBulk, as described in the remainder
of the paper. For instance, for the example of Figure 1(f),
the source divides the file into two subfiles (A and B) of
equal sizes and transmits them using the code shown in
the figure. Each intermediate node independently performs
CodedBulk’s hop-by-hop flow control mechanism. Impor-
tantly, a “hop” here refers to a datacenter on the network
topology graph. CodedBulk assumes that interactive traf-
fic is always sent with the highest priority, and needs two
additional priority levels.

5. Once the bulk transfer is complete, the source notifies
the controller. The controller periodically uninstalls the
inactive codes from all network nodes.

The core of CodedBulk’s mechanisms are to efficiently enable
the fourth step. We describe these in the next section.

3 CodedBulk Design
We describe the core techniques in CodedBulk design and
implementation. We start by building an in-depth understand-
ing of the asymmetric link problem (§3.1). We then describe
how CodedBulk resolves the asymmetric link problem using a
custom-designed hop-by-hop flow control mechanism (§3.2).
Finally, we discuss the virtual link abstraction that enables
implementation of CodedBulk without any modifications in
underlying transport- and network-layer protocols (§3.3).

3.1 Understanding fundamental barriers
We start by building an in-depth understanding of the asym-
metric link bandwidth problem, and how it renders techniques
in network coding literature infeasible in practice. We use
Figure 3 for the discussion in this subsection.

Asymmetric links due to sporadic interactive traffic. Inter-
datacenter WANs transfer both latency-sensitive interactive
traffic (e.g., user commits, like emails and documents) and
bandwidth-intensive bulk traffic [23, 25]. While interactive
traffic is low-volume, it is unpredictable and is assigned higher
priority. This leads to two main challenges. First, links may
have different bandwidths available at different times for bulk
transfers (as shown in Figure 3(a)). Second, the changes in
available bandwidth may be at much finer-grained timescales
than the round trip times between geo-distributed datacenters.

Traditional network coding literature does not consider the
case of interactive traffic. An obvious way to use traditional
network coding solutions for non-uniform link bandwidths is
to use traffic shaping to perform network coding on the mini-
mum of the available bandwidth across all links. For instance,
in the example of Figure 3(a), if the average load induced by
interactive traffic is 0.1× link bandwidth, then one can use
network coded transfers only on 0.9× bandwidth. However,
the two challenges discussed above make this solution hard,
if not infeasible: bandwidths are time-varying, making static
rate allocation hard; and, bandwidth changing at much fine-
grained timescales than geographic round trip times makes it
hard to do dynamic rate allocation.

Asymmetric links due to non-uniform delay. Traditional
network coding solutions, at least the practically feasible
ones [24], require computations on data arriving from mul-
tiple flows in a deterministic manner: packets that need to
be coded are pre-defined (during code construction) so as to
allow the destinations to decode the original data correctly.
To achieve this, existing network coding solutions make one
of the two assumptions: either the latency from the source
to each individual node is uniform; or, unbounded storage
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Figure 4: Understanding hop-by-hop flow control for a single bulk transfer. (left) if the outgoing link has enough bandwidth to sustain the rate
of incoming traffic (flow F in this example), then all buffers will remain unfilled and flow control will not be instantiated; (center) the same
scenario as the left figure holds as long as the two conditions hold: (1) both flows that need to be coded at some node v send at the same rate;
and (2) the outgoing link has enough bandwidth to sustain the rate of incoming traffic; (right) If two flows need to be coded at some node v, and
one of the flows F1 is sending at higher rate, then the Rx buffer for F1 will fill up faster than it can be drained (due to v waiting for packets of
F2) and flow control to the downstream node of F1 will be triggered, resulting in rate reduction for flow F1. Detailed discussion in §3.2.

at intermediate nodes to buffer packets from multiple flows.
Neither of these assumptions may hold in practice. The delay
from the source to individual intermediate nodes can vary
by hundreds of milliseconds in a geo-distributed setting (Fig-
ure 3(b)). Keeping packets buffered during such delays would
require an impractical amount of high-speed storage for high-
bandwidth inter-datacenter WAN links: if links are operating
at terabits per second of bandwidth, each intermediate node
would require hundreds of gigabits or more of storage.

Asymmetric links due to simultaneous bulk transfers. Tra-
ditional network coding literature considers only the case of
a single bulk transfer. Designing throughput-optimal network
codes for multiple concurrent bulk transfers is a long-standing
open problem. We do not solve this problem; instead, we fo-
cus on optimizing throughput for individual bulk transfers
while ensuring that the network runs at high utilization.

Achieving the above two goals simultaneously turns out
to be hard, due to each individual bulk transfer observing
different delays (between respective source to intermediate
nodes) and available link bandwidths due to interactive traf-
fic. Essentially, as shown in Figure 3(c), supporting multiple
simultaneous bulk transfers requires additional mechanisms
for achieving high network utilization.

3.2 CodedBulk’s hop-by-hop flow control
Network coding, by its very nature, breaks the end-to-end
semantics of traffic between a source-destination pair, thus
necessitating treating the traffic as a set of flows between the
intermediate nodes or hops. Recall that a “hop” here refers to
a (resource-rich) datacenter on the network graph. To ensure
that we do not lose packets at intermediate nodes in spite
of the fact that they have limited storage, we rely on a hop-
by-hop flow control mechanism—a hop pushes back on the
previous hop when its buffers are full. This pushback can be
implicit (e.g., TCP flow control) or explicit.

Hop-by-hop flow control is an old idea, dating back to the
origins of congestion control [41, 45]. However, our problem
is different: traditional hop-by-hop flow control mechanisms
operate on individual flows—each downstream flow depends

on precisely one upstream flow; in contrast, CodedBulk op-
erates on “coded flows” that may require multiple upstream
flows to be encoded at intermediate nodes. Thus, a flow being
transmitted at a low rate can affect the overall performance of
the transfer (since other flows that need to be encoded with
this flow will need to lower their rate as well). This leads to a
correlated rate control problem. For instance, in Figure 2(c)
and Figure 2(d), flows f1 to fk must converge to the same
rate so that the intermediate node can perform coding opera-
tions correctly without buffering large number of packets. To
that end, CodedBulk’s hop-by-hop flow control mechanism
maintains three invariants:
• All flows within the same bulk transfer that need to be

encoded at any node must converge to the same rate;

• All flows from different bulk transfers competing on the
congested link bandwidth must converge to a max-min fair
bandwidth allocation;

• The network is deadlock-free.

CodedBulk maintains these invariants using a simple idea:
careful partitioning of buffer space to flows within and across
bulk transfers. The key insight here, that follows from early
work on buffer sharing [45], is that for large enough buffers,
two flows congested on a downstream link will converge to a
rate that corresponds to the fair share of the downstream link
bandwidth. We describe the idea of CodedBulk’s hop-by-hop
flow control mechanism using two scenarios: single isolated
bulk transfer and multiple concurrent bulk transfers.

Single bulk transfer. First consider the two simpler cases of
forward (Figure 2(a)) and mirror (Figure 2(b)). These cases
are exactly similar to traditional congestion control protocols,
and hence do not require any special mechanism for buffer
sharing. The main challenge comes from Code-and-Forward
(Figure 2(c)) and Code-and-Mirror (Figure 2(d)). For these
cases, the invariant we require is that the flows being used to
compute the outgoing data converge to the same rate since
otherwise packets belonging to the flows sending at a higher
rate will need to be buffered at the node, requiring high storage.
This is demonstrated in Figure 4, center and right figures.
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Figure 5: If concurrent bulk transfers use completely different outgoing links (left) or use the same outgoing link but with enough bandwidth
(center), the hop-by-hop flow control mechanism does not get triggered. However, if the outgoing link is bandwidth-bottlenecked, and one of
the bulk transfers is sending at higher rate (say the red one), then the buffers for the red flows will fill up faster than the buffers for blue flows;
at this point, hop-by-hop flow control mechanism will send a pushback to the downstream nodes of the red flows, resulting in reduced rate for
the red flows. Detailed discussion in §3.2.

Our insight is that a buffer partitioning mechanism that
assigns non-zero buffers to each incoming flow maintains
the second and the third invariants. It is known that non-zero
buffer allocation to each flow at each link leads to deadlock-
freedom [45]. It is easy to see that the second invariant also
holds—if one of the flows sends at a rate higher than the other
(Figure 4(right)), the buffer for this flow will fill up faster than
the buffer for the other flow, the flow control mechanism will
be triggered, eventually reducing the rate of the flow.

Multiple simultaneous bulk transfers. CodedBulk handles
each bulk transfer independently using its hop-by-hop flow
control mechanism. Again, we provide intuition using an
example. Consider two simultaneous bulk transfers at some
intermediate node. If the two bulk transfers use different in-
coming and outgoing links, these transfers remain essentially
independent. So, consider the case when the two bulk trans-
fers compete on one of the incoming or outgoing links. We
first discuss when they compete on one of the outgoing links
(see Figure 5). If the sum of “coded rates” for individual bulk
transfers is less than the outgoing link bandwidth, no flow
control is triggered and hence max-min fairness is achieved.

The situation becomes more interesting when the sum of
coded rates for individual bulk transfers is greater than the
outgoing link bandwidth. In this case, suppose the coded rate
of the first bulk transfer is greater than the second one. Then,
since outgoing link is shared equally across the two bulk
transfers, the buffers for the flows in the first bulk transfer will
fill more quickly, leading to triggering the flow control. Thus,
flows in the second bulk transfer will reduce the transmission
rate finally converging to outgoing link being shared equally
across the two coded bulk transfers.

Multi-priority transfers to fill unfilled pipes. Asymmetric
link problem, despite our hop-by-hop flow control mecha-
nism, can lead to “unfilled pipes” (Figure 6). Essentially, due
to different bulk transfers bottlenecked at different links, no
more coded traffic can be pushed into the network despite
some links having available bandwidth. CodedBulk fills such
unfilled pipes by sending uncoded data; however, to ensure
minimal impact on the coded traffic, CodedBulk uses a lower

?
?

Figure 6: By sending non-coded flows at lower priority (the gray
traffic), CodedBulk exploits the “unfilled pipes” left by coded traffic.

priority level for the uncoded data. Thus, CodedBulk uses
three priority levels—the highest priority is for interactive
traffic, the medium priority for coded traffic, and a lower pri-
ority level for uncoded traffic.

3.3 Virtual links
CodedBulk’s hop-by-hop flow control mechanism from the
previous section addresses the asymmetric link problem, at a
design level. In this subsection, we first discuss a challenge
introduced by network coding in terms of efficiently imple-
menting the hop-by-hop flow control mechanism. We then
introduce the abstraction of virtual links, that enables an ef-
ficient realization of CodedBulk’s flow control mechanism
without any changes in the underlying transport protocol. For
this subsection, we use TCP as the underlying congestion con-
trol mechanism; however, the idea generalizes to any transport
protocol that supports flow control.

The challenge. In traditional store-and-forward networks, im-
plementing hop-by-hop flow control is simple: as data for a
flow is received in the Rx buffer, it can be directly copied
to the Tx buffer of the next hop, either using blocking or
non-blocking system calls. When implementing network cod-
ing, this becomes non-trivial—since data from multiple flows
needs to be coded together, neither blocking nor non-blocking
calls can be used since these calls fundamentally operate on
individual flows. For instance, consider the case of Figure 1(f),
where a node needs to compute (A⊕B)⊕A using packets
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Figure 7: The figure demonstrates the virtual link abstraction used
by CodedBulk to implement its hop-by-hop flow control mechanism
without any modifications in the underlying network stack.

from the two flows. Blocking calls require expensive coordi-
nation between two buffers since the node requires data from
both flows to be available before it can make progress. Non-
blocking calls cannot be used either—the call will return the
data from one of the flows, but this data cannot be operated
upon until the data from the other flow(s) is also available.
The fundamental challenge here is that we need efficient ways
to block on multiple flows, and return the call only when data
is available in all flows that need to be coded.

It may be tempting to have a shared buffer across different
flows that need to be coded together. The problem, however, is
that shared buffers will lead to deadlocks [41]—if one of the
flows is sending data at much higher rate than the other flows,
it will end up saturating the buffer space, the other flows will
starve, and consequently the flow that filled up the buffer will
also not make progress since it waits to receive data from other
flows to be coded with. As discussed in §3.2, non-zero buffer
allocation to each individual flow is a necessary condition for
avoiding deadlocks in hop-by-hop flow control mechanisms.

Virtual links (see Figure 7). CodedBulk assigns each indi-
vidual bulk transfer a virtual link per outgoing physical link;
each virtual link has a single virtual transmit buffer vTx and
as many virtual receive buffers vRx as the number of flows to
be coded together for that outgoing link. For instance, con-
sider four incoming flows in a bulk transfer F1, F2, F3, F4
such that F1 ⊕ F2 is forwarded on one of outgoing physical
links, and F2 ⊕ F3 ⊕ F4 is forwarded on another outgoing
physical link. Then, CodedBulk creates two virtual links each
having one vTx; the first virtual link has two vRx (one for F1
packets and another for F2 packets) and the second virtual
link has three vRx (one for each of F2, F3 and F4 packets).
Virtual links are created when the controller installs the net-
work codes, since the knowledge of the precise network code
to be used for the bulk transfer is necessary to create virtual
links. As new codes are installed, CodedBulk reallocates the
space to each vTx and vRx, within and across virtual links, to
ensure that all virtual buffers have non-zero size.

Using these virtual links resolves the aforementioned chal-
lenge with blocking and non-blocking calls. Indeed, either
of the calls can now be used since the “correlation” between
the flows is now captured at the virtual link rather than at the
flow control layer. Data from the incoming socket buffers for

individual flow is now copied to their respective vRx buffers,
either using blocking or non-blocking calls. A separate thread
asynchronously checks when the size of all the vRx buffers
is non-zero (each buffer has at least one packet); and when
this happens, performs the coding operations and copies the
resulting packet to the corresponding vTx.

4 Evaluation
We implement CodedBulk in C++ and use TCP Cubic as
the underlying transport protocol. We use default TCP socket
buffers, with interactive traffic sent at higher priority than bulk
transfers (using TCP differentiated services field) set using
standard Linux socket API. To enforce priority scheduling,
we use Linux tc at each network interface.

We now evaluate CodedBulk implementation over two real
geo-distributed cloud testbeds. We start by describing the ex-
periment setup (§4.1). We then discuss the results for Coded-
Bulk implementation over a variety of workloads with varying
choice of source and destination nodes for individual bulk
transfers, interactive traffic load, number of concurrent bulk
transfers, and number of destinations in individual bulk trans-
fers (§4.2). Finally, we present scalability of our CodedBulk
prototype implementation in software and hardware (§4.3).

4.1 Setup

Testbed details. To run our experiments, we use two testbeds
that are built as an overlay on geo-distributed datacenters from
Amazon AWS. Our testbeds use 13 and 9 geo-distributed data-
centers organized around B4 [25] and Internet2 [5] topologies,
respectively. The datacenter locations are chosen to closely
emulate the two topologies and the corresponding geographi-
cal distances and latencies. Within each datacenter, we take a
high-end server; for every link in the corresponding topology,
we establish a connection between the servers across various
datacenter using the inter-datacenter connectivity provided
by Amazon AWS. To reduce cost of experimentation, we
throttle the bandwidth between each pair of servers to 200
Mbps for our experiments. The precise details on the inter-
datacenter connectivity provided by Amazon AWS, whether
they use public Internet or dedicated inter-datacenter links,
is not publicly known. We run all the experiments for each
individual figure within a short period of time; while the inter-
datacenter links provided by Amazon AWS may be shared
and may cause interference, we observe fairly consistent inter-
datacenter bandwidth during our experiments. We use a server
in one of the datacenters to act as the centralized controller
(to compute and install network codes on all servers across
our testbed).

Workloads. As mentioned earlier, the benefits of network
coding depend on the underlying network topology, the num-
ber of destinations in individual bulk transfers, the location
of the source and the set of destinations in each bulk transfer,
the number of concurrent transfers and interactive traffic load.
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While there are no publicly available datasets or workloads for
inter-datacenter bulk transfers, several details are known. For
instance, Facebook [43], Netflix [1], Azure SQL database [3]
and CloudBasic SQL server [4] perform replication to (dy-
namically) locate their datasets closer to the customers; for
such applications, the destinations for each replica are selected
based on the diurnal traffic patterns and customer access pat-
terns. Many other applications [13, 19, 23, 25, 31, 50] per-
form replication levels based on user needs, usually for fault
tolerance; for such applications, the choice of destinations
may be under the control of the service provider.

We perform experiments to understand the envelope of
workloads where CodedBulk provides benefits. Our evalua-
tion performs sensitivity analysis against all parameters—we
use two inter-datacenter network topologies, interactive traf-
fic load varying from 0.05−0.2× of the link bandwidth, the
number of destinations/replicas in individual bulk transfers
varying from 2 to maximum possible (depending on the topol-
ogy), and the number of concurrent bulk transfers varying
from 1 to the maximum possible (depending on the topology).
For each setting, we run five experiments; for individual bulk
transfers within each experiment, we choose a source uniform
randomly across all nodes, and choose the destinations from
the remaining nodes. Each node can be the source of only a
single bulk transfer but may serve as a destination for other
bulk transfers; furthermore, each node may serve as a des-
tination for multiple bulk transfers. We present the average
throughput across all experiments, as well as the variance
(due to different choices of the source and set of destination
across different experiments).

We generate interactive traffic between every pair of data-
centers, with arrival times such that the overall load induced
by the interactive traffic varies between 0.05− 0.2× of the
link bandwidth; while 0.2 load is on the higher end in real-
world scenarios [23, 25], it allows us to evaluate extreme
workloads. Interactive traffic is always assigned the highest
priority and hence, all our evaluated schemes will get the same
interactive traffic throughput. Our results, thus, focus on bulk
traffic throughput.

As mentioned above, there are no publicly available
datasets or workloads for inter-datacenter bulk transfers. We
make what we believe are sensible choices, state these choices
explicitly, and to whatever extent possible, evaluate the sen-
sitivity of these choices on our results. Nonetheless, our re-
sults are dependent on these choices, and more experience is
needed to confirm whether our results generalize to workloads
observed in large-scale deployments.

Evaluated schemes. We compare CodedBulk with three
mechanisms for bulk data transfers discussed earlier in Fig-
ure 1—single-path, multi-path, and Steiner arborescence
packing—each of which take the graph described in §2.1
as an input. For the single-path mechanism, the bulk traf-
fic is transferred along the shortest path between the source
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Figure 8: Performance of various bulk transfer mechanisms for vary-
ing interactive traffic load. For the B4 topology, CodedBulk improves
bulk transfer throughput by 1.9−2.2×, 1.4−1.6× and 1.5−1.6×
compared to single-path, multi-path, and Steiner arborescence based
mechanisms, respectively. For the Internet2 topology, corresponding
numbers are 1.9−2.1×, 1.6×, and 1.2−1.4× (discussion in §4.2).

and each destination; when multiple choices are available,
the mechanism selectively picks paths that minimize total
bandwidth usage (e.g., to send bulk traffic to two destina-
tions d1,d2, the mechanism prefers the path s→ d1 → d2,
where d1 can simply forward the data to d2, over two different
paths s→ d1 and s→ v→ d2 for some other node v). The
multi-path mechanism selects edge-disjoint paths from the
source to each destination so as to greedily minimize the sum
of the path lengths. Our third baseline is a state-of-the-art
Steiner arborescence based multicast mechanism that allows
each node in the network (including the destinations) to for-
ward (Figure 2(a)) and mirror (Figure 2(b)) incoming data.
To compute the Steiner arborescence, we use the algorithm
in [48] that is also used in other Steiner arborescence based
inter-datacenter multicast proposals [38, 39, 40]. We take the
arborescence computed by the algorithm, and integrate it with
a store-and-forward model, along with TCP for transfers be-
tween every pair of nodes in the Steiner arborescence. For
concurrent bulk transfers, paths and Steiner arborescence are
computed independently for each individual bulk transfer.

For CodedBulk, we use a finite field size of 28, that is all
finite field operations are performed on individual bytes; this
finite field size is sufficient for inter-datacenter networks with
as many as 128 datacenters. We could have used a smaller
finite field size since our topologies are much smaller than real
inter-datacenter network topologies; however, this allow us to
keep the operations byte aligned, which simplifies CodedBulk
software and hardware implementation.

Performance metric. Our primary metric is the aggregate
throughput for bulk transfers. For each individual bulk trans-
fer, the throughput is computed as the maximum throughput at
which the source can send to all destinations. We then calcu-
late the aggregate throughput by summing up the throughput
of all bulk transfers.
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Figure 9: Performance of various bulk transfer mechanisms for varying number of concurrent bulk transfers. CodedBulk improves the bulk
transfer throughput by 1.6− 4×, 1.3− 2.8× and 1.2− 2.5× when compared to single-path, multi-path, and Steiner arborescence based
mechanisms, respectively (discussion in §4.2).

4.2 Geo-distributed Testbed Experiments

We compare CodedBulk with the three baselines for varying
interactive traffic loads, varying number of concurrent bulk
transfers and varying number of replicas per bulk transfer.

Varying interactive traffic load. Figure 8 presents the
achievable throughput for each scheme with varying interac-
tive traffic load. For this experiment, we use 3-way replication
and 6 concurrent transfers (to capture the case of Facebook,
Netflix, Azure SQL server and CloudBasic SQL server as
discussed above), and vary the interactive traffic load from
0.05−0.2× of the link bandwidth.

As expected, the throughput for all mechanisms decreases
as interactive traffic load increases. Note that, in corner-case
scenarios, the multi-path mechanism can perform slightly
worse than single-path mechanism for multiple concurrent
bulk transfers due to increased interference across multiple
flows sharing a link, which in turn results in increased conver-
gence time for TCP (see [46] for a concrete example). Overall,
CodedBulk improves the bulk traffic throughput over single-
path, multi-path and Steiner arborescence mechanisms by
1.9−2.2×, 1.4−1.6× and 1.2−1.6×, respectively, depend-
ing on the interactive traffic load and the network topology.
Single-path mechanisms perform poorly because they do not
exploit all the available bandwidth in the network. Both multi-
path and Steiner arborescence based mechanisms exploit the
available bandwidth as much as possible. However, multi-
path mechanisms suffer since they do not allow intermediate
nodes to mirror and forward to the destinations. Steiner ar-
borescence further improves upon multi-path mechanisms by
allowing intermediate nodes to mirror and forward data, but
they suffer due to approximation algorithm often leading to
suboptimal solutions. CodedBulk’s gains over multi-path and
Steiner arborescence mechanisms are, thus, primarily due to
CodedBulk’s efficient realization of network coding—it not
only uses all the available links, but also computes the optimal
coding strategy (unlike Steiner arborescence mechanism that
uses an approximation algorithm). The Steiner arborescence

mechanism performs better on Internet2 topology because of
its sparsity—fewer links in the network means a Steiner ar-
borescence solution is more likely to be the same as network
coding solution due to fewer opportunities to perform coding.
Nevertheless, CodedBulk outperforms Steiner arborescence
based mechanism by 1.4×.

Varying number of concurrent bulk transfers. Figure 9
shows the performance of the four mechanisms with varying
number of concurrent transfers. For this evaluation, we use
the same setup as earlier—3-way replication, multiple runs
with each run selecting different sources and set of destina-
tions, etc.—with the only difference being that we fix the
interactive traffic load to 0.1 and vary the number of concur-
rent bulk transfers. With larger number of concurrent bulk
transfers, Steiner arborescence mechanisms slightly outper-
form multi-path due to improved arborescence construction.
Nevertheless, CodedBulk provides benefits across all sets of
experiments, achieving 1.2−2.5× improvements over Steiner
arborescence based mechanisms. The gains are more promi-
nent for B4 topology and for fewer number of concurrent
transfers, since CodedBulk gets more opportunities to per-
form network coding at intermediate nodes in these scenarios.

Varying number of destinations/replicas per bulk trans-
fer. Figure 10 shows the performance of the four mechanisms
with varying number of destinations/replicas for individual
bulk transfers. For this evaluation, we use the same setup as
Figure 8—6 concurrent bulk transfers, multiple runs with each
run selecting different sources and set of destinations, etc.—
with the only difference being that we fix the interactive traffic
load to 0.1 and vary the number of destinations/replicas per
bulk transfer from 2 to the maximum allowable replicas for
individual topologies. Notice the results show the aggregate
throughput per destination.

As the number of destinations per bulk transfer increases,
the per-destination throughput decreases for all schemes (al-
though, as expected, the sum of throughput of all destinations
increases). Note that multi-path outperforming single-path
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Figure 10: Performance of various bulk transfer mechanisms for varying number of destinations/replicas per bulk transfer. CodedBulk improves
the bulk transfer throughput over single-path and multi-path mechanisms by 1.8−4.3× and 1.4−2.9×, respectively, depending on the number
of destinations in each bulk transfer and depending on the topology. CodedBulk outperforms Steiner arborescence mechanisms by up to 1.7×
when the number of destinations is not too large. When each bulk transfer creates as many replicas as the number of datacenters in the network,
CodedBulk performs comparably with Steiner arborescence. Note that the aggregate bulk throughput reduction is merely because each source
is transmitting to increasingly many destinations, but the metric only captures the average throughput per destination. Discussion in §4.2.

and Steiner arborescence based mechanism in Figure 10(a)
is primarily due to B4 topology being dense, thus providing
enough path diversity to offset the benefits of approximate
Steiner arborescence construction. Figure 10(a) and 10(b)
show that CodedBulk outperforms single-path and multi-path
mechanisms by 1.8−4.3× and 1.4−2.9×, depending on the
number of destinations and on the topology; moreover, the rel-
ative gains of CodedBulk improve as number of destinations
increases. The comparison with Steiner arborescence based
mechanism is more nuanced. CodedBulk achieves improved
performance when compared to Steiner arborescence based
mechanism when number of destinations is less than 10 for B4
topology, and less than 6 for Internet2 topology. The perfor-
mance difference is minimal for larger number of destination.
The reason is that for larger number of replicas/destinations,
each source is multicasting to almost all other nodes in the
network; in such cases, the benefits of coding reduce when
compared to forwarding and mirroring of data at intermediate
nodes and at the destination nodes as in Steiner arborescence
based mechanism. Thus, the benefits of CodedBulk may be
more prominent when the number of replicas is a bit smaller
than the total number of datacenters in the network.

4.3 Microbenchmarks
We now evaluate CodedBulk performance in terms of scala-
bility of its software and hardware implementations. Our goal
here is to demonstrate the feasibility of CodedBulk imple-
mentation; deployment of CodedBulk in large-scale systems
would typically require much more optimized implementation
since the traffic volume is expected to be much higher.

Software implementation. CodedBulk software implemen-
tation runs on commodity datacenter servers, performing net-
work coding as discussed in §3. Figure 11 shows the scalabil-
ity of CodedBulk software implementation. We observe that
CodedBulk implementation scales well with number of cores,
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Figure 11: CodedBulk implementation performs network coding
for as much as 31Gbps worth of traffic using a commodity 16 core
server, achieving roughly linearly coding throughput scalability with
number of cores.

Element Used Available Utilization
LUT 69052 433200 15.94%

BRAM 1365 1470 92.86%

Table 1: Resource utilization of CodedBulk implementation on Xil-
inx Virtex-7 XC7VX690T FPGA (250 MHz clock). Our implemen-
tation provides up to 31.25 Gbps throughput with 15.94% LUTs and
92.86% BRAMs. No DSP is needed in our design.

with a single 16-core server being able to perform network
coding at line rate for as much as 31Gbps worth of traffic.

Hardware implementation. We have synthesized an end-to-
end CodedBulk implementation on an FPGA. For our Coded-
Bulk hardware implementation, we had two choices. First, we
could implement a finite field engine that performs finite field
operations during the network coding process; or second, we
could precompute and store finite field operation results, and
use a simple look up table while performing network coding
operations. The first approach requires multiple clock cycles
to encode two bytes from two different packets; the second
approach trades off BRAM to save cycles during coding op-
erations. Since CodedBulk uses a small finite field size (28),
the second approach offers a better tradeoff — it requires
just 256×256 byte look up table per 16 bytes for individual
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operations to complete in one cycle. We replicate the lookup
table accordingly to perform network coding for all bytes in
an MTU-sized packet within a single clock cycle. Table 1
shows the results for CodedBulk hardware implementation
on Xilinx Virtex-7 XC7VX690T FPGA, which offers 100,
200, and 250 MHz fabric clocks. With respect to the clocks,
our FPGA-based codec can achieve throughput 12.5, 25, and
31.25 Gbps. Without needing any DSP, our hardware design
consumes 92.86% BRAMs and only 15.94% LUTs.

We believe that trading off compute and storage resources
to improve inter-datacenter bulk transfer throughput is a fa-
vorable tradeoff to make. However, more experience from
industry is needed to do a thorough cost/benefit analysis.

5 Related Work
We have already discussed the differences between Coded-
Bulk’s goals and the traditional multicast problem in ISP
networks; it would be futile to attempt to summarize the vast
amount of literature from ISP multicast problem. We com-
pare and contrast CodedBulk with two more closely related
key areas of research: inter-datacenter WAN transfers, and
network coding applications in computer networks.

Inter-datacenter bulk transfers. There has been significant
amount of recent work on optimizing inter-datacenter bulk
transfers [26, 27, 31, 32, 38, 39, 40, 49, 52]. These works
optimize inter-datacenter bulk transfers along a multitude
of performance metrics, including improving flow comple-
tion time [27, 38, 39, 40, 49, 52], and throughput for bulk
transfers [26, 31, 32]. CodedBulk’s goals are aligned more
closely with the latter, and are complementary to the former—
CodedBulk improves the throughput for bulk transfers; any
bulk transfer scheduling mechanism can be used on top of
CodedBulk to meet the needs for timely transfers.

As discussed earlier, the state-of-the-art approach for high-
throughput inter-datacenter bulk transfers are based on pack-
ing of Steiner arborescence: here, each intermediate node
as well as destination nodes are allowed to forward and
mirror data toward other destination nodes. Several recent
inter-datacenter bulk transfer proposals [38, 39, 40] are based
on this approach. Our evaluation in §4 shows that Coded-
Bulk achieves throughput improvements over state-of-the-art
Steiner arborescence based mechanisms in a wide variety of
scenarios. This is because all prior techniques are limited by
network capacity, and by limitations of existing non-coded
techniques to achieve this capacity.

CodedBulk, by using network coding, achieves improve-
ment in throughput for bulk transfers by trading off a small
amount of compute and storage resources.

Network coding in computer networks. Network coding
has successfully been applied to achieve higher throughput
in wireless networks [20, 29], in TCP-based networks [44],
in content distribution [17, 35, 36], in peer-to-peer communi-
cation [16], to name a few; please see [15] for additional ap-

plications of network coding. Our goals are complementary—
enabling network coding for high-throughput inter-datacenter
WAN bulk transfers by exploiting the unique characteristics
of these networks. Throughout the paper, we have outlined
the unique challenges introduced by applications of network
coding in wired networks, and how CodedBulk overcomes
these challenges. Our design can be applied to any of the
applications where network coding is useful.

Network code construction algorithms. Early incarnations
of network coding solutions used a technique referred to as
random linear network coding [9, 22]. These random linear
network codes have the benefit of being independent of the
network topology. However, they have high implementation
cost: they require complex operations at intermediate nodes
(due to computations over large finite field sizes and due to
requiring additional packet header processing). In addition, re-
alizing random linear network codes in practice also requires
changes in packet header format. Follow-up research has led
to efficient construction of network codes [24]—for a bulk
transfer to T destinations, it suffices for intermediate nodes to
perform computations over a finite field of size at most 2|T |;
if the min-cut is h, the complexity of computations at the
source and at the destination are O(h) and O(h2), respectively.
In §4.1, we discussed how at the inter-datacenter WAN scale,
these computations entail simple and efficient byte-level XOR
operations. Furthermore, these codes can be realized without
any changes in the packet header format. CodedBulk, thus,
uses the network code construction algorithm of [24].

6 Conclusion
We have presented the design, implementation and evalua-
tion of CodedBulk, an end-to-end system for high-throughput
inter-datacenter bulk transfers. CodedBulk uses network cod-
ing, a technique that guarantees optimal throughput for indi-
vidual bulk transfers. To achieve this, CodedBulk resolves
the many pragmatic and fundamental barriers faced in the
past in realizing the benefits of network coding in wired net-
works. Using an end-to-end implementation of CodedBulk
over a geo-distributed inter-datacenter network testbed, we
have shown that CodedBulk improves throughput for inter-
datacenter bulk transfers by 1.2− 2.5× when compared to
state-of-the-art mechanisms that do not perform coding.
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Abstract
Core-Stateless Fair Queueing (CSFQ) is a scalable algorithm
proposed more than two decades ago to achieve fair queueing
without keeping per-flow state in the network. Unfortunately,
CSFQ did not take off, in part because it required protocol
changes (i.e., adding new fields to the packet header), and
hardware support to process packets at line rate.

In this paper, we argue that two emerging trends are mak-
ing CSFQ relevant again: (i) cloud computing which makes
it feasible to change the protocol within the same datacen-
ter or across datacenters owned by the same provider, and
(ii) programmable switches which can implement sophisti-
cated packet processing at line rate. To this end, we present
the first realization of CSFQ using programmable switches.
In addition, we generalize CSFQ to a multi-level hierarchy,
which naturally captures the traffic in today’s datacenters,
e.g., tenants at the first level and flows of each tenant at the
second level of the hierarchy. We call this scheduler Hierar-
chical Core-Stateless Fair Queueing (HCSFQ), and show that
it is able to accurately approximate hierarchical fair queueing.
HCSFQ is highly scalable: it uses just a single FIFO queue,
does not perform per-packet scheduling, and only needs to
maintain state for the interior nodes of the hierarchy. We
present analytical results to prove the lower bounds of HCSFQ.
Our testbed experiments and large-scale simulations show that
CSFQ and HCSFQ can provide fair bandwidth allocation and
ensure isolation.

1 Introduction

Fair queueing is a canonical mechanism to provide fair band-
width allocation to network traffic by ensuring that each flow
gets its fair share irrespective of the other flows. This way, fair
queueing enforces isolation between competing flows, which
ensures that normal flows are protected from ill-behaving
flows. There is a long history of research on fair queue-
ing [1–12]. Many of the proposed solutions require to main-
tain per-flow state in the switch, and rely on complex data
structures and scheduling algorithms to realize fair queueing.

Core-Stateless Fair Queueing (CSFQ) [13] is a scalable al-
gorithm to realize fair queueing. Compared to the alternatives,
CSFQ has the unique property that it does not maintain per-
flow state in the network. With CSFQ, the sources or switches
at the edge classify traffic into flows and estimate per-flow
rate. In turn, the switches in the network estimate the fair rate,
and use probabilistic dropping to regulate each flow to its fair
rate without maintaining per-flow state.

While CSFQ was proposed more than twenty years ago, it
has not taken off. This is primarily due to two reasons. First, it
requires changes to the IP protocol (i.e., adding a field to the
IP header) and coordination across all switches (routers) in
the network. Second, CSFQ requires switches to estimate the
fair rate, compute a drop probability, and update the header of
each packet. To perform these operations at line rate we need
hardware support. These challenges are exacerbated by the
fact that routers belong to different, often competing, Internet
Service Provides (ISPs), which would all need to cooperate
to upgrade their infrastructures to support CSFQ.

However, two emerging technologies are making CSFQ
relevant again: (i) the advent of cloud computing and (ii)
the increased popularity of programmable switches. Cloud
providers own large datacenters consisting of many thou-
sands of servers. Since a datacenter is typically owned by a
single administrative entity (cloud provider) that controls both
the software and hardware, it is relatively easy for a cloud
provider to upgrade all its switches and servers to support
CSFQ. FairCloud [14] proposes to apply CSFQ for network
isolation in datacenters, but it does not have a hardware im-
plementation for CSFQ. The emergence of programmable
switches makes it possible to implement sophisticated packet
processing at line rate. In particular, as we will show in this
paper, existing programmable switches are powerful enough
to support CSFQ at line rate.

While datacenter deployment removes the adoption barriers
for CSFQ, it also raises new challenges. In particular, while
CSFQ has been designed for a flat hierarchy, the traffic in
today’s datacenters is naturally structured in a multi-level
hierarchy. For example, at the top level we typically have
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tenants and at the bottom level we have the flows of those
tenants. The mechanism of choice to manage such traffic is
hierarchical fair queueing [9,10,15], where each non-leaf node
distributes its excess bandwidth (i.e., the bandwidths unused
by some of its children) across its children. This allocation
policy is consistent with a per-tenant payment granularity, i.e.,
network resources are divided between tenants in proportion
to their payments [14]. In this case, if a flow of a tenant stops
sending data, that tenant would want to re-allocate the flow’s
bandwidth to its other flows, and not to the flows of other
tenants in the datacenter.

However, implementing hierarchical fair queueing is chal-
lenging. Existing solutions require per-flow state, and more
importantly, require complex queue management and packet
transfers in a hierarchy of queues [9, 10, 15]. Because of the
implementation complexity, hierarchical fair queueing is not
supported by today’s high-speed hardware switches.

To address this challenge, we propose Hierarchical Core-
Stateless Fair Queueing (HCSFQ). CSFQ only provides fair
queueing, not hierarchical fair queueing. Directly extending
CSFQ to support hierarchical fair queueing would require a
hierarchy of queues. HCSFQ is able to accurately approxi-
mate hierarchical fair queueing and it is highly scalable. The
key difference of our approach is that HCSFQ requires only a
single queue, not a hierarchy of queues. HCSFQ also requires
no packet scheduling. HCSFQ recursively computes the fair
rate of each node starting from the root, and then limits the
rate of each flow to its fair share rate. To the best of our knowl-
edge, HCSFQ is the first solution that enables hierarchical fair
queueing on commodity hardware at line rate while requiring
neither per-flow state nor hierarchical queue management.

An important distinction of HCSFQ from CSFQ is that
HCSFQ keeps the state of the interior nodes of the hierarchy
in the switch. The state of the interior nodes is necessary to
support hierarchical fair queueing, as the fair share rates of
distinct interior nodes are typically different. The excess band-
width of a flow is only shared with its sibling flows. That is, if
a flow changes its sending rate, it would impact the fair rate of
the sibling flows, but not necessarily of other flows in the hier-
archy. Note that similar to CSFQ, HCSFQ does not maintain
per-flow state (i.e., the state of the leaf nodes). Fortunately, for
today’s multi-tenant clouds, the number of tenants is orders of
magnitude smaller than the number of flows, and commodity
switches have sufficient on-chip memory to maintain the state
for these interior nodes.

We exploit the capability of programmable switching to
provide the first realization of CSFQ and HCSFQ on commod-
ity hardware. While conceptually simple, implementing these
schedulers on a programmable switch raises several techni-
cal challenges. First, they use a complex formula to estimate
the rates, which includes several floating-point multiplica-
tion, divisions and exponentiation operations. Unfortunately,
these operations are not supported by today’s programmable
switches. To get around this challenge, we leverage high-

precision timestamps and a window-based mechanism to esti-
mate these rates. Second, these algorithms rely on probabilis-
tic packet dropping to limit the flows to their fair rates. Un-
fortunately, probabilistic packet dropping cannot be directly
implemented in these switches. We discretize the probability
computation to approximate the dropping probability with
bounded error. To discretize these probabilities we leverage
the switch’s random number generator and take advantage
of multiple stages. Third, computing the fair rate exhibits a
circular dependency. Unfortunately, the switch data plane con-
sists of a multi-stage processing pipeline, and the later stages
cannot modify the state in the previous stages. To address
it, we judiciously use packet recirculation, and periodically
update the fair rate to minimize recirculation overhead.

In summary, we make the following contributions.
• We extend CSFQ to HCSFQ, the first scalable, practical

solution to implement hierarchical fair queueing on com-
modity hardware at line rate with no per-flow state and no
hierarchical queue management.

• We exploit the capability of programmable switching
ASICs to provide the first data plane design for CSFQ
and HCSFQ.

• We implement a prototype of CSFQ and HCSFQ on a Bare-
foot Tofino Wedge 100BF-65X switch. Our experiments
show that CSFQ and HCSFQ can provide fair bandwidth
allocation and ensure isolation.

2 Background and Motivation

Our work is motivated by the need for network isolation in
multi-tenant datacenters. CSFQ is a scalable solution for fair
queueing. We review the background of CSFQ, and identify
the opportunities for CSFQ in modern datacenters.

2.1 Core-Stateless Fair Queueing

Fair queueing provides max-min fairness for competing flows.
A max-min fair bandwidth allocation is one that any increase
of the allocation to some flows would necessarily decrease the
allocation of some other flows. The basic way to realize fair
queueing in a switch is to keep one queue for each flow and
use a scheduling algorithm to pick which queue to dequeue
a packet each time. There has been decades of research on
fair queueing [1–12]. While we leave the extensive discussion
to related work (§7), we emphasize that most solutions are
not scalable because of the need to maintain per-flow state
to classify flows and shape their rates with per-flow queues
and complex queue management. As a result, commodity
switches only support 10–20 queues.

CSFQ is a scalable algorithm to achieve fair queueing with
a unique property that it does not maintain per-flow state
in the network. Figure 1 shows the architecture of CSFQ.
CSFQ divides the network into edge and core. The switches
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Figure 1: Core-Stateless Fair Queueing.

or hosts at the edge, which do maintain per-flow state, use per-
flow state to classify packets into flows and estimate per-flow
arrival rate. Then the arrival rate of each flow is carried in a
custom packet header. The switches in the core only estimate
the total arrival rate of all flows, and then use it to estimate
the fair share rate with an iterative algorithm. The switches
compare the per-flow arrival rate in the packet header with
the fair share rate to compute a drop probability, and drop
packets to shape the rate of each flow to the fair share rate.

The key benefit of CSFQ is that the complexity (packet
classification and flow rate estimation with per-flow state) is
moved to the edge, making the core extremely simple. A core
switch only maintains the state for aggregate variables (total
arrival rate, total accepted rate and fair share rate), and only
uses one queue for packet buffering. More importantly, the
complexity of a core switch does not change with the number
of flows, making the core scale-free.

2.2 Opportunities
CSFQ did not take off because it requires cooperation be-
tween ISPs to provide end-to-end isolation for Internet flows,
and requires protocol and hardware changes. After twenty
years, we believe the time for CSFQ has come because of two
opportunities.

The first opportunity is from cloud computing. Cloud
computing has become the fundamental infrastructure of to-
day’s Internet. Datacenters power large-scale Internet ser-
vices we use everyday such as search, social networking and
e-commerce, and enterprises are increasingly moving their
workloads to the cloud. Fair bandwidth allocation and net-
work isolation for datacenter networks is an important prob-
lem [14, 16–28]. While there has been many fair queueing
algorithms proposed in the past [1–12], they are rarely de-
ployed in practice because they need to maintain per-flow
state in switches but switches can only support 10–20 queues.
CSFQ provides a scalable solution to address this problem.
Datacenter operators control the entire infrastructure, includ-
ing both software and hardware. Adopting CSFQ to enforce
isolation for datacenter networks naturally eliminates the need
of cooperation between different operators or ISPs, as a data-
center network is under a single administrative domain.

L

f1 f2 f3 f4

A1 A2

link capacity=10

55

1 4 2.5 2.5

(b) Hierarchical fair queueing.(a) Fair queueing.

flow f1 f2 f3 f4

arrival
rate

1 4 5 5

bandwidth
allocation

1 3 3 3

Figure 2: Fair queueing and hierarchical fair queueing.

The second opportunity is from programmable switching
ASICs. Traditional switching ASICs are fixed-function, and
adding a new feature like CSFQ requires switch vendors to de-
sign a new ASIC. Emerging programmable switching ASICs,
such as Barefoot Tofino [29], Broadcom Trident 4 [30] and
Cavium XPliant [31], allow users to program the data plane
and develop new features. Specifically, to implement CSFQ
on a programmable switch, we can program the parser to parse
the custom header of CSFQ (to carry per-flow rate), program
the match-action tables to implement the CSFQ algorithm,
and program the on-chip memory to store the aggregate state.
Because a datacenter network is under a single administrative
domain, it is easy for the operator to adopt the protocol and
hardware changes with programmable switching ASICs.

3 Hierarchical Fair Queueing

A multi-tenant cloud has a natural two-layer hierarchy, with
the tenants at the first layer and the flows of each tenant at
the second layer. Network isolation for multi-tenant data-
centers naturally requires hierarchical fair queueing. CSFQ
only supports fair queueing, but not hierarchical fair queue-
ing. Hierarchical fair queueing provides fair queueing in a
hierarchical manner. Flows are grouped into flow aggregates
in multiple layers. The root of the tree includes all the flows.
Each node in the tree includes a subset of the flows, called a
flow aggregate, and fairly allocates its bandwidth to its child
nodes. This is done recursively until leaf nodes, each of which
contains one flow. The flows are broadly defined, e.g., based
on five-tuple or network management considerations. In the
case of multi-tenant clouds, it is a two-layer bandwidth allo-
cation. The bandwidth is first allocated to the tenants in the
first layer, and then each tenant allocates its bandwidth to its
own flows in the second layer.

Fair queueing allocates bandwidth fairly to competing
flows, and is work conserving, i.e., unused bandwidth share
of a flow can be allocated to other flows. The key benefit of
hierarchical fair queueing is that it allows unused share of a
flow to be allocated to other flows in the same flow aggregate,
instead of being shared by all the flows. Fair queueing can be
considered as a special case of hierarchical fair queueing that
contains only one layer. Two-layer fair queueing for multi-
tenant clouds is desirable because the payment is based on
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Figure 3: Comparison of traditional hierarchical fair queueing
design, naive design to extend CSFQ, and HCSFQ design.

per tenant. A tenant would want to share its bandwidth only
between its own flows, as long as it has sufficient demand.

Example. We use an example in Figure 2 to contrast hierar-
chical fair queueing with fair queueing. There are four flows,
i.e., f1, f2, f3, and f4. The arrival rates of the four flows are 1,
4, 5, and 5, respectively. The link capacity is 10. With only
fair queueing, the unused share of f1 is evenly allocated to
all other three flows. As shown in Figure 2(a), the bandwidth
allocation to the four flows is (1, 3, 3, 3). Suppose that f1 and
f2 are in one flow aggregate (A1), and f3 and f4 are in the
other (A2). With hierarchical fair queueing, the unused fair
share of f1 is only allocated to f2, instead of also being shared
by f3 and f4. Figure 2(b) shows the bandwidth allocation with
two-layer hierarchical fair queueing, where the flows receive
1, 4, 2.5, and 2.5, respectively.

Challenge. Hierarchical fair queueing is known to be chal-
lenging to realize in switches at high speed. A traditional
design to support hierarchical fair queueing is to leverage a hi-
erarchy of queues, and each node in the hierarchy implements
fair queueing for the queues of its child nodes. Figure 3(a)
shows an example of such a design to support the two-layer
hierarchy in Figure 2(b). This design has two major problems.
First, the amount of state and the number of queues needed
by this design is proportional to the number of nodes in the
hierarchy. It needs to maintain per-flow state and the state
of each interior node in the tree. Second, the design involves
complex queue management with a hierarchy of queues, as
packets need to be moved between queues in different layers.
CSFQ does not require maintaining per-flow state, but naively
extending CSFQ to support hierarchical fair queueing would

still require a hierarchy of queues as shown in Figure 3(b).
These two factors together make the design hard to scale to
support a large number of flows. As a result, hierarchical fair
queueing is not supported by today’s high-speed switches.

4 HCSFQ Design

We propose Hierarchical Core-Stateless Fair Queueing
(HCSFQ), which generalizes CSFQ to support hierarchical
fair queueing. HCSFQ is the first scalable solution that en-
ables hierarchical fair queueing on commodity hardware at
line rate without per-flow state and complex hierarchical
queue management.

We give a high-level overview of HCSFQ in Figure 3(c).
In contrast to the traditional design in Figure 3(a), HCSFQ
has two unique properties: (i) it does not maintain per-flow
state, but only keeps the state of interior nodes; (ii) it does
not require a hierarchy of queues, but only uses one queue.
These two properties together dramatically simplify the de-
sign, making HCSFQ amenable to be implemented on high-
speed switches under strict timing and resource constraints.

The major distinction between HCSFQ and CSFQ is that
HCSFQ needs to maintain the state of interior nodes. This
is necessary because HCSFQ aims to provide hierarchical
fair bandwidth allocation for a flow hierarchy. Note that the
naive design of extending CSFQ in Figure 3(b) also requires
maintaining the state of interior nodes. In fair queueing, CSFQ
only requires to keep one fair share rate, which is the same for
all flows. But in hierarchical fair queueing, the fair share rates
for different flows can be different if two flows are not siblings
(i.e., do not have the same parent node). If a flow changes its
rate, it would affect the fair share rate of its sibling flows, but
not necessarily those of non-sibling flows. Figure 4 illustrates
this with a concrete example. There is a two-layer hierarchy
with four flows. At time T1, the arrival rates for the four flows
are 1, 4, 5, and 5 (the same as Figure 2). The fair share rate
at L is 5, and those at A1 and A2 are 4 and 2.5. Then at time
T2, f1 increases its arrival rate from 1 to 2. Then under fair
bandwidth allocation, the new fair share rate for the subtree
under A1 becomes 3, so that f1 receives 2 and f2 receives 3.
The rate change of f1, however, does not effect the fair share
rate for f3 and f4. This is because f3 and f4 are not sibling
nodes of f1.

CSFQ can be considered as a special case of HCSFQ which
contains only one layer, and as such, it only carries the state
for one interior node—the root.

4.1 Fluid Model
We first use a fluid model to formalize hierarchical fair queue-
ing. The fluid model considers a switch with output link ca-
pacity C, and the flows are modeled as a continuous stream
of bits. The flow hierarchy is represented as a directed graph
G(V,E), where V is the set of nodes and E is the set of edges.
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Figure 4: The flow arrival rates change from T1 to T2. It is
necessary for the switch to keep the state for the interior nodes
of the hierarchy in order to realize hierarchical fair queueing.

A node v ∈V represents a flow aggregate (i.e., a set of flows),
where r(v) is the arrival rate of the flow aggregate and c(v)
is the capacity allocated to v. A directed edge e(v,u) ∈ E
represents that u is a child of v.

Max-min fair bandwidth allocation ensures that the flows
that are bottlenecked by a link receives the same output rate,
which we call the fair share rate. Let α(v) be the fair share
rate that node v allocates to its children. If max-min fair
bandwidth allocation is achieved, for a child node u of node
v, the flow aggregate at u receives a bandwidth allocation of
c(u) = min(r(u),α(v)). The arrival rate of v is the sum of
the arrival rates of its children, i.e., r(v) = ∑e(v,u)∈E r(u). If
r(v)> c(v), the arrival rate of v exceeds the capacity allocated
to v, and the fair rate α(v) is the unique solution to

c(v) = ∑
e(v,u)∈E

min(α(v),r(u)). (1)

If r(v) ≤ c(v), the arrival rate of v is no more than the
capacity allocated to v, and all flows in v can be forwarded
without dropping packets. In this case, by convention we have

α(v) = max
e(v,u)∈E

r(u). (2)

The fair rate computation is done recursively from the root
to the leaf nodes. When v is the root, we have c(v) =C, where
C is the link capacity. Then starting from the root, we can
compute c(v) and α(v) for each node in the tree.

Based on this fluid model, there is a simple algorithm to
achieve max-min fair bandwidth allocation. In this algorithm,
we first use the recursive computation to compute α(v.parent)
for each leaf node v, which is the fair share rate allocated by
v’s parent to v. If r(v)≤ α(v.parent), then no bits need to be
dropped; otherwise, a fraction of (r(v)−α(v.parent))/r(v)
need to be dropped. Therefore, achieve max-min fair band-
width allocation, each incoming bit of the flow in v is dropped
by probability

max(0,1− α(v.parent)
r(v)

). (3)

4.2 HCSFQ Algorithm
The HCSFQ algorithm realizes the conceptual fluid algorithm
in a real switch. Similar to CSFQ, HCSFQ does not main-
tain per-flow state, and only requires a single FIFO queue
for packet buffering (Figure 3). The algorithm relies on two
building blocks from CSFQ, which are arrival rate estimation
and fair share rate estimation, and applies them recursively to
compute the fair share rate for each leaf node.

Arrival rate estimation. The arrival rate estimation is used
to estimate the arrival rate of a flow aggregate for a node in
the hierarchy. Like CSFQ, it uses the canonical exponential
averaging mechanism in networking for rate estimation. Let
ti and li be the arrival time and length of the ith packet of the
flow aggregate in node v. We use r(v) to denote the estimated
arrival rate of v. It is updated each time a new packet of v
arrives, based on the following equation,

r(v)new = (1− eTi/K)
li
Ti
+ eTi/Kr(v)old , (4)

where Ti = ti− ti−1 and K is a constant.

Fair share rate estimation. The fair share rate estimation
is used to estimate the fair share rate that a node allocates
to its children. The capacity of node v is c(v). Eq.(4) gives
the arrival rate of the node r(v). If r(v) ≤ c(v), then α(v) is
calculated using Eq.(2). Otherwise, α(v) should be the unique
solution to Eq.(1). We apply the iterative algorithm in CSFQ
to approximately solve the equation. Specifically, for each
node v, we maintain the accepted rate estimation f (v), which
is updated with Eq.(4) if the packet is not dropped. Then, α(v)
is approximately computed with the following formula,

α(v)new = α(v)old
c(v)
f (v)

. (5)

Note that the computation of α(v) is iterative. It converges
to the solution of Eq.(1) after several iterations, i.e., process-
ing several packets. Similar to CSFQ, HCSFQ also uses a
window of size Kc to account for inaccuracies introduced
by exponential averaging in rate estimation. That is, α(v) is
updated only if the node is congested (r(v)> c(v)) or uncon-
gested (r(v)≤ c(v)) for an interval of length Kc.

Packet state. A packet pkt carries two pieces of state in the
packet header, which are pkt.r and pkt.nodes.
• pkt.r is the arrival rate estimate of the flow the packet

belongs to.
• pkt.nodes is a list of node IDs that indicate the flow aggre-

gates the packet belongs to in the flow hierarchy, excluding
the leaf. For example, in Figure 2, if a packet pkt belongs
to f1 or f2, then pkt.nodes = [L,A1].
CSFQ only carries pkt.r in the packet header as there is

no flow hierarchy. HCSFQ additionally carries pkt.nodes
to track the set of flow aggregates the packet belongs to in
the hierarchy. Similar to CSFQ, both pkt.r and pkt.nodes are
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Algorithm 1 HCSFQ(pkt)
1: cur_α← 0
2: for v ∈ pkt.nodes do

// estimate arrival rate
3: r[v]← estimate_rate(pkt)
4: cur_α← α[v]

// calculate drop probability
5: prob← max(0,1− cur_α/pkt.r)
6: if prob > rand(0,1) then
7: drop_ f lag← T RUE
8: for v ∈ pkt.nodes do

// estimate accepted rate
9: if drop_ f lag is False then

10: f [v]← estimate_rate(pkt)
// allocate bandwidth

11: if v is root then
12: c[v]← link capacity
13: else
14: c[v]← min(α[v.parent],r[v])

// update fair share rate
15: if r[v]> c[v] then
16: if congest_ f lag[v] is FALSE then
17: congest_ f lag[v]← T RUE
18: start_time← current_time
19: else if current_time− start_time > Kc then
20: α[v]← α[v] · c[v]/ f [v]
21: start_time← current_time
22: else
23: if congest_ f lag[v] is T RUE then
24: congest_ f lag[v]← FALSE
25: start_time← current_time
26: tmp_α[v]← 0
27: else if current_time− start_time≤ Kc then
28: child_r← v.next = NULL ? pkt.r : r[v.next]
29: tmp_α[v]← max(tmp_α[v],child_r)
30: else
31: α[v]← tmp_α[v]
32: start_time← current_time
33: tmp_α[v]← 0
34: cur_α← α[v]

// drop or enqueue pkt
35: if drop_ f lag then
36: drop(pkt)
37: else
38: enqueue(pkt)

// update the packet rate
39: pkt.r← min(cur_α, pkt.r)

inserted at the edge. An edge switch (e.g., a software switch, a
NIC or a ToR switch in datacenter networks) performs packet
classification to get pkt.nodes, and uses Eq.(4) to estimate
the flow rate pkt.r. Both pkt.r and pkt.nodes are transparent
to end hosts and are removed by the switch at the last hop.

Hierarchical computation. The main difference between
HCSFQ and CSFQ is that HCSFQ performs fair share rate
estimation recursively in a hierarchical manner. In CSFQ, the
arrival rate estimation for each flow is done at the edge, and a
core switch only estimates the total arrival rate. In HCSFQ,
because there is a hierarchy of flow aggregates, a core switch
additionally estimates the arrival rate for each flow aggregate
(i.e., the internal nodes in the tree). Similarly, in CSFQ, a

r(L) = 15
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f(L) = 10
𝛼(L) = 5

r(A1) = 5
c(A1) = 5
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drop: 50%

drop: 50%

f1,f2,f3,f4

f1,f2

f3,f4

f1

f2

f3

f4

buffer

switch

Figure 5: Example of the HCSFQ algorithm to provide hier-
archical fair queueing for the scenario in Figure 2(b).

core switch only calculates a fair share rate for the link, while
in HCSFQ, a core switch additionally calculates a fair share
rate for each flow aggregate. Importantly, the fair share rate
estimation in HCSFQ is used to bridge the computation of
different layers together. That is, for node v, the allocated
bandwidth c(v) is used to estimate the fair share rate α(v),
which is then used to compute the allocated bandwidth of its
children, i.e., c(u) for u ∈ v.children, in the next layer.

Algorithm 1 shows the pseudo code of the HCSFQ algo-
rithm. When a packet pkt arrives at the switch, the switch
updates the arrival rate estimate for each flow aggregate the
packet belongs to using Eq.(4), and gets the fair share rate of
the flow (line 1-4). Then the switch computes the dropping
probability based on Eq.(3) and decides whether to drop the
packet (line 5-7). After this, the switch recursively updates
the fair share rate of each flow aggregate in the hierarchy (line
8-34). Based on whether the packet is dropped, the switch up-
dates the accepted rate estimate for each flow aggregate (line
9-10). If node v is the root, then all flows are under this node,
and its allocated capacity is the link capacity (line 11-12);
otherwise, its allocated capacity is the max of the fair share
rate allocated by its parent and its arrival rate (line 13-14). If
the arrival rate of v is bigger than its allocated capacity, then
the node is congested, and the fair share rate is updated based
on Eq.(5) (15-21); otherwise, the fair share rate is the max
arrival rate of its children, i.e., based on Eq.(2) (line 22-33).
Note that we use a window of length Kc for fair share update
to account for inaccuracies in rate estimation. Based on the
dropping decision, the switch drops or enqueues the packet
(line 35-38). Finally, the arrival rate pkt.r is updated and will
be used by the next-hop switch (line 39). Note that the loops
(line 2-4 and line 8-34) are done in one pass and the fair share
rate is updated based on c[v.parent] from the last round.

Figure 5 illustrates how the algorithm works to realize
hierarchical fair queueing for the example in Figure 2. At
the root, the total arrival rate of all flows r(L) is 15, and
the capacity c(L) is the link capacity 10, which is below the
arrival rate. The root fairly allocates the capacity to the two
flow aggregates, A1 and A2. The figure shows the stable state
when the accepted rates and fair share rates of all the nodes
have converged. After convergence, the accepted rate f (L) is
10, and the fair share rate α(L) is 5. At node A1, the arrival
rate r(A1), which is the sum of r( f1) and r( f2), is 5, and the
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allocated capacity c(A1) is 5. The fair share rate is set as 4,
and there is no need to drop packets for f1 and f2. At node A2,
the arrival rate r(A2), which is 10, is bigger than the allocated
capacity, which is 5. A2 allocates its capacity to f3 and f4
fairly. Each receives a fair share rate of 2.5. So the switch
drops 50% of the packets for both f3 and f4.

Weighted HCSFQ. The HCSFQ algorithm can be extended
to support flows and flow aggregates with weights. For node
v, we use w(v) to represent the weight of the flow or flow ag-
gregate of v. Under max-min fair bandwidth allocation, com-
peting flows or flow aggregates at the bottlenecked link have
the same fair share rate r(v)/w(v). There are two changes
to the algorithm in order to incorporate the weight. The first
change is on the equation to compute the fair rate α(v) when
r(v)> c(v). Eq.(1) is changed to

c(v) = ∑
e(v,u)∈E

w(u) ·min(α(v),
r(u)
w(u)

). (6)

The second change is on the equation to compute the drop
probability. Eq.(3) is changed to

max(0,1−α(v.parent) · w(v)
r(v)

). (7)

4.3 Theoretical Guarantee
We have the following theorem to provide the theoretical guar-
antees for HCSFQ. The proof of the theorem is in Appendix.

Theorem 1. Consider a link with a hierarchical fair queueing
policy and a flow in the hierarchy. Let w1, w2, ..., wn be the
weights of the nodes from the root to the flow. Let α1, α2, ...,
αn be the constant normalized fair rate of the nodes from the
root to the flow. Let rαi = αiwi. If probabilistic dropping is
applied at the last layer, then the excess service received by
the flow that sends at a rate at no larger than R, is bounded
above by

rαnK(1+ ln
R

rαn

)+ lmax (8)

where lmax is the maximum packet length.
Consider a parent and its children in the hierarchy. Let the

number of children be k. Let rα′ be the weighted fair rate of
the parent, and r( j)

α be the weighted fair rate of the j-th child.
Suppose the inter-arrival time of every packet is at least τ,
and

rα′ ≥
1

1− e−τ/K

k

∑
j=1

r( j)
α .

The the parent node does not drop packets.

Remark. The first conclusion bounds the excess service that
can be received by a flow. The second conclusion provides
the theoretical condition for only performing probabilistic
dropping at the leaf node.

5 Data Plane Design and Implementation

In this section, we describe a data plane design to imple-
ment CSFQ and HCSFQ on new-generation programmable
switches. Programmable switches enable users to program the
multi-stage match-action pipeline in the switch data plane to
implement custom features. Users can also access the on-chip
memory and implement stateful operations using the register
arrays provided by programmable switches. Programmable
switches also support a set of primitive actions (e.g., recircu-
late, bit shift, add and subtract) which make HCSFQ possible.
Based on the constructs of programmable switches, we show
how to design and implement the rate estimation, the fair rate
computation and the flow shaping logic (i.e., Algorithm 1) on
programmable switches. Our HCSFQ implementation con-
tains 1952 lines of code in P4 and is compiled to Barefoot
Tofino ASIC [29]. The code is open-source and available at
https://github.com/netx-repo/HCSFQ.

5.1 Single Layer
We first describe how to implement CSFQ, i.e., single-layer
HCSFQ, which is used as a building block to implement multi-
layer HCSFQ. There are three challenges to implement single-
layer HCSFQ on programmable switches: rate estimation,
probabilistic drop, and fair rate update. We describe each
challenge and its solution as follows.

Rate estimation. The switch needs to estimate two rates: the
total arrival rate r, and the accepted rate f . Both rates are
estimated with Eq.(4). Because switches have strict timing
and resource requirements, an action in a match-action table
can only contain a small number of operations in a limited
operation set. The equation cannot be directly implemented in
the switch data plane due to two reasons. First, the equation
involves several multiplication, division and exponentiation
operations on floating points. These operations are quite com-
plex and require multiple clock cycles to compute. As such,
they are not typically supported by the switch data plane.
Second, a rate (r or f ) is stored in a register of the on-chip
memory. To update the rate, the switch needs to read the rate
from the register, uses the equation to calculate the new rate,
and then updates the register. A register can only be accessed
by its own stage, but the equation includes multiple arithmetic
operations, which requires multiple stages to compute.

We leverage the high-precision timestamps available in the
data plane, and use a window-based mechanism to estimate
the rates. Programmable switches are able to provide high-
precision timestamps at the granularity of one nanosecond.
To estimate a rate, the switch maintains a pair of registers
(reg.byte and reg.start). One register (reg.byte) stores the to-
tal bytes of packets the switch has received in the current
window. The other register (reg.start) stores the start times-
tamp of the current window. For each incoming packet, the
switch first checks the current timestamp and compares it
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with reg.start to see if the packet belongs to the current win-
dow. If so, the switch adds the size of the packet to reg.byte;
otherwise, the switch clears reg.byte and sets reg.start to the
current timestamp. The switch keeps another register reg.rate
to store the current rate estimate. When a window is passed,
the switch uses reg.byte to update reg.rate, which can be done
with either a direct assignment, or a moving average. Our ex-
periments indicate that using a moving average (implemented
with several bit shift and addition operations) works better
and avoids oscillation with the control loop that updates the
fair share rate and drops packets.

The key benefit of this window-based mechanism is that
because the switch can provide nanosecond-granularity times-
tamps, we can use a small window size to accurately estimate
flow rate and capture sudden packet bursts. It is important to
note that the rate estimation is local to the switch and only
uses timestamps to divide time into windows. So there is no
need for time synchronization between switches.

Probabilistic drop. Probabilistic drop is used to regulate the
flows to the fair share rate. The switch uses the fair share rate
α and the flow arrival rate r to compute the probability to drop
packets of the flow (Eq.(3) and line 5 in Algorithm 1). Then
the switch checks the condition max(0,1−α/r)> rand(0,1)
to decide whether to drop an incoming packet or not. Similar
to rate estimation, the challenge is that switches do not support
the division operation to compute the probability. One way to
solve the problem is to use a similar window-based mecha-
nism as rate estimation, i.e., divide time into windows with
window size δ, and keep counters to allow up to rδ packets
to pass in each window and drop all remaining packets. The
drawback of this approach is that it introduces bursty packet
drops, which do not work well with congestion control. We
want to mimic the behavior of CSFQ to have random packet
drops that are uniformly distributed in the packet stream.

We discretize the probability computation to approximate
the drop probability with bounded error. We leverage the ran-
dom number generator provided by the data plane and use
multiple stages to realize the discretized computation. Specifi-
cally, to check the condition max(0,1−α/r)> rand(0,1), it
is sufficient to check rand(0,1)> α/r. We multiply r to both
sides of the inequality, and transform the condition to

rand(0,r)> α.

If the switch can generate a random number between 0 and r,
then we can simply compare the generated random number
and α to decide whether to drop a packet. However, some
switches can only generate a random number in a range of a
power of two, i.e., in [0,2n−1], where n is a given value at
compilation time and cannot be a variable. One possible solu-
tion is to use a large value for n at compilation time and use
rand(0,2n− 1)%r to approximate rand(0,r). But the mod-
ulo operation on an arbitrary number may not be supported,
and the generated numbers are not uniformly distributed in

[0,r]. We solve this problem by discretizing the probability
computation. We use an integer, instead of a floating point,
for the probability. We convert the condition to

rand(0,2n−1) · r > (2n−1) ·α.

While multiplication is not directly supported, we can convert
a multiplication operation into several bit shift and addition
operations. Since n is small and one stage can do multiple
operations, a multiplication can be done in a few stages. This
solution introduces errors because the random number is an in-
teger in [0,2n−1], instead of a real number in [0,1]. However,
the error is bounded by 1/2n, which reduces exponentially
with n. When n is 7, the error introduced by the approximation
is bounded by 1/128, which is smaller than 1%.

Fair rate update. When the link is congested, the fair share
rate is the unique solution to Eq.(1). Because HCSFQ does
not maintain per-flow state, it uses αnew = αoldc/ f (Eq.(5))
to approximately compute the fair share rate, where c is the
capacity and f is the accepted rate. Like rate estimation and
probabilistic drop, Eq.(5) cannot be supported because it con-
tains multiplication and division. What is more challenging
is that the fair rate update introduces the following circular
dependency to the packet processing.

read α→ enqueue/drop→ update f → update α

Specifically, the switch needs to read α to compute the drop
probability. Then based on whether to enqueue or drop a
packet, the switch updates the accepted rate f , which is then
used to update α. Because a register can only be accessed by
its own stage, the new value of α cannot be used to update
the register that stores α in a previous stage.

To address these two problems, we first observe that the
update equation αnew = αoldc/ f in HCSFQ is already an
approximation, and the correct α is iteratively computed after
several updates until f converges to c. As such, we replace
the update equation with an additive-increase multiplicative-
decrease method, which increases or decreases α each time if
f is not equal to c. This ensures that the value for α converges
to the correct value. Note that in the original CSFQ, α is also
computed iteratively to converge to the correct value.

To address the circular dependency, we leverage packet
recirculation available in programmable switches, and let the
recirculated packets carry the new value of α to update the
register for α in a previous stage. Switches have limited band-
width for recirculation. We judiciously use packet recircula-
tion to minimize recirculation overhead. We follow the same
scheme as CSFQ: update α only when the node is congested
or uncongested for a window length of Kc. Given the window
size Kc, α is updated by at most 1/Kc times per second. As
a concrete example, let Kc be 10 µs. Then α is updated by at
most 100K times per second, and the amount of recirculation
traffic is only a tiny fraction of the switch capacity.
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Figure 6: Testbed experiments of fair queueing for UDP. Flow
1–24 send at 2Gbps and Flow 25-32 send at 8Gbps.

5.2 Multiple Layers

The single-layer design is used as a building block to support
multiple layers. As shown in Algorithm 1 and Figure 5, the
processing of HCSFQ on a packet is performed layer by layer,
from the root to the leaf node. This well matches the multi-
stage packet processing pipeline of programmable switches.
The layers in HCSFQ can be mapped to the stages in the
pipeline, which naturally processes packets sequentially stage
by stage. The major difference between HCSFQ and CSFQ
is that HCSFQ needs to store more states as it has multiple
layers. CSFQ is a single-layer HCSFQ and only maintains
the state for three variables, which are the total arrival rate r,
the accepted rate f , and the fair share rate α. Each variable
use multiple registers as described in §5.1. HCSFQ maintains
the state for all interior nodes, each of which includes the
three variables. Commodity switches have 10-100 MB on-
chip memory [32], which is able to support a large number of
interior nodes. For a two-layer HCSFQ for tenant-level and
flow-level isolation in multi-tenant datacenters, a switch needs
to maintain per-tenant state, but not per-flow state. With 10-
100 MB memory, the switch can support millions of tenants.
In terms of the number of layers, our prototype supports up to
four layers on Barefoot Tofino. There is no theoretical limit on
the number of layers given the scalable algorithm design. The
constraints for practical implementations mainly come from
the restricted hardware primitives to implement the algorithm
as we describe in §5.1. These constraints are not fundamental.
Newer programmable switches (e.g., Barefoot Tofino 2) have
more stages and provide more hardware primitives to support
more layers. Despite this, we expect HCSFQ with 2–4 layers
should be sufficient to provide hierarchical isolation for many
datacenter scenarios (e.g., multi-tenancy).

6 Evaluation

In this section, we provide experimental results to demon-
strate the performance of HCSFQ. We first evaluate the per-
formance of single-layer HCSFQ (i.e., CSFQ), and show that
it can provide fair queueing (§6.1). We then evaluate the per-
formance of two-layer HCSFQ, and show that it can provide
hierarchical fair queueing to enforce tenant-level and flow-
level isolation for multi-tenant datacenters (§6.2). Finally, we
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Figure 7: Testbed experiments of fair queueing for UDP. Flow
1 is sending at a different rate every 2 seconds. Flow 2 is
sending at 20Gbps.
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Figure 8: Testbed experiments of fair queueing for TCP.

use simulations to evaluate HCSFQ in a large-scale datacenter
environment and compare it with several alternatives (§6.3).

All testbed experiments are conducted on a hardware
testbed with a Barefoot Tofino Wedge 100BF-65X switch.
Each server is configured with an 8-core CPU (Intel Xeon
E5-2620 @ 2.1GHz), 64GB memory and one 40G NIC (In-
tel XL710), and runs Ubuntu 16.04.6 LTS with Linux kernel
4.10.0-28-generic. Our switch implementation contains both
the edge and core functionalities for HCSFQ. Therefore, our
prototype provides hierarchical fair queueing without modi-
fications to either the software or hardware of the end hosts.
By default, we use TCP Cubic provided by the Linux kernel.

6.1 Fair Queueing Experiments
We first evaluate the capability of HCSFQ to provide fair
queueing. Fair queueing requires one-layer HCSFQ. We cover
both UDP and TCP traffic with equal or different weights. In
the experiments, we use four servers as the senders and one
server as the receiver. Each sender sends 8 flows (based on
five-tuple), and a total of 32 flows are sent to a receiver. All
servers are connected to the switch with 40Gbps links. The
bottleneck link is the link between the switch and the receiver.

UDP. If all UDP flows have the same sending rate, they would
get similar bandwidth under the tail-drop FIFO queue in the
switch. To make the experiment more interesting, we assign
different sending rates to the UDP flows. We let 24 flows
(Flow 1–24) send at 2Gbps and 8 flows (Flow 25–32) send
at 8Gbps. As shown in Figure 6(a), without HCSFQ, Flow
25–32 obtain higher bandwidth than Flow 1–24 because Flow
25–32 have larger sending rates. In comparison, HCSFQ is
able to fairly allocate bandwidth to the flows.
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Figure 9: Testbed experiments of fair queueing for TCP under
different configurations.
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Figure 10: Testbed experiments of UDP convergence. Flow 1
and 2 send at 40Gbps, and Flow 3 and 4 send at 20Gbps.

HCSFQ supports weighted fair queueing. We assign weight
1 to Flow 1–24 to and weight 2 to Flow 25–32. As shown in
Figure 6(b), without HCSFQ, the result is the same as that
with equal weights in Figure 6(a). On the other hand, HCSFQ
is able to allocate the bandwidth based on the weights. Flow
25–32 achieve higher throughput than Flow 1–24.

We also evaluate HCSFQ when the UDP flows dynami-
cally change their rates. We let Flow 1 send at a different
rate every 2 seconds (10Gbps, 20Gbps, 30Gbps and 40Gbps,
respectively) and let Flow 2 keep sending at 20Gbps. Without
HCSFQ, when the link is congested (from 4s to 8s), each flow
achieves a throughput in proportional to its sending rate. With
HCSFQ, two flows get the fair share (20Gbps) when the link
is congested.

TCP. Figure 8(a) shows the throughput of the flows with and
without HCSFQ. Because TCP congestion control provides
fair bandwidth allocation, the flows have similar throughput
even without HCSFQ. Adding HCSFQ to the switch does not
change the bandwidth allocation and thus has a similar result.

However, TCP cannot support weighted fair queueing. To
show the benefits of HCSFQ, we let Flow 1–24 have weight
1 and Flow 25–32 have weight 2. Without HCSFQ, the result
in Figure 8(b) is similar to that in Figure 8(a). With HCSFQ,
the flows get bandwidth in proportional to their weights. The
flows with higher weights (Flow 25–32) receive more band-
width than those with lower weights (Flow 1–24).

Different TCP algorithms. There are many TCP conges-
tion control algorithms. Without in-network enforcement, the
flows using aggressive congestion control algorithms would
get more bandwidth. In this experiment, we let Flow 1–24 use
TCP Cubic (provided by default in Linux) and Flow 25–32
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Figure 11: Testbed experiments of TCP convergence. Flow 1
and 2 have 0.3ms RTT, and Flow 3 and 4 have 0.7ms RTT.
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Figure 12: Evaluation result of mixed TCP and UDP traffic.

use TCP BBR. As shown in Figure 9(a), without HCSFQ,
because TCP BBR is more aggressive than TCP Cubic, the
flows with TCP BBR get almost all the bandwidth. On the
other hand, HCSFQ is able to provide fair queueing, regard-
less of the TCP algorithms they use. We have also tried TCP
Reno, which performs similar to TCP Cubic.

Different RTTs. In this experiment, we increase the RTT of
Flow 25–32 by 0.4 ms using Linux Traffic Control (Linux
tc). The default RTT measured by ping in the testbed, i.e.,
the RTT of Flow 1–24, is 0.3 ms (mostly host overhead).
The TCP throughput is inverse proportional to RTT [33]. In
our case, the flows with 0.3 ms RTT (Flow 1–24) should
have 0.7/0.3 ≈ 2× higher bandwidth than the flows with
0.7 ms RTT (Flow 25–32), which is close to what we see in
Figure 9(b). On the other hand, HCSFQ is able to provide fair
queueing even when the flows have different RTTs.

Convergence. We let four flows from different clients join
and leave a link every 16 seconds to evaluate convergence.
Figure 10 shows the UDP result. Flow 1 and 2 send at 40Gbps
(using DPDK [34]), and Flow 3 and 4 send 20Gbps. When
HCSFQ is enabled, the four flows quickly converge to a sim-
ilar rate, even though they have different sending rate. Fig-
ure 11 shows the TCP result. We set the RTTs of Flow 3 and 4
to 0.7ms using Linux tc, and the RTTs of of Flow 1 and 2 are
around 0.3ms by default. With HCSFQ, the four flows quickly
converge to a similar rate, regardless of different RTTs.

Mixed UDP and TCP traffic. We evaluate HCSFQ under a
mixed workload with both UDP and TCP traffic, and consider
the impact of ill-behaved UDP flows on TCP flows. In the
experiment, Flow 1–24 are TCP flows, and Flow 25–32 are
UDP flows that send at 3.2Gbps. As shown in Figure 12(a),
without HCSFQ, because UDP flows are not affected by TCP
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Figure 13: Testbed experiments of hierarchical fair queueing
for UDP. Two tenants should have the same total throughput.
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Figure 14: Testbed experiments of hierarchical fair queueing
for TCP. Two tenants should have the same total throughput.

congestion control, Flow 25–32 get 84% higher throughput
than their fair share. In comparison, HCSFQ is able to allocate
bandwidth fairly between all flows.

Gap between prototype implementation and theoretical
algorithm. Although the above experiment demonstrates the
effectiveness of HCSFQ on protecting TCP flows from aggres-
sive UDP flows, there is still a small gap from the theoretical
upper bound. Figure 12(b) shows the simulation result on the
same setup using a packet-level simulator Netbench [35]. In
the simulation, the TCP and UDP flows get almost identical
throughput with HCSFQ. The reason for the gap between
Figure 12(a) and Figure 12(b) is that to realize HCSFQ on a
real switch, we make several approximations described in §5.
These approximations cause extra jitters for TCP flows, and
UDP flows occupy the spare bandwidth caused by the jitters
and obtain higher throughput. We believe as programmable
switches get more capable, these approximations can be re-
moved to enable more accurate implementation of HCSFQ in
the future.

6.2 Hierarchical Fair Queueing Experiments
We now evaluate the capability of HCSFQ to provide hier-
archical fair queueing. We show that two-layer HCSFQ can
provide tenant-level and flow-level isolation for multi-tenant
datacenters. Similar to the previous experiments, we use 4
servers to send a total of 32 flows to a receiver. To evaluate
hierarchical fair queueing, we let tenant A contain 24 flows
(Flow 1–24) and tenant B contain 8 flows (Flow 25-32).

UDP. We set the sending rates of all 32 UDP flows to 8 Gbps.
As shown in Figure 13(a), without HCSFQ, the flows have

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

0

5

10

15

Fl
ow

 c
om

pl
et

io
n 

tim
e 

(m
s)

TCP
DCTCP

AFQ
SP-PIFO

HCSFQ

(a) Average flow completion time for
flows less than 100KB.

10K 20K 30K 50K 80K 0.2M-1M≥ 2M
Flow size

10
0

10
1

10
2

Fl
ow

 c
om

pl
et

io
n 

tim
e 

(m
s)

TCP
DCTCP

AFQ
SPPIFO

HCSFQ

(b) Flow completion time (avg. and
99th) breakdown for 70% load.

Figure 15: Simulation result under the web search workload.
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Figure 16: Simulation result under the web search workload
with injected UDP traffic.

similar throughput. Because tenant A has three times as many
flows as tenant B, the total throughput of A is three times
as that of B. With HCSFQ, two tenants get the same total
throughput. Because A has more flows, each flow in A has
lower throughput than that in B.

To evaluate weighted hierarchical fair queueing, we assign
different weights to tenant A’s flows. We let Flow 1–8 have
weight 2 and Flow 9–24 have weight 1. We assign the same
weight to tenant A and B. As shown in Figure 13(b), the result
without HCSFQ is the same as it in Figure 13(a). All flows
receive the same bandwidth, regardless of tenants and weights.
With HCSFQ, because the two tenants have the same weight,
the bandwidth allocation to the two tenants stays the same.
In tenant A, a flow with weight 2 has double throughput as
a flow with weight 1. In tenant B, all flows have the same
weight, and thus they have the same throughput.

TCP. TCP congestion control does not recognize tenants. Fig-
ure 14(a) shows the throughput of 32 TCP flows. Similar to
the UDP experiment, without HCSFQ, every flow receives
the same amount of bandwidth, and tenant A has higher total
throughput. With HCSFQ, the bandwidth is allocated equally
to the two tenants, and each flow in A has lower through-
put than each flow in B. We also assign weights to the TCP
flows as the UDP experiment, and the result is in Figure 14(b).
Similarly, with HCSFQ, Flow 1–8 in tenant A have lower
throughput than Flow 9–24, because Flow 1–8 lower higher
weight. The flows in tenant B have the same throughput be-
cause we do not change their weights.
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Figure 17: Simulation result under the incast scenario.

6.3 Large-Scale Simulation

We use simulations to evaluate HCSFQ in a large-scale dat-
acenter environment. The simulations are conducted with
a packet-level simulator Netbench [35]. Following the set-
ting in SP-PIFO [12], we use a leaf-spine topology with 144
servers, 9 leaf switches and 4 spine switches, and set the ac-
cess and leaf-spine links to 1Gbps and 4Gbps, respectively.
We compare HCSFQ with TCP, DCTCP, and two state-of-
the-art approaches AFQ (32 queues) [11] and SP-PIFO (32
queues) [12]. As in [11,12], we enable ECN marking and use
DCTCP as the transport layer for HCSFQ, AFQ and SP-PIFO.

Web search workload. We generate traffic based on the web
search workload [36]. Figure 15(a) shows the flow completion
time (FCT) for small flows less than 100KB, and Figure 15(b)
shows the flow completion time breakdown when the network
is at 70% utilization. HCSFQ achieves up to 60% lower FCT
than vanilla TCP and DCTCP. AFQ and SP-PIFO are 15%
better than HCSFQ on FCT because HCSFQ enforces fairness
by packet dropping and cannot provide guarantee for sensitive
packets which can be a drawback for datacenter workload.
However, the gap is small and does not grow as the traffic load
gets larger. The result demonstrates that HCSFQ is compat-
ible with DCTCP, and can provide significant improvement
under a representative datacenter topology and workload as
the smaller flows can finish faster with a fair share rate.

Web search workload with injected UDP traffic. To eval-
uate performance isolation, we inject additional ill-behaved
UDP flows to the web server workload. The UDP flows are
evenly distributed in the topology and occupy about half of
the total bandwidth of the network. Figure 16 shows that TCP
and DCTCP perform significantly worse than others, because
they do not have performance isolation between TCP and
UDP flows. HCSFQ performs better than AFQ and SP-PIFO,
because AFQ and SP-PIFO map different flows to a small
number of queues and aggressive UDP traffic overloads the
queues shared by multiple TCP and UDP flows, while HCSFQ
drops excessive UDP packets before they enter the queues.

Incast. This experiment evaluates HCSFQ in an incase sce-
nario where a receiver requests for a 4.5MB file distributed
over N (=30–180) sender nodes. We follow the common prac-
tice to use a small RTOmin (200µs) for all schemes [37]. As
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Figure 18: Simulation result under the web search workload
with two tenants. Tenant 1 sends five times as many flows as
tenant 2, and should have higher FCT than tenant 2.

shown in Figure 17(a), when the number of flows grows,
HCSFQ achieves a lower request completion time compared
with SP-PIFO, TCP and DCTCP, and is close to AFQ. SP-
PIFO does not handle the incast traffic pattern well, because
there are many packets arriving at the same time with simi-
lar ranks saturating some queues and getting dropped. Fig-
ure 17(b) shows that HCSFQ achieves low average comple-
tion times for individual flows as the number of flows changes.

Web search workload with two tenants. This experiment
evaluates hierarchical fair queueing with two tenants. Tenant
1 sends five times as many flows as tenant 2, and the flow
size and arriving time follow the web search workload [36].
As shown in Figure 18, HCSFQ can provide tenant-level
fairness, so that since tenant 1 has more flows, the average
flow completion time of tenant 1 is higher than that of tenant
2. We also implement a hierarchical version of PIFO (HPIFO)
as an upper bound for comparison. Note that although HPIFO
delivers the best result, it needs to maintain three queues (one
in the first layer and two in the second layer) for two tenants.
It cannot be implemented on today’s switches and it is hard to
support many tenants due to the need of hierarchical queues.
Other approaches do not distinguish between tenants, and the
average flow completion times of the two tenants are similar.

Scalability with many tenants. We show the scalability of
HCSFQ on supporting many tenants and flows. When there
are many tenants and flows, the share of each tenant/flow is
small and the bias from rate estimation and rate update in
each step will accumulate. In this experiment, we examine
50 tenants. Half of the tenants (tenant 1-25) have one VM in
each server, and the other half (tenant 26-50) have two VMs
in each server. Each VM has a long-lasting TCP flow with
another VM of the same tenant in another rack. We set the
bandwidth of access links and leaf-spine links to 10Gbps and
40Gbps respectively in order to accommodate more tenants
and flows than previous experiments. Figure 19 shows that
TCP, DCTCP, AFQ and SP-PIFO do not provide tenant-level
fairness, and the tenants with more flows have higher total
throughput. In comparison, HCSFQ provides fair bandwidth
allocation between tenants, regardless of the number of flows
each tenant has.
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Figure 19: Throughput of different tenants. Each tenant of
Tenants 1-25 has one VM in each server, while each tenant
of Tenants 26-50 has two VM in each server. Each tenant is
sending pairwise TCP traffic between its VMs.

7 Related Work

Fair queueing. There is a long history of work on fair queue-
ing. The original proposal from Nagle [1] introduces the
idea of using separate FIFO queues for flows to achieve fair
bandwidth allocation. The bit-by-bit round robin (BR) algo-
rithm [2, 3] computes a bid number to estimate the departure
time for each packet, and transmits the packet with the lowest
bid number with a priority queue. To avoid expensive priority
queues, several algorithms, such as SFQ [4] and DRR [5], pro-
pose to map flows to a small number of FIFO queues, which
do not work well when the number of flows are far larger
than the number of queues. Another approach is probabilistic
packet dropping, which maintains per-flow state to estimate
drop probability, such as FRED [6], RED-PD [7] and AFD [8].
CSFQ [13] is distinct from these algorithms in that it does
not require per-flow state, per-flow queues or an expensive
priority queue. Hierarchical fair queueing adds a hierarchy
to fair queueing, which require not only per-flow state, but
also a hierarchy of queues [9,10,15]. HCSFQ eliminates both
requirements, making hierarchical fair queueing feasible to
be implemented in high-speed hardware switches.

Network isolation in multi-tenant cloud. Prior work has
proposed techniques to provide performance guarantees and
share bandwidth between multiple tenants [14,16–28,38,39].
However, existing works either can only enforce hierarchical
fairness at end hosts, or can not be efficiently implemented
in today’s hardware. For example, BwE [39] is a WAN band-
width allocation mechanism which enforces hierarchical fair
allocation at end hosts. FairCloud [14] proposes to apply
CSFQ for network isolation in datacenters, but it does not have
a hardware implementation for CSFQ and does not support
hierarchical fair queueing. HCSFQ is to the best of our knowl-
edge, the first solution to provide hierarchical fair queueing
on commodity switches with small switch memory footprint
and a single FIFO queue.

Programmable switches. Programmable switches have trig-
gered many innovations in recent years [32, 40–60]. Pro-
grammable packet scheduling is the most relevant to HCSFQ.

UPS [61] shows that Least Slack Time First (LSTF) provides
a good approximation for many scheduling algorithms in
practice. PIFO [10] provides a hardware design to realize the
abstraction of a push-in first-out (PIFO) queue. It relies on
a tree of PIFO queues to implement hierarchical fair queue-
ing. AFQ [11] approximates fair queueing by using a few
queues to emulate many queues. It stores per-flow counters
in a count-min sketch, and does not support hierarchical fair
queueing. SP-PIFO [12] uses several strict priority queues to
emulate a PIFO queue, which can support fair queueing, not
hierarchical fair queueing. Compared to them, we show how
to leverage programmable switches to support fair queueing
without per-flow state based on CSFQ, and present a new
algorithm HCSFQ to support hierarchical fair queueing.

8 Conclusion

We present HCSFQ, a scalable algorithm for hierarchical fair
queueing. Hierarchical fair queueing is a long standing prob-
lem in networking. Instead of relying on a hierarchy of queues
with complex queue management, HCSFQ only keeps the
state for the interior nodes and uses only one queue to achieve
hierarchical fair queueing. This dramatically simplifies the
design, and makes the design possible to be implemented in
high-speed switches. Indeed, we have built a prototype for
HCSFQ on programmable switches. Our prototype shows
that HCSFQ works well with both UDP and TCP without any
changes to either the hardware (e.g., NICs) or software (e.g.,
TCP/IP stack) of the end hosts.

To the best of our knowledge, HCSFQ is the first solu-
tion that has been demonstrated to provide hierarchical fair
queueing on hardware switches at line rate. HCSFQ is not
only theoretically interesting, but also has important practi-
cal implications. Network isolation is critical to multi-tenant
clouds, which have a natural two-layer hierarchy. This hierar-
chy naturally requires the datacenter network to first allocate
the bandwidth to the tenants, and then allocate each tenant’s
bandwidth between the tenant’s flows. HCSFQ provides the
first solution to enable this two-layer isolation in datacenter
networks. Our prototype shows that this can be done without
any changes to either the hardware (e.g., NICs) or software
(e.g., TCP/IP stack) of the end hosts, and it works well with
both UDP and TCP. We believe HCSFQ is a promising solu-
tion for network isolation in multi-tenant datacenters.
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A Proof of Theorem 1

Proof. The first conclusion is directly derived from the guar-
antee of CSFQ [13].

For the second conclusion, we consider a model with a
parent and k children. We add a script ′ to represent the no-
tations related to the parent, e.g., r′i is the estimated arrival
rate of the i-th packets at the parent. We add a script ( j) to
represent the notations related to the j-th child, e.g., r( j)

i is the
estimated arrival rate of the i-th packets at the j-th child. Sup-
pose the time episode is universal for all children. Suppose
that r( j)

0 = r′0 = 0 for j = 1, . . . ,k.
Suppose the inter-arrival time Ti ≥ τ for all i. Suppose

rα′ ≥
1

1− e−τ/K

k

∑
j=1

r( j)
α .

Then we will show that the parent node rα′ does not drop
packets. To this end, we only need to prove that

r′i ≤ rα′ , ∀i. (9)

After the first drop, the package length is hi = h(1)i + · · ·+
h(k)i , where

h( j)
i =

 `
( j)
i r( j)

i ≤ r( j)
α ,

`
( j)
i

r( j)
α

r( j)
i

r( j)
i > r( j)

α .

And by definition,

r′i = (1− e−Ti/K)
hi

Ti
+ e−Ti/Kr′i−1, 1≤ i≤ n.

We now recursively prove Eq. (9).
(i) First let i = 1.
We will use the following inequality to prove Eq. (9):

(1− e−T1/K)
h( j)

1
T1
≤ r( j)

α , ∀ j. (10)

On the one hand, if Eq. (10) is true, we have

r′1 = (1− e−T1/K)
∑

k
j=1 h j

1

T1
≤

k

∑
j=1

r j
α ≤ rα′ ,

which implies Eq. (9) for i = 1.

On the other hand, recall r( j)
1 = (1− e−T1/K)

`
( j)
1
T1

, we then
prove Eq. (10) as following:

1. If r( j)
1 < r( j)

α , then h( j)
1 = `

( j)
1 , thus

(1− e−T1/K)
h( j)

1
T

= (1− e−T1/K)
`
( j)
1
T

= r( j)
1 ≤ r( j)

α .

2. If r( j)
1 ≥ rα, then h( j)

1 = `
( j)
1

r( j)
α

r( j)
1

, thus

(1− e−T1/K)
h( j)

1
T1

= (1− e−T1/K)
`
( j)
1
T1

r( j)
α

r( j)
1

= r( j)
α .

Thus Eq. (10) holds.
(ii) Now suppose that r′i−1 ≤ rα′ .
We will use the following inequality to prove our claim:

(1− e−Ti/K)
h( j)

i
Ti
≤ r( j)

α , ∀ j. (11)

On the one hand, if Eq. (11) is true, we have

r′i =(1− e−Ti/K)
∑

k
j=1 h( j)

i

Ti
+ e−Ti/Kr′i−1

≤
k

∑
i=1

rα + e−a/Kr′α ≤ r′α,

which implies Eq. (9) for i.
On the other hand, recall

r( j)
i = (1− e−Ti/K)

`
( j)
i
Ti

+ e−Ti/Kr( j)
i−1,

we then prove Eq. (11) as following:
1. If r( j)

i < r( j)
α , then h( j)
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( j)
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h( j)
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Thus Eq. (10) holds. By (i) and (ii) and mathematical induc-
tion our proof is finished.
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Abstract
Recent datacenter transport protocols rely heavily on rich con-
gestion signals from the network, impeding their deployment
in environments such as the public cloud. In this paper, we
explain this trend by showing that, without rich congestion
signals, there is a strong tradeoff between a packet transport’s
equilibrium and transience performance. We then propose a
simple approach to resolve this tension without complicating
the transport protocol and without rich congestion signals
from the network. Our approach factors the transport into two
separate components for equilibrium and transient handling.
For equilibrium handling, we continue to use existing con-
gestion control protocols. For transients, we develop a new
underlay algorithm, On-Ramp, which intercepts and holds
any protocol’s packets at the network edge during transient
overload. On-Ramp detects transient overloads using accurate
measurements of one-way delay, made possible in software
by a recently developed time-synchronization algorithm.

On the Google Cloud Platform, On-Ramp improves the
99th percentile request completion time (RCT) of incast traffic
of CUBIC by 2.8× and BBR by 5.6×. In a bare-metal cloud
(CloudLab), On-Ramp improves the RCT of CUBIC by 4.1×.
In ns-3 simulations, which model more efficient NIC-based
implementations of On-Ramp, On-Ramp improves RCTs of
DCQCN, TIMELY, DCTCP and HPCC to varying degrees
depending on the workload. In all three environments, On-
Ramp also improves the flow completion time of non-incast
background traffic. In an evaluation at Facebook, On-Ramp
significantly reduces the latency of computing traffic while
ensuring the throughput of storage traffic is not affected.

1 Introduction
Datacenter packet transport has been an active area of research
within the networking community for over a decade. The
primary goals of datacenter transport protocols are to achieve
high throughput and low latency and to effectively deal with
bursty traffic, especially incast [51]. To achieve these goals,
the research community has pursued two broad lines of work.

The first is a series of congestion control algorithms that have
relied on progressively richer forms of congestion signals
from the network. These signals run the gamut from single-
bit ECN marking [13] to multi-bit signals [53] and all the way
to queue size and link utilization information [44]. The second
line of work has focused on packet scheduling mechanisms
that proactively prevent congestion from occurring in the first
place [21, 34], or explicitly optimize for objectives like flow
completion times [16,17,20,49]. These schemes often require
more elaborate network and application support, such as in-
switch priority queues and application hints about flow sizes
or deadlines.

Taking a step back from recent developments, we ask: is it
possible for a congestion control algorithm to achieve good
behavior without rich congestion signaling or packet schedul-
ing support from the network? This question is not merely
of academic interest; it has significant practical implications.
In many environments, there is no way for the network to
export rich signaling information or perform sophisticated
packet scheduling. A particularly important example is the
environment in which public cloud customers find themselves
today. Cloud customers have access to the edge of the net-
work, whether it is within a VM or in a bare metal server or
potentially within SmartNICs in the future. However, they do
not have access to the network infrastructure.

Motivated by the above question, we show that the trend
towards rich congestion signals in state-of-the-art schemes is
rooted in an inherent tension between the two main functions
of a datacenter transport protocol: (i) converging quickly to a
fair and stable equilibrium point as large flows arrive and de-
part, and (ii) handling transients of the incast-type effectively.
Specifically, we consider two widely-deployed algorithms
(TIMELY [47] and DCQCN [53]) and show that a parame-
ter setting that works well in equilibrium performs poorly in
transience and vice versa. On the other hand, protocols such
as HPCC [44] which use richer congestion signaling from
the network (e.g., queue size information and link utilization
from INT [41]) can improve performance in both equilibrium
and transience, as discussed in [44, §2.3 and §5.2].
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Informed by these results, we ask a second question: can
congestion control be modularized into two simpler compo-
nents, one each to deal with equilibrium and transient con-
cerns? This paper answers the question by proposing a new
approach to congestion control that breaks the nexus between
transience and equilibrium behavior. It delegates transient
handling to a protocol, called On-Ramp, which is tailor-made
for transients, leaving the congestion control algorithm to deal
with equilibrium behavior.

On-Ramp (OR) can be coupled with any datacenter con-
gestion control protocol to improve its performance during
transients; indeed, implementing On-Ramp requires only
end-host modifications and we have combined On-Ramp
with CUBIC [33], BBR [19], DCQCN [53], TIMELY [47],
DCTCP [13] and HPCC [44]. The core idea behind On-Ramp
is extremely simple: when the congestion control protocol at
a sender decides to transmit a packet, the sender temporar-
ily holds back the packet if the sender-to-receiver one-way
delay of the most-recently acknowledged packet exceeds a
threshold. Thus, On-Ramp lets congestion control algorithms
do what they are good at—determining transmission rates or
window sizes in dynamic settings to improve metrics such
as throughput and fairness—while giving them a leg up with
functionality they struggle with: transience.

As a very useful by-product, On-Ramp also enhances the
performance of existing congestion control algorithms in equi-
librium by making them more robust to the choice of algo-
rithm parameters. This is because of a phenomenon that we
term state-space compaction. The state space of a network
is the size of the queues within the network at any time. It
spans a large dynamic range of queues sizes from transient
(high queue) to equilibrium (low, but non-zero) to unstable
(zero queues and link underflows). By compacting the state
space, On-Ramp reduces the dynamic range of the state space
observed by the congestion control algorithm and keeps it in a
tight band around the desired operating point. This attenuates
the large and frequent congestion signals from the network
which, in turn, can cause an overreaction by the congestion
control algorithm.

Key to making On-Ramp practical is an accurate measure-
ment of one-way delay, which requires synchronized clocks
between the sender and receiver. Since the one-way delays
in a datacenter can be a few tens of microseconds or lower,
this implies that the sender and receiver clocks must be syn-
chronized to within a few microseconds. Such high-accuracy
clock synchronization has traditionally required hardware-
intensive protocols like Precision Time Protocol (PTP) [37].
But a recently developed system, Huygens [30], showed that it
is possible to achieve nanosecond-level clock synchronization
without special hardware or dedicated priorities. On-Ramp
leverages the Huygens algorithm, making it easier to deploy.

We evaluated On-Ramp in three different environments:
the public cloud, a CloudLab cluster (bare-metal cloud) and
ns-3 simulations. We find:

1. Performance improvements. On Google Cloud, On-
Ramp improves the 99th percentile request completion
time (RCT) of incast traffic of CUBIC by 2.8× and BBR
by 5.6×. In CloudLab, On-Ramp improves the tail RCT
of CUBIC by 4.1×. In ns-3 simulations, which model
more efficient NIC-based implementations, On-Ramp
improves RCTs to varying degrees depending on the
workload under DCQCN, TIMELY, DCTCP and HPCC.
In all three environments, On-Ramp also improves the
flow completion time of non-incast background traffic.

2. CPU overhead of On-Ramp. When running at 40%
network load on a 10 Gbps NIC and an 8-core CPU, the
total CPU utilization is 15.1% without On-Ramp, and
18.7% with On-Ramp. If On-Ramp is implemented in
the NIC, this overhead can be eliminated.

2 Transience–Equilibrium Tension

Congestion control algorithms execute one of the following
update equations:

W (next) = f (W (now), congestion signals, K), or
R(next) = g(R(now), congestion signals, K).

(1)

That is, based on congestion signals received from the net-
work, the algorithm updates the window size W or the trans-
mission rate R. This is taking place constantly and iteratively,
as flows arrive or depart or the path bandwidth changes (e.g.,
due to prioritization). K here is the gain in the control loop,
which is typically very carefully chosen to provide stability in
equilibrium and quick reaction to congestion in transience.1

However, in the high bandwidth and small-buffered environ-
ment of data centers, we shall see that it is quite hard to pick
the gain K so as to get great performance in both transience
and equilibrium: a high value of K gives the responsiveness
needed to react quickly to congestion but suffers from bad
performance and instability in equilibrium when there are
lags in the control loop; conversely, a low value of K can
provide good performance in equilibrium but make the source
sluggish during transience. We refer to this as the transience-
equilibrium tension and we shall see that industrial-grade
and commercially-deployed algorithms like TIMELY and
DCQCN suffer from the transience-equilibrium tension.

With elaborate and frequent congestion signals from the
network (e.g., queue depths, link utilization and flow rate, sent
on a per-packet basis using in-band telemetry [41]), the con-
gestion control algorithm can be improved simultaneously in
transience and equilibrium (e.g., HPCC [44]). Unfortunately,
such elaborate signals are not available in virtual environ-
ments such as the public clouds.

An alternative is to bake in two different modes of conges-
tion handling within the same algorithm, e.g., slow start for
transients and congestion avoidance for equilibrium. However,

1Indeed, an extensive literature in congestion control theory is devoted to
the careful choice of the gain parameters, e.g. [14, 15, 24, 27, 40, 45, 52].
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(a) β=0.2, no OR (b) β=0.8, no OR (c) β=0.2, with OR (d) β=0.8, with OR
Figure 1: 12 100G servers sending traffic to one receiver using TIMELY. 2 of them start at t=0, the other 10 start at t=200ms. From ns-3 runs
using the setup in §5.1.1. The red arrow points to transience, and the yellow box is a zoom-in of equilibrium. OR threshold T =30µs.

(a) Ti=55µs, Td=50µs, no OR (b) Ti=300µs, Td=4µs, no OR (c) Ti=55µs, Td=50µs, with OR (d) Ti=300µs, Td=4µs, with OR
Figure 2: DCQCN study. OR threshold T =30µs.

this approach is fragile because it requires defining precise
conditions to trigger switches between modes. Further, when
a congestion control algorithm in equilibrium encounters se-
vere congestion and drastically cuts its window or rate, it must
make a difficult choice between remembering and forgetting
its previous equilibrium state (rate/window). This choice is
difficult because it depends on the duration of congestion,
which is hard to predict. If the congestion is transient, such
as an incast, the algorithm must remember its previous state
so as to rapidly restore the old equilibrium without under
utilization, once the incast ends. On the other hand, if the
congestion is sustained, such as the simultaneous arrival of
many long-lived flows, the algorithm must forget its previous
state so that it can rapidly find a new equilibrium.

In this context, On-Ramp makes two key contributions: (i)
when the one-way delay (OWD) on the path exceeds a given
threshold, T , On-Ramp can quickly and forcefully react by
pausing transmissions at the source, reducing congestion; and
(ii) On-Ramp also reduces the sensitivity to the choice of the
gain parameter K by ensuring good transient and equilibrium
performance over a wide range of values of K.

We shall show that On-Ramp achieves the above by com-
pacting the state space in the network. By that we mean that
On-Ramp maintains network state variables such as queuing
delays around their desired operating points, preventing large
excursions (high or low) which occur during transience or in
equilibrium when the value of K is high. Essentially, state
space compacting attenuates (but does not eliminate) the con-
gestion signals, preventing an overreaction at a source with
high gain K while providing the throttling necessary for a
source with low gain K.

Let us now illustrate the above points by considering the
following scenario: 12 100G servers sending traffic to one
receiver; all machines are connected to a single switch. 2
servers start sending at time 0; the other 10 start at 200 ms.

Figures 1a and 1b show the queuing delays at the switch
during transience (t=200ms) and equilibrium (t=237-240ms)
when TIMELY is used with its gain parameter β = 0.2 and
β = 0.8, respectively. Note that β = 0.8 is the value recom-
mended in [47,54], and β = 0.2 is the largest value to achieve

full utilization in equilibrium.
At β = 0.2, TIMELY performs well in equilibrium: the

queue stays above zero and the link rate is maintained close
to 100G. However, it performs poorly in transience: it takes
a long time to react to the congestion caused by the newly
arriving 10 flows—the queuing delay converges very slowly.
At β = 0.8, it reacts much more quickly to transience, but due
to aggressive congestion control, the queue underflows during
equilibrium and leads to a link utilization of just 61%.

The trend is similar for DCQCN. The rate-increase timer
Ti and rate-decrease timer Td are varied to change its control
gains. Note that the values Ti = 55 µs and Td = 50 µs are
the settings recommended in [53] and Ti = 300 µs and Td =
4 µs are the default settings recommended by a vendor of
network hardware (cf. [44]). At less aggressive gains (Fig.
2a), DCQCN performs well in equilibrium but reacts slowly
during transience. Aggressive gain settings (Fig. 2b) give the
opposite behavior.

Figures 1c and 2c respectively consider the scenario where
the low (equilibrium-friendly) gain parameters for TIMELY
and DCQCN are used in conjunction with On-Ramp. We
observe that both algorithms react very quickly to transient
congestion and converge smoothly to a stable equilibrium
with full link utilization. Indeed, the equilibrium performance
is actually improved by On-Ramp: the oscillation of queues
during equilibrium is reduced! Figures 1d and 2d consider
the high gain parameter scenario. We see that On-Ramp helps
here as well by preventing severe queue undershoots and
providing a high link utilization.

In conclusion, On-Ramp helps to cope with severe transient
congestion by lowering queuing delays rapidly; conversely,
it also prevents queues from underflowing, hence keeping
a high link utilization. It achieves this by compacting the
state space to a region around the desired queue size. As a
useful by-product of this, it also reduces the sensitivity of the
congestion control algorithm to gain parameters. It is critical
to note here that On-Ramp does not perform the window
or rate updates at Equation 1. This is left to the congestion
control algorithm.

One might wonder if a more sophisticated delay-based pro-
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tocol could make better use of precise one-way delay measure-
ments. While an interesting possibility, we did not pursue this
route for two reasons. First, On-Ramp allows us to decouple
transient and long-term congestion management, and handle
each at its own appropriate timescale without burdening a
single protocol with both. Second, On-Ramp also composes
very naturally with existing congestion control algorithms.
It lets congestion control algorithms do what they are good
at—improving long-term metrics such as throughput and la-
tency, while taking care of transients for them. This factorized
approach has allowed us to combine On-Ramp with several
existing congestion control algorithms [13, 19, 33, 44, 47, 53].

3 On-Ramp Design
On-Ramp is a simple end-to-end flow control algorithm, sit-
ting as a shim between the congestion control algorithm and
the network (see Figure 3). On-Ramp aims to bring down the
path queuing delays as quickly as possible by pausing the
flow at the sender’s end of the network when the measured
OWD (which we denote as O) exceeds a threshold T . For a
congestion control algorithm that does not control queuing
delays on its own (e.g., TCP CUBIC), On-Ramp adds this
functionality. For a congestion control algorithm that does
control queuing delays on its own (e.g., DCTCP), On-Ramp
works like a safeguard, for example, by reducing queue spikes
during transience.

We first present a simple version of the On-Ramp algorithm
that is intuitive but has queue oscillations and the possibility
of under-utilization in the presence of feedback delay. We
update On-Ramp by amending the rule for pausing, resulting
in the final version of the algorithm.

3.1 Strawman Proposal for On-Ramp
As shown in Figure 3, On-Ramp is implemented underneath
the congestion control protocol (CC) between the sender S
and receiver R. It consists of two parts:
(i) Receiver side: Upon receiving a packet, the receiver sends
an OR-ACK to the sender, which contains (1) the flow indica-
tor (i.e., the 5-tuple representing the flow), (2) the sequence
number of the received packet, and (3) the time at which the
packet was received.
(ii) Sender side: The sender maintains two data structures
for each flow: (1) a queue of outstanding packets belonging
to that flow waiting to be transmitted; and (2) a value called
tNextPkt representing when the next packet from the flow will
be transmitted. Initially, tNextPkt is set to 0 and, upon the re-
ceipt of an OR-ACK, it is updated as follows:

tNextPkt ←

{
tNow +O−T, if O > T
tNextPkt , else.

(2)

Here tNow is the current system time. The flow will be paused
until tNextPkt if that is larger than tNow. If an OR-ACK is
dropped, the sender will not be able to measure OWD O at

APP

CC
On-Ramp 

shim

APP

CC
On-Ramp 

shim
Data pkt
OR-ACK

Pause flows 
according to 

OWD

Sender Receiver

Figure 3: The On-Ramp Underlay.

this time, so tNextPkt will not be changed. The sender dequeues
packets of the active (non-paused) flows in round-robin order.

The strawman proposal is simple and intuitive: upon re-
ceiving an OR-ACK with an OWD value of O exceeding
threshold T , pause for O−T . The goal is to drain the queue
such that the OWD after the pause is under T . This reasoning
would have been correct if there were no delay in getting acks
from the receiver. In the presence of feedback delay, however,
the sender will actually pause for a significantly longer time
than necessary.

To understand what is going on, suppose that the sender
receives an ack with OWD O exceeding T for the first time at
time t, and it immediately pauses for duration O−T . Notice
that it will take at least one additional round-trip-time (RTT)
after t for the sender to see the impact of this pause on the
OWD values carried in acks. In particular, acks received for
packets that were transmitted before pausing are likely to also
carry OWD values exceeding T . Hence a sender using the
strawman design will actually pause for at least the next RTT,
even if the OWD exceeds T by a small amount. By the time
it resumes sending traffic, the queue will have significantly
undershot T , which risks under-utilization.

3.2 The Final Version of On-Ramp
To fix the above problem, we propose a simple mechanism
to compensate for the sender’s feedback delay in receiving
the OWD signal. The key is to observe that it is possible the
sender was paused when the green packet (see Figure 4) was
in flight and before the sender received its ack. The update
equation (2) doesn’t take these previous pauses into account,
and therefore it overestimates how much additional time it
needs to pause for the OWD to drop down to T .

One approach to correct for previous pauses would be to
subtract the total time the sender was paused while the green
packet was in flight from the OWD value O obtained in the
ack. This approach assumes that if the sender was paused for
some duration P, then the current value of OWD is no longer
O but rather O−P. However, this ignores the contribution of
other senders to the OWD. The reduction in OWD due to a
pause of duration P is at most P, but it may be less if other
senders transmit in that time.

To account for other senders, On-Ramp estimates the re-
lationship between the actions it takes (i.e., its own pause
duration) and the effect of these actions (i.e., reduction in
OWD). To this end, it dynamically measures a parameter βm,
which equals the change in OWD per unit of On-Ramp pause
time; in other words, the gain of the On-Ramp control mech-
anism. Refer to Figure 4, and let OB and OG be the OWDs
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Figure 4: Timing Diagram of Packets Between S and R

(a) OWD with Strawman OR (b) OWD with Final OR

(c) Flow rates, Strawman OR (d) Flow rates, Final OR
Figure 5: Two long-lived CUBIC flows sharing a link

of the black and green packets, where the black packet is the
one which has been acked immediately prior to the green
packet being acked. Let PBG be the total time On-Ramp had
paused the sender in between the times it transmitted these
two packets. If PBG > 0, then βm = (OB−OG)/PBG captures
the effect of the sender pausing on the reduction in the OWD.
We threshold βm to be between 0 and 1. A value of βm close
to 1 indicates that the reduction in OWD is roughly the same
as the sender’s pause time. This would occur, for example, if
there is little traffic from other senders, or if the senders are
synchronized and all pause together. On the other hand, βm
near 0 indicates that On-Ramp must pause for a long amount
of time to reduce OWD.

On-Ramp obtains one such βm measurement for each new
packet that it transmits for which PBG > 0. It computes a
moving average of these values with each new measurement:

β← (1−g) ·β+g ·βm (if PBG > 0) (3)
Here g is the EWMA gain. Finally, upon receiving an OR-
ACK, the sender replaces the first line in Equation (2) with

tNextPkt ← tNow +O−T −β ·PLastPktRT T

(if O−β ·PLastPktRT T > T )
(4)

Here, PLastPktRT T is the total time pause was asserted during
the time period spanned by the RTT of the most recently acked
packet (the green packet).

Figure 5 demonstrates the effectiveness of lag compensa-
tion. It shows the OWDs and the flow rates when two CUBIC
flows share a bottleneck link in a bare-metal environment
(Cloudlab [26]). The second flow is on during 6–16 seconds.
The threshold T is set to 50µs. It’s clear that the strawman
On-Ramp leads to significant queue undershoot under T and
causes under-utilization, and the final On-Ramp fixes this
problem. Figure 24 in Appendix shows the case of 12 flows,
where final On-Ramp removes most fluctuations in queue
lengths and achieves better fair sharing among all flows.
Parameter Selection. The threshold T should clearly be

higher than the minimal OWD on the path, plus some head-
room to tolerate errors in the OWD measurement. §5.1.4
describes how to pick T in practice. We choose the EWMA
gain g = 1/16 and find that the end-to-end performance of
On-Ramp is relatively insensitive to g, shown in §7.4.

3.3 Importance of Accurate One-way Delay
To measure OWD accurately, On-Ramp uses Huygens [30], a
recently developed system for highly-accurate clock synchro-
nization. The Huygens algorithm uses a random probe mesh
among all the clocks; the mesh is formed by each clock prob-
ing typically 10 other clocks. The clocks exchange probes
and acks on this mesh. We note that probes and acks are
UDP packets not using higher priorities in switches. The send
and receive timestamps of each probe and ack are processed
through a combination of local and central algorithms ev-
ery 2–4 secs. The local algorithm performs filtering using
coded probes and support vector machines to estimate the
discrepancies between two clocks. These techniques make
Huygens robust to network queuing delays, random jitter, and
timestamp noise. Then, the central algorithm, dubbed "net-
work effect" in the paper, determines errors in the accuracy
of clock sync using the transitivity property: the sum of the
clock offsets A-B, B-C, and C-A is zero; else, errors exist.
By looking at clock offset surpluses over loops of the probe
mesh, Huygens pins down clock sync errors and provides
corrections which can be applied offline or online.

Since the probe mesh is set up end-to-end at the hosts,
there is no need for special hardware support (in contrast to
other high-accuracy algorithms like PTP [37], DTP [43], or
DPTP [39]). With NIC hardware timestamps, [30] reports a
99th percentile synchronization accuracy of 20–40 nanosec-
onds even under network loads of 80%. The probe mesh
makes Huygens robust to high loads and link or node failures.
Further, the local-central processing distributes effort across
all nodes, making the algorithm scalable to 1000s of nodes. In
the present paper, we use Huygens with CPU (software) times-
tamps because software timestamps are universally available
in both VMs in public clouds and bare-metal machines. In this
case, we see a median accuracy of a few hundred nanoseconds
and 99th percentile accuracy of 2–3 microseconds under high
network loads such as 80% in a single data center.

To see the importance of accurate one-way delay, we com-
pare three signals that On-Ramp could use to measure path
congestion: (i) OWD measured with accurately synchronized
clocks using Huygens, (ii) round-trip time (RTT), and (iii)
OWD measured with less accurately synchronized clocks us-
ing NTP [46]. Referring to Figure 4, we evaluate how well
each of these signals, measured for the green packet, corre-
lates with the OWD of the red packet. If the correlation is
high, then the fate of the green packet is a good predictor of
the congestion to be experienced by the red and immediately
succeeding packets. As Figure 6a and 6d show, the OWD of
the green packet measured using Huygens is highly corre-
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Figure 6: The OWD of the next packet vs. the OWD (Huygens),
RTT, and OWD (NTP) of the last-acked packet. (a)–(c) are samples
plotted in log scale. (d)–(f) are percentiles plotted in linear scale.
The test is conducted on 100 machines in a bare metal cloud with
WebSearch [13] traffic and 40% network load.

lated with the OWD of the red packet. However, neither the
RTT nor the OWD measured using NTP correlates well with
the actual OWD experienced by the red packet. This makes
On-Ramp much less effective with the latter two signals.

4 Implementation
In this section, we describe the Linux implementation of
On-Ramp using kernel modules, which allows us to install
On-Ramp by just loading a few kernel modules rather than
reinstalling (or worse still, recompiling and then reinstalling)
the whole kernel. We will also comment on the benefits—
both implementation and performance—of implementing On-
Ramp in Smart NICs in the future.

4.1 Linux Kernel Modules

APP

TCP

IP

QDisc

Driver

NIC HW

Per flow queueing
Enforce pausing

On-Ramp 
controller

Tx timestamp 
& pkt header

Sniff ACKs

APP

TCP

IP

QDisc

Driver

NIC HW

On-Ramp 
acker

Rx timestamp 
& pkt header

Send ACKs with 
Rx timestamps

Pause decision

Data pkt
OR-ACK

Sender Receiver

Figure 7: Linux implementation of On-Ramp
Figure 7 shows our On-Ramp implementation. It consists

of four parts, described below. For each of them, we mention
whether it involves changes to the sender, receiver, or both.

1. On-Ramp controller. This module runs at the sender
and calculates OWDs and makes decisions to pause or
not on a per-flow basis.

2. NIC driver. The NIC driver at the receiver is modified
to timestamp packets (before GRO). The NIC driver at
the sender is modified to timestamp packets, sniff OR-
ACKs and forward them to the On-Ramp controller for
implementing the On-Ramp algorithm. The NIC driver
could be either a physical or a virtual NIC’s driver.

3. QDisc. We modify the fair queueing (FQ) Qdisc [25]
at the sender to queue packets into per-flow queues and
exert pause on a per-flow basis.

4. On-Ramp acker. This module at the receiver sends OR-
ACKs. These are UDP packets that use the same Ethernet
priority as the received data packets, so they don’t require
any priority queues in Ethernet switches. We avoid pig-
gybacking receive timestamps onto TCP ACKs, because
they may be delayed by the TCP stack, and modifying
the TCP stack requires recompiling the kernel.

Note that On-Ramp does not modify the existing data pack-
ets, and OR-ACKs are standard UDP packets.

There are three important details regarding the implemen-
tation that pertain to three critical aspects of On-Ramp: (i) the
accuracy of measuring the OWD, (ii) the granularity of con-
trol (exerting pause), and (iii) the behavior after a pause ends.
Accordingly, the On-Ramp implementation may vary depend-
ing on the deployment scenario, e.g., public cloud (Google
Cloud Platform), bare-metal cloud (CloudLab), or bare-metal
cloud with SmartNICs. We expand on these details below.
1. Timestamp collection. To compute OWD, we need to col-
lect both sender and receiver timestamps. These timestamps
are taken within the NIC driver and based on the system clock
on both the sender and receiver sides. We choose the NIC
driver because it is close to the wire and therefore minimizes
additional software stack latency being added to the OWDs.
This is important because stack latencies can be quite variable
and confound the accurate detection of one-way delays in the
network which are caused by congestion. Even though this
makes On-Ramp’s implementation NIC-driver-specific, the
patch is only 20 lines of code and is quite easy to add to the
NIC driver.2 In bare-metal machines, if the NICs support hard-
ware timestamping (e.g., through PHC [1]), NIC timestamps
can also be captured, yielding less noisy OWD measurements,
which, in turn, can lead to better control.
2. The effect of generic send offload (GSO). On the sender
side, when GSO is enabled, the data segments handled by
QDisc and the driver are GSO segments, which can be up to
64 KB (~43 packets). This limits the granularity of control
by On-Ramp, as well as the accuracy of capturing transmit
timestamps. §5 shows that On-Ramp already gives satisfac-
tory performances with the default setting of GSO enabled
and the max GSO size of 64KB. §7.2 shows that reducing
max GSO size will further improve On-Ramp’s performance,
but increase CPU overhead, so there is a tradeoff here.
3. Behavior after a pause ends. One might wonder whether
a burst of packets will be sent into the network after a pause
ends, causing spikes in the queuing delay. This does not hap-
pen in practice. (1) For window-based CCs like CUBIC and
DCTCP, although packets are also queued in the On-Ramp
module, thanks to the TCP small queues patch [2] in Linux,
the total number of bytes queued in the TCP stack and On-

2In a given public cloud, the vNIC implementations are the same, making
the addition of the patch a one-time effort for each public cloud.
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Ramp modules are limited. Furthermore, because On-Ramp
is based on the FQ Qdisc, it dequeues in round-robin order
across flows, smoothing out traffic after a pause ends. (2) For
rate-based CCs like BBR, DCQCN and TIMELY, On-Ramp
exerts pause by letting the rate pacer3 hold back the next
packet until tNow ≥max(tNextT x, tNextPkt), where tNextT x is the
time of sending the next packet determined by CC algorithm;
tNextPkt is the value maintained by On-Ramp for each flow (see
§3.1). When a pause ends, the rate pacer will resume releasing
packets into the network according to the rate determined by
CC, therefore the transmission will not be burstier.
Network and CPU overhead. The network overhead of On-
Ramp comes from OR-ACKs; typically, 1 OR-ACK is sent
per about 10 MTU-sized packets. Therefore, at 40% load on a
10 Gbps network and 78 Bytes per OR-ACK, the bandwidth
consumed by OR-ACKs is about 21 Mbps, or 0.2% of the line
rate. Huygens provides the clock synchronization service for
On-Ramp. Its probe mesh adds negligible network overhead,
which is about 3 Mbps, or 0.03% of the line rate.

For a typical scenario in §5, running 40% load of Web-
Search traffic plus 2% load of incast on a 10 Gbps NIC and
an 8-core Intel Xeon D-1548 CPU, the total CPU utilization
is 15.1% without On-Ramp, and 18.7% with On-Ramp. If
On-Ramp is implemented in the NIC as described later, this
overhead can be eliminated. The CPU usage of Huygens is
only around 0.5%.

We consider On-Ramp’s overhead under higher network
speeds. Table 1 shows overheads when two servers send iPerf
flows to a third server simultaneously. Each server has a 25
Gbps NIC and a 10-core Intel Xeon E5-2640v4 CPU. We use
the default GSO settings: enabled, max GSO size = 64KB. In
this experiment, we get the same throughput with and without
On-Ramp, both saturating the 25G link at the receiver. Most
of the CPU overhead of On-Ramp is at the receiver, caused
mainly by parsing, timestamping, and sending OR-ACKs. At
the senders, On-Ramp operates at the granularity of GSO
segments, so the overhead is small. Note that the On-Ramp
implementation has not yet been optimized for CPU overhead.

No On-Ramp4 With On-Ramp
Sender 1.01% 1.04%

Receiver 5.50% 6.99%
Table 1: The CPU usage in an iPerf experiment with 25G NIC

4.2 NIC Implementation
With the advent of programmable SmartNICs [3,7], On-Ramp
can ideally be offloaded to the NIC in the future, conserving

3BBR uses FQ Qdisc to pace packets, which is compatible with the Linux
kernel module implementation of On-Ramp. DCQCN’s rate pacing is inside
NICs, TIMELY’s rate pacing can be in software or NICs, and we use ns-3
simulation to study On-Ramp’s performance on top of them, as in §4.2.

4Since On-Ramp is built based on FQ QDisc, for a fair comparison of
CPU overhead, we use FQ without On-Ramp as a baseline in this experiment.
We note that FQ_CoDel [9] (the default QDisc in many modern Linux distri-
butions such as Ubuntu 18.04) incurs a higher CPU overhead than FQ QDisc
(when On-Ramp is not used): sender 1.41%, receiver 5.68%.

host CPU cycles. Moreover, a SmartNIC implementation can
further improve On-Ramp’s performance due to (1) shorter
ack turn-around times at the receiver and (2) the exertion
of pauses on MTU-sized packets, rather than GSO segments.
§5.2.3 uses ns-3 [8] to emulate On-Ramp’s performance using
a NIC implementation.

5 Evaluation
We evaluate the effectiveness of On-Ramp in a variety of
environments and under different workloads and congestion
control algorithms. In terms of performance, we consider:

1. Application-level performance measures: (i) request
completion times for incast traffic, and (ii) flow com-
pletion times for non-incast background traffic.

2. Network-level performance measures: (i) number of
packet drops and (ii) number of TCP timeouts.

5.1 Evaluation Setup
5.1.1 Evaluation environments
We consider three environments: public clouds, bare-metal
clouds, and ns-3 [8] simulations. In the clouds we use On-
Ramp’s Linux implementation with different CC algorithms.
The ns-3 simulations help us understand On-Ramp’s perfor-
mance in RDMA networks with different CC algorithms such
as DCQCN, TIMELY, DCTCP, and HPCC.
VMs in Google Cloud. We use 50 VMs of type
n1-standard-4 [6]. Each VM has 4 vCPUs, 15 GB memory,
and 10 Gbps network bandwidth. The OS is Ubuntu 18.04
LTS with Linux kernel version 5.0.
Bare-metal cloud in CloudLab. CloudLab [26] is an open
testbed for research on cloud computing. We use the m510
cluster [10] in CloudLab, which has 270 servers in 6 racks,
6 top-of-the-rack (ToR) switches, and 1 spine switch. The
bandwidth is 10 Gbps between each server and ToR, and
4×40 Gbps between each ToR and the spine switch. Each ToR
switch has a 9 MB shared buffer. Each server has an 8-core
Intel Xeon CPU, 64GB memory, and a Mellanox ConnectX-3
10 Gbps NIC. For the On-Ramp evaluation, we rented 100
servers in this cluster (randomly chosen from these 6 racks by
Cloudlab), and installed Ubuntu 18.04 LTS with Linux kernel
version 4.15 on each server.
ns-3. We implement On-Ramp in ns-3 based on the open-
source ns-3 simulator of HPCC [4, 44]. We also use the same
simulation setup as in [44, §5.1]. There are 320 servers in
20 racks, 20 aggregation switches and 16 core switches. The
network topology is a 3-stage FatTree [12], consisting of ToR,
aggregation and core switches. Each server has a 100 Gbps
link connected to the ToR switch. All links between core,
aggregation and ToR switches are 400 Gbps. Each link has 1
µs delay.5 Each switch has a 32 MB shared buffer. Because

5Consisting of the link propagation delay and the packet processing delay
in the corresponding switch.
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the ns-3 simulations consider RDMA flows, we have priority
flow control (PFC) [38] in effect. Note that neither the Google
Cloud nor the CloudLab experiments has PFC; hence, buffers
overflow and result in packet drops.

5.1.2 Traffic loads
We have two categories of traffic: incast type traffic [51]
where requests generate bursts of small equal-sized flows
simultaneously, and background traffic consisting of flows of
varying sizes.

The incast traffic has a fanout of 40, where each of the 40
flows is either 2KB [13] or 500KB [44], so the total request
size is 80KB and 20MB, respectively. The 2KB-sized flows
are common in query-type scenarios while the 500KB-sized
flows occur in query- and storage-type settings. The average
load due to incast traffic is 2% or 20%.

For the background traffic, we use three data center work-
loads, namely: (1) WebSearch [13]: the web search traffic mea-
sured in Microsoft production clusters; (2) FB_Hadoop [50]:
the traffic measured in Hadoop clusters at Facebook; (3)
GoogleSearchRPC [5,49]: the RPC traffic generated by search
applications at Google. Figure 8 shows the distribution of flow
sizes. We adjust the average interval between adjacent flows
to make the average traffic load to be 40%, 60% or 80%.

Figure 8: Distribution of flow sizes in the background traffic

5.1.3 Clock synchronization and packet timestamping
On-Ramp needs clock synchronization across servers to mea-
sure OWD. For bare-metal cloud and VMs in the public cloud,
we use Huygens [30] as the clock synchronization algorithm.
We find that the standard deviation of clock offsets after syn-
chronization is around 200 ns in Google cloud, 100 ns in
CloudLab, and the 99th percentile is less than 3 µs in both
cases. In ns-3, by default the clocks are perfectly synchro-
nized. However, to mimic clock inaccuracy in the real world
even under good clock synchronization, we add a random off-
set to each server’s clock according to a Gaussian distribution
with a standard deviation of 200 ns.

For VMs in Google Cloud, the packet timestamps are taken
inside the VMs with system clocks. In CloudLab, although
the ConnectX-3 NIC supports hardware timestamping, we use
software timestamps provided by the system clocks so that we
can compare a public cloud and a bare-metal cloud by making
the CloudLab setup as close as possible to a bare-metal cloud.

5.1.4 Selection of On-Ramp parameters
The EWMA gain g is set to 1/16 (§3.2). The threshold T
should be higher than the minimal OWD on the path, plus
some headroom to tolerate errors in OWD measurements.

In Google Cloud, (i) as reported in [23], the VM-VM min-
imal RTT for TCP traffic is typically 25 µs, so the minimal
OWD is less than that; (ii) the inaccuracy of Tx and Rx times-
tamps can be around 50 µs due to GSO in VM on Tx side and
the merging of Rx segments in the hypervisor; (iii) the high
percentile clock sync inaccuracy under Huygens is less than
3 µs. Taken together, we pick T = 150µs to be safe.

In Cloudlab, following similar steps, we pick T = 50µs,
because the minimal OWD is smaller, and there is no VM
hypervisor involved in Cloudlab evaluations.

In ns-3, the minimal OWD is up to 6 µs inside the network.
It emulates a NIC implementation of On-Ramp so the times-
tamps are accurate. To be safe, we pick T = 6+10 = 16µs.

§7.4 shows that the end-to-end performance of On-Ramp
is only mildly sensitive to the value of T and g.

5.2 On-Ramp Performance
5.2.1 Google Cloud Platform (GCP)
We first consider the following basic scenario in GCP: Web-
Search traffic at 40% load, and an incast load at 2% with a
fanout of 40 where each of the 40 flows is 2KB (on each
server, the average interval between two consecutive incast
requests is 3.2 ms), and CUBIC congestion control.
Incast RCT. As can be seen in Figure 9a, the mean, 90th, 95th

and 99th percentile RCTs of an incast request are reduced by
2.6×, 3.0×, 3.1× and 2.8×, respectively.
Background traffic FCT. We group background traffic flows
into three buckets by size: small (≤10KB), medium (10KB–
1MB), and large (1MB–30MB) flows. On-Ramp improves the
mean FCT of the WebSearch background traffic flows by 21%,
19%, and 7% compared to the baseline for the flows of small,
medium and large sizes respectively. The 95th percentile FCT
shows similar improvements. This means that time-critical
short flows get lower FCTs and the throughput of long flows
does not degrade. Thus, On-Ramp does not adversely affect
the congestion control of the long flows; indeed, it even im-
proves it mildly by reducing packet drops and timeouts, so
the long flows avoid unnecessary window cuts in CUBIC
algorithm. See Figure 9b.6 Finally, the percentage of packets
retransmitted reduces from 0.0693% to 0.0314%.
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Figure 9: Cloud VM, CUBIC, WebSearch at 40% load + Incast at
2% load (fanout=40, size of each flow=2KB).

6Note that, for this and all following experiments in GCP and CloudLab,
the baseline “No OR” already includes the benefits of per-flow queueing
and round-robin dequeueing, because the default QDisc (FQ_CoDel [9] for
CUBIC and FQ [25] for BBR) in Ubuntu 18.04 provides this functionality.
Therefore, the performance gain from “no OR” to “OR” purely comes from
the On-Ramp algorithm.
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Varying congestion control algorithms. We generalize the
basic scenario by swapping out CUBIC for BBR [19]. BBR is
an out-of-box alternative to CUBIC in VMs of public clouds.
Figure 10a shows the mean and tail RCTs of an incast request
are reduced by On-Ramp by 4.2× – 5.6×. On-Ramp also
reduces the mean FCT of the WebSearch background traffic
flows by 28% and 25% for the small and medium sizes re-
spectively, and tail FCT by 51% and 37%, while maintaining
the same performance as the baseline for the large flows, as
shown in Figure 10b. In this scenario, the fraction of packets
retransmitted reduces by 21×, from 0.0105% to 0.0005%.

Note that BBR gives smaller RCTs of incast requests and
FCTs of short flows than CUBIC because it controls delays.
On-Ramp is able to further improve BBR’s performance under
the incast traffic.
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Figure 10: Cloud VM, BBR, WebSearch at 40% load + Incast at 2%
load (fanout=40, size of each flow=2KB).

Varying background traffic pattern. Next, we consider the
FB_Hadoop traffic at 40% load with an incast load as above
and the CUBIC algorithm. Figure 11 shows the results.
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Figure 11: Cloud VM, CUBIC, FB_Hadoop at 40% load + Incast
at 2% load (fanout=40, size of each flow= 2KB).

Varying the load level of background traffic. To test the
robustness of On-Ramp under high load, we increase the
background traffic to 80% load in the basic scenario, leaving
everything else fixed. The results are in Figure 12. The per-
formance gains achieved by On-Ramp are larger under higher
loads. Figure 25 in Appendix shows the results at 60% load.
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Figure 12: Cloud VM, CUBIC, WebSearch at 80% load + Incast at
2% load (fanout=40, size of each flow 2KB).

Varying the pattern and load level of incast traffic. Finally,
in order to understand the effect of On-Ramp on RCT of larger
incast requests (modeling storage-type traffic), we increased
the size of incast flows from 2KB to 500KB in the basic
scenario at incast loads of 20% and 2%. The findings are

7Fig. 10b, 11b, 12b, 14b, 19b has the same normalization as Fig. 9b.

shown in Figure 13. Also, the total number of timeouts is
reduced by 21× and 13× in the cases of 20% and 2% incast
load respectively.
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Figure 13: Cloud VM, CUBIC, WebSearch at 40% load + Incast
(fanout=40, size of each flow 500KB).

This scenario highlights an interesting aspect of On-Ramp,
namely, that the potential one RTT delay in obtaining OWD
measurement when a new flow starts can be avoided by using
the OWD measurements from previous flows. Specifically,
under 2% load, the average interval between two consecutive
incast requests is 800 ms, which is which is about one order
of magnitude higher than the average RCT for requests of
size 20MB (500KB × 40). Therefore, the gap between two
request responses is large, and each request starts by getting
new OWD measurements. When the incast load is 20%, the
average inter-request interval (80 ms) is comparable to the
average RCT. Therefore, a new request is able to leverage the
OWD measurement of the previous one and help On-Ramp
detect and throttle the incast episodes.8

5.2.2 CloudLab
For the evaluation on CloudLab, we consider the basic sce-
nario described in the GCP evaluation except that the Web-
Search traffic is at 60% load. As can be seen in Figure 14a,
we observe similar improvements as GCP: the mean and tail
RCTs of an incast request improves by 2.3× – 4.1×. The
mean FCTs of the WebSearch background traffic flows are
improved by 23%, 20%, 4% across flows of small, medium
and large sizes respectively, as shown in Figure 14b.
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Figure 14: Bare-metal, CUBIC, WebSearch at 60% load + Incast
at 2% load (fanout=40, size of each flow=2KB).

5.2.3 Large-scale ns-3 simulations
To understand the performance of On-Ramp when combined
with recently developed congestion control schemes which
use detailed network congestion information, we use ns-3
simulations. We use WebSearch traffic at 60% load, plus incast
with a fanout of 40 and flow sizes of 2KB at 2% load. As

8Note that when the incast flow sizes are 2KB and the load is 2%, the
average inter-request interval is 3.2 ms, 250 times smaller than when the flow
sizes are 500KB. Therefore, in this case, an On-Ramp sender-side module
does receive frequent-enough OWD measurements even at low load.
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Figure 15: ns-3, WebSearch of 60% load + incast of 2% load. Bars:
mean, whiskers: 95th percentile. Y-axis in log.

a reminder, to mimic realistic deployments, PFC is in effect
and each server’s clock is jittered by an additional random
offset according to a Gaussian distribution with a standard
deviation of 200 ns, so OWD measurement is not precise. The
congestion control algorithms used are DCQCN, TIMELY,
DCTCP and HPCC. Following [44], a sending window is
added to DCQCN and TIMELY to limit the bytes-in-flight.
These algorithms are called DCQCN+w and TIMELY+w.

As seen in Figure 15, the mean and tail RCT of incast traffic
is reduced significantly for DCQCN, TIMELY, DCQCN+w,
TIMELY+w and DCTCP. The performance of HPCC is not
significantly improved because it utilizes recent and detailed
congestion information from the network elements and is
already highly performant. Further, the FCT of the WebSearch
flows is improved across all categories, including the large
flows (1MB-30MB). Again, the extent of improvement is
algorithm-specific.

Then, we change the background traffic to FB_Hadoop,
leaving the other settings the same. The improvement given
by On-Ramp is similar to the above. See Appendix Figure 26.

Next, we consider the GoogleSearchRPC workload. Since
this traffic has mostly (>99.85%) small flows (≤10KB), we
simply consider the mean and high percentile FCT across all
flows rather than categorizing by flow size, as shown in Figure
16. This workload is challenging for most congestion control
algorithms because nearly 80% of bytes are due to flows under
10 KB in size—too short for congestion control algorithms
to address.9 However, just by more efficiently controlling the
transient events caused by the remaining 20% of bytes from
the relatively long flows, On-Ramp improves the performance
of all algorithms, including HPCC.

6 Evaluation in Facebook’s Network
We have also evaluated On-Ramp at Facebook, where On-
Ramp was used to throttle large, high-bandwidth storage file

9DCQCN, TIMELY and HPCC have no slow start phase. Following [44],
DCTCP’s slow start phase is removed for fair comparisons.
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Figure 16: ns-3, GoogleSearchRPC of 60% load + incast of 2%
load. Bars: mean, whiskers: 95th percentile. Y-axis in log.

transfers so that they don’t eat up all the switch buffers, caus-
ing severe packet drops for latency-sensitive compute appli-
cation traffic. This scenario is canonical in data centers where
multiple types of traffic with different objectives share the
same network fabric. Our goal is to use On-Ramp to ensure
storage traffic gets the bandwidth it needs while not affecting
the latency of the compute applications.
Environment. Two racks inside a Facebook production clus-
ter are used in the evaluation. As a typical setup, in the first
rack, 15 machines work as application clients and 12 work
as storage clients. In the second rack, 30 machines work as
application servers and 6 work as storage servers. The two
ToR switches are connected to 3 spine switches. The link
bandwidth is 100 Gbps for each storage server, 25 Gbps for
all other machines, and 100 Gbps between each ToR and each
spine switch. Huygens runs on all machines to synchronize
their clocks.
Traffic loads. Two types of traffic are run simultaneously: (1)
Computing traffic: They are latency-sensitive short flows car-
rying RPCs generated by computing jobs. They run between
the application clients and servers. (2) Storage traffic: Each
pair of storage clients read files from one storage server via
NVMe-over-TCP [11], which generates throughput-sensitive
long flows consisting of 16–128KB bursts. When 12 or more
storage clients are reading, the total amount of storage traffic
requested will be 25× 12 = 300 Gbps or more, enough to
saturate the uplinks from the second ToR switch to the spine
switches. Severe congestion happens at this load.
Results. Figure 17 shows the results when 12 storage clients
are reading from storage servers.10 When using the default CC
CUBIC, the latency of computing RPCs is severely hurt by the
storage traffic, and numerous packets are dropped. Deploying
On-Ramp with CUBIC reduces the latency of computing
RPCs by 10× while maintaining the throughput of storage
traffic. The number of packets dropped is reduced by about
260×. Here we pick On-Ramp threshold T =30µs following
the guideline in §3.2. The more aggressive setting of T =15µs
reduces the packet drops even more while only marginally
reducing the storage throughput, as shown in the figure.

On-Ramp’s performance was compared with DCTCP as
well, and we found that, under saturation loading of storage
traffic (300 Gbps), both achieve a similar performance in

10See Appendix §10.3 for results with 0–12 storage clients.
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Figure 17: On-Ramp’s performance in a Facebook cluster

terms of compute application latency,11 but DCTCP achieves
a slightly lower storage throughput compared to On-Ramp +
CUBIC. A drawback of DCTCP is that it needs ECN marking
at all the switches which is not only operationally burden-
some, but challenging when many non-DCTCP flows (e.g.,
flows whose source or destination is an external server) share
switches with the DCTCP flows. Being purely edge-based,
On-Ramp sidesteps these burdens and challenges.

7 On-Ramp Deep Dive

7.1 The Accuracy of OWD Signals
To study the effect of the accuracy of OWD signals on On-
Ramp’s end-to-end performance, we repeat the ns-3 scenario
described in §5.2.3 and consider DCQCN, TIMELY and
HPCC. We add a constant random Gaussian offset to each
clock of standard deviation σclk, and vary σclk to model dif-
ferent levels of clock inaccuracy.

Recall that 0.2µs is the default σclk we use throughout our
ns-3 evaluation, with a corresponding threshold T = 16µs.
Here, we increase σclk up to 100µs and, following the guide-
lines in §3.2, we change the threshold T according to the
formula T = 2σclk +minOWD (minOWD = 6µs in ns-3). Es-
sentially, inaccurate clocks lead to inaccurate measurements
of OWD which become confounded with path congestion.
Choosing a value of T as per the formula above allows for
inaccurate clocks. In practice, Huygens reports an estimation
of clock inaccuracy via the network effect [30], so we can
adapt the threshold T according to it using this formula.

Figure 18 shows the RCT of incast requests under differ-
ent σclk. We observe that for DCQCN and TIMELY, as σclk
increases, the mean and tail incast RCT also increases. The
performance degradation becomes more significant when σclk
becomes comparable to the OWDs under congestion (roughly
20−100µs). Since HPCC maintains very small queues (due
to its bandwidth headroom), it operates well under the thresh-
old T of queuing delay needed to trigger On-Ramp. Hence,
On-Ramp doesn’t affect its performance.

7.2 The Granularity of Control
As discussed in §4.1, GSO affects the granularity of control
by On-Ramp. We study its effect by reducing the max GSO

11Indeed, both DCTCP and On-Ramp + CUBIC achieve an RPC latency
under saturation loading nearly equal to the case when there is no storage
traffic, which is the best possible. See Appendix §10.3 for details.
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Figure 18: RCT of incast traffic under different levels of clock inac-
curacy. Bars: mean, whiskers: 95th percentile.

size from the default value of 64 KB to 16 KB. As shown in
Figure 19, the mean and 90th, 95th, 99th percentile of incast
traffic RCT are further reduced by 36%, 37%, 41%, 54%,
respectively. The FCT of short and mid-sized flows in the
WebSearch traffic are further reduced by 8-14% (mean) and
13-22% (95th percentile). The throughput of long flows is
well-maintained. However, reducing max GSO size adds more
CPU overhead to the sender, so we let the user decide on it.
Remark. This experiment explains the significant perfor-
mance improvement of On-Ramp in ns-3 when compared
to the Google Cloud and CloudLab implementations. In ns-3,
we are effectively simulating a NIC implementation where
On-Ramp has per-packet control and highly accurate time
synchronization, which leads to better performance.
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Figure 19: Cloud VM, CUBIC, WebSearch at 40% load + Incast at
2% load (fanout=40, each flow 2KB).

7.3 Co-existence
A public cloud user is unaware of other users and the amount
of traffic (not controlled by On-Ramp) they insert into the net-
work. Hence, it is possible that the effect of On-Ramp can be
blunted when other traffic is present. In fact, if non-On-Ramp
traffic shares links with On-Ramp traffic, the latter may uni-
laterally do worse because On-Ramp may pause transmission
when congestion due to the non-On-Ramp traffic increases.
The results in §5.2.1 show that this dire situation may not hap-
pen: a cloud user can achieve better performance by enabling
On-Ramp in their own VM cluster even though there may be
non-On-Ramp traffic on their paths. In this section, we revisit
this question in the controlled environment of CloudLab.

We consider the scenario in §5.2.2 and divide the 100
servers in CloudLab randomly into two groups with 50 servers
each. The same workload as in §5.2.2 is run inside each group,
but we don’t run cross-group traffic. This models 2 users rent-
ing servers in a cloud environment unbeknownst to each other.
We evaluate the performance in the following cases: (i) both
groups do not use On-Ramp, (ii) Group 1 uses On-Ramp but
not Group 2, and (iii) both groups use On-Ramp.

Figure 20 summarizes the results. Interestingly, when
Group 1 uses On-Ramp and Group 2 does not, both groups do
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better than when neither uses On-Ramp. Essentially, during
periods of congestion, On-Ramp enables Group 1 senders to
transmit their traffic at moments when Group 2 traffic is at low
load. Conversely, the improvement in Group 2’s performance
is due to a reduction in overall congestion.

When Group 2 also uses On-Ramp, the improvement in
Group 1’s performance is only slight. Thus, Group 1 obtains
almost the same benefit from using On-Ramp whether or not
Group 2 uses it; this is desirable for incremental deployment.
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Figure 20: Co-existence of traffic with and without OR.

7.4 On-Ramp Parameters T and g
To explore the sensitivity of On-Ramp on the threshold T and
EWMA gain g, we run the same basic evaluation scenario
described in 5.2.1 in GCP, but now vary T between 50µs and
500µs, and g between 1

4 and 1
64 . Recall that for GCP, the de-

fault parameter values are T = 150µs and g = 1
16 . Figure 21a

shows that the performance of On-Ramp worsens noticeably
as T increases beyond 300 µs. Figure 21b shows that On-
Ramp’s performance is relatively insensitive to the value of g
in the range between 1

4 and 1
64 .
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Figure 21: Changing T and g. RCT and FCT normalized by the
mean values of No OR. Bars: mean, whiskers: 95th percentile.

8 Related Work
Congestion control (CC). CC algorithms can be broadly cat-
egorized into two groups: (i) those which need no network as-
sistance, e.g., drop-based schemes (TCP NewReno [28], CU-
BIC [33]) or delay-based schemes (TCP Vegas [18], TIMELY
[47], and Swift [42]); and (ii) those which rely on network as-
sistance, e.g., use ECN signals (DCTCP [13], DCQCN [53]),
leverage in-band network telemetry (HPCC [44]), or rely on
the network’s ability to perform some functions like schedul-
ing or trimming packets [16,17,29,31,34,47,49]. On-Ramp is
complementary to CC. It is meant to be deployed underneath
any CC algorithm, providing a fast and accurate response
to transient congestion purely from the edge of the network.
Swift [42] is a recent algorithm that uses RTT measurements
and carefully chosen delay targets with support for fractional
congestion windows to obtain good performance across a
wide range of deployment scenarios. Swift couples the han-
dling of equilibrium (on ACK) and transient (on timeout).
This coupling is likely to lead to the equilibrium-transient

tension mentioned in §2. By contrast, On-Ramp explicitly
decouples the two, providing more robust performance.
In-network pause. Schemes such as Priority-based Flow
Control (PFC) [38] have been widely deployed to eliminate
packet drops in switches. However, PFC causes several safety
and performance challenges including PFC deadlocks and
congestion spreading [32, 36, 48, 53]. By pausing flows at the
edge, On-Ramp avoids these challenges.
Congestion Control (CC) in cloud environments. Previous
works like AC/DC TCP [35] and Virtualized Congestion Con-
trol (VCC) [22] give cloud admins control over the CC of
the users’ VMs by translating between the target CC and the
VM’s CC. Their architectures are similar to On-Ramp: they
also operate as a shim layer between the VM applications
and the physical network, intercepting packets without requir-
ing network infrastructure changes. However both AC/DC
TCP and VCC rely on ECN support from the network infras-
tructure to implement the target CC (DCTCP) and need to
be implemented by the cloud provider within the hypervisor.
On-Ramp makes no assumptions of the underlying network
infrastructure and can be implemented by cloud users within
their VMs.
Flow scheduling in data centers. On-Ramp performs a form
of flow scheduling because it pauses packets at the edge
for a short period of time. Previous work in this space like
pHost [29], NDP [34], and Homa [49] propose algorithms
with varying levels of network support to enable flow schedul-
ing within the network and improve end-to-end performance.
On-Ramp requires no network support and is done purely at
the edge. It can therefore be readily deployed, especially by
users of public cloud environments.

9 Conclusion and Future Work
Datacenter packet transport over the last decade has relied in-
creasingly on network support (e.g., ECN marking, queue size
information), making it hard to deploy in environments such
as the public cloud. We show empirically that the move to-
wards increasingly rich network support is rooted in a tension
between equilibrium and transience performance. Motivated
by these results, we take a step back and modularize conges-
tion control into two separate components, one responsible for
equilibrium and the other for transients. We leave equilibrium
handling to existing congestion control algorithms and de-
sign a new underlay scheme, On-Ramp, for transient handling.
On-Ramp uses one-way delay measurements enabled by syn-
chronized clocks to hold back packets transmitted by any
congestion control algorithm at the edge of a network during
transient congestion. Intellectually, On-Ramp contains two
ideas that are of independent interest. First is the use of syn-
chronized clocks to improve network performance. Second is
the factoring of datacenter congestion control—traditionally
a single control loop—into two separate control loops, one
each for transience and equilibrium. We hope this paper is the
beginning of a more in-depth investigation of both ideas.
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10 Appendix

10.1 Supplemental Material for §2 and §3
Figures 22 and 23 extend the results shown in Figures 1 and 2
of §2, by displaying the throughputs received by each flow as
a stack. When the gain parameter is low (Figs. 22a and 23a),
both TIMELY and DCQCN suffer from a long convergence
time in transience, during which the flow throughputs are
unstable and unfair. Under a high gain parameter, both algo-
rithms under-utilize the link during equilibrium; see Figs. 22b
and 23b. When On-Ramp is enabled, both CCs have shorter
time in transience and smoother, fairer flow throughputs in
equilibrium.

(a) β=0.2, no OR (b) β=0.8, no OR

(c) β=0.2, with OR (d) β=0.8, with OR
Figure 22: TIMELY study, the red arrow points to transience, and
the yellow box is a zoom-in of equilibrium. OR T =30µs.

Figure 24 is a follow-up of Figure 5 in §3.2, which shows
the OWDs and the flow rates when 12 CUBIC flows share a
bottleneck link in a bare-metal environment (Cloudlab). The
threshold T is also 50µs. When using strawman On-Ramp,
similar to the case of 2 flows, the queue also suffers from
significant undershooting. When using the final version of
On-Ramp, most fluctuations in queue lengths are removed,
and it achieves better fair sharing among all flows.

10.2 Supplemental Evaluation
Figure 25 corresponds to the evaluation scenario referred to
in §5.2.1 of the main text, where the background WebSearch
load is 60% for the base scenario in GCP.

Figure 26 corresponds to the ns-3 evaluation in §5.2.3.
Here, we run FB_Hadoop traffic at 60% load, plus incast with

(a) Ti=55µs, Td=50µs, no OR (b) Ti=300µs, Td=4µs, no OR

(c) Ti=55µs, Td=50µs, with OR (d) Ti=300µs, Td=4µs, with OR
Figure 23: DCQCN study. OR T =30µs.

(a) OWD with Strawman OR (b) OWD with Final OR

(c) Flow rates, Strawman OR (d) Flow rates, Final OR
Figure 24: 12 long-lived CUBIC flows sharing a link
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Figure 25: Cloud VM, CUBIC, WebSearch at 60% load + Incast at
2% load (fanout=40, each flow 2KB).
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Figure 26: ns-3, FBHadoop of 60% load + incast of 2% load. Bars:
mean, whiskers: 95th percentile. Y-axis in log.

a fanout of 40 and flow sizes of 2KB at 2% load. The findings
are similar to the experiment with WebSearch workload (Fig-
ure 15). With On-Ramp, the RCT of incast requests and FCT
of short flows in background traffic are significantly reduced,
while the throughput of long flows is well-maintained (even
improved e.g. in TIMELY). Again, the extent of improvement
is algorithm-specific.

10.3 Supplemental Results: Facebook
Figure 27 corresponds to the evaluation in Facebook described
in §6. The number of storage clients reading from storage
servers is set to be 0, 2, 4, ..., 12, so the requested load of
storage traffic is 0, 50, 100, ..., 300 Gbps respectively. When
the requested load is less than or equal to 250 Gbps, the
network is not congested yet, CUBIC, CUBIC + On-Ramp
and DCTCP give similar performances. When the requested

load hits 300 Gbps, the computing RPC latency shoots up
dramatically under CUBIC, meaning it is severely hurt by the
storage traffic. Using CUBIC + On-Ramp or DCTCP brings
the latency down to the level similar to the non-congested
case, while keeping the throughput of storage traffic well-
maintained, as we discussed in §6.
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Figure 27: On-Ramp’s performance in a Facebook cluster
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Abstract

Border Gateway Protocol (BGP) forms the foundation for
routing in the Internet. More recently, BGP has made serious
inroads into data centers on account of its scalability, exten-
sive policy control, and proven track record of running the
Internet for a few decades. Data center operators are known
to use BGP for routing, often in different ways. Yet, because
data center requirements are very different from the Internet,
it is not straightforward to use BGP to achieve effective data
center routing.

In this paper, we present Facebook’s BGP-based data cen-
ter routing design and how it marries data center’s stringent
requirements with BGP’s functionality. We present the de-
sign’s significant artifacts, including the BGP Autonomous
System Number (ASN) allocation, route summarization, and
our sophisticated BGP policy set. We demonstrate how this
design provides us with flexible control over routing and
keeps the network reliable. We also describe our in-house
BGP software implementation, and its testing and deploy-
ment pipelines. These allow us to treat BGP like any other
software component, enabling fast incremental updates. Fi-
nally, we share our operational experience in running BGP
and specifically shed light on critical incidents over two years
across our data center fleet. We describe how those influenced
our current and ongoing routing design and operation.

1 Introduction

Historically, many data center networks implemented simple
tree topologies using Layer-2 spanning tree protocol [5, 11].
Such designs, albeit simple, had operational risks due to broad-
cast storms and provided limited scalability due to redun-
dant port blocking. While centralized software-defined net-
work (SDN) designs have been adopted in wide-area net-
works [28, 29] for enhanced routing capabilities like traffic
engineering, a centralized routing controller has additional
scaling challenges for modern data centers comprising thou-
sands of switches, as a single software controller cannot react
quickly to link and node failures. Thus, as data centers grew,
one possible design was to evolve into a fully routed Layer-3
network, which requires a distributed routing protocol.

⇤Work done while at Facebook. Authors contributed equally to this work.
†Currently works at ByteDance.

Border Gateway Protocol (BGP) is a Layer-3 protocol
which was originally designed to interconnect autonomous In-
ternet service providers (ISPs) in the global Internet. BGP has
supported the Internet’s unfettered growth for over 25 years.
BGP is highly scalable, and supports large topologies and pre-
fix scale compared to intra-domain protocols like OSPF and
ISIS. BGP’s support for hop-by-hop policy application based
on communities makes it an ideal choice for implementing
flexible routing policies. Additionally, BGP sessions run on
top of TCP, a transport layer protocol that is used by many
other network services. Such explicit peering sessions are
easy to navigate and troubleshoot. Finally, BGP has the sup-
port of multiple mainstream vendors, and network engineers
are familiar with BGP operation and configuration. Those
reasons, among others, make BGP an attractive choice for
data center routing.

BGP being a viable routing solution in the data center (DC)
networks has been well known in the industry [11]. However,
the details of a practical implementation of such a design
have not been presented by any large-scale operator before.
This paper presents a first-of-its-kind study that elucidates the
details of the scalable design, software implementation, and
operations. Based on our experience at Facebook, we show
that BGP can form a robust routing substrate but it needs
tight co-design across the data center topology, configuration,
switch software, and DC-wide operational pipeline.

Data center network designers seek to provide reliable con-
nectivity while supporting flexible and efficient operations.
To accomplish that, we go beyond using BGP as a mere rout-
ing protocol. We start from the principles of configuration
uniformity and operational simplicity, and create a baseline
connectivity configuration (§2). Here, we group neighboring
devices at the same level in the data center as a peer group
and apply the same configurations on them. In addition, we
employ a uniform AS numbering scheme that is reused across
different data center fabrics, simplifying ASN management
across data centers. We use hierarchical route summariza-
tion on all levels of the topology to scale to our data center
sizes while ensuring forwarding tables in hardware are small.
Our policy configuration (§3) is tightly integrated with our
baseline connectivity configuration. Our policies ensure re-
liable communication using route propagation scopes and
predefined backup paths for failures. They also allow us to
maintain the network by seamlessly diverting traffic from
problematic/faulty devices in a graceful fashion. Finally, they
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ensure services remain reachable even when an instance of
the service gets added, removed, or migrated.

While BGP’s capabilities make it an attractive choice for
routing, past research has shown that BGP in the Internet
suffers from convergence issues [33, 37], routing instabili-
ties [32], and frequent misconfigurations [21, 36]. Since we
control all routers in the data center, we have flexibility to
tailor BGP to the data center which wouldn’t be possible to
achieve in the Internet. We show how we tackled common
issues faced in the Internet by fine-tuning and optimizing
BGP in the data center (§4). For instance, our routing de-
sign and predefined backup path policies ensure that under
common link/switch failures, switches have alternate routing
paths in the forwarding table and do not send out fabric-wide
re-advertisements, thus avoiding BGP convergence issues.

To support the growing scale and evolving routing require-
ments, our switch-level BGP agent needs periodic updates to
add new features, optimization, and bug fixes. To optimize
this process, i.e., ensure fast frequent changes to the network
infrastructure to support good route processing performance,
we implemented an in-house BGP agent (§5). We keep the
codebase simple and implement only the necessary protocol
features required in our data center, but we do not deviate
from the BGP RFCs [6–8]. The agent is multi-threaded to
leverage multi-core CPU performance of modern switches,
and leverages optimizations like batch processing and policy
caches to improve policy execution performance.

To minimize impact on production traffic while achieving
high release velocity for the BGP agent, we built our own
testing and incremental deployment framework, consisting
of unit testing, emulation and canary testing (§6.1). We use
a multi-phase deployment pipeline to push changes to agent
(§6.2). We find that our multi-phase BGP agent pushes ran
for 52% of the time in a 12 month duration, highlighting the
dynamic nature of the BGP agent in our data center.

In spite of our tight co-design, simplicity, and testing frame-
works, network outages are unavoidable. On the operational
side, we discuss some of the significant BGP-related network
outages known as SEVs [38] that occurred over two years
(§6.3)—these outages were either caused by incorrect policy
configurations, bugs in the BGP agent software, or interop-
erability issues between different agent versions during the
deployment of the new agent. Using our operational experi-
ence, we discuss current directions we are pursuing in extend-
ing policy verification and emulation testing to improve our
operational framework, and changing our routing design to
support weighted load-balancing to address load imbalances
under maintenance/failures.
Contributions.

• We present our novel BGP routing design for the data cen-
ter which leverages BGP to achieve reliable connectivity
along with operational efficiency.

• We describe the routing policies used in our data center to
enforce reliability, maintainability, scalability, and service

Spine Switches
(SSW)

Spine Plane 1 Spine Plane 4

Server Pod 1 Server Pod N

Fabric Switches
(FSW)

Rack Switches
(RSW)

Server Server

Figure 1: Data Center Fabric Architecture

reachability.
• We show how our data center routing design and policies

overcome common problems faced by BGP in Internet.
• We present our BGP operational experience, including the

benefits of our in-house BGP implementation and chal-
lenges of pushing BGP upgrades at high release velocity.

2 Routing Design

Our original motivation in devising a routing design for our
data center was to build our network quickly while keeping
the routing design scalable. We sought to create a network
that would provide high availability for our services. However,
we expected failures to happen - hence, our routing design
aimed to minimize the blast radius of those.

In the beginning, BGP was a better choice for our needs
compared to a centralized SDN routing solution for a few rea-
sons. First, we would have needed to build the SDN routing
stack from scratch with particular consideration for scalability
and reliability, thus, hindering our deployment pace. Simulta-
neously, BGP has been demonstrated to work well at scale;
thus, we could rely on a BGP implementation running on
third-party vendor devices. As our network evolved, we grad-
ually transitioned to our custom hardware [18] and in-house
BGP agent implementation. This transition would have been
challenging to achieve without using a standardized routing
solution. With BGP, both types of devices were able to co-
operate in the same network seamlessly.

At the time, BGP was a better choice for us compared to
the Interior Gateway protocols (IGP) like Open Shortest Path
First (OSPF) [39] or Intermediate System to Intermediate Sys-
tem (ISIS) [25]. The scalability of IGPs at scale was unclear,
and the IGPs did not provide the flexibility to control route
propagation, making it harder to manage failure domains.

We used BGP as the sole protocol and did not pursue a
hybrid BGP-IGP routing design as maintaining multiple pro-
tocols would add to the complexity of the routing solution.
Our routing design builds on the eBGP (External BGP) peer-
ing model: Each switch is a BGP speaker and the neighboring
BGP speakers are in different autonomous systems (AS). In
this section, we provide an overview of our BGP-based rout-
ing design catered for our scalable data center fabric topology.
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2.1 Topology Design

Application requirements evolve constantly, and our data cen-
ter design must be capable of scaling out and handling addi-
tional demand in a seamless fashion. To this end, we adopt
a modular data center fabric topology design [4], which is a
collection of server pods interconnected by multiple parallel
spine planes. We illustrate our topology in Figure 1.

A server pod is the smallest unit of deployment, and it has
the following properties: (1) each pod can contain up to 48
server racks, and thus, up to 48 rack switches (RSWs), (2)
each pod is serviced by up to 16 fabric switches (FSWs), and
(3) each rack switch connects to all FSWs in a pod.

Multiple spine planes interconnect the pods. Each plane
has multiple spine switches (SSW) connecting to FSWs using
uniform high-bandwidth links (FSW-SSW). The number of
spine planes corresponds to the number of FSWs in one pod.
Each spine plane provides a set of disjoint end-to-end paths
between a collection of server pods. This modular design
enables us to scale server capacity and network bandwidth as
needed—we can increase compute capacity by adding new
server pods, while inter-pod bandwidth scales by adding new
SSWs on planes.

2.2 Routing Design Principles

We employ two guiding design principles in our DC-wide
BGP-based routing design: uniformity and simplicity. We
realize these principles by tightly integrating routing design
and configuration with the above topology design.

We strive to minimize the BGP feature set and establish
repeatable configuration patterns and behaviors throughout
the network. Our BGP configuration is homogeneous within
each network tier (RSW, FSW, SSW). The devices serving in
the same tier have the same configuration and policies, except
for the originated prefixes and peer addresses.

We generate the network topology data and configuration
which includes port-maps, IP addressing, BGP, and routing
policy configurations for our switches irrespective of the un-
derlying switch platforms. The abstract generic configurations
are then translated into the target platform’s configuration syn-
tax by our automation software. This ensures that we can eas-
ily adapt to changing hardware capabilities in the data center.
The details of our configuration management and platform-
specific syntax generation can be found in Robotron [44].

2.3 BGP Peering & Load-Sharing

Peering. For uniformity and simplicity in configuration and
operations, we treat the whole set of the BGP peers of the
same adjacent tier (RSW/FSW/SSW) on a network switch as
an atomic group, called peer group. Each data center switch
connects to groups of devices on each adjacent tier. For exam-
ple, a FSW aggregates a set of RSWs and has uplinks to mul-
tiple SSWs—this makes two distinct peer groups. All BGP

peering sessions between adjoining device tiers—for exam-
ple RSW$FSW and FSW$SSW—utilize the same protocol
features, timers, and other parameters. Thus, all peers within
a group operate in a uniform fashion.

We apply BGP configuration and routing policies on a peer
group level. Individual BGP peer sessions belong to a peer
group and do not have any additional configuration informa-
tion beside the neighbor specification. This grouping helps us
to simplify configuration and streamline processing of routing
updates, as all peers in the same group have identical policies.

For peering, we use direct single-hop eBGP sessions with
BGP NEXT_HOP attribute, set to the remote end of the point-
to-point subnet. This makes the link usable for BGP routing
purposes as soon as it is up. If there are multiple parallel links
between the devices, we treat them as individual point-to-
point Layer-3 subnets with corresponding BGP sessions. This
design allows us to clearly associate BGP sessions with the
corresponding network interfaces and simplifies RIB (routing
information base) and FIB (forwarding information base)
navigation, manipulation, and troubleshooting.
Load-Sharing. To support load-sharing of traffic along multi-
ple paths in the data center, we use BGP with Equal Cost Mul-
tipath (ECMP) feature. Each switch forwards traffic equally
among paths with equivalent attributes according to BGP best
path selection and routing policy in effect. With the presence
of multiple paths of equal cost, the vast majority of the switch
FIB programming involves removing next hops (when failure
occurs) or adding them back (when switch/link comes back
up) in the existing ECMP groups. Updating ECMP groups in
the FIB is a lightweight and simple operation.

We do not currently use weighted load-balancing inside
our data centers for various reasons. Our fabric topology is
highly symmetric with wide ECMP groups. We provision
the bandwidth uniformly to maximize flexibility of dynamic
service placement in the data center. Coupled with the design
of our failure domains, this ensures sufficient capacity for
services under most common failure scenarios. Moreover,
WCMP [48] requires more hardware resources due to the
replication of next-hops to perform weighted load-balancing.
This does not align well with our goal of minimizing the FIB
size requirements in hardware.

2.4 AS Numbering

Following the design principles of uniformity and simplicity,
we design a uniform AS numbering scheme for the topology
building blocks, such as server pods and spine planes. Our AS
numbering scheme is canonical, i.e., the same AS numbers
can be reused across data centers in the same fashion. For
example, each SSW in the first spine plane in each data center
would have the same AS number (e.g., AS 65001). Similarly,
the RSWs and FSWs in every server pod of every data center
share the same AS numbering structure. To accomplish this
goal, we leverage BGP confederations [7]. A confederation
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Figure 2: BGP Confederation and AS Numbering scheme for
server pods and spine planes in the data center.

divides an AS into multiple sub-ASes such that the sub-ASes
and internal paths between them are not visible to the BGP
peers outside the confederation.

The uniformity facilitated by our use of confederations and
the reusable ASNs (as opposed to a flat routing space) estab-
lishes well-structured AS_PATHs for policies and automation.
This also helps operators to reason about a routing path eas-
ily by inspecting a given AS_PATH during troubleshooting.
Inside the data center, we utilize the basic two-octet Private
Use AS Numbers, which are sufficient for our design.

Server Pod. To create a reusable ASN structure for server
pods—the most numerous building blocks inside our data
center network—we implement each server pod as a BGP
Confederation. Inside the pod, we allocate unique internal
confederation-member ASNs for each FSW and each RSW.
We then peer between the devices in a fashion similar to
eBGP. The structure of these internal sub-AS numbers repeats
within each pod. We assign a unique private AS number
per pod (Pod ASN) within a data center as a Confederation
Identifier ASN, which is how the pod presents itself to the data
center spine and servers. The numbering pattern of unique pod
Confederation Identifier ASNs repeats across different data
centers. In Figure 2, in each pod, RSWs are numbered from
ASN 65401 to N, FSWs are numbered from ASN 65301 to
ASN 65304, and server pods are numbered as Confederation
Identifier ASN 65101, 65102 and so on.

Spine Plane. Each spine plane in the data center fabric has its
own unique (within the data center) private ASN assigned to
all SSWs in it. In Figure 2, in the first spine plane, all SSWs
are numbered ASN 65001. Similarly, all SSWs in the next
spine plane would be numbered ASN 65002. This simplicity
is possible because each SSW device operates independently
from the others, serving as a member of the ECMP groups for
the paths between pods. As no two SSWs directly peer with
each other, they can use the same AS number. Reuse of ASNs
acts as a loop breaking mechanism, ensuring that no route
will traverse through multiple SSWs. The unique per-plane
ASNs also aid us in simple identification of the operationally
available planes for paths visible on rack switches.

2.5 Route Summarization

There are two principal categories of IP routes in our data
centers: infrastructure and production. Infrastructure prefixes
facilitate network device connectivity, management, and di-
agnostics. They carry relatively low traffic. In the event of a
device or link failure, their reachability may be non-critical
or can be supported by stretched paths. Production prefixes
carry high-volume live traffic of our applications and must
have continuous reachability in all partial failure scenarios,
with optimal routing and sufficient capacity of all involved
network paths and ECMP groups.

There are many routes in our data centers. To minimize
the FIB size requirements in hardware and ensure lightweight
control plane processing, we use hierarchical route summa-
rization on all levels of the network topology. For production
routes, we design IP addressing schemes which closely re-
flect the multi-level hierarchy. The RSWs aggregate the IP
addresses of their servers and the FSWs aggregate the routes
of their RSWs. For infrastructure routes, we have the follow-
ing aggregates. Each device aggregates the IP addresses of
all its interfaces, i.e. per-device aggregate. FSWs aggregate
per-device RSW/FSW infrastructure routes into per-pod ag-
gregates. And SSWs aggregate per-device SSW infrastructure
routes into per-spine aggregates.

Depending on the route type and associated reachability
criteria, switches advertise prefixes into BGP either uncon-
ditionally, or upon meeting the requirement of the minimal
number of more-specific prefixes. The more-specific prefixes
have a more limited propagation scope, while the coarser ag-
gregates propagate farther on the network. For example, rack
prefixes circulate only within their local pod, while pod-level
aggregates propagate to the other pods and racks within the
local data center fabric.

Hence, despite the sheer scale of our data center fabrics,
our structured uniform route summarization ensures that the
sizes of routing tables on switches are in low thousands of
routes. Without route summarization, each router would have
over hundred thousand routes, each route corresponding to
the switches’ interfaces and server racks. Our approach has
many benefits: it allows us to use inexpensive commodity
switch ASICs at the data center scale, enables fast and efficient
transmission of routing updates, speeds up convergence (§5),
and speeds up programming forwarding hardware.

3 Routing Policies

A key feature of BGP is the availability of well-defined at-
tributes that influence the best path selection. Together with
the ability to intercept route advertisements and admission
at any hop and session, it allows us to control route propaga-
tion in the network with high precision. In this section, we
review the use cases for routing policies in our data centers.
We also describe how we configure the policies in BGP, while
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Figure 3: Example of predefined backup path policy.

realizing our principles of uniformity and simplicity.

3.1 Policy Goals

The Internet comprises multiple ASes owned by different
ISPs. ISPs coordinate with each other to ensure routing objec-
tives across the Internet. The routing policies mainly pertain
to peering based on business relationships (customer-peer-
provider) among different ISPs. However, since all the routers
in our data centers are controlled by us, we do not have to
worry about peering based on business relationships. Our data
center routing design uses routing policies to ensure reliabil-
ity, maintainability, scalability, and service reachability. We
summarize these policy goals in Table 1.

Goal Description

Reliability Enforce route propagation scopes, predefine
backup paths for failure

Maintainability Isolate and remediate problematic nodes with-
out disrupting traffic

Scalability Enforce route summarization, avoid backup
path explosion

Service reach-
ability

Avoid service disruptions when instances of
services are added, removed or migrated

Table 1: Policy goals

We use BGP Communities/tags to categorize prefixes into
different types. We attach a particular route type community
during prefix origination at the network device. This type tag
persists with the prefix as it propagates. We perform matching
on these communities to implement all our BGP policies in a
uniform scalable fashion. We demonstrate how we use them
with the examples in this section.
Reliability. Our routing policies allow us to safeguard the
data center network stability. The BGP speakers only accept
or advertise the routes they are supposed to exchange with
their peers according to our overall data center routing design.

The BGP policies match on tags to enforce the intended
route propagation scope. For example, in Fig. 3b, routes
tagged with rack_pre f ix only propagate within the pod (i.e.,
not to the SSW layer).

Using BGP policies, we establish deterministic backup
paths for different route types. This uniformly-applied proce-
dure ensures the traffic will take predictable backup paths in
the event of failures. We use backup path policies to protect
FSW-RSW link failures. Consider the example in Fig. 3. We
use tags to implement the backup policy, as shown in Fig. 3b.

When rsw1 originates a route, it adds a rack_pre f ix tag. The
f sw2 matches on that tag, adds another tag backup_path,
and forwards the route to rsw2. rsw2 ensures routes tagged
with backup_path are advertised to f sw1. When f sw1 de-
tects the tag backup_path, it installs the backup route and
adds the tag completed_backup_path (not shown in figure)
which stops any unnecessary continued backup route propa-
gation. In Fig. 3a, when the fsw1-rsw1 link fails, fsw1 will
not send a new advertisement to its SSWs to signal the loss
of connectivity to rsw1. Instead, BGP will reconverge to use
the backup path ( f sw1 ! rsw2 ! f sw2 ! rsw1) to reroute
traffic through another RSW within the pod. And due to route
summarization at the FSW (§2.5), these failures within a pod
will not be visible to the SSWs and hence the routers outside
the pod.

Backup paths are computed and distributed automatically
as a part of BGP routing convergence. They are readily avail-
able when link failure happens. Typically, an FSW has multi-
ple backup paths, of the same AS path length, to each RSW.
When the direct fsw-rsw link fails, all of the backup paths
will be used for ECMP.

In our network, each device has inbound (import) and out-
bound (export) match-action rules. Routes get advertised be-
tween two neighboring BGP speakers (X and Y ) if they are
allowed at both ends of the BGP session, i.e., they need to
match an outbound rule of device X and an inbound rule of
its neighboring device Y . This logic protects against routing
misconfigurations on the peer. Additionally, on each device,
routes that do not match on any of its rules are dropped to
prevent unintended network behaviors.
Maintainability. In a data center, many events occur every
hour and we expect things to fail. We see events like rack
removal or addition, link flap or transceiver failure, network
device reboot or software crash, software or configuration
push failure, etc. Additionally, network devices are undergo-
ing routine software upgrades and other maintenance opera-
tions. To avoid disruption of production traffic, we gracefully
drain the device before maintenance—production traffic gets
diverted from the device without incurring losses. For this,
we define multiple distinct operational states for a network
device. The state affects the route propagation logic through
the device, as shown in Table 2. We change the routing policy
configuration of a device based on its operational state. These
configurations implement the logic specified in Table 2.

To gracefully take a device or a group of devices out of
service (DRAINED) or put it back in service (LIVE), we ap-
ply policies corresponding to the current state on the peer
groups. This initiates the new mode of operation across all
affected BGP peers. Previous works [23] have used a multi-
stage draining to gracefully drain traffic without disruptions.
We also implement a multi-stage drain process with an in-
terim WARM state. In the WARM state, we change the BGP
policies to de-prioritize routes traversing through the device
about to be drained. We also adjust the local and/or remote
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State Description

LIVE The device is operating in active mode and carries full production traffic load.
DRAINED The device is operating in passive mode. It doesn’t carry any production traffic. Only the traffic to/from infrastruc-

ture/diagnostic prefixes may be allowed. Transiting infrastructure prefixes are lowered in priority.
WARM The device is in process of changing states. It maintains full local RIB and FIB ready to support the production traffic,

but adjusts route propagation and signals to avoid attracting live traffic.

Table 2: Operational states of a network switch

ECMP groups and ensure that network links do not become
overloaded during the transition from LIVE to DRAINED
state and vice-versa. Once BGP converges, all production
traffic is rerouted to/from the device, and we can change the
state of the network device again into the final state.

In the DRAINED state, BGP policies allow us to propagate
only selected prefixes through the devices, and change route
priorities. For example, this feature allows us to maintain
reachability to the infrastructure (e.g., the switch’s manage-
ment plane) and advertise diagnostic prefixes through the
devices under maintenance, while keeping the production
traffic away from such devices.

Drain/undrain is a frequently used operation in data center
maintenance. On average, we perform 242 drain and undrain
operations daily. These operations take on average 36s to
complete. The multi-stage state change ensures that there are
no transient drops during this process.
Scalability. The routing policies allow us to implement and
enforce our hierarchical route summarization design (§2.5).
For example, in our network, our policy in FSW summarizes
rack-level prefixes into pod-specific aggregates. They adver-
tise these aggregates to the SSW tier. These policies also
control propagation scopes for different route aggregation
levels and minimize the routing table sizes in our switches.

The predefined backup paths also aid in scalability. These
paths ensure our reaction to failures are deterministic and
avoid triggering large-scale advertisements during failures
which can cause BGP convergence problems.

To reduce policy processing overhead, we design all our
policies to first apply rules which accept or deny the most
number of prefixes. For example, in a drained state (Table 2),
the FSW’s outbound policy toward SSW first rejects routes
marked to (i) avoid propagation to SSWs, or (ii) carry any
production traffic. After that, it matches and lowers the prior-
ity of infrastructure routes before sending them to SSW. This
design ensures we minimize the policy processing overhead
on routes that will be dropped.
Service Reachability. One important goal of the data center
network design is providing service reachability. A service
should remain reachable even when an instance of the service
gets added, removed, or migrated. As one of the mechanisms
for providing service reachability in the network, we use Vir-
tual IP addresses (VIPs). A particular service (e.g., DNS) may
advertise a single VIP (serviced by multiple instances). In
turn, anycast routing will provide reachability to one of the
instances for traffic destined to the VIP.

To support flexible instance placement without compromis-
ing uniformity and simplicity, we create a VIP injector service
in the form of a software library integrated with a service in-
stance. The injector establishes a BGP session with the RSW
and announces a route to signal the VIP reachability. When
the service instance gets terminated, the injector sends a route
withdrawal for the VIP. The routing policy on the RSW relays
VIP routes to FSW after performing safety checks, such as
ensuring that the injected VIP prefix conforms to the design
intent. FSW’s inbound policy from RSWs tags and sets differ-
ent priorities for different VIP routes. This method allows for
network-wide VIP priorities for active/backup applications.

By directly injecting VIP routes from services, we do
not need to make changes to the network when creat-
ing/destroying service instances or adjusting active/backup
service behaviors. That is, we do not need to change RSW
configurations to start/stop advertising the VIPs or change
VIP instance priorities. Our services integrate the injector
library into their code (§5) and fully control when and how
they want to update their VIPs.

3.2 Policy Configuration

For scalability and uniformity reasons, our policies primarily
operate on BGP Communities and AS_PATH regular expres-
sion matches, and not on specific IP prefixes. To implement
policy actions, we may accept or deny a route advertisement,
or modify BGP attributes to manipulate the route’s priority
for best-path selection. We configure our routing policies on
the BGP peer group level—therefore, any policy change is
simultaneously applied to all peers in the group. Our reusable
ASN design (§2.4) also allows us to use the same policies
across our multiple data center fabrics.

The number of policy rules that exist between tiers of our
data center network are relatively lightweight: 3-31 inbound
rules (average 11 per session) and 1-23 outbound rules (av-
erage 12 per session). The majority of outbound policies
tag routes to specify their propagation scope, and the ma-
jority of inbound policies perform admission control based
on the route propagation tags and adjust LOCAL_PREF or
AS_PATH length to influence route preference.

For the most numerous device role in our fleet, RSW, we
keep the policy logic at the necessary minimum to reduce the
need for periodic changes. To compensate for this, the FSWs
in the pods have larger policies that offload some processing
logic from the RSWs.
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Figure 4: Network Policy Churn

For the commonly used BGP communities and other prefix
attributes we maintain structured naming and numbering stan-
dards, suitable both for humans and automation tools. For the
purposes of this paper, we elide the low-level details of our
policy language syntax, objects, and rules.

3.3 Policy Churn

We maintain a global set of abstract policy templates and
use them to generate individual switch configurations via an
automated pipeline [44]. The routing policy used in our data
center is fairly stable—we have made 40 commits to the rout-
ing policy templates over a period of three years. We show
the cumulative distribution function (CDF) of the number
of lines of changes made to the routing policy templates in
Figure 4. We observe that most changes to the policy are
incremental—80% of commits change less than 2% of pol-
icy lines. However, small changes to policy can have drastic
service impacts, therefore they are always peer-reviewed and
tested before production deployment (§6.2).

4 BGP in DCs versus the Internet

Multiple papers have studied issues with BGP conver-
gence [33, 37], routing instabilities [32] and misconfigura-
tions [21, 36], in the context of the Internet. This section
summarizes these issues and describes how we address them
in the data center context.

4.1 BGP Convergence

BGP convergence at the Internet-scale is a well-studied prob-
lem. Empirically, BGP can take minutes to converge. Labovitz
et al. [33] proposed an upper bound on BGP convergence. Dur-
ing convergence, BGP attempts to explore all possible paths
in a monotonically increasing order (in terms of AS_PATH
length)—a behavior known as the path-hunting problem [2].
In the worst case, BGP convergence can require O(n!) mes-
sages, where n is the number of routers in the network. Using
MinRouteAdvertisementInterval (MRAI) timer—minimum
time between advertisements from a BGP peer for a partic-
ular prefix—BGP convergence can take O(n) x MRAI sec-
onds. As mentioned in §3.1, our data centers experience many

drain/undrain operations daily. These operations will cause
BGP to reconverge, and this makes convergence a frequent
event in our data centers.

To alleviate the BGP path-hunting problem, we define route
propagation scopes and limit the set of backup paths that a
BGP process needs to explore. For example, rack prefixes
circulate only within a fabric pod; thus, an announcement
or withdrawal of a rack prefix should only trigger a pod’s
reconvergence. To prevent slow convergence during network
failures, we employ BGP policies that limit the AS_PATH that
a prefix may carry, thus curbing the path-hunting problem.

Our topology design with broad path diversity (§2) and our
predefined backup path policies (§3.1) ensure we only trigger
fabric-wide re-advertisements when a particular router has
lost all connections to its peers. Such events require tens to
hundreds of links to fail, which is very unlikely. Thus, BGP
convergence delays are infrequent in our data center. Since we
want the network to converge as quickly as possible, we set the
MRAI timer to 0. This could lead to increased advertisements
(as each router would advertise any changes immediately),
but our route propagation scopes ensure these advertisements
do not affect the entire network.

4.2 Routing Instability

Routing instability is the rapid change of network reachabil-
ity and topology information caused by pathological BGP
updates. These pathological BGP updates lead to increas-
ing CPU and memory utilization on routers, which can re-
sult in processing delays for legitimate updates, or router
crashes; these can lead to delay in convergence or packet
drops. Labovitz et al. [32] show that a significant fraction
of routing updates on the Internet was pathological and do
not reflect real network changes. With fine-grained control
over the routing design, BGP configuration, and software im-
plementation, we ensure that these pathological cases do not
manifest in the data center. We describe the common patho-
logical cases of routing instabilities and the solution in our
data center to mitigate these cases in Table 3.

The most frequent pathological BGP message pattern re-
ported by Labovitz et al. was WWDup. WWDup is a repeated
transmission of BGP withdrawals for a prefix, which is un-
reachable. The cause of WWDup was stateless BGP imple-
mentation: a BGP router does not store any state regarding
information advertised to its peers. The router would send a
withdrawal to all its peers, irrespective of whether it had sent
the same message. Internet-scale routers deal with millions of
routes, so it was not practical to store each prefix’s state for
each peer. In data centers, BGP works at a much smaller scale
(tens of thousands of prefixes) and typically has more memory
resources. Thus, we can maintain the state of advertisements
sent to each peer and check if a particular update needs send-
ing. This feature eliminates pathological BGP withdrawals.
Another class of pathological routing messages is AADup: a
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Update Type Description DC Solution

WWDup Repeated BGP withdrawals for unreach-
able prefixes

Store advertisement state in routers to suppress duplicate withdrawals

AADup Implicit route withdrawal replaced by a
duplicate of the same route

Store advertisement state in routers to suppress duplicate announcements

AADiff Route is replaced by an alternate route Fixed set of LOCAL_PREF values to avoid pathological metric changes
TUp/TDown Prefix reachability oscillation Monitor failures and automatically drain traffic from faulty devices

Table 3: Pathological BGP Updates found in the Internet by Labovitz et al. [32] and how we fix those in the data center

route is implicitly withdrawn and replaced by a duplicate. We
stop AADups with our stateful BGP implementation as well.

The other types of BGP messages causing routing instabili-
ties are AADiff (an alternate route replacing the old one) and
TUp/TDown (prefix reachability oscillation). AADiffs hap-
pen due to MED (multi-exit discriminator) or LOCAL_PREF
(local preference) oscillations in configurations that map
these values dynamically from the IGP metric. As a result,
when internal topology changes, BGP will announce adver-
tisements to its peers with new MED/LOCAL_PREF values,
even though the inter-domain BGP paths are unaffected. Hot-
potato BGP routing [46] is a similar type of routing instability
where the internal IGP cost affects the BGP best path decision.
We use a fixed set of LOCAL_PREF values. Thus, any change
in LOCAL_PREF indicates a legitimate update in the routing
preference. We do not use MED. TUp and TDown come from
the actual oscillating hardware failures. Our monitoring tools
detect such failures and automatically reroute traffic from
malfunctioning components to restore stability.

4.3 BGP Misconfigurations

Mahajan et al. [36] analyzed BGP misconfigurations in the
Internet. They found that those affected up to 1% of the global
prefixes each day. The misconfigurations increase the BGP
control plane overhead with generation of pathological route
updates. They can also lead to disruption of connectivity. The
two types of BGP misconfigurations were the following. First,
the origin misconfiguration is when a BGP router injects an
incorrect prefix to the global BGP table. Second, the export
misconfiguration is when an AS_PATH violates the routing
policy for an ISP. The former can happen in the data center.
For example, imagine a router advertising more specific /64
prefixes instead of the aggregated /56 prefix. A router could
also inject a prefix from a different pod’s address space, hi-
jacking the traffic. The latter is also possible in the data center.
A router may incorrectly advertise a prefix outside the prefix’s
intended propagation scope due to a bug in the routing pol-
icy. However, in practice, they are rare in our data center, as
all our route advertisement configurations are automatically
generated and verified. Since we have visibility and control
over the data center, we can detect these issues with monitor-
ing/auditing tools and promptly fix them. We further discuss
the causes of misconfigurations reported by Mahajan et al.

and demonstrate how we can avoid these in our architecture.
Incorrect BGP Attributes. One of the leading causes for
incorrect prefix injection is a router advertising prefixes as-
suming that they will get filtered upstream. For reliability
(§3), we add filters on both ends of the BGP session to ensure
incorrect prefixes get filtered at either end. Errors can also
happen due to wrong BGP communities, address typos, and
inaccurate summarization statements. We use a centralized
framework [44] to generate the configuration for individual
routers from templates. Thus, we can catch errors from a
single source, instead of dealing with separate routers.
Interactions with Other Protocols. A typical pattern is to
use IGPs such as OSPF for intra-domain routing and config-
ure redistribution to advertise the IGP routes into BGP for
inter-domain routing. Configuring redistribution can end up
announcing unintended routes. However, that is not a problem
with a single-protocol design that we have.
Configuration Update Issues. Mahajan et al also observed
cases when upon BGP restart, unexpected prefixes got adver-
tised due to misconfigurations. For instance, in one scenario,
configuration changes were not committed to persistent stor-
age, and a router restarted using the old configuration. In
our implementation, we ensure BGP does not advertise pre-
fixes until after processing all configuration constructs. Each
router has a configuration database, and we use transactions
to update it consistently. We can afford slower upgrade mech-
anisms in the data center due to increased redundancy; routers
in the Internet cannot be unavailable for long periods of time.

Thus, our BGP-based routing design tailored for the data
center, that realizes the high-level DC-oriented goals of uni-
formity and simplicity, is able to overcome BGP problems
common in the Internet.

5 Software Implementation

Like any other software, our BGP agent needs updates to add
new features/optimizations, apply bug fixes, be compatible
with other services, etc. Extending a third-party BGP imple-
mentation (by network vendors or open source [22,30]) is not
trivial and can add substantial complexity. Additionally, they
have long development cycles for upstreaming or releasing
their updates, and this affects our pace of innovation. To over-
come those challenges, we develop an in-house BGP agent in
C++ to run on our FBOSS [18] switches. In this section, we
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Figure 5: FB’s BGP vs Quagga vs Bird (convergence time)

present the main attributes of our agent.
Limited Feature Set. There are dozens of RFCs related to
BGP features and extensions, especially to support routing
for the Internet. Third-party implementations have support
for many of these features and extensions. This increases the
size of the agent codebase and its complexity due to interac-
tions between various features. A large and complex codebase
makes it harder for engineers to debug an issue and find a root
cause, extend the codebase to add new features, or to refactor
code to improve software quality. Therefore, the implementa-
tion of our BGP agent contains only the necessary protocol
features required in our data center, but it does not deviate
from the BGP RFCs [6–8]. Additionally, we only implement
a small subset of matches and actions to implement our rout-
ing policies. We summarize the limited protocol features and
match-action fields in Appendix A.
Multi-threading. Many BGP implementations are single-
threaded (e.g., Quagga [30] and Bird [22]). Modern switches
contain server-grade multi-core CPUs which allow us to run
the BGP control plane at the scale of our data center. Our
implementation employs multiple system threads, such as the
peer thread and RIB thread, to leverage the multi-core CPU.
The peer thread maintains the BGP state machine for each
peer and handles parsing, serializing, sending, and receiving
BGP messages over TCP sockets. The RIB thread maintains
Loc-RIB (the main routing table), calculates the best path and
multipaths for each route, and installs them to the switch hard-
ware. To further maximize parallelism in the context of each
system thread, we employ lightweight application threads
folly::fibers [3]. These have low context-switching cost
and execute small modular tasks in a cooperative manner.
The fiber design is ideal for the peer thread as BGP session
management is I/O intensive. To ensure lock-free property be-
tween system threads, we use message queues between fiber
threads, running on the same or different systems threads.

To evaluate our BGP agent’s performance, we compare it
against two popular open source BGP stacks: Quagga [30]
and Bird [22]. We run them on a single FSW device that
is receiving both IPv4 and IPv6 routes from 24 SSWs. We
compare their initial convergence time; this represents the
time period between starting the BGP process to network
convergence; this includes time for session establishment, and
receiving and processing all route advertisements. In Fig. 5,
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Figure 6: Impact of Policy Cache

we show the average over 5 runs. We observe that our BGP
agent constantly outperforms other software and provides a
speedup as high as 1.7X (Quagga) and 2.3X (Bird).
Policy. To improve policy execution performance, we added
a few optimizations again building on our uniform design.
Most of the peering sessions, from a device’s point of view,
are either towards uplink or downlink devices sharing the
same inbound/outbound policies. Here, we made two obser-
vations: (1) prefixes learned from the same peer usually share
the same BGP attributes, and (2) when routes are sent to the
same type of peers (uplink or downlink peers), the same pol-
icy is applied for each peer separately. Peer groups help to
avoid repetition in configuration, however, policies are still
executed for routes sent/received from each peer separately.
To leverage (1), we implemented batching in policy execu-
tion, where a set of prefixes and their shared BGP attributes
are given as input to the policy engine. The policy engine
performs the operation of matching the given BGP attributes
and the prefixes sharing those attributes, and returning the
accepted prefixes and their modified BGP attributes, based
on the policy action. To avoid re-computations of (2), we in-
troduced a policy cache, implemented in the form of an LRU
(least recently used) cache containing <policy name, prefix,
input BGP attributes, output BGP attributes> tuples. Once we
apply the policy for routes to a peer and store that result in
the policy cache, other peers in the same tier sharing the same
policy can use the cached result and avoid re-execution of the
policy. To show its impact, we run an experiment with and
without the cache. We run them on a single FSW device that
is sending IPv6 routes to 24 SSWs. We compare their time to
process all route advertisements, which includes the time to
apply outbound policy for each peer. In Fig. 6, we show the
average over 5 runs. We observe that policy cache improves
the time to process all routes by 1.2-2.4X .
Service Reachability. For flexible service reachability (§3),
we want a service to inject routes for virtual IP addresses
(VIPs) corresponding to the service directly to the RSW. How-
ever, current vendor BGP implementations commonly do not
allow multiple peering sessions from the same peer address,
which meant we would have to run a single injector service
on every server and the applications on the server will need
to interact with the injector to inject routes to the RSW. This
becomes operationally difficult since application owners do
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not have visibility to the injection process. There also exists
a failure dependency as (i) applications need to monitor the
health of the injector service to use it, and (ii) the injector
needs to withdraw routes if the application fails. Instead, our
BGP agent can support multiple sessions from the same peer
address. Applications running on a server can directly initiate
a BGP peer session with the BGP agent on the RSW and
inject VIPs for service reachability. Thus, we do not have to
maintain the cumbersome injector service to workaround the
vendor BGP implementation constraint, and we also remove
the application-injector dependency.
Instrumentation. Traditionally, operators used network man-
agement tools (e.g. SNMP [27], NETCONF [20], etc) to col-
lect network statistics, like link load and packet loss ratio,
to monitor the health of the network. These tools can also
collect routing tables and a limited set of BGP peer events.
However, extending these tools to collect new types of data—
such as BGP convergence time, the number of application
peers, etc—is not trivial. It requires modifications and stan-
dardization of the network management protocols. Facebook
uses an in-house monitoring system called ODS [9,18]. Using
a Thrift [1] management interface, operators can customize
the type of statistics they want to monitor. Next, ODS collects
these statistics into an event store. Finally, operators both
manually and through an automated alerting tool, query and
analyze the data to monitor their system. By integrating our
BGP agent with this monitoring framework, we treat BGP
like any other software. This allows us to collect fine-granular
information on BGP’s internal operation state, e.g. the number
of peers established, the number of sent/received prefixes per
peer, and other BGP statistics mentioned above. We monitor
these data to detect and troubleshoot network outages (§6.3).

6 Testing and Deployment

The two main components we routinely test and update are
configurations and the BGP agent implementation. These
updates introduce new BGP features and optimizations, fix
security issues, change BGP routing policies for improving
reliability and efficiency. However, frequent updates to the
control plane lead to increased risk of network outages in
production due to new bugs or performance regressions. We
want to ensure smooth network operations, avoid outages in
the data center, and catch regressions as early as possible.
Therefore, we developed continuous testing and deployment
pipelines for quick and frequent rollouts to production.

6.1 Testing

Our testing pipeline comprises three major components - unit
testing, emulation and canary testing.

Emulation is a useful testing framework for production
networks. Similar to CrystalNet [35], we develop a BGP emu-
lation framework for testing BGP agent, BGP configurations,
and policy implementations, and modeling BGP behavior for

the entire network. Emulation is used also for testing BGP
behavior under failure scenarios – link flaps, link down, or
BGP restart events. We also use emulation to test agent/config
upgrade processes. The advantage of catching bugs in emula-
tion is that they do not cause service disruptions in production.
Emulation testing can greatly reduce developer’s time and
amount of physical testbed resources required. However, em-
ulation cannot achieve high fidelity as it does not model the
underlying switch software and hardware. Using emulation
for BGP convergence regression is challenging as linux con-
tainers are considerably slower than hardware switches.

After successful emulation testing, we proceed to canary
testing in production. We run a new version of the BGP
agent/config on a small fraction of production switches called
canaries. Canary testing allows us to run a new version of
the agent/config in production settings to catch errors and
gain confidence in the version before rolling out to produc-
tion. We pick switches such that canaries can catch issues
arising in production due to scale – e.g., delayed switch con-
vergence. Canaries are used to test the following scenarios:
(i) transitioning from old to new BGP agent/config (this oc-
curs during deployment), (ii) transitioning from new to old
BGP agent/config (when issues were found in production,
we have to rollback to stable BGP version), and (iii) BGP
graceful restart (which is an important feature for smooth
deployment of BGP agent/config). Daily canaries are used to
run new versions for longer periods (typically a day). Produc-
tion monitoring systems will generate alerts for any abnormal
behaviors. Canary testing helps us catch bugs not caught in
emulation as it closely resembles BGP behavior in production,
such as problems created by changes in underlying libraries.

6.2 Deployment

Once a change (agent/config) has been certified by our testing
pipeline, we initiate the deployment phase of pushing the new
agent/config to the switches. There is a trade-off between
achieving high release velocity and maintaining overall reli-
ability. We cannot simply switch off traffic across the data
centers and upgrade the control plane in one-shot, as that
would drastically impact services and our reliability require-
ments. Thus, we must ensure minimal network disruption
while deploying the upgrades. This is to support quick and
frequent BGP evolution in production. We devise a push plan
which starts rolling out the upgrade gradually to ensure we
can catch problems earlier in the deployment process.
Push Mechanisms. We classify upgrades in two classes: dis-
ruptive and non-disruptive, depending on if the upgrade af-
fects existing forwarding state on the switch. Most upgrades
in the data center are non-disruptive (performance optimiza-
tions, integration with other systems, etc.). To minimize rout-
ing instabilities during non-disruptive upgrades, we use BGP
graceful restart (GR) [8]. When a switch is being upgraded,
GR ensures that its peers do not delete existing routes for a
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Phase Specification

P1 Small number of RSWs in a random DC
P2 Small number of RSWs (> P1) in another random DC
P3 Small fraction of switches in all tiers in DC serving web traffic
P4 10% of switches across DCs (to account for site differences)
P5 20% of switches across DCs
P6 Global push to all switches

Table 4: Specification of the push phases

period of time during which the switch’s BGP agent/config is
upgraded. The switch then comes up, re-establishes the ses-
sions with its peers and re-advertises routes. Since the upgrade
is non-disruptive, the peers’ forwarding state are unchanged.
Without GR, the peers would think the switch is down, and
withdraw routes through that switch, only to re-advertise them
when the switch comes back up after the upgrade.

Disruptive upgrades (e.g., changes in policy affecting ex-
isting switch forwarding state) would trigger new adver-
tisements/withdrawals to switches, and BGP re-convergence
would occur subsequently. During this period, production traf-
fic could be dropped or take longer paths causing increased
latencies. Thus, if the binary or configuration change is dis-
ruptive, we drain (§3) and upgrade the device without im-
pacting production traffic. Draining a device entails moving
production traffic away from the device and reducing effective
capacity in the network. Thus, we pool disruptive changes
and upgrade the drained device at once instead of draining
the device for each individual upgrade.
Push Phases. Our push plan comprises six phases P1-P6 per-
formed sequentially to apply the upgrades to agent/config in
production gradually. We describe the specification of the 6
phases in Table 4. In each phase, the push engine randomly
selects a certain number of switches based on the phase’s
specification. After selection, the push engine upgrades these
switches and restarts BGP on these switches. Our 6 push
phases are to progressively increase scope of deployment with
the last phase being the global push to all switches. P1-P5 can
be construed as extensive testing phases: P1 and P2 modify
a small number of rack switches to start the push. P3 is our
first major deployment phase to all tiers in the topology. We
choose a single data center which serves web traffic because
our web applications have provisions such as load balancing
to mitigate failures. Thus, failures in P3 have less impact
to our services. To assess if our upgrade is safe in more di-
verse settings, P4 and P5 upgrade a significant fraction of our
switches across different data center regions which serve dif-
ferent kinds of traffic workloads. Even if catastrophic outages
occur during P4 or P5, we would still be able to achieve high-
performance connectivity due to the in-built redundancy in the
network topology and our backup path policies—switches run-
ning the stable BGP agent/config would re-converge quickly
to reduce impact of the outage. Finally, in P6, we upgrade the
rest of the switches in all data centers.
Push Monitoring. To detect problems during deployment,

M0 M3 M6 M9 M12
Push Timeline

P1
P2

P3
P4

P5
P6

Figure 7: Timeline of BGP push phases over a year

Release Total P1 P2 P3 P4 P5 P6

7 0.57 0 0 0.28 0.20 0.82 0.56
8 0.43 0 0 0 0.12 0.13 0.54
9 0.51 0 0.94 0.95 1.12 0.25 0.49

Table 5: Push error percentages for the last 3 pushes for dif-
ferent push phases.

we have BGPMonitor, a scalable service to monitor all BGP
speaking devices in the data center. All BGP speakers re-
lay advertisements/withdrawals they receive to BGPMonitor.
BGPMonitor then verifies the routes which are expected to
be unchanged, e.g., routes for addresses originating from the
switch. If we see route advertisements/withdrawals within the
window of a non-disruptive upgrade, we stop the push and
report the potential issue to an engineer, who analyzes the
issue and determines if push can proceed. One of our outages
was detected using BGPMonitor (§6.3).
Push Results. Figure 7 shows the timeline of push releases
over a 12 month period. We achieved 9 successful pushes of
our BGP agent to production. On average, each push takes
2-3 weeks. Figure 7 highlights the high release velocity that
we are able to achieve for BGP in our data center. We are
able to fix performance and security issues as well as support
new features at fast timescales. This also allows other appli-
cations, which leverage the BGP routing features, to innovate
quickly. P6 is the most time-consuming phase of the push
as it upgrades majority of the switches. We catch various er-
rors in P1-P5, and thus, some of these phases can take longer
(more than a day). Figure 7 also highlights the highly evolv-
ing nature of the data center. Our data centers are undergoing
different changes to the BGP agent (adding support for BGP
constructs, bug fixes, performance optimizations and security
patches) for over 52% of the time in the 12 month duration.

Ideally, each phase should upgrade all the switches (100%).
For instance, in one push, we fixed a security bug and we
needed all the switches to run the fixed BGP agent version
to ensure the network is not vulnerable. However, various
devices were not reachable for a multitude of reasons. Devices
are often brought down for various maintenance tasks, thus
making them unreachable during push. Devices can also be
experiencing hardware or power issues during the push phases.
We cannot predict the downtime for such devices, and we
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do not want to block the push indeterminately because of a
small fraction of these devices. Hence, for each phase, we
set a threshold of 99% on the number of devices we want
to upgrade in each phase, i.e., 1% of the devices in our data
centers could be running older BGP versions. We expect
these devices will be upgraded in the next push phases. We
report the push errors (number of devices which did not get
upgraded) encountered in the last 3 pushes of Figure 7 in
Table 5. We upgrade more than 99.43% of our data center in
each push. These numbers indicate that there is always a small
fraction of the data center which is undergoing maintenance.
We try to upgrade these devices in the next push.

6.3 SEVs

Despite our testing and push pipeline, the scale and evolving
nature of our data center’s control plane (§6.2), the complex-
ity of BGP and its interaction with other services (e.g. push,
draining, etc), and the inevitable nature of human errors make
network outages an unavoidable obstacle. In this section, we
discuss some of the major routing-related Site EVents (SEVs)
that occurred over a 2 year period. Errors and routing issues
can arise due to (1) a recent change in configuration or BGP
software, or (2) latent bugs in the code which are triggered
due to a previously unseen scenario. We use multiple monitor-
ing tools to detect anomalies in our network. These include
(i) event data stores (ODS [9]) to log BGP statistics like
downtime of BGP sessions at a switch, (ii) netsonar [34] to
detect unreachable devices, and (iii) netnorad [10] to measure
server-to-server packet loss ratio and network latency.

We experienced a total of 14 SEVs. These BGP-related
SEVs were caused due to a combination of errors in its policy,
software and interaction with other tools (e.g. push framework,
draining framework, etc) in our data centers.

One set of SEVs were caused due to incomplete/incorrect
deployment of policies. For example, one of the updates re-
quired both changing communities set in a policy at one tier
and changing policies that act on those communities at an-
other tier. It also required the first to be applied after the latter.
However, during a push, policies were applied in an incor-
rect order. This created blackholes within the data center,
degrading performance of multiple services.

Another set of SEVs were caused due to an error in BGP
software. One SEV was caused by a bug in implementation
of a feature called max-route limit that limits the number of
prefixes received from a peer. The bug was that the max-route
counter was getting incremented incorrectly for previously
announced prefixes. This made BGP tear down multiple ses-
sions, leading services to experience SLA violations.

We also experienced problems due to interactions between
different versions of the BGP software. In one SEV, different
versions were using different graceful restart parameters [8].
During graceful restart, the old version of BGP used stale
paths for 30s. However, the new version deferred sending

new routes for as long as 120s, waiting for receiving End-
of-RIB from all peers. Hence, the old version purged stale
paths learned from its peer before receiving them from the
new version. This resulted in temporary traffic loss for ⇠ 90s.
BGPMonitor detected this outage during the push phases.

All these outages were resolved by rolling back to a previ-
ous stable version of BGP, followed by pushing a new fixed
version in the next release cycle. Our design principles of
uniformity and simplicity, while helpful, do not address is-
sues such as software bugs and version incompatibilities, for
which special care is needed. Our aim is to create a good
testing framework to prevent these outages. We created the
emulation platform during the later phases of our BGP devel-
opment process and evolved ever since. As a follow-up to the
aforementioned SEVs, we added new test cases to emulate
those scenarios. As part of our ongoing work (§7), we are
exploring ideas to further improve our testing pipeline.

7 Future Work

This section describes some of our ongoing work based on the
gaps we have identified during our past years of data center
network operations.
Policy Management. BGP supports a rich policy framework.
The inbound and outbound policy is a decision tree with mul-
tiple rules capturing the policy designer’s intent. Although
the routing policies are uniform across tiers in our design, it
is non-trivial to manage and reason about the full distributed
policy set. Control plane verification tools [13, 15, 24, 40]
verify policies by modeling device configurations. However,
existing tools cannot scale to the size of our data centers, and
they do not support such complex intent as flexible service
reachability. Extending network verification to support our
policy design at scale is an important future direction. Net-
work synthesis tools [12, 16, 17, 19, 43] use high-level policy
intents to produce policy-compliant configurations. Unfortu-
nately, the policy intent language used by these tools cannot
model all our policies (§2). Additionally, the configurations
generated by them do not follow our design choices (§3). Ex-
tending network synthesis to support our BGP design and
policies is also an ongoing direction we are pursuing.
Evolving Testing Framework. Policy verification tools as-
sume the underlying software is error-free and homogeneous
across devices. 8 of our SEVs occurred due to software errors.
Existing tools cannot proactively detect such issues. To com-
pensate, we use an emulation platform to detect control-plane
errors before deployment. Some routing issues, like transient
forwarding loops and black holes, materialize while deploy-
ing BGP configuration and software updates in a live network.
Our deployment process monitoring (§6.2) demonstrates that
the control plane is under constant churn. 10 of our SEVs were
triggered while deploying changes. To address that, we are
extending our emulation platform to mimic the deployment
pipeline and validate the impact of various deployment strate-
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gies. We are further exploring techniques to closely emulate
our hardware switches and combined hardware/software fail-
ure scenarios. We are also extending our testing framework
to include network protocol validation tools [45] and fuzz
testing [31]. Protocol validation tools can ensure our BGP
agent is RFC-compliant. Fuzz testing can make our BGP
agent robust against invalid, unexpected, or random external
BGP messages with well-defined failure handling.
Load-sharing under Failures. Over the past few years, we
observe that hardware failures or drains can create load im-
balance. For example, SSW’s uplinks to the DC aggregation
layer are not balanced when the failure of an SSW-FSW link
(or SSW/FSW node) creates topology asymmetry in the spine
plane. If one of an RSW’s (say R) four upstream FSWs (say
F) cannot reach one of its four SSWs, then F’s SSWs would
serve 1/4 of the traffic over 3 uplinks unlike the other 3 FSWs
that serve 1/4 of the traffic over 4 uplinks. To balance traffic
load across SSW’s uplinks, R should reduce the traffic sent
towards F from 1/4 to 3/15, and shift the remaining traffic to
the other 3 FSWs. Although a centralized controller would
be the most direct way to shift traffic to balance the load, we
are considering an approach like Weighted ECMP [48] to
leverage our BGP-based routing design.

8 Related Work

Routing in Data Center. There are different designs for
large-scale data center routing, some are based on BGP while
others use a centralized software-defined networking (SDN)
design. An alternative BGP-based routing design for data cen-
ters is described in RFC7938 [11]. Our design differs in a few
significant ways. One difference is the use of BGP Confeder-
ations for pods (called "clusters" in RFC7938). That enables
our design to stick with the two-octet private ASN numbering
space and reuse the same ASN on all rack switches. Thus, we
also do not use the "AllowAS In" BGP feature in our design
and maintain native BGP loop prevention. The second differ-
ence is our extensive use of route summarization in order to
keep the routing tables small and improve the stability and
convergence speed of the distributed system. The RFC7938
proposes keeping full routing visibility for all prefixes on all
rack switches. Another major difference is our extensive use
of the routing policies to implement strict adherence to the
reachability and reliability goals, realize the different opera-
tional states of the devices, establish pre-determined network
backup paths, and provide means for host-signaled traffic en-
gineering, such as primary/secondary path selection for VIPs.

Singh et. al [42] showed that Google uses an SDN-based
design for its data center network routing. It has a central
route controller to collect and distribute link state information
over a reliable out-of-band Control Plane Network (CPN)
that runs a custom IGP for topology state distribution. Their
reasoning behind building a centralized routing plane from
scratch was to be able to leverage the unique characteristics

and homogeneity of their network which comprises custom
hardware. We decided to use a decentralized BGP approach to
take advantage of BGP’s extensive policy control, scalability,
third-party vendor support, operator familiarity, etc.
Operational Framework. CrystalNet [35] is a cloud-scale,
high-fidelity network emulator used by Microsoft to proac-
tively validate all network operations before rolling out to pro-
duction. We use an in-house emulation framework to easily
integrate with our monitoring tools and deployment pipelines.
Janus [14] is a software and hardware update planner that
uses operator specified risks to estimate and choose the push
plan with minimal availability and performance impact on
customers. We use a framework similar to Janus for our main-
tenance planning, which includes disruptive BGP agent/config
push. Govindan et. al [26] conducted detailed analysis of over
100 high-impact network failure events at Google. They dis-
covered that a large number of failures happened when a
network management operation was in progress. Motivated
by these failures, they proposed certain design principles for
high availability, e.g. continuously monitor the network, use
in-house testing and rollout procedures, make (network) up-
date the common case, etc. We acknowledge these principles;
they have always been a part of our operational workflow.
BGP at Edge. EdgeFabric [41] and Espresso [47] also run
BGP at scale. However, they are deployed at the edge for the
purpose of CDN traffic engineering. They are both designed
by content providers to overcome challenges with BGP when
dealing with large traffic volumes. They have centralized
control over routing while retaining BGP as the interface
to peers. They control which PoP and/or path traffic to a
customer should choose as a function of path performance.

9 Conclusion

This paper presents our experience operating BGP in large-
scale data centers. Our design follows the principles of unifor-
mity and simplicity, and it espouses tight integration between
the data center topology, configuration, switch software, and
DC-wide operational pipeline. We show how we realize these
principles and enable BGP to operate efficiently at scale. Nev-
ertheless, our system is a work in progress. We describe some
major operational issues we faced and how these are inform-
ing our routing evolution.
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A BGP Agent Features

As mentioned in §5, our BGP agent contains only those nec-
essary protocol features that are required in our data center.
We summarize the different agent features in Table 6. Addi-
tionally, we only implement a small subset of matches and
actions mentioned in Table 7 to implement our routing poli-
cies specified in §3.
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Feature Description Rationale

Core Feature eBGP Establish external BGP session To Exchange and forward route updates
Confederations Divide an AS into multiple sub ASes To use the same private ASNs within a pod
eBGP Multipath Select and program multipath To implement ECMP-based load-sharing
IPv4/IPv6 Addresses Support IPv4/IPv6 route exchange To enable dual-stack
Route Origination Send update for IP prefixes assigned to

a switch
Route Aggregation Send update for less-specific IP pre-

fixes aggregating (summarizing) more-
specific routes

To minimize number of route updates

Remove Private AS Remove Private ASNs within AS-PATH To reuse private ASNs.
In/Out-bound Policy Support BGP policies specified in §2
Dynamic Peer Accept BGP session initiation from a

range of peer addresses
To allow VIP injection from any server

Operational Feature Graceful Restart Wait for small graceful time period be-
fore removing routes

To reduce network churn

Link Fail Detection Fast BGP session termination upon link
failure

To converge faster

Propagation Delay Delay advertisements of new routes To wait for convergence before receiving traffic
FIB Acknowledgement Advertise routes after installation to

hardware
To avoid blackholes if peer converges before us

Max-route-limit Limit number of prefixes received from
a peer

To disallow unexpected volume of updates

Peer Groups Define and reuse peer configurations for To make configuration compact
multiple peers

Table 6: Core and operational BGP features

Match Fields Action Fields

as-path add/delete/set as-path
community-list add/delete/set community

origin set origin
local preference inc/dec/set local preference
as-path-length permit

prefix-list deny

Table 7: Policy match-action fields
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Abstract
We present Orion, a distributed Software-Defined Net-

working platform deployed globally in Google’s datacenter
(Jupiter) and Wide Area (B4) networks. Orion was designed
around a modular, micro-service architecture with a central
publish-subscribe database to enable a distributed, yet tightly-
coupled, software-defined network control system. Orion
enables intent-based management and control, is highly scal-
able and amenable to global control hierarchies.

Over the years, Orion has matured with continuously
improving performance in convergence (up to 40x faster),
throughput (handling up to 1.16 million network updates per
second), system scalability (supporting 16x larger networks),
and data plane availability (50x, 100x reduction in unavail-
able time in Jupiter and B4, respectively) while maintaining
high development velocity with bi-weekly release cadence.
Today, Orion enables Google’s Software-Defined Networks,
defending against failure modes that are both generic to large
scale production networks as well as unique to SDN systems.

1 Introduction
The last decade has seen tremendous activity in Software-
Defined Networking (SDN) motivated by delivering new net-
work capabilities, fundamentally improving network reliabil-
ity, and increasing the velocity of network evolution. SDN
starts with a simple, but far-reaching shift in approach: mov-
ing network control, such as routing and configuration man-
agement, from individual hardware forwarding elements to a
central pool of servers that collectively manage both real-time
and static network state. This move to a logically central-
ized view of network state enables a profound transition from
defining pairwise protocols with emergent behavior to dis-
tributed algorithms with guarantees on liveness, safety, scale,
and performance.

For example, SDN’s global view of network state presents
an opportunity for more robust network verification and intent-
based networking [16, 17]. At a high level, SDN affords the
opportunity to transition the network from one consistent
state to another, where consistency can be defined as policy

compliant and blackhole-free. This same global view and
real-time control enables traffic engineering responsive to
topology, maintenance events, failures, and even fine-grained
communication patterns such that the network as a whole
can operate more efficiently and reliably [2, 12, 13]. There is
ongoing work to tie end host and fabric networking together to
ensure individual flows, RPCs, and Coflows meet higher-level
application requirements [1,11,22], a capability that would be
hard or impossible with traditional protocols. Perhaps one of
the largest long-term benefits of SDN is support for software
engineering and qualification practices to enable safe weekly
software upgrades and incremental feature delivery, which
can hasten network evolution by an order of magnitude.

While the promise of SDN is immense, realizing this
promise requires a production-grade control plane that meets
or exceeds existing network performance and availability lev-
els. Further, the SDN must seamlessly inter-operate with peer
legacy networks as no network, SDN or otherwise, operates
solely in its own tech island.

In this paper, we describe the design and implementation
of Orion, Google’s SDN control plane. Orion is our second
generation control plane and is responsible for the configu-
ration, management, and real-time control of all of our data
center (Jupiter [28]), campus, and private Wide Area (B4 [15])
networks. Orion has been in production for more than four
years. The SDN transition from protocols to algorithms, to-
gether with a micro-services based controller architecture,
enables bi-weekly software releases that together have not
only delivered over 30 new significant capabilities, but also
have improved scale by a factor of 16, availability by a factor
of 50x in Jupiter and 100x in B4, and network convergence
time by a factor of 40. Such rapid evolution would have been
hard or impossible without SDN-based software velocity

Orion’s design centers around a constellation of indepen-
dent micro-services, from routing to configuration manage-
ment to network management, that coordinate all state through
an extensible Network Information Base (NIB). The NIB
sequences and replicates updates through a key-value abstrac-
tion. We describe the performance, semantic, and availability
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requirements of the NIB and the development model that al-
lows dozens of engineers to independently and simultaneously
develop, test, and deploy their services through well-defined,
simple, but long-lived contractual APIs.

While Orion has been a success at Google, neither our
design nor the SDN approach are panaceas. We describe four
key challenges we faced in Orion—some fundamental to SDN
and some resulting from our own design choices—along with
our approach to addressing them:

#1: Logically centralized control require fundamentally
high performance for updates, in-memory representation
of state, and appropriate consistency levels among loosely-
coordinating micro-service SDN applications.

#2: The decoupling of control from hardware elements
breaks fate sharing in ways that make corner-case failure han-
dling more complex. In particular, control software failure
does not always mean the corresponding hardware element
has failed. Consider the case where the control software runs
in a separate physical failure domain connected through an
independent out-of-band control network. Either the physical
infrastructure (control servers, their power or cooling) or con-
trol network failure can now result in at least the perception
of a sudden, massively correlated failure in the data plane.

#3: Managing the tension between centralization and fault
isolation must be balanced carefully. At an extreme, one could
imagine a single logical controller for all of Google’s network
infrastructure. At another extreme, one could consider a single
controller for every physical switch in our network. While
both extremes can be discarded relatively easily, finding the
appropriate middle ground is important. On the one hand,
centralization is simpler to reason about, implement, and
optimize. On the other, a centralized design is harder to scale
up vertically and exposes a larger failure domain.

#4: In a global network setting, we must integrate existing
routing protocols, primarily BGP, into Orion to allow inter-
operation with non-SDN peer networks. The semantics of
these protocols, including streaming updates and fate sharing
between control and data plane, are a poor match to our choice
of SDN semantics requiring adaptation at a number of levels.

This paper presents an introductory survey of Orion. We
outline how we manage these concerns in its architecture,
implementation, and evolution. We also discuss our produc-
tion experiences with running Orion, pointing to a number of
still open questions in SDN’s evolution. We will share more
details and experiences in subsequent work.

2 Related Work
Orion was designed with lessons learned from Onix [18].
Unlike Onix’s monolithic design with cooperative multi-
threading, Orion introduced a distributed design with each
application in a separate process. While Onix introduced
a NIB accessible only to applications in the same process,
Orion’s is accessible by applications within and across do-
mains, providing a mechanism for hierarchy, which few exist-

ing controllers incorporate (Kandoo [35] being an exception).
Hierarchy enabled fabric-level drain sequencing 1 and optimal
WCMP-based (Weighted Cost Multi-Pathing) routing [36].

We distribute Orion’s logic over multiple processes for
scalability and fault-tolerance, a feature shared with other
production-oriented controllers such as ONOS [4] and Open-
Daylight [24], and originally proposed by Hyperflow [30].
Unlike our previous design, Orion uses a single configuration
for all processes, applied atomically via the NIB, precluding
errors due to inconsistent intended state.

Orion uses database-like tables to centrally organize state
produced and consumed by SDN programs, a feature shared
with a few other OpenFlow controllers such as ONOS [4],
Flowlog [27], and Ravel [32]. The combination of all of
these techniques – hierarchy, distribution, and database-like
abstractions – allowed Orion to meet Google’s availability
and performance requirements in the datacenter and WAN.

While Orion is an evolution in the development of Open-
Flow controllers, its modular decomposition of network func-
tions (e.g., routing, flow programming, switch-level protocols,
etc.) is a design goal shared with pre-OpenFlow systems such
as 4D/Tesseract [33] and RCP [6]. Single-switch operating
systems that similarly employ microservices and a centralized
database architecture include Arista EOS [3] and SONiC [25].

3 Design Principles
We next describe principles governing Orion’s design. We
established many of these during the early stages of building
Orion, while we derived others from our experience operating
Orion-based networks. We group the principles into three
categories: environmental – those that apply to production
networks, architectural – those related to SDN, and imple-
mentation – those that guide our software design.

3.1 Principles of production networks
Intent-based network management and control. Intent-

based networks specify management or design changes by
describing the new intended end-state of the network (the
“what”) rather than prescribing the sequence of modifications
to bring the network to that end-state (the “how”). Intent-
based networking tends to be robust at scale, since high-level
intent is usually stable over time, even when the low-level
state of network elements fluctuates rapidly.

For example, consider a situation where we wish to tem-
porarily “drain” (divert traffic away from) a cluster while we
simultaneously add new network links to augment the ingress
and egress capacity of the cluster. As those new links turn
up, the stable drain intent will also apply to them, causing the
underlying networking control system to avoid using them.

In Orion, we use an intent-based approach for updating the
network design, invoking operational changes, and adding
new features to the SDN controller. For example, we capture

1Fabric-level drain sequencing refers to redirecting traffic in a loss-free
manner, throughout the fabric, away from a target device being drained.
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intended changes to the network’s topology in a model [26],
which in turn triggers our deployment systems and opera-
tional staff to make the necessary physical and configuration
changes to the network. As we will describe later, Orion
propagates this top-level intent into network control applica-
tions, such as routing, through configuration and dynamic
state changes. Applications react to top-level intent changes
by mutating their internal state and by generating intermedi-
ate intent, which is in turn consumed by other applications.
The overall system state evolves through a hierarchical prop-
agation of intent ultimately resulting in changes to the pro-
grammed flow state in network switches.

Align control plane and physical failure domains. One
potential challenge with decoupling control software from
physical elements is failure domains that are misaligned or too
large. For misalignment, consider the case in which a single
SDN controller manages network hardware across portions of
two buildings. A failure in that controller can cause correlated
failures across two buildings, making it harder to meet higher-
level service SLOs. Similarly, the failure of a single SDN
controller responsible for all network elements in a campus
would constitute too large a vulnerability even if it improved
efficiency due to a centralized view.

We address these challenges by carefully aligning network
control domains with physical, storage, and compute domains.
As one simple example, a single failure in network control
should not impact more than one physical, storage, or com-
pute domain. To limit the “blast radius” of individual con-
troller failures, we leverage hierarchical, partitioned control
with soft state progressing up the hierarchy (§5.1). We explic-
itly design and test the network to continue correct, though
likely degraded, operation in the face of controller failures.

3.2 Principles related to an SDN controller
SDN enables novel approaches to handling failures, but

it also introduces new challenges requiring careful design.
The SDN controller is remote from the network switches,
resulting in the lack of fate sharing but also the possibility of
not being able to communicate with the switches.

Lack of fate sharing can often be used to our advantage.
For example, the network continues forwarding based on
its existing state when the controller fails. Conversely, the
controller can repair paths accurately and in a timely manner
when individual switches fail, by rerouting around them.

React optimistically to correlated unreachability. The
loss of communication between controller and switches poses
a difficult design challenge as the controller must deal with
incomplete information. We handle incomplete information
by first deciding whether we are dealing with a minor failure
or a major one, and then reacting pessimistically to the former
and optimistically to the latter.

We start by associating a ternary health state with network
elements: (i) healthy with a recent control communication (a
switch reports healthy link and programming state with no

Figure 1: Network behavior in three cases: Normal (left): A net-
work with healthy switches. Flows from top to bottom switches use
all middle switches. Fail Closed (mid): With few switches in un-
known state (grey), the controller conservatively routes around them.
Fail Static (right): With enough switches in unknown state, the
controller no longer routes around newly perceived failed switches.

packet loss), (ii) unhealthy, when a switch declares itself to
be unhealthy, when neighbouring switches report unhealthy
conditions or indirect signals implicate the switch, and (iii)
unknown, with no recent control communication with a switch
and no indirect signals to implicate the switch.

A switch in the unknown state could be malfunctioning, or
it could simply be unable to communicate with a controller
(a fairly common occurrence at scale). In comparison, the
unhealthy state is fairly rare, as there are few opportunities to
diagnose unequivocal failure conditions in real time.2

The controller aggregates individual switch states into a
network-wide health state, which it uses to decide between
a pessimistic or an optimistic reaction. We call these Fail
Closed and Fail Static, respectively. In Fail Closed, the con-
troller re-programs flows to route around a (perceived) failed
switch. In Fail Static, the controller decides not to react to a
switch in an unknown, potentially failed, state, keeping traffic
flowing toward it until the switch state changes or the network
operator intervenes. Figure 1 illustrates an example of normal
operation, Fail Closed reaction, and Fail Static condition.

In Fail Static, the controller holds back from reacting to
avoid worsening the overall state of the network, both in
terms of connectivity and congestion. The trade-off between
Fail Closed and Fail Static is governed by the cost/benefit
implication of reacting to the unknown state: if the element
in the unknown state can be avoided without a significant
performance cost, the controller conservatively reacts to this
state and triggers coordinated actions to steer traffic away
from the possible failures. If the reaction would result in a
significant loss in capacity or loss in end-to-end connectivity,
the controller instead enters Fail Static mode for that switch.
In practice we use a simple “capacity degradation threshold”
to move from Fail Closed to Fail Static. The actual threshold
value is directly related to: (1) the operating parameters of
the network, especially the capacity headroom we typically
reserve, for example, to support planned maintenance; (2) the
level of redundancy we design in the topology and control

2It is not common for a software component to be able to self-diagnose a
failure, without being able to avoid it in the first place, or at least repair it.
Slightly more common is the ability to observe a failure from an external
vantage point, e.g. a neighboring switch detecting a link “going down.”
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domains. We aim to preserve a certain amount of redundancy
even in the face of capacity degradation.

In our experience, occurrences of Fail Static are fairly com-
mon and almost always appropriate, in the sense that they are
not associated with loss of data plane performance. Often Fail
Static is triggered by failures in the control plane connectivity
between the SDN controller and the network elements, or by
software failures in the controller. Neither of these directly
affect the data plane health.

We view the ability to Fail Static as an advantage of SDN
systems over traditional distributed-protocol systems. Dis-
tributed systems are also subject to some of the failures that
could benefit from a Fail Static response. However, they are
not easily amenable to realize a Fail Static behavior because
they only have a local view. It is far easier for a centralized
controller to assess if it should enter Fail Static when it can
observe correlated network failures across its entire domain.

Exploit both out-of-band and in-band control plane
connectivity. In a software-defined network, a key consid-
eration is connectivity between the “off box” controller and
the data plane switches. We must solve the bootstrap prob-
lem of requiring a functioning network to establish baseline
control. Options include using: i) the very network being con-
trolled (“in-band”) or ii) a (physically or logically) separate
“out-of-band” network. While a seemingly simple question,
considerations regarding pure off-box SDN control, circu-
lar dependencies between the control and dataplane network,
ease of debuggability, availability, manageability and cost of
ownership make this topic surprisingly complex.

The simplest approach is to have a physically separate out-
of-band control/management plane network (CPN) for com-
munication between controller and switches orthogonal to
the dataplane network. This approach cleanly avoids circular
dependencies, keeping the control model simple and enabling
easy recovery from bugs and misconfiguration. Ideally, we
would like the out-of-band control network to be highly avail-
able, easy to manage and maintain, and cost effective. In
the end, a separate CPN means installing and operating two
distinct networks with different operational models and inde-
pendent failure characteristics. While failure independence
is often a desirable property, subtle or rare failure scenarios
mean the entire data plane could go down if either the data-
plane or control plane fails. We describe our choice of hybrid
CPN for Orion in §5.

3.3 Software design principles
Enabling a large-scale software development environment

was a key motivation for building our own SDN controller.
Critical to the success of SDN is the ability to safely deploy
new functionality across the network incrementally with fre-
quent software releases. This, in turn, means that a substantial
team of engineers must be able to develop multiple indepen-
dent features concurrently. The need to scale engineering
processes led to a modular system with a large number of

decoupled components. At the same time, these components
had to interact with one another to realize a tightly-coupled
control system reflecting the structure and dynamics of net-
work control. We achieved this goal through:
• a microservice architecture with separate processes rather

than a monolithic block which we adopted in our first
generation SDN controller [18], for software evolvability
and fault isolation.

• a central pub-sub system (NIB) for all the communication
between microservices, which took care of the tightly-
coupled interaction across processes.
Failure domain containment (§3.1) imposes an upper limit

to the size of control domains. Nevertheless, we were con-
cerned with the performance, scalability, and fault model of a
single NIB to coordinate all communication and state within
a control domain. We satisfied our performance concerns
through benchmarking efforts, and fault tolerance concerns
by limiting control domain scope and the ability to fail static,
including between control domains.

Based on years of experience, the NIB has been one of
our most successful design elements. It manages all inter-
component communications, allows us to create a “single
arrow of time,” establishing an order among the otherwise
concurrent events across processes. This brought significantly
useful side effects including much improved debuggability of
the overall system. It also allows us to store event sequences
(NIB traces) in external systems and use them for offline
troubleshooting and independent validation of subsystems,
which we use in component-level regression testing.

Next, we discuss the principles of intent based control,
introduced in 3.1, reconciliation of state as well as the impli-
cations of various failure modes in an SDN-based system:

Intent flows from top to bottom. The top level intent for
the system as a whole is the operator intent and the static con-
figuration. As intent propagates through the system via NIB
messages, it triggers local reactions in subsystems that gen-
erate intermediate intent consumable by other sub-systems.
Higher-level intent is authoritative and any intermediate in-
tent (also known as derived state) is rebuilt from it. The
programmed switch state is the ground truth corresponding
to the intent programmed into dataplane devices.

The authoritative intent must always be reflected in the
ground truth. The controller ensures that any mismatch is
corrected by migrating the ground truth toward the intended
state in a way that is minimally disruptive to existing data
plane traffic. We refer to this process as “state reconciliation”.

Reconciliation is best performed in the controller
which has a global view since minimal disruption often re-
quires coordination across switches such that changes are
sequenced in a graceful and loop-free manner. Reconciliation
is a powerful concept that allows reasoning about complex
failure modes such as Orion process restarts as well as lack
of fate sharing between the data and control planes.

Availability of high level intent is crucial to keep the top-
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Figure 2: Overview of Orion SDN architecture and core apps.

down intent-based system simple. To achieve this goal we
minimize the time when the intent is temporarily unavailable
(e.g., because of process restarts or communication failure
between components).

4 Architecture
Figure 2 depicts the high-level architecture of Orion, and how
it maps to the textbook ONF view [7]. For scalability and
fault isolation, we partition the network into domains, where
each domain is an instance of an Orion SDN controller.

The data plane consists of SDN switches at the bottom.
Orion uses OpenFlow [23] as the Control to Data Plane In-
terface (CDPI). Each switch runs an OpenFlow Agent (OFA)
for programmatic control of forwarding tables, statistics gath-
ering, and event notification. The control plane consists of
Orion Core in the center and SDN applications at the top.
The control plane is physically separate from the data plane
and logically centralized, providing a global view of the do-
main. Though logically centralized, the Orion Core controls
the network through distributed controller processes. The
NIB provides a uniform SDN NorthBound Interface for these
applications to share state and communicate requirements.
The Orion Core is responsible for (i) translating these re-
quirements into OpenFlow primitives to reconcile switches’
programmed state with intended state and (ii) providing a
view of the runtime state of the network (forwarding rules,
statistics, data plane events) to applications.

4.1 Orion Core
The NIB is the intent store for all Orion applications. It

is implemented as a centralized, in-memory datastore with
replicas that reconstruct the state from ground-truth on failure.
The NIB is coupled with a publish-subscribe mechanism to
share state among Orion applications. The same infrastructure
is used externally to collect all changes in the NIB to facilitate
debugging. The NIB must meet the following requirements:
• Low External Dependency. As Orion programs the net-

work supporting all higher-level compute and storage ser-
vices, it cannot itself depend on higher-level services.

• Sequential Consistency of Event Ordering. To simplify
coordination among apps, all apps must see events in the
same order (arrow of time [20]).

Of note, durability [14] was not a requirement for the NIB be-
cause its state could be reconstructed from network switches
and other sources in the event of a catastrophic failure.

NIB Entities. The NIB consists of a set of NIB entity tables
where each entity describes some information of interest to
other applications or observers both local or external to the
domain. Some of the entity types include:

• Configured network topology. These capture the config-
ured identities and graph relationship between various net-
work topological elements. Examples include Port, Link,
Interface, and Node tables.

• Network run-time state. This could be topological state,
forwarding state (e.g. ProgrammedFlow table), pro-
tocol state (e.g. LLDPPeerPort table), statistics (e.g.
PortStatistics table).

• Orion App Configuration. Each app’s configuration is
captured as one or more NIB tables, e.g. LLDPConfig.

Protocol Buffer Schema. We represent the schema for
each NIB entity as a protocol buffer message [8]. Each row
in that NIB entity table is an instantiation of this schema. The
first field of each entity schema is required to be a NIBHeader
message which serves as the key for that entity. The NIB does
not enforce referential integrity for foreign keys; however,
inconsistencies fail an internal health-check.

An example entity represented in the NIB is a Link entity.
A link is modelled as foreign key references to Port and Node
entities respectively. This expresses the connection between
two ports of two switches. Additionally, a status (up, down,
or unknown), is modelled as part of the Link entity. The full
protocol buffer is shown in the appendix.

Protocol buffers allow us to reuse well-understood patterns
for schema migrations. For example, adding a new field to
a table has built-in support for backward and forward com-
patibility during an upgrade despite some applications still
running with the previous schema.

NIB API. The NIB provides a simple RPC API (Read,
Write, Subscribe) to operate on NIB tables. The Write opera-
tion is atomic and supports batching. The Subscribe operation
supports basic filtering to express entities of interest. The NIB
notification model provides sequential consistency of event
ordering. It also supports coalescing multiple updates into a
single notification for scale and efficiency reasons.

The Config Manager provides an external management
API to configure all components in an Orion domain. The
domain configuration is the set of app configurations running
in that domain. For uniformity and ease of sharing, an app
config consists of one or more NIB tables. To ensure a new
configuration is valid, it is first validated by the running in-
stance. The semantics of pushing config need to be atomic, i.e.
if one or more parts of the overall config fail validation, the
overall config push must fail without any side effects. Since
Orion apps that validate various parts of the config run de-
coupled, we employ a two-phase commit protocol to update
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the NIB: The config is first staged in shadow NIB tables, and
each app verifies its config. Upon success, we commit the
shadow tables to live tables atomically.

The Topology Manager sets and reports the runtime state
of network dataplane topology (node, port, link, interface,
etc.). It learns the intended topology from its config in the
NIB. By subscribing to events from the switches, it writes the
current topology to tables in the NIB. The Topology Manager
also periodically queries port statistics from the switches.

The Flow Manager performs flow state reconciliation, en-
suring forwarding state in switches matches intended state
computed by Orion apps and reflected in the NIB. Recon-
ciliation occurs when intent changes or every 30 seconds by
comparing switch state. The latter primarily provides Orion
with switch statistics and corrects out-of-sync state in the rare
case that reconciliation on intent change failed.

The OFE (Openflow FrontEnd) multiplexes connections
to each switch in an Orion domain. The OpenFlow protocol
provides programmatic APIs for (i) capabilities advertise-
ment, (ii) forwarding operations, (iii) packet IO, (iv) teleme-
try/statistics, and (v) dataplane event notifications (e.g. link
down) [23]. These are exposed to the Topology and Flow
Manager components via OFE’s northbound RPC interface.

Packet-I/O. Orion supports apps that send or receive con-
trol messages to/from the data plane through OpenFlow’s
Packet-I/O API: a Packet-Out message sends a packet
through a given port on the switch, while a Packet-In no-
tification delivers a data plane packet punted by the switch to
the control plane. The notification includes metadata such as
the packet’s ingress port. Orion apps can program punt flows
and specify filters to receive packets of interest.

Orion Core apps are network-type agnostic by design. No
“policy” is baked into them; it belongs to higher-level SDN
applications instead. Core apps program, and faithfully reflect,
the state of the data plane in the NIB in a generic manner.

4.2 Routing Engine
Routing Engine (RE) is Orion’s intra-domain routing con-

troller app, providing common routing mechanisms, such as
L3 multi-path forwarding, load balancing, encapsulation, etc.

RE provides abstracted topology and reachability infor-
mation to client routing applications (e.g. an inter-domain
routing app or a BGP speaker app). It models a configured
collection of switches within an Orion domain as an abstract
routing node called a supernode [13] or middleblock [28].
Client routing applications provide route advertisements at
supernode granularity, specifying nexthops for each route in
terms of aggregate or singleton external ports.

RE disaggregates the route advertisements from its clients
into individual node-level reachability over respective exter-
nal ports and computes SPF (Shortest Path First) paths for
each prefix. RE avoids paths that traverse drained, down or
potentially miscabled links.3 It also reacts to local failure by

3A link is considered miscabled when a port ID learned by a neighbor

computing the next available shortest path when the current
set of nexthops for a prefix becomes unreachable. For im-
proved capacity, RE performs load balancing within a domain
by spreading traffic across multiple viable paths, and through
non-shortest-path forwarding, as requested by client apps. RE
also manages the associated switch hardware resources (e.g.
Layer-3 tables) among its client routing apps.

A key highlight of Orion Routing Engine is the ability
to do loss-free sequencing from the currently programmed
pathing solution to a new pathing solution. This may happen
in reaction to changes in network states (e.g. a link being
avoided). In a legacy network, the eventually consistent nature
of updates from distributed routing protocols (e.g. BGP) can
result in transient loops and blackholes in the data plane.
In contrast, RE exploits its global view to sequence flow
programming: before programming a flow that steers traffic to
a set of switches, RE ensures the corresponding prefixes have
been programmed on those nexthop switches. Analogous
checks are done before removing a flow.

Figure 3 walks through an end-to-end route programming
example. As evident from the sequence of operations, the NIB
semantics lend themselves to an asynchronous intent-based
programming model (as opposed to a strict request-response
interaction). A common design pattern is to use a pair of
NIB tables, where one expresses the intent from the producer,
while the other captures the result from the consumer. Both
intent and result tables are versioned. An app can change
the intent many times without waiting for the result, and the
result table is updated asynchronously.

4.3 Orion Application Framework
The Orion Application Framework is the foundation for

every Orion application.The framework ensures developers
use the same patterns to write applications so knowledge of
one SDN application’s control-flow translates to all applica-
tions. Furthermore, the framework provides basic functional-
ity (e.g. leader-election, NIB-connectivity, health-monitoring)
required by all applications in all deployments.
High Availability. Availability is a fundamental feature for
networks and thereby SDN controllers. Orion apps run as
separate binaries distributed across network control server ma-
chines. This ensures applications are isolated from bugs (e.g.,
memory corruption that leads to a crash) in other applications.

Beyond isolation, replicating each application on three
different physical machines ensures fault tolerance for both
planned (e.g. maintenance) as well as unplanned (e.g. power
failures) outages. The application framework facilitates repli-
cation by providing an abstraction on top of leader election
as well as life-cycle callbacks into the application.

An application goes through a life-cycle of being activated,
receiving intent/state updates from the NIB, and then being
deactivated. Identifying/arbitrating leadership and its transi-
tion (referred to as failover) among replicas is abstracted and

node via LLDP and reported to Orion does not match the configured port ID.

88    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Figure 3: Intent-based route programming on abstracted domain topology: (a) Routing Engine learns external prefix 1.2.3.0/24 over trk-1, and
programs nodes to establish reachability. (b) Example of end-to-end route programming. The Routing App provides a high-level RouteAdvert
on supernode-1 via the NIB. Routing Engine translates the RouteAdvert to a low-level Flow update on node i and sends to Flow Manager.
Acknowledgements follow the reverse direction to the Routing App. Similar route programming applies to all domain nodes.

thereby hidden from the application author, reducing surface
area for bugs as well as complexity.

Capability Readiness Protocol. One of the challenges we
faced previously was an orderly resumption of operation after
controller failover. In particular, when a controller’s NIB fails,
the state of the new NIB needs to be made consistent with the
runtime state of the network, as well as the functional state
of all apps and remote controllers. In an extreme case, an
Orion requirement is to be able to, without traffic loss, recover
from a complete loss/restart of the control plane. To support
this, the Orion architecture provides a Capability Readiness
Protocol. With this protocol, applications have a uniform way
of specifying which data they require to resume operation,
and which data they provide for other applications.

A capability is an abstraction of NIB state, each can be
provided and consumed by multiple apps. Capability-based
coordination keeps the Orion apps from becoming “coupled”,
in which a specific implementation of one app relies on imple-
mentation details or deployment configuration of another app.
Such dependencies are a problem for iteration and release ve-
locity. For example, multiple apps can provide the capability
of “producing flows to program”, and the Flow Manager can
be oblivious to which ones are present in the domain.

Figure 4: Capability Readiness graph for flow programming.

The Capability Readiness protocol requires, after a NIB
failover, that all apps report readiness of their flows before

Flow Manager begins reconciling NIB state to the physical
switches. This prevents unintentional erasure of flow state
from switches, which would lead to traffic loss. As Figure 4
shows, the required and provided data that each application
specifies creates a directed acyclic graph of capabilities de-
pended upon and provided, and thus the complete NIB state
is reconciled consistently after any restart. Apps can have
mutual dependency on different capabilities as long as they
do not form a loop. A healthy Orion domain completes the
full capability graph quickly on reconciliation, a condition we
check in testing and alert on in production. Since this graph
is static, such testing prevents introducing dependency loops.

In the event of a total loss of state, Config Manager re-
trieves the static topology from Chubby [5], an external,
highly-available service for locking and small file storage.
It then provides a CONFIG_SYNC capability to unblock Topol-
ogy Manager and Flow Manager. The two connect to switches
specified in the config and read switch states and programmed
flows. Then, ARP and Routing Engine can be unblocked to
generate intended flows that need to be programmed; they
also provide their own FLOWS_DESIRED capability to Flow
Manager, which proceeds to program the switches.

Apps that retrieve their state from a remote service must
explicitly manage and support the case in which the service
is unavailable or disconnected to prevent prolonged domain
reconciliation delays. Cached data is typically used until the
authoritative source of the inputs can be reached.

5 Orion-based Systems
Among the many design choices when implementing Orion
to control a specific network, three prominent ones include
the mapping of network elements to controllers, the method
of controller to switch communication, and connectivity to ex-
ternal networks running standard routing protocols. We first
review these common choices across two Google network ar-
chitectures, Jupiter and B4, and then describe specific details
for each architecture. Less relevant in a networking context,
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details of the NIB implementation are in the appendix.

Control domains. The choice of elements to control in an
Orion domain involves multiple tradeoffs. Larger domains
yield optimal traffic distributions and loss-free route sequenc-
ing for more intent changes, at the price of increased blast
radius from any failure. In Jupiter, we use a hierarchy of par-
titioned Orion domains; in B4, a flat partitioning of Orion do-
mains communicating with non-Orion global services. Each
came with challenges in production, which we review in §7.

Control channel. As discussed in §3.1, we faced tradeoffs
when designing the Control Plane Network (CPN) connecting
Orion controllers to the data plane. The cost and complexity
of a second network led us to a hybrid design where only the
Top-of-Rack (ToR) switches were controlled in-band.

• Separation of control and data plane: When we embarked
on building B4 and Jupiter, we embraced the SDN philoso-
phy in its purest form: software-defined control of the net-
work based on a logically centralized view of the network
state outside the forwarding devices. To this end, we did
not run any routing protocols on the switches. For the con-
trol plane, we ran a separate physical network connected to
the switches’ management ports. We ran conventional on-
box distributed routing protocols on the CPN. Compared
to the data plane network, the CPN has smaller bandwidth
requirements, though it required N+1 redundancy.

• CPN scale and cost: Typical Clos-based data center net-
works are non-oversubscribed in the aggregation layers
[28] with oversubscription of ToR uplinks based on the
bandwidth requirements of compute and storage in the
rack. A Clos network built with identical switches in each
of its N stages will have the same number of switches
(say, K) in all but two stages. The topmost stage will have
K/2 switches since all ports are connected to the previ-
ous stage. The ToR stage will have SK switches, where
S is the average oversubscription of uplinks compared to
downlinks. Thus, the number of ToR switches as a frac-
tion of the total is 2S/(2S+2N −3). In a Clos network
with N = 5 stages and an average ToR oversubscription, S,
ranging from 2-4, ToR switches account for 36% to 53%
of the total. Thus, not requiring CPN connectivity to them
substantially reduces CPN scale and cost.

• CPN cable management: Managing ToRs inband removes
the burden of deploying individual CPN cables to each
rack spot in the datacenter.

• Software complexity of inband ToRs: Since ToRs are the
leaf switches in a Clos topology, their inband management
does not require on-box routing protocols. We designed
simple in-band management logic in the switch stack to set
the return path to the controller via the ToR uplink from
which the ToR’s CPU last heard from the controller.

• Availability and debuggability considerations: Over the
years, we have hardened both the CPN and the inband-
controlled ToR to improve availability. “Fail static” has

been a key design to reduce vulnerability to CPN failures.
Furthermore, we introduced in-band backup control of
devices connected to the CPN for additional robustness.

External connectivity. We use BGP at the border of data-
center networks to exchange routes with Google’s wide-area
networks: B2 (which also connects to the Internet) and B4.
These routes include machine addresses and also unicast and
anycast IPs for Google services. BGP attributes such as com-
munities, metrics, and AS path propagate state throughout
Google’s networks. In addition to reachability, this can in-
clude drain state, IPv6-readiness, and bandwidth for WCMP.

The use of BGP is a necessity for eventual route propaga-
tion to the Internet, but a design choice internally. The choice
was made to simplify inter-connection with traditional, non-
SDN routers as well as previous SDN software [18]. BGP also
brings operator familiarity when defining polices to specify
path preferences during topological changes.

An Orion app, Raven [34], integrates BGP and IS-IS into
Orion. Raven exchanges messages with peers via Orion’s
Packet-I/O. Raven combines these updates with local routes
from the NIB into a standard BGP RIB (Route Information
Base). Routes selected by traditional Best-Path Selection are
then sent, depending on policy, to peer speakers as BGP mes-
sages, as well as the local NIB in the form of RouteAdvert
updates. To reduce complexity, Raven’s associated BGP
“router” is the abstract supernode provided by RE (§4.2).

Unfortunately, BGP is somewhat mismatched with our
design principles: it uses streaming rather than full intent
updates, its local view precludes a threshold-based fail static
policy and global rebalancing during partial failures, and it
ties control-plane liveness to data-plane liveness. In our pro-
duction experience, we have had both kinds of uncorrelated
failures, which, as in non-SDN networks, become correlated
and cause a significant outage only due to BGP. By contrast,
Orion’s fail static policies explicitly consider control-plane
and data-plane failure as independent. Adding fail static be-
havior to these adjacencies is an area of ongoing development.

5.1 Jupiter
We initially developed Jupiter [28], Google’s datacenter

network, with our first generation SDN-based control system,
Onix [18]. The Orion-based solution presented here is a
second iteration based on lessons from the Onix deployment.

The Jupiter datacenter network consists of three kinds of
building blocks, each internally composed of switches form-
ing a Clos-network topology: (i) aggregation blocks [28]
connected to a set of hosts, (ii) FBRs (Fabric Border Routers,
also called Cluster Border Routers in [28]) connected to the
WAN/Campus network, and (iii) spine blocks that intercon-
nect aggregation blocks and FBRs.

We organize Orion domains for Jupiter hierarchically as
shown in Figure 5. First, we map physical Orion domains to
the Jupiter building blocks. Each physical domain programs
switches within that domain. Aggregation block domains es-
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Figure 5: Jupiter topology overlaid with Orion domains partitioned
by color. Colored links and spine domains are controlled by the
respectively colored IBR-C. Uncolored aggregation block/FBR
domains are controlled by all IBR-Cs. Only control sessions and
data links of the red color are displayed.

tablish connectivity among hosts attached to it. FBR domains
use Raven to maintain BGP sessions with fabric-external
peers. Multiple spine blocks can map to a single Orion do-
main, but each domain must contain fewer than 25% of all
spine blocks to limit the blast radius of domain failure.

Second-level Orion domains host a partitioned and central-
ized routing controller IBR-C (Inter-Block Routing Central).
Operating over Routing Engine’s abstract topology, IBR-C
aggregates network states across physical domains, computes
fabric-wide routes, and programs physical domains to estab-
lish fabric-wide reachability. While these virtual domains
start from the same foundations, they do not contain some
Orion core apps for controlling devices directly.

To avoid a single point of failure, we partitioned (or
sharded) IBR-C into four planes called “colors,” each control-
ling 25% of the spine blocks and hence a quarter of paths be-
tween each pair of spine blocks and aggregation blocks/FBRs.
Therefore, the blast radius of a single controller does not
exceed 25% of the fabric capacity. Sharding centralized
controllers avoids failures where a single configuration or
software upgrade affects the whole fabric. Additional protec-
tion was added to stage configuration changes and upgrades
to avoid simultaneous updates across colors. While sharding
provided higher resiliency to failures, the trade-off was an
increased complexity in merging routing updates across col-
ors in aggregation block and FBR domains, as well as a loss
in routing optimality in case of asymmetric failures across
colors. We have considered even deeper sharding by splitting
aggregation blocks into separate domains, each controlling a
portion of the switches. This option was rejected due to even
higher complexity while marginally improving availability.

Figure 6 illustrates the fabric-level control flow of one
IBR-C color. IBR-C subscribes to NIBs in all aggregation
block/FBR domains and spine domains of the same color
for state updates. After aggregation at Change Manager, the
Solver computes inter-block routes and Operation Sequencer
writes the next intended routing state into NIB tables of corre-
sponding domains. IBR-D (Inter-Block Routing Domain), a

Figure 6: Jupiter fabric-level IBR-C control flow of one color.

domain-level component, merges routes from different IBR-C
colors into RouteAdvert updates. Finally, Routing Engine
and Orion Core program flows as shown in Figure 3.

Convergence. We care about two types of convergence in
Jupiter: data plane convergence and control plane conver-
gence. Data plane convergence ensures there are valid paths
among all source/destination pairs (no blackholing) while
control plane convergence restores (near) optimal paths and
weights in the fabric. Workflows that require changes to the
network use control plane convergence as a signal they can
proceed safely. Convergence time is the duration between a
triggering event and all work complete in data/control plane.

Jupiter’s reaction to link/node failures is threefold. First,
upon detection of link-layer disruption, switches adjacent
to the failed entity perform local port pruning on the output
group. However, this is not possible if no alternative port
exists or peer failure is undetectable (e.g., switch memory
corruption). Second, RE programs the domain to avoid this
entity. This is similar to switch port pruning, but could happen
on non-adjacent switches within the domain. For failures that
do not affect inter-block routing, the chain of reaction ends
here. Otherwise, in a third step, RE notifies IBR-C of the
failure, as shown in Figure 6. When fabric-wide programming
is complete, IBR-C signals the control plane has converged.
This multi-tier reaction is advantageous for operations, as it
minimizes data plane convergence time and thus traffic loss.

Since a single entity failure can lead to successive events
in different domains (e.g., spine switch failure causing aggre-
gation block links to fail), it could trigger multiple IBR-C and
domain programming iterations to reach final convergence.
Many independent events also happen simultaneously and get
processed by Orion together, which can further delay con-
vergence. Hence, we will evaluate Orion’s performance in
example convergence scenarios in §6.

Implementation Challenges. One challenge with the orig-
inal Jupiter implementation [28] was optimally distributing
traffic across multiple paths. Capacity across paths can differ
due to link failures and topology asymmetry (e.g., different
link count between a spine-aggregation block pair). In order
to optimally allocate traffic, Jupiter/Orion employs WCMP
to vary weights for each path and nexthop. Due to the precise
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Figure 7: B4 Control Diagram

weight computation for each forwarding entry, weights need
to be adjusted across the entire fabric to fully balance traffic.
Another challenge was transient loops or blackholes during
route changes. This is due to asynchronous flow program-
ming in traditional routing protocols and in our previous SDN
controller [18]. With Orion-based Jupiter, we implement
end-to-end flow sequencing in both IBR-C and RE.

At the scale of Jupiter, network events arrive at IBR-C at
a high frequency, which sometimes surpasses its processing
speed. To avoid queue buildup, IBR-C prioritizes processing
certain loss-inducing events (e.g., link down) over noncritical
events (e.g., drain). Upon an influx of events, IBR-C only pre-
empts its pipeline for loss-inducing events. It reorders/queues
other events for batch processing upon the completion of
higher priority processing. This is a trade-off to minimize
traffic loss while avoiding starvation of lower priority events.
§6 quantifies the benefits of this approach in more detail.

5.2 B4
Onix [18], the first-generation SDN controller for B4, ran

control applications using cooperative multithreading. Onix
had a tightly-coupled architecture, in which control apps share
fate and a common threading pool. With Onix’s architecture,
it was increasingly challenging to meet B4’s availability and
scale requirements; both have grown by 100x over a five year
period [13]. Orion solved B4’s availability and scale problems
via a distributed architecture in which B4’s control logic is
decoupled into micro-services with separate processes.

Figure 7 shows an overview of the B4 control architecture.
Each Orion domain manages a B4 supernode, which is a 2-
stage folded-Clos network where the lower stage switches are
external facing (see details in [13]). In B4, Routing Engine
sends ingress traffic to all viable switches in the upper stage
using a link aggregation group (LAG), and uses two-layer
WCMP to load-balance traffic toward the nexthop supernode.

The TE App is a traffic engineering agent for B4. It es-
tablishes a session with global TE server instances to syn-
chronize the tunnel forwarding state. It learns TE tunneling
ops from the primary TE server, and programs the ops via
the RouteAdvert table. In addition, TE App also supports
Fast ReRoute (FRR), which restores connectivity for broken
tunnels by temporarily re-steering the traffic to the backup

tunnel set or BGP/ISIS routes.
The Path Exporter subscribes to multiple NIB tables and

exports the observed dataplane state to the global services. It
reports the dataplane state at the supernode level, including
the abstract topology (e.g., supernode-supernode link capac-
ities), the abstract forwarding table (TE tunnels and BGP
routes), and the abstract port statistics.

The Central TE Server [13,15] is a global traffic engineer-
ing service which optimizes B4 paths using the TE protocol
offered by the TE App in each domain. The Bandwidth En-
forcer [19] is Google’s global bandwidth allocation service
which provides bandwidth isolation between competing ser-
vices via host rate limiting. For scalability, both the Central
TE Server and Bandwidth Enforcer use the abstract network
state provided by the Path Exporter.

6 Evaluation
We present microbenchmarks of the Orion NIB, followed
by Jupiter evaluation using production monitoring traces col-
lected since January 2018. Orion also improved B4 perfor-
mance, as published previously [13].

NIB performance. To characterize NIB performance, we
show results of a microbenchmark measuring the NIB’s
read/write throughput while varying the number of updates
per batch. A batch is a set of write operations composed
by an app that updates rows of different NIB tables atom-
ically. In Figure 8, we observe throughput increase as the
batch size becomes larger. At 50K updates per batch, the
NIB achieves 1.16 million updates/sec in read throughput and
809K updates/sec in write throughput.

Write throughput at 500 updates per batch sees a de-
cline. This reveals an implementation choice where the NIB
switches from single-threaded write to multi-threaded write
if the batch size is greater than 500. When the batch size is
not large enough, up-front partitioning to enable parallelism
is more expensive than the performance improvement. This
fixed threshold achieves peak performance on sampled pro-
duction test data and performs well in production overall.
It could be removed in favor of a more dynamic adaption
strategy to smooth the throughput curve.

Data and control plane convergence. One key Jupiter per-
formance characteristic is convergence time (§5.1). We mea-
sure convergence times in several fabrics, ranging from 1/16-
size Jupiter to full-size Jupiter (full-size means 64 aggregation
blocks [28]). Figure 9 captures data and control plane con-
vergence times of three types of common daily events in our
fleet. The measurements are observed by Orion; switch-local
port pruning is an independent decision that completes within
a few milliseconds without Orion involvement.

In node/link down scenarios, the data plane converges
within a fraction of a second. Both data and control plane
convergence times become longer as the fabric scales up by
16x. This is mainly because a larger number of aggregation
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Figure 8: NIB throughput. Figure 9: Jupiter data/control plane convergence time in response to various network events.

Figure 10: Time series of full fabric control plane convergence
on three large Jupiter fabrics. Y-axis is normalized to the base-
line convergence time in January 2018. Orion releases with major
performance improvements are highlighted by markers.

Figure 11: Orion CPU/RAM usage in Jupiter domains.

blocks and spine blocks require more affected paths to be
re-computed and re-programmed. Data plane convergence is
35-43x faster than control plane convergence, which effec-
tively keeps traffic loss at a minimum.

Jupiter’s reaction to link drains is slightly different from
failure handling. Drains are lossless, and do not include an
initial sub-optimal data plane reaction to divert traffic. Instead,
Orion only shifts traffic after computing a new optimal routing
state. Therefore, data and control plane convergence are
considered equal. Overall, control plane convergence time
for link drain is on par with node/link down scenarios.

We have continuously evolved Orion to improve Jupiter
scalability and workflow velocity. Key to this were enhance-
ments in IBR-C such as prioritized handling of select updates,
batch processing/reordering, and a conditionally preemptive
control pipeline. Figure 10 shows the trend of three large
fabrics from January 2018 to April 2020; the control plane
convergence time in January 2018 was before these improve-
ments. Deployed over three major releases, each contributing
an average 2-4x reduction, the new processing pipeline (§5.1)
delivered a 10-40x reduction in convergence time.

Controller footprint: CPU and memory. Orion controller
jobs run on dedicated network control servers connected to the
CPN. This pool is comprised of regular server-class platforms.
We measure CPU and memory usage of each controller job
(including all three replicas) and group them by domain. Fig-
ure 11 shows that even in a full-size Jupiter, Orion domains
use no more than 23 CPU cores and 24 GiB of memory.

7 Production Experience
We briefly review some challenging experiences with Orion
when adhering to our production principles of limited blast-
radius and fail-static safety, and some more positive experi-
ences from following our software design principles.

7.1 Reliability and robustness
Failure to enforce blast radius containment. As de-
scribed in §5.1, the inter-block routing domain is global but
sharded into four colors to limit the blast radius to 25%. A
buggy IBR-C configuration upgrade caused a domain to re-
voke all forwarding rules from the switches in that domain
resulting in 25% capacity loss. Since high-priority traffic
demand was below 25% of the fabric’s total capacity, only
after all four domains’ configurations were pushed did the
workflow flag (complete) high-priority packet loss in the fab-
ric. To prevent such a “slow wreck” and enforce blast radius
containment, subsequent progressive updates proceeded only
after confirming the previous domain’s rollout was successful,
and not simply the absence of high-priority packet loss.

Failure to align blast radius domains. A significant Orion
outage occurred in 2019 due to misalignment of job-control
and network-control failure domains. Like many services at
Google, these Orion jobs were running in Borg cells [31]. Al-
though the Orion jobs were themselves topologically-scoped
to reduce blast radius (§3.1), their assignment to Borg cells
was not. As described in the incident report [9], when a fa-
cility maintenance event triggered a series of misconfigured
behaviors that disabled Orion in those Borg cells, the result-
ing failure was significantly larger than Google’s networks
had been previously designed to withstand. This outage high-
lighted the need for all management activities (job control,
configuration update, OS maintenance, etc.) to be scoped and
rate-limited in a coordinated manner to fully realize the prin-
ciple of blast-radius reduction. In addition, it highlighted a
gap in our fail-static implementation with regards to BGP.
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Failure to differentiate between missing and empty state.
In 2018, a significant B4 outage illustrated a challenge when
integrating Orion and non-Orion control layers. A gradual
increase in routes crossed an outdated validation threshold
on the maximum number of routes a neighborhood should
receive from attached clusters. Consequently, the TE app
suppressed the data to the B4-Gateway, which correctly failed
static using cached data. However, subsequent maintenance
restarted B4-Gateway instances while in this state, clearing
the cached data. Lacking any differentiation between empty
data and missing data, subsequent actions by the TE Server
and Bandwidth Enforcer resulted in severe congestion for
low-priority traffic. Within Orion, the capability readiness
protocol prevents reading missing or invalid derived state.

Orion’s post-outage improvements and continuous feature
evolution such as loss-free flow sequencing and in-band CPN
backup, brought substantial improvements in data plane avail-
ability to Jupiter (50x less unavailable time) and B4 (100x
less unavailable time [13]).

7.2 Deployability and software design
With Orion, we moved to a platform deeply integrated with

Google’s internal infrastructure. This enabled us to leverage
existing integration testing, debugging, and release proce-
dures to increase velocity. We also moved from a periodic
release cycle to a continuous release: we start software val-
idation of the next version as soon as the current version is
ready. This reduces the amount of “queued up” bugs, which
improves overall velocity.

Release cadence. SDN shifts the burden of validation from
“distributed protocols” to “distributed algorithms”, which is
smaller. Software rollouts are also faster: the number of
Network Control Servers is orders of magnitude smaller than
the number of network devices. The embedded stack on the
devices is also simpler and more stable over time.

Orion’s micro-service-based architecture leads to clear
component API boundaries and effective per-component test-
ing. Onix, on the other hand, was more monolithic, and our
process required more full-system, end-to-end testing to find
all newly introduced bugs which was less efficient.

In steady state, after initial development and production-
ization, it took about five months to validate a new major
Onix release. The process was manual, leveraging a quality
assurance team and iterative cherry-picking of fixes for dis-
covered issues. With Orion, we shrank validation latency to
an average of 14.7 days after the initial stabilization phase,
with a target of eventually qualifying a release every week.

Release granularity. As a distributed, micro-service-based
architecture, each Orion application could release at its own
cadence. In our move from the monolithic Onix to Orion, we
have not yet leveraged this flexibility gain. Since Orion is
widely deployed and has high availability demands, we strive
to test all versions that run at the same time in production,

for instance as some applications are upgraded but other up-
grades are still pending. An increase in release granularity
would increase both the skew duration and total number of
combinations that need to be tested. Therefore, we releas all
Orion applications that make up a particular product (e.g., B4
or Jupiter) together.

Improved debugging. Serializing all intent and state
changes through the NIB facilitates debugging: Engineers
investigating an issue can rely on the fact that the order of
changes observed by all applications in the distributed system
is the same and therefore establish causality more easily.

Storing the stream of NIB updates for every Orion deploy-
ment also allowed us to build replay tooling that automatically
reproduces bugs in lab environments. This was first used in
the aftermath of an outage: only the precise ordering of pro-
gramming operations that occurred in production, replayed to
a lab switch, reliably reproduced a memory corruption bug in
Google’s switch firmware. This enabled delivering as well as,
more importantly, verifying the fix for this issue.

8 Conclusion and future work
This paper presents Orion, the SDN control plane for Google’s
Jupiter datacenter and B4 Wide Area Networks. Orion decou-
ples control from individual hardware elements, enabling
a transition from pair-wise coordination through slowly-
evolving protocols to a high-performance distributed system
with a logically centralized view of global fabric state. We
highlight Orion’s benefits in availability, feature velocity, and
scale while addressing challenges with SDN including align-
ing failure domains, inter-operating with existing networks,
and decoupled failures in the control versus data planes.

While Orion has been battle-tested in production for over 4
years, we still have open questions to consider as future work.
These include (i) evaluating the split between on-box and
off-box control, (ii) standardizing the Control to Data Plane
Interface with P4Runtime API [10], (iii) exploring making
the NIB durable, (iv) investigating fail-static features in BGP,
and (v) experimenting with finer-grained application release.
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9 Appendix
An example table schema definition in the NIB.

message Link {
enum Status {
STATUS_UNKNOWN = 0;
DOWN = 1;
UP = 2;

}
optional NIBHeader nib_header = 1;
optional string name = 2;
optional Status status = 3;
// references Node.nib_header.id
optional string src_node_id = 4;
// references Port.nib_header.id
optional string src_port_id = 5;
// references Node.nib_header.id
optional string dst_node_id = 6;
// references Port.nib_header.id
optional string dst_port_id = 7;

}

9.1 Orion Core Implementation
To productionize the Orion systems described in this paper,

we address some common engineering challenges in the Orion
Core. In particular, Orion’s architectural choices require great
care with both the memory footprint and performance of all
data flowing through the NIB. Here, we illustrate multiple
implementation choices we made to scale this architecture.

State replication and synchronization. Orion enables a
large group of developers in Google to author new SDN ap-
plications. To simplify interacting with the intent/state stored
in the NIB, we synchronize all relevant data into an app-local
cache that trails the NIB’s authoritative state. The state visible
to each application is always a prefix of the sequential atomic
writes applied to the NIB. Each application’s ability to see
a prefix and therefore (potentially) not the most recent NIB
state is acceptable given that the NIB itself is only a trailing
reflection of the global system state. Applications do not
subscribe to the NIB data they wrote as they were previously
responsible for the write.

The app-local cache allows developers to access data as
they would access an in-memory hash table. Additionally,
since data is local, developers write fast applications by de-
fault as they do not have to reason about network round-trips
to load data from the NIB. This replication approach re-
quires transmitting cached data efficiently to reduce reaction
time to data-plane events. While sequential communication
through the NIB has many upsides, e.g., reduced complexity
and traces for debugging, it should not dominate reaction time
to data-plane events.

Additionally, we require a compact memory representation
of all state to support a large number of micro-services, with
overlapping subsets of the NIB state in their local caches. Pro-
tocol buffers are not well-suited for this requirement because
they hold copies of the same nested and repeated fields in
more than one entity (e.g., the same output port ID string in
multiple forwarding rules). Orion works around this space
inefficiency by exploiting the read-only nature of cached data.
As all entity mutations are sent directly to the NIB for full se-
rializability, it is possible to de-duplicate select sub-messages
and data types in the app-local cache to conserve memory.
Given our schema, this reduces memory overhead by more
than 5x while retaining the same read-only API offered by
regular protocol buffers.

Hash table / key size. Both the dictionary implementation
as well as the key length used for the data in the NIB influence
memory utilization. In early testing, about 50% of memory
was consumed by key-strings and dictionary data structures.

Many data entries in the NIB use descriptive identifiers.
For instance, a physical port on a switch, represented in the
Port table of the NIB, combines the FQDN (Fully Qualified
Domain Name) of its parent switch and its own port name
identifier as the entity key in the NIB. As the payload per
port is only a handful of simple data types, the key size may
be larger than the payload. To reduce the memory impact of
many entities with relatively small payloads, the NIB initially
stored all data in a trie modelled after [21]. This was advan-
tageous both because of prefix compression and because it
enables inexpensive creation of consistent snapshots.

While we retain the M-Trie data structure for its copy-on-
write capability, we have changed to storing a SHA-1 hash of
the identifier only. This reduces the NIB memory footprint at
the price of a theoretical, but not practical [29], collision risk.
If a collision occurred, it would require human intervention.

Large updates. Large updates must be reflected in all SDN
apps that consume changed data as their input. In some sit-
uations, for instance extensive rerouting, or, when an SDN
app restarts and needs to be brought in sync with the NIB, the
size of changed intent/state can be multiple gigabytes.

To reduce wall-clock time for such synchronization and
peak memory spikes, Orion handles large atomic writes by
splitting them into many small ones with special annotations
delineating that the small writes are part of one atomic batch.
This allows pipeline processing in the NIB, data transfer and
cache application on the receiver. As long as the partial small
updates are guaranteed to be exposed only after the complete
set is available, this optimization is transparent.

In case of synchronizing client application and NIB state
after a disconnect, the update size is kept to a minimum to
reduce transmission delay. Each application supplies the
NIB with a vector of ID-hashes of entities and entity hashes.
Matching ID-hashes and entity hashes between the NIB and
the application cache tells the NIB to skip updating such
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entities. All other entities with mismatched or missing hashes
will be replaced/deleted/inserted accordingly.

Software upgrade strategy. Since the controller is dis-
tributed across multiple apps running in separate binaries,
software upgrades lead to version skew across applications.
While this version skew is commonly short-lived, it can per-
sist in rare cases as manual intervention is required to resolve
the skew when an upgrade is stuck in a partially succeeded
state. Given this, a key functionality that Orion provides to
developers is enabling features atomically across applications
when all are ready. Likewise, Orion can deactivate features
atomically in case a participating app no longer supports it.

As an example, take two applications that interact through
a NIB table A. Consider that the interaction pattern is changed
to go through table B in a later version. Both applications
have to ensure that the appropriate table is used depending on
the readiness of the peer application. To reduce bug surface,
Orion allows describing which applications need to support
a certain feature for it to be enabled and abstracts this nego-
tiation from the application developers. Developers simply
protect the new interaction through table B inside a condition
check, the condition is automatically marked true by Orion
based on the feature readiness of both sides. If one of the two
applications interacts through the old table, the feature stays
disabled. Once both applications support the feature, Orion
will enable it atomically.

9.2 Jupiter Fabric Drain
Orion provides support for network management opera-

tions. In order to take a network element out of service for
repair or upgrade, the control systems needs to first drain
it, i.e. divert traffic from it. Orion provides explicit han-
dling and tracking of drain state. Drain Conductor (DC) is an
Orion application in a separate non-sharded virtual control
domain, providing an external API for network management
systems to drain, undrain and check drain status for each el-
ement. Once DC receives a drain request for a networking
element, it persists the new drain intent in Chubby [5] and
dispatches the drain intent to the NIB in a physical domain.
Drain Agent (DA), an application running in each physical
domain, subscribes to drain intent changes published by DC,
and dispatches the drain intent across routing applications.
A routing app processes the drain intent by de-preferencing
a networking element and updates the drain status. Finally,
DC subscribes to drain statuses across physical domains and
provides drain acknowledgements via its API.
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Abstract
Network analysis and verification tools are often a godsend

for network operators as they free them from the fear of in-
troducing outages or security breaches. As with any complex
software though, these tools can (and often do) have bugs.
For the operators, these bugs are not necessarily problematic
except if they affect the precision of the model as it applies
to their specific network. In that case, the tool output might
be wrong: it might fail to detect actual configuration errors
and/or report non-existing ones.

In this paper, we present Metha, a framework that sys-
tematically tests network analysis and verification tools for
bugs in their network models. Metha automatically generates
syntactically- and semantically-valid configurations; com-
pares the tool’s output to that of the actual router software;
and detects any discrepancy as a bug in the tool’s model. The
challenge in testing network analyzers this way is that a bug
may occur very rarely and only when a specific set of config-
uration statements is present. We address this challenge by
leveraging grammar-based fuzzing together with combinato-
rial testing to ensure thorough coverage of the search space
and by identifying the minimal set of statements triggering
the bug through delta debugging.

We implemented Metha and used it to test three well-known
tools. In all of them, we found multiple (new) bugs in their
models, most of which were confirmed by the developers.

1 Introduction

It’s Friday night and you are about to push an important
(network) configuration update in production. Usually, you
would feel terribly nervous doing so as there is always the
possibility that you may have missed something. You are only
too aware that misconfigurations happen frequently and can
lead to major network outages [22,24,27]. Tonight though you
feel confident when pressing “deploy” as you have confirmed
the correctness of your configuration update using a state-of-
the-art configuration verifier. A few minutes later, your phone
rings: none of your customers can reach the Internet anymore.

This fictitious situation illustrates an intrinsic problem with
validation technologies: their results can only be completely
trusted if their analysis is sound and complete. As with any
complex software though, these tools can (and often do) have
bugs. To be fair, this is not surprising: building an accurate and
faithful network analysis tool is extremely difficult. Among
others, one not only has to precisely capture all the different
protocols’ behaviors, but also all of the quirks of their spe-
cific implementations. Unfortunately, every vendor, every OS,
every device can exhibit slightly different behaviors under
certain conditions. For all it takes, these behaviors might be
the results of bugs themselves. And yet, failing to accurately
capture these behaviors—as we show—can lead to incorrect
and possibly misleading analysis results.

A fundamental and practical research question is therefore:
How can developers make sure that their network analysis
and verification tools are correct?
Metha We introduce Metha, a system that thoroughly tests
network analysis and verification tools to find subtle bugs
in their network models using black-box differential testing.
Metha automatically finds model discrepancies by generating
input configurations and comparing the output of the tool un-
der test with the output produced by the actual router software.
For every discovered discrepancy, Metha provides a minimal
configuration that helps developers pinpoint the bug. Later
on, these configurations can be used to build up an adequate
test suite for current and future network tools.
Challenges Precisely identifying bugs in network analyzers’
models is challenging for at least three reasons. First, the
search space of possible configurations is gigantic: there are
hundreds of configuration statements, each of which can take
many possible parameters. And yet, as our analysis reveals,
most of the bugs only manifest themselves when specific
configuration statements/values are present. Second, system-
atically exploring the search space is highly non-trivial (in-
dependently of its size) as one not only needs to generate
syntactically-valid configurations, but also semantically-valid
ones that involve all features and their interactions. Failing
to do so could lead to miss bugs, hence lowering coverage.
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Finally, upon finding a configuration triggering a discrepancy,
figuring out the exact subset of statements requires to solve
another tricky combinatorial search.
Insights Metha addresses the above challenges by first re-
ducing the search space through restricting the parameters to
their boundary values. Metha ensures thorough coverage of
the search space by phrasing the search as a combinatorial
testing problem and targeting the search towards single and
pairwise interactions of configuration statements. To ensure
syntactically- and semantically-valid configurations Metha
relies on a hierarchical grammar-based approach. Finally,
Metha employs delta debugging to identify the minimal bug-
inducing set of configuration statements to help the developer
better understand and reproduce the bug.
Bugs found We demonstrate Metha’s effectiveness in practice
by finding 62 real-world bugs across three popular network
analysis and verification tools – Batfish [17], NV [13], and
C-BGP [28] – 59 of which have been confirmed by the tools’
developers. The majority of the discovered bugs are subtle,
silent bugs that undermine the soundness of the tools’ results.
That is, they could lead operators to incorrect conclusions that
their networks behave correctly, while, in fact, they do not.

Our experiments also demonstrate that Metha’s key compo-
nents are essential for its effectiveness. In particular, a random
baseline only found 3 bugs, while Metha found 20 bugs with
the same number of tests. Last but not least, through our inter-
actions with the tools’ developers, we confirm that Metha’s
minimal configuration examples are indeed useful: some of
the developers are already using them to analyze and fix the
bugs Metha has discovered.
Contributions In summary, our main contributions are:

• A testing system capable of finding bugs in the network
models of state-of-the-art network analyzers (§3).

• A formulation of the search problem in terms of combi-
natorial testing (§5).

• A precise localization procedure relying on delta de-
bugging to isolate bugs and pinpoint the configuration
statements causing them (§6).

• An end-to-end implementation of Metha1 supporting
both Cisco IOS and Juniper configurations (§7).

• An evaluation showing that Metha finds real (and un-
known) bugs in all the tested tools (§8).

Limitations Metha treats the network verification tool it is
testing as a black box. Hence, it cannot localize the bug within
the tool’s actual code. This task is left to the developer. How-
ever, by identifying the configuration statements responsible
for the bug and by creating a minimal configuration that show-
cases it, the developer has a good starting point for her work.
Similarly, Metha cannot detect whether two observed bugs
that are triggered by different configuration statements are
caused by the same bug in the underlying network model.

1Available at https://github.com/nsg-ethz/Metha

Backbone

Z 1
Z 10

Z 51

config of Z 1’s border router
...
ip access-list ISOLATE_Z51
deny ip any 200.51.0.0/24
permit ip any any

...

config of Z 10’s border router
...
router bgp 10
aggregate-address 128.0.0.0/1

...

Figure 1: Zone 51 has to be isolated from all the other zones.
This is achieved through access-lists at the border routers with
the exception of zone 10 where it was forgotten.

2 Motivation

We now illustrate how subtle bugs in the network model of
network analyzers can lead operators to deploy erroneous con-
figuration changes. We start with two case studies on common
configuration features known for easily causing forwarding
anomalies: route aggregation and redistribution. In these sit-
uations, validating the change with an analyzer is of utmost
importance, provided the analysis is correct. We end with a
collection of Cisco IOS configuration statements whose se-
mantics were not correctly captured by Batfish [17]. The bugs
in this Section were discovered by Metha.

2.1 Example 1: Excess Null Route
Consider the network in Fig. 1. It consists of a backbone with
multiple zones attached to it. The backbone and the zones are
interconnected using BGP. Each zone receives a default-route
from the backbone. Zone 51 hosts critical infrastructure in the
prefix 200.51.0.0/24, which should not be accessible from
any other zone. To enforce this, the routers connecting the
zones to the backbone have an access-list (ACL) in place to
filter that traffic. However, in zone 10, this ACL was forgotten
and, instead, there happens to be a left-over statement from
a previous configuration: “aggregate-address 128.0.0.0

128.0.0.0”. This statement directs the router to advertise the
specified aggregate route if any more-specific BGP routes in
that range exist in the routing table.
Property violation Due to the lack of an ACL on the border
router, the requirement that mandates to keep zone 51 isolated
is violated: traffic from zone 10 can reach zone 51.
Analyzer mishap When used on the network above, Bat-
fish, a recent network validation tool, will falsely assert that
zone 51 is isolated. The problem is due to the semantics of
the left-over aggregate-address statement. Batfish wrongly
activates the aggregate because of a non-BGP route in the
routing table and installs the null route. Because of this
null route, Batfish wrongly assumes that all traffic in zone 10
falling within the aggregate range will be dropped. In practice,
the routers only install a null route if a BGP route within the
aggregate is present, which is not the case here.
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Feature Description Possible Consequence

max-metric router-lsa The model sets maximum metric not only for point-to-
point links, but also for stub links. This should only be
done when the keyword include-stub is used.

A router might appear to be free of
traffic and safe to reboot, even though
it is not.

default-information originate The OSPF routing process should only generate a
default-route if the route table has a default-route from
another protocol. The model, however, also announces
a default-route if there is one in the routing table of
different OSPF type, i.e., E1 type.

Additional default-routes might ap-
pear in the routing tables.

distance XX The model does not consider any changes to the ad-
ministrative distance.

The forwarding state could be com-
pletely wrong.

area X range A.B.C.D/Y When summarizing routes between OSPF areas, the
model does not insert a null route for the summary to
prevent routing loops.

A routing loop could be falsely de-
tected.

set community no-export When redistributing a static route into BGP and setting
the no-export community, the model still advertises
the route to its eBGP neighbors.

Reachability properties could be
falsely asserted.

neighbor A.B.C.D maximum-prefix X Even when a BGP neighbor advertises more prefixes
than the specified threshold, the model does not drop
the peering to the neighbor.

Reachability properties could be
falsely asserted.

Table 1: A selection of Cisco IOS configuration features that are not correctly modelled by Batfish [17] as discovered by Metha.

R1

R2

config of Z10’s border router
...
ip route 200.0.0.0/20 Null
...
router ospf 1
redistribute static

...

Figure 2: All routers should be able to reach the Internet. The
static route at R2 creates a blackhole and violates that.

2.2 Example 2: Incomplete Redistribution

Consider the small company network depicted in Fig. 2. It
consists of a single OSPF area. R1 acts as Internet gateway
and announces a default-route internally. A static route on
R2 drops all the traffic for 200.0.0.0/20 by directing it to
the null interface. This is intended. What is not intended,
however, is the redistribute static command at R2.
Property violation The following reachability property must
always hold: all routers, with the exception of R2, are able to
reach the entire Internet. However, this property, is violated
since R2 redistributes the static route in the network and, in
turn, creates a blackhole for 200.0.0.0/20.
Analyzer mishap When run on this network, Batfish will
falsely attest that all routers, with the exception of R2 can
reach the entire Internet. The problem is the redistribution
command. By default, Cisco routers only redistribute classful
networks [7] and only by specifying the subnets keyword,
they also redistribute any subnets of them. Less-specific net-
works however are redistributed regardless of the subnets

keyword (e.g., 200.0.0.0/20 is less-specific than the corre-
sponding class C network 200.0.0.0/24). Batfish’s network
model does not incorporate that as it only redistributes classful
networks and not less-specific networks.

2.3 Selection of Bugs
In addition to the two bugs illustrated in the previous exam-
ples, we found several other configuration statements that
trigger bugs. We present a selection of them in Table 1 along-
side a short description of the observed behavior and possi-
ble consequences. All of the presented bugs concern Cisco
IOS configuration statements. In our tests, we also used Ju-
niper configurations and found that, in many cases, the same
bugs occur. Hence, some of these bugs are not due to vendor-
specific behaviors, but due to general inaccuracies of the net-
work model.

3 Overview

In this section, we first present the key insights enabling Metha
to efficiently uncover bugs in network analyzers. Then, we
provide a high-level overview of Metha.

3.1 Key Insights
The main challenge in testing network analyzers is that bugs
may occur rarely and only for very specific configurations,
which we address with a combination of five insights:
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redistribute static

Minimal Configuration

Figure 3: Metha generates a test suite based on the test topology and supplied configuration features. The testbed runs one
test after another and compares the computed routing tables of the tool under test to those of an oracle. It then analyzes every
discrepancy to localize all the bugs and creates a report for each one of them.

Producing valid inputs with grammar-based generation
When testing network analyzers, it is of utmost importance
to use syntactically- and semantically-valid configurations,
meaning the configurations need to be parseable and con-
straints have to be met such that actual computation takes
place in the network. Our key insight is to use a hierarchical
grammar-based approach. Approaching it hierarchically al-
lows to resolve the intra- and inter-device constraints. This
provides the structure that is then completed using grammar-
based configuration generation ensuring syntactical validity.
Reducing the search space through boundary values
The search space of all possible configurations is prohibitively
large. Even a single parameter, such as an OSPF cost, for
example, already has 216 possible values to test. By focusing
the testing on the boundary values (the minimum, maximum,
and a normal value), we reduce the search space significantly.
Exploring the search space with combinatorial testing
Network devices support a wide variety of configuration fea-
tures that all need to be tested not just by themselves, but
also their interactions. Hence, we use combinatorial testing
to design a test suite that systematically covers all pairwise
interactions of configuration features.
Comparing the tested tool’s output to ground truth
Detecting crash bugs is straightforward as the tool will just
fail or report an error. Silent bugs, on the other hand, can only
be detected by comparing the output to a ground truth, which
is hard to come by. We address this by leveraging a testbed
running real router images as an oracle.
Isolating bugs with delta debugging
Lastly, once one identifies a network configuration that trig-
gers a bug, one needs to identify the configuration statements
causing it to provide any useful insights to the tool’s devel-
oper. Therefore, we use iterative delta debugging to obtain a
minimal configuration example reproducing the bug.

3.2 Metha

Metha operates in two phases as shown in Fig. 3: First, it
aims to find network configurations exhibiting discrepancies
between the tool under test and the oracle. To that end, the
test coordination determines all the tests to run in the testbed.
Second, it identifies the configuration statements responsible
for the observed discrepancies through fault localization.
Input and output Metha takes two inputs: (i) a physical
topology, i.e., an undirected graph; and (ii) a set of configu-
ration features to be tested, such as, route-maps, and route-
summarization. For every discovered bug, Metha creates a
report, which consists of the identified discrepancy between
the routing tables of the tool and the oracle, the configuration
statements causing it and a configuration set to reproduce it.
Phase I: Test coordination (§4, §5) The configuration fea-
tures and the topology provided as input define the search
space of Metha’s testing efforts which consists of all possible
configurations that can be built using these features.

This search space of network configurations is prohibitively
large. Therefore, Metha first reduces the values of all param-
eters to their boundary values, which means it only uses the
two extreme values (i.e., the minimum and the maximum) and
one “normal” value. Even with this reduction, it is difficult to
systematically cover the search space. Hence, Metha creates
a test suite relying on combinatorial testing, which allows
it to cover all pairs of feature and parameter combinations
requiring a minimal number of tests. Each test in the test suite
is a set of configuration statements that should be active.
Phase I: Testbed (§7) For every single test, Metha generates
the device configurations based on the statements as defined
by the test suite. Then, it runs these configurations in the
tool and the oracle. Once both converged, Metha analyzes the
routing tables of the two tools and reports any discrepancies.
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BGPProcess → router bgp Integer16 [Options]
Options → Option | Options Option
Option → Redistribute | Neighbor | Network | · · ·
Redistribute → redistribute Source
Source → direct | static | · · ·
Neighbor → neighbor Address Property
Property → RemoteAS | RouteMap | · · ·
RemoteAS → remote-as Integer16
RouteMap → route-map String Direction
Direction → in | out

Figure 4: Partial BNF grammar for device configurations.

Phase II: Fault localization (§6) A discovered discrepancy
can be caused by multiple bugs in the network analyzer. There-
fore, Metha applies delta debugging to identify every single
bug and the configuration statements causing it. It does so
by iteratively testing subsets of the active configuration state-
ments until the entire discrepancy is resolved.

4 Search Space

In this section, we define the search space of all possible con-
figurations. We also show how we reduce the search space by
restricting the parameter values used in configuration state-
ments to boundary values.

4.1 Network Configurations
The search space is given by all possible configurations that
one can deploy at the network’s routers.
Configurations A device configuration defines the enabled
features along with their parameter values. Formally, the set of
all possible configurations is defined by a context-free gram-
mar whose terminals consist of feature names and parameter
values. To illustrate this, in Fig. 4 we show a subset of the
production rules in Backus-Naur form (BNF). An example
configuration derived from this grammar is:

1 router bgp 100

2 redistribute static

3 neighbor 1.1.1.2 remote-as 50

4 neighbor 1.1.1.2 route-map map10 out

This configuration defines the AS identifier, neigh-
bors, neighbor properties, and route redistribution as-
sociated with the BGP routing process 100. Here,
router bgp, redistribute, neighbor A.B.C.D remote-as,
and neighbor A.B.C.D route-map are configuration state-
ments, while the values to the right define their parameter
values. We distinguish three types of parameter values:

Keywords are used in configuration statements parameter-
ized by a value drawn from a fixed set of options.
For example, the configuration statement neighbor

A.B.C.D route-map is parameterized by a direction,
which is set to either in or out. For some state-
ments, one can also omit the parameter value alto-
gether, which we model with the designated value ∅.
For example, redistribute connected is parametrized
by a value drawn from the set {∅,subnets}, and
so both redistribute connected and redistribute

connected subnets are valid statements.
Integers are used to define 16- and 32-bit numbers. For ex-

ample, the configuration statement router bgp is param-
eterized by a 16-bit integer defining the AS number.

Strings are used in configuration statements parameterized
by custom names. For example, neighbor A.B.C.D

route-map is parameterized by the route-map’s name.

Semantic constraints Besides conforming to the syntax in
Fig. 4, configurations must also comply with semantic con-
straints. For example, consider the following configurations:

1 interface FastEthernet0/0

2 ip address 1.1.1.1 255.255.255.0

3 !

4 router bgp 100

5 neighbor 1.1.1.2 remote-as 50

6 neighbor 1.1.1.2 route-map map10 out

7 !

8 route-map map10 permit 10

9 match ip address prefixList

1 interface FastEthernet0/0

2 ip address 1.1.1.2 255.255.255.0

3 !

4 router bgp 50

5 neighbor 1.1.1.1 remote-as 100

The top configuration (C1) defines a BGP process with AS
number 100 (Line 4), and declares that announcements sent
to its BGP neighbor with IP 1.1.1.2 (Line 5) are processed
using route-map map10 (Line 6). The bottom configuration
(C2) defines a BGP process with AS number 50 (Line 4), and
declares 1.1.1.1 in AS 100 as a neighbor (Line 5). These two
configurations illustrate two kinds of semantic constraints:

Intra-device constraints, which stipulate conditions that
must hold on any (individual) configuration. For exam-
ple, the route-map map10 used at Line 6 must be defined
within the configuration C1. This constraint holds as
map10 is defined at Line 8.

Inter-device constraints, which stipulate conditions across
multiple configurations. For example, the AS number
assigned to neighbor 1.1.1.2 in C1 at Line 5 must match
the AS number declared in C2 at Line 4. This constraint
holds as at both lines the AS number is 50.

Finally, we note that we specify the semantic constraints
separately from the syntactic production rules as some are not
context-free and thus cannot be encoded in the grammar.
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Search space The search space used by Metha is defined by
the set of configurations that one can deploy at the network’s
routers. As the set of configurations derived from the grammar
is, in general, infinite, we restrict all recursive rules so that
its language consists of finitely many configurations. For
instance, for the grammar given in Fig. 4, we fix the set of
BGP options (such as route redistribution) that can appear
when defining a BGP routing process. Finally, the search
space of Metha is defined as CR, where C is the set of all
configurations and R is the set of routers. Note that each
element of CR defines a network-wide configuration, assigning
a configuration from C to each router in R.

4.2 Boundary Values

The search space is extremely large due to the enormous
number of configurations and the exponentially many com-
binations in which they can be deployed at the routers. To
cope with the large set of configurations, we apply a boundary
values reduction by restricting the parameters to a small set
of representative values. The intuition behind this reduction
is that most parameter values lead to the same behavior such
that testing them individually provides no additional insights.

The reduction to boundary values ensures that various be-
haviors of a feature are exercised. For example, the Cisco
BGP feature neighbor X.X.X.X maximum-prefix n termi-
nates the session when the neighbor announces more than n

prefixes. When randomly choosing n, the feature will most
likely not come into action. However, with the boundary val-
ues, both the minimum and maximum value are tested, ensur-
ing that the feature is at least once active and once not.

For integer parameters, the values are restricted to: the max-
imum value, the minimum value, and a non-boundary value.
For example, for 16-bit integers, which contain all integers
in the range [0,65535], our boundary value reduction selects
three values: 0, 65535, and a value x such that 0 < x < 65535.
Similarly, we reduce the values assigned to string parameters
by predefining a fixed set of strings.

5 Effective Search Space Exploration

Metha must cover a wide variety of different network con-
figurations to thoroughly test the tool, including many com-
binations of device features and parameter values. The key
challenge is that it is impossible to iterate through every single
combination of features and their respective parameter values,
even after considering our reduction to boundary values. To
address this, Metha relies on combinatorial testing [16, 20],
which is able to uncover all bugs involving a small number of
interacting features. In the following, we first provide relevant
background on combinatorial testing, and then we show how
Metha uses it to effectively test network tools.

5.1 Combinatorial Testing

Combinatorial testing is a black-box test generation technique
which is effective at uncovering interaction bugs, i.e., bugs
that occur because of multiple interacting features and their
parameter values. The main assumption behind combinatorial
testing is that interaction bugs are revealed by considering a
small number of features and parameter values. In this case,
one can generate a test suite, called combinatorial test suite,
that uncovers all such bugs.

To use combinatorial testing, one needs to define a specifi-
cation of the system’s parameters and their values:

Definition 1 (Combinatorial specification). A combinatorial
specification S is a tuple (P,V,∆), where P is a set of parame-
ters, V is a set of values, and ∆ : P→ 2V defines the domain
of values ∆(x)⊆V for any parameter x ∈ P.

For example, the combinatorial specification for a pro-
gram that accepts three boolean flags as input has parameters
P = {a,b,c}, values V = {0,1}, and domains ∆(a) = ∆(b) =
∆(c) = {0,1}. A test case is a total function tc : P→V map-
ping parameters to values from their respective domains, i.e.,
with P(x) ∈ ∆(x) for any x. An example test case for our pro-
gram is tc = {a 7→ 0,b 7→ 0,c 7→ 1}. In contrast to test cases,
a t-wise combination maps only some parameters to values:

Definition 2 (t-wise combination). Given a combinatorial
specification S = (P,V,∆), a t-wise combination for S is a
function c : Q→V such that Q⊆ P with |Q|= t and c(x) ∈
∆(x) for any x ∈ P.

An example pairwise combination (i.e., t = 2) for our exam-
ple is c = {a 7→ 0,b 7→ 1}. We write C S

t to denote the set of all
t-wise combinations for a given combinatorial specification S .
Note that a test case can cover multiple t-wise combinations:

combt(tc) = {c⊆ tc | |c|= t}

For instance, our example test case above covers the following
three pairwise combinations: {a 7→ 0,b 7→ 0}, {a 7→ 0,c 7→ 1},
and {b 7→ 0,c 7→ 1}.

Definition 3 (t-wise combinatorial coverage). Given a com-
binatorial specification S , we define the t-wise combinatorial
coverage of a test suite T as:

covt(T ) =
|
⋃

tc∈T combt(tc)|
|C S

t |
.

A test suite T is called a t-combinatorial test suite if
covt(T ) = 1. If the assumption that interaction faults are
caused by up to t-wise interactions holds, then T finds all
bugs. The goal of combinatorial testing is to generate the
smallest t-wise combinatorial test suite.
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5.2 Combinatorial Testing of Configurations

In Metha, we apply pairwise combinatorial testing to the
generation of network configurations. Concretely, we phrase
the search space defined in §4 as a combinatorial specifica-
tion S = (P,V,∆) as follows. First, each statement that can
appear in the configuration, such as route redistribution or
route-map as defined in §4, defines a configuration feature.
We set F to be the set of all configuration features. The set
of parameters P is then given by R×F , where R is the set of
routers. Namely, the parameters consist of all configuration
features one can define in the device configurations.

Second, the domains of values for each configuration fea-
ture contain the boundary values that can be used in the given
configuration statement, along with the designated value ⊥,
which indicates whether the configuration feature is enabled
or not. That is, ⊥ results in omitting the configuration state-
ment altogether. We note that for configuration statements
with multiple parameters, we take the product as the domain of
possible values. For example, the Cisco OSPF configuration
feature default-information-originate has three optional
parameters: always, metric combined with an integer value,
and metric-type combined with 1 or 2. After reduction to
boundary values this leads to the following three parameters:

A = {∅,always}
B = {∅,metric 1,metric 100,metric 1677214}
C = {∅,metric-type 1,metric-type 2}

The domain of values for this configuration feature is then
given by {⊥}∪ (A×B×C).

Finally, Metha uses the above combinatorial specification
to derive a test suite of configurations that covers all pairwise
combinations.

6 Fault Localization

A discovered discrepancy between the network model and
the oracle is only of limited use as the developer still needs
to isolate its cause. Often understanding the bug is the most
time-consuming part of the debugging process, and fixing
it can be done relatively quickly. To help with this, Metha
pinpoints the configuration features that cause a discrepancy
and finds a minimal configuration, i.e., a configuration with
as few configuration features enabled as possible. To do this,
Metha uses iterative delta debugging, an extended version
of classic delta debugging, which lifts the assumption that
a single fault causes failures. This extension is important as
network configurations are large and complex, and discrep-
ancies are often caused by multiple faults. In the following,
we first introduce classic delta debugging and then present its
iterative extension.

6.1 Delta Debugging
Delta debugging [35] is a well-established fault localization
technique, which finds minimal failure-inducing inputs from
failing test cases. Below, we present delta debugging in our
context, and then define its assumptions and algorithmic steps.
Terminology As defined in §5, a test case tc assigns config-
uration features F to either parameter values or ⊥, where ⊥
indicates that a given feature is disabled (i.e., it is omitted
from the configuration). Given a test case tc and features
Q⊆ F , we write tc|Q for the test case obtained by disabling
all features in tc that are not contained in Q:

tc|Q( f ) =
{

tc( f ) if f ∈ Q
⊥ otherwise

Given a failing test case tc, the goal of delta debugging is
to find the minimal set Q of features such that tc|Q fails. We
denote the complement of Q by Q̄ = F \Q.
Assumptions Delta debugging relies on three assumptions:
(i) test cases are monotone, i.e., if tc|Q fails, then for any
superset Q′ ⊇ Q of features tcQ′ also fails; (ii) test cases are
unambiguous, meaning that for a failing test case tc there is a
unique minimal set Q that causes the failure; and (iii) every
subset of features is consistent, meaning that for any Q⊆ F ,
tc|Q terminates with a definite fail or success result.
Algorithm Given a test case tc, delta debugging finds a mini-
mal set of features Q that causes a failure. Initially, Q contains
all enabled features in tc, i.e., Q = { f ∈ F | tc( f ) 6=⊥}. Then
it applies the following steps:

1. Split: Split Q into n partitions Q1, . . . ,Qn, where n is the
current granularity. Test tc|Q1 , . . . , tc|Qn for failures. If
some tc|Qi fails, then use Qi as the new current set of
features and continue with step 1.

2. Complement: If none of the new tests tc|Q1 , . . . , tc|Qn

fail, check the complement of each partition by testing
tc|Q̄1

, . . . , tc|Q̄n
. If some tc|Q̄i

fails, then use Q̄i as the
new current set of features and continue with step 1.

3. Increase Granularity: If no smaller set of features is
found and n < |Q|, then set n to min(2n, |Q|) and con-
tinue with step 1.

4. Terminate: If it is not possible to split the current set of
features into a smaller set, terminate and return Q.

6.2 Iterative Delta Debugging
In our setting, test cases are often ambiguous as a discrepancy
often arises due to multiple faults in the network model. To
this end, we apply the delta debugging algorithm iteratively
and find all minimal sets of features that cause a given dis-
crepancy. Intuitively, starting with a test case tc with enabled
features Q, we first apply the delta debugging steps (given
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Algorithm 1: Iterative Delta Debugging
Input :Test case tc, initially enabled features Q in tc.
Output :A set of minimal feature subsets S = {Q1, . . . ,Qn}.

1 S = /0

2 Queue = queue()

3 put(Queue,Q)

4 while ¬empty(Queue) do
5 H = head(Queue)
6 if run(tc|H) = failure then
7 Q′ = minimize(H)
8 for f in Q′ do
9 put(Queue,H \{ f})

10 S = S ∪{Q′}

11 return S

in §6.1) to find a minimal configuration feature set Q′ such
that tc|Q′ triggers the discrepancy. Then, we generate new test
cases tc1, . . . , tc|Q′|, by disabling a feature from Q in each new
test case tci, and iteratively apply delta debugging to these.
We apply this process repeatedly until no further failing test
cases are found. Once Metha identifies all minimal sets of
configuration features that trigger a given bug, Metha creates
a minimal configuration for the developer to reproduce it.

We present our iterative delta debugging algorithm in Al-
gorithm 1. We start from a set of initially enabled features Q
in tc and return all minimal subsets of Q that trigger a discrep-
ancy. We keep all sets of features to be checked in a queue
and continue until the queue is empty (Line 2 - Line 4). For
every set H of features in the queue, we check if the test case
tc|H triggers a discrepancy (Line 5, Line 6). If this is the case,
then we find a minimal subset Q⊆ H of features that triggers
the discrepancy using classic delta debugging, and create new
subsets that need to be checked (Line 8, Line 9). For example,
if we find a minimal set of features Q = {a,b} that triggers
the discrepancy, then we check if there are any other minimal
sets of features that do not contain a or b (and are thus non-
comparable to Q). We note that we generate two new sets of
features H \{a} and H \{b} instead of a single one H \{a,b}
because there may be overlapping discrepancies. For example,
even though we know that b can trigger a discrepancy with
a, b might also trigger a discrepancy with another feature c.
Finally, the algorithm keeps all found minimal feature subsets
and returns them (Line 10, Line 11). We conclude by stating
the correctness of our algoirthm:

Theorem 1. For any test case tc with enabled features Q, Al-
gorithm 1 finds all minimal fault-inducing subsets of features.

We present the proof of this theorem in App. A.
Runtime The running time of Algorithm 1 is O(|Q|!). The
worst-case behavior is when the size of the set H of features
is reduced by 1 element in each step, introducing |H − 1|
new features sets to the set S . To improve the running time,

we cache (not shown in Algorithm 1) feature sets that have
been added to the queue. This strictly reduces the algorithm’s
running time and yields a worst-case running time complex-
ity of O(2|Q|). We note that the running time in practice is
reasonable as the reduction of the set H by the delta debug-
ging minimization step (Line 7) is significant (down to 2−3
elements in practice).
Limitations As with classic delta debugging, there may be a
fault in the interaction between a set of parameters, say a, b,
and c, as well as a different fault in the interaction between
a subset of these parameters, say a and b. We cannot distin-
guish these two faults and will only identify the latter fault.
However, once the identified fault is fixed, our algorithm will
then identify the fault in the interaction among a, b, and c as
well, assuming it is still present in the verification tool.

7 System

We have fully implemented Metha in 7k lines of Python code.2

This covers the entire testing pipeline from the input, the list
of configuration features to be tested and the topology, to the
outputs, the bug reports. In the following, we highlight key
points of Metha’s implementation, which consists of a vendor-
and tool-agnostic core that uses runners to interface with the
different network analysis and verification tools.
Semantic constraints To run the tests, Metha uses a logical
topology, which consists of the physical topology extended
with logical groupings. These groupings map the routers to
BGP ASes and their interfaces to OSPF areas. This trivially
ensures that the base configuration meets all the necessary
semantic constraints (cf. §4.1). In a next step, Metha starts to
randomly assign IP subnets to links and IP addresses to the
router interfaces on these links. Specifically, every router is
assigned a router ID, which is also assigned to the loopback
interface of that router. Finally, Metha generates additional re-
sources that are needed to test specific configuration features.
For example, Metha adds several prefix-lists and static routes
which can then be used in the test generation, for example, for
a match statement of a route-map and route redistribution, re-
spectively. All these additional resources are generated based
on the predefined logical topology. Hence, a prefix-list, for
example, will only consist of prefixes that are actually defined
in the network, such that a route-map statement using that list
for a match will also be reachable.
Testing coordination Once Metha laid the groundwork, it
has to define a test strategy based on the specified configura-
tion features. At the moment, Metha supports configuration
features pertaining to four categories: static routes, OSPF,
BGP and route-maps. As part of that, the system supports
additional constructs such as prefix-lists and community-lists.
These are currently not tested on their own, but added when
needed to test the main features, such as route-maps. Metha

2 Available at https://github.com/nsg-ethz/Metha
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then uses all features and the logical topology to prepare the
parameters to come up with the test suite. To do that, Metha
passes all the parameters and their possible values to a state-
of-the-art combinatorial testing tool: PICT [25]. PICT devises
a test suite that consists of a set of tests ensuring complete
coverage of all pairwise feature interactions.

Configuration generation A single test from the PICT test
suite is an abstract network configuration. It simply specifies
which feature and corresponding value needs to be activated
and where (i.e., on which router and, if applicable, at which in-
terface). Metha then translates the abstract network configura-
tion to concrete device configurations using a grammar-based
approach to ensure lexical and syntactical validity.

Metha implements a large portion of both Cisco IOS and
Juniper grammars for which we relied on the respective of-
ficial command references. This means Metha can generate
both Cisco IOS and Juniper configurations for the tests. Metha
even supports to test hybrid networks in which devices of both
vendors are used at the same time.

Testbed Metha runs the generated configurations in parallel
on both the tool under test and the oracle. After both of them
converged, it retrieves the routing tables and compares them.
Metha is able to test any tool that takes the device configu-
rations as inputs and provides direct access to the computed
routing tables out-of-the-box. Otherwise, Metha uses tool-
specific runners to process the inputs such that they meet the
tool’s requirements and map the output back to Metha’s for-
mat. Metha comes with runners for three well-known network
analysis and verification tools: Batfish [17], NV [13] and C-
BGP [28]. For NV, for example, Metha first has to compile
the simulation program from the network configurations. As
a source of ground truth, Metha uses a virtualized network
running real device images of both Cisco and Juniper routers.
It connects to these devices over Telnet and retrieves the rout-
ing tables (e.g., show ip route for Cisco devices). To ensure
full convergence, Metha retrieves the routing tables every
10 seconds and proceeds once the tables have not changed
for ten consecutive checks. With this setup, Metha allows to
freely choose any oracle (e.g., hardware testbed) as long as it
exposes the computed routing tables.

Output Finally, Metha localizes all bugs within a discovered
discrepancy by relying on delta debugging. For every single
bug, it generates a report highlighting the observed difference
in the routing tables of the tool under test and the oracle, such
as a mismatch in a route’s metric or a missing route. This helps
the developer understand the expected behavior. In addition,
it identifies the configuration statements required to trigger
the bug and comes up with a minimal network configuration
to reproduce the bug. This allows Metha to provide actionable
feedback to the developers of the tool, helping them to faster
locate and understand the bug. The minimal configuration
example can also be used as an extra test case for traditional
system testing.

8 Evaluation

In this section, we evaluate Metha to address the following
research questions:
RQ1 How does Metha’s semantical configuration generation,

the search space reduction using boundary values and
the test suite from combinatorial testing contribute to
Metha’s effectiveness? We show that Metha finds 20
bugs and achieves a higher combinatorial coverage than
the random baseline, which only discovers 3 bugs with
the same number of tests.

RQ2 How many test cases does Metha need to localize all
bugs in a single discrepancy between the tool under
test and the oracle? Metha requires on average 14.1 test
cases to isolate all the bugs causing a discrepancy.

RQ3 Is Metha practical? We ran Metha on three different
state-of-the-art network analysis and verification tools
and found a total of 62 bugs, 59 of them have been
confirmed by the respective developers.

8.1 Comparison to Random Baseline
We begin our evaluation by studying how the three compo-
nents of Metha contribute to its effectiveness. To this end, we
compare a random baseline to three versions of Metha: step-
by-step, we enable each component starting with semantic
Metha, then we add the reduction to boundary values, and fi-
nally, we use full Metha using combinatorial testing to define
a test suite. The results show that the semantical configuration
generation is the most fundamental part of Metha. Reducing
the parameters to boundary values and applying combinato-
rial testing help to find additional bugs as both manage to
increase the combinatorial coverage.

In the following, we introduce the four approaches:
Random baseline The random baseline relies on random syn-
tactic test generation, meaning it uses a traditional grammar-
based fuzzing approach. Thanks to the grammar, the con-
figurations generated by the baseline are lexically- and
syntactically-valid, but they are not necessarily semantically-
valid: the baseline generates device configurations that are
parseable and look realistic. However, the configurations
might not always be practical: for example, referenced route-
maps and prefix-lists do not always exist, and IP addresses
on interfaces might not match those of their neighbors. Inter-
and intra-device dependencies are not factored in.
Semantic Metha The initial Metha approach implements ran-
dom semantic test generation. Similar to the random base-
line, it uses a grammar-based fuzzing approach with the only
difference that it ensures semantical validity within the con-
figuration: while, for example, interface costs are completely
random, other values are more constrained based on inter-
and intra-device dependencies. This approach ensures, for
example, that only defined route-maps are referenced, and
that BGP sessions are configured with matching parameters.
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Approach # Discovered Bugs

Random Baseline 3
Semantic Metha 16
Bounded Metha 17
Full Metha 20

Table 2: Every component of Metha allows it to find more
bugs with the same number of test runs.
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Figure 5: The achieved combinatorial coverage increases with
every single component of Metha. Full Metha achieves com-
plete combinatorial coverage.

Bounded Metha The bounded approach adds the reduction
to boundary values as introduced in §4.2 to semantic Metha.
This means instead of assigning completely random numeric
values, the approach reduces the allowed values to three op-
tions: the minimum, the maximum, and a “normal” value,
randomly chosen between the two extremes.
Full Metha Finally, we run the full testing system. We add
combinatorial testing as introduced in §5 to define a test suite
that maximizes combinatorial coverage on top of the semantic
configuration generation and the boundary values reduction.
Experiment setup We ran all four approaches for the same
number of tests and used them to test Batfish [17]. Whenever
one of them detected a discrepancy between Batfish and the
oracle, we applied the full fault localization procedure as
described in §6 to detect the underlying bugs and the features
causing it. Thanks to that, we are able to detect duplicates and
count only the unique bugs that each approach discovered.

For all the tests, we used the same simple topology con-
sisting of four routers connected in a star topology and tested
configuration features belonging to the following four cat-
egories: static routes, BGP, OSPF, and route-maps. For the
entire experiment, we used Cisco IOS configurations. For the
given configuration features, combinatorial testing generated
a test suite consisting of 1 794 tests. While the full Metha ap-
proach followed the test suite, the other approaches randomly
chose the active configuration statements for every single test.
Results Table 2 shows the number of unique bugs that every
approach found within the 1 794 test runs. The full Metha de-
tected 20 unique bugs, while the random baseline only found

3 bugs. The semantic configuration generation is the most
fundamental component of Metha. It comes as no surprise as
without semantical validity, many of the configurations do not
allow for any meaningful control plane computations and will
not fully exercise the network model of the tool under test.

Boundary values and combinatorial testing allow finding 1
and 3 additional bugs within the 1 794 test runs, respectively.
This is because both approaches achieve higher combinato-
rial coverage and therefore test a wider variety of features.
These results show that the boundary values reduction strikes
a good balance between testing different parameter values,
while keeping the search space tractable. It is important to
note that the detected bugs are inclusive, meaning that full
Metha detected all 17 bugs that bounded Metha detected and
3 additional bugs. There is one exception: the baseline found
a bug in the parser, which the other approaches did not find.

The random baseline is strong at discovering parser bugs
since that is where grammar-based fuzzing excels. Two out
of its three discovered bugs are parser bugs. In both cases,
the problem was an, according to the specification, unsigned
32-bit integer being parsed as signed. For example, ip ospf

100 area 3933914791 could not be parsed. Metha did not
catch this bug as it uses fixed area numbers as part of the
logical topology. By adding the area numbers to the set of
configuration features being tested, Metha also finds this bug.

Fig. 5 shows the combinatorial coverage achieved by the
four approaches, i.e., it shows the pairwise feature combina-
tions covered during testing. We focus on feature instead of
code coverage for two reasons: First, one can easily achieve
high code coverage with random, semantically-invalid config-
urations. Second, code coverage is specific to the tool under
test and makes it difficult to compare. To measure the combi-
natorial coverage of the random baseline and semantic Metha,
we partitioned the input space in the same manner as we
did for bounded Metha, i.e., into minimum, maximum, and
middle values. Any configuration which did not specifically
use the minimum or maximum value for a parameter was
then considered as a middle configuration. Metha achieves
full combinatorial coverage by design as it is guaranteed by
combinatorial testing. These results underline the importance
of semantically-valid configurations. While both the random
baseline, which relies on syntactically-valid configurations,
and semantic Metha achieve a similar combinatorial coverage,
semantic Metha finds many more bugs as its configuration
actually ensures control plane computations.
Performance Running a single test case took an average of
two minutes. We run both the tool under test as well as the
virtualized testbed in parallel and found that most of the time
is spent waiting on the testbed to converge. The generation of
a combinatorial test suite with PICT for the baseline network
with 4 routers took an average of 6 minutes. Over the entire
test suite, this time is negligible. Running the entire setup took
us several days. The runtime depends highly on the number
of discrepancies and the number of bugs causing them.
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Bugs Type Feature Category

discovered confirmed crash silent OSPF BGP route-filter other

Batfish [17] 29 29 5 24 10 10 9 0
NV [13] 30 30 5 25 13 9 7 1
C-BGP [28] 3 ? 0 3 1 1 1 0

Table 3: Bugs discovered by Metha for Batfish, NV and C-BGP and classification.

8.2 Fault Localization

Whenever Metha detects a discrepancy between the routing
tables of the tool under test and those of the oracle, it goes
into fault localization to isolate all independent bugs. Fault
localization relies on delta debugging (cf. §6) which creates
additional test cases to identify the configuration statements
causing the bugs. In the following, we evaluate its overhead,
i.e., the number of additional test cases Metha had to create.
Experiment setup For this experiment, we ran Metha using
the same topology as before and tested the full set of configu-
ration features. Whenever Metha detected a discrepancy, we
recorded the number of additional test cases required to find
all independent bugs and the number of discovered bugs.
Results On average, Metha used 14.1 additional test cases to
locate all bugs within a test case. The number of additional
test cases ranged from as low as 7, to localize a single bug, up
to as high as 58, to localize 5 independent bugs. The number
of additional test cases mostly depends on the number of
independent bugs within a single detected discrepancy. The
number of configuration statements that actually cause the bug
plays a minor role. Also, we have observed that the detected
bugs are all caused by a few configuration statements (one
or two), even though multiple configuration statements were
active during the tests. This confirms the observation that bugs
are often caused by the interaction of few features [20, 31]
and shows that combinatorial testing is a useful technique in
this setting.

8.3 Real Bugs

In addition, we showcase our end-to-end implementation of
Metha by testing three different network analysis and verifica-
tion tools: Batfish [17], NV [13], and C-BGP [28]. We show
that Metha finds real bugs and report them in Table 3.
Experiment setup We ran Metha for several days on all three
tools and with several different setups. Batfish is the most
complete and advanced tool as it can handle configurations
of many different vendors and supports a wide variety of
configuration features. NV itself is an intermediate language
for control plane verification that allows to build models of
any routing protocols and their configurations. It provides
simulation and verification abilities. We tested the simulation
only, the discovered bugs, however, most likely also exist in

the verification part as both rely on the same network model.
For Batfish and NV, we used both Cisco IOS and Juniper
configurations. C-BGP has its own configuration language.
Results As shown in Table 3, Metha found a total of 62 bugs.
The developers of both Batfish and NV confirmed the dis-
covered bugs to be real bugs. To better understand the nature
of the bugs, we classified them by their type (i.e., whether
they lead to a crash or go unnoticed) and by the configuration
feature category itself (e.g., OSPF). Only a few of the bugs
produce a clear error. This is most likely also because these
are noticed more often and reported. The large majority of the
bugs are silent semantic bugs which are extremely difficult
to notice. These are the sneakiest bugs and can lead to false
analyses and answers by the verifier. These bugs include all
the configuration features discussed in §2 showing that they
affect the analysis of commonly used features, such as route
redistribution and aggregation, and named communities.

The bugs are distributed quite evenly among all tested parts
of the network model. We did not find one specific protocol
or configuration feature that is especially error-prone.

9 Discussion

What about the testbed? Metha detects bugs by looking for
discrepancies between the tool under test and an oracle. For
the oracle, Metha uses a testbed running real router firmwares.
The testbed just needs to be large enough to fully exercise
all configuration features. Normally, a small testbed of few
routers suffices and also helps speed up the testing. In this
paper, we rely on a virtualized testbed. To use a physical
testbed instead, one simply has to change the SSH/Telnet
configurations to connect to the physical devices.

A virtualized testbed comes with several advantages. It
provides more flexibility in terms of the settings one can test
and the time needed to setup. For example, there is no re-
wiring needed to test different topologies. In addition, it is
very simple to test the same topology with a different device
category or with devices from another vendor: one simply has
to exchange the router image.
What about more targeted tests? Metha’s test suite can be
adjusted to the developers requirements by restricting the set
of configuration features, adjusting the number of values per
feature, and changing the number of interacting features. The
tests required to cover the search space mainly depend on the
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number of values per feature and the number of simultaneous
feature interactions, while the set of features is secondary.
By default Metha tests three values per feature and considers
pairwise interactions. This choice strikes a good balance be-
tween the number of tests required and thorough testing, as
our results confirm: Metha found all bugs that the random ap-
proaches discovered with fewer tests, despite using “only” the
boundary values; and all discovered bugs are caused by one
or two interacting configuration features, despite considering
interactions of more than just two features.

Metha does not replace traditional unit and system testing,
but provides an additional way to find latent bugs anywhere
in the system. The advantage of Metha is that it requires
minimal developer involvement and can be run alongside
traditional tests without any additional effort. If desired one
can run extensive tests by considering more elaborate feature
interactions and more than three values per feature. Often with
fuzz testing, one just lets the testing system run indefinitely
and collect bug reports along the way.

10 Related Work

In this section, we first discuss current network analysis and
verification tools. Then, we survey related work on testing
static analyzers and verifiers, the various testing initiatives in
the field of networking, delta debugging, and fuzz testing.
Network analyzers & verifiers Our work aims to facilitate
the development of network analysis and verification tools
through thorough testing. Over the years, we have seen a
rise in tools that simulate networks [28], verify properties of
networks and their configurations [3, 14, 19, 30], and tools
that analyze aspects of networks [11, 12, 18, 23]. All of these
tools have in common that they in some way or another use a
network model to analyze and verify the network. Any bug or
inaccuracy that exists within that network model undermines
the soundness of the tools’ results and analyses.

In contrast, CrystalNet [21] is a cloud-scale, high-fideltiy
network emulator running real network device firmwares in-
stead of relying on a network model. Hence, it accurately
resembles the real network (e.g., vendor-specific behaviors
and bugs in device firmwares are captured).
Testing analyzers and verifiers The problem of ensuring the
correctness of analysis and verification tools is not specific to
networks. In the field of static analysis, several works exist
that pursue the same goal. Bugariu et al. [5] apply a unit
testing approach, meaning they do not test the entire system
but components thereof which simplifies the test generation.
Since Metha treats the tool under test as a black box it cannot
test certain components separately. Cuoq et al. [8] randomly
generate input programs. This technique is mostly effective
at testing the robustness of the analyzers. Similar to Metha,
Andreasen et. al [1] apply delta debugging to find small input
programs that help developers understand the bug faster.

Testing in networking Prior work on testing in networking
has mainly focused on testing the network and its forwarding
state [36], and SDN controllers [2, 6, 29].

Closest to Metha is Hoyan [32], a large-scale configura-
tion verifier, in which the results of the verifier (i.e., network
model) are continuously compared to the actual network for
inaccuracies. It does so during operation and only covers cases
that have actually occurred in the network. Metha in contrast
proactively tests to detect the bugs before deployment.
Delta debugging In automated testing tools, delta debugging
is a well-established technique [33,35] that allows to automat-
ically reduce a failing test case to the relevant circumstances
(e.g., lines of code or input parameters). Over the years, re-
searchers came up with several extensions to the general delta
debugging algorithm, such as a hierarchical approach [26] that
takes the structure of the inputs into account. It first explores
the more important inputs allowing to prune larger parts of
the input space and hence, requiring fewer test cases.

Traditional delta debugging finds one bug at a time even if
the test case is ambiguous and exhibits multiple independent
bugs. The developer then fixes one bug and reruns delta debug-
ging to find the next. Metha automatically detects the causes
of all independent bugs without developer involvement.
Fuzz testing Fuzz testing [15, 34] is an umbrella term for
various testing techniques relying on “randomized” input gen-
eration. Metha uses a form of grammar-based fuzzing. Due
to the complex dependencies within network-wide config-
urations, Metha first builds a basic configuration structure
to ensure semantical validity. Then, it uses fuzzing to test
different feature combinations restricted to that structure.

11 Conclusion

We presented Metha, an automated testing framework for net-
work analysis and verification tools that discovers the bugs
in their network models before deploying them to production.
It does so by generating a wide variety of network configura-
tions according to a test suite defined through combinatorial
testing. Metha provides developers with actionable reports
about all discovered bugs including a configuration to repro-
duce them. We implemented Metha and evaluated it on three
state-of-the-art tools. In all tools, Metha discovered a total of
62 bugs, 59 of them have been confirmed by the developers.
An interesting avenue for future work would be to extend
Metha so that it can also test configuration synthesizers such
as [4,9,10] as bugs in their models would render them useless.
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A Proof of Theorem 1

Proof. By contradiction. Assume that there is a minimal sub-
set Q′ ⊆ Q such that tc|Q′ fails which is not returned in S .
We check at least one superset of Q′ for a failure since we
will always check the initial set Q. Assume C ⊇ Q′ is a small-
est superset of Q′ which is checked. By the assumption of
monotonicity, tc|C must fail, therefore we will minimize C. If
C = Q′, then we must minimize to Q′ since Q′ is assumed to
be minimal, violating the assumption that Q′ is not returned
by the algorithm. If Q′ ⊂C, then C will either minimize to
Q′ (again violating the original assumption that Q′ is not re-
turned by the algorithm) or to a different minimal subset P. In
this case, we generate additional sets to be tested. However,
both Q′ and P are minimal subsets of C, therefore Q′ 6⊂ P and
P 6⊂Q′. Since Q′ 6= P, we know that there must be an element
e ∈ P which is not in Q′, i.e., such that Q′ ⊆C \{e}. The set
C\{e} is both strictly smaller than C and will be added to the
sets to check by the algorithm in Line 9 and therefore violates
our assumption that C was a smallest superset of Q′ which is
checked.
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Abstract
Today’s distributed systems are increasingly complex, leading
to subtle bugs that are difficult to detect with standard testing
methods. Formal verification can provably rule out such bugs,
but historically it has been excessively labor intensive. For
distributed systems, recent work shows that, given a correct
inductive invariant, nearly all other proof work can be auto-
mated; however, the construction of such invariants is still a
difficult manual task.

In this paper, we demonstrate a new methodology for au-
tomating the construction of inductive invariants, given as
input a (formal) description of the distributed system and a
desired safety condition. Our system performs an exhaustive
search within a given space of candidate invariants in order to
find and verify inductive invariants which suffice to prove the
safety condition. Central to our ability to search efficiently is
our algorithm’s ability to learn from counterexamples when-
ever a candidate fails to be invariant, allowing us to check
the remaining candidates more efficiently. We hypothesize
that many distributed systems, even complex ones, may have
concise invariants that make this approach practical, and in
support of this, we show that our system is able to identify
and verify inductive invariants for the Paxos protocol, which
proved too complex for previous work.

1 Introduction
The world increasingly relies on distributed computer systems,
but the correctness and reliability of these systems depend on
the imperfect coverage of testing. To obtain strong guarantees,
developers are starting to turn to formal verification techniques,
both in research [3, 21, 24, 31, 46, 54] and industry [38, 58].
These techniques can, in theory, prove that all possible ex-
ecution traces of the system conform to a high-level safety
specification (e.g., all nodes agree on the next input value, or
no two nodes hold a lock at the same time).

However, verifying the safety of distributed systems can
be extremely labor-intensive, especially when using general-
purpose theorem provers [21, 45, 54]. For example, Haw-
blitzel et al. [21] report that the effort to build and verify two
distributed systems (including their protocols and implementa-
tions) required 3.7 person-years, and their safety proofs (over
19K lines of code) account for ∼40% of the total codebase.

To reduce this cost, some work has developed specialized lan-
guages that either restrict the kinds of systems that can be
encoded [12, 13, 36, 53] (e.g., the protocol must proceed in
synchronous rounds), or restrict the language used to describe
the systems’ properties [42]. In exchange for these restrictions,
much of the safety proof can be dispatched automatically.

In all of these systems, the core of the safety proof requires
identifying system invariants, and even with tools that can
automate all other proof work, finding these invariants still
relies on human labor and ingenuity. Anecdotally, this is a
challenging task even for researchers [34], requiring days for
toy systems and months for complex protocols like Paxos [29].

Ideally, we would automate invariant discovery, but theo-
retical results show that even in languages where checking
an invariant is decidable [42], finding such an invariant is not
decidable [40], meaning that no algorithm can guarantee that
it will find an invariant for arbitrary protocols, even if they are
indeed safe. Hence, we must turn to domain-specific insights
to develop a methodology which can apply to the specific
kinds of distributed systems developed in practice.

Recent approaches have been proposed to automatically in-
fer invariants for distributed systems [27, 34]. For instance, the
I4 [34] system observes that the invariants for some distributed
systems are scale-invariant. Hence they ask the developer to
specify appropriate finite-model parameters and to concretize
some of the protocol variables. I4 then invokes a specialized
model checker [19] that can deduce invariants on finite, fixed-
size instances. It then employs various heuristics to generalize
those invariants to arbitrary instances. Unfortunately, I4 can-
not discover invariants that use existential quantifiers. Further-
more, since the model checker is a black box, the developer
has no recourse when it fails. More recently, Koenig et al. [27]
extend the IC3/PDR algorithm [6, 14] to infer invariants with
existential quantifiers. However, neither they nor I4 can han-
dle complex protocols like Paxos [29], for which the simplest
known safety proofs require many invariants, including some
with existential quantifiers.

To tackle complex protocols like Paxos, we explore an alter-
nate approach based on our “small world” hypothesis: in many
practical systems, the invariants should be relatively concise.
After all, these protocols are designed by humans who have
some (finite) intuition for why the protocol is correct. They
are clearly not beyond human comprehension. If accurate, this
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hypothesis suggests we are faced with a finite space of possible
invariants, which we can potentially search exhaustively.

Of course, finite is not the same as small. For a protocol
like Paxos, there could be over 100 billion candidate invariants
with just six terms. Even if it only took a millisecond to test
each invariant, a brute force search of the entire space would
require over three computation-years.

Hence, this paper presents the Small World Invariant Search
System (SWISS), our system for automatically proving the
safety of distributed systems by efficiently searching through
the space of succinct invariants. At its core, SWISS learns
from counterexample models obtained from failed invariant
candidates to speed up future invariant checks. SWISS uses an
SMT solver to perform these checks. SWISS also exploits vari-
ous symmetries and parallelism to reduce search time. Further,
for a class of invariants (described formally in §3.4) SWISS is
guaranteed to find an invariant when one exists. SWISS also
supports user-supplied guidance to make the search more effi-
cient. Moreover, unlike prior approaches, even when SWISS
does not produce a safety proof within a given time limit, the
user still benefits from partial invariants that SWISS did find,
as they can use those invariants as a starting point for finding
complete invariants. The net effect is that SWISS is the first
approach that can automatically prove the safety of Paxos, and
it does so in around 4 hours on an 8-core machine. If the user
provides some light guidance (§5.3.3), then the time decreases
to 20 minutes.

We compare SWISS to I4 [34] and Koenig et al. [27] on
a large variety of protocols (§5). None of the approaches
fully dominates the others, neither in protocols solved nor in
runtime. For instance, for protocols that only require invariants
without existential quantifiers, I4 is generally fastest. However,
for some complex distributed protocols with many invariants
that contain existential quantifiers, SWISS outperforms the
other tools, and in particular, it is the first to automatically
prove the safety of Paxos and two variants of Paxos: Multi-
Paxos and Flexible-Paxos [22]. There are still some variants
of Paxos that SWISS cannot fully prove in a reasonable amount
of time. However, even in these cases, SWISS still finds many
partial invariants that may help the user complete the proof.

In summary, our key contributions are as follows.

• We propose and evaluate the Small World Hypothesis:
that many distributed systems we care for can be proven
safe using a sequence of concisely specified invariants.

• We present SWISS, a methodology for automatically prov-
ing the safety of distributed systems by efficiently search-
ing through the space of candidate invariants, guided by
knowledge learned from counterexamples encountered
during the search. We report both our successful and
unsuccessful optimizations.

• To our knowledge, SWISS is the first approach to identify
and verify inductive invariants that prove the safety of
Paxos in an automated fashion.

2 Background
We briefly present background on formalizing and verifying
distributed systems.

2.1 Proving Safety Conditions Via Inductive Invariants

We aim to prove safety conditions. A safety condition is a
desired property that ought to hold true at any point in a sys-
tem’s execution. For an exclusion lock, for example, the safety
condition might be that no two agents hold a lock at the same
time. For a consensus protocol such as Paxos, the condition
would be that no two machines decide on different results.
These safety conditions are in contrast with liveness condi-
tions, which say that the system eventually performs a useful
action. We do not currently consider liveness conditions.

To formalize a distributed system, one must formally de-
scribe the internal state of the participating nodes, the state
of the network (packets in-flight between nodes), the initial
conditions of the system, and the ways the system can evolve.
Following standard practice, we formalize the latter as a se-
quence of atomic actions that update the system state [28].

Given this formal description, our goal then becomes to
prove that the safety condition will hold for any reachable
state in any possible execution of the system. The typical
strategy for such a proof is to find an inductive invariant.
An inductive invariant should (i) hold on all possible initial
states of the system and (ii) continue to hold when the system
transitions to a new state from a state where the invariant held.

If we could prove that the safety condition was inductive,
we would be done; unfortunately, this is rarely the case for non-
trivial systems. Instead, we typically must find an invariant
which is stronger than the safety condition and then show this
invariant is both inductive and implies the safety condition.

2.2 A Running Example: Simple Decentralized Lock

To make the verification process more concrete, we present
a toy example: a Simple Decentralized Lock (SDL) protocol.
SDL supports a single mutual-exclusion lock that is shared
among multiple nodes. A node with the lock can send the lock
to another machine via a message over the network, which, in
this simple example only, does not permit packet duplication.

Figure 1 formally describes the SDL protocol. The state at a
snapshot in time is represented by two relations: message and
lock. The value message(src,dst) indicates a message in the
network from machine src to machine dst, while lock(node)
indicates that node believes it holds the lock.

In the protocol’s initial state (the init lines), the network is
empty, and only one node (start node) holds the lock.

The transitions are written in RML [42], an abstract lan-
guage for describing system transitions. SDL has two transi-
tion actions: send and recv. In send, a node with the lock
can atomically release the lock and send a packet to another
machine. In recv, a node can receive a packet (removing it
from the network) and accept the lock.

The safety condition (Figure 2) we wish to verify for SDL is
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type node

relation message(src : node,dst : node): bool
relation lock(N : node): bool

init ∀src,dst. ¬message(src,dst)
init ∃startnode : node.

has lock(startnode)
∧ ∀N : node. (N 6= startnode =⇒ ¬ lock(N))

action send(src: node, dst: node) {
require lock(src);
message(src,dst) := true;
lock(src) := f alse;

}
action recv(src: node, dst: node) {

require message(src,dst);
message(src,dst) := f alse;
lock(dst) := true;

}

Figure 1: The Simple Decentralized Lock Protocol

SDL safety condition

∀n1,n2 : node. lock(n1)∧ lock(n2) =⇒ n1 = n2

SDL inductive invariant

(∀n1,n2 : node. lock(n1)∧ lock(n2) =⇒ n1 = n2) ∧
(∀n1,n2,n3 : node. ¬(lock(n1)∧message(n2,n3))) ∧
(∀n1,n2,n3,n4 : node. message(n1,n2)∧message(n3,n4)

=⇒ n1 = n3∧n2 = n4)

Figure 2: Safety Condition and Invariants for the SDL

Figure 3: Two models which demonstrate that the safety
condition (Figure 2) for SDL is not inductive on its own. M
and M′ each have a domain of two nodes, n1 and n2. In M, n2
holds the lock, while a packet is in-flight from n2 to n1. M can
transition to M′ via the recv action. M does not violate the
safety condition, but M′ does (n1 and n2 both hold the lock).

that no two nodes ever hold the lock at the same time. Figure 3
shows that this condition is not inductive. There is a state,
M, which satisfies the safety condition (only one machine
holds the lock) which can transition to a state, M′ (via a recv
on y) which does not satisfy the safety condition (since two
machines hold the lock). Figure 2 shows a stronger predicate
which also rules out the first state. This predicate is both
inductive and (trivially) implies the safety condition; thus, it
completes our safety proof. It states that (i) no two machines

hold the lock, (ii) no machine holds the lock while a message
exists, and (iii) no two messages exist at the same time.

2.3 Formal Notation

To keep our subsequent discussion precise we introduce some
additional notation. Formally, a transition system is a triple
T = (Σ, INIT, T R), where Σ defines the types and relations
representing the state of a system, and INIT and T R are pred-
icates describing the initial state of the system and allowed
transitions of the system, respectively. In our SDL example, Σ

contains the type node and the relations lock and message.
Since T R relates two states, we will use primes to indicate

the new state, e.g., T R := (x′ = x+1) represents a transition
that increments x by one.

A model M represents a single possible state of the system.
It contains an assignment for each variable and each possible
evaluation of the system’s relations. For a predicate P, we
write M |= P if the predicate P evaluates to true on model M.
When P is a predicate over two states, we write (M,M′) |= P,
e.g., we write (M,M′) |= T R if M can transition to M′.

We say that M is reachable if there exists a sequence
M0, . . . ,Mk where M0 |= INIT , Mk =M, and (Mi,Mi+1) |= T R
for all i. A formula S is said to be safe if for all reachable M,
we have M |= S.

We say that I (a formula over Σ) is inductive if we can prove
that INIT =⇒ I and T R∧ I =⇒ I′ (i.e., if I is true and the
system can take a transition to a new state, then I holds there
as well). Here, we use I′ to denote the predicate I evaluated on
the second state. It is clear that any inductive invariant I will
be safe. Therefore, proving that S is safe amounts to finding
an inductive invariant I such that I =⇒ S; equivalently, to
find a formula I such that I∧S is an inductive invariant.

2.4 Decidability of Inductiveness

Given a candidate invariant I, we must prove that (i) INIT =⇒
I, (ii) T R∧ I =⇒ I′, and (iii) I =⇒ S. We call these verifica-
tion conditions. To check that a verification condition P holds
for all possible models, we can show that ¬P is unsatisfiable;
i.e., there is no model M such that M |= ¬P.

Checking the validity of arbitrary first-order logic formulas
is undecidable [52], but prior work [41, 42] shows that many
distributed systems, including multiple variants of Paxos, can
be encoded in RML [42], which can be translated to a re-
stricted class of formulas where satisfiability is decidable. In
particular, the class of effectively propositional (EPR) formu-
las, also known as the Bernays–Schönfinkel class, are the class
of formulas that can be written in a form with quantifier prefix
∃∗∀∗ and no function symbols. Satisfiability for this class of
formulas is decidable [33, 43].

By ensuring our verification conditions lie within this class,
we can always either verify the predicate INIT =⇒ I or find
a satisfying instance for INIT ∧¬I. Likewise, we can either
verify the predicate T R∧ I =⇒ I′ or find a pair (M,M′) where
(M,M′) |= T R∧ I ∧¬I′ (e.g., the pair in Figure 3). In either
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Figure 4: SWISS Overview. The intended workflow for
using SWISS to synthesize an invariant and safety proof. A
rectangle indicates a machine-readable, human-supplied input.
An oval represents a collection of first-order predicates.

case, we obtain a concrete counterexample.
EPR, as stated, is a bit too restrictive; it allows only relations

(not general functions), and it does not allow for invariants
with quantifier alternation. However, EPR can be extended to
include stratified function symbols—functions for which the
edges from input types to output types form no cycles—while
maintaining its decidability. In the same way, we can allow
stratified alternation of universal and existential quantifiers in a
fragment called the extended EPR fragment [41]. To keep our
verification conditions within this class, we must impose some
restrictions on the quantifier alternations which appear in I;
these restrictions are determined by the shape of the protocol
under consideration, in particular, the quantifier alternations
which appear in INIT and T R.

3 Overview: The SWISS Algorithm
SWISS is an algorithm for inferring inductive invariants of
a protocol in order to prove a desired safety condition. The
intended usage of SWISS is shown in Figure 4. First, the
user provides an RML-encoding [42] of the protocol, a de-
sired safety condition, and a specification of the search space
(§4.1.1). SWISS either succeeds with an invariant that proves
the safety condition, or it fails, with only partial invariants gen-
erated. In that case, the user may choose how to continue: they
might try SWISS again with a different search configuration,
or they might continue with other means, e.g., the interactive
invariant-finding tool IVy [42], using the partial invariants as
a starting point.

For example, suppose the user is interested in the SDL
protocol (§2) and wants to prove the lock-exclusitivity safety
condition. They would first encode the SDL protocol into a
machine-readable RML specification (Figure 1). Protocols
are often concise, although in some cases it is challenging to
produce a specification where the inductive invariant will be in
EPR [41]. However, we consider this out of scope for SWISS.

Next, the user would write the exclusitivity condition as a
predicate (Figure 2). They would also choose the space of
predicates to search over (§4.1.1). If the user knows nothing

about the protocol, they would likely choose the most general
option, to generate templates automatically. If SWISS suc-
ceeds, then they will know that the lock-exclusitivity safety
condition is true, and they can use the invariants from SWISS’s
output to validate that SWISS ran correctly.

If SWISS does not succeed, there are a few possible paths.
For example, it might be that SWISS does not complete in
a reasonable amount of time, in which case the user might
choose to restrict the search space. For example, they might
have some idea of what the invariant should look like because
they have worked with similar locking protocols previously.
Alternatively, if SWISS completed quickly but did not succeed,
the user might choose a broader search space.

Finally, they might choose to take the incomplete invariants
generated by SWISS and attempt to complete them through
other means. Even though SWISS did not succeed, the user
could learn useful information about the protocol from these
incomplete invariants.

3.1 High-Level Algorithm

We begin with a high-level overview of our algorithm for find-
ing the inductive invariants needed to prove safety conditions.
Section 4 then explains how we make the algorithm scale to
large search spaces.

SWISS takes as input (i) a transition system T encoded via
RML (§2.2) (ii) a safety condition S, and (iii) a configuration
of the search space (§4.1.1). In this section, we refer to search
spaces with the symbols B and F , which here may be viewed
as arbitrary sets of first-order predicates.

SWISS is designed to exploit our hypothesis that a dis-
tributed system designed by humans will have a concise in-
variant, or a larger invariant composed of concise invariants.
After all, the designer presumably has a finite intuition for
the correctness of their system, either as a whole or as the
conjunction of correct subsystems or subproperties.

Internally, SWISS uses different algorithms to target these
two possible invariant styles. One algorithm, Finisher (§3.2),
tries to directly find one inductive invariant that proves the
safety condition. Hence any invariant it finds will necessar-
ily complete the safety proof. Using the safety condition as
a target helps Finisher search the invariant space efficiently.
However, for complex protocols, searching for the entire sys-
tem invariant in one shot is infeasible; e.g., a human-derived
invariant for Paxos has 10 conjuncts with 34 terms, corre-
sponding to a search space of over 1075 candidate invariants.

Hence, SWISS employs a second algorithm, Breadth (§3.3),
that greedily searches for as many protocol invariants as possi-
ble within a finite space B , without requiring that they directly
prove the safety condition. We run Breadth multiple times so
that invariants may build on each other: once Breadth finds
an invariant P, the next run can then find an invariant Q that is
inductive relative to P, even when Q might not be inductive on
its own. More formally, we say that Q is relatively inductive
with respect to P if INIT =⇒ Q and T R∧P∧Q =⇒ Q′.
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Algorithm 1: Solve (T ,S,B,F )

invariants←− {};
while true do

newInvariants←− Breadth(T , invariants,B);
if newInvariants imply safety then

return newInvariants
if newInvariants = invariants then

break;

invariants←− newInvariants;
return Finisher(T , invariants,S,F )∪ invariants

The Breadth loop ultimately builds an invariant of the form
P1∧·· ·∧Pn, where each Pi is relatively inductive to P1∧·· ·∧
Pi−1. In practice (§5), without the safety condition guiding
it, Breadth is slower than Finisher, but it can incrementally
construct a larger invariant than Finisher can.

To benefit from the strengths of both Breadth and Finisher,
SWISS’s top-level Solve (Algorithm 1) combines them. It
takes as input a transition system, T , and a desired safety con-
dition S. It also takes in two spaces of candidate invariants, B
and F , for Breadth and Finisher, respectively, to search. In
our implementation, these spaces are defined through a combi-
nation of the protocol description and (potentially) user input
(§4.1). Solve runs Breadth over B until no new invariants
are produced, and then it runs Finisher, if necessary, to find
an additional invariant needed to complete the safety proof.
Section 3.4 summarizes SWISS’s coverage guarantee.

3.2 The Finisher Algorithm

Finisher aims to find a single invariant P which proves a safety
condition S. More formally, it tries to solve:

Task 1 (Conjecture-proving task.) Given a transition sys-
tem T , formulas I1, ..., In, already established (or assumed)
to be invariant, and a conjectured safety condition S, find an
invariant predicate P such that P∧S is inductive relative to
I1∧·· ·∧ In.

Evaluating a candidate invariant P requires checking the

Algorithm 2: Finisher(T ,{I1, . . . , In},S,F )

cexamples←− {};
for P ∈ F do

if ∀cex ∈ cexamples . Passes(P,cex) then
cex←− CheckVCsF(T ,{I1, . . . , In},S,P);
if cex is None then

return P;

else
cexamples←− cexamples∪{cex};

return None

Algorithm 3: Breadth(T ,{I1, . . . , In},S,B)

cexamples←− {};
allInv←− {I1, . . . , In};
indInv←− {I1, . . . , In};
for P ∈ B do

if ∀I ∈ allInv . ¬FastImplies(I,P) then
if ∀cex ∈ cexamples . Passes(P,cex) then

cex←−CheckVCsB(T ,{I1, . . . , In},S,P);
if cex is None then

allInv←− allInv∪{P};
if ¬ Redundant (P, indInv) then

indInv←− indInv∪{P};

else
cexamples←− cexamples∪{cex};

return indInv;

validity of the following verification conditions (VCs):

INIT =⇒ S

INIT =⇒ P

T R∧ I1∧·· ·∧ In∧S∧P =⇒ S′

T R∧ I1∧·· ·∧ In∧S∧P =⇒ P′

Since the INIT =⇒ S condition does not depend on P, we can
check it once in advance of evaluating any candidat invariant.

Since we consider protocols expressed in RML (§2.4),
checking the validity of these VCs is decidable, and in practice,
typically quite efficient with modern SMT solvers. Hence, for
a candidate invariant P, we can run a subroutine CheckVCsF
to determine either that the VCs above hold, or that a finite
counterexample shows they do not. As Algorithm 2 shows,
rather than simply check the VCs above for each candidate
predicate P in F , Finisher accumulates a collection of coun-
terexamples from failed candidates. As we describe in §4.2,
we use these counterexamples to filter subsequent candidates,
as our counterexample check is orders of magnitude faster
than the VC check.

3.3 The Breadth Algorithm

In the Breadth algorithm, our goal is simply to find as many
invariants as possible. More formally, we wish to solve the
following task.
Task 2 (Invariant-finding task.) Given a transition system
T and formulas I1, ..., In, already established (or assumed) to
be invariant, find any invariant predicate P which is inductive
relative to I1∧·· ·∧ In.

The corresponding VCs are as follows.

INIT =⇒ P

T R∧ I1∧·· ·∧ In∧P =⇒ P′
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Naively, we could start with an algorithm similar to Fin-
isher, but use the VCs above instead of Finisher’s. However,
this would result in a highly inefficient search since as stated,
the invariant-finding task permits many tautological solutions,
such as true or Ii. More generally, if P is any predicate such
that I1 ∧ ·· · ∧ In =⇒ P, then P will be invariant, but we do
not actually learn anything about the protocol by finding P:
P does not rule out any states which were not ruled out by
the Ii. We call such a P a redundant invariant with respect
to I1∧·· ·∧ In. For example, ∀x. f (x)∨g(x) is redundant with
respect to ∀x. f (x). As the number of terms in our search space
increases, the number of redundant invariants increases expo-
nentially. Furthermore, since any redundant invariant is, in
fact, inductive, it will always pass our counterexample filters,
guaranteeing an expensive VC check for each.

We devised two ways to cope with redundant invariants.
First, we maintain a set indInv of non-redundant invariants,
and whenever we find a new invariant, we explicitly check
whether it is redundant with indInv. Second, we also track
allInv, i.e., all invariants we find—including the redundant
ones—and use these to syntactically filter future candidates
by performing quick checks for logical implication using a
subroutine FastImplies(I,P) described in §4.4. These checks
are vastly cheaper than SMT calls.

As described thus far, Breadth works without any knowl-
edge of the safety condition S that we aim to prove about our
system. However, we observe that we will eventually need S
to be an invariant of the system, so we strengthen the second
VC above to assume S is true in the initial state.

T R∧ I1∧·· ·∧ In∧S∧P =⇒ P′

Algorithm 3 brings all of this together. This algorithm finds
exactly the invariants from the space B which are invariant
with respect to the original input invariants. More precisely,
if P ∈ B is invariant with respect to the inputs, then Breadth
will output a set of predicates whose conjunction implies P.

3.4 SWISS Coverage

SWISS is guaranteed to prove a safety condition S as long as
the system invariant conforms to the following form.
Claim 1 Solve(T ,S,B,F ) will always succeed at proving
the conjectured safety condition S provided there exist invari-
ants I1, · · · , In such that:

• Ii ∈ B for 1≤ j ≤ n−1.
• In ∈ F .
• I1∧ . . .∧ I j is inductive relative to S for 1≤ j ≤ n−1.
• I1∧ . . .∧ In∧S is inductive.

The claim follows from inspection of Algorithms 1-3 and the
fact that our counterexample and implication filters will never
eliminate a valid invariant.

4 Making Invariant Exploration Scale
While the algorithms described in §3 would theoretically suf-
fice to find invariants, implemented naively they are impracti-

cally slow. Hence, we present crucial steps we take to reduce
the search space (§4.1-§4.4) and optimize the overall process
(§4.5). For the sake of completeness, we also present three
optimizations that our evaluation has shown do not improve
performance in this domain (Appendix A).

4.1 Exploiting User Guidance & Candidate Symmetries

The Finisher and Breadth algorithms each take as input a
space of candidate invariants to explore (§4.1.1). These spaces
often contain many invariants that are identical modulo sym-
metries, so symmetry pruning is critical (§4.1.2).

4.1.1 Defining Candidate Spaces

SWISS searches for invariants based on invariant templates.
Intuitively, a template defines the rough shape of a class of in-
variants (e.g., the number and types of the quantified variables,
and a bound on the formula’s size).

By default, SWISS automatically defines invariant templates
based on the protocol description and the safety condition,
as well as user-supplied upper bounds on the formula size.
SWISS then enumerates all template spaces within these con-
straints, and the search space B or F is defined as the union
of these spaces. Finisher prioritizes these templates in order
of increasing size. Thus, if a small invariant exists, Finisher
will find it without having to search the entire space.

For many protocols, this fully automatic approach suffices
to produce a safety proof. For protocols where this auto-
mated search runs slower than desired, the user can specify
a particular template T , rather than have SWISS enumerate
all templates. As §5.3.3 demonstrates, such user guidance
can dramatically speed up the search process, even if the user
guesses a few incorrect templates before the right one.

More formally, every candidate invariant P that we consider
is a sequence of quantifiers followed by a quantifier-free ex-
pression E. The expression E is a tree of conjunctions and
disjunctions of terms C, expressed over values V , which is
either a name and a type (e.g., x : t), or a function application.

V ::= x : t | f (V1, . . . ,Vn)
C ::= V1 =V2 | ¬C | r(V1, . . . ,Vn)
E ::= C | E1∧·· ·∧En | E1∨·· ·∨En
P ::= E | ∀x : t. P | ∃x : t. P

We specify a set of candidate formulas by a triple (T,k,d).
The template T is simply a formula P with a wild-
card for the quantifier-free expression E. We define
TemplateSpace(T,k,d) to be the set of formulas that match
T when the wildcard is instantiated with any quantifier-free
expression E that has at most k terms and a conjunction-
disjunction tree of depth at most d. For instance, an ex-
pression of the form c1 ∨ c2 ∨ c3 ∨ c4 has depth 1, while
(c1∨ c2)∧ (c3∨ c4) has depth 2.

Hence, a valid candidate space might be defined by,

T = ∀r : round,v : value. ∃q : quorum. ∀n1,n2 : node. ∗
with k = 3, and d = 1, which would contain all invariants with
the quantifiers in T and disjunctions of up to 3 terms. SWISS
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expects the user to specify the maximum values of k, d, m
(the maximum total number of quantified variables) and q (the
maximum number of existentially quantified variables). The
user must also specify a quantifier nesting order for the types
defined by the protocols: a fixed nesting order is required so
that the resulting verification conditions remain in EPR.

To enumerate the formulas in TemplateSpace(T,k,d), we
first enumerate a set of possible terms, C , and then arrange
them in every possible tree shape. While succinct to describe,
the size of the space grows exponentially, so we take steps to
prune the space as rapidly as possible.

4.1.2 Symmetry-Breaking

As defined above, a candidate space contains many logically
equivalent candidates, such as:

∀r1,r2 : round . leq(r1,r2)∨geq(r1,r2)

∀r1,r2 : round . geq(r1,r2)∨ leq(r1,r2)

∀r1,r2 : round . geq(r2,r1)∨ leq(r2,r1)

all identical up to term reordering and variable renaming.
When enumerating candidate formulas, SWISS aims to only

consider one representative from each class of identical can-
didates. However, checking for such logical equivalence via
SMT calls would be prohibitively expensive. Hence, we use a
sound set of syntactic constraints to break these symmetries
far more efficiently.

Specifically, SWISS assigns an arbitrary ordering to each
possible base term (e.g., leq) and will only produce formulas
where, within any conjunction or disjunction, the terms are in
increasing order. SWISS also produces formulas such that for
any set of quantified variables which are interchangeable (e.g.,
r1 and r2 in the example above), their first appearances are in
increasing order of quantifier nesting index.

These two steps efficiently break symmetries arising from
term ordering and variable permutation. In practice, they
reduce the size of the search space by over two orders of
magnitude (§5).

4.2 Filtering Based on Counterexamples

As explained in §2.4, when a candidate invariant P fails a verifi-
cation condition, we can extract a counterexample, specifically
a concrete model where the condition failed. For example,
if INIT =⇒ P fails to hold, then we can extract a concrete
model M such that M |= INIT ∧¬P; i.e., the initial conditions
hold for M but P does not. Since the initial conditions hold on
M, if any other formula P′ fails to hold for M, then it cannot
be an invariant either. SWISS exploits this observation by re-
membering the models from failed VC checks and using those
models to quickly rule out future candidates.

More technically, we define a counterexample filter (cex) as
a model or a pair of models which demonstrate that a given
candidate P fails to be an inductive invariant. We consider
three types of counterexample filters:

cex ::= True(M) | False(M) | Transition(M,M′)

A candidate P passes a filter cex if one of the following holds.
• cex = True(M) and M |= P; i.e., all valid invariants

should evaluate to true on M.
• cex = False(M) and M |= ¬P.
• cex = Transition(M,M′) and (M,M′) |= P =⇒ P′.

The last is equivalent to: P passes False(M) or True(M′).
We construct counterexample filters based on the model(s)

returned when a candidate P fails a VC check. The specific
type of filter constructed depends on which type of check
fails. Our construction guarantees that (i) P does not pass
the filter cex, and (ii) any formula P′ which does pass the
same verification condition will pass the filter cex. The three
possible constructions are as follows.

• A failed verification condition of the form A =⇒ P
yields a model M such that M |= A∧¬P, so we produce
a counterexample filter True(M). In other words, P does
not evaluate to true on M; but any valid invariant should.

• A failed verification condition of the form A∧P =⇒ B′

yields models M and M′ such that (M,M′) |= A∧P∧¬B′,
which gives a counterexample filter False(M) (since the
model represents a state M that P failed to reject and that
all valid invariants ought to reject).

• A failed verification condition of the form A∧P =⇒ P′

yields models M and M′ such that (M,M′) |= A∧P∧¬P′,
which gives a counterexample filter Transition(M,M′).

Essentially, these counterexample filters allow us to learn
from each type of failed induction check.
Efficient Implementation. Counterexample filtering is only
useful if we can apply our filters faster than executing the
original VC checks. Hence, whenever we add a new model
M to our set of counterexample filters, we precompute the
evaluation of each term c ∈ C on M. C is the set of base
terms (§4.1.1) produced for every possible instantiation of the
quantifier variables in the template T within the model M. The
evaluations are saved in a bitstring, so when we encounter
a new candidate Q, the evaluation of Q on M is computed
quickly with bitwise operations. As a result, counterexample
filters are orders of magnitude faster than VC checks (§5).

4.3 Checking Verification Conditions

We encode our verification conditions into SMT formulas in
a manner similar to prior work [42]. The encoding ensures
that it is decidable to evaluate the validity of the formulas.
Our encoding conforms to the standardized smtlib2 format,
although for better performance, our implementation includes
the SMT solver as a library so that it can directly invoke its
API rather than communicating via files.

In practice, we find that thanks to the community’s large
effort invested in optimizing SMT solvers, our validity queries
are not just decidable, but rapidly decidable, typically in tens
of milliseconds. However, our initial experiments found occa-
sional outliers that consumed minutes, or more. Since a SWISS
run may perform thousands of SMT calls, these outliers be-
come an issue. After some iteration, we settled on a routine
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where we retry a problem instance with a different SMT solver
if our first attempt exceeds a given time limit (§5.1). If the
SMT instance continues to time out, we skip the invariant
in question. While not a perfect solution, we found that this
routine satisfactorily avoids stalling SWISS’s execution.

4.4 Filtering Redundant Invariants

Since the Breadth algorithm searches rather indiscriminately
for any possible invariant, it can easily waste time on redun-
dant invariants, i.e., invariants already implied by previously
established invariants.

To efficiently prune many such redundant invariants, SWISS
includes a rapid FastImplies filter to see if an existing in-
variant Q already implies a candidate P. For correctness,
FastImplies(Q,P) can return true only when Q =⇒ P. Our
implementation of FastImplies(Q,P) always detects the case
where Q and P can be written as,

Q = ∀∗∃∗ . . . (a1∨·· ·∨a j)

P = ∀∗∃∗ . . . (b1∨·· ·∨bk)

where a1, . . . ,a j is a subsequence of b1, . . . ,bk up to variable
renaming. This condition certainly ensures that Q =⇒ P,
meaning P is redundant if Q is already known to be invariant.
Our implementation also has limited support for substituting
universally-quantified variables for existential ones.
Efficient Implementation. To implement this filter effi-
ciently, we store a set of sequences representing known invari-
ants and query if any sequence in this set is a subsequence of
a candidate sequence. We use a trie [10] for efficient queries.

4.5 Additional Optimizations

4.5.1 Minimizing Models

When extracting a counterexample from a failed VC check,
we can either take the first model produced by the SMT solver,
whatever it may be, or we can try to make the model as small
as possible. Smaller models are faster to evaluate with our
filters, but come at the cost of additional SMT queries.

In our minimal-models optimization, we always attempt to
find a minimal model that satisfies a given SMT query, i.e., a
model where there is no other satisfying model with a smaller
domain. To bound the cost of the SMT queries made to check
minimality, we apply an aggressive time limit to each query.

This is an essential optimization for complex protocols;
without it, SWISS takes significantly longer (§5.3.5).

4.5.2 Parallelism

Since our algorithm is based on exhaustive search, we expect
it to be parallelizable. To parallelize across n threads we do
the following: for each run of either the Breadth or Finisher
algorithm, we split the space (B or F ) into n parts, each
randomly permuted. The random permutation attempts to
ensure that each thread has a roughly equal amount of work.
We then run our algorithm on each partition independently
and combine the results. In the future, we plan to explore a

more complex approach in which the threads communicate
at a finer granularity, e.g., sharing counterexample filters and
invariants as they are discovered.

4.6 Failed Optimizations

In the interest of full disclosure, and to save others unnecessary
work, in Appendix A we briefly summarize three optimizations
we implemented and evaluated, only to find that they provide
little benefit or actively hurt performance.

5 Evaluation
Our evaluation seeks to answer two key questions:

• How does SWISS compare to prior work (§5.2)?
• How effective are SWISS’s various optimizations (§5.3)?

5.1 Experimental Setup and Implementation Details

Benchmark Suite. To evaluate SWISS, we apply it to a test
suite of well-established protocols from three sources: (i) the
I4 benchmarks [34], (ii) the benchmarks from Koenig et al.’s
work on first-order-logic separators [27] (henceforth, FOL),
and (iii) six Paxos variants developed by Padon et al. [41].
Setup. All experiments are conducted on 8-core machines
with Intel i9-9900K CPU processors at 3.60GHz, with 125GB
of memory, running Ubuntu 19.10, and using a timeout of
6 hours. Unless specified, we run SWISS with 8 threads us-
ing automatic template generation (§4.1.1) and the following
optimizations from §4: (i) symmetry breaking, (ii) cex filter-
ing, (iii) hybrid SMT solvers, (iv) filtering redundant invari-
ants, (v) model minimization, and (vi) parallelism. For tem-
plate auto-generation, by default we use parameters (d,k,q,m)
(§4.1.1) of (1,3,1,5) for Breadth and (2,6,1,6) for Finisher,

However, these choices were not ideal for all benchmarks.
In particular, if we found that a benchmark completed in under
six hours without proving the safety condition, we enlarged
the F space by increasing k, and then increasing q. On the
other hand, if a benchmark timed out after six hours without
completing the breadth phase, we made the B space smaller
by decreasing its parameters. See §5.2.1.
Implementation. We implement SWISS in approximately
14,000 lines of C++ code. To check the verification con-
ditions, we use the Z3 SMT solver [11] version 4.8.8 with
default settings. If Z3 times out after 45 seconds, then we
use the CVC4 [2] SMT solver version 1.8-prerelease with
the --finite-model-find option, an option tuned for
finding finite models [44]. We found that for some satisfiable
instances, Z3 would often take a very long time to return a
model, whereas CVC4, with this specific option, was much
more efficient. When applying model minimization, we set a
time limit of 45 seconds; if the time limit is reached, we use
the current partially minimized model.

5.2 Top-Level Protocol Results

Table 1 summarizes the results of running SWISS on our bench-
mark suite. It also compares SWISS’s performance with that
of the two most closely related systems (see §6 for details),
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Source Benchmark ∃? I4 [34] FOL [27] SWISS Partial tB tF nB mn mn−1

§2.2 sdl 10 s. 7 s. 5 s. 2 s. 2 s. 2 5 2

[34]

ring-election 3 s. 16 s. 11 s. 11 s. - 3 3 3
learning-switch-ternary 8 s. 195 s. 195 s. - 2 3 3
lock-server-sync 0.1 s. 1 s. 0.2 s. 0.2 s. - 1 2
two-phase-commit 2 s. 15 s. 6 s. 6 s. - 1 3 3
chain 17 s. (6 / 7) 7 4
chord 506 s. 7 s. (7 / 10) 6 4
distributed-lock 131 s. (1 / 4) 12 12

[27]

toy-consensus-forall 4 s. 3 s. 3 s. - 2 3 3
consensus-forall 1047 s. 29 s. 29 s. - 3 3 3
consensus-wo-decide 23 s. 18 s. 18 s. - 3 3 3
learning-switch-quad 959 s. 223 s. 736 s. 2 4 4
lock-server-async 0.4 s. 2 s. 3684 s. 1 s. 3682 s. 1 8
sharded-kv 1.0 s. 7 s. 4024 s. 2 s. 4021 s. 2 8 2
ticket 60 s. (5 / 9) 6 6
toy-consensus-epr X 22 s. 2 s. 2 s. - 2 3 3
consensus-epr X 377 s. 20 s. 20 s. - 3 3 3
client-server-ae X 303 s. 3 s. 2 s. 0.5 s. 2 3
client-server-db-ae X 2739 s. 24 s. 21 s. 2 s. 4 3 3
sharded-kv-no-lost-keys X 1 s. 0.9 s. 0.9 s. - 1 2
hybrid-reliable-broadcast X 791 s. (1 / 7) 7 6

[41]

paxos X 15950 s. 803 s. 15146 s. 3 6 3
flexible-paxos X 18232 s. 239 s. 17993 s. 3 6 3
multi-paxos X (6 / 11) 6 4
multi-paxos∗ X 984 s. 589 s. 395 s. 3 6 4
fast-paxos X (8 / 12) 8 8
stoppable-paxos X (6 / 14) 6 6
vertical-paxos X (14 / 17) 16 6

Table 1: Comparison with Prior Work. ∃? indicates that the human-written invariant uses an existential. The time for SWISS
is broken down into the time for Breadth (tB) and Finisher (tF ), with the latter omitted when synthesis succeeds during the
Breadth phase. nB denotes number of iterations of Breadth. Each SWISS result is the median of five runs. For benchmarks
where SWISS times out after 6 hours, we report its partial success (§5.2.2) instead of time. Shaded boxes indicate the system did
not produce any invariants. In the multi-paxos* benchmark, the user provides a correct template for SWISS as guidance. The
columns mn and mn−1, discussed in §5.3.4, summarize stats related to the sizes of invariants.

namely the I4 [34] and FOL [27] tools. Below, we first discuss
the comparative results, followed by SWISS-specific analysis.

5.2.1 Comparative Results

We analyze our protocol results by bucketing them into coarse-
grained categories. Note that I4 can only generate invariants
containing universal quantifiers, and hence cannot succeed for
benchmarks that require existentially quantified invariants.
Paxos Variants. Unlike prior work, SWISS automatically
finds all of the invariants for Paxos and Flexible Paxos, which
were previously painstakingly constructed by hand [41]. Fur-
thermore, it succeeds at Multi-Paxos if the user provides the
correct templates; however, when we attempted to use the
automatically-enumerated templates, we found that Breadth
does not complete in time. All three protocols require Finisher
to find an invariant with six terms and an existential.

Unfortunately, neither I4, FOL, nor SWISS can prove the
safety of Fast Paxos [30], Stoppable Paxos [35], or Vertical

Paxos [32]. Among the known, handwritten invariants, Fast
Paxos and Vertical Paxos each have two 8-term invariants;
Stoppable Paxos has three 6-term invariants. SWISS cannot
currently synthesize invariants this large—indeed, as it stands,
it would need several orders of magnitude more compute
time to handle even a single 8-term invariant—and we did
not observe it finding equivalent, smaller invariants for these
protocols. However, Table 1 shows that SWISS is at least
able to synthesize partial invariants equivalent to many of the
handwritten ones (discussed in more detail below — §5.2.2).

Finally, we note one interesting occurrence during our pre-
liminary testing: we initially found that SWISS succeeded on
Fast Paxos far too quickly and with invariants that looked at a
glance to be far too strong. This allowed us to identify a typo
in the spec which caused an action to never be enabled.
Mutual-Exclusion Protocols. Protocols such as sdl,
distributed-lock, lock-server-sync, lock-server-async, and
sharded-kv have safety conditions asserting mutual-exclusion
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properties, such as those of locks. The invariants for these pro-
tocols tend to be large conjuncts of smaller, mutually inductive
invariants. SWISS struggles with these, since it is forced to
discover the entire collection at once, as none are inductive
individually. For some, Finisher succeeds by inferring all of
these mutually inductive invariants as a single large invariant.
For sharded-kv and lock-server-async, we needed to increase
the maximum value of k from our default configuration. For
distributed-lock, the invariant was simply too large for SWISS
to find. FOL was also unable to solve this benchmark, al-
though I4 solves it quite handily, as it was able to infer the
mutually inductive invariants on a small finite instance of the
problem. Finally, for sharded-kv-no-lost-keys we needed to
use q = 2 to allow more existentials.
Learning Switch. We have two different benchmarks called
“learning-switch,” one from I4 and one from FOL. We found
that unlike I4 and FOL, SWISS succeeds on learning-switch-
quad quite handily. In learning-switch-ternary, we found that
Breadth takes far too long in the default configuration, due in
part to a large number of redundant invariants not filtered by
our FastImplies test and thus requiring SMT calls to identify
as redundant. We reduced the size of B by configuring q =
0 (i.e., searching for universal invariants only) for this one
benchmark, allowing SWISS to also be able to complete it
efficiently.

5.2.2 SWISS-Specific Analysis

Invariants. In some cases, SWISS uncovered invariants that
were simpler than the ones written by the original researchers.
For instance, for the ring-election protocol, SWISS’s Breadth
algorithm identifies three 3-term invariants (9 terms total)
similar to the ones from prior work [42]; however, if we run
Finisher on its own rather than the full SWISS algorithm, then
it instead generates a single 5-term inductive invariant. For
the Paxos protocol, we initially expected that the Breadth
algorithm would need to run with k = 5; however, we found
that SWISS succeeded even with Breadth at k = 3. This shows
that mechanized search can find simpler invariants that may
be missed by trained researchers.
Partial Progress. When an execution of SWISS exceeds its
time limit, it still generates many invariants which may be
useful. To measure how successful this “partial progress” is,
we computed how many of the handwritten invariants SWISS
finds. More precisely, we count how many of these invariants
are logical implications of SWISS’s invariants. These results
are shown in Table 1. Notice that in many cases, SWISS finds
a majority of the invariants; e.g., for our largest benchmark,
Vertical Paxos, SWISS finds 79%. Furthermore, for the chain
benchmark, which has two safety conditions (one for lineariz-
ability and one for atomicity), SWISS solves the latter.

We do not report any partially solved invariants for the other
tools in our comparison. For one, the IC3 approach does not
immediately allow extraction of any inductive invariants; a
partially-completed IC3 execution would provide a different

kind of information: constraints on the possible states of a
system after a finite number of transitions. In the case of I4, we
did not find any case where it constructed a nontrivial inductive
invariant for any benchmark where it did not succeed.

5.3 Understanding SWISS

To better understand SWISS, we evaluate the effectiveness of
our various design choices.

5.3.1 The Utility of Combining Breadth and Finisher

In §3, we argue that Breadth and Finisher target different
kinds of invariants and hence are more effective when used
together. To validate this claim, we re-ran SWISS on our
benchmark suite, first using only Breadth, and then using
only Finisher. In both cases, we limited their execution time
to that taken by the full SWISS algorithm.

Compared to the 19 benchmarks solved by the full SWISS
algorithm, the Breadth algorithm alone solves only 10, while
Finisher alone solves only 7.

5.3.2 Execution Times of Breadth Versus Finisher

In Table 1, Breadth is fairly quick, always less than 15 min-
utes, compared to Finisher which can vary from quite quick
(a few seconds) to several hours. In fact, this is not an accident
and follows directly from the fact that the space B is chosen
to be small, whereas Finisher is designed to keep going until
it finds a solution or times out. Thus, the runtime of Finisher
depends on how large that solution turns out to be.

5.3.3 Impact of User Guidance

While SWISS is designed to automatically search through the
space of invariant templates, users can provide more specific
guidance via one or more templates. For example, for Paxos,
considering the Finisher portion, the user might suggest a
template like (1) or (2) in Table 2. Compared to searching
the automatically generated space of templates, this guidance
cuts the search space by 75% and as a result, completes in 20
minutes, a 13.4× speedup.

Of course, the user may erroneously suggest a template not
containing any useful invariant. To evaluate the impact of such
a mistake, we ran SWISS on a template (3) of comparable size
to the “correct” templates, as well as some which are much
smaller (4-6). The results suggest the user can afford to make
some incorrect guesses and still outperform the full auto mode.

Finally, template (7) is the largest template generated auto-
matically with our default configuration. It takes significantly
longer, indicating the importance of exploring templates in
increasing size order when using auto mode.

5.3.4 Is it a Small World?

Our Small World Hypothesis holds that many of the protocols
we care about can be solved using a sequence of invariants
I1, . . . , In, which are individually concise. We analyze this
hypothesis by measuring the size of the invariants in each of
our benchmark protocols. This, in turn, helps us understand
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# Template Inv? Size Time (s)

1 ∀r1,r2 : round,v1,v2 : value,q1 : quorum. ∃n1 : node. ∗ X 232,460,599,445 2036
2 ∀r1,r2 : round,v1,v2 : value. ∃q1 : quorum. ∀n1 : node. ∗ X 232,460,599,445 4072

3 ∀r1,r2 : round,v1,v2 : value,q1 : quorum. ∀n1 : node. ∗ 232,460,599,445 3547
4 ∀r1 : round,v1,v2,v3 : value. ∃n1 : node. ∗ 26,863,311,982 408
5 ∀r1 : round,v1 : value,n1,n2,n3,n4 : node. ∗ 76,397,976,796 1015
6 ∀r1,r2 : round,v1 : value,q1,q2 : quorum. ∃n1 : node. ∗ 39,834,946,595 557
7 ∀r1,r2 : round,v1,v2 : value,n1,n2 : node. ∗ 2,621,795,213,086 47231

Table 2: User-Provided Templates. Experiments running Finisher on Paxos with the given template as input. Each experiment
starts with many invariants provided as input, simulating the scenario that Breadth has already completed. The ‘Inv?’ column
indicates whether the template contains an invariant that proves the safety condition. Time is given in seconds. Each experiment
is run to completion, exploring the entire space, even if an invariant is found.

which protocols SWISS will likely succeed at by the degree to
which they meet the Small World Hypothesis.

For a given protocol, we examine an invariant I = I1∧·· ·∧
In which proves the desired safety condition, chosen so that
I1∧ . . .∧ I j is inductive relative to the safety condition (as in
Claim 1). The mn column in Table 1 gives the maximum size
of any invariant out of I1, . . . , In. Here, the “size” of a predicate
is measured as its number of terms.

We do not claim that our numbers are the minimal possible—
we simply use the smallest out of any I that we know of. These
may be from invariants synthesized by SWISS itself; in other
cases, we use human-determined invariants.

We can see that 25 out of our 27 benchmarks have mn ≤ 8,
and 22 of them have even fewer. There were two excep-
tions, distributed-lock (mn = 12) and vertical-paxos (mn = 16).
These two invariants are much bigger than any single invariant
we have seen SWISS synthesize.

However, it may be worth noting that these larger invariants
are conjuncts of smaller, mutually inductive invariants. For
example, the 16-term invariant of vertical-paxos is actually the
conjunct of two 8-term invariants (although these invariants
are still on the larger side). Thus, these protocols would score
much better on a weaker Small World Hypothesis, one where
mutual invariants were counted separately. Other approaches
may be able to take advantage of this.

To more fully understand SWISS’s behavior, we also mea-
sure mn−1, the maximum number of terms among I1, . . . , In−1.
This statistic is interesting here because for SWISS to succeed
in its current form, these n−1 invariants must be in B .

To rough approximation, we see that SWISS can succeed
approximately when mn ≤ 6 and mn−1 ≤ 3. In some cases,
SWISS does go beyond: some benchmarks succeed with up to
mn = 8, and SWISS can solve multi-paxos (where mn−1 = 4)
if the search space is restricted in other ways.

5.3.5 Impact of Filtering

Table 3 shows the impact of each of our filtering stages on
Paxos. Counterexample filtering drastically decreases the
number of candidates which require an SMT call (i.e., those
remaining after FastImplies). However, a vast number of

candidates (the “Symmetries” column) must be processed by
a counterexample-filter. How fast is such filtering?

Baseline Sym. Cex filters FastImpl Inv.
B 820 ·106 3 ·106 911,275 2,250 801
F 99 ·1012 232 ·109 155 155 5

Table 3: Winnowing the Paxos Search Space. Number of
candidate predicates that remain after a given SWISS feature is
applied. Runs are with a single thread over a single template.

To evaluate filtering efficiency, we measure the total time
spent on filtering versus SMT inductivity checks in a Paxos
benchmark. We find that Finisher (using Template (1) of Ta-
ble 2) performs 155 inductivity checks via SMT. The average
SMT call takes 96.5 ms, with a median of 7 ms and a 95th per-
centile of 55 ms. In contrast, filtering a single candidate takes
74 nanoseconds on average. Notably, both measures are im-
portant characteristics of SWISS, as some workloads are domi-
nated by filtering and others by SMT calls (Appendix B.2).

5.3.6 Additional Analysis

See Appendix B for further analysis of SWISS’s performance,
e.g., the impact of optimizations, parallelism, and SMT calls.

6 Related Work
6.1 Verifying Distributed Systems

The research community has long recognized the challenges
of designing correct distributed systems. Manually written
proofs [25, 31] and model checking [23, 26, 56] increase as-
surance, but struggle with practical distributed systems [4].

Recent work applies general-purpose software-verification
tools to the verification of distributed systems [21, 46, 55].
These tools offer flexibility at the price of substantial human
effort. For example, verifying Raft required over 50,000 lines
of Coq proof for the protocol and its 520-line implementa-
tion [55], and Hawblitzel et al. used 12,000 lines of proof for
the safety and liveness proofs of their Paxos protocol [21].

These human costs motivate the search for domain-specific
languages (DSLs) and tools that reduce proof effort by re-
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stricting the class of encodable systems [12, 13, 36, 53]. For
example, tools based on the heard-of model [12, 13, 36] need
a run-time system to bridge the gap between an asynchronous
network and the synchronous semantics assumed by the verifi-
cation tool, which can lead to performance bottlenecks. Simi-
larly, pretend synchrony [53] precludes classic optimizations,
e.g., request batching in Paxos implementations.

All the works above, even the DSLs, rely on the developer
to intuit invariants, which can be hard even for experienced
researchers [34]. Recent work tries to reduce this cost via a re-
stricted logic (EPR – §2.4) which makes invariant checking de-
cidable; i.e., given a correct invariant, no further human work
is needed. Even within EPR, finding the invariant remains un-
decidable [40], so Padon et al.’s IVy tool [42] interactively aids
the developer: IVy iteratively checks if a candidate invariant is
inductive. If not, IVy presents a concrete counterexample, and
the developer strengthens the candidate to eliminate it. This
repeats until she derives an inductive invariant.

In contrast, Ma et al.’s I4 tool [34] aims to be fully auto-
matic. I4 first runs a custom model checker [19] on an artifi-
cially small example of the protocol (e.g., with two nodes) to
produce an invariant for the small system. I4 then attempts
to generalize the invariant to the unbounded setting. When it
succeeds, I4 requires no human intervention. In practice, Ma
et al. report manually specifying concrete bounds for all of
their benchmarks (to avoid exhaustive parameter searches) and
concretizations of certain variables for several benchmarks.
Ultimately, I4 is limited by the abilities of its model checker,
which does not support existential quantifiers (which §5.2
shows rules out a wide swath of protocols), and is unable to
scale to more complex protocols like Paxos. In such cases, the
developer is left with little recourse. However, I4 is frequently
faster than SWISS and able to synthesize larger invariants for
protocols where universally quantified invariants exist.

In recent work, Koenig et al. (FOL) [27] develop an algo-
rithm capable of synthesizing invariants containing existentials.
Their algorithm relies on the IC3/PDR algorithm [6, 14] for
constructing invariants incrementally. Like SWISS, it itera-
tively produces counterexamples, but it uses those counterex-
amples as constraints in a SAT encoding of predicates to be
synthesized. SWISS verifies protocols, like Paxos, that FOL
does not and verifies some faster than FOL. The reverse is also
true, suggesting some complementarity of the approaches.

6.2 General-Purpose Invariant Synthesis

Extensive research [7–9, 15, 17, 18, 20, 37, 39, 49, 57] stud-
ies loop-invariant inference for proving program correctness,
but this remains challenging. Most approaches are limited
to single-loop programs; only a few handle multiple loops
or existential invariants. Approaches include abstract inter-
pretation [8], interpolation [37], IC3 [16, 17], templates and
constraint solvers [20], counterexample-guided invariant gen-
eration (CEGIR) [18, 39, 47], trace analysis [9, 15], and ma-
chine learning [48, 49, 57].

More closely related work uses templates [7, 20] to restrict
the search to invariants of a given shape. In contrast to these
approaches, we automatically construct a large set of tem-
plates and search for invariants of larger sizes. CEGIR ap-
proaches [18, 39, 47] use enumeration and exploit the fact
that guessing a candidate and checking if it is invariant is eas-
ier than inferring a loop invariant directly from code. They
often employ dynamic analyses to infer candidates from exe-
cution traces and use a verifier to check invariant validity. The
idea of learning from counterexamples has also been applied
to program synthesis in the form of counterexample-guided
inductive synthesis (CEGIS) [51], where the synthesizer gener-
ates a candidate program and the verifier uses the failed cases
to prune the search space. SWISS’s approach is inspired by
techniques from search-based program synthesis [1] and the
CEGIS framework. Although CEGIS is a general framework,
it cannot be used as a black-box since it requires a custom syn-
thesizer, verifier, and learner for each domain. SWISS differs
from prior approaches in how it uses the counterexamples to
prune the search space (§4.2) and how it applies a CEGIS-style
approach to infer more complex invariants than prior work.

Program sketching [50] allows a programmer to sketch a
program, i.e., write a program with “holes.” A synthesizer fills
the holes such that a specification is satisfied. In SWISS, the
user can similarly provide templates to restrict the search, but
even if such a template is not provided, SWISS can automati-
cally generate a set of templates and search all of them.

7 Conclusions and Future Work
We explore the hypothesis that the safety of most distributed
systems can be proven via relatively small invariants (or con-
junctions thereof), using our system SWISS, which incorpo-
rates novel optimizations to efficiently search the space of
candidate invariants. We find that in many cases our hypothe-
sis holds, and SWISS is able to automatically prove their safety,
including several, such as Paxos, beyond the reach of prior
work. Our results leave open the question of inferring large,
mutually inductive invariants. They also illustrate that SWISS
and its most recent predecessors often have complementary
coverage of the benchmarks. Exploring ways to combine the
strengths of each is an intriguing direction for future work.
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A Failed Optimizations
In the interest of full disclosure, and to save others unnec-
essary work, we briefly summarize three optimizations we
implemented and evaluated, only to find that they provide
little benefit or actively hurt performance.

A.1 Formula Synthesis

SWISS’s current implementation explicitly enumerates and
evaluates candidate invariants. Initially, however, we adopted
a strategy from a prior system, MemSynth [5], which synthe-
sizes memory models from a small collection of examples.
Instead of explicitly enumerating formulas, MemSynth en-
codes the desired shape of candidate formulas as constraints
on its SMT queries. In our context, this means creating an
SMT query that says, “Find a formula that satisfies this tem-
plate and complies with our accumulated counterexamples.”

However, our early experiments showed that synthesizing
the formula via a solver was considerably slower than our com-
bination of a custom enumerator and counterexample filters.

A.2 Bounded Model Checking

Prior work on finding invariants for distributed systems [42],
found some benefit from using bounded model checking to
try to quickly rule out candidate invariants. In our context,
this means checking not just the condition INIT =⇒ P, but
whether there are any violations of P in states reachable after
taking a fixed number of steps from an initial state. If such a
violation existed on a model M, we can use the counterexample
filter True(M). Likewise, to build False filters, we consider
states a fixed number of steps away from violating safety.

The hypothesis for this optimization is that it would produce
more and “higher quality” filters to rule out future candidates.
To pay off, these savings must offset the cost of the additional
SMT calls that compute the bounded model checks. Sadly, this
optimization rarely boosts performance significantly (§5.3.5).

A.3 Aggressively Accumulating Invariants

As it executes, Breadth finds predicates that are invariant with
respect to the input invariants I1, . . . , In; these new invariants
are fed into the next iteration of Breadth. This suggests an
obvious improvement: treat newly found invariants as input in-
variants immediately in order to uncover even more invariants
than the ones Breadth is guaranteed to find, leading to fewer
total loops. We call this variation BreadthAccumulative.

However, this variant introduces several complications.
Most critically, it interferes with the FastImplies optimization.
For example, suppose we process predicates f ,g,h1, . . . ,hn
in order and (i) g is invariant; (ii) f is invariant with
respect to g; and (iii) FastImplies( f ,hi) holds for all i.
BreadthAccumulative, would pass over f (not invariant),
then find and add g, causing all hi to become invariant.
Since the hi are not filtered out by the FastImplies check,
BreadthAccumulative’s aggressive addition of the hi causes
the number of invariants to explode. In contrast, Breadth

Figure 5: Optimization Impact. We evaluate our model-
minimization and bounded-model-checking optimizations. To
save time, these experiments use pre-specified templates rather
than template auto-generation. Note the log scale of the y-axis.

would only add g at the end; then in the next call to Breadth,
f would be added to allInv, excluding the hi via FastImplies.

To prevent BreadthAccumulative from adding such spuri-
ous invariants, we added a strengthening step, where the first
hi found would be strengthened to f . However, strengthening
comes at a cost, and in the end, we found the BreadthAccu-
mulative optimization to be unhelpful (Figure B.2).

B Additional Evaluation
In this section, we provide some additional measurements of
the impact of SWISS’s design decisions.

B.1 Impact of Optimizations

Model Minimization. To evaluate the effectiveness of model
minimization (§A.2), we measure several benchmarks with
and without it (Figure 5). While it adds some overhead for
simple protocols, it helps significantly for more complex pro-
tocols; in the best case, we found that it improved the Flexible-
Paxos experiment by 1.6×.
Bounded Model Checking. For our BMC variant (§A.2), we
again ran several experiments with and without it (Figure 5).
However, the results show that the cost of the required SMT
calls was not sufficiently offset by gains from “higher quality”
filters. Hence we disable it in SWISS’s default configuration.

B.2 Impact of Parallelism

To evaluate our parallelism strategy (§4.5.2), we measure run-
times with varying numbers of threads, studying Breadth and
Finisher independently. For each run, we break down the
running time of the longest-running thread in each iteration to
see which components of the algorithm parallelize well. We
run our experiments on the Paxos protocol.

For the purposes of this experiment, unlike in standard runs,
we do not terminate the Finisher algorithm when it finds an
invariant which proves the safety condition; instead, we let
it search the entire search space F . This removes variance
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Figure 6: Parallelism. We measure time while vary-
ing the number of threads for Finisher, Breadth and
BreadthAccumulative (§A.3) on Paxos. The top row shows
the overall time, with Breadth broken down by iterations.
Breadth terminates when the last (top) iteration fails to find
any invariant, so it takes one less iteration than shown to
find all invariants Breadth can find. In the bottom row, the
runtimes are broken down into (i) filtering candidates with
counterexamples, (ii) computing counterexamples of non-
invariants, and (iii) processing candidates that are invariant.

from the random ordering of the search space, leading to more
controlled experimental data.

Our results are shown in Figure 6. Finisher’s runtime is
dominated by enumerating and filtering, which splits fairly
evenly across threads. Overall, SWISS on a single template is
2.0× faster with 2 threads than with 1 thread, and it is 8.6×
faster with 8 threads than with 1.

Breadth, meanwhile, does not parallelize as well, since its
runtime is dominated by time spent constructing counterexam-
ple filters via SMT calls, which is essentially a fixed cost per
thread. At best, we saw a speedup of 1.7× with 8 threads.

We also evaluated BreadthAccumulative (§A.3) while
varying the number of threads (Figure 6). Our hypothesis
that BreadthAccumulative would require fewer iterations
was confirmed: each run required only one iteration to find
all invariants in B (plus one iteration to confirm no further
invariants exist). By contrast, Breadth requires two iterations
(plus one) on the same benchmark. However, BreadthAccu-
mulative still performs worse than Breadth due its other costs
(e.g., strengthening – §A.3).

B.3 Hard SMT instances

As described in §4.3, SMT queries are often rapid, but there are
occasional outliers that slow down execution. To measure how
problematic these outliers are, we measured the prevalence of
hard instances, defined as any instance exceeding forty-five
seconds and triggering our retry strategy. In particular, we
measured the fraction of total computation time spent on these

hard instances.
Among all protocols that SWISS was able to solve, this frac-

tion was greatest for the paxos benchmark, which spent 10.2%
of its computation time on hard instances, which accounted
for 0.17% of its SMT instances.

However, among all protocols that SWISS was not able
to solve, this fraction was greatest for the fast-paxos bench-
mark, which spent 98.7% of its computation time on hard
instances, which accounted for 3.7% of its SMT instances. We
currently do not have a good understanding of what makes this
protocol’s SMT instances difficult for SMT solvers, but the
numbers suggest that improvement to SWISS’s SMT strategy
could make it much faster on harder protocols.
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Abstract
The classical conception of software-defined networking
(SDN) is based on an attractive myth: a logically central-
ized controller manages a collection of homogeneous data
planes. In reality, however, SDN control planes must deal
with significant diversity in hardware, drivers, interfaces, and
protocols, all of which contribute to idiosyncratic differences
in forwarding behavior that must be dealt with by hand.

To manage this heterogeneity, we propose Avenir, a synthe-
sis tool that automatically generates control-plane operations
to ensure uniform behavior across a variety of data planes.
Our approach uses counter-example guided inductive synthe-
sis and sketching, adding network-specific optimizations that
exploit domain insights to accelerate the search. We prove
that Avenir’s synthesis algorithm generates correct solutions
and always finds a solution, if one exists. We have built a
prototype implementation of Avenir using OCaml and Z3
and evaluated its performance on realistic scenarios for the
ONOS SDN controller and on a collection of benchmarks
that illustrate the cost of retargeting a control plane from one
pipeline to another. Our evaluation demonstrates that Avenir
can manage data plane heterogeneity with modest overheads.

1 Introduction
The network control plane plays a similar role in modern
systems as a classical OS kernel. It manages resources such
as end-to-end forwarding paths, maps incoming traffic onto
those paths, and enforces policy such as ensuring isolation
between tenants in a public cloud.

One challenge that complicates the design of the control
plane is dealing with data plane heterogeneity. Much as an
OS kernel manages hardware resources for a variety of pe-
ripherals, the network control plane manages hardware re-
sources for a variety of data planes. Most network operators
purchase equipment from multiple manufacturers to avoid
lock-in, which results in devices with heterogeneous feature
sets, and even devices manufactured by the same vendor tend

∗Work performed at Cornell.

to evolve over time. This heterogeneity manifests as com-
plexity throughout the control plane, appearing in low-level
drivers and SDKs, device OSes (e.g., SONiC [42], FBOSS [5],
Stratum [45]), higher-level APIs (e.g., OpenFlow [23], Open-
Config [30], P4Runtime [6]), and even network applications.

As an example, switches based on Broadcom ASICs
such as Trident2, Tomahawk and Qumran-MX all expose
an OpenFlow-like API to SDN controllers (or more precisely,
the OF-DPA [32] abstraction). However, due to differences
in the chips, the API behaves in subtly different ways on
various devices. For instance, the Termination MAC table,
which determines whether to route packets or bridge them,
appears in all three devices but behaves differently on Tri-
dent2/Tomahawk versus Qumran-MX—the former supports
matching on the ingress port while the latter does not. This
discrepancy has led to bugs: before a special case was added
to the ONOS controller, multicast traffic on Qumran-MX de-
vices was flooded out on all ports rather than being forwarded
to the proper multicast groups [34].

This anecdote is just one example of a more pervasive
problem. The OF-DPA API specification [32] is more than
150 pages of English prose. The ONOS development team
took two years to validate Qumran-MX switches and certify
them as production-ready. This effort included multiple itera-
tions of testing and bug fixing to port the Tomahawk driver to
Qumran-MX, even though the devices come from the same
vendor, implement the same protocols, and expose the same
control plane abstractions. In practice, the problem of map-
ping abstract specifications of forwarding behavior down to
real-world targets seems too hard to solve by hand.

Control Plane Synthesis. This paper presents a different
approach to managing data plane diversity. Rather than rely-
ing on careful engineers to manually craft bug-free mappings
from high-level abstractions to low-level targets, we show how
to automate this task using program synthesis. More precisely,
we develop Avenir, a system that automatically translates con-
trol plane operations written against an abstract forwarding
specification (e.g., OF-DPA), into lower-level operations for
a physical target (e.g., Qumran-MX).
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Our approach proceeds in two steps. First, we use the P4
language [4] to model the behavior of the abstract and target
devices. Although P4 was originally designed as a domain-
specific language for programming devices like Barefoot’s
Tofino switch, it is also being used as a specification language
for fixed-function devices (e.g., at Google [47]). For our pur-
poses, what matters is that P4 provides a precise, bit-level
specification of data plane behavior that can be mechanized
using an SMT solver [21]. Hence, when P4 is not sufficiently
expressive to model the pipelines’ behavior, our approach
should still be applicable. For example, one could work with
other packet-processing languages like NPL, eBPF, or ven-
dor SDKs. Second, we use counterexample guided inductive
synthesis (CEGIS) [41] to translate the abstract control plane
operations, such as inserting entries into a match-action table,
into equivalent physical operations. Our synthesis algorithm
is provably sound (i.e., if it succeeds, the abstract and target
behaviors are guaranteed to be equivalent) and complete (i.e.,
if there a translation for a given operation, Avenir finds it).

At a technical level, we exploit the insight that data plane
devices are fundamentally simple. When modeled as pro-
grams, they lack complex features like pointers and loops
(parser state machines and uses of recirculation can be finitely
unrolled in practice). Although data planes exhibit complex-
ity in other dimensions, such as the number of protocols or
table entries they support, the amount of processing they per-
form on any given packet is limited. Hence, it is possible to
model their behavior using simple, loop-free programs that
are amenable to analysis using automated solvers. In par-
ticular, P4’s match-action tables can be treated as program
sketches—i.e., programs populated with unknown variables
called holes. The CEGIS loop synthesizes table operations by
inductively filling in the program’s holes. The controller inter-
acts with these tables incrementally: table entries are usually
not changed wholesale, but in small batches. We incremen-
tally synthesize individual control plane operations rather than
full tables, which greatly improves Avenir’s efficiency.

However, even if one does synthesis incrementally, scaling
up to real-world programs remains a significant challenge.
Program synthesis has often been used in offline settings,
where performance is not a critical concern. However, a typi-
cal control plane might modify a table every few milliseconds.
To enable online operation, Avenir incorporates heuristic op-
timizations such as ignoring existing table rules (when pos-
sible), and learning “templates” that cache repeated patterns
and avoid unnecessary calls to the SMT solver.

Implementation and Evaluation. We have built an imple-
mentation of Avenir in OCaml and Z3, and evaluated its ef-
fectiveness and scalability. In particular, we used Avenir to
perform a “reboot” load test from the ONOS controller with
moderate overhead: ONOS takes 15 minutes to generate 40k
abstract IPv6 forwarding rules while our tool translates the
insertions to a Broadcom pipeline in about 12 minutes. We
conducted a series of experiments in which we retarget control

AVENIR	

Control	
	Plane	

		Logical
			pipeline	edits

Inductive	Synthesis

Verification

ABSTRACT	PIPELINE
Match(eth.dst) Action

0xb 0x753318a0

* nop()

Match(...) Action

* drop()

Match(ipv4.dst) Action

10.0.0.1 1

* nop()

			Candidate	Impl.

?1	=	0xb
?2	=	0x753318a0
?3	=	10.0.0.1	...

Data	
Plane	

TARGET	PIPELINE
Match(eth.dst) Action

0xb

* nop()

Match(...) Action

* drop()

Match(meta.nexthop) Action

?5 ?6
* drop()

Match(ipv4.dst) Action

10.0.0.1 1

* nop()

Counterexample

	eth.dst	=	0xb
	log_egress	=	1
	phys_egress	=	0

0x753318a0

Figure 1: Avenir maps control plane operations for an ab-
stract pipeline into corresponding operations for a target using
sketch-based synthesis. The synthesis loop alternates between
verifying the correctness of a candidate implementation and
learning from counterexamples to generate a better one; the
holes (e.g., ?5) in the target sketch denote missing values that
are filled in using an SMT solver.

planes from one pipeline to another, and show that generated
rules successfully forward packets on the Bmv2 software
switch. Finally, to assess Avenir’s scalability, we ran experi-
ments on synthetic microbenchmarks.
Contributions. This paper presents Avenir, a practical con-
trol plane synthesis tool based on the following contributions:

• We present synthesis algorithm that incrementally computes
changes to data plane operations, motivated by examples in
real-world control planes.

• We formalize our synthesis algorithm and prove (in the
appendix) that it is sound and complete.

• We present optimizations that leverage incrementality and
domain insights to accelerate synthesis.

• We discuss an implementation and show through case stud-
ies and microbenchmarks that Avenir synthesizes control
plane operations correctly with modest overheads.
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L2_fwd
eth.dst Action

ABB28FC set_out(5)

L3_fwd
ipv4.dst Action
10.0.0.1 set_out(8)

(a) Pipeline 1, with L2 and L3 forwarding for the original, homogeoneous network.

L2_fwd
eth.dst Action

?1 ?2

L3_fwd
ipv4.dst Action
10.0.0.1 set_meta(8)

?5 ?6

LAG
meta Action

8 set_out(8)
?3 ?4

(b) Pipeline 2, with a level of metadata indirection, and “holes” filled in. During
synthesis, Avenir solves for these unknowns and concludes that ?1 = ABB28FC,
?2 = set_meta(5), ?3 = 5, ?4 = set_out(5).

L2_fwd
eth.dst Action

ABB28FC set_m2(5)

L3_fwd
ipv4.dst Action
10.0.0.1 set_m3(8)

LAG
m2,m3 Action

5,8 set_out(8)
5,∗ set_out(5)
∗,8 set_out(8)

(c) Pipeline 3, which introduces two additional metadata fields.

fwd_table
eth.dst, ipv4.dst Action
∗,10.0.0.1 set_port(8)

ABB28FC,∗ set_port(5)

(d) The second abstract pipeline which implements a “one big table.”

(Pipe1⇒ Pipe2)

e 7→ e.table e.keys set_meta(e.out)
LAG e.out set_out(e.out)

(Pipe1⇒ Pipe3)

e in L2 7→ L2 e.keys set_meta(e.out)
LAG (e.out,∗) set_out(e.out)

e in L3 7→ L3 e.keys set_meta(e.out)
LAG (∗,e.out) set_out(e.out)
L3 (r.m1,e.out) set_out(e.out)

for every existing row r in LAG

(e) Translations from Pipeline 1 to Pipelines 2 and 3.

(OBT⇒ Pipe1)

e if eth.dst = ∗ 7→ L2 e.ipv4.dst set_out(e.out)
e if eth.ipv4 = ∗ 7→ L3 e.eth.dst set_out(e.out)

e otherwise 7→ Failure

(OBT⇒ Pipe2)

e if eth.dst = ∗ 7→ L2 e.ipv4.dst set_out(e.out)
e if eth.ipv4 = ∗ 7→ L3 e.eth.dst set_meta(e.out),

LAG (e.out,∗) set_out(e.out)
e otherwise 7→ Failure

(OBT⇒ Pipe3)

e if eth.dst = ∗ 7→ L2 e.ipv4.dst set_out(e.out)
e if eth.ipv4 = ∗ 7→ L3 e.eth.dst set_meta(e.out),

LAG (∗,e.out) set_out(e.out)
LAG (r.m1,e.out) set_out(e.out)

for every existing row r in LAG
e otherwise 7→ Failure

(f) Translations from “one big table” to Pipelines 1 to 3.

Figure 2: Pipelines used in example scenario.

2 Background and Motivation
As shown in Figure 1, Avenir sits between the controller
and the data plane, exposing an interface based on an ab-
stract pipeline to the SDN control plane. It intercepts the
control operations, translates them to the target pipeline, and
passes results to the switch agent to install on the target device.
Note that because Avenir works with an abstract notion of a
pipeline, it could be used at multiple levels of abstraction—
e.g., to implement a driver for a given switch, an abstraction
layer like SAI, or even at higher layers of the SDN controller.
Likewise, because Avenir operates on switch-by-switch gran-
ularity, it can expose different abstract pipelines for different
targets. Avenir’s synthesis algorithm is sound and its solu-
tions are formally verified, which eliminates the potential for
subtle bugs caused by the inherent complexity of the problem,
assuming the specifications are correct. Avenir’s algorithm is
also complete—i.e., given sufficient time, it is guaranteed to
find a correct sequence of target operations if it exists.

Status Quo: Manual Control Plane Mappings. Consider
a simple running example based on ONOS that illustrates the
need for a control plane synthesis tool. Suppose that each
switch implements the simple L2-L3 pipeline in Figure 2a. In
this pipeline, the output port is set based on the Ethernet and

IPv4 destination addresses in the corresponding tables.
As the network matures, its engineers decide to add addi-

tional physical data planes—e.g., to incorporate a new gen-
eration of hardware or to avoid vendor lock-in. For instance,
the pipeline, shown in Figure 2b, adds a layer of metadata
indirection to the physical device to support link aggregation.

To avoid disrupting the control plane, which likely consists
of hundreds of thousands of lines of code,1 the engineers write
a driver that translates operations written for Pipeline 1 into
operations for Pipeline 2. In this case, the driver, shown in
Figure 2e, is relatively simple: for each rule, it simply copies
the output port into meta and inserts a row into the LAG table
effectively copying the value of meta into the output port.

Now, suppose the engineers decide to support a third
pipeline (Figure 2c), which sets a separate metadata field
in each table. The translation (Figure 2e), is also simple, but
requires some care to write—in particular, the L3 table’s for-
warding decision must always be preferred in the LAG table.

Finally, suppose the engineers want to migrate their original
pipeline to a one big table abstraction (Figure 2d), similar to
OpenFlow. Now, the engineers need to make code changes to
all three translations (Figure 2f).

1ONOS has currently about 611k lines of Java code [28, 37].
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Of course, the ONOS engineers could compose the trans-
lations from the one big table to the first pipeline, and on to
the other pipelines. However as more and more logical and
physical tables are added, managing a complex cascade of
translations would become unwieldy, and hard to maintain.
Control Plane Synthesis with Avenir. Avenir improves
upon the state of the art—i.e., writing manual translations—by
automating the translation of rules from an abstract pipeline
to a target pipeline. Of course, the programmer still needs to
write programs that capture the behavior of both pipelines,
and that’s a non-trivial task. But we believe this should be less
challenging than actually writing the translations—akin to
describing source and target languages vs. writing a compiler.

To see how this is done, let’s explore how Avenir translates
abstract Pipeline 1 L2 insertions into Pipeline 2 insertions.
First, assume, as shown in Figure 2b, that the L3 table is pop-
ulated with rules that match on the IPv4 address (10.0.0.1)
and set the metadata to (8), and the LAG table matches on that
metadata and forwards out port 8. Consider inserting a sin-
gle rule into the abstract Pipeline 1 L2 table that matches on
eth.dst = ABB28FC and sets the outport to 5. To reflect this
update in Pipeline 2, we then need to solve for the unknowns,
written as (?) in Figure 2b. These unknowns model the an-
swers to questions like “Which tables need modification?”
and “What should the matches/actions/action data be?”

More formally, the unknowns (?) represent a special kind
of variable we instrument our program with, called a hole.
Programs instrumented with holes are called sketches. We
heuristically search for a valuation of these holes that makes
the behaviors of the two pipelines equivalent. In this example,
we could set ?1 = ABB28FC, ?2 = set_meta(5), ?3 = 5, and
?4 = set_out(5). Since we do not need to insert a rule in the
L3 table, we do not need to find values for these holes. In
practice, holes can only be assigned values, not code snippets,
like we are doing here for ?2 and ?4. We will see how to
construct these sketches in detail in Section 3.2, and we will
introduce our synthesis algorithm in Sections 3.3, 4.1 and 5.2.

As a strawman, we might consider an offline approach,
where we synthesize the driver code once-and-for-all that
translates any abstract operation into equivalent target opera-
tions. However, there are many cases (e.g., Figure 2f) where
there is no translation that works for all abstract operations,
this synthesis algorithm would fail to produce any solution
in many cases where Avenir would succeed. Avenir’s online
solution allows for a more dynamic and flexible approach.
Incrementality and Optimizations. The key challenge in
making Avenir practical is scaling up to handle real-world
programs, which typically have at least dozens of tables with
thousands of rules. Avenir needs to potentially compute a
translation on every abstract control plane operation, so it
must be responsive. As another strawman, imagine an ap-
proach that computes a full set of table rules on every control
plane operation. This strategy might be workable when the
tables have only a few rules, e.g., recomputing the existing

match in Pipeline 2’s L3 table, but it would quickly become a
bottleneck if there were say, tens of thousands of rules in L3.
Hence, we employ an incremental approach in which we syn-
thesize “deltas” consisting of small batches of control plane
operations rather than full tables. By only considering the
most recent insertion or deletion into a table, we can often
reuse previous solutions and avoid redundant recomputation.

Going a step further, we can cache “templates” derived
from previous solutions to help translate future operations.
For example, on the next insertion into L2, we can try to
reuse the same stucture by inserting into L2_fwd and LAG,
with actions set_meta and set_out, forcing the argument to
set_meta to equal the LAG table match.

3 Control Plane Synthesis
Our synthesis algorithm is based on CEGIS [40]. The core of
CEGIS is a loop with two main components: verification and
inductive synthesis. In each iteration of the loop, a candidate
implementation is run through the verification component to
check correctness. If verification fails, a counterexample trace
is produced, allowing the inductive synthesis component to
learn from this failure to generate a better candidate. The loop
terminates when verification ultimately succeeds.

In our setting, the CEGIS loop is run for each insertion into
the abstract pipeline. Inductive synthesis produces candidate
control plane implementations for the target pipeline, and
verification checks whether the behavior of the two pipelines
are equivalent. The rest of this section discusses the CEGIS
components in detail. Section 4 discusses optimizations that
make this approach efficient and scalable.

3.1 Basic Definitions and Verification
The verification component of the CEGIS loop determines
whether the synthesized control plane operations implement
the same packet-processing behavior on the target pipeline
as on the abstract pipeline. We model packets as finite maps
from a fixed set of header and metadata fields to bit vectors,
and say two packets are equal and write pkt = pkt′ if they
agree on all header fields. Packets have a direct interpretation
as a boolean formula: for headers Hdr and a list~x⊆ Hdr, we
write pkt[~x] to mean

∧
x∈~x x = pkt.x.

Syntax and Semantics. In Figure 3, we define the syntax of
pipelines. A pipeline program is a just a command c ∈ Cmd,
that denotes a packet processing function, which we write
JcK : Pkt→ Pkt. Pipeline programs can contain bitvector ex-
pressions e ∈ Expr and boolean expressions b ∈ Bool. Given
a bitvector [n]s of length s, we use “wraparound” semantics
when values n larger than 2s−1 overflow. We often omit sub-
scripts when s is clear from context or use evocative notation.

There are a few ways to compositionally build a pipeline
program. First, fields f can be assigned values via the com-
mand f := e, which updates the packet pkt to pkt{ f 7→ n},
where e evaluates to n in pkt. Further, commands can be se-
quenced, c1;c2, which first executes c1 then c2. We can also
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c ::= (c ∈ Cmd)
| f := e Assignment(*)
| c;c Sequence(*)
| if

−−−→
b→ c fi Guarded Commands(*)

| apply t Table Application

a ::= (a ∈ Act)
| λ (~x). c(∗) Function

t ::=


name : Name;
keys : Name+;
actions : Act+;
default : Act

 Table Definition

δ,ε ::= (δ ∈ Edit)
| Ax(ρ) Insertion
| Dx(n) Deletion

ρ ∈ Row = List[BitVec]×List[BitVec]×N
τ,σ ∈ Inst = Name→ List[Row]

v ::= [n]n Bitvector (v ∈ BitVec)

h ::=
{

name : Name;
width : N

}
Header Field (h ∈Hdr)

m ::=
{

name : Name;
width : N

}
Metadata Field (h ∈Meta)

f ∈ Hdr∪Meta

x ∈ Name

n ∈ N

Figure 3: Pipeline syntax. Actions vary under starred variants

use conditional control flow, written if b1→ c1 . . . bn→ cn fi,
which executes command ci on the incoming packet pkt for
the smallest-indexed bi that evaluates to tt on pkt. These con-
ditionals are similar to Dijkstra-style guarded commands [9].
Finally, table application apply(t) executes match-action table
t. Tables are represented as records, where t.name is table’s
name; t.keys is a list of packet headers referred to by name;
t.actions is the list of actions (which are lexically-scoped
anonymous functions λ(~x).c); and t.default is the command
that is executed when the table is missed. Only certain com-
mands c may occur inside an action (denoted with a (∗) in
Figure 3)—e.g., table application is not allowed.

Notice that tables have no way of referring to their entries.
To represent entries in a table t, we maintain a table instantia-
tion τ : Name→ List[Row], alongside the syntactic pipeline,
which maps table names to their row lists. We write Inst for
the set of all instantiations. We refer to the pair (c,τ) as the
pipeline state. A row ρ ∈ Row is a triple ρ = (~m, ~d,a), where
~m are matches, a is the action index and ~d is the action data.

We can define a source-to-source syntactic transforma-
tion subst(c,τ) that replaces every occurence of apply(t) in
c with a guarded command encoding the rows of the table
~ρ = τ(t.name), as follows, where the ith row ρi = (~mi,~di,ai):

if


t.keys = ~m0 → t.action[a0](~d0)

· · ·
t.keys = ~mn → t.action[an](~dn)

tt → t.default

 fi

HOLE DESCRIPTION

?Delt,i = 1 Delete row i in table t
?Addt, j = 1 Add j rows to table t
?Actt, j = i New Row j in table t (if added), has action i
?kt, j = v New Row j in table t (if added), matches header k with v
?dt, j,i = v New Row j in table t (if added with action i)

has action data for parameter d set to v

Figure 4: Summary of holes used in sketching.

We say that a row (~m, ~d,a) is well-defined for a table t when
|~m| = |t.keys|, a < |t.actions|, and for the parameters ~x of
t.actions[a], |~d| = |~x|. Further, an instance is well-defined
when all of its rows are well-defined for their tables, and a
command is well-defined when no two tables have the same
name. We assume that commands and instantiations are well-
defined, and that there are no bit-width mismatches: both are
easy to check statically.

Finally, we have control plane edits (δ ∈ Edit), which are
operations that allow the control plane to modify table in-
stantiations. We interpret them as functions, i.e., δ(τ) ∈ Inst.
There are two kinds of edits: insertions and deletions. For a
given instance τ, an insertion Ax(ρ)(τ) appends ρ to the end
of τ(x) (meaning it has the lowest priority). If τ(x) has a row
ρ′ with the same matches as ρ, the inserted row is dropped. A
deletion Dx(i)(τ) removes the ith element from τ(x).

Now that we know how to interpret pipelines as func-
tions, we say c1 = c2 when they are functionally equiva-
lent. To check this condition, we use predicate transformer
semantics to generate a verification condition [13], written
c1 ≡ c2, which we check using an SMT solver, by running
CheckSat(c1 6≡ c2). If the solver returns UNSAT, we con-
clude the programs are equivalent. Otherwise, it returns SAT
as well as a model that encodes a counterexample χ—i.e.,
an input and output packet pair χ that demonstrates different
behavior in the abstract and physical programs, writing χ0 and
χ1 for the input and output packets respectively. It is easy to
prove that this validity check implies functional equivalence.

Theorem 1. For every pair of pipelines c1,c2, if c1 = c2
then CheckSat(c1 6≡ c2) = UNSAT, and if c1 6= c2 then
CheckSat(c1 6≡ c2) = Sat χ.

Proof. By soundness of verification conditions with respect to
the denotational semantics of guarded commands [9,13].

3.2 Synthesizing Candidates via Sketches
To propose new candidate programs for verification, we use
a technique called Sketching [41]. A sketch is a command
containing special variables called holes. Aside from holes
for values (i.e., ?k for match keys and ?d for action data),
which we introduced in Section 2, we also need holes for
table entries, corresponding to deletions (?Del), insertions
(?Add) and action choice (?Act). The meaning of these holes
is described in Figure 4.
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fix_cex(p,σ,χ,n,~x), χ0[~x]⇒ wp(instr(p,σ, ·,n),χ1[~x])

model(p,σ,X), CheckSat
(
∀~x.

∧
χ∈X fix_cex(p,σ,χ, |X |,~x)

)
Figure 5: The model function. In the above, the vector~x is all
of the non-hole variables that occur in the formula.

To compute a candidate solution in our CEGIS loop,
we first instrument the program with holes. We write
instr(c,τ,~δ,n) to describe the program~δ(τ(c)) with deletion
holes for every row in τ, and holes for n row insertions. We do
not add deletion holes for insertions in

−→
δ , which is crucial for

the completeness theorem (Section 4). We lift this function
from tables to programs in the obvious way.

Consider the L2 table from pipelines 1 and 2. To instrument
it with holes, allowing for a single insertion, we would insert a
deletion hole for the existing rule and a single row of insertion
holes, yielding the following sketch:

Match(eth.dst) Action

?Del = 0 ABB28FC set_out(5)

?Add = 1 ?eth.dst if ?Act = 0→ set_out(?p)
?Act = 1→ drop()

fi

A possible model for these holes that matches the destina-
tion MAC address with 00 : 00 : 00 : 00 : 00 and drops the
packet, is {?Del 7→ 0,?eth.dst 7→ 0,?Act 7→ 1}. Note that ?p
is irrelevant, so we omit it from the model.

Of course, sketches represent a vast search space of edits:
every existing table row can be deleted, and up to n rows can
be inserted. Blindly searching through this space would not
scale in practice. Instead, we learn from counterexamples to
help guide the search toward a solution.

3.3 Counterexample-Guided Search
When the solver determines that a proposed candidate pipeline
is not equivalent to the abstract pipeline, it generates a coun-
terexample χ that encodes an input-output packet pair. This
pair corresponds to a behavior of the abstract switch that is
not replicated in the candidate or vice versa. We can use this
counterexample to guide our search. More formally, we use
the weakest precondition wp(c,ϕ) whose satisfying models
are inputs that, after executing c, yield outputs satisfying ϕ.

The fix_cex function constructs the formula χ0[~x] ⇒
wp(s,χ1[~x]) for the sketch s = instr(p,σ, ·, |X |). The formula
identifies edits that when applied to the physical pipeline state
(p,σ) produce the input-output behavior indicated by χ.

The function model in Figure 5 lifts fix_cex over all coun-
terexamples X that have been seen so far. Notice that we only
instrument the physical pipeline with |X | insertion holes since
each counterexample hits at most one rule in each table.

3.4 Synthesis Algorithm
The full synthesis algorithm is presented in Figure 6. Given a
abstract pipeline l, a target pipeline p, an abstract table instan-

cegis(l, p,τ,σ,~δ,X),

match CheckSat(subst(l,τ) 6≡ subst(p,~δ(σ))) with

| UNSAT → Ok~δ
| SAT →

match model(p,~δ(σ),{χ}∪X) with
| UNSAT → Fail

| SAT ~δ′ → cegis(l, p,τ,σ,~δ′,{χ}∪X)

Figure 6: Simple Algorithm for Control Plane Synthesis.

tiation τ, a target table instantiation σ, a sequence of physical
edits~δ, and a set of counterexamples X , cegis(l, p,τ,σ,~δ,X)
produces a sequence of edits ~ε such that subst(l,τ) =
subst(p,~ε(σ)) if one exists. We initially call the algorithm
with~δ = [] and X = {}. First, we call the SMT solver to check
for equality. If the programs are equal, we are done, and return
~δ. Otherwise, we get a counterexample χ and solve for new
edits by augmenting X with χ, applying the edits to the target
pipeline and calling model. If it returns UNSAT, there is no
way to make the programs equivalent and we fail. Otherwise,
we get a new sequence of edits and keep searching.

3.5 Formal Properties
Next we establish two formal properties for our synthesis al-
gorithm: soundness and completeness. Soundness means that
synthesized target operations produce equivalent behavior.

Theorem 2 (Soundness). For every l, p ∈ Cmd, τ,σ ∈ Inst,
~δ ∈ List[Edit], and X ⊆ Jsubst(l,τ)K ∩ Jsubst(p,~δ(σ))K
if cegis(l, p,τ,σ,~δ,X) = Ok~ε then subst(l,τ) =
subst(p,~ε(σ)).

Proof. Follows from Theorem 1.

Completeness says that if a solution exists, then our syn-
thesis algorithm will (eventually) find it.

Theorem 3 (Completeness). For every l, p ∈ Cmd, τ,σ ∈
Inst,~δ ∈ List[Edit], and X ⊆ Jsubst(l,τ)K∩ Jsubst(p,~δ(σ))K,
if ∃~δ′ ∈ List[Edit]. subst(l,τ) = subst(p,~δ′(σ)) then ∃~δ′′ ∈
List[Edit]. cegis(l, p,τ,σ,~δ,X) = Ok ~δ′′ and subst(l,τ) =
subst(p, ~δ′′(σ)).

Proof. By induction on the size of Pkt\π1(X).

Limitations The main limitation of this first synthesis algo-
rithm is that the number of queries is bounded by the number
of counterexamples—i.e., every possible packet. Given an
MTU of n, there could be as many as 2n packets.

4 A Scalable Solution: Incremental Synthesis
To obtain a scalable synthesis algorithm, we first exploit
the insight that the control plane operates in an incremen-
tal fashion—i.e., before each control plane operation, the data
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Match(eth.dst) Action

?Del0 = 0 ABB28FC set_out(5)
?Add0 = 1 ?eth.dst0 if ?Act0 = 0→ set_out(?p0)

?Act0 = 1→ drop()
fi

?Add1 = 1 ?eth.dst1 if ?Act1 = 0→ set_out(?p1)
?Act1 = 1→ drop()

fi

Match(ip.dst) Action

?Del2 = 0 10.0.0.1 set_out(8)
?Del1 = 0 8.8.8.8 set_out(47)

?Add3 = 1 ?ipv4.dst3 if ?Act2 = 0→ set_out(?p2)
?Act2 = 1→ drop()

fi
?Add3 = 1 ?ipv4.dst3 if ?Act3 = 0→ set_out(?p4)

?Act3 = 1→ drop()
fi

(a) Basic Sketch: Satisfiable for packets that hit L2’s first row and L3’s second.

Match(eth.dst) Action

?Del0 = 0 ABB28FC set_out(5)
?Add0 = 1 ?eth.dst0 if ?Act0 = 0→ set_out(?p0)

?Act0 = 1→ drop()
fi

Match(ip.dst) Action

?Del2 = 0 10.0.0.1 set_out(8)
8.8.8.8 set_out(47)

?Add1 = 1 ?ipv4.dst1 if ?Act1 = 0→ set_out(?p1)
?Act1 = 1→ drop()

fi

(b) Incremental Sketch: Unsatisfiable for packets that hit L2’s first row and L3’s second, which triggers backtracking, remembering that the
previously-synthesized edit was incorrect.

Figure 7: Examples of basic and incremental sketches for Pipeline 1.

planes are already equivalent, so we only need to handle in-
cremental changes to the abstract program, such as adding
or deleting a rule. In the common case, we do not have to
resynthesize all of the previously generated rules. However,
some care is needed as certain control plane operations do
require deleting previously installed rules.

4.1 Single Counterexample-Guided Search
Our first enhancement to the basic synthesis algorithm is to
only add insertion holes to solve for the most recent coun-
terexample, and only add deletion holes for state that existed
before synthesis began, which greatly reduces the number of
holes we need to produce as we explore the space. Instead
of instrumenting the program with insertion holes for every
counterexample, we only do it for the most recent one.

Consider again the L2 and L3 tables from pipelines 1
with the initial state depicted in Figure 2a. We want to
synthesize edits that send Ethernet packets that miss in
the L2_fwd with destination DECAFBAD out on port 47.
Suppose the first counterexample has input packet χ0 =
{eth.dst 7→ DECAFBAD, ipv4.dst 7→ 8.8.8.8}, and output
packet χ1 = χ0{out 7→ 47}. Let’s say on the first itera-
tion we produce the (incorrect) edit to L2_fwd that maps
ipv4.dst = 8.8.8.8 to set_out(47), and the verification step
will provide a new counterexample.

Suppose the next counterexample has input packet
χ′0 = {eth.dst 7→ ABB28FC, ipv4.dst 7→ 8.8.8.8}, and output
packet χ′1 = χ′0{out 7→ 5}. Now the simple algorithm will
produce the sketch in Figure 7a, which can be solved by
deleting the already inserted row (?Del1 = 1) and adding the
single required row to the L2 table (?Add0 = 1, ?eth.dst0 =
DECAFBAD, ?Act0 = 0, ?p0 = 47, and remaining Add/Del
holes disabled).

In contrast, the incremental search will first create the un-
satisfiable sketch shown in Figure 7b. There is no way to fill
its holes to satisfy the above counterexample. We backtrack
with the knowledge that ?ipv4.dst 6= 8.8.8.8 and attempt to
solve the original sketch with respect to the original coun-
terexample, and the only remaining solution is correct.

First, notice that the final simple sketch uses 21 holes,
whereas each incremental sketch uses only 10. On the other
hand, the incremental search sends 3 sketches to the solver as
opposed to the simple search, which only sends 2. Why do
we want to send more queries to Z3 instead of less? This is
a result of the NP-completeness of SAT/SMT solving. Solv-
ing more formulae with fewer variables is often faster than
solving fewer formulae with more variables. Here, the search
space size for the 3 incremental sketches is approximately
3 · |B|10, whereas for “simple” query it is approximately |B|21,
where |B| is the size of the bitvector domain.

Further, observe that the incremental sketches we send
will always have 10 holes, independent of the number of
counterexamples, whereas the simple sketch will continue to
add holes as the number of counterexamples grows.

We formalize this new incremental model-finding function
model′ in Figure 8. It is defined in term of a satisfiability check
for a conjunction of three sub-formulas. The first conjunct
uses a modified fix_cex function that instruments the pro-
gram with one addition hole per table. The second conjunct,
ϕ, limits the search by preventing models from reoccurring.
The final conjunct is a search oracle HEURISTIC() that com-
putes restrictions on the search space. The only constraints
on HEURISTIC() are that it must not add covered rules or
previously-deleted rules (to avoid looping), and it must not
permanently preclude any solution (to ensure completeness).
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fix_cex(p,σ,~δ,~x,χ), pkt[~x]⇒ wp(instr(p,σ,~δ,1),pkt′[~x])

model′(p,σ,~δ,χ,ϕ), SAT

(
∀~x.fix_cex(p,σ,~δ,~x,χ))
∧ ϕ∧HEURISTIC()

)
Figure 8: The model′ function computes edits to physical
state (p,σ) to accomodate the counterexample χ. The oracle
soundly restricts the search space.

cegis(l, p,τ,δ,σ), verify(l, p,δ(τ),σ, [ ])
verify(l, p,τ,σ,~δ),

match CheckSat(subst(l,τ) 6≡ subst(p,~δ(σ))) with

| UNSAT→Ok~δ

| SAT χ→ solve(l, p,τ,σ,~δ,χ,tt)

solve(l, p,τ,σ,~δ,χ,ϕ),
match model′(p,σ,~δ,χ,ϕ) with
| UNSAT→ Fail

| SAT ~δ′→
match verify(l, p,τ,σ,~δ◦~δ′) with

| Ok ~δ′′→ Ok ~δ′′

| Fail→ solve(l, p,τ,σ,~δ,χ,ϕ∧¬~δ′)

Figure 9: The incremental backtracking CEGIS algorithm.

4.2 Incremental Synthesis Algorithm
We present our incremental synthesis algorithm in Figure 9.
It comprises two mutually recursive functions: verify, which
checks the verification condition and solve, which generates
new models. Both functions take the same arguments: the ab-
stract and target programs and instantiations ((l,τ) and (p,σ)
respectively), and a sequence of edits to the target program
~δ. They either return Ok~δ′, where~δ is the prefix of~δ′ and
CheckSat(subst(l,τ) 6≡ subst(p,~δ′(σ))) = UNSAT, or Fail,
if there is no such~δ′. The cegis function is the “main” method.
It takes the abstract and target pipelines (l and p) and instanti-
ations (τ and σ) as arguments, as well as the abstract edit δ. It
then applies δ to τ and invokes verify with no target edits.

The verify function resembles the cegis function of Sec-
tion 3. It first checks whether the programs are equal, and if
so returns Ok~δ. Otherwise it calls solve with an initial coun-
terexample χ and an unrestricted model, which searches for
an edit to make the programs equivalent.

The solve function takes the standard arguments, with the
addition of a counterexample χ and the model space restric-
tion formula ϕ, which keeps track of failed solutions for χ, to
prevent repetition. First, model′ searches for a target edit that
corrects the behavior for the counterexample. If none exists,
we return Fail, indicating that there is no sequence of equiva-
lent target edits with the prefix~δ. Otherwise, model′ provides
a model ~δ′. In this case we extend the running sequence of
edits to~δ◦~δ′ and call back to verify. If successful, we return
the result, otherwise we preclude ~δ′ from the space of pos-

sible models ϕ (writing ¬~δ′ for the negation of valuations
that produce ~δ′.) Then we recursively call solve and continue
searching within this restricted space of models.

4.3 Formal Properties
We prove that the incremental algorithm is also sound and
complete. As with the simpler algorithm, the proof of sound-
ness follows by the correctness of the verification condition.

Theorem 4 (Incremental Soundness). For every l, p ∈ Cmd,
τ,σ ∈ Inst, δ ∈ Edit, X ⊆ Jsubst(l,τ)K ∩ Jsubst(p,~δ(σ))K,
if cegis(l, p,τ,σ,δ,X) = Ok ~ε, then subst(l,τ) =
subst(p,~ε(σ)).

Proof. Again, the result follows from Theorem 1.

As in the simple synthesis algorithm, incremental complet-
ness relies on the finite domain, which here is the product of
two finite domains: (1) sequences of reachable edits that do
not redundantly add and delete a rule, and (2) the number of
valuations for the holes introduced by the instr function.

Theorem 5 (Incremental Completeness). For every ab-
stract program l, target program p, abstract instanti-
ation τ, target instantiation σ and abstract edit δ if
∃~ε ∈ List[Edit]. subst(l,δ(τ)) = subst(p,~ε(σ)) then ∃~δ′ ∈
List[Edit]. cegis(l, p,τ,δ,σ, [ ]) = Ok ~δ′ and subst(l,δ(τ)) =
subst(p,~δ′(σ)).

Proof. By strong outer induction on the size of the reachable
non-deleting edit sequences, and strong inner induction on
the (lexicographically ordered) size of the counterexample set
and the number of models in each model space.

Theorem 5 proves that Avenir translates abstract operations
given unbounded resources. In practice, Avenir’s effectiveness
relies on heuristics and optimizations.

5 Heuristics and Optimizations
Avenir offers a number of heuristic optimizations designed to
help it scale to larger networks. Interestingly, these optimiza-
tions need not be sound. We introduce a run-time check for
soundness and revert the optimization if it fails. We focus on
two classes of optimizations: verification and model finding.

5.1 Exploiting Incrementality
The key to scalable synthesis is to adopt an incremental ap-
proach and focus on edits, while incorporating further opti-
mizations within the verification and synthesis steps.

Fast Counterexamples. In the incremental setting, we know
that a new abstract insertion δ must be the cause of any se-
mantic difference with the target pipeline. We symbolically
compute packets that hit δ via an SMT query that gives us a
potential counterexample packet pkt. We use the denotational
semantics to check whether pkt is a real counterexample. If
pkt doesn’t induce different behavior we retry the query (in

140    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



practice 10 times) until we either obtain a true counterexam-
ple, or resort back to the standard equivalence check.
Program Slicing. We leverage the incrementality assump-
tion to use program slicing to verify only the part of the
program that changes. This isn’t always sound, so we check
that the abstract edits are reachable iff the target edits are. We
also have a faster and stronger constraint that checks that the
abstract and target matches are disjoint from the extant rules.
If both conditions fail, we run the full equivalence check.
In practice, slicing composes with constant propagation and
dead code elimination to normalize the queries.
Query Templates. The queries produced using program slic-
ing are often syntactically similar. So when we see two valid-
ity queries that only differ in their specific concrete values, we
try to abstract those concrete values into a universally quanti-
fied variable. We then check whether that more-general query
is valid. If it is, we add it to a cache of templates, otherwise
we continue in a CEGIS loop by negating the valuation of
the quantified variables and trying again. Whenever we get
future queries that are instances of the template, we can return
VALID without having to consult the SMT solver.
Translation Templates. As with queries, we can cache trans-
lations of operations by generalizing over their concrete val-
ues to obtain a template. The template observes the way that
concrete values are mapped from previously-seen abstract in-
sertions into their equivalent target insertions, and structurally
replicates that mapping on the new abstract insertion. It also
observes the cache of translations for differing constants and
generates unused constants for new rules which optimizes for
metadata patterns like in Figures 2b and 2c. Note that before
adding a solution to the cache, Avenir optionally reduces its
size, by heuristically removing superfluous target edits, which
improves the generality of the solution. When no template
applies, Avenir relies on a heuristic-guided search.

5.2 Model-Finding Heuristics
Now we describe the implementation of the HEURISTIC()
oracle, which abstracts a combination of heuristics. In our for-
malization, we assume that the heuristics are always complete.
However in practice, many of Avenir’s individual heuristics
are not; when a given combination fails, we disable some and
try again with a different combination. This search through
the heuristics is currently hard-coded, but we plan to support
user control of the search strategy and custom heuristics. We
describe the heuristics useful in our experiments here.
Ternary and Optional Matching. In the previous sections,
we only inserted holes to generate exact matches. We can
generate ternary matches for a match key k, which allows
us to represent, say, a wild-carded IPv4 source address in
only a single row (rather than 232 exact-match rows). To do
this, we generate a pair of holes ?k and ?kmask and encode the
match as k&?kmask = ?k. To eliminate duplicate keys we also
enforce the constraint ?k&?kmask = ?k. For optional matches,
we restrict the masks to be all 1s or all 0s.

Exact and Mask Hints. When a row is inserted into the
abstract pipeline, the non-wildcarded keys K of that row are
likely relevant in classifying packets. So, we force the rele-
vance of matches on fields in K, either by copying the abstract
match values into the target edits (which is very optimistic),
or by forcing their masks (if masking is enabled) to be all 1s.

Action Hints. Given a counterexample (pkt0,pkt1), we can
observe the variables that change in the abstract program,
i.e., ∆ = {x | pkt0.x 6= pkt1.x}, and ensure that all edits have
actions that can influence the value of some variable in ∆.

Other Optimizations. Our final collection of optimizations
are based on intuitive heuristics that arise often in practice.

• Reachable Adds. We force synthesized models to be
reachable using the counterexample driving the search.

• Prefer Adds. We try to find a solution that does not
require deleting existing rules.

• Prefer Non Zero Models. We enforce ?k 6= 0 6= ?d for
all key and data holes, unless they are wildcarded.

• Bounded Edits. We restrict the search space so that
backtracking is triggered beyond specified limits.

• Previous Counterexamples. We try to synthesize rules
that do not violate previously-seen counterexamples.

6 Implementation
We implemented Avenir in approximately 11K lines [37] of
OCaml code that interfaces with Z3 [8]. Our implementation
accepts a description of an abstract and a target pipeline, se-
quences of insertions to both programs (to construct the initial
state), as well as a sequence of abstract edits to synthesize.
Avenir then produces a sequence of edits to the target program
(or fails if no such sequence exists). All of the optimizations
described in 5 are configurable as command line flags. In our
implemention, we use an efficient encoding of the weakest
precondition [13], which has linear size for the programs in
our internal syntax.

P4 Program Encoding. The front-end of our implementa-
tion supports a large subset of P4, via an encoding from P4’s
control blocks into Avenir’s internal syntax. This translation
resembles previous work on verifying P4 programs [21]. Of
course, P4 is a larger language than Avenir’s syntax. We sup-
port more complex P4 language constructs by desugaring
them into sequences of internal commands.

We currently assume that all of the data plane programs use
the same parser and headers. Hence, in cases where a mapping
only exists due to invariants enforced by the parser—e.g., that
a packet cannot simultaneously have IPv4 and IPv6 headers—
these assumptions must be manually encoded as annotations.
We also ignore match kinds and assume all matches are either
exact, ternary or optional, depending on command line flags.
Finally, we manually encode certain device-specific behaviors
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Figure 10: Retargeting case study: solid lines show cold-start
completion %; dotted lines show hot-start completion %.

such as the initial value fields and the drop port value. Our
implementation is on GitHub2 under an open-source license.

7 Evaluation
To evaluate Avenir, we demonstrate its functionality under
a variety of synthetic and realistic scenarios, and measured
its performance against hand-written baselines. First, we
show how Avenir can automatically retarget a given abstract
pipeline to multiple target pipelines (Section 7.1). Second, we
pass packets through the Bmv2 software switch using the gen-
erated rules, which both shows they are correct and quantifies
Avenir’s performance when installing rules for multiple hosts
(Section 7.2). Third, we present a case study consisting of a
realistic workload drawn from the Trellis data center fabric,
running on top of the ONOS SDN controller [2, 29] (Sec-
tion 7.3). Finally, we study Avenir’s scalability via a suite of
microbenchmarks (Section 7.4). Our evaluation pays particu-
lar attention to the caches, as these are particularly important
to obtain good performance.

Summary of Results. Overall, our evaluation shows that,
in a variety of cases, Avenir can translate large numbers of
rules efficiently. The retargeting, emulation, and ONOS ex-
periments show that Avenir is effective at mapping to and
from a variety of programs, and demonstrate that the caching
optimizations are highly effective at reducing overheads.

7.1 Retargeting Study
Avenir allows operators to expose a single pipeline abstrac-
tion to the control plane, while implementing the forwarding
logic over a myriad of physical devices. We demonstrate this
use case via a retargeting study, where we retarget an initial
program onto a variety of different target pipelines.

The logical program logical.p4 is a simple L2-L3 pipeline
followed by a PUNT table that performs packet validation
on all headers and metadata. We describe 5 additional target
pipelines in terms of the changes to logical.p4:
(early_validate.p4) Replaces the PUNT table of logical.p4

with an ACL that can only match on addresses. Adds
a validation table prior to the L2 table that matches on

2Available at https://github.com/cornell-netlab/avenir
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Figure 11: Proportion of all pairs of 64 hosts connected in a
star topology that have completed a successful IPv4 ping.

the validity of IPv4 and the TTL field and conditionally
applies the rest of the pipeline.

(action_decomp.p4) Decomposes the L3 table into two ta-
bles, (1) a forward table that matches on the IPv4 desti-
nation and sets the output port, (2) a rewrite table that
matches on the IPv4 destination and performs MAC
rewriting.

(metadata.p4) Instead of setting the output port, the L2 and
L3 tables set a metadata field. This metadata field is
mapped to the output port in the nexthop table, which is
applied between the L2 and L3 tables.

(double.p4) Applies all three tables in the pipeline twice.

(choice.p4) Introduces a staging table that sets a metadata
variable to select between copies of the abstract pipeline.

We used Avenir to translate 1,001 logical.p4 insertions
(1 into PUNT for TTL checking, 500 into L2 for Ethernet
destination forwarding, and 500 into L3 for IPv4 destination
forwarding and MAC rewriting). We show completion graphs
for each target in Figure 10.

There are a few things to notice. Every line has an “el-
bow” at the 50% mark on the y-axis, after which the slope
decreases. This represents the transition between parts of the
workload. The L3 insertions are slower, because the L2 table
is already populated with 500 rules, and slicing has to deal
with larger tables. Further, these rules may cause the query
template cache to miss: the second “elbow” on the metadata
line indicates where the query cache’s synthesis engine was
able to successfully abstract.

To further demonstrate the power of our template caches,
we compare our “cold-start” synthesis (solid lines), where
the caches are empty, with “hot-start” synthesis (dotted lines),
where the caches are fully populated. We achieve this by
running Avenir on the same data twice, without resetting the
caches, and logging performance for the second run. The
massive performance increase is seen in Figure 10. Network
operators concerned with nondeterministic runtimes associ-
ated with synthesis can manually populate their caches.

7.2 Network Emulation
We use Avenir to program the entries of a programmable soft-
ware switch (bmv2) running in a network emulator (mininet).
We configure 64 hosts in a star topology connected to a single
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Figure 12: Completion graph for mapping 40k fabric.p4 IPv6
route insertions onto bcm.p4; ONOS takes around 15 min.

switch, and install rules to establish all-pairs ping connectiv-
ity. The P4 program running on the software switch is the
simple_router.p4 program from the Bmv2 repository. The
abstract program is a modified version that joins together the
L3 rewriting and forwarding tables into one.

We generate rules required to establish all-pairs connec-
tivity into the logical program and use Avenir to synthesize
the equivalent edits into simple_router.p4. We then report the
time of the first successful ping between each pair of hosts.
We compare Avenir cold-cache run with a manually generated
sequence of rule insertions and a pre-populated hot-cache, the
results are depicted in Figure 11.

7.3 Case Study: Trellis & ONOS
Trellis [46] is a set of production-grade SDN apps running on
ONOS [2,29] to provide control plane logic for multi-purpose
L2/L3 leaf-spine fabrics of OF-DPA Broadcom switches. In-
ternally, Trellis uses an ONOS API called FlowObjective,
designed to allow portability of apps across different switches
by abstracting common L2/L3 functionalities. Trellis controls
switches by writing FlowObjectives, which are translated by
an ONOS driver into OpenFlow messages for OF-DPA tables.
Finally, OF-DPA translates OpenFlow messages to Broadcom
SDK calls to populate ASIC-specific tables.

We evaluated Avenir on real-world P4 programs that repre-
sent the outermost layers of the architecture described above.
The fabric.p4 [12] P4 program was created by the ONOS
developers to support Trellis on programmable switches. It
is designed to simplify control plane operations, and for this
reason it closely resembles the FlowObjective API. Likewise,
bcm.p4 [27] abstracts tables from the Broadcom SDK, and
was created for Stratum [45], an open source switch agent
that uses P4 to model control APIs.

We then collected 40k IPv6 route insertions into fabric.p4
corresponding to a switch reboot load test designed by ONOS
engineers. Avenir synthesized insertions into bcm.p4 that
equivalently process the IPv6 header and egress specification.

Since Avenir does not process the parser, we simulated
its behavior by manually setting the validity bit of the IPv6
header to true, and the IPv4 and MPLS headers to false. Fur-
ther, the P4 specification [7] leaves the initial values of meta-
data headers undefined; we manually zero-initialize the meta-
data fields (a behavior that can be specified for many P4
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Figure 13: Program bits vs time to translate 100 edits. The
vertical lines estimate the sizes of common router programs.
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Figure 14: Classifier Scaling. We fixed the number of 32-bit
output variables to 8, and varied the number of keys.

targets via a compile time flag).
Further, we modified the l3_fwd in bcm.p4 by swapping

the IPv6 matches for IPv4 matches; otherwise there wouldn’t
have been a valid translation. Finally since Avenir works with
parsed headers, we systematically renamed headers in bcm.p4
to match fabric.p4.

The results are shown in Figure 12. According to its en-
gineers, ONOS computes and installs these 40k IPv6 routes
over a period of about 15 minutes. This figure includes Trellis’
route computation logic, the translation itself and the installa-
tion of rules onto the physical target devices. Figure 12 shows
that Avenir translates these 40k routes into bcm.p4 pipeline
in just under 12 minutes. However, it is unclear what conclu-
sions to draw about overhead, because we don’t know how
ONOS’ translation logic performs. In the (unlikely) best case,
we would have no overhead. In the (also unlikely) worst case,
we would nearly double the runtime. The real performance
would likely be somewhere between these extremes.

7.4 Microbenchmarks
To assess Avenir’s scalability, we procedurally generated a
collection of microbenchmarks that explore two independent
variables, the number of 32-bit input variables I and the num-
ber of 32-bit output variables O. For simplicity, the input and
output variables sets are distinct.

The abstract pipeline has one table that matches on all of the
input variables, and assigns one of the output variables. The
target pipeline first matches on all output variables and assigns
a metadata value m. This initial staging table is followed by a
sequence of O output tables. Table i in this sequence matches
solely on m and optionally assigns an output variable.
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The results are shown in Figure 13. The x-axis shows the
number of bits in the abstract program (i.e., 32(I +O)) and
the y axis shows the time in seconds to translate 100 random
abstract edits. The violins show the timing distribution marked
with median value. The variation comes from the random
generation and from the variation in I and O.

Since networking programs are usually classifier-heavy,
we also fixed the number of 32-bit output variables to 8, and
varied the size of the classifier. The results are in Figure 14.

Of course, it’s difficult to make general claims about the
scalability of Avenir’s approach, which incorporates numer-
ous heuristics. Nevertheless, it does seem that the complexity
increases exponentially with the number of bits, as is expected
for a tool that relies on a black-box solver. Target pipelines
with different structure than the regular, repeated structure in
our microbenchmarks may behave differently.

8 Limitations and Future Work
We discuss two limitations to Avenir’s methodology: the cost
of formally specificying the abstract and target pipelines, and
the run-time overheads of our heuristic search.

The biggest threat to Avenir’s use is the requirement that
pipelines be formally specified. The work required to develop
a formal specification can be significant, and there is no guar-
antee that a given specification of a pipeline will accurately
describe its run-time behavior. Of course, these concerns can
be side-stepped if the pipelines are already programmed in
P4. But more generally we would need tools for generating
specifications and testing conformance. We plan to explore
such tools in future work.

Another limitation is our use of heuristic search. The evalu-
ation shows many situations in which Avenir works efficiently,
but there are also situations in which it fails to terminate in
a reasonable time. For example, to translate from Pipe1 to
OBT in Figure 2, Avenir maintains a cross product of L2_fwd
and L3_fwd, which requires quadratic operations, and causes
incremental heursitics to fail. Expanding the effective scope
of Avenir’s search is future work. We also plan to explore op-
timal notions of synthesis—e.g., finding the smallest solution.

9 Related Work

Synthesis. Avenir is based on Sketching [39], wherein the
programmer is allowed to insert unknown “holes” into a pro-
gram that are filled using CEGIS [40]. Sketching has been
used to build a code generator for packet-processing switch
pipelines [16]. NetComplete [10] allows network operators to
express their intent by sketching parts of the intended config-
uration for refactoring or updating purposes. Our novelty is
to use sketching to synthesize control plane mappings.

Another use of synthesis is to generate implementations
from high-level specifications, e.g., stratified Datalog [11],
regular expressions with uninterpreted functions [35], first-
order logic constraints [3], and LTL [22].

P4 Verification. There are several recent projects on veri-
fying P4 program properties. Lopes et al. developed an op-
erational semantics for P4 and developed a verification tool
based on Datalog which can check program equivalence [24].
P4K presented an operational semantics for P4 using the K
framework [19]. p4pktgen uses symbolic execution to gen-
erate test cases for P4 programs [26]. ASSERT-P4 translates
P4 to a C-like representation, and then symbolically executes
the program [15]. Vera [43] uses SymNet [44] as a symbolic
execution framework to verify P4 programs. p4v [21] uses
symbolic techniques to avoid run-time source traversals.

Network Virtualization. There are many SDN controllers,
such as POX [33], NOX [17], and Open Daylight [31]. A few
of them specifically target the problem of flow rule composi-
tion, including the Frenetic language and controller [14] and
Pyretic [25]. Other efforts have focused on network virtual-
ization, i.e., mapping abstract specifications down to target
realizations, such as ONIX [20]. FlowVisor [36], CoVisor [18]
and the NetKAT compiler [38]. Among this work, Avenir is
unique in developing an approach to managing heterogeneous
abstract and target pipelines.

10 Conclusion
This paper presented Avenir, a tool that automatically syn-
thesizes control plane operations to ensure uniform behavior
across a variety of physical data planes. Avenir uses a coun-
terexample guided inductive synthesis algorithm based on
a novel application of sketches to data plane programs. Our
evaluation demonstrates that Avenir correctly synthesizes con-
trol plane operations with modest overheads.
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A Formal Details
The grammar of bit-vector expressions and boolean formulae
is described in Figure 15.

e ::= (e ∈ Expr)
| v Bit Vector
| f Field
| e− e Subtraction
| e+ e Addition
| e & e Bitwise And

b ::= (b ∈ Bool)
| tt Truth
| ff Falsehood
| e = e Equality
| e < e Inequality
| ¬b Negation
| b∧b Conjuction
| b∨b Disjunction

Figure 15: Syntax of BitVector expressions and boolean for-
mulae.

The semantics of edits are defined below

Ax(ρ) τ ,

τ{x 7→ τ(x)@[ρ]}, ∀ρ ∈ τ(x),
π1(ρ) 6= π1(ρ

′)

τ, otherwise
Dx(i) τ , τ{x 7→ τ(x)[0 : i]@τ(x)[i+1 :]}

~δ τ , δ1 ◦ · · · ◦δn τ

Instantiations. A table is populated by rows in Row. A single
row ρ = (~m, ~d,a) ∈ Row is a tuple comprising a sequence of
match values ~m, a sequence of action data ~d, and an action
index i. We write π1(ρ) = ~m, π2(ρ) for ~d, and π3(ρ) for a.

Note that our instantiations only allow exact matches on
data. This does not affect the generality of our formal re-
sults, since exact matches can easily encode ternary and lpm
matches (with untenable blowup, of course). Using these more
compact matches is an optimization we describe in Section 5.

A row is well-formed for a table t if |~m| = t.keys, i <
|t.actions|, and when t.actions[i] = λ~x. c, then |~x| = |~d|. In
practice, there are additional typing constraints regarding the
sizes of the bitvectors, but as we’ve abstracted bitvectors to
naturals in this exposition, we can set that bookkeeping aside.
We assume henceforth that all rows are well-formed for the
tables into which they are being installed.

An instantiation τ ∈ Inst is a function from table name to
sequences of rows that describes the given state of the tables
in a pipeline, i.e., given a table t, τ(t.name) gives us the se-
quence of rows in the table. We often write τ(t) as convenient
shorthand. Moving forwards we will use τ to describe instan-
tiations for abstract programs and σ to describe instances for
physical programs.

An instantiation is well-formed if every row in every table
is well-formed

Now that we have pipelines c and instantiations τ, we can
define how to combine them via the function subst(c,τ),
which produces another command with no tables in it. Ef-
fectively we replace a table t with a guarded command
that checks each row (~m, ~d, i) in sequence. A single row is
translated to the guarded command: encKeys(t.keys,~m)→
t.actions[i](~d), where the encKeys function We present this
formally in Figure 16. Since instances τ are total functions,
τ(t) will always be defined.

We call the command c′ = subst(c,τ) an instantiated
pipeline. Note that all of the table applications have been
encoded away and we have a simple loop-free command.
Interpretation. We can interpret instantiated pipelines as
functions on packets. A packet comes in and then a (possi-
bly) different packet goes out. Similar to other formalisms
of packet processing functions we define packets to be valu-
ations on the headers and metadata [1]: packets are defined
as finite maps Hdr∪Meta ⇀ (BitVec). Operations on pack-
ets pkt are the standard ones: the empty packet is written
{}; to update or set the value of h ∈ Hdr to [n]s ∈ BitVec
with h.size = s, write pkt{h 7→ [n]s}, otherwise the update
is undefined; to access the value of x, write pkt.x. The set
of defined names x in a packet pkt is denoted dom(pkt). A
packet is well-formed when it can be constructed by a series
of defined updates. In what follows, we assume all updates
are well-formed and all packets well-defined: specifically, that
Pkt the set of well-defined elements of Hdr ⇀ (BitVec).

The semantics of commands on a packet pkt are straight-
forward. The assignment operation x := e first evaluates e to
a value n in the environment defined by the packet pkt, and
then returns the packet pkt{x 7→ n}. The sequence operator
(c1;c2) is simply interpreted as functional composition: the
output of Jc1K pkt is passed into Jc2K.

The semantics of guarded commands are broken into two
cases. First, if there are no rows in the selection, i.e., if fi,
the command is interpreted as the identity function, oth-
erwise, if there is at least one row in the selection (i.e.,
if (b→ c)

−−−→
b→ c fi), then b is evaluated in the packet en-

vironment. If it evaluates to tt, then execute c, i.e., JcK pkt,
otherwise, if b evaluates to ff, we simply check the remaining
rows in the guarded command, i.e Jif

−−−→
b→ c fiK pkt.

Finally, the denotation of a table is simply its default action.
We leave the semantics of our expressions (EJ−K) and

booleans (BJ−K) undefined, as their definitions are standard.
The logical encoding uses the predicate transformer se-

mantics of GCL programs [9]. Our semantics are identical to
Dijkstra’s, with the exception of our guarded commands. Ours
are definitionally mutually exclusive, his are nondeterministic.
To remedy this we simply negate the preceding guards, and
then apply the weakest precondition function, wp.
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Φ ,
∧
{h.name = x′ | h ∈ x′ fresh}

c1 ≡ c2 , wp(c1,Φ)⇔ wp(c2,Φ)

ISVALID(ϕ) , SAT(¬ϕ)

Figure 18: The verification condition for determining when
two programs implement the same function

encKeys :: List[Hdr]×List[BitVec]→ Bool

encKeys(~k,~m) ,
∧

0≤i<|t.keys| ki = mi

subst(c,τ) :: Cmd

subst(x := e,τ) , x := e
subst(c;c,τ) , subst(c,τ);subst(c,τ)
subst(if

−−−→
b→ c fi,τ) , if

−−−−−−−−−−→
b→ subst(c,τ) fi

subst(apply t,τ) ,
if

encKeys(t.keys,~m1)→ t.actions[a1](~d1)
...

encKeys(t.keys,~mn)→ t.actions[an](~dn)
fi

where (~m1, ~d1,a1), . . . ,(~mn, ~dn,an) = τ(t)

Figure 16: Semantics of Table Instances

JcK :: Pkt→ Pkt

Jx := eK pkt , pkt{x 7→ EJeK pkt}
Jc1;c2K pkt , Jc2K◦ Jc1K pkt
Jif fiK pkt , pkt
Jif (b→ c)(

−−−→
b→ c)fiK pkt

,

{
JcK pkt BJbK pkt = tt

Jif
−−−→
b→ c fiK pkt otherwise

Japply(t)K pkt , Jt.defaultK pkt

Figure 17: Semantics of programs

The verification condition is defined in Figure 18. Leverag-
ing the connection between weakest preconditions and deno-
tational semantics [9], we can define equivalence pipelines c1
and c2 by taking the weakest precondition with respect to a
particular formula Φ, which equates every header variable to
a fresh symbolic variable. The free variable will then capture
the input value of a program, and the symbolic variable will
capture the output value of the program.

As an example, consider the following command c:

if x = 1 → x := 5
tt → x := 9

fi

Then the Φ corresponding to this command is x = x′. Then
wp(c,Φ) is equivalent to

(x = 1⇒ 5 = x′)
∧(x 6= 1⇒ 9 = x′)

The variable x captures the input conditions (either x = 1 or
not), and the x′s capture the output varibles: when the input x
value is one, the output will be 5; otherwise, it will be 9.
Instrumentation The instr function formalizes how to add
holes to a table. We write else if to help delineate elements in
the selection list.

instr(t,τ,~δ,n) ,
if t.keys = ~mi∧ ?Delt.name,i = 0→ t.actions[ai](~di)

for (~mi, ~di,ai) ∈ τ(t) if D(t.name, i) 6∈~δ
else if t.keys = ~m→ t.actions[ai](~d)

for A(t.name,(~mi, ~di,ai)) ∈~δ
else if

∧
k∈t.keys k = ?kt.name, j
∧?Addt.name, j = 1
∧
∧

k≤ j ?Addt.name,k = 1
∧?ActIdt.name, j = i

→ t.action[i](
−−−−−−→
?dt.name, j,i)

for 0≤ i < |t.actions| and 0≤ j < n
fi

Figure 19: The instr function formalizes how to add holes to
a tables
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B Proof of Completeness
Lemma 1 (Hits Restrict). For every program p ∈ Cmd, in-
stance σ ∈ Inst, and set of counter examples X such that for
every (χ0,χ1) ∈ X, Jsubst(p,σ)K χ0 = χ1, then there exists
σ′ such that X ⊆ Jsubst(p,σ′)K and |σ′(t)| ≤ |X | for every
t ∈ Tables(p).

Proof. Proceed by induction on the structure of p:

[(p = x := e) ] Trivial because Tables(x := e) = /0 and
for every σ, subst(x := e,σ) = x := e.

[p = (p1; p2) ] Assume p = p1; p2. Introduce X and σ as
above.

Decompose X across p1 and p2 such that

X1 , {(χ0,χ1) | Jsubst(p1,σ)K χ0 = χ1,χ0 ∈ π1(X)}
X2 , {(χ1,χ2) | Jsubst(p2,σ)K χ1 = χ2,χ1 ∈ π2(X1)}

Notice that X2 ◦X1 = X .

Now by the IH on p1, σ and X1 we get σ1 such that every
rule is hit by a counterexample in X1,

∀(χ0,χ1) ∈ X1,Jsubst(p1,σ1)K χ0 = χ1

and |σ1(t)| ≤ |X1| for all t ∈ Tables(p1). Similarly, by
the IH on p2, σ and X2, we get σ2 such that every rule is
hit by a counterexample in X2.

∀(χ1,χ2) ∈ X2,Jsubst(p2,σ2)K χ1 = χ2

and |σ2(t)| ≤ |X1| for all t ∈ Tables(p2).

Now we can construct σ′ such that

σ
′(t) =

{
σ1(t), if t ∈ Tables(p1)

σ2(t), if t ∈ Tables(p2)

Observe that σ|Tables(pi) = σi for i = 1,2. Now we show
the two remaining properties.

• Since X = X2 ◦ X1 is a function, we know ∀t ∈
Tables(p), |σ1(t)| ≤ |X1| ≤ |X | and |σ2(t)| ≤
|X2| ≤ |X |, and the table names in p1 and p2 are dis-
joint. Conclude that ∀t ∈ Tables(p), |σ′(t)| ≤ |X |.

• Show X ⊆ Jsubst(p1; p2,σ
′)K. Our IHs give

X1 ⊆ Jsubst(p1,σ1)K
X2 ⊆ Jsubst(p2,σ2)K

By definition,

Jsubst(p1; p2,σ
′)K

=
Jsubst(p2,σ

′)K◦ Jsubst(p1,σ
′)K

Then,

Jsubst(p2,σ
′)K◦ Jsubst(p1,σ

′)K
=

Jsubst(p2,σ2)K◦ Jsubst(p1,σ1)K

by the disjointness of table names. The result fol-
lows.

[p = if
−−−→
b→ p fi ] Similar, but n-ary.

[p = apply(t) ] Assume that p = apply(t) for some ta-
ble t. The corresponding rows for the table are σ(t) =
~ρ. Compute a subsequence ~ρ′ of ~ρ such that ~ρ′ con-
tains ρi iff there is some input packet in X that hits
ρi. Create an instantiation σ′ = σ{t 7→ ~ρ′}. Since
each the rules are equality matches (and hence dis-
joint), Jsubst(apply(t),σ′)K χ0 = χ1 for every (χ0,χ1)∈
X . Since some χ0 ∈ π1(X) may miss, conclude that
|σ′(t)| ≤ |X |.

Lemma 2 (Model Solution). For every p ∈ Cmd, every σ ∈
Inst, and every X ∈ Pkt2, if there exists~δ ∈ List[Edit] such
that X ⊆ Jsubst(p,~δ(σ))K, then

SAT ~δ′ = model(p,σ,X)

and
X ⊆ Jsubst(p,~δ′(σ))K

Proof. Let~δ be such that X ⊆ Jsubst(p,~δ(σ))K.
Lemma 1 gives us σ′ from~δ(σ) such that for every table

t ∈ dom(σ′), |σ′(t)| ≤ |X |, and X ⊆ Jsubst(p,σ′)K.
Construct the following witness to the query in Figure 5

?Delx,i 7→ 1,
?Addx, j 7→ 1,
?ActIdx, j 7→ a,
−−−−−−→
?kx, j 7→ m,
−−−−−−→
?dx, j,i 7→ d

∣∣∣∣∣∣∣∣∣∣
t ∈ Tables(p),
x = t.name
0≤ i < |σ(t)|,
0≤ j < |σ′(t)|
(~m, ~d,a) = σ′(t)[ j]


which corresponds to the rules

dt,i , D(t, i), ∀t ∈ Tables(p), |σ(t)|> i≥ 0
at, j , A(t,σ′(t)[ j]), ∀t ∈ Tables(p),0≤ j < |σ′(t)|
~δ′ , ~d ·~a

Note that ~dt is sorted from highest index to lowest index.
Observe that ~δ′(σ) =~a(~d(σ))σ =~a(·) = σ′, so we can con-
clude that ∀(χ0,χ1)∈X ,Jsubst(p,~δ′(σ))K χ0 = χ1, and we’re
done.
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Theorem 6 (Completeness). For every logical program l ∈
Cmd, physical program p ∈ Cmd, logical instantiation τ ∈
Inst, physical instantiation σ ∈ Inst, sequence of physical
edits~δ ∈ List[Edit], and every set X s.t.

X ⊆ Jsubst(l,τ)K∩ Jsubst(p,~δ(σ))K,

if
∃~ε ∈ List[Edit].subst(l,τ) = subst(p,~ε(σ))

then
Ok ~δ′ = cegis(l, p,τ,σ,~δ,X)

and
subst(l,τ) = subst(p,~δ′(σ))

Proof. Proceed by induction on |Pkt\π1(X)|.
Base Case. (π1(X) = Pkt). The definition of functional

subset gives us

∀(χ1,χ2) ∈ X .Jsubst(l,τ)K χ1 = χ2 = Jsubst(p, ~δ(σ))K χ1

which reduces to

∀χ1 ∈ π1(X).Jsubst(l,τ)K χ1 = Jsubst(p,~δ(σ))K χ1.

Then by the assumption that π1(X) = Pkt, this is just

∀χ1 ∈ Pkt.Jsubst(l,τ)K χ1 = Jsubst(p,~δ(σ))K χ1

Conclude, by definition, that

subst(l,τ) = subst(l,~δ)

Inductive Step. (π1(X) ⊆ Pkt). If subst(l,τ) =

subst(p,~δ(σ)), then we’re done, so assume instead
that we have a counterexample χ = (χ0,χ1) such that

Jsubst(l,τ)K χ0 = χ1 6= Jsubst(p,~δ(σ))K

which tells us that that χ 6∈ X .
Our main assumption tells us that there is some~ε such that

subst(l,τ) = subst(p,~ε(σ))

By definition we have

∀pkt ∈ Pkt.Jsubst(l,τ)K pkt = Jsubst(p,~ε(σ))K pkt.

which, since π1({χ}∪X)⊆ Pkt, means that

∀pkt ∈ {χ}∪X .Jsubst(l,τ)K pkt = Jsubst(p,~ε(σ))K pkt,

Then Lemma 2 gives us a model ~δ′ such that

∀pkt ∈ {χ}∪X .Jsubst(l,τ)K pkt = Jsubst(p,~δ′(σ))K pkt

The result follows by IH on {χ}∪X as |{χ}∪X |> |X |.

C Proof of Completeness for Incremental Syn-
thesis

Definition 1 (Minimal Sequence). Given an instantiation τ,
a sequence of edits~δ is minimal iff for every table t ∈ dom(τ),
for every ~δ′ s.t.~δ(σ) = ~δ′(σ), |~δ| ≤ |~δ′|.

Definition 2 (Minimal Extension). Given a command c, an
instantiation τ, and a sequence of edits~δ, another sequence
~δ′ is called a minimal extension of~δ when~δ◦~δ′ is minimal.

Lemma 3 (Finite Minimal Sequences). Given a command c,
and an instantiation τ, the set of minimal sequences is finite.

Proof. Proceed by induction on the structure of c.

(h := e) There there is one minimal instatiation: [ ].

(c1;c2) By IHs, the set of minimal sequences correspond-
ing to c1 and τ is a finite D1, and the set of minimal se-
quences corresponding to c1 and τ is a finite D2. The set
of minimal sequences corresponding to c1;c2 is the set
of all interleaving of all sequences in D1 and sequences
of D2, which is finite.

(if
−−−→
b→ c fi) This is similar to the previous case except

nary.

(apply(t)) First we show that the space of functions that
t can represent is finite. Since t.keys is finite, and each
header in t.keys has a finite domain of values, so the
domain of matches is finite. A similar argument shows
that the domain of actions is finite, and so the domain
of functions is finite. Further for each of these functions,
there are finitely many ways of representing them (all of
the permutations of the rules).

This means that there are finitely many minimal se-
quences when τ(t) = [ ], simply install each of these,
with no duplicates, since removing the duplicates would
result in a smaller sequence of edits.

When τ(t) 6= [] there are also finitely many minimal
sequences. They are those that delete as few rules in τ(t)
as necessary and then install the missing rules (if any are
needed): they never delete a rule and then reinstall the
same rule, and then never install a rule only to delete it
later.

Lemma 4 (Finite Minimal Extensions). For a command c
and an instantiation τ, and a sequence of edits~δ, there are
finitely many minimal extensions of~δ.

Proof. There are finitely many minimal extensions of c and
τ. Some of those have~δ as a prefix; there are finitely many of
them.
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Definition 3 (ϕ-Preclusion). For a program c, instantiation
τ, and a packet pair χ 6∈ Jsubst(c,τ)K, we say that ϕ pre-
cludes ~δ when for every ~δ′ |= ϕ that is also a prefix of ~δ,
χ 6∈ Jsubst(p,~δ(τ))K. We say that ϕ precludes a solution, when
it precludes every~δ.

Definition 4 (Zip Function). Let zip(~x, ~y) be the function
that simultaneously iterates through ~x and ~y and returns a
sequence of the element-wise pairs, i.e.,

−−→
(x,y). The function

is undefined if |~x| 6= |~y|.

Lemma 5 (Model Finding). For every logical program l,
physical program p, logical instantiation τ, phsyical instan-
tiation σ, sequence of physical edits~δ, counterexample χ ∈
Jsubst(l,τ)K \ Jsubst(p,~δ(σ))K, and formula ϕ ∈ Bool such
that for every ~δ′ |= ¬ϕ st χ ∈ Jsubst(p,~δ′(~δ(σ)))K, there is
no extension ~δ′′ such that subst(l,τ) = subst(l, ~δ′′(~δ′(~δ(σ)))),
then if there exists~ε not precluded by ϕ such that

subst(p,τ) = subst(l,~ε(~δ(σ)))

, and~δ◦~ε is minimal, then

Sat ~δ′′ = model′(p,σ,δ,χ,ϕ)

Proof. Let l, p, τ, σ,~δ, χ, and ϕ be given. Construct the fol-
lowing model for the query in model′(p,σ,δ,χ,ϕ):

We accumulate a model for every table t ∈ Tables(p). If
π1(χ) in subst(p,~ε(~δ(σ))) hits the ith row ρi, then there are
several cases

MISS If π1(χ) misses in subst(p,~δ(σ)), then add
?AddRowTot,1 7→ 1
?Actt,1 7→ ρi.action
~?kt,1 7→ ρi.keys
−−−−−−−→
?dt,ρ.action,1 7→ ρi.data


HITCORRECT If π1(χ) hits the jth row ρ j of (~δ(σ))(t)
in subst(p,~δ(σ)), and ρi = ρ j then do nothing.

HITWRONG If π1(χ) hits the jth row of (~δ(σ))(t) in
subst(p,~δ(σ)) and ρ j 6= ρi,

?AddRowTot,1 7→ 1
?Actt,1 7→ ρi.action
~?kt,1 7→ ρi.keys
−−−−−−−→
?dt,ρ.action,1 7→ ρi.data


From here we extract queries from the model as before,

sorting the deletions by decreasing index to get ~δ′′. Note that χ

hits a syntactically equivalent rule in subst(p, ~δ′′(~δ)(σ)) as in
subst(l,~ε(~δ(σ))). We conclude χ∈ Jsubst(p, ~δ′′(~δ(σ)))K

Lemma 6 (Nontrivial Models). For every physical program
p, physical instance σ, sequence of edits~δ, formula ϕ, and
counterexample χ ∈ Pkt2 such that χ 6∈ Jsubst(p,~δ(σ))K, if
Sat ~δ′′ = model′(p,σ,~δ,χ,ϕ), then ~δ′′ 6= [].

Proof. Let p ∈ Cmd, σ ∈ Inst,~δ ∈ List[Edit] and ϕ and χ ∈
Pkt2 be given. Assume Sat ~δ′′ = model′(p,σ,~δ,ϕ).

Prove the contrapositive, that if ~δ′′ = [], then χ ∈
Jsubst(p,σ)K. Assume ~δ′′ = []. Then the query in
model(p,σ,~δ,χ,ϕ) is satisfiable with all deletion and inser-
tion holes set to zero. This means that the following query is
also satisfiable (where χ = (pkt,pkt′)):

SAT
(
∀~x.ϕ∧

(−−−−−→
χ1.x = x

)
⇒ wp

(
subst(p,~δ(σ)),

(−−−−−−→
pkt′.x = x

)))
By the correspondence between wp and the denotational

semantics, conclude that χ ∈ Jsubst(p,~δ(σ))K.

Proposition 1 (Oracle Constraints). For a given physical
program p, edit sequence δ and instance σ,

HEURISTIC()⇒
∧

t∈Tables(p)

?Addt,1 = 1⇒
∧

(~m,~d,~a)∈~δ(σ)(t)

¬
(−−→

?kt,1 = m
)

and

HEURISTIC()⇒
∧

t∈Tables(p)
0≤i<|σ(t)|

(~m,~d,a)=σ(t)[i]

?Delt,i = 1⇒¬


−−−−−→
?kt,1 = m
∧?Actt,l = a
∧
−−−−−−→
?dt,a,1 = d



Lemma 7 (Reachable Edits). For every program p, instan-
tiation σ, edit sequence~δ, counterexample χ and ϕ ∈ Bool,
if

Sat ~δ′ = model′(p,σ,~δ,χ,ϕ)

then the insertions in~δ are reachable.

Proof. By Proposition 1.

Lemma 8 (Deletes Not Resurrected). For every program
p, instantiation σ, edit sequence ~δ, counterexample χ and
ϕ ∈ Bool, if

Sat ~δ′ = model′(p,σ,~δ,χ,ϕ)

then the insertions in~δ are reachable.

Proof. By Proposition 1.

Lemma 9 (Minimal Models). For every physical program p,
physical instance σ, sequence of edits~δ, formula ϕ, and coun-
terexample χ ∈ Pkt2 such that χ 6∈ Jsubst(p,σ)K, if Sat ~δ′′ =

model′(p,σ,~δ,ϕ), then~δ◦ ~δ′′ is minimal.
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Proof. Let p, σ, ~δ, ϕ, χ be given. Assume Sat ~δ′′ =

model′(p,σ,~δ,ϕ).
Consider another sequence of edits ~δ′ such that there is

some σ′ such that ~δ′′(~δ(σ)) = σ′ =~δ′(σ). Show that |~δ◦ ~δ′′| ≤
|~δ′|.

We prove two propositions.

(ADD) Assume that there were some insertion δi =
A(t,ρ) ∈~δ ◦ ~δ′′ that doesn’t occur in ~δ′. If δi ∈~δ, then
ρ ∈ σ′(t). By minimality of~δ, and ρ 6∈ σ′(t). So σ′ 6=
~δ(σ), which is a contradiction. If δi ∈ ~δ′′, then ρ ∈ σ′(t),
and ρ 6∈ σ(t), because model′ always produces reachable
edits (Lemma 7). Consequently ~δ′(σ) 6= σ′ which is a
contradiction.

So we know that δi has a corresponding edit δ′j ∈ ~δ′.

Assume that there is another edit δk ∈~δ ◦~δ that corre-
sponds to δ′j. This is impossible by Lemma 7 and by the

minimality of~δ.

(DEL) Assume that there were some edit δ j = D(t, i) ∈
~δ◦~δ′′ deletes some row ρ that occurs in~δ′(σ): ie. ((δi−1◦
· · · ◦δ1)(σ))(t)[i] = ρ 6∈ σ′(t) and ρ ∈ ~δ′(σ).

If δi ∈ ~δ′′, we know, by construction, that δi deletes a
row in σ(t). Further, Lemma 8 says ~δ′(σ) 6= σ′, which is
a contradiction.

So we know that δi has a corresponding edit δ′j ∈ ~δ′.

Assume that there is another edit δk ∈~δ ◦~δ that corre-
sponds to δ′j. This is impossible because rows can only
be deleted once.

Since every edit in~δ◦ ~δ′′ has a corresponding unique edit
in δ′. Conclude that~δ◦ ~δ′′ ⊆ ~δ′. The result follows.

Lemma 10 (Completeness). For every logical program l,
every physical program p, every logical instantiation τ, every
physical instantiation σ and every sequence of physical edits
~δ, then, the following properties hold:

1. if there exists a sequence of physical edits ~δ′ such that

subst(l,τ) = subst(p,~δ′(~δ(σ)))

then
Ok ~δ′′ = verify(l, p,τ,σ,~δ)

and
subst(l,τ) = subst(p, ~δ′′(σ))

2. For every χ ∈ Jsubst(l,τ)K\ Jsubst(p,~δ(σ))K, and every
ϕ ∈ Bool such that if ~δ′ |= ¬ϕ and Jsubst(l,τ)K π1(χ) =

π2(χ) = Jsubst(p,~δ′(~δ(σ)))K π1(χ) , there is no exten-
sion ~δ′′ such that subst(l,τ) = subst(l, ~δ′′(~δ′(~δ(σ))))

then if there exists a non-empty, minimal sequence of
physical edits~ε not precluded by ϕ such that

subst(l,τ) = subst(p,~ε(~δ(σ)))

then
Ok ~δ′′ = solve(l, p,τ,σ,~δ,χ,X ,ϕ)

and
subst(l,τ) = subst(p, ~δ′′(σ))

Proof. First we justify the finiteness of our inner inductive
measure. There is a finite number of models to every model′

query, simply because there are finitely many holes, each of
which has finite domain. Since ϕ is composed of the same set
of variables, it is also finite.

Let l, p, τ and σ be given. Proceed by induction on the num-
ber of nonempty minimal extensions of~δ. Lemma 4 shows
this measure is well-formed.

BASE CASE There are no nonempty minimal extensions
of~δ. Consider each proposition separately

1. Let~ε be a nonempty sequence of edits such that
subst(l,τ) = subst(l,~ε(σ)). However, ~δ has no
nonempty minimal extensions, so subst(l,τ) =
subst(l,~δ(σ))). Entering the verify function, ob-
serve that by Theorem 1 CheckSat(subst(l,τ) 6≡
subst(l,~δ(σ))) will be UNSAT, and we’re done by
Theorem 4.

2. Vacuous, there is no such~ε.

INDUCTIVE STEP There are nonempty minimal exten-
sions of~δ.

First we prove proposition 2 by strong induction on the
number of models for ϕ.

BASE CASE There are no models for ϕ, i.e., ϕ is unsatis-
fiable. Consequently, the call to model′ fails to pro-
duce a model. This is a contradiction by Lemma 5.

INDUCTIVE STEP There are n models for ϕ Let X and
χ be given. Assume~ε exists such that subst(l,τ) =
subst(p,~ε(~δ(σ))).
Now, we get a model by calling
model′(p,σ,~δ,χ,ϕ), and there are two cases.

i. Assume the result is UNSAT. This is a contra-
diction by Lemma 5.

ii. Assume the result is Sat ~δ′′. By Lemma 6, |~δ′′|
is nonempty. Consider two cases:
Case 1. Assume there exists some extension
of~δ◦ ~δ′′ that is a solution. Then the outer IH
proves that the verify call produces a solution.
Case 2. Assume there is no extension of~δ◦ ~δ′′
that is a solution. Then verify(l, p,τ,σ,~δ◦ ~δ′′)
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returns Fail. Then, since ~δ′′ |= ϕ, and~δ 6|= ¬~δ,
the number of models for ϕ∧¬~δ′′ is strictly
less than n. Further, we know that there is an
way to extend~δ that is a solution, namely~ε.
We also know that~ε isn’t precluded by ϕ, by
assumption, finally we also know that~ε isn’t
precluded by ¬~δ′′, because of our assumption
that~δ ◦ ~δ′′ cannot be extended to a solution.
These final conditions witness the precondi-
tions of the inner IH, which proves the result.

X

Now prove proposition 1. Let~ε be such that

subst(l,τ) = subst(l,~ε(~δ(σ)))

There are two cases, either subst(l,τ) = subst(l,~δσ) or not.
In the former case, we are done by Theorem 1. In the latter,
we will get a counterexample χ (by Theorem 1), such that

χ 6∈ subst(l,τ)∩ subst(l,~δ(σ))

Then the result follows as a special case of the preceeding
proof of proposition 2.
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Abstract
Auditing is a crucial component of network security practices
in organizations with sensitive information, such as banks
and hospitals. Unfortunately, network function virtualization
(NFV) is viewed as incompatible with auditing practices
which verify that security functions operate correctly. In
this paper, we bring the benefits of NFV to security-sensitive
environments with the design and implementation of AuditBox.

AuditBox not only makes NFV compatible with auditing, but
also provides stronger guarantees than traditional auditing
procedures. In traditional auditing, administrators test the sys-
tem for correctness on a schedule, e.g., once per month. In
contrast, AuditBox continuously self-monitors for correct be-
havior, proving runtime guarantees that the system remains in
compliance with policy goals. Furthermore, AuditBox remains
compatible with traditional auditing practices by providing
sampled logs which still allow auditors to inspect system behav-
ior manually. AuditBox achieves its goals by combining trusted
execution environments with a lightweight verified routing pro-
tocol (VRP). Despite the complexity of routing policies for
service-function chains relative to traditional routing, Audit-
Box’s protocol introduces 72-80% fewer bytes of overhead per
packet (in a 5-hop service chain) and provides 61-67% higher
goodput than prior work on VRPs designed for the Internet.

1 Introduction
Modern networks contain a myriad of network functions

(NFs) such as firewalls, intrusion detection systems, normal-
izers, exfiltration detectors, and proxies. Beyond security and
performance benefits, a key driving factor for NFs is that
they are mandated by legal and policy requirements; e.g.,
HIPAA [8], FERPA [7], and PCI [13], among others.

While network functions virtualization (NFV) promises
potential benefits in cost, elasticity, and richer poli-
cies [32, 58, 63], there is significant resistance to adoption
of NFV [6] for such regulatory use cases. Conversations with
industry experts suggest that this reluctance stems from the in-
ability to audit NFV deployments to demonstrate compliance
as mandated by standards [15, 41]; i.e., show that the service
function chains (SFC) are correctly implemented and packets
traverse the intended sequences of NFs in the right order.

With legacy hardware NF deployments, administrators
and auditors can simply look at static wiring and hardware
placement to intuitively verify (‘what you see is what you
get’) if the network meets intended requirements.1 In contrast,
NFV introduces new dimensions of dynamism, virtualization,

1As we argue later, this is indeed a weak guarantee, but today’s NFV
deployments lack tools even for this weak property.

and multiplexing in the environment. For instance, VMs
running NFs may be ephemeral, virtual switches may
multiplex several services, and servers may host multiple
services. Enhanced dynamism and a larger attack surface
make NFV systems harder to reason about and as such,
regulators do not have suitable tools for auditing. This lack of
auditing is a fundamental stumbling block for NFV adoption.

To this end, we propose (1) formal models of correct
SFC routing which clarify ‘correctness’ in the context of
dynamic NF scheduling and routing; and (2) a protocol which
provably provides continuous assurance that packets follow
the (formally specified) policy-mandated paths.

Realizing this vision in a practical system, however, is
challenging. To see why, consider traditional verified routing
protocols [46, 55] (VRPs). At a high level, VPRs crypto-
graphically ensure that packets are not modified in flight and
do not deviate from a traversal of a prespecified sequence
of routers. Unfortunately, VPRs fail to provide the required
capabilities for our setting. First, VRPs assume that packets
will traverse their path unmodified, but NFs can legitimately
modify packets. Second, VRPs assume that the correct route
for packets is fixed and known a priori, but in SFC the correct
route for a packet may only be revealed mid-flight. Third,
these approaches focus on per-packet behavior, whereas NFV
often involves stateful NFs whose semantics depend on cross-
packet state. Furthermore, VRPs have prohibitively high
performance overhead; e.g., OPT [46] increases min-sized
packets by 3× for a 4-NF chain, and even the most recent work
EPIC [47] incurs 1.69× overhead for a strong attack model.

In this paper, we present the design and implementation
of AuditBox, which (1) re-enables status-quo ‘what you see
is what you get’ auditing practices, and (2) raises the bar
by enforcing at runtime that the system operates correctly.
AuditBox builds on four key ideas:

• Using secure enclaves: To ensure that the correct NF soft-
ware is running, AuditBox runs them atop hardware en-
claves (e.g., Intel’s SGX [25]). By changing the trust model,
we reformulate verified routing to audit actions between
trusted NFs, with an untrusted network in between.

• Trusted PacketIDs: To tackle dynamic packet modifica-
tions, immutable packetIDs are carried by an AuditBox
packet trailer. This enables us to logically bind modified
packets to incoming packets when creating audit trails.

• NF-hop-by-hop protocols: Given trusted NFs, we devise
a simplified path attestation protocol that focuses on the
packets at individual “NF hops”. This hop-by-hop attesta-
tion has the dual benefit of addressing dynamic paths and
reducing the size of attestation headers.
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• Lightweight simplified operations: The use of trusted NFs
inside enclaves enables a number of simple-yet-effective
cryptographic optimizations such as the use of symmetric
keys and updatable MAC computations to significantly
improve data plane performance.
To realize these ideas with minimal modifications to

NF implementations, AuditBox embeds a trusted SFC
routing shim in the enclave alongside the NF. The shim
receives inbound/outbound packets to/from the NF and
is simultaneously responsible for generating audit trails
for traditional auditing practices and for our new goal of
enforcing runtime checks that the untrusted components of
the system behave as expected. Relative to verified routing
protocols for the Internet, AuditBox introduces 72-80% less
per-packet header overhead (assuming a 5-hop service chain)
and offers 62-67% higher goodput in the dataplane.

Nonetheless, auditability in AuditBox (or any such
framework) does come at a cost relative to an uninstrumented
NFV cluster (e.g., 3%-38% overhead for s single NF as shown
in Figure 16). That said, for security-sensitive settings, regu-
latory compliance is a fundamental requirement for NFV de-
ployment. Hence, AuditBox’s essential advantage is in bring-
ing the benefits of ease of management, lower-cost equipment,
faster upgrades and security patches, and flexibility that are
associated with NFV to new markets where it would not have
been viable previously. Indeed, we estimate that AuditBox,
despite its overheads relative to uninstrumented NFV, can
still result in capital savings of 1.9-60× (depending on the ap-
pliance) relative to traditional hardware middlebox solutions.

2 Background and Motivation
We begin by discussing network compliance today (§2.1),

our problem statement (§2.2) and threat model (§2.3), and
finally discuss why compliance for NFV is challenging (§2.4).

2.1 Tussle Between Compliance and NFV
Modern organizations need to satisfy a number of security

standards for compliance with government and industrial
regulations (e.g., HIPAA, FERPA, FISMA, GDPR, and PCI,
among others) [66]. In this paper, we focus on requirements or
controls related to network security under NIST 800-53 [41]
in the United States:2

• Middleboxes must be deployed to protect sensitive data and
systems: Control SC-7 mandates the need for protection de-
vices (e.g., proxies, gateways, firewalls, guards, encrypted
tunnels) arranged in an effective architecture.

• Administrators must periodically test that security infras-
tructure is running properly: Control SI-6 demands that
these inspections be performed periodically, with ‘once a
month’ as an example acceptable frequency.

• Systems must provide logs of anomalies and past behavior:
Control AU-2 requires systems to keep such records for
later analysis for auditing.

2ISO 270001 [15] has similar international standards.
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Figure 1: Components of a basic NFV cluster.
• Independent ‘auditors’ must certify that security mecha-

nisms are in place and running correctly: Control CA-7
mandates that organizations be ‘certified’ by outside au-
ditors (e.g., third-party IT consulting companies) that the
above requirements (among others) are being met.

Reluctance to adopt NFV: To meet the above compli-
ance requirements, there is a large regulatory technology
(‘RegTech’) industry [66] (expected to surpass $55.28B by
2025). One might expect then that this RegTech market would
be an early adopter of NFV to reduce capital and operating
expenses. However, our conversations with representatives
from NIST and a RegTech firm revealed that this industry
is hesitant to adopt NFV. The key reason is that while NFV
lowers the bar for some aspects of compliance (e.g., SC-7),
it makes other requirements such as SI-6, AU-2, and CA-7
difficult, if not impossible.

In hindsight, this reluctance is not surprising. NFV
introduces new dimensions of dynamism and multiplexing
(e.g., shared hosts running VMs, dynamic overlay routing,
dynamic load balancing). This makes it harder to reason
about the deployment and introduces an increased attack
surface for threats (and misconfigurations). In contrast,
a simple statically-wired NF deployment with hardware
boxes seems intuitively easy to test, audit, and demonstrate
compliance to external auditors.

2.2 Problem Setup
We consider an NFV cluster managed by a framework

such as E2 [58], AT&T Domain 2.0 [2], or Blue Planet [3]. At
a high level, NFV clusters consist of five basic components
(Figure 1): (1) Commodity servers on which containerized
or virtualized NFs run; (2) Network Functions such as
firewall, proxy, or IDS; (3) Software and Hardware Switches
that steer traffic between a sequence of NFs; (4) Gateways
where cluster traffic enters; and (5) a Controller responsible
for provisioning NFs on the servers and defining routes
through them. NF instances are composed to create service
function chains (SFC) policies for specific traffic classes (e.g.,
Gateway→ Firewall→ Proxy→ IDS→ Gateway).

To make these systems auditable, we need to verify that:
(1) the correct and untampered NFs are running correctly
and (2) packets traverse these NFs according to policy.
We formally define what it means for traffic to traverse
NFs ‘according to policy’ in §4. Furthermore, to meet the
compliance requirements, operators must be able to inspect
and demonstrate that the correct behavior is happening; e.g.,
trigger tests to observe that packets follow policies (SI-6) and
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produce audit trails for external inspectors.
To ‘raise the bar’ for auditability, we add two additional

requirements. First, rather than merely enabling admin-
istrators to test on demand or post-facto whether or not
the system is or was running correctly, we also want to
enable the system to audit itself, continuously, at runtime for
deviations from correct behavior, and to alert administrators
if such a deviation is detected. Second, we also want to
support rich dynamic SFC policies as opposed to traditional
static service-chain policies; e.g., steering packets tagged as
suspicious by earlier NFs for deeper inspection [32].

In this context, we note that while auditability may seem
related to network verification (e.g., [44, 45, 60, 74], the
requirements are fundamentally different on two fronts. First,
most existing network verification efforts simply look at the
configurations of the network elements such as NFs/switches
and formally verify if the configuration meets intended
policies. It does not typically provide any runtime guarantees
about data plane actions. Second, network verification can
be used to provide evidence of correct operation [45] but it
does not provide ‘what you see is what you get’ audit trails;
in this regard, verification could be coupled with audit trails
to provide additional evidence of compliance.

2.3 Threat Model
Although most operators are primarily concerned with

cluster misconfiguration rather than outright attacks, we
target a stronger threat model as follows. First, what is trusted:
the controller is the arbiter of correct policy and how NFs
should be scheduled; we assume that the controller is trusted,
and we do not consider attacks where a ‘lead’ administrator
(that is, an administrator charged with configuring policies
at the controller) provides invalid or malicious policies to
the controller. In the case of the gateway and the NFs, we
assume there exists vendor-certified code which is digitally
signed. This code is privileged to drop or rewrite packets, and
we exclude NFs that can inject packets.

Most other components of the network are untrusted. An
attacker may attempt to corrupt server software (including the
operating system and/or VMM), NF and gateway software,
and the software and hardware of the switches. The attacker
can cause one or more corrupted components to inject, drop,
or rewrite packets.

Our solution builds on the ‘abstract enclave assumption’
defined by prior research [17, 18, 61]: the attacker cannot
observe or modify any data or program code running within

an enclave, and the enclave is trusted to attest to the integrity
of the code running therein. While existing enclave solutions
– such as SGX, which we build on – fall short of meeting
the abstract enclave assumption perfectly [22, 24, 36, 54, 73],
fixing the shortcomings of current enclave solutions is out
of scope for this work, as such fixes are an active area of
research in their own right [26, 34].

2.4 Challenges
At first glance, it would appear that we can borrow

from prior work on verified routing protocols (VRPs)
that cryptographically guarantee that a packet takes a
pre-specified intended path and is not modified in flight
(e.g., [46,49,55,77,80–83]). We use OPT [46] as an exemplar
state-of-art solution from this class. Specifically, OPT extends
each packet with: (a) a cryptographic hash of the packet
contents and (b) its expected switch-level path. Every router
along the path verifies that the packet’s current hash matches
the header and also adds attestations to ensure the packet
has matched the expected sequence. As we will see next, our
NFV auditability problem introduces new dimensions outside
the scope of these prior efforts.
Mutable Packets: Figure 2 shows two NFs: a load balancer
that modifies the destination IP to distribute the load across
multiple backend servers and a firewall configured to block
packets from malicious IPs. Consider the scenario where
switch S2 (either adversarially or via misconfigurations)
modifies the IP header to bypass the firewall. Because NFs
can legitimately modify packet headers, it is difficult to
distinguish whether this action was malicious or an intended
NF action. OPT-like VRPs assume that most packet fields
are immutable and perform crypto operations by excluding
a few mutable packet fields (e.g., TTL), and hence would
generate a large number of false positives by flagging all
legitimate NF modifications.
Dynamic Paths: Consider a dynamic SFC scenario in
Figure 3, where a lightweight IPS performs basic detections
and then routes suspicious packets to the heavy IPS for further
processing. Again, an adversarial or misconfigured device
could reroute all suspicious packets to bypass the heavy IPS,
and it is hard to tell whether this was the result of the light
IPS’s action or a malicious switch. Because the intended path
cannot be determined until the light IPS finishes processing,
OPT-like VRPs – which must pre-specify the end-to-end
route of the packet – are not applicable to this network.
Stateful Behavior: NFs’ stateful semantics mean that
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per-packet auditability may not be sufficient. We may also
need to ensure that all packets in a given flow follow the
same path and that they arrive in order if we wish to ensure
the stateful semantics are not compromised. To see why,
consider Figure 4, which shows two stateful NFs: a layer
4 load balancer to distribute packets based on source IP
and port and a NAT that maps public ports to private ports.
Consider an adversary (or misconfiguration) that reorders
packets and sends the FIN packet before the data packets.
This could cause all following data packets to be discarded by
the load balancer. This highlights a fundamental limitation of
VRPs: because they reason about correctness of each packet
independent of the others, there may be cross-packet policy
violations which they cannot capture.

3 AuditBox Overview
Our goal in designing AuditBox is to provide auditing

capabilities for NFV deployments. In practice, we also want:
R1) minimal modifications to existing NFs and R2) low
overhead on the data/control paths. In this section, we discuss
some of the key ideas in AuditBox and its overall architecture.

3.1 Key Ideas
We first discuss the main ideas that enable AuditBox to

tackle the challenges of packet modifications (C1), dynamic
paths (C2), and stateful actions (C3) while meeting the
practical requirements of minimal NF modifications (R1) and
low overhead (R2).
A) Running NFs in enclaves atop a shim: Inspired by the
trust guarantees provided by prior work [39,61,70], AuditBox
runs NFs in trusted enclaves. This enables AuditBox to trust
those modifications that are validly introduced by NFs (C1).
To avoid modifying existing NFs (R1), we introduce a trusted
shim in each enclave to perform auditing (§5.4). This shim
also ensures that the next-hop NFs are chosen based on the
intended policy (C2).
B) Trusted Packet ID: Mutable packets (C1) make it hard to
generate audit trails as we cannot causally relate NF-modified
packets to their inputs (§4). To tackle this, we introduce
an immutable packet ID, carried by the packet header (§5).
We envision a trusted gateway (running in an enclave) that
generates and assigns this ID when the packet first arrives
in the NFV cluster; the packet ID is carried through NFs even
if the packet itself is modified or rewritten by NFs.
C) NF-Hop-by-hop updated attestations: We leverage
the trusted shim in each enclave to develop a hop-by-hop
attestation protocol in which each pair of shims attest that the
packet was delivered, without improper modification between
an NF and its policy-compliant successor. Compared to the
end-to-end approach taken by traditional VRPs, hop-by-hop
attestation has the dual benefit of supporting dynamic paths
and also reducing packet overheads.
D) Efficient crypto mechanisms: By using trusted enclaves,
we can use one symmetric key for all NFs in the same policy
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pipelet (§3.3), to simplify the cryptographic operations and
also introduce new opportunities for efficiency. For example,
we implement an efficient updatable MAC algorithm to
improve the performance of repeated attestations to the
packet at each hop (§6.1).

3.2 AuditBox Architecture: Data Plane
The key components of the AuditBox architecture are

illustrated in Figure 5.
In the data plane, AuditBox runs unmodified NFs in

trusted execution environments (TEEs) to isolate them from
other untrusted network components (e.g., switches, OSes).
Although our current implementation (§6) uses Intel SGX
enclaves, our design in principle can be realized using other
TEE technologies such as Arm TrustZone [1]. The key
capabilities we leverage are attested memory isolation and
integrity during program execution. In each enclave, we
add a shim which intercepts the traffic entering/exiting the
NF to serve three purposes. (1) The shim determines the
correct next-hop NF according to a policy it received from
the controller; this is no different than any other NFV policy
manager such as FlowTags [32] or E2 [58].

The second two tasks for the shim are novel to AuditBox
and form the entirety of sections 4, 5, and 6 and so we only
introduce them briefly here. (2) The shim checks each incom-
ing packet to verify that the packet has not been improperly
routed or modified while traversing the untrusted network
between enclaves; on egress the shim attaches a custom
trailer (called AuditTrailer) along with a MAC attesting to
the contents of the packet and trailer so that the next-hop NF
can similarly verify the packet was routed correctly. (3) The
shim logs any packets to local storage which either appear to
violate policy, or are tagged via a secret ‘log bit’ for recording.

3.3 AuditBox Architecture: Control Plane
The controller serves two key purposes: NF deploy-

ment and management, and serving as an interface for an
administrator to inspect logs and audit trails.

NF Deployment: NF deployment includes scheduling NFs
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on servers, verifying enclave attestations that the correct NF
software is running at each NF, distributing and updating
the global symmetric key used for dataplane verification, and
installing the correct next-hop policies at each enclave.

Policies are roughly similar to other DAG-based policy lan-
guages [31, 32, 58]: network operators specify policy pipelets
where nodes represent NFs and edges are annotated with
traffic classes and where they should be routed according to
policy (illustrated in Figure 6). AuditBox augments this tra-
ditional policy with two new parameters: a correctness model
which defines what behavior in the network constitutes a viola-
tion (presented in §4) and violation annotations on each edge
to determine whether packets which violate the correctness
model should be dropped or raise an alert. From this policy,
the operator can define a function which, for a given packet
egressing an NF, can determine what the correct next-hop NF
to deliver the packet to is; this function is installed in the shim
at each enclave along with the assigned violation action to take
in case, e.g., a packet is corrupted inflight between enclaves.
Logging and Audit Trails: Auditors and administrators can
use the controller to query for logs (records of any anomalies
or policy violations) and audit trails (the end to end path
a packet takes through the cluster, and all intermediate
rewritten states of the packet between NFs). By default,
each enclave stores logs and audit trail records to local
storage, encrypted with a symmetric key that is local to that
NF; the controller sets up pairwise keys with each NF for
log and audit storage. Because it is infeasible to log every
packet through the system, the administrator configures a
sampling policy; we discuss the sampling policy, the logging
mechanism, and the security of the logs in §5.4.

4 Formalizing Correctness
We begin by formally defining what it means for a system

to (a) obey correct routing, and (b) support auditing.
Correct Routing: Since networked forwarding elements
are untrusted, we rely on a trusted shim in each SGX enclave
to verify at runtime that the network has not deviated from
correct behavior. §4.2 defines ‘correctness’ with regard to
network forwarding behaviors, i.e., those verified by the shim.
Auditability: Our verified routing approach operates on a
hop-by-hop basis; as we discuss in §5 this simplifies our pro-
tocol and limits its size overhead. However, auditors expect
end-to-end evidence (upon inspection) that the system is oper-
ating correctly. An ‘audit trail’ consists of a recorded sequence
of causally connected operations across devices – e.g., packet
p entered at the gateway, was processed by NFi resulting in
p′, which was processed by NF j, and resulted in p′′, which

was released through the gateway. Due to space constraints,
we defer our formal definition of an ‘audit trail’ to §B.2.

Prior to introducing our formal definitions (§4.2), we
define our model of the network (§4.1). We make a few
assumptions for the sake of simplifying our presentation. All
can be relaxed at the cost of additional notational complexity.
First, we assume that the cluster has a single ingress/egress
‘gateway’ where packets transit to/from the primary network.
We similarly assume that each NF has only one ingress/egress
port. Finally, we assume that forwarding within the cluster
is performed at L2, and hence it is not necessary for network
switches to update any TTL values or checksums, i.e., there
is no need for the network to modify packets.

4.1 Definitions
Time: We model time as an ordered sequence E, the set of
all events in the system. E is initialized to [], that is, empty.

As the (modeled) system runs, NFs in the system populate
E with 4-tuples containing the following named values:
• pktin: a packet received (∈P, defined below).
• pktout: a packet sent (∈P).
• NF: the network function (∈F , defined below).
• t: the logical ‘time’ the packet was received or sent (i.e.,

the index in E); represented as a positive integer (∈N).
We may refer to members of e∈E as e.pktin, e.pktout, e.NF,

or e.t. We index E using array notation e.g., E[43] = (∗,∗,∗,43).
We may also search E for events matching the specified value
at a specified field using the function get-eventE (field, value)
→ [E], for example, get-eventE (pktin, pi) returns the sequence
of all events in E where pi was received as input at an NF.

Note that, although AuditBox provides some logging mech-
anisms, there is no globally ordered event log in the system
implementation – the event sequence defined here is merely
an abstraction to help reason about time while modeling.

Packets: P is the set of all 64-9000 byte binary strings, that
is, P is the set of all (up to jumbo framed) Ethernet packets.
Each packet p contains an Ethernet header and an IP header.
Depending upon the NFV framework, the packet may also
contain a collection of ‘metadata’ fields such as FlowTags [32]
or a Network Service Header (NSH) [64]. If the packet
represents a TCP or UDP packet, we represent the classic flow
5-tuple (source IP address, destination IP address, source port,
destination port, protocol) through the function FLOW(p).

As a packet p traverses the network, it may be transformed
into some p′ or p′′ through modifications to the payload or
metadata fields. If the data anywhere in the packet – that
is, the 64-9000 byte binary string it represents – has been
changed, then p 6= p′. In the event log, e.pktin,e.pktout∈P.

NFs: There is a set of Network Functions F . Each NFi∈F
is a function,3 NFi :P→P∪{⊥}. That is, it takes in a packet
and produces another packet (or null).

3Called a ‘transfer function’ elsewhere in the literature [44, 60].
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In our model, we assume NFi encloses some NFi-specific
function fi : P → P ∪{⊥}, which may keep state, modify
packet contents, etc. When NFi takes in a packet and fi
returns null, this represents a drop. We exclude NFs that
could inject new packets.

With respect to the event log E, we log each operation at
NFi as follows:
Algorithm 1 NF Model

1: function NFi(input)
2: output← fi(input)
3: if output 6= ⊥ ∨ input 6= ⊥ then
4: E.append(input, output, NFi, E.length + 1)
5: return output

Switches: Like prior work in SDN and formal model-
ing [44], we consider the network as ‘one big switch’ or a
‘fabric’ and we model its behavior with a single function
Φ : P ∪ {⊥} → P ∪ {⊥}. In our threat model, Φ is the
untrusted part of the system. Φ is not considered an NF
(Φ 6∈F), and Φ does not append to E.

Gateway: Packets enter and exit the cluster – and hence
enter and exit the model – via a dedicated NF, GW which,
like other NFs, also appends to the event sequence. We model
the Gateway as GWin when a packet enters the cluster via the
gateway as follows:
Algorithm 2 Model of Packets Entering the Cluster

1: function GWIN(input)
2: if input 6= ⊥ then
3: E.append(⊥, input, GWin, E.length + 1)
4: return fin(input)

Like normal NFs, the gateway applies a gateway-specific
function fin to the packet before transmitting it. We define
GWout, for when a packet exits the cluster similarly (§B.1).

Path: Packet processing occurs via traversal of a sequence
of NFs and switches. Whenever an NF sends a packet, it is
passed to the network which is expected to steer the packet
to the next NF specified by the service-chain policy. When
a new packet arrives at GWin, we model traversal of the
network via a nested function of Φ and elements of F , for
example: GWout◦Φ◦NFi◦Φ◦NF j◦Φ◦...◦Φ◦GWin.

Policy: There are many languages [32, 58] and services for
specifying service-chain policy. Here we assume that for
a packet and an NF which just produced that packet, that
there exists some policy function (policy : P×F → F) that
can determine the NF that should next process the packet.
Importantly, we assume that the information necessary to
determine the right next hop relies only in the packet fields
(e.g., IP header, metadata) and the departing NF.

4.2 Correctness
We give two possible definitions of “correct” forwarding

below, based on properties of the modeled event log E.

4.2.1 Packet Correctness
Our first definition, packet correctness, is based on

the UDP service model of packet delivery. Under the
packet-correctness definition, the system is ‘correct’ even
if packets are reordered, dropped, or duplicated between
NFs. The behaviors which are incorrect under this model
are limited to (a) injecting packets which were not sent by
an end host, or (b) modifying/corrupting packets between
sender and receiver.

Packet correctness holds iff Property 1 holds over E.

∀eb∈E s.t. : eb.pktin 6=⊥, (1)

∃ea∈E s.t. :ea.t<eb.t∧ ea.pktout=eb.pktin (2)

∧policy(ea.pktout,ea.NF)=eb.NF (3)

Property 1: No Injection or Modification

To summarize the above: for all events eb in which an NF
eb.NF receives and processes a packet, there exists a prior
event ea in which ea.NF sends the same packet to eb.NF.

4.2.2 Flow Correctness
Flow correctness is based on the TCP service model. Like

packet correctness, a network where packets are injected
or corrupted by the network is not correct. To meet flow
correctness, the network also must not drop packets, reorder
packets within a flow, or duplicate them. Hence, the network
obeys Flow Correctness iff it respects Property 1 and the
following three properties.

The first additional property aims to verify that the network
has not dropped any packets in flight. An absolute guarantee
that no packets are dropped is impossible, as the NFs cannot
force hostile network elements to deliver packets. Hence, we
instead define our ‘no drops’ property to state that packets
in a given flow that do arrive at their own destination may
only be accepted if all packets previously transmitted from
that flow to that destination have already arrived. To achieve
this, Property 2 (‘No Drops’) says in English that if a packet
ea2.pktin is sent by ea2.NF and received at eb2.NF, then any
other earlier packet ea1.pktout belonging to the same flow and
also destined for eb2.NF should have already been received
by eb2.NF prior to eb2.pktin.

∀NFa,NFb∈F,∀ea1,ea2,eb2∈E s.t. : (4)

(ea1.t<ea2.t∧ea1.pktout 6=⊥ ∧ea2.pktout 6=⊥ (5)

∧ea2.pktout=eb2.pktin (6)

∧policy(ea1.pkt,ea1.NF)=policy(ea2.pkt,ea2.NF) (7)

∧ea1.NF=ea2.NF=NFa ∧ eb2.NF=NFb (8)

∧flow(ea1)=flow(ea2)) =⇒ (9)

(∃eb1∈E s.t. : (10)

(eb1.t<eb2.t∧ eb1.NF=NFb ∧ eb1.pktin=ea1.pktout)) (11)

Property 2: No Drops
Property 3 ensures that packets within a flow are not

reordered between NFs. In English, the property specifies
that if an NFa transmits a packet ea1.pktout before a packet
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ea2.pktout to the same NFb, then ea1.pktout should also be
received by NFb before ea2.pktout.

∀NFa,NFb∈F, (12)

∀ea1,eb1,ea2,eb2∈E s.t. : (13)

(ea1.pktout=eb1.pktin ∧ ea2.pktout=eb2.pktin (14)

∧ea1.pktout 6=⊥ ∧ea2.pktout 6=⊥ (15)

∧ea1.NF=ea2.NF=NFa ∧ eb1.NF=eb2.NF=NFb (16)

∧flow(ea1)=flow(ea2)) =⇒ (ea1.t<ea2.t⇐⇒ eb1.t<eb2.t)
(17)

Property 3: No Reordering Within the Same Flow

∀ea∈E,@eb∈E\{ea}s.t. :ea.pktin=eb.pktin (18)

Property 4: No Duplication
Finally, we ensure that packets are not duplicated in the

networks (‘replay attacks’) with Property 4. We note that
the Property 4 formalization assumes that the same packet is
never sent by any NF more than once. This seems to be a rea-
sonable assumption. As we are forwarding under L2, an NFA
and an NFB will always have different Ethernet headers even
if the IP, TCP/UDP, and payload are identical. And it seems
reasonable to assume that an NFA will never transmit the same
packet twice either – even a re-transmitted TCP packet will
come with a different IPID value. However, we discuss how to
revise this formalism to allow NFs to duplicate packets in §A.

5 AuditBox Protocol
In this section, we focus on the dataplane protocol. We

begin by providing a high-level view of the actions that each
AuditBox-enabled node performs at each hop (§5.1). Then
we discuss the detailed construction of the attestation check
and update logic we use for packet- (§5.2) and flow-level
(§5.3) correctness. We envision different NFV deployments
can flexibly choose one of these levels of correctness as
desired. Finally, in §5.4 we describe the secure logging
mechanisms which allow auditors to observe audit trails
demonstrating that the system is operating correctly.

5.1 High-level workflow
AuditTrailer: AuditBox adds an AuditTrailer, carried by
the packet, to verify integrity. We discuss the contents of
AuditTrailer in packet-level and flow-level form in detail
in §5.2 and §5.3 respectively; here we briefly present the
two foundational fields for auditing and runtime correctness.
These fields are present in both the packet-level and flow-level
versions of the AuditTrailer.
pktID is a unique, immutable ID assigned to a packet; when
a packet enters an NF and is modified or rewritten, the pktID
allows us to identify for each input packet which output
packet (if any) is a result of its processing. This tracing is
the key mechanism which enables us to generate audit trails
– the causal sequence of events we present in §B.2.
tag is a message authentication code (MAC) which allows us

to identify if a packet has been improperly modified while in
flight between two (trusted) shims. Operationally, the tag is
a Galois Message Authentication Code (GMAC), computed
using a symmetric key over various packet fields (discussed
below in §5.2 and §5.3). The tag field enables us to perform
runtime correctness checks while running with untrusted
operating systems, switches, etc..

Data Plane Actions (Shim and Gateway): The AuditBox
dataplane protocol is implemented at the gateway to/from
the cluster and at the shims inserted into each NF enclave.

At the Gateway: For each incoming packet, the ingress
gateway generates an AuditTrailer (including a unique pktID
field) and appends it to the packet, and then forwards it to
the next NF. At the end of the service chain, as packets leave
the cluster, the egress gateway validates the AuditTrailer
(assuming the validation passes), and then removes the
AuditTrailer and forwards the packet out of the cluster.

At the Shim: At each hop, the shim receives the incoming
packet and performs the following four operations: Check,
Process, Update, and Log. Check validates the received
packet, including verifying the MAC stored in the tag field, to
verify that the received packet was not incorrectly modified
by the network. Process hands the packet to the actual NF
code; when the packet is returned from the NF, the shim then
Updates the AuditTrailer (e.g., computing the new attestation
field). Finally, in certain cases the shim Logs the packet and
certain metadata to produce an audit trail; the packet is then
released to its next hop in the service chain.

5.2 Packet Correctness Protocol
As presented in §4.2.1, the goal of our packet correctness

protocol is to ensure that packets are not injected or modified
by the network, i.e., that all packets received and processed
by an NF were transmitted to that NF by another NF or the
ingress gateway.

tag = MAC (key, pkt || pktID || srcNF || dstNF )

AuditTrailer
srcNFpktIDpkt dstNF tag

Figure 7: The AuditTrailer for packet-level integrity.

For packet correctness, the AuditTrailer (Figure 7) contains
the following fields: pktID (6 bytes), tag (16 bytes), srcNF
(2 bytes), dstNF (2 bytes). As discussed above, the pktID
is required for generating audit trails so we do not discuss
it further here other than to require that it be transmitted
alongside other packet fields (IP header, payloads, etc.)
uncorrupted by the network. Naïvely, one might simply
compute the MAC over the packet and pktID to compute the
tag. However, this would only meet a portion of the clauses
from Property 1 – that there exists some valid NF which
transmitted this packet. If a malicious or misconfigured
switch delivers a valid packet, intended for some NF A, to
NF B, the packet would appear to have a valid tag.
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Adding the srcNF and dstNF fields explicitly to the header
bind the packet to the policy-compliant route, meeting the
final clause of Property 1. The sender explicitly encodes
its own NF ID and the intended destination NF ID into the
packet and computes the MAC over the packet, pktID, srcNF,
and dstNF fields. The receiver, by validating the MAC stored
in the tag, can be sure that the sending NF intended to send
the packet to the receiver; the receiver can also (redundantly,
as a sanity-check) re-compute the policy compliant next-hop
NF for the received packet and the source NF to further verify
that it is indeed the correct recipient.

We specify this protocol in Algorithm 5 and prove that it
meets the requirements of Property 1 in Appendix D.

Theorem 1 (Packet Correctness) Consider the game
described in §D.3 with adversary A and instantiated with the
AuditBox packet-correctness protocol. Specifically, looking at
Algorithm 5, we instantiate fin with the function GENERATE
and fi with PROCESSi. The probability that the game outputs
an event log E that violates Property 1 is negligible.

5.3 Flow Correctness Protocol
We now discuss the implementation of the Flow Correct-

ness Protocol, which in addition to Property 1 also meets
Properties 2, 3, 4. We envision that networks that use only
stateless or order-insensitive NFs will prefer the lighter
packet-correct protocol, but those with stateful NFs whose
operations are sensitive to packet ordering may use the
stronger flow-correctness protocol.

tag = MAC (key, pkt || pktID || srcNF || dstNF || flowID || seqNum)

seqNumsrcNFpktID tagflowIDpkt dstNF

AuditTrailer

Figure 8: The AuditTrailer for flow-level integrity.
As shown in Figure 8, to extend the AuditTrailer for

flow-level semantics, we add two additional fields over the
packet-level version: a flowID field (4 bytes), and a seqNum
field (4 bytes). The tag is now computed over the packet and
all fields including flowID and seqNum.

When packets enter the cluster through the gateway, the
gateway hashes the classic ‘5-tuple’ and looks this up in a
flow table mapping 5-tuples to flowIDs. If a flowID already
exists for this flow, the gateway appends the existing flowID
to the AuditTrailer. If a flowID does not exist for this flow,
the gateway assigns an unallocated ID number to the flow and
inserts this into the flow table and the packet. For non-TCP
and non-UDP packets, the flowID is simply set to 0. Like
the pktID, the flowID is unmodified as packets flow through
the network – even if header values and port numbers are
rewritten, the flowID remains the same across NFs; as we will
show, this is important for the creation of audit trails (§5.4).

seqNum values are maintained per-hop and represent the
ordering of packets between a sending NFA and a receiving
NFB for a given flow. The sending NF maintains an incre-
menting per-flow counter, and, for each packet from the same

flow, appends the sequence number to the seqNum field in the
AuditTrailer. At the receiver, there is a corresponding table
of per-flow counters with the next sequence number expected.
In our implementation, there is no reason for in-network
reordering within a flow and hence the receiver raises an alert
for any out-of-order packets; we could configure the receiver
to maintain a small buffer to wait for reordered packets and
put them back in order for processing in a cluster (and to
only raise an alert after multiple out of order arrivals) where
reordering were for some reason possible. Thus, packets are
discarded at the receiver if they either fail the tag verification
or fail the expected-next-sequence number test.

Because the protocol rejects out-of-order packets, it easily
meets Property 3. Since duplicate packets will have the same
sequence number, they are detected. Thus, the protocol also
meets Property 4. Finally, if a packet is dropped, the arrival
of subsequent packets will induce alerts due to out-of-order
sequence numbers, meeting Property 2.4 We specify this
protocol in Algorithm 6 and formally prove its security in
Appendix D.

Theorem 2 (Flow Correctness) Consider the game de-
scribed in §D.2 with adversary A and instantiated with the
AuditBox flow-correctness protocol. Specifically, looking at
Algorithm 6, we instantiate fin with the function GENERATE
and fi with PROCESSi. The probability that the game outputs
an event log E that violates Properties 1-4 is negligible.

Why not use existing TCP sequence numbers? Rather than em-
bedding an additional sequence number, one might attempt to
naïvely re-use the sequence number already embedded in TCP
flows to save additional bytes in the header. However, packets
may already be missing when they enter the cluster (leading to
sequence number gaps which are not the result of misbehavior
within the cluster) and NFs may choose to drop packets (also
creating legitimate sequence number gaps). Hence we need
a new sequence number whose role is only to detect gaps that
are the result of drops between NFs in our cluster.
Why not one sequence number per pair of NFs, rather than
per-flow? At first glance, it may seem simpler to keep a
sequence number across all flows rather than a sequence num-
ber per-flow. However, many NF implementations use receive
side scaling (RSS) at the receive NIC to fan out packets across
multiple cores; in such an architecture a unified sequence
number becomes a performance bottleneck; per-flow counters
are more parallelizable and hence more scalable.

5.4 Logging & Auditing
Traditional logging (as mandated by AU-2 in §2) focuses on

recording packets which resulted in alerts, policy violations,

4However, an attacker who blocks all packets from a flow may go undetected
– to avoid this noncompliance, a receiver detecting a flow with over a minute
without transmissions will query the sender for its sequence number to detect
any dropping behavior.
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and anomalies. At each shim, any packet which results in a vio-
lation is logged in its entirety, including all fields of the Audit-
Trailer; the log is written to local storage and encrypted with
an NF-local symmetric logging key provided by the controller.

AuditBox also records additional logged events to produce
an ‘audit trail’, which restores ‘what you see is what you get’
confidence in the correctness of the underlying system. As
defined in §B.2, an audit trail consists of a hop-by-hop trace
of a packet (or all packets in a flow) through a sequence of
NFs as well as their intermediary rewritten states.

The basic idea is as follows. The gateway probabilistically
samples incoming packets and tags them with a ‘log bit’
which follows the packet through the cluster along with the
AuditTrailer. Any packet whose log bit is set to true is logged
at each shim, including all metadata or AuditTrailer fields.
The administrator or inspector specifies three parameters
to define which packets are sampled: (1) a Berkeley Packet
Filter (BPF) to match for selected packets, (2) a sampling
rate (e.g., 0.001%), and (3) whether to log at the packet- or
flow- granularity. Logging at the flow granularity is only
permitted if the policy is in flow-correctness mode.

Upon querying, the administrator can then inspect man-
ually (or via an automated script) the path of packets or flows
throughout the entire system. Even if packet headers or fields
are changed, the packetID or flowID are preserved between
NFs; even in traditional service chain deployments such trac-
ing is not possible today when NFs modify packets in a way
that they cannot be connected to their corresponding inputs.

There is only one ‘trick’ to this very simple design: in a
truly malicious environment, the network could selectively
treat logged packets according to correct policy and only
manipulate unlogged packets. Although we would still expect
our runtime checks at each shim to detect the error, auditors
would no longer be able to retrieve an audit trail associated
with the violation. Hence, it is important that we hide the
logging bit at the gateway so that that the attacker cannot
mount such an attack. In the following section, as we discuss
our implementation, we describe how the logging bit is stored
virtually in a way that is cryptographically secure while
consuming 0 bits of overhead in the AuditTrailer.

6 AuditBox Implementation
We now discuss two performance optimizations to our

protocol (§6.1) and our end-to-end prototype (§6.2).

6.1 Optimizing Verification
Updatable GMAC: To support mutable packets and dynamic
paths, AuditBox computes the MAC twice for each packet
at each hop: first to verify the packet when receiving it, and
second to authenticate the packet before sending it out (§5). In
our implementation, we use the GMAC algorithm [53]. While
GMAC is one of the fastest authentication algorithms (thanks
in part to acceleration from Intel’s AES-NI instructions [40]),
it still adds non-trivial overhead to packet processing.

AuditBox Enclave (trusted)

NICs NF

Verification shim

Host
(untrusted)

NF threadI/O thread

Host I/O Enclave I/O

Verify Log

Sign Logtrailerpkt

trailerpkt

trailerpkt

trailerpkt

trailerpktTX

RXtrailerpkt

Figure 9: AuditBox software architecture (white boxes
denote existing Safebricks components).

To reduce AuditBox’s overhead, we implement a
proven secure [52] updatable version of GMAC on top of
EverCrypt [62], a formally verified cryptographic library. We
use EverCrypt because it is easy to port into SGX and it is
fast; its verified properties are a pleasant bonus. We defer to
future work the extension of EverCrypt’s formal verification
to our updatable API.

The key optimization of updatable GMAC is to take ad-
vantage of GMAC’s algebraic structure to securely reuse the
first MAC when computing the second MAC [52]. With this
optimization, the second MAC’s cost is proportional to the
number of modified data blocks, rather than the total packet
length. In practice, this improves performance for NFs that
only read the packet or that modify a small portion of it (§7).

In addition to a key and a message, GMAC requires as input
an initialization vector (IV) that must be unique for each MAC
invocation with a given key. For this we use the concatenation
of the srcNF and pktID fields. This leads to a bound on how
long we can use the same key Kσ. At 100Gbps, we would
expect to overflow the pktID once every 22 days and hence
we use we use a 14 day key rotation which ensures that the
same IV is never used twice. When the pktID wraps around,
one can use timestamps to differentiate entries in audit trails.
Secret Logging: In §5.4 we discussed that we must encrypt
the bit used to mark which packets should be logged for audit-
ing; we now describe how we introduce 0 bits of overhead and
0 computational overhead for unsampled packets. Our idea
is to embed a virtual logging bit in the AuditTrailer. When
the ingress gateway generates the tag, it appends this virtual
logging bit as the last field when computing the MAC. For
example, tag = MACKσ

(pkt||pktID||srcNF ||dstNF || 1) for
a packet that should be logged. When the packet arrives at
the verification shim, it verifies the MAC by appending a 0
(assuming most packets will not be logged). If the verification
fails, the NF then appends 1 and performs a second MAC ver-
ification. The success of the second verification means the NF
should log the packet, while failure indicates a malicious/man-
gled packet. We formally prove this approach is secure in §D.

Theorem 3 (Secret Logging Security) Consider the game
described in §D.5 with adversary A . When the MAC algorithm
is GMAC, the adversary’s advantage is negligible.

6.2 Prototype Details
We implement an end-to-end prototype using

Safebricks [61]. Safebricks is an NFV framework that
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builds on top of DPDK [5] and runs NFs in Intel En-
claves [25]. While the idea of AuditBox could be applied to
other NFV frameworks [48, 58, 59, 79], we choose Safebricks
mainly to leverage its I/O optimization to avoid expensive
enclave transitions. We modified approximately 4k lines of
Rust to implement our protocols, and added 2.5k lines of
C and 100 lines of x86 assembly to implement and test the
updatable GMAC implementation. Here, we focus on the
implementation of the verification shim and the AuditTrailer,
which are the key enablers to avoid any NF changes.

Verification Shim: As shown in Figure 9, AuditBox inserts
a verification shim that sits between the enclave I/O interface
and the NF in each enclave. The shim implements our custom
verification protocol using two modules: one verifies the
incoming packets by checking the AuditTrailer, and the other
updates the AuditTrailer on outgoing packets. Both modules
use our updatable GMAC algorithm, and both modules have
access to the logging function to save logs for offline auditing.

Packet Trailer: Typically, to carry a wrapper or metadata
header through unmodified NFs, one incurs two overheads.
First, one must strip the header from the packet and copy the
packet (starting from the IP or Ethernet header) to the first byte
of the packet buffer; the packet can then enter the NF as if it
had come in off the wire. Second, one must restore the header
to the packet; when packets have been modified by the NF
this step may require complex algorithms to infer the correct
mapping from original input packet to final output packet [32].

By using a trailer, AuditBox sidesteps these challenges in
many cases. Before passing the pointer to the packet buffer
into the NF, the shim adjusts the packet length to the end of
the encapsulated packet, leaving the trailer at the bottom of
the buffer and invisible to the NF code. Even if the packet has
been modified or shortened, when the packet egresses the NF,
the shim can simply restore the trailer sitting at the bottom
of the allocated memory. When NFs extend the length of the
packet, this overwrites the trailer and so the trailer must be
restored similarly to the header operations above, however,
we find for most NFs leaving the trailer at the base of the
buffer is an effective way to improve performance (§7.3).

7 AuditBox Evaluation
AuditBox aims to enable real-time auditing for NFV

deployments with low overhead. In this section, we evaluate
its overhead using a testbed and traces and show that:
• AuditBox correctly detects a broad class of practical

policy violations (§7.1).
• AuditBox enables auditing for unmodified NFs while

adding less overhead than existing verification protocols
(§7.2). We discuss our optimizations in §7.3.

Setup: Our testbed has four severs: three SGX servers
(4-core 3.80 GHz Intel Xeon E3-1270 v6 CPUs, 64 GB RAM,
Intel XL710 40Gb NICs) run AuditBox, and one server
(dual-socketed Intel Xeon E5-2680 v2 GHz Xeon CPUs, with

Blue Team Policies Attacks AuditBox OPTPacket Flow

1 Mutable packets (Fig. 2):
Load balancer modifies packets - no no yes

2 Mutable packets (Fig. 2):
Load balancer modifies packets modify yes yes yes

3 Dynamic paths (Fig. 3):
Light IPS reroutes packets - no no yes

4 Dynamic paths (Fig. 3):
Light IPS reroutes packets reroute yes yes yes

5 Stateful NFs (Fig. 4):
NAT tracks flow states reorder - yes no

6 Stateful NFs (Fig. 4):
NAT tracks flow states drop - yes no

Table 1: Example scenarios that use AuditBox and
OPT [46] to verify whether policy violations happen;
"yes"/"no" indicate whether the system reports a
violation. Shaded cells are correct auditing results.

10 cores, 128 GB RAM, Intel XL710 40Gb NICs) is used as
a traffic generator. Each server runs Ubuntu 18.04 with Linux
kernel 4.4.186. We use Moongen (DPDK-based) [30] to gener-
ate synthetic test traffic, as well as replay empirical traces [10]
of varying packet sizes. We enable jumbo frames to allow the
trailer to be added to large packets (which makes them larger
than the default 1500 byte MTU). For each experiment, we
report the median value of 20 tests, error bars represent one
standard deviation (which in some cases are too small to see).

Sample NFs: AuditBox supports all existing NFs in
Safebricks without any NF changes. To evaluate the
performance of AuditBox, we choose three sample NFs with
varying complexity: (1) NAT rewrites IP and TCP headers,
representing NFs that modify packets (Figure 2); (2) Stateful
Firewall which tracks connection states (Figure 4), configured
with a campus ruleset (643 rules); and (3) DPI, which rep-
resents the most computationally expensive NF in Safebricks,
configured with the Snort Community ruleset [14].

7.1 Functionality Evaluation
To validate the end-to-end effectiveness of AuditBox, we

run different red-blue team exercises. In each scenario, the
blue team (operator) chooses a service chain policy and the
protocol (AuditBox packet, AuditBox flow, or OPT). The red
team (attacker) randomly picks an attack vector. Then, we
emulate this scenario with generated traffic. Finally, we reveal
the ground truth and the audit trails to check if the protocol
helped the blue team correctly identify/diagnose the attack.

We run these scenarios in a combination of a real testbed
and a custom simulator. For the testbed we use one server
to generate traffic, and three to run NFs. We introduce attacks
(e.g., modifying packets) using the I/O thread (Figure 9), and
apply them when packets arrive at the NF. We built a custom
simulator, where all NFs are connected via “one big switch”
and this switch executes one or more adversarial actions (e.g.,
rerouting) when forwarding packets between NFs.

Table 1 shows a subset of the scenarios, including the moti-
vating examples from §2. In all scenarios, with AuditBox, the
blue team successfully detects the policy violations and has
correct auditing trails for doing so. OPT [46] detects some
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scenarios (scenarios 2 and 4), but has both false positives
(1 and 3) and false negatives (5 and 6). Note that this is not
unique to OPT; other VRPs [55] have the same issues as well.

7.2 Performance Evaluation
We first measure the performance of AuditBox for a single

NF and a chain of NFs using empirical traffic [10]. For all
tests, we run the NF using one core, and we report the goodput
by excluding extra bytes used for verification. In these experi-
ments, we compare against three alternative baselines, none of
which are an apples-to-apples comparison with AuditBox (in
that each was designed for a different purpose) but nonetheless
we believe the comparison helps to put our results in context.

The first baseline is ‘NetBricks’ [59], which is a Rust-based
NFV framework and does not use SGX. The second baseline
is ‘SGX-only’, which runs NFs in enclaves but does not use
any special protocol for verified routing. Our third and final
baseline is OPT, which, as we have discussed (§2.4) is most
closely related to AuditBox’s use case but nonetheless cannot
provide correct routing in the presence of dynamic routing
and packet modifications.
Single NF: Figure 10 shows the goodput for running a single
NF. The red dotted line shows the maximum rate of our
traffic generator. NetBricks is able to process packets at the
packet generator rate for both firewall and NAT. Compared
to running NFs outside the enclave, the SGX baseline (‘SGX
only’) incurs up to 15% overhead. Relative to running NFs
in the enclave alone, AuditBox incurs 19% overhead for the
firewall, 38% for the NAT, and 3% overhead for the DPI. The
flow-level incurs slightly more overhead than the packet-level
as it involves flow-table updates to track flow states.

AuditBox achieves up to two times higher goodput than the
strawman OPT due to our reduced packet overhead (24B for
AuditBox-pkt, 32B for AuditBox-flow vs. 84B for OPT) and
our use of a trailer, instead of a header. We hypothesize that
OPT’s high overhead stems from its need to strip and restore
large headers at each hop. To test this hypothesis, we imple-
ment OPT using our trailer optimization (‘OPT-trailer’). The
optimized OPT achieves a higher throughput than AuditBox,
which is expected as it requires fewer MAC computations.
NF Chains: We also ran experiments to evaluate the perfor-
mance of AuditBox under different NF chains across multiple
nodes, similar to prior work [61]. As shown in Figure 11, for

a chain of 3 firewalls AuditBox has 67% better goodput than
OPT. Unlike AuditBox, which has a constant packet-size
overhead regardless of chain length, OPT’s header grows with
chain length (116B for 3 NFs and 148B for 5 NFs), which
contributes to the drop in goodput. Our optimized version,
‘OPT-trailer,’ gets better goodput after eliminating the header
stripping and restoring overhead. We also evaluated a chain
with a Firewall, followed by a DPI and a NAT. For this chain,
both AuditBox and OPT achieve similar performance since
the entire chain is bottlenecked by the heavy DPI.

Cost Analysis: It is worth putting the performance numbers
in context to see the effective “cost” of auditability. Consider
an organization deploying specialized hardware appliances
for regulatory compliance. Today, this costs roughly
$600-$3500 per-Gbps for firewalls and $6000-$12000
per-Gbps for IPS (e.g., Cisco FirePOWER 8140 [4], Juniper
Networks SRX345 [9]). If this organization shifts to NFV
on commodity servers because of the auditability offered
by AuditBox, we estimate the cost will be 12X-60X lower
for the firewall, and 1.9X-9X lower for the IPS.While we
acknowledge that any such cost analysis is fraught with
uncertainties (e.g., cost at scale, reliability, service contracts,
power), this rough estimate suggests that RegTech customers
can still achieve financial gains through NFV.

Latency Overhead: Figure 12 shows the latency overhead
of AuditBox using empirical packet traces. For each test,
we measure the RTT at 80% of the maximum throughput of
the system under test as a metric for latency. Compared to
the SGX baseline, AuditBox-pkt adds around 18µs for 99th

percentile latency, and AuditBox-flow adds another 6µs.

Sweep packet size and NF type: Figure 16 (Appendix E)
shows the overhead of AuditBox for varying packet sizes
and NF types. Across all NFs, the overhead of AuditBox
decreases as packet sizes increase. Since NAT modifies the
packet, we do not use our updatable GMAC, making the
overhead of AuditBox more noticeable.

7.3 Impact of Our Optimizations
Header vs Trailer: Figure 13 shows the benefit of imple-
menting AuditTrailer as a trailer instead of a header. Unlike
our trailer which can be made invisible inside the NF (shown
in Figure 9), the shim needs to strip off the added header
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before delivering the packet to the NF to avoid modifying the
NF. After the packet is processed, the shim needs to prepend
the header before sending it to the next NF. These header
manipulations slow down packet processing and verification,
resulting in decreases of goodput by up 2×.
Regular GMAC vs Updatable GMAC: In Figures 14 and
15, we compare the performance of AuditBox when using
our implementation of the updatable GMAC with the regular
GMAC that is used by popular cryptographic libraries (e.g.,
OpenSSL [12], NSS [11]). When varying the NF complexity
(cycles/pkt), using updatable GMAC improves goodput by up
to 23%. When varying the packet sizes, our updatable GMAC
outperforms the regular GMAC by up to 25% for large pack-
ets. These improvements can largely be attributed to reusing
the first MAC to compute the second MAC, which avoids
the recomputing overhead for non-modified data blocks.
Dedicated log bit vs Virtual log bit: We compared our
virtual logging bit with an approach with a real encrypted bit.
On average, using a virtual log bit improves goodput by 4-5%.

8 Related Work
We have already discussed existing VRPs (e.g., [46, 55]),

service chaining policies and mechanisms (e.g., [32, 58]), and
how auditing is different from network verification (e.g., [44,
45, 50, 60]). Here, we focus on other classes of related work.
Traditional NFV Frameworks: Prior NFV [6] frame-
works focus on management [35, 42, 58, 65, 67], perfor-
mance [28, 43, 51, 79], and programability [23, 48, 59]. We
argue auditability should be added as a first-order feature
of the NFV framework, which would relieve enterprises’
concerns about deploying the NFV for security-critical
services or outsourcing them to a third-party provider [33,68].
Securing NFs: Prior work has proposed the use of SGX to
protect an NF’s source code [61,72], an NF’s state [69], traffic
metadata [29], and to support end-to-end encryption [39, 56].
While these enhance security for NFs, they only focus on
individual NFs on a single server, and they do not provide
mechanisms to audit the entire service chain.
NF Verification: NF verification [27, 75, 76, 78] guarantees
that a certain NF implementation is correct (memory-safe,
crash-free, etc.). AuditBox assumes that vendors have ‘certi-
fied’ NF implementations as secure, and we expect this class
of work would strengthen trust in such vendor certifications.

Verifiable fault localization and measurements: In addi-
tion to VRPs, auditing is also related to prior work on secure
fault localization (e.g., [81, 82]), robust sampling algorithms
(e.g., [57]), verifiable performance measurements (e.g., [16]),
and secure network provenance (SNP) (e.g., [37, 84]). Some
of our building blocks share conceptual similarity with these
efforts. However, they focus on different goals. For example,
SNP leverages tamper-evident logging [38] to identify mis-
behavior offline, unlike the runtime guarantees we provide.

9 Conclusions
In this paper, we have presented AuditBox, a framework

that brings NFV to security-critical environments that require
auditing. By leveraging enclaves to run NFs and continuously
verifying the traffic between NFs, AuditBox provides a strong
run-time guarantee that the NFV system remains in compli-
ance with policy goals. AuditBox also supports traditional of-
fline auditing by generating audit trails for manual inspection.

We see AuditBox as a first step in a conversation with
regulators. Would our audit trails be more trustworthy if
they included additional data? Should we combine our SGX
protection with formal verification of the NF code [27]?
In practice, should AuditBox be combined with formal
verification of operator policies [60]? We expect, and hope, to
see considerable evolution in supporting the RegTech space
beyond AuditBox’s current capabilities.

In the long run, adoption only comes when human auditors
feel comfortable trusting the guarantees provided by any
particular system. Our hope is that by not only replicating the
capabilities that auditors have today, but also strengthening
SFCs with runtime correctness guarantees, AuditBox will
merit the trust of auditors and hence hasten the adoption of
NFV in security-sensitive networks.
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A Modeling Duplicate Packets
The formalization of Property 4 assumes that the same

packet is never sent twice. This seems to be a reasonable
assumption. As we are forwarding under L2, an NFA and
an NFB will always have different Ethernet headers even if
the IP, TCP/UDP, and Payload are identical. And it seems
reasonable to assume that an NFA will never transmit the
same packet twice either – even a re-transmitted TCP packet
will come with a different IPID value.

Nonetheless, we could remove these requirements and
allow NFs to transmit the same packet repeatedly by defining
correctness as follows:
Let SEND-TOF,P(E)→{0,1} be defined:

function SEND-TO NFi,pi (e)
if e.op = SEND ∧ e.pkt = pi ∧ policy(pi, e.NF) = NFi

then
return 1

else
return 0

Let RECV-PKTF,P(E)→{0,1} be defined:
function RECV-PKT NFi,pi (e)

if e.op = RECV ∧ e.pkt = pi ∧ e.NF = NFi then
return 1

else
return 0

To allow identical packets, we could then say the system
was correct under packet correctness iff:

∀e∈E s.t.e.op=RECV :
e.t

∑
i=1

SEND-TOe.NF,e.pkt(E[i])=
e.t

∑
i=1

RECV-PKTe.NF,e.pkt(E[i])

B Additional Definitions
B.1 Modeling Packet Exit

We define GWout for when a packet exits the cluster as
follows:
Algorithm 3 Model of Packets Exiting the Cluster

1: function GWOUT(input)
2: input← fin(input)
3: if input 6= ⊥ then
4: E.append(input, ⊥, GWout, E.length + 1)
5: return input

B.2 Audit Trail Definition
While our routing protocol provides hop-by-hop guaran-

tees, auditors are familiar with end to end ‘what you see is
what you get’ evidence that packets are indeed following the
correct route. To provide auditors the confidence of proven
correctness with empirical evidence, AuditBox provides
empirical evidence in the form of audit trails. Following the
model of our event log E, one can take a packet in any of
its states (prior to entry, between two NFs, post exit) and
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compute the forms the packet took on and all NFs it traversed
across its entire traversal of the system. While 5.4 describes
how this works in practice, we describe audit trails in the
context of our model with Algorithm 4.
Algorithm 4 Audit Trail Definition

function CAUSED-BY(event)
if event.pktin = ⊥ then

return [(event.NF, event.pktout)]
trail← (event.pktin, event.NF, event.pktout)
prev← get-eventE (event.pktin, pktout)
return caused-by(prev) + trail

function LEADS-TO(event)
if event.pktout = ⊥ then

return [(event.pktin, event.NF)]
prev← get-eventE (event.pktout, pktin)
prev_trail← (prev.pktin, prev.NF, prev.pktout)
return prev_trail + leads-to(prev)

function AUDIT-TRAIL(event)
return CAUSED-BY(event) + LEADS-TO(event)

Note that the definition assumes that all transmitted
packets are unique.

C Pseudocode
In the algorithms below, we expand the notion of a packet

to also include the AuditBox trailer.
In the flow-verification algorithm (Algorithm 6), we

assume each NF, including the gateway, maintains a flow-
counter table FC which maps a flow ID and destination NF
to a counter value:

ctr←FC[ f lowID,NF ]

Performing a lookup with a new f lowID,NF pair implicitly
initializes the counter to zero. Comments highlight differences
relative to the packet-verification algorithm (Algorithm 5).

Algorithm 5 Packet Verification Protocol
Input: The shared symmetric key Kσ for the current epoch σ.
1: . Generate an AuditTrailer for each packet at the gateway GWin
2: function GENERATE(pkt)
3: out.pkt= pkt
4: out.pktID=genPktID(pkt)
5: out.srcNF = GWin
6: out.dstNF =Policy(pkt, GWin)
7: out.tag=MACKσ

(out.pkt|out.pktID|out.srcNF |out.dstNF)
8: return out
9:

10: . Process a packet in at NFi
11: function PROCESSi(in)
12: ok← in.dstNF =NFi ∧
13: VerifyKσ

(in.pkt|in.pktID|in.srcNF |in.dstNF,in.tag)
14: if ok then:
15: out.pkt= fi(in.pkt)
16: out.pktID= in.pktID
17: out.srcNF =NFi
18: out.dstNF =Policy(out.pkt,NFi)
19: out.tag=MACKσ

(out.pkt|out.pktID|out.srcNF |out.dstNF)
20: else
21: out←⊥ . Drop packet and raise alert

return out

Algorithm 6 Flow Verification Protocol
Input: The shared symmetric key Kσ for the current epoch σ.
1: . Generate a flow AuditTrailer for each packet at the gateway GWin
2: function GENERATE(pkt)
3: . Same as Packet Verification
4: out.pkt= pkt
5: out.pktID=genPktID(pkt)
6: out.srcNF = GWin
7: out.dstNF =Policy(pkt, GWin)
8: . New for Flow Verification
9: out. f lowID=computeFlowID(pkt)

10: out.seqNum=FC[out. f lowID,out.dstNF ]++
11: out.tag=MACKσ

(out.pkt|out.pktID|out.srcNF |out.dstNF
|out. f lowID|out.seqNum)

12: return out
13:
14: . Process a packet in at NFi
15: function PROCESSi(in)
16: ok← in.dstNF =NFi
17: ∧ VerifyKσ

(in.pkt|in.pktID|in.srcNF |in.dstNF |in. f lowID
|in.seqNum,in.tag)

18: ∧ in.seqNum=FC[in. f lowID,in.srcNF ] . New
19: if ok then:
20: FC[in. f lowID,in.srcNF ]++ . New
21: out.pkt= fi(in.pkt)
22: out.pktID= in.pktID
23: out.srcNF =NFi
24: out.dstNF =Policy(out.pkt,NFi)
25: . New for Flow Verification
26: out. f lowID= in. f lowID
27: out.seqNum=FC[out. f lowID,out.dstNF ]++
28: out.tag=MACKσ

(out.pkt|out.pktID|out.srcNF |out.dstNF
|out. f lowID|out.seqNum)

29: else
30: out←⊥ . Drop packet and raise alert

return out
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D Security Proofs
D.1 Cryptographic Assumptions

We introduce the standard notation we use and the standard
cryptographic assumptions we make.

We write x|y for the uniquely delimited (either via tags or
fixed widths) concatenation of x and y. Hence, x0|y0==x1|y1
implies x0==x1 and y0==y1.

Our scheme relies on a Message Authentication Code
(MAC) scheme, which consists of three algorithms. A
symmetric key K is generated by the KeyGen() algorithm.
We write τ←MACK(m) to indicate using key K to compute a
MAC tag τ on message m, and VerifyK(m,τ) for the algorithm
that uses key K to check the validity of tag τ for message m.

We assume that the MAC scheme is existentially un-
forgeable under chosen-message attacks (EUF-CMA) [21].
Intuitively, the definition says that an adversary who can re-
quest validly computed tags for n adaptively chosen messages
cannot produce a new pair (m,τ) 6∈ {(m1,τ1), ... ,(mn,τn)}
which passes VerifyK(m, τ). Standard algorithms, such as
HMAC [20] and GMAC [53], are EUF-CMA secure.

D.2 Security Definition
To formalize AuditBox’s security, we take the standard

approach of defining our desired security property via a cryp-
tographic game involving a challenger C , and a probabilistic,
polynomial-time adversary A , which intuitively corresponds
to the untrusted network, Φ. The game can be instantiated
with an audit protocol that supplies NF functions fi.

The challenger begins the game by creating an empty
event log E and calling KeyGen() to produce key K. The
adversary is then allowed to run and can call the following
oracles which represent the various NFs in the system.

1. pout ← Oracle-GWIN(pin) allows the adversary to
introduce a new packet pin to the gateway and obtain
the packet pout produced by the gateway.

2. pout← Oracle-NFi(pin) invokes NFi on the adversarially
supplied input packet pin and gives the adversary the
resulting packet pout .

The challenger instantiates these oracles using the models
described in §4.1. Specifically, Oracle-GWIN(pin) runs
Algorithm 2 using the protocol-supplied function fin, and
Oracle-NFi(pin) runs Algorithm 1 using the protocol-supplied
function fi. Note that both oracles append to the event log E

When the adversary terminates, the game ends and outputs
E.

D.3 Security Proof of Packet Correctness
Theorem 1 (Packet Correctness) Consider the game de-
scribed above with adversary A and instantiated with the Au-
ditBox packet correctness protocol (§5.2). Specifically, looking
at Algorithm 5, we instantiate fin with the function GENERATE
and fi with PROCESSi. The probability that the game outputs
an event log E that violates Property 1 is negligible.

Proof of Theorem 1: We prove security by reducing the

security of our protocol to the EUF-CMA security of our MAC
algorithm though a series of cryptographic games [19, 71].
The initial game matches the game defined in §D.2, and each
subsequent game idealizes a portion of the protocol. At each
step, we calculate the adversary’s success in distinguishing
between the two games.
Game 0 is defined as in §D.2 with an adversary A which
queries its oracles a total of α times.
Game 1 is the same as above, except that the NF oracle,
when given an input packet pin, computes

m← pin.pkt|pin.pktID|pin.srcNF |pin.dstNF

and immediately rejects the packet if m was not previously
passed as an argument to MACK(·) (i.e., C keeps a list L of all
values passed to MACK(·), and upon receiving a packet pin on
which it would normally call VerifyK(m,τ), it looks up m in L
and accepts/rejects based on the lookup, without looking at τ).

The adversary can distinguish Game 1 from Game 0 only if
it can forge a valid tag τ for m. This happens with probability
at most EUF-CMA(α), the probability of breaking our unforga-
bility assumption given at most α chosen-message tags.

From Game 1, we show that Property 1 perfectly holds,
which means that the probability that an adversary can break
Property 1 is at most EUF-CMA(α), which is, by definition,
negligible when we employ a secure MAC scheme.

In Game 1, consider any eb ∈ E such that eb.pktin 6= ⊥.
By the construction of the NF model (Algorithm 1)
an event eb is only added to E after the NF runs fi,
which we instantiated with PROCESSi. PROCESSi ensures
eb.pktin.dstNF == eb.NF (Line 12 of Algorithm 5). In
Game 1, instead of running the MAC’s verification algorithm
on Line 13, it checks that the computed m is on the list
L of previously MAC’ed messages. For this check to
succeed, there must have been a logically earlier MAC call,
which must have occurred during a previous invocation of
Oracle-GWIN or Oracle-NFi, which each compute a tag on
their outbound packet. For the verification lookup in L to
succeed, that MAC call must have computed an m′ for its
output packet, where m′==m. This earlier oracle invocation
would have produced event ea=(p,eb.pktin,eb.pktin.srcNF,i)
for some other input packet p and index i, with i<eb.t, since
this was an earlier invocation, and the log E was necessarily
shorter. Hence, the equality of m and m′ implies that we have
ea.pktout = eb.pktin, and policy(ea.pktout ,ea.NF) = eb.NF
(note Lines 6 and 18 of Algorithm 5), satisfying Property 1.

D.4 Security Proof of Flow Correctness
Theorem 2 (Flow Correctness) Consider the game de-
scribed in §D.2 with adversary A and instantiated with the Au-
ditBox flow-correctness protocol (§5.3). Specifically, looking
at Algorithm 6, we instantiate fin with the function GENERATE
and fi with PROCESSi. The probability that the game outputs
an event log E that violates Properties 1-4 is negligible.
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Proof of Theorem 2:
We prove Theorem 2 by considering each property in turn.

Proof of Property 1 We begin by observing that compared
with the packet-verification protocol, the flow-verification
protocol

1. Includes in its AuditTrailer a superset of the packet-
verification fields.

2. Computes the values the packet-verification fields in an
identical manner.

3. Computes MACs over a superset of the packet-
verification fields. algor

4. Performs a superset of the validation checks (compare
Lines 16-18 of Algorithm 6 with Lines 12-13 of
Algorithm 5).

Hence, we can apply an identical set of arguments as we
did in our proof of Theorem 1 to show that Property 1 still
holds when we employ a secure MAC. In the discussion,
Property 1 allows us to assume that all packets in E originated
from an NF, and hence we no longer need worry about
adversarially mangled or injected packets.

Proof of Property 2 To show that Property 2 (i.e., no
packet injection or modification) holds, choose an arbitrary
NFa,NFb ∈ F , and ea1,ea2,eb2 ∈ E such that Lines 5-9 of
Property 2 hold. We will show that there must exist eb1∈E
such that

eb1.t<eb2.t∧eb1.NF=NFb∧eb1.pktin=ea1.pktout

When ea1.pktout was produced by PROCESSa,
it was assigned a flow sequence number
FCa[ea1.pktout. f lowID, ea1.pktout.srcNF ] (Line 27 of
Algorithm 6), and NFa immediately increments the counter.

When we subsequently call PROCESSa to produce
ea2.pktout (we know this is a subsequent invocation of
PROCESSa because ea1.t < ea2.t), we can show that it will
read the same counter from FCa, which by observation
always increases monotonically. Hence, it must be that
ea2.pktout.seqNum>ea1.pktout.seqNum.

We can show that PROCESSa accesses the same counter
by showing that ea1.pktout. f lowID = ea2.pktout. f lowID ∧
ea1.pktout.srcNF = ea2.pktout.srcNF . The first is straight-
forward, since ea1.pktout = ea2.pktout =⇒ f low(ea1) =
f low(ea2), and the second follows from Line 7 of Property 2.

For ea2.pktout to have passed the “ok” check
in PROCESSb, and hence to have generated eb2, it
must have passed the check on Line 18, which
means that at the time, ea2.pktout.seqNum =
FCb[ea2.pktout. f lowID, ea2.pktout.srcNF ]. Now consider
the set Eb1 ⊆ E of all eb1 such that eb1.t < eb2.t∧ eb1.NF =
NFb∧ eb1.pktin.srcNF = NFa∧ f low(eb1) = f low(ea1); i.e.,
all previous events generated by NFb that came from NFa
and are part of the same flow as ea1 (and hence ea2 and eb2).

The crucial observation is that each such eb1 increments
FCb[eb1.pktin. f lowID, eb1.pktin.srcNF ], and these are the
only events that do so prior to eb2.t. Hence, it must be the
case that |Eb1| = eb2.pktin.seq, and each eb1 ∈ Eb1 has a
unique sequence number (as guaranteed by the monoton-
ically increasing counter value). Since we know that 0 ≤
ea1.pktout.seqNum < ea2.pktout.seqNum = eb2.pktin.seqNum,
there must be an eb1 ∈ Eb1 with eb1.pktin.seqNum =
ea1.pktout.seqNum. Furthermore, the monotonic counter
on the sending side (NFa) guarantees that NFa must have
only assigned the sequence number ea1.pktout.seqNum to
a single packet, namely ea1.pktin. Since we have proven
Property 1 holds (i.e., the attacker cannot inject or modify
packets), if NFb received a packet eb1.pktin with sequence
number ea1.pktout.seqNum from NFa, it must be the case
that ea1.pktout = eb1.pktin. Hence, we have identified an eb1
such that eb1.t< eb2.t∧eb1.NF=NFb∧eb1.pktin = ea1.pktout,
proving that Property 2 holds.

Proof of Property 3 To show that Property 3 (no packet
reordering) holds, choose an arbitrary NFa,NFb ∈ F and
ea1, eb1, ea2, eb2 ∈ E such that Lines 14-17 of Property 3
hold. Suppose for the sake of contradiction that ea1.t<ea2.t
but eb1.t ≥ eb2.t (i.e., NFb received the packets in reverse
order). Since each NF increments its flow counter after
sending a packet (Lines 10 and 27 in Algorithm 6), and
we know that flow(ea1) = flow(ea2), it must be the case
that ea1.pktin.seqNum < ea2.pktin.seqNum. Since we
supposed eb1.t ≥ eb2.t (and eb1.t 6= eb2.t because each
entry in E has a unique position) it must be the case
that PROCESSb was called on ea2.pktout before it was
called on ea1.pktout. For ea2.pktout to have passed the “ok”
check in PROCESSb, it must have passed the check on
Line 18, which means that at the time, ea2.pktout.seqNum=
FCb[ea2.pktout. f lowID, ea2.pktout.srcNF ]. The counter
is then incremented on Line 20, and continues to
increase monotonically on subsequent invocations.
Hence, when PROCESSb was later called on ea1.pktout,
to have passed the “ok” check, it must be the case that
ea1.pktout.seqNum>ea2.pktout.seqNum. This contradicts our
starting point that ea1.pktout.seqNum < ea2.pktout.seqNum.
Hence we can conclude that if ea1.t<ea2.t then eb1.t<eb2.t.

To prove the other direction of the implication, namely
that if ea1.t≥ ea2.t then eb1.t≥ eb2.t. we can apply the same
argument as above, swapping a2 for a1 and b2 for b1.

Proof of Property 4 To show that Property 4 (no packet
replay) holds, choose an arbitrary ea∈E. Suppose for the sake
of contradiction that ∃eb ∈ E such that ea.pktin = eb.pktin.
Since each entry in E has a unique position, we know
ea.t 6= eb.t, so without loss of generality, assume ea.t < eb.t.
Since we know that ea.pktin.dstNF = eb.pktin.dstNF ,
both entries must have been produced by invocations of
PROCESSea.pktin.dstNF , and it was invoked on ea.pktin before
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eb.pktin (because ea.t<eb.t). Since PROCESS did not raise an
alert on ea.pktin, it must be the case that it passed the check
on Line 18, which means that at the time, ea.pktin.seqNum=
FCb[ea.pktin. f lowID, ea.pktin.srcNF ]. The counter is then
incremented on Line 20, and continues to increase mono-
tonically on subsequent invocations. Hence, when PROCESS
was later called on eb.pkt, to have passed the “ok” check,
it must be the case that eb.pktin.seqNum> ea.pktin.seqNum.
But we supposed that ea.pktin = eb.pktin, which means
eb.pktin.seqNum=ea.pktin.seqNum. This contradiction show
that eb.pktin.seqNum 6=ea.pktin.seqNum.

D.5 Security of Secret Logging
As described in §6.1, AuditBox implements secret logging

via a virtual bit that is appended to the real data carried in
the AuditTrailer when computing a MAC. For this approach
to effectively sample packets even in the presence of an
adversary, it should be computationally difficult to distinguish
packets with the virtual bit set to one (indicating a packet that
should be logged) from those with the virtual bit set to zero.

Security Definition We capture this security notion
with the following game involving a challenger C , and a
probabilistic, polynomial-time adversary A . When the game
begins, C chooses a random bit b and then runs KeyGen()
to produce key K. The adversary is then allowed to run and
given access to Oracle-MAC(·), which when given a message
m, returns MACK(m|b). A eventually terminates and outputs
its guess b′. The game returns 1 if b==b′ and 0 otherwise.

We define A’s advantage after making α queries to its
oracle as 2

∣∣P− 1
2

∣∣, where P is the probability that the game
returns 1.

Security Proof The game above is not secure for arbitrary
MACs. In other words, given a EUF-CMA secure MAC
scheme M , we can construct a new scheme N that is also
EUF-CMA secure, but where an adversary can achieve
advantage 1 in the game above. For example, we could define
N .MACK(m)=M .MACK(m)|m. This is EUF-CMA secure
(since the adversary still cannnot produce a forgery against
M ), but message secrecy is entirely broken.

Fortunately, we can prove security for specific MAC
algorithms, including HMAC and, crucially for our imple-
mentation, GMAC. In particular, we leverage the fact that

GMAC is defined (simplifying slightly) as:

GMACK(IV,m)=PRFK(IV )⊕GHASH(m)

Theorem 3 (Secret Logging Security) Consider the game
described above with adversary A . When the MAC algorithm
is GMAC, the adversary’s advantage is negligible.

Proof of Theorem 3: We prove security via the following
two games.
Game 0 is defined as described above with an adversary A
which queries its oracle a total of α times.
Game 1 is the same as above, except that Oracle-MAC(m)
returns

GMACK(IV,m)=R⊕GHASH(m)

where R is a randomly sampled value.
The adversary can distinguish Game 1 from Game 0 only

if it can distinguish the output of the PRF from the output
of a truly randomly selected function. This happens with
probability at most PRF(α), the probability of breaking the
security of GMAC’s PRF given at most α queries.

From Game 1, we show that the adversary has no informa-
tion about the underlying message (and hence about the value
of b), which means that the adversary’s advantage in the
security game is at most PRF(α), which is, by definition, neg-
ligible when we employ a secure PRF, which is also necessary
for the standard EUF-CMA security of GMAC to hold.

In Game 1, the output of GHASH (which is the only infor-
mation derived from m) is XOR’ed with a randomly chosen
value of the same length. In other words, the output is the
result of applying a one-time pad to GHASH(m), which is an
informationally secure encryption scheme. Hence the adver-
sary learns nothing about m from the output of its oracle.

E Performance Sensitivity Analysis
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Figure 16: Sensitivity analysis across NFs for different packet sizes.
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Abstract– Many enterprises today manage traffic on their
wide-area networks using software-defined traffic engineer-
ing schemes, which scale poorly with network size; the solver
runtimes and number of forwarding entries needed at switches
increase to untenable levels. We describe a novel method,
which, instead of solving a multi-commodity flow problem
on the network, solves (1) a simpler problem on a contrac-
tion of the network, and (2) a set of sub-problems in parallel
on disjoint clusters within the network. Our results on the
topology and demands from a large enterprise, as well as on
publicly available topologies, show that, in the median case,
our method nearly matches the solution quality of currently
deployed solutions, but is 8× faster and requires 6× fewer
FIB entries. We also show the value-add from using a faster
solver to track changing demands and to react to faults.

1 Introduction

Wide-area networks (WANs), which connect locations across
the globe with high-capacity optical fiber, are an expensive
resource [7, 35, 36, 38]. Hence, enterprises seek to carefully
manage the traffic on their WANs to offer low latency and
jitter for customer-facing applications [28, 62, 69] and fast
response times for bulk data transfers [46, 56].

The state-of-the-art approach used in several enterprises
today [35, 36, 38] is to compute optimal routing schemes for
the current demand by solving global multi-commodity flow
problems [7,35,36,38]; the global flow problems are re-solved
periodically, since demands may change or links may fail,
and the computed routes are encoded into switch forwarding
tables using software-defined networking techniques [7].

As network sizes grow, solving multi-commodity flow prob-
lems on the entire network becomes practically intractable.
As noted in [36], the “algorithm run time increased super-
linearly with the site count,” which led to “extended periods
of traffic blackholing during data plane failures, ultimately
violating our availability targets,” as well as “scaling pressure
on limited space in switch forwarding tables.” This problem
is unlikely to go away: anecdotal reports indicate that WAN

Contract 
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Allocate flow on 
contracted 

network
occasionally

Network Clusters

Demands

Flow
AllocationDemand 

History
Paths

(periodically; e.g.,
every few min)

Figure 1: NCFlow’s workflow.

Cluster

Figure 2: The original network on the left is divided into clusters, shown
with different background colors. The contracted network is on the right.

footprints today are already over 10× larger than the few tens
of sites that were considered in prior work [35, 36], since
enterprises have built more sites to move closer to users.

In this paper, we seek to retain the benefits of global traffic
management for large WAN networks without requiring ex-
cessively many forwarding entries at switches or prohibitively
long solver runtimes. Also, by using a faster solver, WAN
operators can reduce loss when faults occur and carry more
traffic on the network by tracking demand changes.

Our solution is motivated by the observation that WAN
topologies and demands are concentrated: the topology typi-
cally has well-connected portions separated by a few, lower-
capacity edges, and more demand is between nearby datacen-
ters. This is likely due to multiple operational considerations:
(1) submarine cables have become shared choke points for
connectivity between continents (see Figure 3), (2) the con-
nectivity over land follows the road or rail networks along
which fiber is typically laid out, and (3) enterprises build
datacenters close to users, then steer traffic to nearby datacen-
ters [12, 62, 69]. Therefore, more capacity and demand are
available between nearby nodes; an analysis of data from a
large enterprise WAN in §2 supports this observation.

We leverage this concentration of capacity and demand
to decompose the global flow problem into several smaller
problems, many of which can be solved in parallel. As shown
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Figure 3: Submarine cables serve as choke points in WAN topologies; figure
is excerpted from [63].

in Figure 2, we divide the network into multiple connected
components, which we refer to as clusters. We then solve
modified flow problems on each cluster, as well as on the con-
tracted network, where nodes are clusters and edges connect
clusters that have connected nodes. Prior work [4,9,15] notes
that Google and other map providers use different contractions
to compute shortest paths on road network graphs. Our goal
is to closely match the multi-commodity max flow solution in
quality (i.e., carry nearly as much total flow), while reducing
the solver runtime and number of required forwarding entries.
We discuss related work in §7; to our knowledge, we are the
first to demonstrate a practical technique for multi-commodity
flow problems on large WAN topologies.

Solving flow problems on the contracted network poses
two key challenges:

1. How to partition the network into clusters? More clusters
leads to greater parallelism, but maximizing the inter-
cluster flow requires careful coordination between the
sub-problems at multiple clusters.

2. How to design the sub-problems for each cluster to im-
prove speed while reducing inconsistencies in alloca-
tion? The sub-problem for a cluster has fewer nodes and
edges to consider, but it will not be be faster if it must
consider all node pairs whose traffic can pass through
the cluster.

Our solution NCFlow1 achieves a high-quality flow alloca-
tion with a low runtime and space complexity by addressing
each of these challenges in turn. First, we contract the network
using well-studied algorithms such as modularity-based clus-
tering [25] and spectral clustering [53], which are designed
to identify the choke-point edges in a network. Second, we
bundle demands whose sources and/or targets are in the same
cluster, treating them as a single demand. In Figure 2 for ex-
ample, the yellow cluster considers as one bundled demand
all traffic from source nodes in the red cluster to target nodes
in the green cluster. Doing so can lead to inconsistent flow
allocations between clusters (which we explain in §3.1.1) and
we devise careful heuristics to provably avoid them (§3.2).
Finally, we reduce the forwarding entries needed at switches

1short for Network Contractions for Flow problems
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Figure 4: On the left, we plot the L2 norm of the change in the demands
between successive 5-minute periods divided by the L2 norm of the traffic
matrix at a time. On the right, we show the CDF of this change ratio. We
also show a CDF of the fraction of demand that is unsatisfied if using the
allocation computed for the previous period.

by reusing pathlets within clusters and traffic splitting rules
across multiple demands (§3.5).

Figure 1 shows the workflow for NCFlow. First, we choose
appropriate clusters and paths using an offline procedure over
historical traffic—these choices are pushed into the switch
forwarding entries. This step happens infrequently, such as
when the topology and/or traffic changes substantially. Then,
online (e.g., once every few minutes), NCFlow computes how
best to route the traffic over the clusters and paths, similar to
deployed solutions [35, 36, 38].

Overall, our key contributions are:
• We propose NCFlow, a decomposition of the multi-

commodity max flow problem into an offline cluster-
ing step and an online, provably feasible, algorithm that
solves a set of smaller sub-problems in parallel.

• We evaluate NCFlow using real traffic on a large enter-
prise WAN, as well as synthetic traffic on eleven topolo-
gies from the Internet Topology Zoo [6]. Our results
show that, for multi-commodity max flow, NCFlow is
within 2% of the total flow allocated by state-of-the-
art path-based LP solvers [35, 36, 38] in 50% of cases;
NCFlow is within 20% in 97% of cases. Furthermore,
NCFlow is at least 8× faster than path-based LP solvers
in the median case; in 20% of cases, NCFlow is over
30× faster. Lastly, NCFlow requires 2.7–16.7× fewer
forwarding entries in the evaluated topologies. NCFlow
also compares favorably to state-of-the-art approxima-
tion algorithms [27,41] and oblivious techniques [44,57].

• We show that, as a fast approximate solver, NCFlow can
be used to react quickly to demand changes and link
failures. Specifically, in comparison to TEAVAR [19],
NCFlow carries more flow when no faults occur and suf-
fers about the same amount of total loss during failures.

We have open-sourced an anonymous version of NCFlow [2],
and are in the early stages of integrating NCFlow into produc-
tion use at a large enterprise.

2 Background and Motivation

We analyze the changes in topology and traffic on a large
enterprise WAN over a several-month period. As Figure 4
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Figure 5: Runtimes of a state-of-the-art solver on topologies from Internet
Topology Zoo [6]. Both axes are in log scale and the band represents stan-
dard deviation. In production WANs, new traffic demands arrive every few
minutes [35, 38].

shows, the change in traffic demand from one 5-minute win-
dow to the next is substantial; the average change is 35%;
in 20% of the cases, the traffic change is over 45%. The en-
terprise solves a global flow allocation problem every few
minutes. The figure on the right shows the fraction of traffic
that will remain unsatisfied if the flow allocation from the
previous window were to be used instead of computing a new
allocation. We see that the median loss is 13%; in 20% of the
cases, over 20% of the demand remains unsatisfied. We verify
that computing a new allocation will satisfy all of the demand;
using the previous window’s allocation causes loss because
some datacenter pairs may receive more flow in the previous
allocation than their current demand while other datacenter
pairs go unsatisfied.

Given the above data, computing a new allocation in each
time window is needed to carry more traffic on the WAN.
However, solver runtime increases super-linearly with the
size of the topology, as shown in Figure 5. For several public
topologies and on a variety of traffic matrices, we benchmark
the multi-commodity max-flow problem (specifically PF4, as
will be described in §5.1). The runtimes were measured on a
server-grade machine using a production-grade optimization
library [33]. As the figure shows, when the topology size ex-
ceeds a thousand edges, the time to compute a flow allocation
can exceed the allotted time window.

A fast solver would not only ensure that new allocations
complete in time—it could also enable more frequent alloca-
tions, e.g., every minute. Doing so would enable allocations
to track changing demands at a finer granularity. Moreover,
as we show in §5, a fast solver can help when reacting to link
and switch failures.

Our observation that demand and capacity are concentrated
among nearby nodes is grounded on the following measure-
ments from a production WAN:
Demand properties:

• On average, 7% (or 16%) of the node pairs account for
half (or 75%) of the total demand.

• When nodes are divided into a few tens of clusters, 47%
of the total traffic stays within clusters. If the demands
were distributed uniformly across node pairs, only 8%
of the traffic would stay within clusters; thus the demand
within clusters is about 6× larger than would be expected

from a uniform distribution.

WAN topology properties:
• When nodes are divided into tens of clusters, 76% of all

edges and 87% of total capacity is within clusters.
• The skew in capacity is small: the ratio between the

largest edge capacity and the mean is 10.4.
• The skew in node degree is also small: the average node

degree is 3.9, with σ = 2.6; the max is 16.
• Relative to the network size (hundreds of nodes), the

average network diameter (=11) and the average shortest-
path length (= 5.3) are very small.

Motivated by the above analyses, NCFlow seeks to be a fast
solver for large WAN topologies by leveraging the concentra-
tion of traffic demands and capacity.

Background: Before we describe NCFlow’s design, we give
some background on multi-commodity flow problems. Given
a set of nodes, capacitated edges, and demands between nodes,
a flow allocation is feasible if it satisfies demand and capacity
constraints. The goal of a multi-commodity flow problem is to
find a feasible flow which optimizes a given objective; Table 1
lists some common flavors.

The fastest algorithms [27, 41] are approximate; i.e., given
a parameter ε, they achieve at least (1−ε)× the optimal value.
And, their runtime complexity is at least quadratic (Table 1).

Moreover, these solutions allow demands to travel on any
edge, thus requiring millions of forwarding table entries at
each switch for thousand-node topologies. Instead, produc-
tion systems [35, 38] restrict flow to a small number of pre-
configured paths per demand, which reduces the required
forwarding table entries by 10–100×.

Using notation from Table 2, the feasible flow over a pre-
configured set of paths can be defined as:

FeasibleFlow(V ,E ,D,P ),
{

fk | ∀k ∈D and (1)

fk = ∑
p∈Pk

f p
k , ∀k ∈D (flow for demand k)

fk ≤ dk, ∀k ∈D (flow below volume)

∑
∀k,p∈Pk ,e∈p

f p
k ≤ ce, ∀e ∈ E (flow below capacity)

f p
k ≥ 0 ∀p ∈ P ,k ∈D (non-negative flow)

}
Production systems use linear optimization-based

solvers [35, 36, 38]. On WANs with thousands of nodes, the
optimization problem could have millions of variables and
equations just to verify that a flow allocation is feasible.

In this paper, we consider the problem of maximizing the
total flow across all demands:

MaxFlow(V ,E ,D,P ),argmax
f ∑

k∈D
fk (2)

s.t. f ∈ FeasibleFlow(V ,E ,D,P )
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Maximization term Additional Constraints Used in Known best complexity
MaxFlow ∑k∈D fk none [35, 38] O(M2ε−2 logO(1) M) [27]

MaxFlow with Cost Budget ∑k∈D fk ∑k ∑p∈Pk ∑e∈p f p
k Coste ≤ Budget O(ε−2M logM(M+N logN) logO(1) M) [27]

Max Concurrent Flow α dkα≤ fk,∀k ∈D [19, 39, 40] O(ε−2(M2 +KN) logO(1) M) [41]

Table 1: We illustrate a few different multi-commodity flow problems all of which find feasible flows but optimize for different objectives and can have additional
constraints; see notation in Table 2. Equation 6 fleshes out the problem completely for the case of maximizing flow. More problems are discussed in [11].

Term Meaning
V ,E ,D,P Sets of nodes, edges, demands, and paths
N,M,K The numbers of nodes, edges, and demands, i.e., N =

|V |,M = |E |,K = |D|
e,ce, p Edge e has capacity ce; path p is a set of connected edges
(sk, tk,dk) Each demand k in D has source and target nodes (sk, tk ∈

V ) and a non-negative volume (dk).
f, f p

k Flow assignment vector for a set of demands and the flow
for demand k on path p.

Table 2: Notation for framing multi-commodity flow problems.

Vagg, Eagg,
Dagg, Pagg

Nodes, edges, demands, and paths in the aggregated
graph

Vx,Ex,Dx,Px Subscript denotes entities in the restricted graph for
cluster x

x,η Each cluster x is a strongly connected set of nodes and
η is the number of clusters

k,Kxy,Ksy,Kxt An actual demand (k); the rest are bundled demands
from one source (s) or all nodes in a cluster (x) to a
target (t) or to all nodes in a cluster (y)

Table 3: Additional notation specific to NCFlow.

SDN-based traffic engineering schemes [35, 38], in addi-
tion to repeatedly solving global optimizations, must maintain
an up-to-date view of the topology, gather desired volumes
for demands and update traffic splits at switches based on the
result of the optimization. Our production experience is that
most of these repetitive steps have a latency of a few RTTs
(round trip times) and so solving the optimization dominates,
especially on large topologies. Moreover, demands are lim-
ited to their allocated rates in software at the source servers
and thus allocating less than the full desired rate need not
result in packet loss [35]. Finally, applications that contribute
a large fraction of the bytes moving between datacenters are
elastic in short timescales; e.g., large dataset transfers for data
analytics. That is, these apps seek a fast completion time but
do not need a large rate in every optimization epoch. Some
other applications have a decreasing marginal utility as their
rate allocation increases such as video streams of varying
quality [43]. Today’s SDN-based TE solutions [35, 38] use
multiple priority classes to maximize allocations for elastic
traffic without affecting the latency-sensitive traffic.

3 NCFlow

In this section, we describe NCFlow. Our steps are as shown
in Figure 1. Offline, based on historical demands, we divide
the network into clusters and determine paths. Further details
are in §3.4. Online, we allocate flow to the current demands by
solving a carefully constructed set of simpler sub-problems,

MaxAggFlow

MaxClusterFlow

MinPathE2E

SrcTargetMax

f1 ,MaxFlow(Vagg,Eagg,Dagg,Pagg)

∀clusters x, fx
2 ,MaxFlow(Vx,Ex,Dx,Px)

s.t. NoMoreFlowThruCluster(f, f1,x) (see §D)

f3 ,
{

fk,∀k ∈Dagg
}

s.t.

s.t. NoMoreAlongPaths(f, f2) (see §D)

∀clusters x,y,x 6= y, fxy
4 ,argmax ∑

k∈Kxy

fk

s.t. ∑
k∈Ksy

fk ≤ f x
2,Ksy , ∀s ∈ x; ∑

k∈Kxt

fk ≤ f y
2,Kxt

, ∀t ∈ y;

∑
k∈Kxy

fk ≤ f3,Kxy ; fk ≤ dk, ∀k ∈ Kxy

Figure 6: The basic flow allocation algorithm used by NCFlow; notation
used here is defined in Table 3.

some of which can be solved independently and in parallel.
We describe these sub-problems in §3.1. Although they can be
solved quickly, disagreements between independent solutions
can lead to infeasible allocations; we present a simple heuris-
tic in §3.2 that provably leads to feasible flow allocations.
In §3.3, we discuss extensions that increase the total flow al-
located by NCFlow. We also show sufficient conditions under
which NCFlow is optimal and matches the flow allocated by
MaxFlow. Finally, in §3.5, we discuss how NCFlow uses fewer
forwarding entries by reusing pathlets within clusters and
splitting rules for different demands.

3.1 Basic Flow Allocation

We begin by describing a simple (but incomplete) version
of NCFlow’s flow allocation algorithm; the pseudocode is
in Figure 6. We continue using Figure 2 as a running example.
The basic algorithm proceeds in four steps.

In the first step, we allocate flow on the aggregated graph;
as shown in MaxAggFlow in Figure 6. In the aggregated graph,
an example of which is in Figure 2 (right), nodes are clusters
and the edges are bundled edges from the original graph—
the edge between the red and yellow clusters corresponds
to the five edges between these clusters on the actual graph.
Similarly, we bundle demands on the aggregated graph: the
demand Kxy between the clusters x and y corresponds to all
of the demands whose sources are in cluster x and targets are
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Figure 7: An example illustrating how the flow allocated in MaxAggFlow
translates to constraints on the flow to be allocated in MaxClusterFlow.

in cluster y. The resulting flow allocation (f1) accounts for
bottlenecks on the edges between clusters. However, this flow
may not be feasible, since there may be bottlenecks within
the clusters.

In the second step, we refine the allocation from step 1 to
account for intra-cluster demands and constraints. Specifically,
we allocate flow for the demands whose sources and targets
are within the cluster. We also allocate no more flow than
was allocated in f1 for the inter-cluster flows. MaxClusterFlow
in Figure 6 shows code for this step. We note a few details:

• We use virtual nodes to act as the sources and targets for
the inter-cluster flows; the flow allocated in f1 determines
which virtual node (i.e., which neighboring cluster) is
the sender or the receiver for an inter-cluster demand.

• Figure 7 shows two examples on the right where the
virtual nodes are drawn using squares.

• Figure 7 also shows the NoMoreFlowThruCluster con-
straints for demands from sources in the red cluster to
targets in the black cluster (depicted as x and z respec-
tively). On the aggregated graph, the flow for this de-
mand takes the two paths shown. In the red cluster, as
shown in the equation, the traffic from all sources (s),
along multiple paths (r) to the virtual node, is restricted
to be no more than what was allocated in f1.

• Figure 7 on the right also shows a more complex case
that happens in the yellow cluster. Here, the traffic arrives
at one virtual node but can leave to multiple virtual nodes.
In MaxClusterFlow, we set up paths between all pairs
of virtual nodes. As shown in the equation, the traffic
leaving the red virtual node on paths (r) to either of the
other virtual nodes must be no more than the total flow
on paths p and q from f1.

• Observe that bundling demands ensures fewer variables
and constraints for MaxClusterFlow. The demand from
red to black clusters comprises twenty node pairs in the
actual graph in Figure 2 (left); four sources in the red
cluster and five targets in the black cluster. However, the
MaxClusterFlow for the red cluster only has four bundled
demands, from each source to the virtual node, and the
yellow cluster has just one bundled demand from and to
virtual nodes.

In the third step, we reconcile end-to-end; that is, we find
the largest flow that can be carried along each path on the
aggregate graph. As shown by MinPathE2E in Figure 6, for
each bundle of demands and each path, we take the minimum
flow allocated (fx

2) at each cluster on the path.
The flow allocation for the demands in a cluster x can be

Problem # of Nodes # of Edges # of Demands
MaxFlow N M K

MaxAggFlow η ≤min(M,η2) ≤min(K,η2)
MaxClusterFlow ∼ N

η
+η ∼ M

η
+2η ∼ K

η2 +2 N
η
+η2

Table 4: Sizes of the problems in Figure 6 using notation from Tables 2
and 3. Just verifying that flow is feasible (i.e., FeasibleFlow in Eq. 1) uses
O(# nodes ∗ # edges) number of equations and variables. NCFlow has one
instance of MaxAggFlow and executes the η instances of MaxClusterFlow in
parallel. MinPathE2E and SrcTargetMax, are relatively insignificant.
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(a) Disagreement arising from bundling edges: As shown on the right, the algo-
rithm in Figure 6 will allocate 2 units of flow but only 5ε units can be carried.
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(b) Disagreement arising from bundling demands: As shown on the right, the
algorithm in Figure 6 will allocate 2 units of flow, but only 2ε units can be carried.

Figure 8: Illustrating how disagreements in flow allocation can occur in the
basic flow allocation algorithm; see §3.1.1.

read directly from the fx
2 solution of MaxClusterFlow. For

demands that span clusters, however, more work remains be-
cause the steps thus far do not directly compute their flow. In
particular, f3 allocates flow for cluster bundles; such as say for
all the demands whose sources are in cluster x and targets are
in cluster y. The corresponding per-cluster flow allocations, fx

2
and fy

2, allocate flow from a source node and to a given target
respectively. Thus, in the final step, SrcTargetMax, we assign
the maximal flow to each inter-cluster demand that respects
all previous allocations.

3.1.1 Properties of Basic Flow Allocation

Solver runtime: The numbers of equations and variables in
the sub-problems are shown in Table 4. If the number of clus-
ters η is 1, note that there is exactly one per-cluster problem,
MaxClusterFlow, which matches the original problem from
Eqn. 2. When using a few tens of clusters, we will show in §5
that all of the sub-problems are substantially smaller than the
original problem (MaxFlow).

Feasibility: The flow allocated by Figure 6 satisfies demand
and capacity constraints; we will prove this formally in §B.1.
For demands whose source and target are in different clusters,
however, disagreements may ensue since the different prob-
lem instances assign flow to different bundles of edges and
demands. We illustrate two such examples in Figure 8; both
have 1 unit of demand from s1 to t1 and from s2 to t2. The
dashed edges have a capacity of ε� 1 and all of the other
edges have a very large capacity.

• The example in Figure 8a illustrates an issue with
bundling edges. The actual graph on the left can only
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Figure 9: To guarantee feasibility, each cluster bundle is allocated flow on
only one path on the aggregated graph (left) and on only one edge between
each pair of clusters (right); the usable path and edges are shown in dark red.
Note that multiple paths can still be used within clusters.

carry 5ε units of flow for each demand. However, as the
figures on the right show, MaxAggFlow allocates two
units of flow since the four edges between these two
clusters can together carry all of the two units of demand.
The MaxClusterFlow instances also allocate two units
of flow as shown. The discrepancy arises because the
problems in Figure 6 do not know that the top egress of
the left cluster can take in all of the demand of s1 but has
only a low capacity to t1.

• The example in Figure 8b illustrates an issue with
bundling demands. Here too, observing the actual net-
work on the left will show that 2ε units can be carried for
each demand split evenly between the top and the bottom
path. Again, as the figures on the right show, the basic
flow allocation algorithm will conclude that both units
of demand can be carried. Here, the discrepancy arises
from the bundling of demands, the problems in Figure 6
cannot discern that the MaxClusterFlow instance of the
left cluster sends the first demand to the brown cluster
while the MaxClusterFlow of the right cluster wants to
receive the second demand from the brown cluster.

3.2 A feasible heuristic
To avoid end-to-end disagreements, we make two simple
changes to the basic flow allocation in §3.1.

First, when solving MaxAggFlow, only one path on the
aggregated graph can be used for all of the demands between
a given pair of clusters; we call such groups of demands to be
cluster bundles. Next, between a pair of connected clusters,
only one edge can carry the flow for a cluster bundle. Figure 9
shows in dark red an example path for a cluster bundle and the
allowed edges between clusters; we also show the intra-cluster
paths that can carry flow for this bundle.

There are multiple ways to avoid disagreements while keep-
ing the problem sizes small via bundling. We discuss the
above changes here because they are simple and sufficient.
Specifically, we show that:

Theorem 1. The algorithm in Figure 6, when constrained as
discussed above, will always output a feasible flow.

Proof. The proof is in §B.2. Intuitively, these changes suffice
because the independent decisions made by different prob-
lems in Figure 6 cannot disagree; per cluster bundle, all prob-
lem instances allocate flow to the same edge and path.

s
t

Figure 10: Contrasting with Figure 9, for the same cluster bundle, in a sub-
sequent iteration, NCFlow allocates flow on a different path on the aggregate
graph and on different inter-cluster edges. The chosen paths and edges are
again shown in red.

3.3 Stepping towards optimality

The flow allocation algorithm described thus far is fast but
not optimal; that is, it may allocate less total flow over all
demands than the flow allocated by solving the larger global
problem (MaxFlow from Eqn. 2). There are a few reasons
why this happens. The MaxAggFlow in Figure 6 allocates
flow on paths through clusters without knowing how much
flow the clusters can carry. Switching the order, i.e., solving
MaxClusterFlow before MaxAggFlow, could be worse because
each cluster must allocate flow without knowing how much
flow can be carried end-to-end. Furthermore, the heuristic
in §3.2 constrains each cluster bundle to use only one edge
between clusters and one path on the aggregated graph. We
now discuss a few extensions to increase the flow allocation.

First, we re-solve the problems in Figure 6 multiple times.
A simple way to do this would be to deduct the allocated flow
and use the residual capacity on edges in the next iteration.
Also, we pick different edges between clusters and/or different
paths on the aggregated graph in different iterations (see Fig-
ure 10 for an example). The number of iterations is config-
urable; we continue as long as the total flow increases in each
iteration by at least a pre-specified amount (say 5%). One
could apply other policies such as a timeout. We show in §5
that a small number of iterations suffice for a sizable increase
in the total flow. We will also show that later iterations finish
faster than the first iteration perhaps because fewer demands
remain to satisfy.

Next, we empirically observe that the choice of clusters
and edges/paths to use in different iterations has an effect on
flow allocation. For instance, the disagreements in Figure 8
go away by using a different choice of clusters—specifically,
see Figure 31d and Figure 31e. We discuss how NCFlow
precomputes cluster and edge/path choice in §3.4.

To sum up, we prove that flow allocation will be optimal
when a few sufficient conditions hold:

Theorem 2. The method in Figure 6 leads to the optimal flow
allocation when any path can be used within each optimiza-
tion and the number of clusters is 1 or equal to the number of
nodes or all of the following conditions hold:

• the aggregated graph Gagg is a tree,
• only one edge connects any pair of clusters,
• all demands are satisfiable.
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Proof. By optimal, we mean that the total allocated flow must
be as large as an instance of Equation 6 wherein any path can
be used. The proof is in §B.3. Intuitively, when the number
of clusters is 1 and any paths can be used, a single instance of
MaxClusterFlow is identical to the optimal problem in Equa-
tion 6. Similarly, when the number of clusters equals the
number of nodes, MaxAggFlow is identical to the optimal
problem. Furthermore, the conditions listed lead to optimality
because the optimal flow allocation can be transformed into
an allocation that can be outputted by Figure 6.

Even though the listed conditions appear restrictive, note
that the topology within clusters can be arbitrary. We will
show in §5 that NCFlow offers nearly optimal flow allocations
even when the above conditions do not hold.

3.4 Choosing clusters and paths
The choice of clusters and paths affects both the solution
quality and runtime of NCFlow. We cast cluster choice as a
graph partitioning problem [5, 21, 65] with these objectives:

• Concentrated with a low cut: NCFlow can output better
flow allocations when much of the total demand and the
total edge capacity is between nodes in the same cluster.

• Balanced cut: Intuitively, NCFlow will have a smaller
runtime when the complexity of MaxAggFlow balances
with that of MaxClusterFlow. Recall from Table 4 that
the former depends on the number of clusters whereas
the latter depends on the size of the largest cluster.

We empirically observe, based on experiments with many
WANs and different types of demands, that:

• On a graph with N nodes, about
√

N clusters, irrespective
of the clustering technique, leads to the best result, i.e.,
smallest runtime and fewest forwarding entries while
allocating nearly the largest amount of flow possible;
see Figure 13.

• When choosing the same number of clusters, one of the
three considered clustering techniques (described below)
generally performs better than the others but not in all
cases; see Figure 21.

Thus, the optimal clustering choice for a WAN is unclear;
it is possible that hand-tuning or using a learning technique
may lead to better-performing clusters. Nevertheless, any of
the three simple clustering schemes discussed below already
suffice for NCFlow to improve substantially over baselines.

We consider the following clustering choices because they
are simple and fast; unless otherwise noted, results in this
paper use FMPartitioning.

• FMPartitioning [18, 25] divides nodes into clusters so as
to maximize a “modularity” score which prefers more
edges to lie within than between clusters. In NCFlow, we

apply modularity-based clustering with edge weights set
to their capacity.

• Spectral clustering [53] computes eigenvectors of the
weighted adjacency matrix and chooses a desired number
of the top eigenvectors as cluster heads; each node is
assigned to the cluster of their closest eigenvector (e.g.,
using k-means).

• Leader Election picks a desired number of nodes at ran-
dom as leaders and assigns each other node to the closest
leader; wherein, distance is measured as the path length
using invcap edge weights.

Some other clustering techniques [5, 42, 65] can balance clus-
ter sizes or trade-off between concentration and balance but
are more complex computationally; it is possible that using
such schemes can further improve NCFlow.

Path choice in NCFlow: On the aggregated graph and on
each cluster graph, we pre-compute offline a small number of
paths between every pair of nodes. We consider the following
different path choices and pick paths that lead to the largest
flow allocation on historical demands:

• k-shortest paths [70] with edge weight of 1 or 1
ce

where
ce is the capacity of edge e and k = 4,8 or 16.

• As above, but with the additional requirement that the
paths for a node pair are edge-disjoint [52].

NCFlow also pre-computes offline (1) a pseudo-random
choice of which edges to use between a pair of connected
clusters in each iteration and (2) which path on the aggregated
graph to use for each cluster bundled demand in each iteration.

3.5 Setting up switch forwarding entries

NCFlow uses many fewer switch forwarding entries than prior
works due to the following reasons.

First, the paths along which NCFlow allocates flow can be
thought of as a sequence of pathlets [32, 47, 68] in each clus-
ter connected by crossing edges between clusters. Figures 9
and 10 illustrate such paths on the right. This observation is
crucial because a pathlet can be reused by multiple demands.
For example, in Figure 9, the flow from any source in the red
cluster to any target in the grey cluster would use the same
pathlets shown in the yellow, green, and blue clusters. Prior
work [35, 36], on the other hand, establishes paths for each
demand. Using pathlets has two advantages. The number of
pathlets used by NCFlow is about η times less than the number
of paths used by prior works2. Furthermore, a typical pathlet
has fewer hops than a typical end-to-end path. Thus, NCFlow
uses many fewer rules to encode paths in switches.

2More precisely, the number reduces from PN(N−1) to ∑x P(Nx)(Nx−1)
where P is the number of paths per node pair, the N nodes are divided into η

clusters, and cluster x has Nx nodes. If clusters are evenly sized, Nx = N/η,
and the ratio of these terms is ∼ η.
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Next, whenever NCFlow allocates flow at the granularity
of cluster bundles, all of the demands in a bundle take the
same paths and are split in the same way across paths. Hence,
NCFlow uses one traffic splitting rule for all demands in such
bundles. For instance, the demands from source s in the red
cluster in Figure 9 to any target in the grey cluster are split
with the same ratio across the same pathlets in all clusters
(except the grey cluster where they take different pathlets to
reach their different targets). Thus, with NCFlow, the number
of splitting rules at a source decreases by a factor of

√
N/23.

The paths and splitting rules to push into switch forwarding
tables are determined by the offline component of NCFlow
and only change occasionally. After each allocation, only the
splitting ratios change. More details on the data-plane of
NCFlow such as how to compute the total flow that can be
sent by each demand and the splitting ratios as well as how to
move packets from one pathlet to the next are in Appendix C.
In §5, we measure the numbers of rules used by NCFlow.

4 Implementing NCFlow

Our current prototype of NCFlow is about 5K lines of Python
code, which invokes Gurobi [33] v8.1.1 to solve all of the
optimization problems. For clustering WAN topologies, we
adapt [26] to find clusters that maximize modularity; we also
use our own implementation of NJW spectral clustering [53].
We use a grid search over the number of clusters (η) and
the above clustering techniques to identify the best perform-
ing choice for each topology on a set of historical traffic
matrices. To compare with state-of-the-art techniques, we
customize the public implementations of SMORE [44, 45]
and TEAVAR [19]. We have also implemented Fleischer’s
algorithm [27]; our implementation is about 10× faster than
public implementations [8, 37] since we carefully optimize
a key bottleneck in Fleischer’s algorithm. All of these code
artefacts are available on GitHub [2].

5 Evaluation

We evaluate NCFlow on several WAN topologies, traffic matri-
ces, and failure scenarios to answer the following questions:

• Compared to state-of-the-art LP solvers and approxi-
mate combinatorial algorithms, does NCFlow offer a
good trade-off between runtime and total flow alloca-
tion? Is it substantially faster, with only a small decrease
in total flow?

• For real-world TE scenarios, in which flow solvers must
adapt to changing demands and faults, how much benefit
does NCFlow offer relative to the state-of-art?

3A source uses N−1 splitting rules in prior works but with NCFlow only
requires Nx +η−2 rules when the source’s cluster has Nx nodes; if clusters
are evenly sized and η∼

√
N, the ratio of these terms is

√
N/2.

Topology # Nodes # Edges # Clusters

PrivateLarge ∼ 1000s ∼ 1000s 31
Kdl 754 1790 81
PrivateSmall ∼ 100s ∼ 1000s 42
Cogentco 197 486 42
UsCarrier 158 378 36
Colt 153 354 36
GtsCe 149 386 36
TataNld 145 372 36
DialtelecomCz 138 302 33
Ion 125 292 33
Deltacom 113 322 30
Interoute 110 294 20
Uninett2010 74 202 24

Table 5: Some of the WAN topologies used in our evaluation; see §5.1.

• How do our various design choices in NCFlow impact
its performance?

5.1 Methodology
Here, we describe our methodology—the topologies, traffic,
baselines, and metrics used in our evaluation.

Topologies: We use two real topologies from a large
enterprise—PrivateSmall is a production internet-facing WAN
with hundreds of sites, and PrivateLarge is a larger WAN
that contains many more sites. We also use several topolo-
gies from the Internet Topology Zoo [6] and reuse topolo-
gies used by prior works [19, 38]. Table 5 shows details
for some of the used topologies; note that the topologies
shown are 10× to 100× larger than those considered by prior
work [19, 35, 38, 44, 49].

Traffic Matrices (TMs): We benchmark NCFlow on traffic
traces from PrivateSmall, which contain the total traffic be-
tween node pairs at 5-minute intervals. We also generate the
following kinds of synthetic traffic matrices for all topologies:

• Poisson
(
λ,δ
)

models demands with varying concentra-
tion; the demand between nodes s and t is a Poisson
random variable with mean λδdst , where dst is the hop
length of the shortest path between s and t and δ ∈ [0,1)
is a decay factor. We choose δ close to 0 or to 1 to model
strongly and weakly concentrated demands, respectively.

• Gravity
(
v
)

[14, 60]: The total traffic leaving a node is
proportional to the total capacity on the node’s outgoing
links (parameterized by v); this traffic is divided among
other nodes proportional to the total capacity on their
incoming links.

• Uniform
(
[0,a)

)
: The traffic between any pair of nodes

is chosen uniformly at random, between 0 and a.
• Bimodal

(
[0,a), [b,c), p

)
[14]: A p fraction of the node

pairs, chosen uniformly at random, receive demands
from Uniform

(
[b,c)

)
while the rest receive demands

from Uniform
(
[0,a)

)
. We use p = 0.2.

For each above model, we select parameters such that fully
satisfying the traffic matrix leads to a maximum link utiliza-
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tion of about 10% in each topology. Then, we scale all entries
in the TM by a constant α∈ {1,2,4,8,16,32,64,128}. Doing
so creates demands that range from easily satisfiable to only
partially satisfiable; with α = 128, the satisfiable portion of
the demand varies between 25-70%. We generate five samples
for each traffic model and scale factor for each topology.

Baselines: We compare NCFlow with these techniques:

Path Formulation (PF4) solves the multi-commodity max-
flow problem shown in Equation 2 using k-shortest paths be-
tween node pairs where k = 4. Results for other path choices
are in §G.4.

PF Warm Start (PF4w) matches PF4 except that it allows the
LP solver to “warm start”; that is, over a sequence of traffic
matrices, the flow allocated to the previous TM is used as a
starting point to compute allocation for the next TM. When
traffic changes are small, warm start leads to faster solutions.

Approximate Combinatorial Algorithms: Fleischer’s algo-
rithm [27] is the best-known approximation for MaxFlow. We
use two variants: Fleischer-Path where flow is restricted to
a path set and Fleischer-Edge without any path restrictions.
We show results here for an approximation guarantee of 0.5;
that is, the techniques must achieve at least half of the optimal
flow allocation. Results for other approximation guarantee
values are in [10].

SMORE [44] allocates flow dynamically on paths that are pre-
computed using Räcke’s Randomized Routing Trees (RRTs).
We use the code from [45] to compute paths. Since the LP
in [45] requires demands to be fully satisfiable, we imple-
ment a variant, SMORE*, that maximizes the total flow on the
computed paths, regardless of demand satisfiability.

TEAVAR [3,19] models link failure probabilities and computes
flow allocations given an availability target. We implement
a variant, TEAVAR*, that maximizes the total flow4; further
details are in Appendix F.

Clusters, Paths, and # of Iterations: Table 5 shows the num-
ber of clusters used by NCFlow per topology. Here, we report
results on edge-disjoint paths, chosen using inverse capacity
as the edge length; results for other path choices are quali-
tatively similar (see §G.4). All schemes that use paths (i.e.,
PF4, Fleischer-Path, TEAVAR*, and NCFlow) use the same
method to compute paths. For each iteration up to I = 6, we
also pre-compute offline the path to use on the aggregated
graph, and the edge to use between connected clusters for
each cluster bundle.

Metrics: We compare the schemes on the following metrics:

• Relative total flow is the total flow achieved by a
scheme relative to PF4.

• Speedup ratio is the runtime of each scheme relative
to PF4. For LP-based methods, we report the Gurobi

4TEAVAR [3, 19] maximizes the concurrent flow; see Table 1
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Figure 11: CDFs comparing NCFlow with state-of-the-art methods. With
only a modest decrease in total flow, NCFlow offers a substantial runtime
speedup.
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Figure 12: Comparing the number of forwarding entries used by various
methods for the experiments from Figure 11.

solver runtimes, since models can be constructed once
offline in practice. For combinatorial methods, we report
algorithm execution time. All runtimes are measured on
an Intel Xeon 2.3GHz CPU (E52673v4) with 16 cores
and 112 GB of RAM.

• FIB Entries: We measure the number of switch forward-
ing entries used.

5.2 Comparing NCFlow to the State of the Art
Figures 11a and 11b show cumulative density functions
(CDFs) of the relative total flow and speedup ratio for NCFlow
and several baselines. These results consist of 2,600 traffic
matrices and 13 topologies. If a scheme matches the baseline
PF4, its CDF will be a pulse at x = 1 in both figures; the
fraction of cases to the left (or right) of x = 1 indicate how
often a scheme is worse (or better) than PF4. Note that the
x-axis for the speedup ratio is in log scale.

We see that SMORE*, shown using green dashed lines in
the figures, modestly improves the flow allocation (in 25% of
the cases) while almost always taking longer to run than PF4.
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Figure 13: NCFlow’s performance when using different numbers of clusters
on PrivateLarge. The speedup ratio is plotted on the right y-axis in log scale;
the other metrics use the left y-axis.

Both effects are because SMORE* allocates flow on Räcke’s
RRTs instead of k-shortest paths.

The edge and path variants of Fleischer’s, shown using
purple and red lines in the figures, perform similarly; since
they are approximate algorithms, they allocate less flow than
PF4 in roughly 50% of cases, but are also faster than PF4
in slightly less than 50% of cases. We conclude that these
approximate algorithms are not practically better than PF4.

In contrast, NCFlow, shown with dark blue lines in the fig-
ures, almost always allocates at least 80% of PF4’s total flow,
while achieving large speedups. In the median case, NCFlow
achieves 98% of the flow and is over 8× faster. These im-
provements accrue from NCFlow solving smaller optimization
problems than PF4.

Figures 18 and 19 tease apart the above results by load,
traffic type and topology. Figures 23–27 show results for alter-
nate path choices. Taken together, these results indicate that
NCFlow’s improvements hold across a variety of scenarios.

For the same experiments considered above, Figure 12
shows the number of switch forwarding entries used in dif-
ferent topologies. (A full set of results is in Table 6.) The
bottom plot is the total number of forwarding entries across
all switches, while the top shows the maximum for any switch.
Note that both the x and y axes are in log scale. NCFlow con-
sistently uses fewer forwarding entries; using NCFlow offers
a greater amount of relative savings than switching from all
edges to just a handful of paths per demand. The savings
from NCFlow also increase with topology size. The reason,
as noted in §3.5, is that NCFlow reuses pathlets and traffic
splitting rules for many different demands.

5.3 Effect of Design Choices

Figure 13 shows how NCFlow’s performance varies with the
numbers of clusters used on PrivateLarge. While NCFlow al-
locates roughly the same amount of total flow, using about
30 clusters improves runtime and reduces forwarding entries.
Figure 21 compares NCFlow’s performance when using dif-
ferent clustering techniques; more details are in §G.2.

Recall from §3.3 that NCFlow uses multiple iterations
of Figure 6. In the above experiments, the first iteration alone
accounts for 75% of the runtime and for roughly 90% of the
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Figure 14: Allocated flow and speedup relative to PF4 on a sequence of
production TMs from PrivateSmall. In half of the cases, NCFlow allocates at
least 98.5% of the flow and is at least 8.5× faster.

flow that is allocated by NCFlow. Later iterations are faster
perhaps because they have less traffic to consider.

Breaking down the runtime by the steps in Figure 6, we
see cases where MaxClusterFlow accounts for over 70% of
NCFlow’s runtime perhaps because the largest cluster contains
a large fraction of the nodes. Better cluster choice or recur-
sively dividing the largest clusters can further lower runtime.

5.4 NCFlow on Real-World Traffic
Here, we experiment with a sequence of traffic traces collected
on the PrivateSmall WAN. Figure 14 plots the moving average
(over 5 windows) of the total flow and speedup relative to PF4
for two schemes—NCFlow in blue and PF4w in light blue. The
figure shows that PF4w’s warm start yields a median speedup
of 1.66×. NCFlow achieves a consistently higher speedup
(8.5× in the median case), and the flow allocation is nearly
optimal: the median total relative flow is 98.5%, and NCFlow
always allocates more than 93%.

5.5 Tracking Changing Demands
Here, we evaluate the impact of a technique’s runtime on its
ability to stay on track with changing demands. Specifically,
on the PrivateLarge topology, we use a time-series of traffic
matrices, wherein a new TM arrives every five minutes and
the change from one TM to the next is consistent with the
findings in Figure 4 (more details are in Figure 20). At each
time-step, all techniques have the opportunity to compute a
new allocation for the current TM or to continue computing
the allocation for an earlier TM if they have not yet finished;
in the latter case, their most recently computed allocation will
be used for the current TM. For example, a technique that
requires five minutes to compute a new allocation will be
always one window behind, i.e., each TM will receive the
allocation that was computed for the previous TM.

Figure 15 shows the fraction of demand that is satisfied
by three different schemes; we also show the value for an
instantaneous scheme which is not penalized for its runtime.
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Figure 15: When demands change, how solver runtimes affect flow allocation
on PrivateLarge: Due to the slow runtime, PF4 and PF4w carry only 62%
of the traffic that can be satisfied by Instant PF4, a (hypothetical) scheme
which has zero runtime. NCFlow carries 87% of the traffic since its faster
runtime compensates for its sub-optimality.

PF4’s average runtime here is over 15 minutes; hence, as
the orange dashed line shows, PF4 is able to compute a new
allocation only for every third or fourth TM. This leads to
substantial demand being unsatisfied: for node pairs whose
current demand is larger than before, PF4 will not allocate
enough flow. On the other hand, node pairs whose current
demand is less than their earlier demand will be unable to
fully use PF4’s allocation. As the figure shows, PF4 only
satisfies 53% of the changing demand on average, whereas
Instant PF4 satisfies 87% of the demand.

PF4w (the dash-dot light blue line), where the solver warm
starts using the previous allocation, is modestly faster than
PF4 on average. As the figure shows, the average demand
satisfied by PF4w is only slightly larger than PF4 (about 54%).

In contrast, NCFlow (the solid dark blue line) finishes well
within five minutes which allows allocations to change along
with the changing demands. We find that on average NCFlow
satisfies 75% of the demands; its smaller runtime more than
makes up for sub-optimality, allowing NCFlow to carry more
flow than PF4 when demands change.

5.6 Handling Failures with NCFlow

Here, we evaluate the effect of link failures. As we note in §F,
TEAVAR* did not finish within several days on any of the
topologies listed in Table 5 because when all possible 2-link
failure scenarios are considered, the number of equations and
variables in the optimization problem increase from O(N2)
for MaxFlow to O(M2N2) for TEAVAR [19], where N and
M are the numbers of nodes and edges, respectively. Hence,
we report results on the 12-node, 38-edge WAN topology
from B4 [38]. We generate synthetic traffic matrices as noted
in §5.1. Using link failure probabilities from TEAVAR [3], we
generate several hundred failure scenarios and, for each TM,
we measure the flow carried by NCFlow and TEAVAR* before
the fault, immediately after the fault, and after recovery.

A key difference in fault recovery between NCFlow and
TEAVAR* is that TEAVAR* requires sources to rebalance the
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Figure 16: Comparing failure response of NCFlow with prior work.

traffic splits when a failure happens; doing so takes about one
RTT on the WAN. Given a parameter β, TEAVAR* guarantees
that there will be no flow loss after the tunnels re-balance
with a probability of 1−β. See §F for more details. We use
β= 0.99, as recommended in [19]. NCFlow, on the other hand,
recomputes flow allocations taking into account the links that
have failed; doing so takes one execution of NCFlow and some
RTTs to change the traffic splits at switches; more details are
in §E. Figure 16c shows that the recomputation time is well
within one RTT on the WAN.

Figure 16b shows a timelapse of the flow carried on the
network before the fault, immediately after the fault, and after
recovery. As the figure shows, TEAVAR* can have a smaller
loss and for a shorter duration; i.e., until sources rebalance
traffic while NCFlow can carry more flow before fault and
after recovery; moreover, the fast solver time can reduce the
duration of loss.

Figure 16a shows CDFs over many faults and traffic ma-
trices for NCFlow and TEAVAR*. We record the flow loss at
three stages: before the fault, immediately after the fault, and
after recovery. As the figure shows, NCFlow’s ability to carry
more flow before the fault and after recovery more than com-
pensates for the slightly larger loss it may accrue in between.

6 Discussion

Extending beyond MaxFlow: FeasibleFlow is a common con-
straint for many objectives beyond MaxFlow (see Table 1).
Since the algorithm in §3.1 and the heuristic in §3.2 guarantee
feasibility, NCFlow can apply to objectives beyond MaxFlow;
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however, we believe that more work is needed to improve the
solution quality for different objectives.

Optimality guarantee: In §I, we show that constraining by
clusters and paths, as done by NCFlow, does not necessar-
ily reduce the flow allocation; that is, nearly the maximum
amount of flow can be carried while respecting clustering and
path constraints. This is promising because a better heuristic
(than Figure 6) may allocate more flow without losing the
benefits of solving smaller per-cluster problems. Furthermore,
although NCFlow achieves sizable speedups by using simple
clustering methods, the optimal cluster choice is uncertain;
we show examples in §H to illustrate the challenges.

Recursive (or multiple levels of) clusters: For large topolo-
gies or when the largest cluster has a disproportionate number
of nodes, we can further divide a cluster into sub-clusters.
Doing so is an extension of the algorithm in Figure 6 where,
in the iterative step, the MaxClusterFlow problem at a cluster
is replaced with a new instance of all of the steps in Fig-
ure 6 along with the additional constraints that arise from the
current level (e.g., NoMoreFlowThruCluster constraints). We
leave further details to future work.

7 Related Work

NCFlow builds upon a few themes in prior work. We dis-
cuss and evaluate against some prior works already. To recap:
(1) Some large enterprises use path-based global optimiza-
tion problems similar to MaxFlow to manage traffic on their
WANs [35, 36, 38]. We saw in §5 that doing so does not
scale to the WAN topologies of today or the future, which
consist of thousands of sites; (2) We saw that approximate
algorithms for multi-commodity max flow, such as [27], re-
quire a large number of switch forwarding entries since they
can send flow along any edge. Also, NCFlow allocates more
flow and is faster compared to path-based versions of these
algorithms. (3) Probabilistic fault protection schemes such as
TEAVAR [19] take infeasibly long to run on large topologies
when considering multiple link failures; they also allocate less
flow to reserve capacity to deal with possible failures. Other
oblivious techniques [13,14,19,44,49,66] have a similar trade-
off. Quickly recomputing using NCFlow trades off slightly
more loss after a fault to carry much more traffic before the
fault and after recomputation; hence, we believe that NCFlow
is better suited to enterprise WANs, which target very high
link utilization and have traffic that is elastic to short-term
loss (e.g., scavenger-class traffic, such as replicating large
datasets [35, 38, 49]). Here, we discuss other related work.

TE on WANs: Typically, a WAN node is not a single switch,
but rather a group of switches connected in a specific way
such as a full mesh. Similarly, a WAN edge is a systematic
collection of links between many switches. [36] discusses
how to hide the intra-node connectivity from the global TE
solution. NCFlow complements this technique; it can use a

similar intra-node scheme and can support WANs that are
10× larger than were considered in [36]. The specific con-
traction used by NCFlow—node clusters with large capacity
and/or demand between themselves—also differs from the
contractions used in route planning [4, 9, 15]. Some BGP-
based TE schemes [24, 62, 69], which address how best to
move traffic between different (BGP) domains, are also com-
plementary to NCFlow which considers the WAN of a single
enterprise (domain). Other TE schemes use different proto-
cols, such as OSPF, or work over longer timescales (e.g., hours
to days) [29, 39, 46, 51].

Multi-Commodity Flow Solutions: Both the edge- and path-
based LP formulations are well-studied [16, 67]. Some works
consider the case of a single commodity, i.e., one source and
target, and do not directly extend to the case of multiple com-
modities [34,48,55]. The best-known approximate algorithms
for multi-commodity flow problems incrementally allocate
flow on the shortest path and increase the length of all edges
on that path [17, 27, 30, 41]. For the problem sizes considered
here, LP solvers such as Gurobi are faster in practice, perhaps
because they take larger steps towards the optimal allocation.
A few works customize LP solvers to improve performance
on flow problems [23, 50]. NCFlow is agnostic to the solver
used and can use any solver for the sub-problems in Figure 6.

Decompositions: Using standard decomposition techniques
for large optimization problems, such as Dantzig-Wolfe and
Benders [16,20], for multi-commodity flow problems has lead
to inconclusive results [31,54]; i.e., not consistently faster than
MaxFlow. NCFlow can be thought of as a problem-specific de-
composition that leverages the observation that both capacity
and demands are concentrated in today’s WANs.

8 Conclusion

We present a fast and practical solution for allocating flow
on large WANs. We leverage the concentrated nature of de-
mands and topologies to divide nodes into clusters and solve
sub-problems per cluster and on the aggregated graph. Our
heuristics guarantee feasibility and empirically achieve close-
to-optimal flow allocations. By reusing pathlets and splitting
rules across demands, we require fewer forwarding entries in
switches. Empirically, on topologies that are over 10× larger
than were considered in prior work and many traffic matrices,
our solution NCFlow is 8.2× faster than the state of the art,
while allocating 98.8% of the total flow and using 6× fewer
forwarding entries in the median case. We demonstrate that
NCFlow offers sizable benefits when tracking changing de-
mands and reacting to failures. As enterprise WANs continue
to grow, we believe techniques such as NCFlow can enable
improved traffic orchestration and higher link utilization.
Acknowledgements: We thank Himanshu Raj, Umesh Kr-
ishnaswamy, Dejan Kostic, Jakub Tarnawski and the NSDI
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MaxAggFlow MaxClusterFlow’s
(green)(yellow)

Figure 17: Considering the crossing edges between the yellow and green
clusters from Figure 2; MaxAggFlow has a single bundle; the yellow and
green instances of MaxClusterFlow have one bundle for each incident node
in their cluster.

A More Discussion

NCFlow is agnostic to the underlying solver used for the
problems in Figure 6 and can benefit from future improve-
ments to LP solvers and approximate methods [27, 30, 41].

Further use cases: Beyond serving as a drop-in replace-
ment for today’s production WAN traffic controllers, NCFlow
can be used whenever fast and close-to-optimal solutions
are desirable such as: when allocating flow for future time-
steps [39, 40] or to compare topology changes [1, 22] or to
accelerate the training of ML-based routing systems [64].

B Properties of NCFlow’s flow allocation algo-
rithm

B.1 Proof that the algorithm in §3.1 meets de-
mand and capacity constraints

Satisfying demand constraints: Demands whose source
and target are in the same cluster are considered by only one
instance of MaxClusterFlow; hence, they do not receive more
flow than their demands. Specifically, MaxClusterFlow in Fig-
ure 6 invokes MaxFlow which in turn imposes the demand
constraints listed in FeasibleFlow; Equation 1.

Demands whose source and target are in different clusters
receive no more flow than their demand due to SrcTarget-
Max; observe in Figure 6 that one of the four constraints in
SrcTargetMax explicitly controls the flow for such demands.

Satisfying edge capacity constraints: We say an edge is
local to a cluster if both its incident nodes are within the
same cluster. Flow is assigned to a local edge only by the
MaxClusterFlow instance of the cluster that contains that edge.
Since MaxClusterFlow ultimately invokes FeasibleFlow; by
Equation 1 a local edge is allocated no more than its capacity.

Edges that are not local receive flow allocation in MaxAg-
gFlow where, as noted in §3.1, all of the edges that lie between
a pair of clusters are treated as a single edge whose capacity
equals the sum of the capacity of the underlying edges. Thus,
the flow assigned to a bundle of edges by MaxAggFlow is no
more than the total capacity of the edges in the bundle. Sub-
sequently, MaxClusterFlow instances behave similarly; that
is, the flow allocated for a bundle of edges is no more than
the capacity of that bundle. For example, Figure 17 shows the
four edges between the yellow and green clusters in Figure 2
as well as the bundles considered by MaxAggFlow (in the
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middle) and the two instances of MaxClusterFlow correspond-
ing to the yellow and green clusters on the right. The later
steps in Figure 6 do not increase flow and so we conclude that
capacity constraints are satisfiable for all non-local edges.

B.2 Proof that the heuristic in §3.2 leads to
feasible flow allocations

Here, we prove Theorem 1. First, note that the heuristic in §3.2
which only restricts the edges between clusters and paths on
the aggregate graph that can be used by some demands does
not affect the proof in §B.1; that is, edges still receive flow
less than their capacity and demand constraints hold.

We now prove that the heuristic will satisfy flow conser-
vation; that is, at any node in the network, for any demand
which neither originates nor ends at this node, the net flow is
zero, i.e., incoming flow to the node equals the flow leaving
that node.

It is easy to see that flow conservation holds for demands
whose source and target are in the same cluster even without
the heuristic in §3.2 because: (1) Only the instance of Max-
ClusterFlow for that cluster assigns flow to such a demand. (2)
Since MaxClusterFlow invokes FeasibleFlow in Equation 1,
the flow is allocated along paths which start and end at the
source and target of that demand respectively. (3) Thus, every
node that is neither the source or target will have incoming
flow equal to the outgoing flow.

We now consider the remaining demands, that is, whose
source and target are in different clusters.

It is easy to see that for such demands, flow conservation
holds at all nodes that do not have edges to or from other clus-
ters by logic that is similar to the above. The MaxClusterFlow
instance of the cluster containing such a node would allocate
flow to some bundle of demands on paths in this cluster that
neither start nor end at such a node.

The only case left is nodes which have edges to and from
other clusters. Suppose by contradiction that some demand
k violates flow conservation at such a node u. The heuristic
in §3.2 allocates flow for demand k along only one path in the
aggregated graph and on only one edge between connected
clusters. If the cluster containing u is not on the chosen path
or none of the chosen edges are incident on u, then the net
flow allocated for k over all edges incident on u will be zero.
Let e be that one chosen crossing edge incident on u which
can receive non-zero flow for demand k. Observe that all of
the other demands whose source and target are in the same
clusters as k would also be allocated flow on the same path
and edges as k. Thus, all the flow allocated for these demands
entering or leaving node u as the case may be would be on
edge e. Two instances of MaxClusterFlow, one corresponding
to the cluster that contains u and another corresponding to
the other side of edge e, will assign possibly different flow
values for this bundle of demands on edge e. To conclude our
proof, note that MinPathE2E takes the minimum flow assigned

along all such crossing edges e on the chosen path through the
aggregated graph and that SrcTargetMax further breaks open
the bundle to assign feasible flow for each actual demand
contained in the bundle.

If more than one crossing edge or more than one path
on the aggregate graph are used for a demand, it is easy to
see how the above proof will break. The two instances of
MaxClusterFlow that correspond to the clusters on either side
of a crossing edge will be forced by MinPathE2E to only agree
on the total volume for the cluster bundle of demands for all
edges between the pair of clusters; that is, these instances may
allocate different flow on different edges or allocate different
flow to individual demands in the bundle. Figure 8 shows
simple examples of such disagreement.

B.3 Proof of optimality for algorithm in §3.1
given some sufficient conditions

Here, we prove Theorem 2. We already discussed in §3.3 the
case where the number of clusters, η, is 1 or N, the number of
nodes in the graph. To prove optimality for the other sufficient
conditions, we posit a helper theorem.

Theorem 3. Given a set of paths P that can be used by flows,
there exists a clustering of nodes into clusters such that any
flow allocated on a set of paths P can also be allocated by
the method in Figure 6 over those clusters.

Proof. The claim is trivially true by using N clusters, where
each node is in a cluster by itself. We show that it is possible to
use fewer clusters next. Let S be a set of nodes such that every
path in P contains at most one contiguous sequence of the
nodes in S . For example, the set {u,v} satisfies this property
if every path in P has neither u nor v, just u but not v (no
repetitions allowed), just v but not u, u→ v (no repetitions of
u or v anywhere else in the path) or v→ u. Coalescing each
such set S into a cluster would allow the method in Figure 6 to
allocate the same flow as MaxFlow using the paths in P .

If Gagg is a tree and there is at most one edge between any
pair of clusters, any set of paths P on the actual graph would
consist of contiguous segments that are contained within
each cluster. Thus, per the above theorem, any flow allocated
by MaxEdgeFlow (Equation 6) can also be allocated by the
method in Figure 6. The only difference then between the
global optimization and the method in Figure 6 is that whereas
the former is a single optimization call, the latter is a sequence
of optimizations. Since demands are satisfiable, however, all
of the steps in Figure 6 will allocate the entirety of demand
and hence will allocate the maximum amount of flow.

Note, in particular, that for the sufficient conditions listed
in Theorem 2 a single iteration of the steps in Figure 6 suffice.

In §H, we show some counter-examples where NCFlow can
lead to sub-optimal allocations when any of these sufficient
conditions do not hold.
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C Data-plane details for NCFlow

C.1 Actions at the NCFlow controller, after
each allocation

The SDN controller for NCFlow computes total flow per de-
mand and some splitting ratios after each allocation.

Total Flow: The flow assigned to a demand whose source
and target are in different clusters is read off SrcTargetMax,
i.e., f4,k. For intra-cluster demands, their flow is read off Max-
ClusterFlow, i.e., f x

2,k at the cluster x that contains the source
and target of demand k. These flow values are summed up
over all the iterations used by NCFlow.

Splitting ratios at sources: At source s of cluster x, we have
two cases depending on whether the target of the demand is
within the cluster x or in some other cluster y.

For the former case, let Pst be the path set to target t for
demand k; the splitting ratio for each path p in the set is
f x,p
2,k summed up over all iterations, divided by the total flow

assigned to demand k above. Here, f x,p
2,k is the flow assigned

to demand k on path p by the MaxClusterFlow instance for
cluster x.

For the latter case, let zi be the next cluster on the one path
that can receive flow in iteration i for all traffic going to targets
in cluster y. The splitting ratio for path p in the path set

⋃
i Pszi

is the value of ∑r∈Ksy f x,p
2,r summed up over all iterations where

Ksy is the set of all demands from source s to targets in cluster
y divided by the total value for all such paths.

Uniquely, note that each source s has a splitting ratio per
target t within the same cluster or per target cluster y.

We call a subset of nodes as ingresses if they have at least
one edge to a node in another cluster that is chosen by the
offline component of NCFlow in §3.4 as a crossing edge

Splitting ratios at ingresses are computed in a similar way
to the splitting ratios at sources. At each ingress node w of
cluster y for traffic from cluster x, there are two cases depend-
ing on whether the target is some node t in the same cluster
as the ingress (y) or in some other cluster z.

For the former case, in iteration i, the splitting ratio for path
p in the set Pwt is the value of ∑r∈Kxt f y,p

2,r in iteration i divided
by the total over all such paths. As above, Kxt is the set of
demands from sources in cluster x to target t.

For the latter case, in iteration i, let zi be the next cluster on
the path to targets in z; the splitting ratio for path p in the set
Pwzi is the value of ∑r∈Kxz f y,p

2,r divided by the total value over
all such paths. As above, Kxz is the set of all demands from
sources in cluster x to targets in cluster z.

Note that an ingress node w has splitting ratios only for
demands whose chosen path at an iteration contains w’s clus-
ter (y) and whose chosen edge enters y at w.

C.2 Details on switch forwarding entries
Pathlets: NCFlow sets up label-switched paths (LSPs) be-
tween each pair of nodes in each cluster. Which paths to setup
is pre-determined by the offline component in §3.4.

Splitting rules: A source s in cluster x has a splitting rule for
each other node in the same cluster and for each other cluster.
The splitting ratios are as computed in §C.1.

In each iteration, at each cluster, at most one ingress node is
active per pair of other clusters. This is because the bundle of
demands for a given pair of clusters has at most one crossing
edge entering a cluster.

The active ingress node at a cluster x for the bundle of
demands from cluster y to cluster z has one splitting rule
when z 6= x and one splitting rule per target in cluster x when
z = x.

Packet content: The LSP (which pathlet to use) is encoded
in the L2 header [59]. Additionally, NCFlow has the following
tuple in each packet: (x,y, i,e) where x and y are the source
and target cluster ids, i is the iteration number of the flow
allocation that the packets have been assigned to and e is
the edge to leave the current cluster on. The bits needed are
2lnη+ ln I + lnnode degree.5 We note that 16 bits of header
space suffice for all the WAN topologies and experiments con-
sidered in this paper; that is η≤ 64 clusters, I ≤ 8 iterations
and up to 2 edges to nodes in other clusters being used per
egress node by NCFlow.

Data path actions:

• At source s in cluster x:

– The host or middleware adds the cluster-ids x and
y into the packet.

– Source switch uses the appropriate splitting rule to
pick a (p, i,e) tuple; the values e and i are placed
in the packet and the L2 header gets the identifier
for path p. To avoid reordering packets in the same
TCP flow, traffic can be split using flow hashes or
flowlets [61].

• Each cluster egress removes e from the packet header
and forwards packets to the next-hop of the edge e.

• Each cluster ingress uses the appropriate splitting rule
to pick a (p,e) tuple; the value e is put into the packet
header and p determines the identifier in the L2 header.

D Definitions of NoMoreFlow

In the flow vector computed by MaxClusterFlow at a cluster
x, fx

2, we use the subscript k to denote a bundle that may
include (1) transit demands through cluster x (i.e., from all
sources in some other cluster w to targets in some other cluster
z), (2) leaving demands (i.e., from a source in cluster x to

5The edge id must suffice to distinguish at an egress node between the
edges to a particular next cluster; so node degree is an overestimate.
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all targets in some other cluster z) or (3) entering demands
(i.e., to a target in cluster x from all sources in some other
cluster z). Furthermore, we use the subscript yout to denote
the flow allocated for the bundle k on paths to the virtual node
that corresponds to the cluster y. Thus, f x

2,k,yout
is the flow

allocated at cluster x for all demands in the per-cluster bundle
k on paths to the virtual node corresponding to a neighboring
cluster y.

With this background, Equation 3 ensures that the flows
allocated in MinPathE2E for an inter-cluster bundle K in Dagg
on all paths in Pagg that contain a cluster edge (x,y) is no
more than the flow that is allocated at either cluster x or cluster
y for their respective per-cluster bundles that are contained in
K to and from each other respectively.

NoMoreAlongPaths(f, f2), ∀K ∈Dagg, ∀x,y ∈ Vagg,x 6= y,

∑
p∈Pagg ,(x,y)∈p

f p
K ≤min

(
∑
k∈K

f x
2,k,yout , ∑

k′∈K
f y
2,k′,xin

)
(3)

Equation 4 is logically similar to Equation 3 except that
the constraints are specific to a cluster x and the constants and
variables have been flipped; that is, here, the flows on the paths
in the aggregate graph are given ( f p

1,K) and the flow on paths
within the cluster are to be computed by MaxClusterFlow. In
particular, note that ∑p′∈Px,∗yout

f p′
k , f x

2,k,yout
; that is, the

flow assigned in MaxClusterFlow of cluster x on all paths
leading to the virtual node corresponding to a neighbor cluster
y is precisely the value on the right that is used above in
Equation 3.

NoMoreFlowThruCluster(f, f1,x), ∀K ∈Dagg, ∀y ∈ Vagg : y 6= x,

∑
p∈Pagg:(y,x)∈p

f p
1,K ≥ ∑

k∈K, p′∈Px,yin∗
f p′
k , and

∑
p∈Pagg:(x,y)∈p

f p
1,K ≥ ∑

k∈K, p′∈Px,∗yout

f p′
k (4)

E Fault Model

When failures happen, prior works [19, 49] assume that the
sources of the label switched paths (LSPs) will proportionally
shift traffic. That is, a source that splits traffic in the ratio of
(0.3,0.5,0.2) between three paths will change to a splitting
ratio of (0.6,0,0.4) when the middle LSP fails. Doing so can
cause congestion on either of the remaining LSPs.

The key idea in prior works [19, 49] is to proactively al-
locate flow such that the maximal load on any link remains
under capacity—FFC [49] protects against up to k simulta-
neous link failures, whereas TEAVAR [19] ensures that the
flow at risk is below a given fraction (e.g., 99.9% of flow can
be carried by the network on average over all possible failure
scenarios).

The cost of such congestion protection is two-fold: (1)
proactive schemes substantially increase the solution runtime,
and (2) they under-allocate flow, since capacity must be set
aside to help with possible failures. Instead, NCFlow uses
a reactive strategy, and recomputes a new flow allocation
after the fault occurs. This enables NCFlow to carry more
flow before the fault, and potentially carry more flow after
recovery. Furthermore, since NCFlow uses fewer FIB entries
for the same number of paths, it is naturally easier to spread
flow onto more paths with NCFlow. Thus, the key trade-off is
slightly longer and more lossy episodes immediately after a
fault when using NCFlow versus longer solver runtimes and
flow under-allocation with proactive schemes [19, 49].

F Benchmarking TEAVAR and TEAVAR*

F.1 Formulation for TEAVAR*

Here, we discuss our adaptation of TEAVAR to maximize
total multi-commodity flow. The TEAVAR [19] paper consid-
ers a different objective – maximizing the concurrent multi-
commodity flow (see Table 2). When all demands are satisfi-
able, both objectives allocate the same flow; however, when
not enough capacity is available to meet the desired failure
assurance, maximizing total flow leads to a strictly larger
allocation. We describe TEAVAR* from first principles here.

In addition to the inputs of MaxFlow (see Equation 2),
TEAVAR* has the following inputs:

• A value β ∈ [0,1]; larger values of β correspond to
greater fault assurance.

• A set of fault scenarios, S ; each scenario i has a proba-
bility of occurrence βi and a set of failed edges Ei.

In a fault scenario i, the edges in Ei will fail and so the
flow allocated to paths that contain any edge in Ei will be
lost. The number of possible fault scenarios is exponential
in the number of edges in the network. Thus, to keep the
optimization tractable, we consider only a subset of scenarios.

Let L(i) denote the total flow lost in fault scenario i.
Per Proposition 8 in [58], minimizing the potential func-
tion, α + 1

1−β
E[Li −α]+, would minimize the conditional

value at risk. Here, the expectation is over all possible fault
scenarios. Since we only consider a subset of fault sce-
narios to keep optimization tractable, we minimize: α +

1
1−β

(∑i∈S βi[Li−α]++(1−∑i∈S βi)(1−α)) . The last term
accounts for the unconsidered scenarios for which we must
assume the worst possible loss. Note that we can simplify this
expression by dropping the constant 1−∑i∈S βi

1−β
.
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TEAVAR*(V ,E ,D,P ,β,S) (5)

,argminf

(
α+ 1

1−β
(∑i∈S βiExcessi− (1−∑i∈S βi)α)

)
s.t. f ∈ FeasibleFlow(V ,E ,D,P ), (Eqn. 1)

Li,k ≥ 0, ∀i,k (loss is non-negative)

Li,k ≥ dk− ∑
p∈Pk

f p
k Activep,i, ∀i,k (loss)

α≥ 0 (loss cutoff)

Excessi ≥ 0 ∀i (excess loss in scenario i)

Excessi ≥ ∑
k∈D

Li,k−α, ∀i (excess loss)

The formulation for TEAVAR* is in Equation 5. Recall that
f p
k is the flow assigned to demand k on path p. Activep,i is an

indicator denoting whether path p is active in fault scenario
i. Thus, the allocation for demand k in scenario i will be
∑p∈Pk

f p
k Activep,i. When the allocation is below the required

volume dk, the demand will suffer loss; we use Li,k to denote
the flow loss for demand k in scenario i.

The flow allocation resulting from the above formulation
cannot be promised to the demands; in particular, more flow
will be assigned on some paths to account for possible failures
on other paths. After solving the above LP, we compute the
flow allocation for a demand k as follows: (1) sort the per-
scenario losses Li,k in ascending order; (2) starting at index
0, add up the probability of each scenario until the running
sum is at least β—let iβ be the unique crossing index; (3) Set
demand k’s flow to be dk−Liβ,k, the demand minus the loss
at the crossing index.

Choosing the fault scenarios to use in TEAVAR*:

• Intuitively, achieving a greater amount of fault assurance
requires considering more fault scenarios. Specifically, if
the total probability of considered scenarios is below β,
the above LP as well as the LP used by TEAVAR become
unbounded. To see why, the coefficient of α in Eqn. 5
is (∑i∈S βi)−β

1−β
. If the probability of considered scenarios

is less than β, this coefficient becomes negative, and the
objective value reaches −∞ by setting α to ∞.

• Intuitively, if the total probability of considered scenarios
is just larger than β, the flow allocated to demands is very
small. To see why, the smaller the value of ∑i∈S βi−β,
the smaller the positive coefficient of α in the objective
of Eqn 5. Thus, the solution of Eqn 5 will have a large
value of α and a very small amount of allocatable flow.

• In light of these two points, in our experiments, we
choose all scenarios that are individually more likely
to occur than a cutoff ρ and multiplicatively reduce ρ un-
til the total probability of considered scenarios exceeds
1− 1−β

2 .
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Figure 18: Breaking down the NCFlow results from Figure 11b into four
separate CDFs based on relative total flow.

F.2 Comments on benchmarking TEAVAR
Observe that the number of scenarios affects the complexity
of the TEAVAR* optimization; specifically, the number of
equations and variables increases by |S | ∗ |P |. The path set is
at least as large as the node pairs, i.e., |P |> N2 where N is the
number of nodes. The appropriate choice of fault scenarios
to consider, as discussed above, depends on the size of the
topology, the failure probability of edges, and the required
assurance level β. Suppose one considers all 2-edge failure
scenarios; then |S | ∼ M2 where M is the number of edges.
Hence, the increase in equations and variables exceeds N2M2.
Note that MaxFlow is substantially simpler, having at most
O(N2) variables and constraints (Equation 1).

On the topologies listed in Table 5, our implementation of
TEAVAR* never ran to completion even after several days. We
ran with β = 0.99 and link failure probability set to 0.004;
both of these are the default values used in [3]. The reason
is that the optimization problem becomes intractably large.
TEAVAR behaves similarly [19]. We conclude that probabilis-
tic fault protection using this methodology is infeasible on
large topologies and for non-trivial fault assurance levels such
as when considering multiple link failures.

We also note that we are unable to simultaneously achieve
the solution quality and the runtimes that are reported in
TEAVAR [19] using their code [3]. Specifically, achieving the
assurance levels reported in their experiments requires many
scenarios to be considered. The runtimes reported in [19]
appear to have been measured when considering only single
link failures.

G Additional Experiments

G.1 Breakdown of NCFlow’s Performance
To further understand the performance of NCFlow, Figure 18
breaks down the results in Figure 11 into four ranges based
on total relative flow. We plot CDFs of the speedup ratio per
range. The solid blue and green dashed line, which correspond
to relative flow above 0.99 and in [0.8,0.99) respectively, ac-
count for 49% and 46% of all experiments. The figure shows
that NCFlow achieves sizable speedups while allocating large
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Topology Edge-Based Räcke KSP NCFlow

Total # FIB Entries

PrivateLarge 945,038,502 52,515,090 22,483,244 1,694,027
Kdl 427,524,786 76,794,001 30,199,751 1,876,289
PrivateSmall 7,684,182 1,232,866 625,282 139,346
Cogentco 7,567,952 2,054,323 915,207 139,862
UsCarrier 3,894,542 1,520,821 510,894 82,301
Colt 3,534,912 1,048,779 346,905 67,307
GtsCe 3,263,696 1,077,350 535,135 101,368
TataNld 3,006,720 1,062,629 540,088 93,179
DialtelecomCz 2,590,122 1,427,780 529,663 83,128
Ion 1,922,000 886,414 418,362 71,614
Deltacom 1,417,472 459,159 246,811 53,948
Interoute 1,306,910 483,960 249,979 32,193
Uninett2010 394,346 133,742 57,428 21,185

Maximum # FIB Entries

PrivateLarge 962,361 828,397 313,850 18,124
Kdl 567,009 576,274 309,575 16,926
PrivateSmall 38,809 49,663 21,796 3,639
Cogentco 38,416 60,676 30,601 3,144
UsCarrier 24,649 41,897 17,822 2,234
Colt 23,104 47,077 17,344 3,572
GtsCe 21,904 36,070 15,477 2,748
TataNld 20,736 24,776 13,179 2,104
DialtelecomCz 18,769 34,014 11,084 1,393
Ion 15,376 25,261 12,954 1,387
Deltacom 12,544 25,135 13,029 1,737
Interoute 11,881 14,182 8,346 710
Uninett2010 5,329 8,891 3,626 868

Table 6: Number of FIB entries for NCFlow vs. edge-based formulations
(e.g., Fleischer-Edge), path-based formulations using Räcke Randomized
Routing Trees (SMORE*), and path-based formulations using k-shortest paths
(PF4, Fleischer-Path, TEAVAR*) on every topology.

amounts of flow.
Figure 19 further breaks down the aggregate results

from Figure 11 across various aspects of interest. In the
two left-most columns, we break down the results by differ-
ent settings of α, which illustrates how NCFlow performs on
both under-subscribed (α = {1,8}) and over-subscribed (α =
{32,64,128}) traffic matrices. In the former case, NCFlow
is typically able to fully satisfy the TM’s requested demand,
thereby matching the total flow allocated by the other methods.
At the same time, NCFlow is strictly faster on all TMs, except
for those belonging to smaller topologies (e.g., Uninett2010),
which we discuss later on. As α increases, so, too, does
NCFlow’s runtime advantage; however, this does come at the
cost of the total flow allocated. For example, when α = 32,
we see many instances where NCFlow is > 100× faster than
PF4, but allocates 75% of PF4’s total flow in the worst case.
This effect becomes more evident for the largest settings of
α: here, the speedups are > 1000×, but more flow is sacri-
ficed for some TMs. This behavior occurs perhaps because, as
the traffic volume increases and the topology becomes more
congested, paths that are not allowed by NCFlow’s scheme
become more critical for maximizing the total flow.

In the middle two columns, we break down the results by
traffic model. NCFlow tends to perform best when demands
are highly concentrated within clusters. In the bottom middle
plot (Poisson, δ→ 0), we see that NCFlow allocates > 90%
of PF4’s total flow for almost every TM, while still achieving
speedups > 100×. Recall that as δ→ 0 in the Poisson traffic

model, the traffic volume between clusters decreases, thus
generating concentrated demands. In contrast, when δ→ 1,
demands are less concentrated, which leads to worse perfor-
mance for NCFlow in terms of total flow, but not in terms of
runtime.

Finally, in the two right-most columns, we break down the
results by topology size. On Uninett2010, the smallest topol-
ogy in our evaluation set, NCFlow’s trade-off between total
flow and runtime is not much better than the other baselines,
particularly Fleischer-Edge.

As the topology size increases, NCFlow’s advantage be-
comes more apparent. On Colt, NCFlow offers faster runtimes
and sacrifices little flow, no more than 10% less than PF4.
On PrivateSmall and Kdl, NCFlow’s speedup increases even
more: > 100× faster than PF4 on the majority of cases on
Kdl. But flow is sacrificed, particularly for large values of
α. However, NCFlow’s trade-off is still favorable compared
to other methods: for Kdl, we see multiple instances where
NCFlow achieves 1,000× speedups at only a 20% reduction
in flow. For PrivateLarge, we see both the biggest speedups
and the smallest fraction of total flow relative to PF4. As
previously discussed, the outlier coincides with a highly over-
subscribed TM (α = 128). When we move to other regimes
on PrivateLarge, NCFlow’s performance improves: on 31 of
the 400 TMs with α ∈ {32,64}, NCFlow is > 1,000× faster
than PF4 while achieving > 80% of PF4’s total flow.

In summary, we can see in this panel of CDF plots where
NCFlow’s strengths lie: on (1) large topologies, and (2) TMs
with moderate demand volumes that are highly concentrated
within the topology.

G.2 Alternate clustering methods

For each topology, we evaluate the three different clustering
techniques mentioned in §3.4; on each topology we ask each
technique to compute the number of clusters listed in Table 5.
Figure 21 shows CDFs of the ratio of total flow and latency
speed-up of a clustering technique relative to that achieved by
using FMPartitioning; thus values to the left of x = 1 indicate
worse performance compared to FMPartitioning while those
on the right indicate better performance. The figure shows
that clusters discovered by FM partitioning almost always
let NCFlow carry more flow (red lines); using either spectral
clustering or leader election leads to a noticeably smaller
allocation in about 20% and 40% of the cases. The figure
shows a less clear-cut separation on latency speed-up; clusters
discovered by leader election offer more speedup in over
30% of the experiments. Overall, we see that FMPartitioning
performs better on average but not in all cases.

G.3 Effect on path latency

Figure 22 shows a CDF of the normalized path latency for de-
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Figure 19: A breakdown of the experimental results from Figure 11 along various dimensions of interest: scale factor, traffic model, and topology size. NCFlow
excels on large topologies with TMs that have highly concentrated demands.
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Figure 20: Traffic demand for each traffic matrix used in the demand tracking
experiment (see Figure 15) on PrivateLarge. The exact values are not shown
for confidentiality reasons.

mands6 under different flow allocations. The figure on the top
shows CDFs of the actual normalized path latency. Observe
that these distributions are nearly identical. The figure on the
bottom shows a CDF of the ratio of normalized latency; we

6The latency of the paths along which each demand is routed weighted
by the fraction of the demand routed along each path. That is, if a demand
is divided equally between two paths, the normalized latency will be the
average of the path latencies.
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Figure 21: Comparing the total flow allocated and the speedup in computing
allocations when clusters are chosen using the three techniques mentioned
in §3.4–FM partitioning, spectral clustering and leader election. The default
technique used in our evaluation, FM partitioning, generally performs better
but not in all cases.

see that roughly 70% of the demands are carried by NCFlow
on paths that are at most as long as the paths used by PF4 (i.e.,
to the left of x=1). Most of the cases where NCFlow uses
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Figure 22: Effect of NCFlow on path latency
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Figure 23: Similarly to Figure 11 all schemes use up to k = 4 shortest
paths between each pair of nodes except that the paths are chosen without
ensuring edge disjointness. The figure shows no qualitative difference relative
to Figure 11.

relatively longer paths are for demands that have very small
latency paths as illustrated by the top figure.

Note that path latency can be further explicitly controlled
in NCFlow by determining which paths can be used or by
weighting the objective to prefer shorter paths in the various
steps of Figure 6.

G.4 Alternate path choices

With Figure 23, Figure 24, Figure 25, Figure 26, Figure 27
we evaluate different numbers of paths between node pairs
chosen with or without edge disjointness. PFk refers to path
formulation with k shortest paths chosen using edge disjoint-
ness and PFkn indicates paths chosen without edge disjoint-
ness. Comparing these figures with Figure 11, we note that
NCFlow’s improvements over baselines hold across different
path choices.

Note that Figure 26 and Figure 27 are missing some of the
larger topologies listed in Table 5 for some of the baseline
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Figure 24: Similar to Figure 11 except all schemes use up to k = 8 shortest
paths between each pair of nodes; paths chosen with edge disjointness. The
figure shows no qualitative difference relative to Figure 11.
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Figure 25: Similar to Figure 11 except all schemes use up to k = 8 short-
est paths between each pair of nodes; paths chosen without ensuring edge
disjointness. The figure shows no qualitative difference relative to Figure 11.

schemes because the baselines ran out of memory (we used
a server with up to 3TB of memory) or raised some other
exception.

H Illustrative examples

Here, we show some illustrative examples where applying
NCFlow using adversarially chosen clusters can lead to sub-
optimal flow allocation.

Figure 28 shows a case wherein NCFlow is sub-optimal
because the aggregate graph (wherein nodes are clusters) is
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Figure 26: Similar to Figure 11 except all schemes use up to k = 16 short-
est paths between each pair of nodes; paths chosen without ensuring edge
disjointness. The figure shows no qualitative difference relative to Figure 11.
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Figure 27: Similar to Figure 11 except all schemes use up to k = 16 shortest
paths between each pair of nodes; paths chosen with ensuring edge disjoint-
ness. The figure shows no qualitative difference relative to Figure 11.
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Figure 28: Sub-optimality of NCFlow when the aggregate graph is not a tree.
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Figure 30: Sub-optimality of NCFlow when there are multiple-edges between
pairs of clusters.

(a) For the suboptimality problem in Figure 28, a different clustering choice that leads
to optimal flow allocation with NCFlow.

(b) For the suboptimality problem in Figure 29, a different clustering choice that leads
to optimal flow allocation with NCFlow.

(c) For the suboptimality problem in Figure 30, a different clustering choice that leads
to optimal flow allocation with NCFlow.

5

5

(d) For the disagreement problem in Figure 8a, a different clustering choice that does
not lead to such a disagreement.

(e) For the disagreement problem in Figure 6, a different clustering choice that does
not lead to such a disagreement.

Figure 31: Alternate clustering choices that fix suboptimality concerns and
disagreements.

not a tree. The network topology and optimal allocations are
shown in the graph on the left; assume each link has a unit
capacity. With NCFlow, as shown in the figures on the right,
MaxAggFlow can route the flow from s1 to t1 on either the top
or the bottom path or divide between the two paths in some
proportion; note that MaxAggFlow is not aware of demands
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that are local to a cluster (such as the flow from s2 to t2).
Whenever MaxAggFlow assigns non-zero flow for the s1→ t1
demand on the top path, NCFlow will be sub-optimal because
then the other demand cannot be fully satisfied when MaxClus-
terFlow executes later on the yellow cluster. Any unsatisfied
volume for s1 → t1 can be routed on the bottom path in a
later iteration but the flow for s2→ t2 will not increase since
the links that demand can use are fully utilized in the first
iteration. The root of the problem here is that MaxAggFlow
allocates traffic over multiple paths without being aware of
the demands within clusters.

Figure 29 shows a case wherein NCFlow is sub-optimal
when demands cannot be fully satisfied. As above, the topol-
ogy and optimal allocations are shown on the left. Also, as
above, the root of the issue here is that MaxAggFlow allo-
cates the cross-cluster flow on the aggregate graph without
being aware of the demands within clusters. As shown, subse-
quently, MaxClusterFlow will under-allocate flow for the local
demands even though total flow would be larger if the local
demands are fully satisfied.

Reordering the sub-problems, i.e., executing MaxCluster-
Flow before MaxAggFlow, may appear promising based on
these examples but simple counter-examples exist even for
such a reordered solution. The underlying cause of sub-
optimality is not the order in which the global and local solu-
tions are computed but rather that the optimal flow allocation
requires jointly solving these problems.

Figure 30 shows a case wherein NCFlow can be sub-optimal
when multiple edges connect clusters. As above, each un-
marked link has unit capacity and the optimal allocations are
shown in blue. Recall that NCFlow uses exactly one edge
between each pair of clusters per iteration to avoid disagree-
ments. There are two edges between each cluster but among
the four possible crossing edge choices in an iteration, exactly
one choice can carry non-trivial amount of flow (the top edge
for each cluster pair). If that choice is somehow not picked,
as shown marked in red on the right in Figure 30, NCFlow
will not satisfy the demand. Simply increasing the number
of iterations may not suffice either since the number of edge
choices can be large, depending on the path lengths on the
aggregate graph and on the number of edges between clusters.

As noted previously, the above examples are in part due to
poor cluster choices; Figure 31 shows different cluster choices
for these examples under which NCFlow will lead to optimal
flow allocation.

I Optimality gap

ue,ve ∈ V Edge e ∈ E goes from node ue to node ve
mu,∀u ∈ V mu denotes the cluster containing node u. Note that

mu ∈ Vagg (i.e., the cluster is a node on the aggre-
gate graph) and u ∈ Vmu (i.e., the node u belongs
in the restricted graph for the mu’th cluster)

∀k ∈D,msk 6= mtk ,x ∈ Vagg
OutNodes(x,k) The nodes in cluster x that can carry flow of

demand k out to some other cluster, i.e., {u |
mu = x,∃v∈V , p∈Pagg,Ksktk

s. t. mv = y,(x,y)∈
p,(u,v) ∈ E}

InNodes(x,k) The nodes in cluster x that can carry flow of de-
mand k into cluster x, i.e., {u |mu = x,∃v∈V , p∈
Pagg,Ksktk

s. t. mv = y,(y,x) ∈ p,(v,u) ∈ E}

Table 7: Additional notation for optimality gap; builds on top of notation
from Table 2 and Table 3.

MaxEdgeFlow(V ,E ,D), argmax
f ∑

k∈D
fk s.t. (6)

f =
{

fke | ∀k ∈D,e ∈ E
}

and

fke ≥ 0 ∀e ∈ E ,k ∈D (non-negative flow)

fk ≤ dk, ∀k ∈D (below volume)

∑
∀k,e

fke ≤ ce, ∀e ∈ E (below capacity)

∑
e,ue=u

fke− ∑
e,ve=u

fke =


fk if u = sk

− fk if u = tk
0 o/w.

∀k ∈D,u ∈ V (flow cnsrvtn.)

I.1 Optimal MaxEdgeFlow

The optimal flow allocation algorithm, in terms of carrying
the maximum amount of flow possible on a network, is as
shown in Equation 6. We will call this the EF, short for
MaxEdgeFlow. Some additional notation is in Table 7. Ob-
serve that, in this formulation, any demand can be allocated
on any edge (the variable fke) as long as flow conservation
holds (the longer equation at the bottom). As noted in §2, this
edge-form of the problem carries the maximal amount of flow
but has a high computation time and requires a large number
of forwarding entries at switches (one rule per nodepair at
each node).

I.2 Edge flow with cluster constraints
Relative to the optimal MaxEdgeFlow, we first ask how much
flow will be lost by using clusters. To compute this value,
we add to MaxEdgeFlow the constraint shown in Equation 7.
Specifically, demands whose source and target are in the same
cluster can only use edges within the cluster. However, as
above, paths remain otherwise unconstrained.

fke = 0 ∀e,ue /∈ Vx or ve /∈ Vx, if msk = mtk = x. (7)

We will call this optimization problem EF with cluster con-
straints.
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Figure 32: Comparing flow allocated by NCFlow with the best possible flows

I.3 Path form with cluster and path con-
straints

Next, we ask how much flow will be lost when using the
clusters as well as the given set of paths within and between
clusters? Computing this value is somewhat more complex
because we have to stitch together the flow carried on paths
within each cluster with the flow on the edges between clusters
while also ensuring that flow follow the chosen paths on the
aggregate graph (where clusters are nodes). For reference, we
write this out in Equation 8.

In more detail, this optimization problem, as shown in Equa-
tion 8, has three classes of decision variables – f p

K , f p
k , fke –

which respectively are the flow allocated to a bundled demand
on a path on the aggregate graph, the flow allocated to a de-
mand on a path within a cluster and the flow allocated to a
demand on a crossing edge between clusters.

Equation 9 computes the net flow for each demand k which
for the case of a demand whose source and target are in the
same cluster is the sum of flow carried on all intra-cluster
paths. For demands whose source and target are in different
clusters, the net flow is the flow from the demand’s source
to all of the nodes in the source’s cluster that connect with
other clusters as well as the flow to the demand’s target from
all of the nodes in the target’s cluster that connect with other
clusters.

For flow conservation, consider Equation 11 which ensures
that all of the flow leaving at a node u for a demand k on
crossing edges to other clusters equals the flow that comes
into the node u either from the source of the demand (if the
source is within its cluster) or from all of the nodes in u’s
cluster that can receive flow for demand k from other clusters–

InNodes(mu,k). Equation 12 considers the converse case for
demands that leave at a node. Finally, Equation 13 relates
the total flow between a pair of clusters x,y on the crossing
edges between these clusters with the flow along paths on the
aggregate graph that contain the edge (x,y). We will call this
optimization problem PF with cluster and path constraints.

Note that the above constraints naturally lead to a reduction
in forwarding table size as discussed in §3.5. However, it is not
clear how much less flow these constraints allow for relative
to the optimal EF. Moreover, since this optimization has more
variables (and constraints) than PF4 (see Equation 2), it can
take longer to compute and may not be practically useful. We
use this optimization problem to discern how much flow is
lost by the constraints used in NCFlow (restricting to clusters
and paths) relative to the flow that is lost due to the heuristic
allocation process described in §3.

I.4 Experimental results

Our results are in Figure 32; the baseline is PF4 and the fig-
ures plot CDFs of total flow and latency speedup for many
topologies and traffic demands. Note that using the edge for-
mulation (purple dash-dots) often leads to substantially more
flow being allocated compared to PF4; however, as the fig-
ure on the top shows, edge formulation is a more complex
problem that takes longer to run (over 1000× longer).

Adding the clustering constraint to edge formulation has
an un-noticeable effect on the flow allocation (green dashes).
Note that we use clusters computed using FMPartitioning for
all topologies.

Constraining the path formulation using both the given
clusters and the given paths (between clusters and within each
cluster), as shown with the red dash line, allocates much more
flow than PF4 and not much less than is allocated in edge
formulation. Thus, empirically, constraining flow allocation to
traverse the chosen clusters and paths does not limit the flow
that can be allocated. The figure also shows that computing
the optimal flow given clusters and paths takes longer than
PF4 (roughly 10× – 100× longer). Thus, NCFlow offers a
heuristic which finishes substantially faster than PF4.

To sum up, our two main contributions are: (1) constraining
flow allocations to use specific clusters and paths which re-
duces the number of forwarding table entries needed without
affecting the flow that can be allocated and (2) a heuristic
that computes flow allocations quickly given this constraint
but can under-allocate flow. We believe that future work can
improve the heuristic to reduce the flow loss further.
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MaxClusterPathFlow(V ,E ,D,P ), argmax
f ∑

k∈D
fk s.t. (8)

f =
{

f p
K | ∀K ∈Dagg, p ∈ Pagg, (flow on inter-cluster paths)

f p
k | ∀k ∈D, p ∈ P , (flow on intra-cluster paths)

fke | ∀k ∈D,e ∈ E ,mue 6= mve (flow on edges between clusters)
}

and

fk =



∑
p∈Psk ,tk

f p
k if msk = mtk (flow within a cluster)

∑
t∈OutNodes(msk ,k)

∑
p∈Psk ,t

f p
k if msk 6= mtk (flow from source to outnodes)

∑
s∈InNodes(mtk ,k)

∑
p∈Ps,tk

f p
k if msk 6= mtk (flow to target from innodes)

∀k ∈D(net flow) (9)

fk ≤ dk(flow below volume) ∀k ∈D

ce ≥


∑

k∈D
∑

p∈P , p3e
f p
k if mue = mve (intra-cluster edges; note: k goes over all demands)

∑
k∈D

fke otherwise (inter-cluster edges)
∀e ∈ E , (10)

∑
e∈E |ue=u, mue 6=mve

fke =


∑

p∈Psku

f p
k if mu = msk (at cluster mu, flow from sk to u)

∑
v∈InNodes(mu ,k)

∑
p∈Pv,u

f p
k otherwise (at cluster mu, flow from all InNodes to u)

∀u ∈ V ,k ∈D (11)

∑
e∈E |ve=u, mue 6=mve

fke =


∑

p∈Pu,tk

f p
k if mu = mtk (at cluster mu, flow from u to tk)

∑
v∈OutNodes(mu,k)

∑
p∈Pu,v

f p
k otherwise (at cluster mu, flow from u to all OutNodes)

∀u ∈ V ,k ∈D (12)

∑
p∈Pagg|(x,y)∈p

f p
K = ∑

e|mue=x, mve=y, k∈K
fke ∀K ∈Dagg, x, y ∈ Vagg (flow b/w clusters = flow on inter-cluster path) (13)
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Cost-Effective Cloud Edge Traffic Engineering with CASCARA

Rachee Singh Sharad Agarwal Matt Calder Paramvir Bahl
Microsoft

Abstract
Inter-domain bandwidth costs comprise a significant amount
of the operating expenditure of cloud providers. Traffic engi-
neering systems at the cloud edge must strike a fine balance
between minimizing costs and maintaining the latency ex-
pected by clients. The nature of this tradeoff is complex due
to non-linear pricing schemes prevalent in the market for
inter-domain bandwidth. We quantify this tradeoff and un-
cover several key insights from the link-utilization between
a large cloud provider and Internet service providers. Based
on these insights, we propose CASCARA, a cloud edge traffic
engineering framework to optimize inter-domain bandwidth
allocations with non-linear pricing schemes. CASCARA lever-
ages the abundance of latency-equivalent peer links on the
cloud edge to minimize costs without impacting latency sig-
nificantly. Extensive evaluation on production traffic demands
of a commercial cloud provider shows that CASCARA saves
11–50% in bandwidth costs per cloud PoP, while bounding
the increase in client latency by 3 milliseconds1.

1 Introduction

Cloud wide-area networks (WANs) play a key role in enabling
high performance applications on the Internet. The rapid rise
in traffic demands from cloud networks has led to widespread
adoption of centralized, software-defined traffic engineering
(TE) systems by Google [19] and Microsoft [17] to maximize
traffic flow within the cloud network.

In the quest to overcome BGP’s shortcomings, recent ef-
forts have focused on engineering inter-domain traffic, which
is exchanged between the cloud WAN and other networks
on the Internet [27, 33]. These systems can override BGP’s
best-path selection, to steer egress traffic to better performing
next-hops. However, this focus on performance overlooks a
crucial operating expenditure of cloud providers: the cost of
inter-domain traffic determined by complex pricing schemes.
While the prices of inter-domain bandwidth have declined
in the past decade, the decrease has been outpaced by expo-
nential growth in demand [29] from cloud networks serving
high-definition video, music and gaming content. In fact, the
inter-domain bandwidth costs incurred by the cloud provider
we analyze increased by 40% in the March 2020 billing cycle
as a consequence of the increase in demand fueled by work
from home guidelines in various parts of the world. 2

1Code and experiments at: http://cascara-network.github.io.
2We do not disclose the fraction of total cloud operation expenditure

contributed by inter-domain bandwidth costs due to confidentiality reasons.

Figure 1: Present-day and CASCARA-optimized bandwidth allo-
cation distributions for one week, across a pair of links between a
large cloud provider and tier-1 North American ISPs. Costs depend
on the 95th-percentile of the allocation distributions (vertical lines).
CASCARA-optimized allocations reduce total costs by 35% over the
present-day allocations while satisfying the same demand.

In this work, we show that recent increases in interconnec-
tion and infrastructure scale enable significant potential to re-
duce the costs of inter-domain traffic. These advances include
the deployment of several new cloud points of presence (PoP)
near clients and direct peering with an increasing fraction
of the Internet’s autonomous systems [5]. As a result, most
clients are reachable over several short and latency-equivalent
paths from the cloud provider [26]. We illustrate the cost sav-
ing potential due to latency-equivalent links with an example
in Figure 1. We plot the distributions of bandwidth allocated
over one week to links A and B, which connect a large cloud
provider to tier-1 North American ISPs. Both links are located
at inter-connection points within 30 km of each other, and
offer comparable latency due to their geographical proximity.
In this example, the bandwidth price per Mbps of Link B is
33% higher than that of Link A. Link costs are a function
of the 95th percentile of the bandwidth allocations to each
link. The present-day allocations (in blue) represent the cur-
rent bandwidth assigned to the links by the cloud provider
under study. In contrast, the CASCARA-optimized allocations
(in red) meet the same or higher demand as the present-day
allocations, while reducing total bandwidth costs by 35%.

Bandwidth allocations at the cloud edge impact both the
client latency and inter-domain bandwidth costs to the cloud
provider. At one extreme, traffic allocations may disregard the
latency impact to drive bandwidth costs to near-zero while
at the other extreme, allocations may incur very high band-
width costs by greedily assigning traffic to the lowest latency
peers. Balancing this cost-latency tradeoff is central to our
work. However, it is made challenging by industry-standard
pricing schemes that use 95th percentile of the bandwidth dis-
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tribution over monthly time-periods. Complex relationships
between bandwidth allocations, costs and client latency lead
to computationally hard optimization problems.

We tackle these challenges by first analyzing the utilization
of edge links from a large commercial cloud provider. We
find that the majority of traffic from the cloud is exchanged
with transit ISPs, with outbound traffic being twice in volume
compared to inbound traffic. Thus, outbound traffic to transit
ISPs dominates the inter-domain bandwidth costs of the cloud.
Three such North American ISPs incur a majority of the total
expenditure on inter-domain bandwidth in the continent (§3).
Using these insights, we make three main contributions:
1. Quantify the opportunity of saving bandwidth cost. We
formulate cloud edge TE as an optimization with the goal
of minimizing percentile bandwidth costs. Despite the non-
convex nature of the objective, the optimization is tractable
in engineering outbound traffic to peer links with only the
small number of ISPs that contribute majority of the costs. We
show that cost-optimal allocations can save up to 65% of the
cloud provider’s inter-domain bandwidth costs, quantify-
ing the upper bound on savings (§3) and offering a significant
improvement over related approaches in [12, 20, 35].
2. Practical and cost-efficient online edge TE. Since op-
timizing percentile costs is NP-Hard [20], finding optimal
solutions can take several hours. We leverage insights from
the offline optimal solution to design an efficient, heuristic-
based online TE framework, CASCARA. CASCARA leverages
the cloud provider’s rich diversity of latency-equivalent BGP
peers to offer cheaper options to outbound traffic. Through
extensive experiments we demonstrate that CASCARA pro-
vides near-optimal cost saving in practice and can be deployed
safely and incrementally in cloud WANs (§4).
3. Flexibility to balance the cost-latency tradeoff. CAS-
CARA incorporates the latency of primary and alternate peer
paths from the cloud [4, 27] to strike a balance between band-
width cost savings and client latency. CASCARA provides the
flexibility to pick the operating point on this tradeoff and finds
allocations that bound the increase in client latency by 3 ms
while saving 11-50% of bandwidth costs per cloud PoP (§5).

Client latency requirements vary based on the types of
application traffic, e.g., software updates and large file trans-
fers are more delay tolerant than live video. In fact, majority
of all outbound traffic from the cloud provider is marked as
best-effort, making it tolerant to small changes in latency. We
conclude this study by discussing the generalizability of our
results, the implications of CASCARA on peering contracts
and bandwidth pricing models on the Internet (§6).

2 CASCARA controller overview

CASCARA’s goal is to engineer outbound traffic allocations
from the cloud edge to achieve near-optimal saving in inter-
domain bandwidth costs. It does so by providing operational
safety knobs to the operator: configurable variation in the
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Figure 2: The design of CASCARA.

traffic allocations to peer links, incremental deployability and
bounded impact on client latency. Figure 2 shows the different
components of CASCARA. At the core is the CASCARA WAN
controller that allocates cost-optimized flow to outbound peer
links of the cloud network.
IPFIX Flow Collectors. We feed IP Flow Information Ex-
port (IPFIX) [31] logs to CASCARA to infer the utilization
of edge links of the cloud network in five minute intervals of
the billing cycle. These allocations to peer links are used both
for offline cost analysis (§3) and online allocation to meet
demands by CASCARA (§4 and §5).
BMP Route Collectors. We gather route announcements
made by BGP peers at points of presence (PoP) of the cloud
provider using BGP Monitoring Protocol (BMP) collectors.
These routes inform CASCARA of the choices of peer links
for outbound demand towards clients.
Peering Contracts. We feed the billing models and peering
rates for all BGP peers of the cloud provider to CASCARA.
Since peering rates remain stable over short durations of time,
we use snapshot of this information from June 2019.
Client latency measurements. CASCARA makes latency-
aware decisions limiting the impact of outbound traffic alloca-
tion on client latency. We feed CASCARA the median latency
to all clients of the cloud provider over both the primary and
alternate BGP paths at the PoPs.

Cloud providers have developed software-defined edges
for fine-grained control of outbound path selection from their
networks [27, 33]. These systems provide the infrastructure
to steer outbound traffic to desired peer paths. The CASCARA
controller allocates flow to peer links in every 5 minute inter-
val and can leverage the software-defined edge to optimize the
inter-domain bandwidth costs. We first quantify the potential
of bandwidth cost saving in a large cloud provider (§3), then
develop an efficient, online and near-optimal algorithm for
CASCARA to realize the saving potential (§4). Finally, we put
CASCARA to test with realistic client performance and route
availability constraints in §5.

3 Quantifying the Opportunity

Cloud networks occupy a central position in the Internet
ecosystem due to the large volume and variety of popular con-
tent they serve to users. To make this possible, cloud providers
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Figure 3: (a) Outbound traffic from a large cloud provider towards BGP peers of different types; majority of outbound traffic is towards
transit/access networks. (b) The distribution of inbound vs. outbound traffic volume from the cloud network. (c) Large differences in the cost
per unit bandwidth in different parts of the world e.g., the median peering cost in Asia is over 10X the median peering cost in North America.

peer with a large number of networks or Autonomous Sys-
tems (ASes) on the Internet, including transit ISPs and eyeball
networks. The cloud provider we analyze has over 7,000 BGP
peers, including transit networks, access networks, content
providers and Internet Exchange Points (IXPs). These links
span over one hundred geographical locations, collectively
carrying terabits of traffic per second. We analyze the uti-
lization and bandwidth costs incurred at the peering edge of
the commercial cloud provider using IPFIX flow records col-
lected from June 2018 to July 2019. Aggregated across all
edge links, Figure 3a shows the outbound traffic volume per
five minute interval from the cloud towards transit/access net-
works, cloud providers and enterprise networks, categorized
by CAIDA’s AS types classification [3].

3.1 Dominant contributors to bandwidth cost
A BGP peer of the cloud network charges for the traffic ex-
changed between them according to the billing model ne-
gotiated in their peering contract. There are three billing
models for inter-domain traffic prevalent on the Internet to-
day: (1) Settlement-free (2) Per-port and (3) Per-Megabit [9].
Settlement-free peers (SFP) agree to exchange traffic with
each other at no cost (e.g., between cloud providers). In per-
port peering, a peer bills another for each network port used
at their facility (e.g., connections at IXPs). Per-Megabit is
a utilization-based model where a network charges its peer
based on the utilization of the link between them over monthly
billing cycles. There can be a commit clause in this contract
i.e., regardless of the actual usage, the customer commits to
pay at least some pre-arranged amount to the provider.

Utilization-based, per-megabit billing is the industry stan-
dard for paid peer and transit ISP contracts and it is the focus
of our work. Our goal is to minimize bandwidth costs ac-
crued on peering links billed by their utilization. To translate
network utilization into the corresponding inter-domain band-
width cost, ISPs measure the average utilization of peering
links in five minute intervals in both inbound and outbound
directions. Let the edge link from peer p1 to peer p2 have
average outbound utilizations of B = {B1,B2, ..,Bn} megabits

in 5-minute intervals of a given month. Let Bout be the 95th

percentile of the outbound utilizations, B. Similarly, Bin is
the 95th percentile of average inbound utilizations of the
p1 � p2 link. The link cost for a billing cycle is given by,
B = ci · MAX{Bout ,Bin}, where ci is the peering rate negoti-
ated by p1 and p2 as part of their peering agreement. This
model of billing bandwidth, also called burstable billing, has
evolved as an industry standard on the Internet [9].

Bulk of the traffic is exchanged with Transit/Access ISPs.
The large majority of traffic at the cloud edge is outbound
to Transit/Access networks (Figure 3a). Therefore, traffic ex-
changed with transit ISPs is the main contributor to bandwidth
costs incurred by the cloud provider.

Outbound traffic is twice the inbound. For the cloud WAN,
outbound traffic volume is nearly twice the inbound (Fig-
ure 3b), highlighting that the cost computation based on link
utilizations can be simplified to ci ·Bout for clouds networks.

Links with only three ISPs contribute majority of costs.
Due to the large variance in peering rates (seen in Figure 3c)
and skewed distribution of traffic towards a few large ISPs
in the North American region of the cloud, edge links to
three large networks incur a majority of the total spend on
inter-domain bandwidth in North America.

3.2 Optimal inter-domain bandwidth costs
In this section we formalize the task of optimizing inter-
domain bandwidth costs of a cloud network. As outbound
traffic to paid peers is significantly higher than inbound (Fig-
ure 3b), we focus on engineering outbound traffic to minimize
the overall inter-domain bandwidth cost. To quantify the po-
tential cost savings, we formulate the offline version of the
problem where traffic demands are known in advance.

Let L = {l1, l2, ..lm} be the set of all edge links from the
WAN. Edge links to the same peer at different points of pres-
ence (PoP) are billed individually according to their percentile
utilization. Let a five-minute interval in the monthly billing
period be t j where j 2 {1,2, ..,n}. For instance, the month of
January has 8,928 five-minute intervals.
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Decision variables. The traffic allocation scheme assigns
network flow to peering links in L, for every time slot t j, j 2
[1, ..,n]. Let xi j be the decision variable, where xi j is the flow
assigned to peering link li in time slot t j.
Objective function. The goal of our allocation scheme is to
find a traffic assignment to edge links over the entire billing
period such that the total inter-domain bandwidth cost is min-
imized. The cost incurred on peering link li is the product of
the peering rate (ci) and the 95th percentile utilization of that
link (denoted by zi). The goal is to minimize the total cost
incurred across all links in the WAN:

minimize Z =
m

Â
i=1

ci · zi

Constraints. The traffic allocations are subject to constraints
on link capacities. Since, the offline setting assumes knowl-
edge of traffic demands, the traffic scheme must allocate flow
in a way that the egress traffic demand is met in all time slots.
Formulating percentile cost as k-max. The cost function
consisting of the sum of 95th percentile utilization of links is
non-convex. Previous work has shown that optimizing per-
centile cost functions is NP-HARD [20]. We later show that
techniques from previous work are not effective in saving
bandwidth costs of edge links (§4.3). We formulate the exact
95th percentile of traffic allocations as part of the objective
function. We note that the 95th percentile of a distribution of
n numbers is the same as their k-max where k = n/20.
Key insight. The key insight of our formulation is that link
utilization during 5% of time slots do not contribute to its
95th percentile cost. This means that 5% of time in any billing
month is free regardless of the traffic it carries. We capture
this insight in the optimization formulation using binary inte-
ger variables li j for each decision variable xi j. li js are also
decision variables of the optimization which reflect whether
their corresponding xi js contribute to the link cost. This is
expressed with the indicator constraint:

(li j == 0) =) zi � xi j,8i, j (1)

We note that only 5% of all {xi1,xi2, ..,xin} can have their cor-
responding li j = 0 since we can get away with considering
5% of allocations as free. This is expressed using Big-M con-
straints in the formulation [14]. The minimization objective
ensures that of all li js, the ones corresponding to the top k�1
of the allocations (xi j) at a link do not contribute to its cost.
Implementation details. Algorithm 1 formulates the traffic
cost optimization problem as a Mixed Integer Linear Program
(MILP), which is computationally hard to solve. We imple-
ment the formulation using the CVX [8] framework and solve
it with the commercial optimization solver, GUROBI [15]
on a machine with 12 cores and 48 Gb RAM. Our choice
of solver is motivated by the computational complexity of
Algorithm 1. Commercial solvers like GNU LPK [11] and

Algorithm 1: WAN Egress Traffic Allocation
Inputs:

n: number of five-minute time slots in a month
m: number of peering links in the WAN
li: Peering link i
Ci: capacity of peering link li
ci: peering rate (USD/Mbps) for link li
d j: egress demand from the WAN in time slot t j
k = n

20
M: large integer constant

Outputs:
xi j: traffic allocation to link li in time slot t j
li j: binary variables that discount top-k xi js
zi: billable bandwidth on link li

Minimize: Âi zi · ci
subject to:

0  xi j Ci, 8i,8 j
Âi xi j = d j, 8 j
Â j li j = k�1, 8i
zi > xi j �M ·li j, 8i,8 j

CPLEX [18] were orders of magnitude slower than GUROBI
in solving our formulation.

3.3 Generalizable and large saving potential
Using the set of peering links (L), peering rates (ci), link
capacities (Ci) and real egress traffic demands (d j) from a
large commercial cloud network, we formulate instances of
Alg. 1. The egress traffic demands (d j) are collected from
June 2018 to June 2019 and consist of flow (megabits) that
traversed the BGP peering links in each 5-minute interval.
Peering rates remain constant during the course of our study.
This provides 12 instances of Alg. 1, one for each 1-month
billing period. We discuss the implementation details and
assumptions in §3.4 and offer a preview of the results here.
We compare the cost of allocations computed by Alg. 1 with
the real allocation cost incurred by the cloud provider and
find that Algorithm 1 reduces the combined cost of the three
ISPs that contribute a majority of the bandwidth cost (ISP-1,
ISP-2 and ISP-3 peer links) by 65% on average (Figure 4a).

Impact of participating links. When the input to the opti-
mization is a single peer’s links and traffic matrix, we observe
lesser, yet significant, cost savings. This can be seen in the
trends for ISP-1 and ISP-2 in Figure 4a. This shows that our
cost optimization techniques can be deployed incrementally
in the cloud WAN by engineering the traffic flow to a few ISPs
at first. The fraction of savings increase as more outbound
links are included in the optimization.

Impact of peering rates. We show the impact of relative
peering rates of the three participating ISPs in the cost op-
timization. For the optimization instances demonstrated in
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(a) Cost savings with different sets of participating links.
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(b) Impact of peering rates on cost saving.

Figure 4: (a) Cost savings for 12 billing cycles using traffic matrices of ISP-1, ISP-2, ISP-3 and their combinations. (b) Cost saving with
ISP-1, ISP-2 and ISP-3 for different peering rate ratios.

Figure 4a, the ratio of peering rates of the ISPs is 2:2:3. While
the exact peering rates are confidential, their ratio shows that
links belonging to two ISPs cost less than the third ISP. To
ensure that the cost savings are not simply a function of this
specific cost ratio, we compare the savings from the optimiza-
tion when the peering rates are in 1:1:1 and 1:1:2 ratios and
demands are the same as before. Figure 4b shows that savings
are significant (⇡ 40%) even when all links have the same
peering rate. Significant cost savings with different peering
ratios demonstrate the generality of our results.
Impact of engineered traffic volume It may not be desir-
able to allow all traffic from edge links to be engineered for
saving network costs. For instance, it may be important to
egress some portion of the traffic on the same edge link where
the client request entered the cloud for performance or geo-
political reasons. We find the impact of the fraction of traffic
that can be engineered on a per-link basis by computing the
cost gains for the month of June 2018 when the fraction of
engineered outbound traffic on the edge links of ISP-1, ISP-2
and ISP-3 is 50%. We find that the resulting cost savings are
37.5%. We note that the solution took longer than our time
limit for the solver and therefore the LP gap was higher than
15%. Similarly, when the fraction of traffic engineered on a
link is reduced to 40%, the overall cost saving is 28.6%.

3.4 Computing optimal traffic allocations
We now discuss the details of our implementation of Alg. 1.
Managing the scale of the problem. Due to the non-convex
nature of the problem, even state-of-the art optimization
solvers can take an impractical amount of time to approx-
imately solve Algorithm 1. We take advantage of our findings
from §3.1 and only engineer peer links to the three North
American ISPs (ISP-1, ISP-2 and ISP-3, anonymized for con-
fidentiality) which incur a majority of the inter-domain band-
width costs to the cloud. Each of the 3 ISPs peers with the
cloud provider at tens of locations in North America, con-
tributing 56 peer links between the cloud network and the
three ISPs. We solve Algorithm 1 for different sets of peer-
ing links: first considering links with ISP-1 and the egress
demand (d j) that gets served over links with ISP-1. Similarly,

we solve problem instances with links and demands of ISP-2,
ISP-3, ISP-1 and ISP-2 and ISP-1, ISP-2 and ISP-3 as input.

Efficient computation of the lower-bound. Cutting-edge
optimization solvers use a combination of techniques to solve
general Mixed Integer Programs (MIPs). At a high level, the
first step is relaxing the MIP to an efficiently solvable Lin-
ear Program (LP) by removing the integral constraints. If a
feasible solution to the LP is not found, the MIP, in turn, is
also infeasible. If a feasible solution is found, the solution
of the LP is a lower bound to the solution of the original
MIP. Therefore, in a minimization problem like Algorithm 1,
the LP solution provides the lower bound on bandwidth cost
without having to solve the MILP.

Running time of the optimization solver. We note that Al-
gorithm 1 has O(mn) Real decision variables and just as many
binary variables. Predicting the difficulty of Integer programs
in terms of the number of variables and constraints is hard. In-
deed, increasing the number of links (size of set L) reduces the
algorithm’s running time. The rationale behind this counter-
intuitive behavior is that higher number of peering links make
it easier for the optimization to meet demands without raising
the 95th percentile utilization of the links.

Once the LP relaxation has been solved, MIP solvers use
a branch-and-bound strategy to find feasible solutions to the
MIP from an exponential number of possibilities. As a result,
some instances of the optimization can take several hours
to solve. We use two techniques to bound the time of the
solver. First, using the efficiently computable LP relaxation,
we compute the proximity of the MIP solution to the theoreti-
cal lower bound. Second, we configure the branch-and-bound
algorithm to return the current-best feasible solution after a
fixed amount of time has elapsed. We configure the solver to
stop if the current best feasible solution to the MIP is within
15% of the LP optimal or if the solver has run for 15 hours.

Some instances of the optimization problem took 1-2 hours
to find solutions while for others, the solution space had to be
explored for 15 hours. On average, instances of Algorithm 1
took 6 hours to finish. The variance in run-time is due to
differences in traffic demands of months. One strategy that
was effective in speeding the optimization involved using

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    205



the values of decision variables from the previous month as
initial values of the corresponding decision variables for next
month’s model. We found that using this warm-start strategy
reduced the running time by 3X with instances taking 2 hours
to solve on average. We describe other approaches that did
not reduce the running time in Appendix (§A.1).
Gap from LP optimal. While the optimal solution to the
LP relaxation provides a lower bound on the minimum cost
of allocations, this lower bound is not always feasible. To
improve the run time, we set a break condition while solving
the problem instances to either reach within 15% of the LP
optimal or spend 15 hours in solving the MIP using branch-
and-bound. For the instances we solved, the average gap of
the final MIP solution from the LP optimal is 9% i.e., the
solutions are very close to the theoretical lower bound.

4 Online cost-optimization with CASCARA

Results of the offline allocation scheme (3.2) show that there
is significant potential for optimizing bandwidth cost at the
cloud edge. There are two caveats to the scheme’s use: first,
it assumes knowledge of outbound demand for every time
slot of the billing cycle. In practice, an online algorithm that
can allocate network flow to peer links without the knowl-
edge of future demands is required. Second, the optimization
formulation (Algorithm 1) takes two hours on average to pro-
vide optimal traffic allocations for the entire month. However,
state-of-the-art TE controllers compute traffic allocations ev-
ery 5-10 minutes, making it crucial to have an online solution
that is efficient and effective. In this section we develop a
heuristic-based online traffic allocation framework that uses
insights from the offline optimal solutions to Algorithm 1.
Despite the complexity of the cost optimization problem, we
show that a simple and efficient algorithm with few hyperpa-
rameters governs the closeness of the heuristic solution to the
offline optimal. The heuristic allocations achieve bandwidth
costs savings within 5% of the optimal.

Consider the set of edge links from the cloud, L =
{l1, l2, ..lm}. Let Li be a subset of L, such that links in Li
are each priced at pi per Mbps. For example, the setup in
(3.2) has two such subsets, L1 and L2 where links in L1 are
priced at p1 and those in L2 are priced at p2. Since the peering
rates of links to ISP-1, ISP-2 and ISP-3 are in the ratio 3:2:2,
p1 =

3
2 p2. From the results of Section 3.4, we derive three

key insights about the optimal traffic allocations:
Lower utilization of expensive links. When p2 < p1, the op-
timal traffic allocations use links in L1 minimally. This means
that barring capacity considerations, it is always cheaper to
use links in L2 to meet the demand and only use links in L1
for their free 5% time slots.
Maximize the utilization of free slots. Figure 5 shows the
density distribution of optimal allocations on an edge link
by Algorithm 1. We note that the optimal allocations reduce
the link’s 95th percentile utilization to ⇡ 15% of its capacity.

Figure 5: Optimized allocations on an edge link for a month. The
vertical lines show the pre- and post-optimization 95th percentile
utilization on the link. (X-axis labels removed.)

However, during 5% of time slots the link is utilized nearly at
full capacity without contributing to the billable-bandwidth.
Optimal allocation on all links show similar patterns.
Link utilization below the 95th percentile is uneconomical.
Let u j be the 95th percentile utilization of an egress link l j.
Assigning less than u j flow to link l j in any time slot is waste-
ful, i.e., the link will get billed for u j even if its utilization in
other time slots is lower (Appendix Figure 13a).

4.1 Online traffic allocation
Using insights derived from the optimal allocations, we pro-
pose an online traffic allocation scheme, CASCARA, for the
cloud edge. CASCARA pre-decides the fraction of the total
network capacity that will be the billable bandwidth for the
month (Cf ). Given the billable bandwidth, finding the opti-
mal pre-decided 95th percentile utilization of link l j (u j) is a
special case of the bin-packing problem. Thus, greedy assign-
ment of Cf to links in the increasing order of their peering
rates minimizes the total bandwidth cost of the network. Since
subsets of links (Li ⇢ L) have the same peering rate, we assign
u j to links in the same subset using the progressive filling
algorithm to ensure max-min fairness [2] within link subsets.

When a billing period begins, every link has a 95th per-
centile utilization (ui) assigned to it. As new outbound de-
mands arrive, if they can be met with Âui = Cf capacity,
CASCARA allocates corresponding flows to the links. How-
ever, if the outbound demand exceeds Cf , CASCARA chooses
to utilize one or more links at near full capacity to meet the
demand. Since 5% of billing slots do not contribute to the
links’ costs, CASCARA ensures it only runs a link at near
capacity for 5% or fewer billing time slots.
Parameters to the online algorithm. It is crucial to select
Cf such that all demands in the billing period are met within
Cf or by augmenting Cf with the extra capacity of links in
their 5% free time slots. Once a link’s 95th percentile utiliza-
tion has been chosen to be ui, using it for any lesser makes
no difference to its final cost. The choice of Cf is critical to
making a feasible allocation. If Cf is too low, the allocation
may be infeasible or if it is too high, the bandwidth cost can
be sub-optimally high. We discuss the choice of initial Cf and
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how CASCARA improvises when the chosen Cf is too small
to meet the demand during the billing cycle.

Order of choosing peer links. CASCARA decides the order
of links to be augmented above their allocation ui to meet
5-minute demands higher than Cf . Using a configurable pa-
rameter, CASCARA can allocate how close the augmented
allocation is to the link’s capacity to prevent sudden link per-
formance degradation. The time slots in which CASCARA
augments the allocation to a link are called augmented slots.
The augmented slots are limited to 5% for each link, making
the order in which links are augmented relevant to the fea-
sibility of an allocation. CASCARA uses a priority queue of
all edge links where a link’s priority is a combination of the
time since it was last augmented and its capacity. If a link was
augmented in the previous slot, it must also be augmented in
the following slot, if required, so that the allocations do not
change sharply. By prioritizing links with lesser capacity for
augmentation, CASCARA ensures that free slots of links with
higher capacity are not used pre-maturely.

Link augmentation order does not impact feasibility. If
CASCARA’s assignment of uis and the order of link augmen-
tation leads to an infeasible allocation problem, any change to
the order of link augmentation does not render the allocation
feasible (Proof in Appendix A.2). Since uis are derived from
Cf , the key input parameter to CASCARA is Cf . Algorithm 2
shows the online traffic allocation scheme of CASCARA in
brief (details in Appendix Algorithm 3).

Insufficient Cf and infeasible allocation. If the initial ca-
pacity fraction assigned by CASCARA ends up being insuffi-
cient to meet the demand in a time slot, despite augmenting
the allocations to all edge links that have free slots remaining,
we consider the allocation infeasible. This means that it is no
longer possible to limit the billable bandwidth of this month to
Cf and the Cf value must be increased. CASCARA increases
the value of Cf by step size (b) to meet the demand. Until it be-
comes necessary to increase Cf in a billing cycle, CASCARA
has under-utilized the links stay under Cf . Increasing Cf to
Cf +b renders the past efforts to keep Cf low, futile. Indeed
these efforts may have wasted the augmentation slots of links
before Cf is incremented. However, there is no choice but to
increase Cf as traffic demands must always be met. In the
ideal case, initial value of Cf is just enough to meet demands
in the entire billing period using augmentation slots when
needed. On the other hand, starting the billing cycle with a
Cf that is higher than required leads to sub-optimally high
bandwidth costs. We show that the ideal Cf value is sufficient
in ensuring that CASCARA finds optimal cost allocations.

Improvising billable bandwidth preemptively. When
CASCARA finds that the demand is too high to accommo-
date in the current Cf , it increases Cf by b. Increasing the
billable bandwidth estimate, Cf is a tradeoff – increasing too
late in the billing cycle leads to wasteful use of links’ free
slots until the increase and increasing it too early reduces the

Algorithm 2: Online Traffic Allocation Per-Timestep
Function allocate_timestep(d, f):

if d Cf then
allocate Cf to links in L
return true

else
d = d �Cf
while linkqueue do

l = pop(linkqueue)
augment l
decrement l’s priority and free slots
decrement d by l’s augmented capacity
if d  0 then

return true
return false

cost saving potential. We capture this tradeoff by introduc-
ing the third and final parameter of CASCARA: a. a is the
increase in Cf during the monthly billing cycle before an in-
feasible allocation is encountered. The goal is to preemptively
increase Cf if such an increase is inevitable later in the month.

4.2 Finding CASCARA’s hyperparameters
We show that by setting Cf effectively, CASCARA’s online
traffic allocation (Algorithm 2) can be nearly as effective as
the offline solutions of Algorithm 1. We set Cf to different
fractions of the total network capacity, ranging from 0 to 1, in
steps of 0.01. We compare the cost saving from the feasible
allocation using the smallest Cf with the optimal cost saving3

and find that on average, CASCARA with the optimal initial Cf
achieves savings within 2% of the offline optimal allocation.
Setting Cf . CASCARA with the optimal Cf is called CAS-
CARA-offline since it has prior knowledge of the lowest Cf
for feasible allocations. CASCARA-online assumes no such
knowledge and uses the optimal Cf of the previous billing
cycle as the current month’s initial Cf . This choice is moti-
vated by strong daily, weekly and monthly seasonality in the
outbound traffic demands. Previous month’s Cf is the optimal
value for the next month 64% of the time. For the rest, the
average difference between optimal Cf and its initial setting
is of the network capacity. When the initial Cf is not opti-
mal, the allocation becomes infeasible and CASCARA has to
increase the Cf to meet the traffic demands.
Finding a and b with grid search. Increase in Cf is a defi-
nite increase in the bandwidth cost for the billing cycle. The
step size by with Cf is increased (b) is also important: too
high and it would wastefully increase the cost, too low and it
would mean having to increase Cf again in the future. Once
increased, there is no cost saving advantage to reducing Cf .
Incrementing Cf later is worse than having started with the

3For confidentiality reasons, we cannot not share the capacity fractions.
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Figure 6: Costs savings from CASCARA and related approaches.
Bars show the mean and wiskers show the standard deviation.

optimal Cf since links’ augmentation slots are wasted before
the increment is made. Thus, preemptively increasing Cf by
a during the billing cycle mitigates the issue of wasteful use
of link augmentation slots. The hyperparameters, a and b are
important to select. We perform a grid search to find the ones
best suited for the cloud network. Details of the grid search
are in Appendix A.5. The best values of a and b are used to
for the following discussion.

4.3 Comparison with previous work
We now discuss the cost savings enabled by CASCARA-online
over twelve billing months from June 2018 to June 2019 (Fig-
ure 6). As before, we use the production network’s traffic de-
mands, topology and peering rates to measure the cost savings
that CASCARA-online would provide. We first show that CAS-
CARA-online achieves 55% cost saving, within 10% of the
savings from CASCARA-offline which knows the optimal Cf
in advance. Then, we evaluate existing approaches that have
focused on similar objective functions as CASCARA. We ex-
clude approaches that delay traffic to future time slots [13,21]
as these are not viable for the cloud provider we study (§7).
The three main systems from related work are:
Pretium for dynamic file transfers in the WAN [20].
Pretium focuses on optimizing percentile costs of internal
WAN links for dynamic transfers within the WAN [20]. They
proposed to use the average of top 10% utilizations as a proxy
for 95th percentile cost of links. We find that Pretium offers
modest cost saving of 11% on average compared to CAS-
CARA’s 55% savings for egress WAN traffic. Pretium assumes
that the 95th percentile of a link’s utilization is linearly corre-
lated with the average of top k utilizations [20]. We evaluate
this assumption using the utilizations of over 50 peering links
from the cloud WAN to large ISPs in N. America. Figure 13b
shows the Pearson correlation coefficient to measure the ex-
tent to which the average of top 10% utilizations can be used
as a proxy for 95th percentile utilization of inter-domain links.
We find that the correlation coefficient for over 25% of the
links is less than 0.5. Since previous work’s hypothesis was
derived from the data of a single WAN link measured a few
years ago, the correlation between average of top 10% and
95th percentile utilization may exist for some links but not
all. Ever-changing traffic patterns from WANs due to new
services like gaming also explain this difference.
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Figure 7: The impact of ramp-up rate on cost saving potential (mean
and std. deviation calculated over 12 billing cycles).

Entact for cost minimization in clouds [35]. Entact shares
a lot of the goals with CASCARA, including finding cost opti-
mal traffic allocations constrained by client latency. However,
Entact chose to optimize linear bandwidth prices since per-
centile pricing is hard to optimize [35]. In a linear pricing
scheme, greedy traffic allocation to cheapest links is optimal.
However, the greedy algorithm does not fare well in percentile
pricing schemes, as show in Figure 6’s comparison between
CASCARA and Entact. The reason is that allocations in every
time slot contribute towards the billable bandwidth in linear
pricing schemes (e.g., average and sum of allocations) but in
percentile pricing, some percent of the allocations are free.
Greedy allocations fail to take advantage of this phenomenon.
Global Fractional Allocation (GFA) for multihoming [12].
Finally, authors of [12] analyzed cost optimizations in the
setting of multi-homed users. GFA comes closest in its ap-
proach to CASCARA and this is also reflected in the cost
saving comparison in Figure 6. However, CASCARA outper-
forms GFA by 17% in the average case. There are two main
reasons for this: GFA assumes a much smaller scale of the
problem where the options for allocations are 3 to 4 upstream
ISPs. This makes their naive estimation of cost lower bound
ineffective: by using only 5% of the timeslots of peer links to
meet demands was a viable option, traffic allocation would be
free. Secondly, when GFA runs into an infeasible allocation,
it assigns all remaining flow to a single link. This is often
impractical at the cloud scale where the demand is too high
for one peer link to handle the slack.

And finally, there are several realistic factors that need
careful consideration: latency from peer links to clients and
existence of routes at the peering router to engineer traffic.
CASCARA not only performs better in idealized environments
by achieving higher cost saving that existing systems, it also
takes real-world constraints of a large production WAN into
account. We describe these in further details in §5.

4.4 Operational safety checks in CASCARA

We discuss the safety checks built into the CASCARA algo-
rithm to ease the process of operating it in production.
Stable traffic allocation. One concern with algorithms as-

208    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



all cluster−1 cluster−2 cluster−3 cluster−4

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
0.00

0.25

0.50

0.75

1.00

Percent cost saving

C
D

F

cascara−offline cascara−online oracle

Figure 8: shows distributions of percent cost saving by CASCARA-offline, CASCARA-online and the oracle (Algorithm 1) over 12 billing
cycles. CASCARA-online achieves near-optimal saving with different sets of links and corresponding demands as input.

signing traffic flows on peer links is that the allocation must
be mindful of the performance impact on the inter-domain
paths. CASCARA ensures that allocation to backup BGP paths
does not change too rapidly by using a maximum ramp-up
rate parameter that controls the maximum increase in the al-
location to any peer link in the network. This ramp-up rate
paces traffic allocation to links and allows CASCARA to incor-
porate path performance feedback into its decision making.
We discuss how CASCARA incorporates performance metrics
in its control loop in the next section. Figure 7 shows the cost
saving potential of CASCARA as a function of the ramp-up
rate. Very slow shifts which use a maximum ramp-up rate of
10 Gbps restrict the cost savings of CASCARA. However, at
30 Gbps ramp-up rate, CASCARA has reached its full saving
potential and more rapid shifts of traffic do not offer much
improvement in cost savings percentage.

Predictable traffic allocations on edge links. CASCARA’s
traffic allocation to edge links are more stable than present-
day allocations which are driven by user-facing demands.
There are two reasons for this. First, CASCARA selects a pre-
decided fraction of a link’s capacity as the utilization on the
link for 95% of billing slots and changes are made to this
fraction only when it is essential for meeting demand over
Cf . Secondly, even when the allocation to a link has to be
augmented, CASCARA ensures that a link, once augmented,
is used until its free slots have been exhausted. Predictable
allocations on edge links allow network peers to provision
capacity appropriately in place of being prepared for arbitrary
spikes in traffic demands.

Incremental deployability. CASCARA can be incrementally
deployed across edge link groups in the cloud. To show this,
we divide the peer links of ISP-1, ISP-2 and ISP-3 into four
geographical clusters based on their PoP. These four clusters
correspond to links at PoPs in north-central, south-central,
East Coast and West Coast regions of North America. We
compute the cost savings within each cluster by engineering
the demands of the cluster onto its links. Figure 8 shows that
CASCARA-online can achieve near-optimal cost (CASCARA-
offline) savings across all peer links (cluster all) and also
within the 4 geographical clusters. We note that in some cases
CASCARA-offline achieves higher cost saving than the oracle
(Alg. 1) due to the LP gap in the solution of the MILP (§3.4).
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Figure 9: shows the distribution of address space similarity between
peer links of ISP-1, ISP-2 and ISP-3 at different PoPs of the cloud.
Each ISP announces nearly the same address space at different PoPs
but the overlap in address space across ISPs is very small.

5 Performance-aware cost saving

We have demonstrated that there is significant potential of
saving inter-domain bandwidth costs in a cloud network (§3)
and CASCARA’s efficient online algorithm can realize this
potential by achieving near-optimal cost saving (§4). In this
section we discuss practical aspects of achieving cost savings,
namely, feasibility of engineering egress traffic in a WAN and
the impact of CASCARA on client latency.

5.1 Availability of client routes at peer links
CASCARA engineers outbound traffic demand to peer links
to achieve cost optimality over the billing cycle. However, it
must ensure that peer links have the routes required for traffic
shifted onto them. Otherwise, traffic to clients could get black-
holed at the peering edge router. Using the routes announced
by the three ISPs we focus on, we measure the address space
overlap between peer links and find that ISPs announce the
same address space across different peering locations (e.g.,
Dallas vs. Seattle) but the overlap of address space across
peers (e.g., ISP-1 vs. ISP-2), even at the same PoP is minimal
(Figure 9). Thus, CASCARA needs a mechanism to track the
existence of relevant routes at peer links.

Tracking prefix route announcements by ISPs at differ-
ent cloud PoPs in CASCARA leads to an explosion of the
problem size since there are over 600,000 prefixes on the In-
ternet. Aggregating clients to their corresponding geographic
metropolitan area (metro) and autonomous system (AS) pair
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Figure 10: The difference in median latencies between primary
and alternate BGP paths calculated from client measurements. The
difference between latencies of primary and alternate paths is small.

significantly reduces the scale of the problem. This grouping
of client prefixes within the same AS and small geographi-
cal locality has been used effectively in previous work [4].
We find that the points of presence where the cloud provider
peers with ISP-1, ISP-2 and ISP-3 serve approximately 40,000
(metro, AS) pairs, reducing the scale of the mapping required
to capture the existence of relevant BGP routes at peer links.
Thus, we construct a bi-partite mapping between clients and
peer links i.e., an edge between client c to peer link p implies
p has the relevant routes to c. We then constrain the traffic
allocation in each timestep by the client to peer link mapping.
We compute this allocation efficiently with a linear program
(LP) within Alg. 2 that maps clients demands to peer links.

5.2 Bounded impact on client performance
Next, we tackle the challenge of limiting the performance
impact of CASCARA’s cost optimization. For this, we continu-
ously measure the performance of alternate BGP egress paths
to destination prefixes by directing a small amount of traffic
over alternate peer links at eight PoPs [26,27,35]. We selected
these PoPs as they carry high traffic volume – approximately
47% of all the cloud provider’s North American traffic, and
have high capacity alternate links.

Links at the same PoP have equivalent client latency. We
analyze over 300 million measurements to the cloud PoPs for
the month of August 2020, spanning 40,000 client metro and
AS pairs, each with thousands of latency measurements to-
wards the cloud on any given day. We first show the existence
of latency equivalent peer links at the same PoP. Borrowing
from existing methodology [26], we measure the difference
in median latency between the BGP best path (primary) and
the alternate BGP path for all clients that are served by the
PoPs over 15 minute time buckets. Figure 10 shows that 80%
of the time the difference in the latency is less than 3 ms. This
implies that shifting client traffic to links at the same PoP,
impacts the client latency by 3 ms or less.

Shifting traffic to peer links at a PoP different than the
one where it ingressed introduces two challenges. First, it
can inflate latency as the traffic would traverse the cloud
backbone to reach the second PoP. The second PoP could be

further from the client than the original, also inflating PoP
to client latency. Second, traversal of the cloud backbone
can congest backbone links but cloud providers often over-
provision backbone capacity [6] and manage intra-WAN link
utilizations with centralized controllers like SWAN [17] and
B4 [19] to mitigate hot spots. Thus, we focus on the latency
impact of CASCARA in this work. We find the primary PoP
and peer ISP which historically has been the preferred egress
for a client. This primary link defines the baseline for our
experiments – any changes in client latency are measured in
comparison with the primary peer and PoP.

Bound the latency impact in egress link selection. To limit
the degradation to client latency, we inform CASCARA’s allo-
cation (Algorithm 2) of the most recent latency from a peer
link to the client. In every timestep, while fulfilling demands
to a client, CASCARA enforces that traffic is allocated along
the primary and other sets of links. We select the set of links to
empirically construct the relationship between latency impact
and saving of CASCARA. We consider the set of links for each
client to include ISPs with route towards the client – includ-
ing a transit ISP, at the client’s primary PoP. This means that
along with the links to its primary ISP, the client’s demand
could be carried over the transit ISP link at the same PoP. This
can increase the set of outbound link options for a client by
two links in the best case. Since, links at the same PoP have
equivalent latency, this configuration of CASCARA does not
cause significant latency degradation (Figure 10).

We use CASCARA to engineer traffic at each PoP and com-
pute the offline cost optimal solutions (Figure 11) for com-
parison. At some PoPs (PoPs 0, 2 and 13), there are up to
five latency-equivalent peer links to most clients. e.g., two
interconnections with ISP-1, one with ISP-2 and two with the
transit ISP. CASCARA-offline shows the potential to save up
to 50% of bandwidth costs at such PoPs. At other PoPs (PoPs
4, 5, 11), there are only 2 latency-equivalent peer links to most
clients e.g., one interconnection with ISP-1 and one with the
transit ISP. Moreover, high diversity in demands across PoPs
due to client population density leads to differing opportuni-
ties of cost savings across PoPs. We use CASCARA-online to
engineer traffic in an online manner with route and latency
constraints. In each five minute timeslot, CASCARA allocated
traffic to clients on latency equivalent links at the client’s
primary PoP. On average, each iteration of CASCARA takes
approximately 3 seconds to compute traffic allocations, in-
cluding the construction of the LP and extraction of traffic
allocations on links. We note that our implementation uses
Python 2.7 and could be further optimized for running time.
However, TE systems typically perform allocations once ev-
ery 5-10 minutes, thus CASCARA’s runtime of 3 seconds is
reasonable. Across all PoPs, CASCARA achieves the overall
cost saving of 21% while ensuring that client latency remains
unaffected. The per-PoP configuration we have evaluated
enforces the strictest possible latency bound on CASCARA.
CASCARA allows cloud providers to configure the acceptable
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Figure 11: shows cost savings with CASCARA when engineering
traffic on a per-PoP basis while limiting the impact on client latency
to 3 ms in the worst case (mean and standard deviation computed
over three runs of CASCARA).

worst-case latency degradation while saving bandwidth costs.

6 Discussion

In this section, we investigate the source of CASCARA’s cost
savings. We discuss implications of our findings on peering
contracts with ISPs and bandwidth pricing on the Internet.

6.1 Where do the cost savings come from?
Network operators have historically used heuristics to limit
their bandwidth costs. These include, load balancing traffic
over equivalent links and preferring cheaper peer links in the
BGP best path selection by setting localpref appropriately.
Localpref based cost saving is sub-optimal. We illustrate
the cost savings from CASCARA with a small example using
2 links and 3 billing slots. There are two egress links from
a network (Link 1 and Link 2), each of capacity 5 traffic
units and unit peering rate. The traffic demand is assigned
to Link 1 and 2 in any time slot (Figure 12). Traffic must
not be dropped if there is enough capacity on the outbound
links. For simplicity, the links are billed using the median
(50th percentile) utilization over three time slots. Since the
peering rate of both links is the same, localpref-based cost
minimization will simply balance traffic on the two links.
Under this scheme, the link utilizations are : 1,2.5,1.5 in
time slots 1, 2 and 3 respectively (shown in red in Figure 12)
for both links. The median utilization is 1.5 for both, the total
cost of the links is 3 units. An alternate traffic assignment to
the links is shown in blue in Figure 12, where the utilizations
of link 1 and 2 are {1, 5, 0} and {1, 0, 3} respectively. The
median cost in this case is 1 for both links, total cost being
2 units. This scheme saves one third of the traffic cost while
meeting the same demand. We note that by extension, sending
all traffic to a link that is cheaper would also be sub-optimal.
Free time slots for saving cost. The example shows that
in case of median billing, one of the three time slots does
not contribute towards the final cost of the link. Each link
has one free slot that can absorb peaks in demands to reduce
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0
1
2
3
4
5

Time slots

Tr
af

fic
 u

ni
ts

Link 1 Link 2

Figure 12: A toy example comparing CASCARA’s cost-optimized
allocations vs. load-balanced allocations.

costs. Similarly, bandwidth on the Internet is billed using 95th

percentile billing, meaning that 5% of 5-minute time slots in
a month are free for each link. This implies that for roughly
36 hours in a month, traffic allocation on any link does not
contribute to the final billed cost. While it may seem that the
free slots provide little wriggle room for saving cost, cloud
providers have a rich diversity of network peers in several
PoPs. These peer links provide free slots in the billing context
and enable multiple latency-equivalent ways to reach clients.

6.2 Do the findings generalize?
We believe our results generalize to any large global cloud,
content provider, or content delivery network. The first rea-
son is that the cloud provider network is not unique. These
networks all share several critical properties in common with
each other: (1) presence in hundreds of PoPs around the world
to deliver traffic very close to users and (2) extensive peering
and short AS paths [5, 32]. The second reason is that other
large networks have shown that given such large deployments
and peering, many of the alternate paths to users have simi-
lar latency [1, 26]; also allowing these networks to optimize
bandwidth costs with stable performance.

Cost optimization is not a one-time effort. Traffic pat-
terns across billing slots change – demands have been rising
steadily at 30-40% per year. The surge in demand [7] from
the COVID-19 pandemic has made traffic patterns more dy-
namic. We have evaluated CASCARA using over a year worth
of demands, including evaluation in August 2020 to capture
the post-pandemic traffic growth. Our findings show small
month-to-month variation in saving but overall, the savings
are significant and consistent. We note that cost savings com-
pound over time as demand continues to rise exponentially.

6.3 How practical is CASCARA?
While CASCARA benefits from large sets of latency-
equivalent peer links, it can be deployed incrementally over
peer links (§5), allowing cloud operators to choose to expand
CASCARA’s purview over time. CASCARA can bound the
amount by which allocations to links can change across time
slots to prevent sudden changes in traffic (§4.4). Moreover,
we foresee CASCARA as a component of a larger software-
defined edge [27, 33] that already prioritizes successful traffic
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delivery based on the capacity and availability of the down-
stream path. During demand surges or outages, the high prior-
ity components of the TE system may take action to mitigate
customer impact, putting CASCARA on hold for some types of
traffic for short periods of time. Automated network build-out
alerts limit the duration of persistent capacity crunches, en-
abling cost savings from CASCARA in the long term. Where
cost-optimization falls among second-order priorities will
vary across cloud providers and their business needs.

6.4 Implications for existing peering contracts
An important concern in optimizing the cost of inter-domain
traffic is the long-term impact it may have on peering con-
tracts. For instance, if free peers observe higher traffic volume
from the cloud, they may reconsider their peering agreement
or lean towards paid exchange of traffic [22]. Due to these
factors, we evaluated CASCARA only on links with paid North
American peers. We argue that the peering rate captures the
value of the interconnection to both networks involved and
thus optimizing the outbound allocations for cost, not ex-
ceeding the peering port capacity at the edge, is a reasonable
strategy. Additionally, peering rates in certain regions of the
world are disproportionately high due to monopolistic transit
ISPs and complicated socio-political factors, making high
bandwidth rates the cost of operating in the market.

6.5 Implications for bandwidth pricing
CASCARA shows that the abundance of latency-equivalent
peer links has enabled networks to significantly reduce their
expenditure on inter-domain bandwidth. With the findings of
CASCARA, we encourage the community to revisit the classic
problem of pricing inter-domain traffic effectively. A sub-
ject studied since the dawn of the Internet [24], inter-domain
bandwidth pricing models and rates determine paths taken
by traffic and subsequently the end-user performance. With
the emergence of cloud and content providers as the source
of disproportionately large volume of Internet traffic, current
pricing models may not suffice in ensuring the harmonious ex-
istence of networks on the Internet [10, 30]. Today, a handful
of networks (cloud and content providers) can take advan-
tage of their rich connectivity to save inter-domain bandwidth
costs, potentially taking a portion from the profits of ISPs.
Some recent proposals suggest ways to better align the cost of
Internet transit and the revenue gained by networks [16, 34].

7 Related Work

In this section, we discuss important pieces of work related to
CASCARA and set them in the context of our contributions.
Intra-WAN traffic engineering. Large cloud providers have
embraced software-defined, centralized traffic engineering
controllers to assign flow within their private WAN to maxi-
mize their utilization, guarantee fairness and prevent conges-
tion [17,19,23]. Bandwidth costs in the context of WANs were

considered in Pretium [20] (comparison with CASCARA in
Section 3.4). Stanojevic et al. used Shapley values to quantify
the value of individual flows under percentile pricing [28].
Engineering the WAN egress. Recent work has proposed a
software-defined edge to manage outbound flows from their
networks [27, 33]. The goal of these efforts has been to react
to poor client performance by switching to better perform-
ing BGP next hops. The allocation decisions made by CAS-
CARA can be implemented using a software defined edge like
Espresso or EdgeFabric. The subject of TE in multi-hoped net-
works has been studied [12, 25] and we compare CASCARA
with a representative set of work from this space (§3.4).
Engineering delay tolerant traffic. Previous work has ex-
plored the potential of delaying traffic across timeslots to save
bandwidth costs at the end of the billing cycle [21]. However,
the cloud provider we analyze does not consider delaying
client traffic by several minutes as a viable option.
Performance-based routing on the Internet. Google’s
Espresso [33] implements performance-based routing on the
Internet to improve client performance. Recently, other large
global networks have shown limited potential in optimizing
latency by routing [1, 26]. Our work effectively exploits this
realization by optimizing cost while keeping latency stable.
Bandwidth pricing schemes. In the early years of the Inter-
net, economists studied potential mechanisms to price band-
width [24]. Congestion pricing was proposed to bill based on
the use of network resources at times when they are scarce.
These pricing schemes incentivize users to reduce consump-
tion of network resources during peak utilization by pricing
bandwidth higher when the network is congested.

8 Conclusion

In this work, we quantify the potential of saving inter-domain
bandwidth costs in a large commercial cloud provider and find
that optimal allocations can save up to 60% of current inter-
domain bandwidth costs while meeting all traffic demands as
they arrive. Inspired by this, we develop an efficient online
TE framework, CASCARA, that achieves cost savings within
10% of the optimal. CASCARA’s cost savings are robust to
changes in traffic patterns and peering rates. Finally, we show
that CASCARA can balance the cost-performance tradeoff
by achieving 11-50% cost savings per cloud PoP without
degrading client latency significantly.
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A Appendix

A.1 Speeding the MIP solution
In this section we briefly describe the intuitive but ineffective
methods we employed to speed the execution of the MILP.
The methods did not yield a reduction in running time but we
document these for completeness.

Solving the MILP in smaller time slices. Since link utiliza-
tions at the edge exhibit strong daily and weekly seasonality,
we hypothesized that solving the cost optimization in smaller
chunks of time, say, one week at a time, and then stitching
together the resulting solutions would find the entire month’s
optimal allocations. While the smaller problems of weekly
allocations could be solved in approximately ten minutes,
when stitched together, the overall solution is very far from
optimal. In fact, the allocations obtained via this process did
not show any significant reduction in inter-domain bandwidth
cost over the present-day traffic allocations. On investigating
the reason why this approach does not work, we found that
while there are regular trends in the traffic demand, bursts of
traffic are not spread uniformly across all weeks of a month.
Accommodating these bursts with a local, week-long view
leads to overall poor cost saving from the stitched allocations.

Automated parameter tuning. The commercial solver we
used (Gurobi), provides a tool for automatically tuning the
parameters of the solver for a given optimization model. We
attempted to use this tool to find parameters which gave the
best performance in terms of running time and closeness to
the optimal. However, our model was too large for the auto-
tune to deliver any results. Thus, we selected the appropriate
parameter values manually by several runs of the optimization.
These parameters are documented in the code repository we
have released.

A.2 CASCARA’s link augmentation order
We show that changing the order of links that CASCARA aug-
ments during the billing cycle does not make an unfeasible
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allocation, feasible. We take the example of an unfeasible or-
dering, Oun f easible where the demand in timeslot k cannot be
met even after augmenting the capacity of all links. Consider
the following change in the position of link li in the ordering:
if li is picked for augmenting in timestamp k in place of times-
tamp j where j  k. If this were possible, then CAPACITY(li)
would be available for use in timestamp k. However, this is
not possible since li had to be the smallest capacity link that
met the excess demand of timeslot j, any other link that takes
its place has to have a higher capacity. This means that by us-
ing another link in place of li, we would reduce the available
capacity in timeslot k. Thus, a change in ordering of links for
augmentation would not make a problem instance feasible.

A.3 Traffic allocation with CASCARA

In this section we discuss details of the CASCARA allocation
algorithm which were omitted in Section 4 for brevity. The
complete algorithm, Algorithm 3, expands on Algorithm 2. L
is the set of links in the network in the increasing order of thei
peering rate. The algorithm shows how CASCARA allocates
flow to links in every timestamp of the billing period. The
solution to this algorithm are link allocations in all time steps.
CASCARA maintains a priority queue of links and the priority
of a link is decided based on two factors:

• Initial priority: all links have their initial priority set to
the number of free time slots they have in the current
billing cycle. We update the priority after augmenting the
link. In any subsequent billing timeslots, if the demand is
higher than Cf , links with lower priority i.e., ones which
were used in the previous slots are re-used again. This
ensures that the link augmentation is not spread across
many links.

• Link capacity: We prefer to augment lower capacity links
to save the higher capacity links for the remaining billing
cycle. If the demand is too high, high capacity links are
more likely to absorb it with augmentation.

We also kep track of the remaining free slots for each link.
When all links have exhausted their free slots, allocation in
that timestep fails and we have to increment Cf . Let O be the
order in which links got augmented. An example ordering of
augmented links, O is like so:

O = {[l1, l2, l3], [l1, l2, ], ..[lk, lk+1, lk+2,..]}
In timestamp 1, CASCARA augmented allocations to links

l1, l2 and l3. The starting priority of links is the same, so
the priority queue returns links in ascending order of their
capacity. In the next timeslot, CASCARA attempts to meet
the demand by augmenting the same set of links to keep
allocations stable.

CASCARA initializes Cf to the minimum value that pro-
duced a feasible traffic allocation for the previous month. If

Cf is too low for the current month’s demands, despite aug-
menting allocation to links, the traffic demand would not be
met and Cf will be incremented by b. The augmented link
ordering of an infeasible allocation would be like so:

Oun f easible = {[l1, l2..], ..., [lk, lk+1, .., lm]}

where Âm
k CAPACITY(li) demand �Cf .

Additionally, CASCARA has a provision to proactively in-
crement Cf by a (not shown in the algorithm). The goal is
to proactively perform an inevitable increase in Cf to avoid
wasting free slots of links. To do this, CASCARA checks if
the number of links with free slots remaining is proportional
to the amount of time left in the billing cycle. If the number
of burstable links are too few„ Cf is incremented proactively.

Algorithm 3: Online Traffic Allocation (long version)
Result: Allocation of demand d in every timestamp t
Input: L,n,k, f ,CAPACITY,C,a,b
Initialization:
freeslots = k

100 ⇤n
prio = freeslots . Initial priority of all links

linkq = PRIORITYQUEUE()
for link 2 L do

linkq.insert(link, CAPACITY(link), freeslots, prio)

Function allocate_timestep(d, f):
link_alloc = {}
augmented_links = []
Cf = f ⇤C . Fraction f of total capacity C
if d Cf then

link_alloc = bin_pack(L,Cf )
else

d = d �Cf
while d � 0 do

b_link = linkq.pop()
if !b_link then

return {}
augmented_links.add(b_link)
if b_link 2 L1 then

d = d � (1 - f)⇤ CAPACITY(b_link)
else

d = d � CAPACITY(b_link)
link_alloc [b_link]= CAPACITY(b_link)

for link 2 augmented_links do
link.prio = link.prio �1
link.free_slots = link.free_slots �1

return link_alloc
End Function
while not allocate_timestep(d, f ) do

f = f +d
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A.3.1 Link utilization below the billable bandwidth

CASCARA chooses the target billable bandwidth (Cf ) for a
month. Given the billable bandwidth, it can be packed on to
links by greedily assigning traffic ot cheaper links. 4 Given
the minimum feasible Cf , this strategy is optimal. In fact,
utilizing any link below its 95th percentile utilization is uneco-
nomical – the link gets charged at the 95th percentile anyway.
Figure 13a shows that while the utilization in some billing
slots was below the 95th percentile (shaded red), yet, the link
was billed for 15% of its capacity, making the period of uti-
lization below 15%, wasteful.

(a) Link utilizations.
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Figure 13: (a) Utilization of a link as fraction of its capacity, sorted
from high to low across billing slots in a month. (b) 95th %-ile
and avg. of top 10% correlation.(c) Cost saving by CASCARA vs.
Pretium [20] on a month-by-month basis.

A.4 Details on the implementation of previous
systems

We implement the optimization formulation from previous
work using top 10% of utilizations in a month as the band-
width cost of a link. We use CVXPY’s implementation of
sum of largest decision variables for this purpose. Since this

4We have discussed the additional routing and client latency constraints
on CASCARA in §5.

0.025

0.050

0.075

0.025 0.050 0.075
alpha

be
ta

50.0
52.5
55.0
57.5

Figure 14: Average monthly bandwidth cost saving with CASCARA
as a function of the parameters a and b. We choose the best values
of a and b for the evaluation in §5.

formulation is a linear program, GUROBI solves it in less
than a minute. While fast to compute, the allocations from this
formulation are ineffective in saving the 95th percentile cost.
Figure 13c compares the cost savings per-month between our
solutions from Algorithm 1 and previous work. We note that
the cost saving from the sum of top-k formulation are modest,
11% on average for all instances. We believe this is because
of two assumptions made by previous work:

Assumption 1: 95th percentile of a link’s utilization is lin-
early correlated with the average of top k utilizations [20].
We evaluate this assumption using the utilizations of over
50 peering links in a cloud WAN. These links connect the
cloud WAN to large ISPs in N. America. We compute the
Pearson correlation coefficient to measure the extent to which
the average of top 10% utilizations can be used as a proxy for
95th percentile utilization of inter-domain links. We find that
the correlation coefficient for over 25% of the links is less
than 0.5. Since previous work’s hypothesis was derived from
the data of a single WAN link measured a few years ago, the
correlation between average of top 10% and 95th percentile
utilization may exist for some links but not all. Ever-changing
traffic patterns from WANs due to the advent of new services
like gaming also explain this difference.

Assumption 2: The correlation between average of top-k and
95th percentile of a link’s utilization holds even after a new
traffic allocation scheme replaces the current one. There is
no guarantee that assumptions about allocation distributions
hold in a newly proposed traffic engineering scheme. In fact,
traffic engineering schemes change the allocation of flow
along network links, modifying how links are utilized.

A.5 Selecting CASCARA’s hyperparameters
We sweep through potential values of a and b to find the ones
that fit CASCARA the best. The range of values for a and b
is [0,1] since they represent increments to fraction of total
network capacity. We sweep the space in steps of 0.01 to find
the parameters that lead to the highest cost savings in the
average case across all billing cycles (Figure 14).
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Abstract
As the COVID-19 pandemic reshapes our social landscape,

its lessons have far-reaching implications on how online ser-
vice providers manage their infrastructure to mitigate risks.
This paper presents Facebook’s risk-driven backbone man-
agement strategy to ensure high service performance through-
out the COVID-19 pandemic. We describe Risk Simulation
System (RSS), a production system that identifies possible
failures and quantifies their potential severity with a set of
metrics for network risk. With a year-long risk measurement
from RSS we show that our backbone resiliently withstood
the COVID-19 stress test, achieving high service availabil-
ity and low route dilation while efficiently handling traffic
surges. We also share our operational practices to mitigate
risk throughout the pandemic.

Our findings give insights to further improve risk-driven
network management. We argue for incorporating short-term
failure statistics in modeling failures. Common failure pre-
diction models based on long-term modeling achieve stable
output at the cost of assigning low significance to unique
short-term events of extreme importance such as COVID-19.
Furthermore, we advocate augmenting network management
techniques with non-networking signals. We support this by
identifying and analyzing the correlation between network
traffic and human mobility.

1 Introduction

COVID-19 fundamentally reshaped societal norms and hu-
man interactions by forcing most social activities to move
online. The global network infrastructure was subjected to an
unprecedented stress test as work, entertainment and educa-
tion all had to be conducted via digital connections [37]. Over
the past year, the networking community aimed to answer
two fundamental questions about the impact of COVID-19 on
different network environments [7,15,28]. First, how well has
the current network infrastructure withstood the COVID-19
stress test? Second, how should the network infrastructure

evolve to support a post-pandemic era likely to be perma-
nently remodeled by the social distancing experience?

This paper supplements the recent COVID-19-centric re-
search by sharing Facebook’s experience emerging from the
risk-driven backbone management strategy. Our work has two
unique angles: the focus on the backbone network of a global
online service provider and the use of network risk to quantify
the robustness of the network infrastructure under adverse
conditions. This study enriches previous observations made
in different network environments, including the Internet [15],
edge networks [7], and mobile networks [28]. Furthermore,
it is a significant departure from prior work which uses only
traffic measurement to quantify the impact of social events on
the network infrastructure.

Our risk-driven backbone management is based on the fact
that failures and disasters happen frequently and the backbone
network should be equipped with sufficient protection capac-
ity to mitigate the effects. Particularly, Facebook’s backbone
connects hundreds of Point-of-Presence (PoP) sites and tens
of Data Center (DC) regions. At this scale, failures such as
fiber cuts, router misconfigurations, and power outages hap-
pen on a daily basis [20], causing traffic congestion, packet
loss, and latency increase which, in turn, negatively impact the
network’s availability and service-level agreements [8,21,27].
Network risk is an effective means to capture the impacts of
potential failures in the network, before they actually occur,
which is critical for identifying operational pain-points for
long-term deployment planning, mid-term capacity augmen-
tation, and short-term health monitoring.

This paper describes our Risk Simulation System (RSS),
which performs comprehensive “what-if” analyses of network
risk through traffic simulations under plausible failure sce-
narios. RSS has been in production for years. We introduce
RSS in detail, showing key design decisions and engineer-
ing efforts to optimize the system over time. Specifically, we
propose a set of risk metrics (demand loss, availability, la-
tency stretch) to quantify impacts of potential failures from
different aspects. Further, we introduce a high-fidelity failure
model based on failure records from different data sources
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Figure 1: User-facing (DC-to-PoP) traffic traversing the global backbone.

and failure types. To scale our system, we provide different
simulation granularities that trade failure count for simula-
tion accuracy. Moreover, we discuss several techniques to
accelerate computation such as system parallelization, rout-
ing simplification, and reduction of failure scenarios.

We conduct a year-long analysis of network risk using RSS,
and in what follows, we share our operational experience of
keeping risk at bay during the COVID-19 pandemic. Our risk
analysis demonstrates our backbone network remained robust
under the COVID-19 traffic surges. Although risk increased
with traffic, even the most heavily affected class of service
still achieved four 9s of availability and its flows only expe-
rienced 2.12% longer paths on average. We further discuss
capacity enhancement and quality of service downgrade as
two effective measures to reduce network risk.

Finally, we use case studies to show unusual network con-
ditions caused by social distancing have challenged funda-
mental assumptions of the traditional network design, and we
share our insights on future directions of risk-driven back-
bone management. We observe a large variation of optical
and IP-layer failures triggered by changes of human activities.
We thus suggest failure modeling to be more responsive to
short-term failure statistics and discuss the tradeoff between
model stability and agility for accurate failure predictions.
We also identify the limitation of standard network manage-
ment that only considers in-network signals and is blind to
social impacts to the network. We find a negative correlation
between traffic volume and population mobility rate during
social distancing, and use it as an example to show oppor-
tunities for improving network management with external
non-networking signals.

Our risk metrics, failure model and risk simulation ap-
proach generalize beyond the initially envisioned backbone
network scenario and are readily applicable to other network
environments. We believe that risk-driven network manage-
ment has the potential to become the standard approach to dis-
aster prevention, monitoring and recovery. Towards this goal,
we hope that our experience can inspire future solutions and
spur broader adoption of risk-driven network management.
This work does not raise any ethical issues. We preserved user
privacy and anonymity throughout this study.

Phase Start date End date # Days
Pre-COVID (P0) 11/4/2019 3/15/2020 133
Shelter-in-Place (P1) 3/16/2020 5/3/2020 49
Re-opening (P2) 5/4/2020 2/28/2021 301

Table 1: Measurement phases in this paper.

2 Traffic Surges During COVID-19

Recent news reports and measurement studies suggest sig-
nificant traffic surges globally during the COVID-19 pan-
demic [7, 10, 15, 24, 28]. As a major social media platform,
Facebook witnessed higher user engagement under social dis-
tancing. In this section, we measure Facebook’s user-facing
traffic to motivate the need for a risk-driven backbone man-
agement system.

Throughout the paper, we categorize our measurement pe-
riod into three time phases (P0 to P2) listed in Table 1. The
first phase, Pre-COVID (P0), is our baseline to capture the
state of the network before the global shut-down due to the
pandemic. The second phase, Shelter-in-Place (P1), marks
the period when the US and European countries started to
introduce extreme COVID-19 regulations, such as border clo-
sures, flight reductions, and school closures. The third phase,
Re-opening (P2), represents the slow re-opening phase when
strict shut-down orders were relaxed [2].

Significant traffic increase. Figure 1 plots the traffic vol-
ume from our Data Center (DC) regions to Point-of-Presence
(PoP) sites in four geographical regions. The traffic volume
is normalized against average traffic during the pre-COVID
phase (P0). The figure shows a significant traffic surge start-
ing mid-March 2020 in all regions, matching the timeline of
global social distancing. In particular, we measure a traffic
surge of 86% in Asia, 78% in Europe, 65% in North America,
and 70% in South America in the P1 phase.

Beyond the New Year traffic spike. Traffic volume spikes
are not unusual. Today’s service providers consider well-
known flash-crowd events, such as Cyber Monday, in their
traffic modeling [45] and network operation planning [49].
However, as Figure 1 depicts, the COVID-19 traffic increase
has two unique differences. First, the traffic peak during phase
P1 was substantially higher than that of New Year’s Eve (31
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December 2019). The peak volume was 1.62× the 2020 New
Year’s Eve in Asia, 1.65× in Europe, 1.68× in North America,
and 1.61× in South America. Second, flash-crowd events are
usually short-lived, but the traffic surges remained high for
several weeks during the pandemic.

The above observations highlight the challenges posed by
social distancing on large-scale network operations. Under
high traffic load, operators need to answer a natural question:
“is my network at risk?” This question motivates us to quantify
network risk and use it as a guiding signal to drive network
management.

3 Risk-Driven Backbone Management
Satisfying Service Level Objectives (SLOs) is the ultimate
goal of network management. Risk analysis is an indispens-
able and effective means to guarantee SLO compliance under
different failure scenarios. In this section, we dive into the
details of RSS, our risk-driven backbone management frame-
work. We begin with the description of Facebook’s traffic
classification and routing schemes (§3.1), followed by our
definition of risk metrics that align with SLO requirements of
different service classes (§3.2). Next, we describe our failure
modeling technique (§3.3). Finally, we present the design and
implementation of RSS, our risk simulation system (§3.4).

3.1 Traffic Classification and Routing

Quality of Service (QoS). Facebook classifies the backbone
traffic into four service classes. In this paper, we refer to them
as QoS classes 1 to 4, where class 1 is the highest priority.
Different classes of service use different queue assignments
and routing policies. Flows with higher priorities have greater
availability guarantees and can tolerate more failures com-
pared to those in lower priority classes. This is often realized
by over-provisioning extensive backup paths for redundancy.
QoS class 1 contains essential network control traffic includ-
ing network signaling and routing protocol messages to man-
age our network gear; class 2 is for critical services including
most of our user-facing traffic; class 3 is our default class for
most internal applications; and class 4 is for heavy, bulk data
transfers. To reduce operational costs, we constantly look for
opportunities to move traffic into class 4.
Routing. Our backbone uses a centralized network controller
to make routing and Traffic Engineering (TE) decisions [22].
The centralized controller implements different traffic allo-
cation algorithms for different QoS classes. To minimize the
latency experienced by flows in QoS classes 1 and 2, we use
a Constrained Shortest Path First (CSPF) approach that provi-
sions TE tunnels for these flows up to the physical capacity of
the network links. Flows are assigned to paths with the small-
est round trip latencies. The bandwidth for QoS class 2 is
allocated after class 1, and we reserve headroom on each link
for potential traffic bursts for these two classes. QoS classes

Algorithm 1 Compute risk metrics for QoS class q
1: procedure CALCULATE DEMAND LOSS, AVAILABILITY AND LATENCY

STRETCH FOR QOS CLASS q UNDER FAILURE SCENARIOS S
. Input: S: set of considered failure scenarios
. Input: T : set of Traffic Engineering tunnels on the IP topology G
. Input: Fq = { f}: set of flows in QoS class q
. Input: d f : bandwidth demand of flow f
. Output: V q: QoS class q’s availability
. Output: Lq

f = {< Ls,q
f ,s.probability >}: for flow f , a distribution of

latency stretch Ls,q
f per failure scenario and its failure probability

. Output: Xq: QoS class q’s demand loss
2: Initialize flow f ’s availability V q

f = 1,∀q, f
3: Initialize flow f ’s demand loss in scenario s: X s,q

f = 0,∀q, f
. Iterate on all failure scenarios in S

4: for all s ∈ S do
. TE bandwidth allocation bs,q

f and per-tunnel split ratio as,q
f ,t

5: {bs,q
f },{a

s,q
f ,t}= TrafficEngineering(G,T,Fq,s)

6: for all f ∈ Fq do
. Flow f ’s bandwidth-weighted latency

7: l = (∑t∈Tf t.rtt×as,q
f ,t)/(∑t∈Tf as,q

f ,t)
. Flow f ’s latency stretch

8: Ls,q
f = l/mint∈Tf t.rtt

9: Lq
f .append(<Ls,q

f , s.probability>)
10: if bs,q

f < d f then
. Flow f ’s demand loss

11: X s,q
f = X s,q

f +(d f −bs,q
f )

. Flow f ’s availability reduction
12: V q

f =V q
f − s.probability

13: V q = min f∈Fq (V q
f )

14: Xq = maxs∈S(∑ f∈Fq X s,q
f )

15: return V q, Lq
f , Xq

3 and 4 use a combination of K-Shortest Paths (KSP) and
Multi-Commodity Flow (MCF) algorithms with the objective
of minimizing the maximum link utilization in the network.
We pre-assign TE tunnels for traffic flows between each router
pair, then rely on a Linear Program (LP) to load-balance the
traffic over all tunnels. Lower priority traffic uses the band-
width left by higher priority traffic on each link. When failures
bring certain links down, traffic is automatically re-distributed
across remaining tunnels until the next TE execution where a
new optimal traffic allocation is calculated.

3.2 Risk Metrics

This paper defines a set of key metrics to quantify a network’s
risk to potential failures. These risk metrics satisfy two re-
quirements. First, they capture different aspects of failure
events by quantifying the network’s response from multiple
dimensions. Second, since QoS classes have different levels of
tolerance to failures, our risk metrics relate to QoS classes and
reflect their SLO guarantees. As a result, we use the following
metrics for each QoS class q:

(1) Demand Loss (Xq): For a failure scenario s, the demand
loss is the total amount of lost traffic by all flows in q caused
by s. The overall demand loss of QoS class q is the maximum,
or worst-case, demand loss across all the considered failure
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Figure 2: An example with two flows (green and red arrows)
from the same QoS class q under three failure scenarios. Risk
metrics computed by Algorithm 1 are as follows: worst-case
demand loss (Xq) = 0.3 Tbps, worst-case availability (V q)
= 99.81%, flow 1’s latency stretch (Lq

1) = {<1.5, 99.81%>,
<1.67, 0.18%>, <2.33, 0.11%>}, and flow 2’s latency stretch
(Lq

2) = {<1.5, 99.81%>, <2, 0.18%>, <1.5, 0.11%>}.

scenarios s ∈ S.
(2) Availability (V q): The percentage of time that a flow’s

demand is completely satisfied (100% admitted) across all
failure scenarios reflects the availability of that flow. Similar
to demand loss, we compute our availability metric as the
lowest availability among all flows in QoS class q.

(3) Latency Stretch (Lq
f ): For a failure scenario s, the la-

tency stretch Ls,q
f of flow f in QoS class q is the ratio of the

average tunnel latency (weighted by the tunnel bandwidth as-
signments) divided by the shortest TE tunnel latency without
failure. We use Round-Trip Time (RTT) as a proxy for tunnel
latency but other metrics such as hop-count and fiber length
can also be used. The overall latency stretch Lq

f across all
failure scenarios is a distribution, represented as the latency
stretch Ls,q

f of each failure scenario associated with its time
probability of occurrence.

Algorithm 1 describes how these metrics are calculated
by RSS in detail. We first initialize each flow’s availability
and demand loss to 1 and 0, respectively (lines 2-3). For all
considered failure scenarios s ∈ S, we execute the Traffic
Engineering (TE) formulation to find the per-flow satisfied
bandwidth bs,q

f and the per-tunnel traffic allocations as,q
f ,t for

each flow (line 5). Then, we calculate the three risk metrics
using the outputs of TE. Flow f ’s latency stretch is calculated
as the bandwidth-weighted latency l divided by the minimum
latency across all tunnels (lines 7-8). Flow f ’s demand loss
is captured by the difference between satisfied bandwidth
bs,q

f and flow’s demand d f (line 11). If the demand is not
fully satisfied, availability is reduced by the probability of the
failure scenario s (line 12). Finally, we select the availability
of QoS class q to be the worst availability experienced by all
flows f ∈ Fq (line 13), and demand loss to be the maximum
loss across all scenarios s ∈ S (line 14).

Figure 2 shows an example of the risk metrics computed
by Algorithm 1 for two flows from the same QoS class under

three failure scenarios. The healthy state is shown in Fig-
ure 2(a) and labeled as scenario 1. Figure 2(b) illustrates sce-
nario 2 where flows 1 and 2 experience 0.1 Tbps and 0.2 Tbps
of demand loss, respectively. Hence, the total loss for this QoS
class adds up to 0.3 Tbps. In scenario 3, shown in Figure 2(c),
only flow 1 loses 0.1 Tbps traffic, so the total loss is 0.1 Tbps.
The demand loss for this QoS class is thus 0.3 Tbps — the
highest loss across all scenarios. To obtain the availability for
this QoS class, we first compute the availability of each flow.
The demand of flow 1 is fully satisfied in only the no-failure
case (scenario 1). As a result, its availability is computed as
the probability (fraction of time) that the network is healthy:
1− 10 hours

1 year + 10 hours −
20 hours

3 years + 20 hours = 99.81%. The demand
of flow 2 is fully satisfied in scenarios 1 and 3, hence its
availability is 1− 20 hours

3 years + 20 hours = 99.92%. The availabil-
ity of this QoS class is the lowest availability across both
flows, which is 99.81%. To simplify the calculation of latency
stretch in this example, we assume the latency of each link to
be 1. Because the shortest tunnel latencies for both flows are 1,
their bandwidth-weighted latency stretches in the healthy state
(scenario 1) are both 1.5, as shown in Figure 2(a). In scenario
2 (Figure 2(b)) the latency stretch values for flows 1 and 2 are
0.2×1+0.1×3

0.2+0.1 = 1.67 and 0.1×2+0.3×2
0.1+0.3 = 2, respectively. Simi-

larly, in scenario 3 (Figure 2(c)) the latency stretch values for
flow 1 and 2 are 0.2×2+0.1×3

0.2+0.1 = 2.333 and 0.3×1+0.3×2
0.3+0.3 = 1.5,

respectively. We then associate each failure scenario’s proba-
bility to the corresponding latency stretch value to construct
the latency stretch distributions.

3.3 Failure Modeling

High-fidelity failure modeling is important for network plan-
ning to meet SLOs. Hence, modeling failure scenarios is an
essential component in calculating the risk metrics that we
defined in the previous section. The goal of failure modeling
is to estimate the likelihood of a failure scenario as well as
the duration of the failure event. In this section, we explain
Facebook’s production failure model.

3.3.1 Characterizing Failure Events

We use two main variables to characterize failure events in
our backbone:

(i) Time Between Failures (TBF) represents the duration
between the recovery and the occurrence of two consecu-
tive failures. This metric captures how reliable a network
component (such as switch, linecard, or a fiber path) is. For
most components in our backbone network, TBF tends to be
thousands or even tens of thousands of hours.

(ii) Time To Repair (TTR) measures how long each fail-
ure event lasts. This metric depends on the efficiency of the
network operation. Some failures (e.g., subsea fiber cuts) are
more difficult to repair than others (e.g., switch failures).

Our experience indicates that fiber-related failures in our
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backbone are the most devastating failure scenarios in terms
of capacity loss and time to repair. As a result, our primary
focus to model failures is on fiber-related issues.

Each fiber i under each failure scenario j is represented with
a tuple (T BFi, j,T T Ri, j). We use historical data analysis to es-
timate the values in each tuple. However, modeling every fiber
in the backbone individually adds excessive complexity and
will overwhelm the system. We need an intelligent clustering
method to model fibers with similar features together. More-
over, we cannot completely rely on empirical observations.
For instance, newly deployed fibers do not have historical fail-
ure data. As a result, we model T BFi, j and T T Ri, j based on
known features such as the length of the fiber and its supplier.
The next section describes how we address these challenges.

3.3.2 Capturing Common Features and Data Sources

A naive approach to model failures is to use past failure events
to compute TBF and TTR from historical data. However, there
are practical challenges with this approach. First, rare fail-
ure events may not have enough historical data to faithfully
compute their TBF and TTR. Second, data can be noisy. In
particular, repair times are often recorded manually in our tick-
eting system, which may not be completely accurate. Third,
data sources may belong to different administrative domains.
For instance, leased fibers are operated by third-party ven-
dors and we may not have access to the complete failure data.
To address these challenges, we use a combination of com-
mon features and several data sources to model the failure
characteristics of each fiber as accurately as possible.

Common Features. Each fiber is different, but there are com-
mon features that we can use to characterize a fiber without
having its exact TBF and TTR. Below are the failure features
we use in our system.

• Fiber length: Longer paths are more likely to experience
fiber cuts due to greater surface area.

• Vendor: Fibers from certain vendors are more reliable than
others, depending on their physical characteristics, opera-
tion quality, and contractual obligations to us.

• Operational ownership: Some fibers are purchased from
the builder directly, while others may be leased or bought
from indirect parties. We expect that without direct access
to the fibers, subcontracted fibers have longer repair times.

• Install type: Subsea fibers are known to have longer repair
time due to the difficulty in accessing the fiber or limited
supply of maintenance ships. Similarly, aerial fibers are ex-
pected to have higher failure rates compared to buried fibers
because the fiber is exposed to disasters and accidents.

• Geographical region: Failure rates can be higher in certain
areas with frequent natural disasters, e.g., hurricanes. Re-
pair times vary based on the weather condition, and can
grow because of catastrophic events.
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Figure 3: Distribution of time to repair for subsea fibers.

• Urban density: Fibers are more likely to be impacted in
urban settings due to more frequent human activities, and
hence accidental fiber cuts.

• Shared Risk Link Group (SRLG): Some fibers may fail
together due to shared conduit or geographical proximity.
An SRLG is considered as a single entity, hence, in our
risk simulation system, we consider each SRLG as a single
failure scenario.

Data sources. The impact of each feature can be analyzed us-
ing real-world data. We use three data sources for this purpose.
(i) Operational tickets: Our Network Operation Center (NOC)
maintains hundreds of incidents ticketed to our vendors. Each
ticket contains confirmed failure information such as failed
links, downtime, and failure root causes. We use this service
as a historical benchmark for availability. However, the data
is manually maintained, hence, the accuracy and coverage
are both limited. (ii) Continuous measurements: We moni-
tor counters from both IP-layer switches and optical-layer
transponders and ROADMs. IP counters are collected every
minute via the standard monitoring protocol SNMP. Optical
counters are collected every three minutes using our optical-
layer monitoring protocol TL1. To identify failures, we look
for the Loss of Signal (LOS) on the Optical Service Channel
(OSC) accompanied by the loss of IP links. (iii) Fiber lifetime:
The above data sources both report discrete failure incidents,
yet some fibers may not have failure events in recent years.
Thus, we use the fiber lifetime dataset from our fiber inventory
to compute the uptime of each fiber.

3.3.3 Failure Modeling Framework

We develop a failure modeling framework to best utilize the
above data for estimating the failure model parameters. In
particular, we take a two-step process.

1. Clustering. We start with a list of fibers and
their failure characteristics from the data sources de-
scribed in the previous section. Each record contains <
f1, f2, . . . , fk,T BFt ,T T Rt ,T BFd ,T T Rd >, where fk is the kth

element in the feature set, T BFt and T T Rt are the TBF and
TTR values from the tickets, and T BFd and T T Rd are those
from the continuous measurements. We then use a Bayesian
clustering algorithm to identify groups of fibers that share
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MTTR MTBF
Subsea fibers vs. non-subsea fibers 90× 36×
Leased fibers vs. non-leased fibers 1× 0.4×
Fibers in the most different region
vs. fibers in other regions

2× 5×

Table 2: MTTR and MTBF of different fiber categories.

similar failure characteristics. The output of this step is a set
of clusters (C1, . . . ,Cg), where each Ci contains a set of fibers.

2. Bayesian Hierarchical Model. Next, for each cluster, we
use an exponential hierarchical model to fit the distribution of
TBF and TTR separately. We find the mean TBF (MTBF) and
mean TTR (MTTR) from both fitted curves and use them in
RSS (§3.4). The accuracy of this model is evaluated in §4.1.

Operational observations. In the following, we summarize
some of our empirical measurement results that have provided
inspirations for our failure modeling.

Subsea TTR follows arbitrary distribution. Figure 3 shows
the TTR distributions of three subsea fibers from our empiri-
cal failure data source. Each subsea fiber has a unique TTR
distribution, due to its physical properties such as the length
and placement under the ocean that determines the accessi-
bility for repair endeavors. This observation deviates from a
common technique to use a simple exponential distribution
for TTR in two major ways. First, unlike exponential distribu-
tion, there is a lower bound for the TTR. This lower bound
corresponds to the physical time constrains such as the time to
secure permits to enter the water and the sailing time. Second,
the distribution is multi-modal since each subsea fiber has
distinct parts with different failure profiles depending on the
depth under water.

Impact categories. We categorize three key factors that have
significant impacts on the failure model: whether a fiber is
subsea, leased, or belongs to a particular region. Table 2 shows
the relative impact of different fiber categories on MTTR and
MTBF. If a fiber is subsea, its MTTR is 90× longer than that
of non-subsea fibers, and its MTBF is 36× longer. This is
because subsea fibers are less frequently cut, but once they are
cut, they will take much longer to be repaired. Leased fibers
have similar MTTR as non-leased (Facebook-owned) fibers,
but are 2.5× more likely to fail in terms of MTBF. For the
region factor, we select the region with the largest difference
from the rest ones, and we observe a 5× difference in MTBF
and 2× difference in MTTR. These results show the drastic
differences between fiber types and indicate the importance
of clustering fibers into appropriate failure groups.

3.4 Risk Simulation System (RSS)
3.4.1 System Design

RSS performs periodic simulations (e.g., every 30 minutes)
to report the risk metrics defined in Section 3.2. Figure 4
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Risk 
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Figure 4: Risk Simulation System architecture.

depicts our risk simulation pipeline. For each simulation run,
the Backbone Snapshotter polls the backbone routers for the
latest IP topology and traffic demand. The Failure Generator
generates hypothetical failure scenarios to be simulated. The
Risk Simulator takes in such information to simulate routing
on the residual topology under different failures. To simplify
system implementation, we reuse the binary of our central-
ized Backbone Controller which computes the TE solution
using a global optimization formulation. Since routing sim-
ulations for different failure scenarios are independent, we
shard them onto a number of Risk Workers for parallelization.
The risk metrics are calculated from the worker instances and
displayed on a real-time risk dashboard. Risk values higher
than pre-defined thresholds will raise production alarms.

Calculation of the risk metrics requires failure probabili-
ties, which can be derived from MTBFs and MTTRs — the
mean values of the failures’ TBF and TTR distributions in
Section 3.3. For most failures, the TBF and TTR follow ex-
ponential distributions. However, the TTR for subsea fibers
is arbitrary and hard to model. As a result, we estimate their
metrics from our empirical failure observation in production.

Suppose a failure scenario includes n failed fibers
{ f1, f2, ..., fn}. For a particular fiber fi, the probability of be-
ing available is A( fi) =

MT BFi
MT BFi+MT T Ri

, and the probability
of being under failure is P( fi) = 1−A( fi). Therefore, the
probability of the entire failure scenario is P( f1, f2, ..., fn) =
Πn

i=1P( fi), and the available probability is A( f1, f2, ..., fn) =
1−Πn

i=1P( fi). Given the failure probability of each failure
scenario, the risk metrics can be calculated using Algorithm 1.

RSS supports three modes of operation. Mode 1 is for
fine-grained simulation of customized failures that are ex-
pected to happen in the near future. For example, it is part
of our decommission workflow where capacity is removed,
or migrated from one fiber to another, according to the back-
bone expansion plan. Before decommission tasks are carried
out, RSS is used to generate failure scenarios that reflect the
decommission plan. The risks associated with these scenar-
ios are then taken into account to ensure there is sufficient
protection capacity in the network. Mode 1 also serves for
risk monitoring and mitigation under natural disasters. For in-
stance, in response to a hurricane forecast, we simulate failure
scenarios relating to the hit regions and shift traffic as neces-
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sary. Similarly, as COVID-19 goes on, we plan to simulate
failure scenarios for specific geological locations based on
the severity of the pandemic.

Mode 2 is fine-grained simulation of pre-defined failure sce-
narios for different QoS classes given their protection policies.
In production, the protection policies include four categories
of critical fiber failures: (1) single fiber failures, (2) SPOFs
where multiple SRLGs use fibers in the same conduit or have
the same geographical proximity, (3) dual subsea failures
where two subsea fiber paths fail simultaneously, and (4) dual
DC failures where two fiber paths from the same DC fail si-
multaneously. These four categories include over 6000 failure
scenarios in the Facebook backbone. As described in Sec-
tion 3.1, different QoS classes protect against different failure
categories. QoS classes 1 and 2 carry our critical services and
have full protection against all the above failure categories.
QoS class 3 (default class for our internal traffic) relaxes on
dual DC failures, because they account for over 50% of the
failure scenarios but are less likely than single fiber failures
and SPOFs and have less severe consequences compared to
dual subsea failures. QoS class 4 (background bulk data trans-
fers) is best-effort service without failure protection. We use
Mode 2 in RSS to validate the QoS performance and guide
network maintenance.

Mode 3 is coarse-grained simulation of a large number of
potential failures in the backbone, where the exact number
is determined by a cutoff threshold. The cutoff threshold can
be defined in different forms, such as by failure probability,
the number of concurrent failures, MTTR, or the protection
cost (in terms of the protection capacity, construction cost,
and maintenance work), under the intuition that we value
failures that are more likely to happen, take a longer time to
repair, or are affordable to protect against. We typically have
a quick scan of the network health considering millions of fail-
ure scenarios. This simulation mode must be coarse-grained
given the large number of failure scenarios. We bypass the
computation-heavy global TE optimization with efficient rout-
ing approximations, which will be discussed in Section 3.4.2.
This mode of operation offers a tradeoff between simulation
accuracy and runtime, and the choice depends on the number
of failure scenarios and how close to production the simula-
tion needs to be (e.g., replaying production situations in Mode
1 and 2 vs. a big picture of the network in Mode 3).

3.4.2 System Optimizations

RSS is implemented using around 18,000 lines of C++ code.
This system is highly optimized for fast execution time. Today,
it can finish a fine-grained simulation of one failure scenario
in an average of 250 seconds and a coarse-grained simulation
of a failure scenario in 0.1 second. Important performance
improvements attribute to the following optimizations.

Parallelization. Our risk simulation is highly parallelizable
by nature. Our first implementation was based on a two-layer

master-slave architecture where the failure scenarios were dis-
tributed across the slave nodes and the simulation results were
aggregated to the master. The master node was overwhelmed
with the aggregation load when we scaled to 50 slaves, hence
we added another layer in the middle to aggregate the inter-
mediate results generated by slaves and then transmit them to
the master. Today, we use tens of aggregators and hundreds
of slave nodes to optimize the execution time of RSS.

Routing simplification. Our fine-grained simulation emu-
lates the production backbone by executing the TE algorithm
when a failure happens. This process is computationally ex-
pensive, especially when we simulate a large number of failure
scenarios. Thus, for coarse-grained simulations, we simplify
the TE implementation with shortest-path routing of small
units of sub-flows. Specifically, we split each traffic flow in
the backbone demand matrix, usually hundreds of Gbps or
several Tbps big, into minimal sub-flows around 1 Gbps and
pack them one by one onto the shortest path until there is
no remaining capacity in the network. The result is close to
production TE when the sub-flows are sufficiently small.

Merge duplicate failures. Different fiber failures can result
in the same failure scenarios on the IP layer, which can be
effectively merged during risk simulation. For example, fail-
ures of different SRLGs may cause different fiber spans to
be down, but they create the same failure scenario for the IP
links over the fiber paths traversing any of these fiber spans.
Because the risk is ultimately simulated on the IP-layer net-
work, RSS translates the fiber failures into IP-layer failures
and merges duplicate failure scenarios. The failure proba-
bility of a merged failure scenario equals to the sum of the
probabilities of each individual failure event.

Identify dominating failures. We further reduce the sim-
ulation time by only simulating failures with severe conse-
quences. We define dominating failures as the ones that con-
tain subsets of other failures. For example, the failure scenario
with fiber cuts { f1, f2} is a dominating failure of single fiber
failures f1 and f2 alone. Note that this simplification only
applies to the calculation of demand loss, which does not
rely on the probabilities of failure scenarios (the other two
risk metrics, latency stretch and availability, need to factor in
failure probability). This is because the failure probability of
a dominating failure is much smaller than the probabilities of
its subset failures. In production, we usually use this approach
for the Mode 1 simulation, where the demand loss of expected
failure events is a critical signal for network maintenance.

4 Evaluation

In our daily operation, we keep monitoring the health of the
backbone network with the risk metrics (Section 3.2) pro-
duced by RSS (Section 3.4). Here we report the risk mea-
surement results from November 2019 to September 2020
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Figure 5: Availability over time for each QoS class.
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Figure 6: CDF of per-flow latency stretch for each QoS class.

and share our operational experience to survive the extreme
conditions under COVID-19.

4.1 Observations with RSS
An important input into RSS is production traffic. During
COVID-19, we observed an increase in network risk triggered
by significant traffic surges (Figure 1). However, most risk
metrics remained at a reasonable level, indicating that our
backbone was robust under the COVID-19 stress test.

High availability. As shown in Figure 5, different QoS
classes all achieved high availability over time, constantly
reaching the SLO goals. The traffic increase during social
distancing mostly related to the user traffic in QoS class 2,
causing its availability to drop sharply from around 0.99998 to
0.9999. QoS class 1 also experienced a minor availability re-
duction, as the traffic for highly critical user services increased
as well. The change was smoother compared to QoS class
2, because QoS class 1 also contains system control traffic
irrelevant to user behaviors. QoS classes 3 and 4 that mostly
comprise machine-to-machine computational traffic showed
no obvious decrease in availability. These results suggest that
availability is highly sensitive to traffic volume. On the pos-
itive side, our backbone infrastructure is over-provisioned,
making it robust against the unprecedented traffic surge.

Low latency stretch. From Figure 6, we see a minimal
change of latency stretch during the shelter-in-place period
(P1). Recall from Section 3.1 that QoS classes 1 and 2 use
CSPF routing. As shown in the figure, over 97% of the flows

in QoS classes 1 and 2 had a latency stretch of 1 throughout
the entire measurement period (P0 +P1 +P2), meaning they
went through the shortest paths. The latency stretch of QoS
class 2 was slightly higher than that of class 1, because the
bandwidth for QoS class 2 is allocated after class-1 flows
are fully accommodated. Similar to the availability results,
latency stretch degraded the most in QoS class 2 during the
shelter-in-place period (P1) due to the traffic increase. Yet,
the stretch still remained low regardless of the COVID-19
increase: it stops at 1.7 for most flows in QoS class 2, and at
1.4 for QoS class 1, though with a long tail not shown in the
figures. QoS classes 3 and 4 use a combination of KSP and
MCF routing, so they generally take longer paths. The mean
latency stretch for QoS class 3 was 1.71, and 2.53 for QoS
class 4. COVID-19 caused little increase of latency stretch for
these two traffic classes, which is consistent with the trend of
traffic growth and availability change.

Accurate failure modeling. We evaluate the accuracy of
our failure model (§3.3) by comparing the TTRs and TBFs of
observed fiber failures in North America against our model’s
predictions. As shown in Figure 7, our failure model is close
to the actual observed values. To quantify the difference be-
tween prediction and observation, we perform a Kolmogorov-
Smirnov (KS) test [1] on the null hypothesis that the measure-
ments and the model-generated samples are drawn from the
same distribution. We report the KS statistic and p-value in Ta-
ble 3. Both p-values are large, meaning the two distributions
match. Lastly, we directly compute the prediction accuracy,
as the difference between each observed and predicted value,
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KS stats p−value accuracy
TTR 0.05 0.25 94%
TBF 0.03 0.47 98%

Table 3: Kolmogorov-Smirnov (KS) test
statistics and accuracy of TTR and TBF
models.
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Figure 8: Normalized demand loss per QoS class.
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Figure 9: QoS class 2 down-
played into class 3&4.

divided by the observed value. Our model achieves 94% ac-
curacy for TTR and 98% accuracy for TBF prediction.

4.2 Risk Mitigation
Demand loss as a guide. Demand loss is a rigid risk metric,
which captures the highest traffic loss across all simulated
failure scenarios. It guides our operations for mitigating po-
tential risk. Figure 8 shows the demand loss for each QoS
class over time. For confidentiality reasons, we normalize
the numbers in each QoS class against the highest loss value.
We group different types of failures that we track into two
categories: single fiber failures and dual fiber failures. These
categories capture the major failures we protect against in
production. The figure shows that the demand loss increased
during the P1 phase for QoS classes 1 and 2. In particular,
the mean value of risk during the shelter-in-place phase (P1)
increased by 80% compared to the pre-COVID period (P0)
in QoS class 1, and by 3.6× in QoS class 2. QoS classes 3
and 4 did not have a significant change in their demand loss
values during the pandemic, and the loss increase in March
2020 was due to traffic migration between regions because
of an internal policy change. Note that dual failures, though
less common in practice, induce 2.14× higher loss on the
fabric than single failures, on average. This worst-case analy-
sis makes us operate the network conservatively, which was
especially beneficial during the pandemic period.

QoS downplay. Another key technique to save capacity
for the most critical traffic is to adjust the QoS assignment.
By default, all traffic from a service is assigned the same
QoS class. However, a service usually contains traffic from
both user requests and system metadata, whose importance
should be differentiated. This coarse-grained performance
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Figure 10: Backbone capacity measured per week.

isolation causes over-protection of unimportant traffic, and
the resulting capacity waste should be recycled for traffic
increase. We have developed an internal system that leverages
inference mechanisms to identify the true traffic priorities and
correct their QoS labeling. For example, we find that on-off
and periodic traffic patterns are common signals for machine-
created traffic, which can be downgraded to a lower class.
Figure 9 zooms into QoS classes 3 and 4 in Figure 8(c) and
shows the demand loss of the downplayed traffic. The loss
only appeares during the shelter-in-place phase (P1) as the
result of traffic shift to alleviate the stress from QoS class 2.

Proactive capacity enhancement. We deploy optical
wavelengths periodically to augment the capacity of our back-
bone. Figure 10 shows the weekly measurement of backbone
capacity over a year, normalized by the capacity value be-
fore P0. We observe an aggressive capacity increase starting
from the P1 phase compared to the pre-COVID times (P0).
This capacity increase is also visible in Figure 8, leading to a
significant drop in demand loss in April and May 2020. We
observe a continued capacity increase during the re-opening
phase (P2). Although social distancing during the COVID-19
pandemic paused most of our site work for deploying new
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Figure 11: Impact of COVID-19 on hourly active failure tickets.

Failure Mean # of tickets p−value for
category P0 P1 P2 P0 and P1
IP 80.56 80.28 121.4 0.44
Optical 7.67 3.72 14.0 � 0.001

Table 4: Statistical comparison on the
number of active tickets during our
measurement phases.

fibers, we had sufficient dark and under-provisioned fibers
from previous planning cycles. Our “plan ahead” strategy
gave us enough headroom for emergency capacity enhance-
ment, and our fully-automated optical management system
allowed us to provision wavelengths remotely.

5 Insights on RSS Improvement
Besides a stress test of our network infrastructure, COVID-19
and the resulting social distancing also created unusual sit-
uations beyond normal assumptions of network operations.
These edge cases have given the networking community a
unique opportunity to rethink fundamental design assump-
tions of networks. In this section, we share our recent progress
on failure modeling and traffic forecasting to shed light on
future evolution of risk simulations.

5.1 Responsive Failure Modeling
Our failure modeling (Section 3.3) uses years of failure mea-
surement data to ensure model accuracy and stability, and it
is accurate in the long run (Figure 7). However, prior studies
claimed network failures are often caused by human activi-
ties and network operations [19, 20, 29, 30, 38]. Indeed, we
confirm that the lack of human activities during the shelter-in-
place phase (P1) as well as the increase of network upgrade
and capacity augmentation activities during the re-opening
phase (P2) changed the failure characteristics. In response to
the change, we recalibrated our failure model to increase the
weight of failure statistics during the P0, P1 and P2 periods.

The recalibration relies on Facebook’s centralized failure
ticketing system, which automatically detects network fail-
ures and infers possible root causes. For this purpose, we
categorize failure tickets into two groups: (i) optical-layer
failures (e.g. fiber/amplifier/transponder issues) and (ii) IP-
layer failures (e.g. router/interface down). For each group, we
record the number of active failure tickets every hour and plot
the probability density function of each phase in Figure 11.
Our observations are as follows.

Optical-layer failures. Figure 11(a) compares the proba-
bility density function of hourly active optical-layer failure
ticket numbers among the pre-COVID (P0), shelter-in-place
(P1) and re-opening (P2) phases. The dashed lines in the fig-

ure represent the moving average of each phase. We observe
reduced optical-layer failures during P1 compared to P0. We
attribute this finding to the significant reduction in human
activities at our backbone facilities during global social dis-
tancing. For instance, limited construction work can lead to
fewer fiber cuts, and fewer human contractors on-site may
result in fewer accidental link flaps, as suggested in prior
work [19]. We observe more active optical failure tickets in
the re-opening phase (P2), as our network operation team was
actively augmenting the capacity of our backbone.
IP-layer failures. Figure 11(b) shows the probability density
function of hourly active IP-layer ticket numbers during the
P0, P1 and P2 phases. In contrast to optical-layer failures, we
find no significant changes in IP-layer failures between P0 and
P1, and the two distributions largely overlap with each other.
This is likely because IP-layer tickets, such as router/interface
hardware failures, are mostly mechanical issues and do not
correlate with human activity. However, similar to the optical-
layer failures, in the re-opening (P2) phase, the IP layer also
experienced more active failure tickets due to our aggressive
capacity provisioning operations. Moreover, since the pan-
demic continued to enforce limitations on our failure repair
staff, the P2 phase suffered from longer repair times.
Confirmation with statistical hypothesis test. The results
in Figure 11 suggest that optical and IP-layer failure distri-
butions behave differently during the P1 phase. To confirm
this observation, we apply a statistical hypothesis test on the
time-series distribution of active number of tickets between
the P0 and P1 timelines and set the null hypothesis to be: the
means of the distributions are the same. We apply Welch’s
t-test on the optical and IP-layer categories separately to val-
idate the null hypothesis. Table 4 reports the mean number
of active tickets and the corresponding p−values for each
category. Considering a p−value threshold of 0.01, the null
hypothesis cannot be rejected for IP-layer tickets, suggesting
the pandemic did not have a significant impact on the IP-layer
failures during P0 and P1. In contrast, the null hypothesis is
rejected for optical tickets suggesting that the average number
of active optical tickets changed in a statistically significant
manner. Note that we do not run hypothesis tests over P2
because its mean values in both the IP and optical layers
differ a lot from those of P0 and P1, which already indicates
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Figure 12: Traffic volume and mobility patterns in six US cities during the COVID-19 pandemic.

differences in the probability distributions.

Insights. These findings call for responsive failure modeling.
When special events cause failure characteristics to change,
the failure prediction model should be adjusted to rely more
on recent failure measurement points. However, the model
stability might be at stake with short-term data collection, and
the challenge lies in balancing stability and agility to have
an accurate model. The COVID-19 crisis required us to re-
spond quickly, and the fast development of the pandemic gave
us little time for drastic redesigns of the failure model. The
various failure generation modes in RSS make it adaptive to
different failure models. For instance, our customized failures
in Mode 1 are designed for failure scenarios of particular in-
terests that may deviate from the failure model. We leveraged
this feature to feed RSS with short-term failure statistics for
close monitoring of the network health during COVID-19.
The failure model is hard to change in Modes 2 and 3, hence,
we applied a scaling factor to the failure distributions to gen-
erate more failures. These false positives helped us operate
the network more cautiously during the pandemic. Moving
forward, we are working on more responsive failure modeling
with a sliding window that automatically assigns weights to
different measurement periods.

5.2 Traffic Prediction with External Signals

The risk observations we report throughout this paper use
current production traffic as input, yet RSS can also take
in projected traffic to forecast future risk. At Facebook, we
perform demand forecasting every quarter to predict the traffic
volume in the next 6 months to one year. Our prediction used

to be accurate, but the traffic grew beyond the predicted upper
bound since the pandemic started. At the peak, we saw a 26%
difference between actual and predicted upper-bound traffic.

In our operational experience, we have seen rich examples
of how external non-networking signals can be leveraged to
aid network management. For instance, it is common prac-
tice to strengthen the guard on PoP or DC regions that have
received hurricane warnings, and we keep a close watch on
traffic blackholing in areas with frequent armed conflicts. In
this section we demonstrate that human mobility metrics can
also be used to better predict the traffic volume.

To demonstrate this finding, we use population mobility
data from the SafeGraph [5,41] database built from 20 million
mobile devices. As an approximation of mobility, we sum the
total number of trips that take place in a geographical region
based on aggregated cellphone GPS data, and normalize it
by the population of the trip origin. We consider six major
US cities and plot the variations of traffic and mobility over
time in Figure 12. Interesting findings imply opportunities and
challenges in our proposal of mobility-aided traffic prediction.

Negative correlation between traffic and mobility. Fig-
ure 12 shows the traffic volume and mobility rate normalized
to their corresponding averages during the P0 phase. While
there is a fair amount of overlap between traffic and mobility
in P0 across the cities, we observe a strong negative correla-
tion between traffic and mobility since the start of P1. We see
the general trend that when mobility drops, traffic increases;
and as mobility increases slowly, traffic falls as well. The spo-
radic spikes of mobility and traffic also match well, forming
zigzags in opposite directions. The gap between the traffic
and mobility curves closes down in the P2 phase when the
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cities started to re-open and social distancing reduced.
Variations across cities. Each city shows some uniqueness
despite the same trend. Chicago, Dallas, Los Angeles, and
Miami have similar patterns that network traffic gradually
decreased while mobility continued to increase after the pan-
demic peak in mid-Mach 2020. In Chicago, traffic increased
by 99% and mobility rate decreased by 36% during the shelter-
in-place phase (P1) compared to the P0 phase baseline. Dallas,
Los Angeles, and Miami had around a 40-70% traffic increase
and a 35% mobility drop. Roughly, the drop in mobility rate
corresponds to different levels of traffic reduction across cities.
For example, in Miami and Los Angeles the traffic volume
almost returned back to normal in the P2 phase, while Chicago
still showed a 25% average traffic increase, and Dallas had
around 10% average traffic increase. On the other hand, New
York City and Seattle have contrasting patterns, with both an
uptake in traffic and a downtake in mobility appearing since
November 2020. For Seattle, we also observe ups and downs
in traffic volume, with occasional spikes up to 74%.
Insights. An intrinsic limitation of traditional network man-
agement is the complete reliance on in-network signals. It
fails to track social influences on the network infrastructure,
which has been proven to be heavily underestimated during
COVID-19. Our mobility case study shows the potential ben-
efit of embracing offline signals from the outside world. On
occurrences of social events, we can make mobility the main
signal for traffic prediction. As Figure 12 shows, traffic peaks
can be inferred from the steep drops in mobility rate. How-
ever, it is challenging to estimate the traffic volume when it
recovers, as mobility rate does not show significant changes
in that case. We may need other signals to understand user
behaviors better. Fortunately, though, risk management cares
about worst-case scenarios. Thus, an accurate prediction of
the peak traffic is already a big win for risk prevention.

6 Related Work
Risk-aware network management. There have been recent
proposals to apply risk to capacity planning [4, 6] and traffic
engineering [8, 12, 31, 46]. The definition of risk is differ-
ent across proposals, including probabilistic models of fail-
ures [6, 8], revenue shortfall [31], early signs of failures (e.g.,
hardware abnormality and performance degradation) [46],
user-specified undesirable events and their associated prob-
abilities [12], and the likelihood of losing customer traffic
during planned network changes [4]. In this paper, we de-
scribe Facebook’s definition of risk as a set of SLO-related
metrics that quantify the impacts of potential failures. We are
also the first to apply risk simulation to backbone manage-
ment and to develop a production system.
Internet under COVID-19. There are reports on the impacts
of COVID-19 on the Internet [10,13,17,24,32,33], as well as
measurement studies on the PoP traffic [7], mobile traffic [28],
Internet traffic [15], and cybercrime [47] during the pandemic.

We share similar observations on the traffic increase, but we
present a comprehensive study on the impact of COVID-19
from the perspective of risk management.
Backbone failures. Prior work on understanding backbone
failures includes statistical modeling [3, 9, 42] and real-world
measurements on both the optical layer [18, 19, 38, 43] and
the IP layer [11, 14, 23, 25, 26, 29, 30, 35]. Our failure analy-
sis confirms the observation in previous papers that a good
proportion of failures are human-related [19, 20, 29, 30, 38].
Traffic classification with QoS. QoS can provide differen-
tiated performance for different categories of traffic [16, 48].
There have been rich discussions on traffic classification meth-
ods in the prior work [36, 39, 40, 44]. In recent years, with the
development of SDN, traffic classification can be deployed
with centralized control on a private enterprise network [34].
Facebook follows these discussions and categorizes the back-
bone traffic into four classes of QoS. To maximize user sat-
isfaction while considering network risks, our traffic classi-
fication scheme can dynamically adjust traffic flows’ QoS
categories so as to prioritize critical traffic flows and guaran-
tee service level objectives.

7 Conclusion
This paper introduces RSS, a risk simulation system deployed
at Facebook. We present our risk analysis with RSS during
the COVID-19 pandemic period and beyond. Motivated by
the surge of traffic volume, we define risk metrics to quantify
the impact of COVID-19 and show our strategies to mitigate
the risk. We keep the network running at low risk levels dur-
ing this challenging time and propose that having responsive
failure modeling and using external signals such as human mo-
bility can help understand the social impacts on the network
to further improve network management. Our experience and
insights are useful for managing large-scale backbones in the
post-pandemic world, where we are likely to face an ever-
growing demand for online services. We hope that our experi-
ence can inspire and guide practitioners towards embracing
risk-driven network management and ultimately making it
a key strategy for ensuring high availability of networked
services.
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Raul Landa, Lorenzo Saino, Lennert Buytenhek and João Taveira Araújo
Fastly

Abstract
Internet path failure recovery relies on routing protocols, such
as BGP. However, routing can take minutes to detect fail-
ures and reconverge; in some cases, like partial failures or
severe performance degradation, it may never intervene. For
large scale network outages, such as those caused by route
leaks, bypassing the affected party completely may be the
only effective solution.

This paper presents Connection Path Reselection (CPR),
a novel system that operates on edge networks such as Con-
tent Delivery Networks and edge peering facilities [52, 64]
and augments TCP to deliver transparent, scalable, multipath-
aware end-to-end path failure recovery.

The key intuition behind it is that edge networks need not
rely on BGP to learn of path impairments: they can infer
the status of a path by monitoring transport-layer forward
progress, and then reroute stalled flows onto healthy paths.
Unlike routing protocols such as BGP, CPR operates at the
timescale of round-trip times, providing connection recovery
in seconds rather than minutes. By delegating routing respon-
sibilities to the edge hosts themselves, CPR achieves per-
connection re-routing protection for all destination prefixes
without incurring additional costs reconstructing transport
protocol state within the network. Unlike previous multipath-
aware transport protocols, CPR is unilaterally deployable and
has been running in production at a large edge network for
over two years.

1 Introduction

Survivability is a core design tenet of the Internet, and a key
factor in its enduring success. In reviewing the formative
years of the DARPA Internet Protocols, Clark [19] listed sur-
vivability second in importance only to the top level goal of
interconnecting existing networks:

It was an assumption in this architecture that syn-
chronization would never be lost unless there was
no physical path over which any sort of communi-

cation could be achieved. In other words, at the top
of transport, there is only one failure, and it is total
partition. The architecture was to mask completely
any transient failure.

The Internet today falls short of this assumption. Failures
are not only common on the Internet, they are often visi-
ble [25,28,29], sometimes spectacularly so [39,41,42,53,54].
While large outages are rare, transient reachability fluctua-
tions, colloquially referred to as internet weather, are fre-
quent [25]. Attempting to prevent all sources of outages is an
exercise in futility: failures are endemic to every component
at every layer along every path on the Internet, and subsets
of components interact to form complex failure conditions
which cannot be anticipated. Instead, the most cost-effective
way of improving reliability on the Internet is to circumvent
failures when they occur. Traditionally, this task has fallen
upon network providers, who rely on routing protocols such
as the Border Gateway Protocol (BGP) and Open Shortest
Path First (OSPF) to route around failures. Routing alone,
however, is not enough.

Firstly, since the successful delivery of keepalive messages
does not imply the successful delivery of client traffic, routing
protocols can only detect a subset of failure conditions. For
example, a BGP session may be hashed onto a healthy Link
Aggregation Group (LAG) member, while other links in the
same group falter. Misconfigurations, such as those that result
in route leaks, can impact large swathes of the Internet [26,35,
41, 53]. Such events, undetected by routing protocols, often
require manual intervention to mitigate at significant cost to
the stakeholders involved.

Secondly, the time required by routing to re-establish a
consistent state after a failure increases with the size of the
network and can take minutes [37], during which loops and
blackholes can occur [28, 29]. Even detection itself can be
slow. The recommended value for the BGP hold timer (the
time after which a non-responsive BGP peer is marked as
failed) is 90s [33, 48], but many implementations set the de-
fault value as high as 180s [4, 5, 11, 18] or even 240s [23].
Even with sophisticated monitoring infrastructure [17,32,51],
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transient performance degradations have often disappeared
by the time corrective updates can fully propagate.

Rather than relying on routing reconfiguration, protocols
such as SCTP [55] and MPTCP [24] propose pushing the
responsibility for mitigating path failures to the transport
layer. Unfortunately, multipath transport protocols have strug-
gled with adoption, and are today still circumscribed to niche
use cases. Although multipath-aware protocols provide com-
pelling reliability improvements, the current Internet archi-
tecture provides limited means (and incentives) for network
providers to push multipath options out towards clients. With
deployments limited to subsets of traffic or client popula-
tion [16, 36, 46], their promise remains largely unfulfilled.

Edge networks [51, 52, 64] provide a natural vantage point
from which to improve reliability, acting as a critical interme-
diary between application/content providers, hosted on highly
centralized cloud infrastructure, and a globally distributed
set of clients. By providing caching, security and compute
functions as close to clients as possible, edge networks have
positioned themselves to carry most of the customer facing
traffic on the Internet [51, 52, 64]. Further, because they are
expected to commit to SLAs guaranteeing the successful pro-
cessing of end user requests, they end up bearing the costs
of network layer failures and have a tremendous economic
incentive to improve reliability. Conveniently, they also have
the means. Unlike access/transit providers, edge networks
have end-to-end visibility of traffic, and can therefore detect
and react to failures faster and at finer granularity. By design,
edge networks are multihomed and have access to better path
diversity than end clients.

This paper presents Connection Path Reselection (CPR), a
software-based approach improving the end-to-end reliability
of edge network traffic. The key intuition behind it is that
edge networks do not need to rely on BGP to learn of path
degradation: they can infer the status of a path by monitor-
ing transport-layer forward progress, and then reroute stalled
flows onto healthy paths. This not only improves connection
recovery, but also allows traffic to be shifted on a per-flow ba-
sis, greatly reducing the likelihood of load-induced cascading
failures. Unlike previous proposals, CPR is unilaterally de-
ployable, applicable to all flows, and simple to configure. Its
implementation is entirely contained in a server-side kernel
patch; it does not require programmable switches or any extra
infrastructure. CPR has been in production for over two years
at Fastly, a multi-Tbps edge cloud provider, where it success-
fully mitigates ∼120 degradation events every day, each ∼8
minutes long (over ∼16 hours per day).

Having described our motivation, the remainder of this pa-
per is organized as follows. First, we discuss the background
of this work (§2), explain first how CPR detects path im-
pairments (§3) and reroutes traffic as a result (§4). We then
share results from production measurements (§5), followed
by some operational considerations (§6). Finally, we compare
CPR with related work (§7) and present our conclusions (§8).

2 Background and motivation

Edge networks (as understood in e.g., [52, 64]) have unique
characteristics that must be considered when designing a
mechanism to improve end-to-end customer traffic reliability.

Edge networks support a diverse and changing set of
applications. Early edge networks such as Content Delivery
Networks (CDNs) were designed to support a narrow segment
of Internet traffic: large, static content that could benefit from
caching. This narrow traffic profile allowed for a wide set of
potential optimizations. Edge networks have since evolved
to support a much wider set of use cases (security, edge com-
pute) and applications which no longer fit a neat traffic profile:
a video client may need to retrieve small manifest files before
requesting video chunks, or a browser session may download
cached assets while maintaining a long-polling connection
over which it receives update notifications. As such, edge
networks today represent a microcosm of Internet traffic, not
a segment. While it may be tempting to focus our efforts
on improving reliability for a subset of traffic, performance
degradation on any flow can adversely impact an entire ap-
plication. A further complication is that it is not always a
given that end clients will retry. For example, packaging a
container image can involve retrieving potentially hundreds
of individual assets. Failure to acquire any single one of these
assets can result in the entire build process failing, at which
point a user must decide whether to retry. This implies that we
must detect any potential source of failure, for every type of
flow, independently of its source, length, or capabilities of the
end-client. We must also take into account that most traffic
towards end-users will likely flow through middleboxes.

Edge networks are constrained by physical capacity.
Points of Presence (POPs) are limited by physical space, and
are designed to maximize the number of requests per second
(RPS) they can serve [59]. Peak RPS is primarily dictated by
storage and compute capacity - not bandwidth. Unlike tradi-
tional cloud environments, we cannot increase the physical
footprint of network hardware, since that would necessarily
reduce the amount of hardware dedicated to serving requests.
Given our motivation for improving reliability is to reduce
costs, we can not do so at the expense of efficiency.

Edge networks have unpredictable traffic patterns.
Edge networks are subject to sudden fluctuations in demand
due to flashcrowds or DDoS attacks. While physical capacity
at any given POP is fixed, operators can shift traffic between
POPs by adjusting DNS and BGP anycast configurations. This
traffic engineering wreaks havoc on any potential solution that
acts only on a set of heavy-hitter prefixes which is periodi-
cally updated. For instance, a POP located in Los Angeles
may only observe traffic from prefixes in southern California
in normal conditions, but this can change abruptly if e.g., a
POP in San Jose undergoes maintenance, or if a DDoS at-
tack targets POPs in Japan. Traffic patterns shift dramatically
during significant congestion and routing events, which is
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precisely when reliability suffers the most. Our design takes
these constraints into account, and presents a system which
strives to:

• detect and react to failures affecting any flow, at any
point in its lifetime;

• minimize operational and infrastructure costs;
• interact safely with concurrent traffic engineering and

routing processes.
Such a system is possible because edge networks support

routing architectures which expose multipath capability to
end servers [57,64]. By maintaining multiple routing tables in
the kernel and allowing transport sockets and userspace appli-
cations to select which one to use on a per-packet basis, edge
servers can override standard BGP route selection and instead
implement objective-driven routing policy by themselves.

The benefits of path diversity have been amply studied
(e.g., [21,60]), in particular for stub networks [27]; even when
performance gains are not forthcoming, cost benefits can be
achieved [6]. Previous work on path-switching revealed that
it is possible to improve average path loss performance by
an order of magnitude on average by dynamically switching
paths [56]. Previous work on CDN multihoming demonstrated
25% performance improvement for 3 out of 4 metro areas
simply by selecting the best of two transit providers, with
comparable reliability improvement [7]. One specific type
of simple path diversity is highly prevalent: path load bal-
ancing. 72% of source-destination network pairs explored
in [12, 13] show evidence of load balancing; for ∼12% of
these, load balanced paths are asymmetric and explicit selec-
tion can significantly improve end-to-end latency. A more
recent study [47] showed even more significant benefits: not
only do paths from large cloud providers show latency differ-
ences between load-balanced paths exceeding 20ms to 21%
of public IPv4 addresses; 8 pairs of datacenters were found
to have latency differences between load-balanced paths ex-
ceeding 40ms. Path diversity is high for edge networks: in the
CPR deployment presented here each POP typically connects
to a few transit providers and several peers1.

This is the starting point for Connection Path Reselection
(CPR). Given the multipath capabilities of edge servers, how
can we extend TCP to circumvent failures? Focusing on TCP
is appealing not only because its congestion control and loss
recovery mechanisms are sufficient on their own for a large
class of end-to-end impairments, but also because any auto-
mated, short-timescale re-routing of large volumes of traffic
can override traffic engineering and create undesirable traffic
distributions. By performing path selection decisions at the
connection (rather than the route/prefix) level, CPR minimizes
its impact on traffic volumes.

CPR is embedded within TCP and implemented as a server-
side patch to the Linux kernel, and relies on extensions to
the tcp_sock struct to keep essential re-route-related state.

1See §5.3 and appendix A.1 for further details.

Because the kernel itself abstracts the IP address version at
the socket level, CPR naturally covers both IPv4 and IPv6
traffic. Since CPR is parsimonious with both its execution
and instrumentation state, it remains scalable even under ex-
treme situations such as flashcrowds or DDoS attacks. The
operation of CPR can be decomposed into two independent
sub-problems: how to detect genuine path failures through
impairment detection, and how to circumvent an impaired
route through path reselection. We will tackle each of these
problems in turn.

3 Impairment detection

The main task of CPR’s impairment detection algorithms is to
accurately identify path failures based on transport layer per-
formance in a timely manner. A key challenge is to distinguish
between spurious packet loss, which should be recoverable
with retransmission over the same path, and persistent fail-
ures, which are better addressed by selecting a different one.
From a transport layer perspective, connections routed over
an impaired path experience stalls, i.e., fail to make forward
progress for some amount of time in spite of retransmissions.
CPR works by detecting stalls and using them as a signal
to select an alternate path, with the objective of eventually
resuming forward progress.

Two different impairment detection mechanisms are nec-
essary, each addressing complementary stages in the TCP
connection lifecycle. The first (§3.1) deals with path impair-
ments before connection establishment; the second (§3.2)
deals with impairments arising after connections have suc-
cessfully established.

3.1 Pre-establishment impairments
A TCP connection is initiated by a client transmitting a SYN
packet to commence a three-way handshake, to which the
server will reply with a SYN-ACK. If the server’s outbound
path has failed before a connection is established, the SYN-
ACK transmitted by the server will be lost. The client then re-
transmits the SYN after a predefined interval (1s on Linux [3]),
to which the server will reply again with a SYN-ACK that
will also be lost. This retry behavior continues until the path
becomes available again or the client stops retrying (a Linux
client retries 6 times by default). In such cases (fig. 1a) CPR
will declare a stall upon exceeding the threshold of n pre-
sumed lost SYN-ACKs. Upon detecting a stall, route rese-
lection is triggered on every subsequent SYN-ACK retrans-
mission until the connection is successfully established or the
client times out.

This detection mechanism is quite coarse because its ability
to detect a failure is limited by the frequency of SYN retrans-
missions at the client. The precision and speed of failure
detection could be improved if the server proactively retrans-
mitted SYN-ACKs at a higher frequency without waiting for
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Figure 1: Impairment detection and reroute

SYN retransmissions from the client. This would however
create an amplification vector that could be exploited by SYN
flood attacks and therefore would not be safe to deploy in
untrusted environments.

CPR’s pre-establishment impairment detection algorithm
cannot be used when SYN cookies are enabled, because then
the kernel will not keep any state for incoming pre-establish
connections. This is a desirable feature. By default, the Linux
kernel sends SYN cookies upon listen queue overflow, which
is typically triggered by SYN floods. This will result in SYN-
ACK stall detection being disabled during an attack, and SYN-
ACKs using the preferred path.

Finally, we note that the same mechanism could be applied
to connections initiated by edge servers (see fig. 1b), whereby
we reroute after a given number of lost SYN packets rather
than SYN-ACK packets. This case is less relevant in practice
however, since most edge server traffic results from inbound
connection requests.

3.2 Post-establishment impairments
For established connections (see fig. 1c) CPR verifies, before
a retransmission, whether the connection has failed to make
forward progress for a time threshold δ. If so, it declares a
stall and selects a new egress path. CPR marks a connection
as making forward progress whenever an (S)ACK is received
for data that has been sent, but not yet acknowledged. This
requires storing a timestamp variable in each TCP socket to
keep track of forward progress. The algorithm operates as
follows:

• clear the timestamp as long as there are no outbound
segments in flight, and set it to the current time when
the segment that is at the front of the transmit queue is
transmitted for the first time;

• update the timestamp to the current time whenever the
connection makes forward progress, i.e., receives an
(S)ACK that acknowledges data byte ranges previously
transmitted but not yet acknowledged;

• clear the timestamp when the last outstanding byte range
has been fully acknowledged;

• declare a stall when (re)transmitting a TCP segment if

1) the timestamp is set, and 2) the time elapsed since the
timestamp exceeds a threshold δ.

Because this algorithm declares stalls on retransmission,
connections that become idle whilst using paths that subse-
quently fail cannot declare a stall until their first retransmis-
sion. This behavior minimizes spurious path reselection.

Algorithm parameters. As with n, setting an appropriate
value of δ needs to strike an appropriate tradeoff between re-
activity and accuracy. The key challenge is to ensure that the
threshold works consistently well across connections, regard-
less of their RTT. Setting δ to a fixed, global value would lead
to either spurious stalls for high RTT connections, or sluggish
response for low RTT connections. This can be addressed
by defining δ in terms of path properties already estimated
by TCP. We could, for instance, define δ as a multiple µrto
of the connection retransmission timeout (RTO) Trto, so that
δ = µrtoTrto. As usual, Trto = srtt+4×rttvar, where srtt
is the smoothed round-trip time and rttvar is the round-trip
time variance [50]. Unfortunately, this solution on its own
could be problematic for connections with very low srtt and
rttvar, because, given a low value of δ, temporary router
queue build-ups and subsequent increased latency may be
misidentified as stalls and trigger spurious reroutes. We guard
against this issue by defining δmin, a lower bound for δ, and
setting δ = max(δmin,µrtoTrto).

Using a small value for µrto (e.g., µrto = 1) may spuriously
trigger reroutes during the slow start phase of the connection.
For paths with moderate background packet loss, RTO ex-
piration is more likely to happen when there are few TCP
segments in flight, e.g., during slow start: once the connection
has filled its bandwidth-delay product, a constant stream of
incoming ACKs makes the triggering of RTOs less likely.

Rate limiting reroutes. Re-routing onto a new path does
not necessarily result in recovery: the new egress path could
share a failure with the original one, or the impairment re-
sponsible for the stalling could be on the inbound path. When
this occurs, CPR will simply continue to probe paths until
forward progress is made. If the reroute threshold δ of the
connection is low, the connection may end up being rerouted
multiple times in rapid succession. This could result in CPR
not being able to gather enough data about the state of a new

236    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



path to make an accurate decision about its suitability before
trying yet another path. We addressed this by implementing a
rate limiting over periods of length wait, so that connections
will not be re-routed more than once in every period.

Triggering stall detection logic. Since CPR performs stall
detection on retransmission with a timeout expressed as a
multiple of the RTO, it is natural to ask whether stall detection
logic could be co-located with the RTO triggering logic of
the TCP state machine. The answer is negative, because not
all retransmissions relevant to connection forward progress
are triggered by RTO expiration. Consider the case where the
outbound path used by a connection has failed and both the
local and the remote ends have outstanding (unacknowledged)
data. It is possible for retransmissions by the local end to keep
being triggered by the reception of retransmissions from the
remote end, before a local RTO can elapse. For this reason,
stall detection logic reuses the RTO value, but is evaluated
independently of RTO logic at relevant points in the TCP state
machine (e.g., when sending retransmissions).

4 Path reselection

control plane

data plane

switchesserver

routing daemon

main MPLS lookup table

peers

routing daemon

transits

BGP
BGP

BGP

BGP

Figure 2: Routing architecture

CPR leverages a routing architecture similar to Espresso
[64] and Silverton [14, 57] which push visibility of all avail-
able routes down to edge hosts. In this architecture (depicted
in fig. 2) each host is connected to a number of switches,
which are in turn connected to a number of upstream providers.
These include both transit providers and settlement-free peers,
connected directly through Private Network Interconnects
(PNI) or Internet Exchange Points (IXP).

Each switch performs two tasks. First, an MPLS label is
configured for each upstream provider, and a corresponding
nexthop entry is inserted into the local routing table. Second,
BGP route updates received from upstream providers are
tagged with the associated MPLS label, and forwarded to
routing daemons on the host. The routing daemon on end
hosts populates two routing tables:

• The main table contains all policy-preferred routes
among those learned from all peers, and is used for rout-
ing traffic under normal circumstances i.e., when path
reselection has not been requested. It contains routes pre-
ferred under performance, capacity and cost constraints.

• The transits table is populated with all default routes
(i.e., 0.0.0.0/0 or ::/0) learned from upstream providers.
Since settlement-free peers do not provide universal

reachability (i.e., export a full routing table), only de-
fault routes provided by transit providers are included.

Given the routing architecture in fig. 2, and having access
to the main and transits table, the next objective of CPR is to
provide a mechanism to allow the stall detection algorithms
in §3 to select a new path for a stalled connection. We achieve
this by associating a reroute counter r with each connection,
and incrementing it every time a stall is declared for that con-
nection. This counter is stored in the 4 most significant bits of
the firewall mark (fwmark) of a connection, a 32 bit value that
can be used to tag packets traversing the Linux network stack
and make routing decisions about them. To make rerouting
based on r possible, we made two relevant changes. First, we
changed the Equal Cost Multipath (ECMP) hashing function
used by the Linux kernel. The standard Linux implementation
of ECMP selects a nexthop by hashing the connection 5-tuple
(i.e., source and destination IP addresses, source and desti-
nation ports and protocol number). CPR includes the value
of the reroute counter r into the hash computation. Second,
we configure an ip rule to ensure that, for any connection for
which r > 0, a next hop is looked up from the transits table
rather than from the main table. Hence, we use r as a flag
that triggers CPR-specific routing for connections that have
suffered stalls. The combined effect of these two changes is
that simply incrementing the reroute counter will force a new
route lookup.

‣ proto: tcp 
‣ local: 124.12.34.2:443 
‣ remote: 1.0.2.3:13874 transits

prefix label

1.0.0.0/24 A
1.0.1.0/24 C
1.0.2.0/24 B

223.255.255.0/24 A

main

prefix label

default A
default B
default C
default D

r = 0

r > 0

r = 0

r = 1

r = 2

connection

r = 3

… …

Figure 3: Path reselection upon stall detection
As an illustration, consider a hypothetical connection that

has not yet experienced a stall, as shown in fig. 3. At this
point in its lifetime, r = 0, route lookups are performed us-
ing the main table, and the BGP-defined egress path is used.
When the stall detection algorithm (§3.2) declares a stall, it
increments r. From that point on, since r > 0, route lookups
are performed using the transits table, and the next hop for
IP packets forming this connection is pseudorandomly se-
lected among all the nexthops of the default route present in
the transits table according to ECMP(5-tuple, r). Since each
increment of r forces a new route lookup, as r increases the
stalled connection will follow a unique, pseudorandom se-
quence of egress paths which will depend on both its 5-tuple
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and the ECMP hash used. The aggregate effect of this pro-
cess is that rerouted connections are homogeneously “load
balanced” among all available egress paths.

We now show that CPR should be able to resolve recov-
erable stalls with relatively few retries. If np is the number
of egress paths available, of which ns lead to stalled connec-
tions, each path reselection is a Bernoulli trial with a success
probability p =

np−ns
np

. The number of re-routes k required
until recovery will be geometrically distributed [2] so that
P(X ≤ k) = 1−(1− p)k. Hence, the expected maximum num-
ber of re-routes that will be required to find a good path with
a given probability β is k∗ = log(1−β)

log(1−p) . Even a conservative2

p = 50% and β = 95% results in only k∗ ≈ 4 re-routes.
We note that, although fig. 2 states that the main table

should contain a full routing table, CPR does not require this
to be the case. As noted above, path reselection only relies on
the transits table. Further, although our implementation uses
MPLS to steer specific flows towards a given provider, this
can also be done using GRE tunneling [64] or DSCP marking
[52]. Routes can be pushed down to the host using BGP add-
path [62] or proprietary mechanisms. Our architecture is just
one of many that could support CPR deployment; the basic
primitives of CPR are applicable to many scenarios.

5 Evaluation

This section evaluates the performance of CPR in a large
edge cloud production deployment with daily traffic peaks on
the order of tens of Tbps. All results were collected through
passive measurements of production traffic.

5.1 Parameter tuning

Tuning CPR involves resolving a tradeoff: whereas unneces-
sarily rerouting connections could place them on paths with
potentially lower performance and higher cost, failing to react
to a recoverable path impairment increases its potential to
harm client connections. This section discusses how we tuned
the CPR parameters (§3) to resolve this tradeoff between
accuracy and reactivity.

Tuning pre-establishment impairment detection. The
only parameter involved in detecting impairments prior to
connection establishment is n, the number of presumed lost
SYN-ACKs after which a reroute is executed (§3.1). Hence,
at this stage tuning involves determining the value of n af-
ter which timely connection establishment becomes unlikely
without CPR intervention.

We proceeded by instrumenting servers in three distinct
geographical regions (North America, Europe and Asia) with
CPR disabled. We then measured how many SYN retrans-
missions occurred for all connections that were eventually

2See §5.3 and appendix A.1 for further details.

n APAC EU NA

0 .63 .64 .70
1 .13 .17 .28
2 .05 .09 .12
3 .03 .06 .08
4 .01 .05 .05
5 .01 .03 .03

Table 1: Proportion of
connections not establish-
ing after n consecutive
SYNACK losses (%)

Stall
duration

lower
bound

APAC EU NA

RTO 1.79 .57 2.18
2s .34 .36 .10
3s .23 .24 .06

Table 2: Proportion of connections
experiencing at least one stall dur-
ing their lifetime, as a function of
the stall duration (%)

established3. As shown in table 1, only ∼0.63% to ∼0.7%
of connections experience impairments before establishing,
depending on the region. This means that more than ∼99.3%
of connections establish without any retransmissions. Fur-
ther retransmissions help connection establishment, but with
noticeable diminishing returns. For example, after two con-
secutive retransmissions without a reroute, the probability
of a connection being successfully established was between
∼0.05% to ∼0.12%. Based on these findings, we set n = 2 in
our production configuration.

Tuning post-establishment impairment detection. We
addressed the tuning of δmin and µrto (§3.2) in two steps.
First, we followed a similar measurement methodology as
that used to tune n, this time focusing on connections expe-
riencing at least one RTO expiration during their lifetime.
Our results, reported in table 2, provide evidence of signifi-
cant regional variability. Whereas ∼0.1% of connections in
North America experience stalls lasting for 2 seconds or more,
this increases to ∼0.35% for connections in Europe or Asia-
Pacific4. However, these results also show that the probability
that a connection recovers after experiencing a stall for 2 or 3
seconds was very low irrespective of geographical region.
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Figure 4: Duration of TCP stalls by region and RTO
3This was done during a period free of obvious biases such as outages,

high-load client events, DDoS attacks, etc.
4These values constitute a lower bound; during the active phase of an

impairment event the proportion of affected connections can rise by an order
of magnitude or more (see §5.2).
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The next step was to investigate the time required for a
connection to resume forward progress after an RTO (fig. 4).
We begin by noting the two vertical lines in fig. 4a: these
correspond to the two candidates found in the previous study.
For connections with RTO ≤ 500ms, most of the probability
mass in the dataset lies to the left of the first line, providing
evidence that for these connections the length of a stall is
largely independent of RTO and δmin = 2s is sufficient to
ensure adequate impairment detection.

To understand how best to handle connections with RTO >
500ms, we first note the probability mass “bumps” in fig. 4b.
These intervals of 3, 7 and 15 RTOs stem from TCP retrans-
mission behavior under exponential backoff. Since the ma-
jority of the probability mass lies to the left of the first line,
a large proportion of connections will recover on their own
before µrto = 3, irrespective of their RTO. This addresses
the high RTO connections that were not already covered by
δmin = 2s, and provides a rationale to set µrto = 3.

Finally, we set wait (§3.2) by observing day-to-day oper-
ation of the system in production. We select wait = 1s sec
on the basis of keeping the volume of steady-state rerouted
traffic to a sufficiently low level.

5.2 Evaluating benefit and non-harm
Methodology. To ascertain the impact that CPR has on on-
going connections we follow an experimental approach, in
which we (pseudo)randomly label some connections as part
of a treatment group, and the remainder as part of a control
group for which path reselection logic is disabled. While the
state and output of the impairment detection algorithms are
maintained for both groups, network-layer path changes are
triggered only for treatment connections. This setup allows
us to explore the degree to which the benefits of CPR during
path outages outweigh its potential costs when no impair-
ments are present. We begin by exploring whether rerouting
a stalled connection could make its performance significantly
worse than doing nothing. To the extent that the answer to this
question is negative, CPR will be innocuous when triggering
due to stalls not associated with path impairments, and hence,
non-recoverable by rerouting. We then move on to analyze the
benefits that CPR provides during path impairment episodes.

Evaluating non-harm in the steady state. For both treat-
ment and control we quantify the reroute effect on connection
properties such as RTT or retransmission rate. Since connec-
tion properties need time to settle to their new values after
a reroute in order to be meaningful, we focus on long-lived
connections. We define the onset of a stall as the TCP sending
event immediately prior to an RTO, and the full resolution as
the first sending event after forward progress is restored and
305 segments have been sent. We define the reroute effect on
a connection property as the difference between its value at

5This number was arbitrarily selected to provide enough samples for TCP
connection properties to stabilize.
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Figure 5: Steady-state reroute effect experiment results

onset and at full resolution.
The CDF of the reroute effect on the TCP retransmission

rate6 is presented in fig. 5a. Whereas it seems to be negligible
for IPv6, for IPv4 the treatment connections have a greater
proportion of their probability mass on the negative effect
sizes, implying that rerouted IPv4 connections tend to have
lower retransmission rates after the reroute than before it.
This points towards CPR having some small benefit during
the measurement period. Otherwise, the curves are very close
to one another, providing evidence that CPR is not introducing
significant retransmissions during steady state.

We can also use the results of the previously described
reroute effects experiment to understand the effect of CPR on
stall recovery speed. From fig. 5b we can see that treatment
connections tend to have shorter resolution times compared
to control connections, both for IPv4 and IPv6. The effect
during steady state is small, as expected: ∼80% of control
connections recover within 20s of a reroute, compared to
∼85% of treatment connections.

Finally, fig. 5c shows the effect of reroutes on srtt (§3.2).
Again, a seemingly negligible effect for IPv6 is accompanied
by a clear effect for IPv4, this time demonstrating higher srtt
values after the reroute (usually by less than ∼30 ms, but
sometimes more than ∼100 ms). This performance penalty is
expected since our BGP traffic engineering policy optimizes
for latency, and is more finely tuned in IPv4 than in IPv6
due to operational maturity. Since CPR explicitly reroutes
away from paths selected by this policy, we are more likely
to experience an increase in RTT than not. In this light, our
configuration of CPR is an expression of the extent we are
willing to subvert local routing policy in an attempt to recover
from failure. Since this is a matter of policy, we observe there
is no single correct configuration, but a range of potentially
acceptable outcomes.

Evaluating benefit during stall events. During path im-
pairments, the most common outcome for control connections
is failure (rather than e.g., increased RTT or retransmission

6Every connection in this dataset experienced a stall during the measure-
ment period. Hence, retransmission rates are expected to be higher than the
blended averages typically reported.
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Figure 6: CPR operation during two stall events (i and ii). The timeseries plots in figs. 6a to 6c show the control • (dashed) and
treatment • (solid) group values (left y-axis). Each one of the thin lines corresponds to a single host; thick lines track the average
for all hosts in a POP. In the same plot we also show the proportion of hosts in a POP for which the timestamp has been classified
as part of an active event � or its context � (right y-axis). Beneath each timeseries plot we show a violin plot for the PDF of
∆π (fig. 6a) or ∆p• (figs. 6b and 6c), the difference between treatment and control values, for both context • (top) and event •
(bottom) periods. Each subplot in fig. 6d shows BGP update/withdrawal rates for peering sessions which triggered anomaly
detection in proximity to the active event span. Since only relative changes are relevant, y-axis tickmarks have been removed.

rates). Hence, to accurately assess the benefits of CPR we
must look beyond the reroute effect measures presented above.
Broadly, we resort to anomaly detection on the performance
differences between treatment and control groups in order to
identify stall events. The benefit of CPR for a given stall event
can then be measured by comparing treatment and control per-
formance differences during the event, with the correspond-
ing performance differences during the immediately adjacent
timespans. We refer to the union of timespans immediately
preceding and following a stall event as its context.

In order to identify stall events, we instrumented the kernel
to export additional metrics. First, we store per-connection
information on the operation of the recovery mechanism as
part of the socket metadata; this includes the reroute counter r,
last forward progress timestamp, etc. Second, we maintain ag-
gregate counters in the kernel which track state transitions as
each connection traverses both TCP and CPR state machines.
Each edge server aggregates separate counters for treatment
and control group connections, allowing us to estimate the ef-
ficacy of CPR on each host according to multiple performance
measures7, including:

• π•(HEALTHY), the proportion of TCP connections in the
HEALTHY state;

• po
•(HEALTHY|SYNRCVD), the proportion of TCP connec-

tions that transition out from the SYNRCVD state towards

7A more detailed overview of stall event detection is included in appen-
dices B and C.

the HEALTHY state, per unit time. This gives an indication
of the instantaneous probability of connections connect-
ing successfully; and

• pi
•(CLOSE|HEALTHY), the proportion of TCP connec-

tions that transition into the CLOSE state from the
HEALTHY state, per unit time. This gives an indication
of the instantaneous probability of connections closing
while healthy (rather than stalled).

We present two CPR stall events in fig. 6, embedded in their
context so that their impact is clearly visible. Each event is pre-
sented along its BGP affinity score, a synthetic measure of the
degree to which observed routing plane events are correlated
with transport layer anomalies (appendix C). Our examples
were selected to juxtapose the case where there is a high BGP
affinity score (i), and therefore an association between CPR
and BGP behavior, and a low BGP affinity score (ii). In both
cases we can observe that immediately after the start of the
stall event (at the left context/event boundary) CPR treatment
connections start experiencing better performance, as inferred
from a higher π•(HEALTHY) (fig. 6a). Treatment connections
also have better chances of establishing (fig. 6b), evidencing
connection setup distress for control connections, and exhibit
a greater chance of closing while HEALTHY, rather than when
STALLED (fig. 6c). When taken together, these facts point
towards a small but significant proportion of affected connec-
tions, both established and pre-establish, clearly benefiting
from CPR, irrespective of the BGP affinity of the event. When
a clear association with BGP is present, such as with fig. 6d (i),
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the benefits provided by CPR are materialized significantly be-
fore the associated BGP event is resolved. Conversely, fig. 6d
(ii) demonstrates that CPR can recover just as effectively in
cases for which BGP provides no remediation.

Each violin plot beneath a CPR time series event subplot
in figs. 6a to 6c shows the benefit that CPR provided to con-
nections assigned to the treatment group during the event.
For state occupancies we rely on ∆π = πt − πc, the differ-
ence between treatment and control values (similarly, for state
transitions ∆p• = p•t − p•c). For instance, in fig. 6a we can
see that although the distribution of ∆π(HEALTHY) was cen-
tered at zero outside the event period, it moved to the right
during the active phase of the event, irrespective of BGP affin-
ity. For (i) we see that CPR allowed an additional ∼3% of
connections (over the entire POP and to all destinations) to re-
main in the HEALTHY state compared with the control group;
for (ii) this is reduced to ∼1.4%. On the other hand, from
∆po(HEALTHY|SYNRCVD) (fig. 6b) we see that during (i) CPR
allowed an additional ∼7% of connections in the POP moving
out from a SYNRCVD state to enter the HEALTHY state; during
(ii) this is reduced to ∼1%.

Evaluating benefit globally. Having explained the typical
characteristics of stall events using individual examples, we
now focus on 1) measuring CPR effectiveness at a global
scale, and b) identifying the circumstances under which CPR
is most effective. To this end we perform statistical aggrega-
tion on data collected from ∼80 POPs over ∼12 months. As
before, we focus on recovered events, defined as stall events
which show evidence of improvement in performance mea-
sures (e.g., those presented in fig. 6). We do this for two rea-
sons. First, whereas improved treatment group performance
unequivocally points towards TCP stalls that can be resolved
by path reselection, anomalies where CPR provides no benefit
are uninformative: there are many possible causes of TCP
stalls unrelated to resolvable path impairments (e.g., wireless
access roaming or dis-association) for which re-routing cannot
be expected to help. The second reason is implementation-
related. Since performance data such as presented in fig. 6d
is only kept aggregated at host level (rather than at prefix or
connection granularity) it is difficult to directly associate a
CPR event with a set of destination prefixes/ASes, and hence,
to a BGP-based ground truth. For recovered events this is not
an issue: CPR itself provides direct confirmatory evidence of
path impairment mitigation8.

We will denote the daily per-POP average CPR state occu-
pancy during the active phase of stall events (rather that their
context) as E [∆π]. This measure can be used to directly un-
derstand which geographies benefit the most from the deploy-
ment of CPR, as shown in figs. 7a and 7b. First, in fig. 7a we
can see that most of the probability mass forE [∆π(HEALTHY)]
lies on the positive semi-axis regardless of geography, imply-

8Note however that, since our CPR deployment could in principle fail to
recover from some stall events, our reported prevalence findings suffer from
survivorship bias [63] and must be interpreted as lower bounds.
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Figure 7: Per-day, per-POP recovered events

ing that πt ≥ πc and hence that the proportion of HEALTHY
connections was higher for the treatment than the control
group (median ∈ [0.57%,0.68%]). Conversely, fig. 7b shows
that most of the probability mass for E [∆π(SYNRCVD)] lies
on the negative semi-axis (median ∈ [−0.46%,−0.19%]), so
that πt ≤ πc. This means that CPR allows connections to both
1) connect faster and 2) spend less time stalled. We note that
whereas πt(HEALTHY) benefits are greatest in Europe (median
= 0.68%) and Asia (median = 0.65%), πt(SYNRCVD) benefit
is particularly strong in South America (median =−0.46%)
and Africa (median =−0.38%). However, as shown in fig. 7c,
these benefits are accompanied by a cost: every day more than
∼10% of connections on up to ∼30% of PoPs experience stall
events. Although the immense majority of these stalls are
associated with abandoned connections and hence carry neg-
ligible traffic, we note that non-recoverable stalls induce a
sustained level of background reroutes.

In contrast to figs. 7a to 7c, figs. 7d and 7e show weaker
region dependence. Although fig. 7d provides some evidence
that recovered stall events occur roughly proportionally to
both 1) the aggregate traffic volume and 2) the interconnec-
tion density of a region, the difference between regions is
small. Similarly, fig. 7e shows that most recovered events last
under 20 minutes, irrespective of region (median ∈ [7.1,9.4]).
However, we note that this distribution can be heavy tailed:
we have observed uncommon, longer events that span multi-
ple hours. These can have “macroscopic” effects, triggering
operational responses and re-routing over 20% of PoP traffic.

We finally turn our attention to the severity of recovered
events. We define a heuristic severity index based on the
normalized performance difference between treatment and
control connections during the event and its associated con-
text. The higher the number of standard deviations between
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treatment and control variables during the event itself, com-
pared to before and after it, the higher the severity for the
event (see appendix C). Perhaps unsurprisingly, fig. 7f shows
that CPR routinely recovers from higher severity events in
densely connected regions. However, the distinction between
the North and South America curves in figs. 7d and 7f is
instructive. Whereas in fig. 7d the former is always beneath
the latter, in fig. 7f the opposite occurs. This shows that CPR
helps recover from more events in regions with nontrivial
BGP routing where complex business agreements and un-
dersea cable topology can make BGP-only recovery more
challenging.

As a complement to the per-POP statistics presented in
fig. 7, we report that globally CPR mitigates on average ∼120
impairment events every day with a median duration of ∼8
minutes. Informally, this amounts to over ∼16 hours per day.
While this improvement may appear quantitatively modest, in
practice these performance degradations bear a high cost in
the absence of mitigation. Many of them exhibit no proximal
cause, making them notoriously hard to debug. Even when an
underlying cause is understood, many performance problems
are short-lived and will be resolved by the time engineering
or customer support resources have been mobilized to address
them. In opportunistically mitigating either type of deteriora-
tion, CPR has an outsized impact in improving the reliability
of services provided by edge networks, at virtually no cost.

5.3 Path coverage
Given that CPR deflects traffic among upstream providers
when mitigating path impairments, it is informative to es-
timate the degree to which reroutes are likely to result in
disjoint data plane paths. To this end, we analyze all routes
learned from every provider in a given POP. Since all transits
offer full routing tables, every destination prefix will have a
set of available routes. In addition to these routes, we may
have additional peering routes learnt from PNIs or IXPs. One
of these paths (learnt from either peering or transits) will be
selected as an outcome of BGP policy; the remaining routes
(learnt over transits) represent valid alternate paths.

We proceed by defining each AS in the selected path to
be node-protected if there is an alternate path for the same
destination that does not include it. Then, we define AS-node
diversity as the proportion of node-protected ASes in the
selected path. Similarly, we can define an AS pair in the
selected path to be link-protected if there is an alternate path
that does not include the same AS pair in the same order,
which leads to the entirely analogous definition of Inter-AS-
path diversity as the proportion of link-protected AS pairs in
the selected path. Since CPR will eventually explore every
available path to every destination, these two measures can be
used as proxies for the probability of recovery given a failure
event involving any given destination prefix9.

9Two practical qualifications are in order. First, since a packet can traverse

An analysis of ∼900k globally distributed routes revealed
traffic-volume-weighted AS-node diversities of 90.8% and
86% for IPv4 and IPv6 respectively; these rise to 93.7% and
90.5% when considering Inter-AS-path diversity. The sig-
nificant path diversity available to CPR evidenced by these
numbers is a consequence of a strict requirement for edge
networks: POPs must be interconnected to multiple transits
in order to survive outages of individual providers or local
exchange points. Since most client traffic is preferentially
exchanged over peering, the addition of a transit provider has
a limited impact in improving latency. Instead, multihoming
is primarily a form of insurance. In this light, CPR is of great
interest to edge network operators in that it extracts greater
value from what is otherwise a necessary cost.

6 Operational considerations

CPR has been in use for over two years. This section revisits
some of our original assumptions in the light of our accrued
experience, as well as highlight some of the tweaks that were
required along the way.

Per-route overrides. While it is beneficial to enable CPR
by default on edge hosts, and the parameters derived in §5.1
are adequate for a wide range of conditions, there are cases
where it is desirable to override configuration on a per-route
basis. For example, rerouting intra-POP traffic onto transits is
ineffective as a mitigation strategy, and costly due to the large
volume of traffic exchanged between hosts within a POP.

Linux already allows per-route configuration of features,
such as ECN or SACK. We expanded this method to allow the
configuration of CPR on a per-route basis, and extended our
edge host routing daemon to be able to inject routes into the
main routing table accordingly. Over time, this has allowed us
to selectively disable or experiment with CPR on a per-route
basis as an integral part of our BGP policies. This evolu-
tion was gradual: what started exclusively as a server-side,
transport layer extension has been progressively incorporated
operationally as an extension of our routing infrastructure.

Middleboxes. Rerouting ongoing connections could in the-
ory adversely interact with stateful middleboxes, which would
be presented with packet streams for which the TCP three-
way handshake happened in a different path (and hence was
not observed). The expected outcome of this potential prob-
lem, increased TCP RST rates or silently dropped packets for
treatment connections compared with control (see §5.2), has
not been observed in practice after multiple years of sustained,
worldwide, multi-Tbps usage. This is not unexpected, since

different router-level paths within the same AS between given ingress and
egress pairs, and multiple peering points between two adjacent ASes in
an AS path, both quantities are lower bound estimates of actual dataplane
path diversity. Second, under these definitions a number of high-volume
destination prefixes advertised by directly connected peers will be counted as
presenting zero diversity whilst in reality presenting negligible impairment
risk as their path reliability is very high. These have been removed from the
analysis in §5.3, but are reported in their entirety in appendix A.1.
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CPR does not modify the TCP header in any way. From the
perspective of intermediate devices, CPR reroutes are indistin-
guishable from other reroutes events, such as those triggered
by BGP or ECMP rehashes.

Prefix aggregation. It is natural to consider extending CPR
by aggregating per-connection information and using it to in-
fluence routing. If many connections in a given prefix stall,
only to recover successfully after a reroute, we could avoid
future stalls by overriding the route for that prefix. Evalu-
ating this approach is outside the scope of this paper, but
the implementation is far from straightforward once we con-
sider its risks. Firstly, as evidenced by §§5.1 and 5.2, not
all transport-layer impairments will be correctable by path
reselection. This means that there is always the danger of
overriding routing and traffic engineering policy in an attempt
to resolve a suspected problem that cannot be fixed that way.
This risk is severely amplified by performing routing interven-
tions on entire prefixes. A related threat is that, in addition to
natural variability, stall signals are also susceptible to adver-
sarial manipulation. Using stall recovery information to route
entire prefixes would amplify the impact of such an attack,
potentially burdening the edge network with higher transit
costs or end-users with higher latency. Finally, there is no a
priori reason to assume that the same routing intervention
will have the same effect on every subprefix covered by an
Internet-advertised prefix. Whereas this tradeoff is irrecon-
cilable at the prefix level, it is trivially accommodated at the
connection level.

Avoiding peering offload. As noted in §4, whereas routes
in the main table are learned from both settlement-free peers
and transits, routes in the transits table are only learned from
transits. Therefore, CPR path reselection can re-route connec-
tions away from PNIs and IXPs and onto transits, which would
typically result in greater costs and potentially less direct paths
to destinations. During our design phase we accepted this lim-
itation because the alternative is for connections to remain
stalled; an opportunity to recover then makes the cost benefit
positive. Although the nature of colocation facilities makes it
relatively rare for a single POP to be connected to multiple
IXPs, it would be beneficial to be able to failover from PNIs
to IXPs. In our current architecture, this capability can only
be provided at the cost greater routing complexity (defining
the set of failover routes on a per-destination basis).

Path reselection. While one could envision more complex
path selection algorithms than those presented in §3, in our
experience the additional complexity does not translate to
significant benefits. The simplicity of CPR is a core feature,
providing quick recovery and effective load balancing without
burdening operators with configuration overhead.

Userspace support. CPR need not be limited to the kernel,
it can be leveraged or selectively disabled by any userspace
application. To support this, we reserved bits in fwmark, which
can be set via a setsockopt system call, to communicate
application intent to the Linux kernel networking stack.

We reserve one bit in fwmark to signal that the connection
for the given socket must not be rerouted. This allows CPR to
be disabled on a per-connection basis for measurement and
debugging purposes. For example, it may be necessary for a
connection to be sent over an application-defined path to test
path performance or to debug networking issues.

In order to support UDP based transport protocols, we allow
userspace applications to directly manipulate the value of r.
Surfacing control over the reroute counter through the fwmark
effectively pushes route reselection out of the kernel.

QUIC. One of the primary drivers for userspace support of
CPR has been the ongoing deployment of QUIC [38]. QUIC
supports connection migration [31], and over time we expect
this to be the primary mechanism for path failover. As of
today, however, QUIC connection migration may be disabled
by either peer, and can only be used after connection establish-
ment. Furthermore, migration must be initiated by the receiver,
who must send a probe packet from a new local address. CPR
on the other hand covers connection establishment, and can
be triggered unilaterally on the sender side, where stalls are
more quickly detected. Since there is nothing intrinsic to CPR
that makes it fundamentally incompatible with connection
migration, we view both methods as complementary and are
actively experimenting with CPR within QUIC. While vali-
dating the use of CPR within QUIC is the subject of future
work, the implementation itself is straightforward and bears
testament to the overall elegance and simplicity of CPR.

7 Related work

Although multiple solutions in the literature address the de-
tection and mitigation of path impairments, none provides
feature parity with CPR. To the best of our knowledge, the
design of CPR is unique in its simplicity, which makes it ex-
tremely easy to deploy. It is the only solution providing path
failover at a connection granularity, which does not require
switches with programmable dataplanes or support from the
client endpoint, and which makes it possible to identify and
mitigate performance degradation even if a connection is not
currently established.

Our work is most closely related in motivation and ap-
proach to INFLEX [58] and Blink [28]. Both use transport-
layer triggers to reroute traffic and, unlike CPR, rely on pro-
grammable data plane switches. While INFLEX reroutes
stalled flows on a per-connection basis, it does so by installing
ephemeral route entries onto a switch. It can therefore not
support failover for all connections at the scale edge networks
operate. Blink on the other hand relies on the ability to mon-
itor sequence numbers of ongoing TCP flows. This poses
not only scale concerns, which Blink addresses by limiting
itself to only monitoring high volume prefixes, but also can-
not work on encrypted transport protocols such as QUIC.
Finally, by detecting failures and re-routing on a route/prefix
granularity, Blink suffers from the same pitfalls of traditional
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Table 3: Comparison of path failover mechanisms

Feature BGP

[48]

MPTCP

[24]

SWIFT

[29]

INFLEX

[58]

Blink

[28]
CPR

Pre-establish connection
support

3 7 7 3 partial 3

Partial failures support 7 3 7 3 partial 3

Granular failover 7 3 7 3 7 3

Support all connections
and prefixes

3 3 3 7 7 3

No client support required 3 7 3 3 3 3

No switch support required 3 3 7 7 7 3

O(seconds) convergence 7 3 7 3 3 3

Production validation 3 3 7 7 7 3

routing protocols. Smaller failures can go undetected, and
reroute decisions can result in substantial changes in traffic
allocation, exacerbating the risk of cascading failures due to
downstream congestion. CPR on the other hand can be en-
abled for all flows, and can detect outages and impairments
on a per-connection basis. Re-routing is also performed on a
per-flow basis, and as a result traffic can be offloaded and dis-
tributed in a more granular fashion. CPR can also afford more
sophisticated failure detection implementations, for example
based on RTT variation, that passive monitoring in switch
dataplanes cannot support.

SWIFT [29] infers the extent of failures through the analy-
sis of BGP updates. While it reduces the time to route conver-
gence, its reliance on BGP route updates makes it oblivious
to a wide array of failure scenarios. By the authors’ own
admission, it is also unable to improve the time taken to re-
ceive BGP updates, which itself is on the order of multiple
seconds [28]. CPR bypasses routing messages altogether, and
can more accurately detect more types of failure in less time
by simply piggy-backing on existing transport mechanisms.

Although a number of egress routing control systems aim to
mitigate some of the same issues as CPR (e.g., Espresso [64]
or Edge Fabric [52]), CPR again differentiates itself by op-
erating on individual connections rather than prefixes. This
makes it complementary to such systems: it is possible to use
them to apply intelligent egress traffic engineering, whilst still
relying on transport extensions like CPR to mitigate transient,
sub-prefix path impairments. In fact, since CPR depends on
specific routing primitives for its operation (e.g., those pro-
vided by Silverton [14, 57]), CPR requires a subset of the
functionality provided by these systems.

FlowBender [34], similarly to CPR, uses transport-layer
metrics to trigger path reselection decisions, but for the pur-
pose of intra-datacenter load balancing. However, in contrast
to CPR, it 1) requires Explicit Congestion Notification (ECN)
which is not safe to use with anycast traffic [49, 59]; and 2)
requires control of the ECMP hashing configuration of routers
along the path to implement its reroute mechanism. These
two issues make it unsuitable for providing resilience against
Internet path failures. Similarly, although SD-WAN solutions
(e.g., [22,65]) can achieve for overlay networks results similar

to CPR, they are neither unilaterally deployable nor a good
fit to the business model of an edge cloud network.

Multipath TCP (MPTCP) [24] makes it possible to establish
single connections over multiple paths and load balance traffic
automatically to the best performing path. Inheriting from
previous multipath-aware transport such as shim6 [44] and
SCTP [55], MPTCP has slowly gained traction in niches such
connection handoff [10]. In the same way the usage of CPR
is not at odds with QUIC, we do not view CPR as inherently
incompatible with MPTCP. CPR works well precisely where
MPTCP often falls short, for example by improving reliability
for short lived flows which dominate web traffic, protecting
connection establishment, or exploiting path diversity without
requiring clients to explicitly identify distinct paths (e.g., with
distinct addresses). In contrast with CPR, MPTCP provides
no value when interacting with legacy TCP clients, since
it is not unilaterally deployable. By tying itself to a legacy
wire format, MPTCP is also less forward looking than QUIC.
Given the significant economic investment required to deploy
and support a new transport protocol, it is unsurprising that
edge networks have collectively focused on the latter. Over
time we expect QUIC to fully assimilate the explicit multipath
capabilities of MPTCP, while still falling back to implicit
multipath mechanisms such as CPR.

8 Conclusion

This paper presented Connection Path Reselection (CPR),
a novel system that improves the reliability of edge net-
works [52, 64] by inferring the status of a path by monitoring
transport-layer forward progress, and rerouting stalled flows
onto healthy paths.

CPR is unabashedly simple, and follows in a long tradition
of incremental improvements to the Internet which push the
boundaries of best effort delivery. While it cannot protect
flows against all failures, the cases in which it is effective
come virtually for free. Our implementation is trivial to con-
figure, effortless to operate, requires no additional hardware
and exploits path diversity already available to edge networks.
By operating at the transport layer, CPR provides faster recov-
ery than is attainable by routing alone, as well as detecting
a wider array of potential failures on a per-connection basis
without incurring additional state.

Importantly, this paper is not a proposal - CPR has been
deployed in production at a large scale edge network for over
two years. We evaluate our design within this context, and
document our assumptions for the benefit of a wider commu-
nity. To the extent of our knowledge, CPR both complements
existing routing and traffic engineering mechanisms, and can
coexist with multipath enhancements to transport protocols in
the future. As a bridge between the two, CPR is a step towards
the collective goal of ensuring that only a complete partition
is capable of stalling an Internet transport connection.
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Appendix

A Path diversity

This section provides additional results on path diversity both
at the AS path level (extending the analysis presented in §5.3)
and at the dataplane level in the specific case of paths between
pairs of POPs.

A.1 AS path diversity
This section extends the analysis of AS path diversity pre-
sented in §5.3 by reporting path diversity results disaggregated
by remote AS type and IP version.

We classify destination ASes according to the CAIDA AS
classification dataset [1]. This dataset provides an AS type for
each candidate destination AS: Transit/Access for business
providing Internet connectivity; Content for ASes which pro-
vide content hosting and distribution; and Enterprise for other
entities that are mostly users, rather than providers of Internet
access, transit or content. ASNs for which a classification is
unavailable were tagged as Unknown.

Our findings are presented in fig. 8. Path diversity seems to
induce a stable ordering in which Content destination ASes

a) IP version b) Traffic volume
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Figure 8: Relationship between both AS-node / Inter-AS path
diversity and AS type, disaggregated by a) IP version of the
advertised prefix and b) Traffic volume served.

have the highest diversity, followed by Enterprise, Transit/Ac-
cess and Unknown. While Inter-AS path diversity is under-
standably higher than AS-node diversity, the ordering appears
for both measures. This suggests that, in general, Content
ASes value path diversity the most; this is unsurprising given
the benefits multihoming provides in content delivery [7, 40].
Although similar arguments can be made for multihoming of
Access [8, 21] and Enterprise [9] networks, in practice they
exhibit lower path diversity, potentially because they operate
at a different cost tradeoff point. Whereas every intermediate
AS is node-protected for ∼50% of Content ASes, this only
happens for ∼40% of the Enterprise and Transit/Access pre-
fixes. Overall, there is slightly improved path diversity for
IPv6 compared to IPv4, except for Transit/Access networks
(see fig. 8 i-a and ii-a).

We also consider size in our analysis, motivated by the
intuition that large, well funded entities may plausibly en-
joy better path diversity than smaller ones. We approach this
issue by using traffic volume as a proxy for size, disaggre-
gating those prefixes lying in the top 20th percentile (80th
percentile overall) by traffic volume served from our edge
cloud network. The result of this is presented in fig. 8-b. Al-
though the conjecture that larger entities may enjoy better
path diversity is confirmed for every AS type, it is emphatic
for Content destination ASes: around ∼75% of high-volume
content provider prefixes are fully node- and link-protected
(fig. 8 i-b and ii-b respectively). While ∼30% of Transit/Ac-
cess destination prefixes seem to not be node-protected at all,
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as reported in fig. 8 these correspond to directly connected
peers for which path reliability is very high. On the other
hand, ∼40% of Transit/Access destination prefixes are both
AS-node and Inter-AS-path protected.

A.2 Dataplane path diversity between POPs
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Figure 9: Inter-POP end-to-end path measurements
Although the BGP-based results presented above are suffi-

cient to justify our path selection approach, as stated in §5.3
they constitute lower bounds. For some use cases it may be
advantageous to directly measure dataplane multipath diver-
sity. In this section we present data indicative of the results
of such an analysis. We make use of a measurement mesh
between our ∼80 globally distributed POPs, which continu-
ally perform independent RTT measurements over each one
of their transit providers. By exploring loss episodes in this
mesh we can estimate the probability that, if a BGP-preferred
path is unavailable between two POPs, CPR can find another
one by random choice.

During a given 30 second measurement window, we com-
pute the availability α of a POP-to-POP path as the ratio
between the number of ping probes for which a response was
received and the total number of probes sent. We then com-
pare this to a threshold φ, and define a path as unavailable if
α < φ. We present two measurements using this setup. First,
in fig. 9a we show the CDF of the RTT difference between the
shortest and longest available paths between two given POPs.
We can see that in ∼80% of cases this RTT delta is of at most
∼12.5ms; for ∼95% of cases this upper bound rises to 50ms.
Note that, in general, the behavior of this RTT difference is not
impacted by our choice of φ. This suggests that, for a large
proportion of paths between POPs, alternative paths with simi-
lar RTT are available simply by choosing an alternative egress
- even for relatively high availability requirements. In some
cases, though, these paths can induce significant additional
delay, and hence this effect cannot be dismissed out of hand.

We also compute the proportion of measurement windows,
over a 7 day period, in which at least two POP-to-POP paths
were available between any two POPs. This is presented in
fig. 9b, which shows that for φ = 0.9, ∼96% of POP pairs
have two or more available paths between them for at least
∼90% of the time. Since data collection noise from using ping
invariably leads to packet losses that do not correspond to
path impairments, these numbers constitute a lower bound for
the actual data plane path availability. Nevertheless, even this
rough approximation shows that the random retry strategy
presented in §4 with alternative paths being simply defined
by using alternative egress transits is good enough for CPR.

B CPR state probability reconstruction

START

SYNRCVD*

openreq

HEALTHY

connect

synack_*
estab_*

CLOSED

close_openreq_*

STALLED*

stall_0

close_healthyprogr_*

stall_1+

close_stall_*

Figure 10: The CPR Finite State Machine
This section provides additional details regarding the com-

putation of stall-event-related CPR performance measure-
ments like those described in §5.2.

CPR state machine. A summarized representation of
the CPR state machine is presented in fig. 10. Although
CPR tracks the number of individual reroutes while in the
SYNRCVD* and STALLED* states, these internal subdivisions
and their associated transitions have been omitted (this is de-
noted in fig. 10 with * or +). Stall detection logic is evaluated
at relevant TCP events (e.g., retransmissions). Transitions
between states represent either TCP events (e.g., openreq,
estab*), CPR events (e.g., stall*, progr*) or both (e.g.,
synack*, close*). SYNRCVD* and STALLED* correspond to
points in which path reselection logic can be triggered.

For incoming connections, the SYNRCVD meta-state is en-
tered when a SYN is received (openreq); this will elicit
a SYN-ACK response from the local TCP stack. If this
SYN-ACK is acknowledged, the TCP connection enters the
ESTABLISHED state, and CPR the HEALTHY state. Outgoing
connections enter the HEALTHY state directly upon termina-
tion of the three-way handshake. When connections terminate
naturally (close_healthy), they leave both the TCP and the
CPR state machines. The SYNRCVD meta-state subsumes one
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synack* transition for every ACK/SYN-ACK retransmission,
and the STALLED meta-state one stall* transition for every
time a stall is declared (see §3.2). The progr* transitions cap-
ture the possibility of the connection making forward progress
again after a number of stalls. The close* transition, which
corresponds to connection termination, can happen before
connection establishment completes (close_openreq*), af-
ter suffering one or more stalls (close_stall*), or as part
of an orderly teardown while healthy (close_healthy).

Probability reconstruction. Each TCP connection will
increment treatment or control counters for every transition
in fig. 10. To turn these monotonically increasing counters
into meaningful probability estimates they are processed in
15 second windows that we denote export intervals.

We begin with π•(A), the instantaneous occupancy of a
state A, where the subscript will be used to refer to the treat-
ment or control groups. We note that the value of π•(A) at
a given time can be obtained by keeping track of the total
number of connections that have entered A and subtracting
the total number of connections that have left it; this can be
directly computed from the exported counters.

We continue by defining p••, the probability estimates for
transitions in fig. 10. As before, the subscript will denote ei-
ther the treatment or control groups; however, the superscript
will be used to denote either outflow or inflow probabilities.
Borrowing from the usual conditional probability notation,
we denote an outflow probability po

•(B|A) as the probability
that, when a connection transitions out from state A, it will
move on to state B; likewise, we denote an inflow probability
pi
•(B|A) as the probability that a connection transitioning in

to state B originated from state A. An estimate of po
•(B|A) at

the end of an export interval can be obtained by computing
the ratio of the rate at which connections transitioned from
A to B and the total rate at which connections transition out
from A during that export interval; a similar (but opposite)
procedure can be used to compute pi

•(B|A) (rates can be triv-
ially computed by discrete differentiation). Using p•• we can
compute specialized measures that can be helpful when esti-
mating the strength of the association between re-routing and
stall-related connection properties, such as e.g., the risk ratios

ρ(A) =
πt(A)
πc(A)

and

γ
•(B|A) = p•t (B|A)

p•c(B|A)
.

C Stall event extraction

This section provides additional details regarding the extrac-
tion of CPR stall events, like those described in §5.2.

To extract stall events from raw performance counters we
begin by estimating their span, defined as the set of times-
tamps over which they are considered to be active (having

a correlated effect over the stall-related performance mea-
sures π•/p••/ρ/γ• of multiple hosts in the same POP). This is
achieved by first identifying candidate per-host events, which
can then be clustered at the POP level.

The identification of candidate per-host events begins
with standard multidimensional anomaly detection (see e.g.,
[45,61] and references therein) aimed to identify performance
degradation event candidates; this yields a series of points
in time when treatment/control performance differences over
multiple time series may be suggestive of an event. In our case,
we use standard peak-finding techniques (see e.g., [45, 61]
and references therein) to find “potentially interesting” times-
tamps for each stall-related performance measure time series,
and use the intersection of all these subsets of active times-
tamps as our set of candidates. These are further refined by
applying clustering and de-noising based on the inter-event
durations between successive per-host event candidates. This
can be achieved by identifying continuous sequences of can-
didate timestamps. If the separation between any two of these
sequences is smaller than a given clustering threshold, they
are aggregated as part of the same event candidate; conversely,
if after this process their total time span is smaller than a given
threshold, the whole candidate set is discarded. This will yield
a number of per-host event spans, each subsuming multiple
candidates.

To model the state of the world both before the event started
and after it ended we assign to each span a context: two time
periods, one preceding it and one following it. This can be
used as an experimental framework of sorts: if the candidate
event finding logic described above correctly identified a set
of event candidates, we would expect to find a definite statisti-
cal difference between values of at least some π•/p••/ρ/γ• for
timestamps within the candidate span and those within the
context. For every performance time series ρ/γ•, we compute
the average Mahalanobis distance [43] between its context
distribution and its actual values within the candidate span.
The resulting set of distances can then be used to reject the
candidate if it does not provide enough evidence that the
recovered span encompasses a genuine impairment. These
distances will also be used to define an event severity, fol-
lowing the assumption that a larger context/span difference
indicates a more impactful event.

The next stage of the computation is to bring together sets
of events at the POP level that happen at approximately the
same time and which may hence share an underlying cause. To
achieve this, we create a graph where the vertices are the per-
host events, and links denote that the spans of the two event
nodes overlap. This will generate dense cliques when many
host-level events overlap, which would happen if multiple
edge hosts in a POP experienced correlated stalls as a result
of the same event. Although any graph clustering algorithm
could be used (e.g., modularity optimization [15, 20]), trivial
detection using connected components [30] has proven to
be good enough. Once per-POP events have been identified,
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event properties from their constituent per-host events (e.g.,
duration, severity) are aggregated into comparable per-POP
event properties.

The logic described can be reused to identify spikes in BGP
updates or withdrawals for all the peers and transit providers
in a given POP, yielding a number of BGP events. These can
then be used to enrich the events found from π•/p••/ρ/γ• by
using a bookending co-occurrence heuristic: if a BGP event
happens immediately before the CPR event starts, it bolsters
the conjecture that the CPR event was caused by the BGP
event; if it happens immediately before the CPR event ends,
it bolsters the conjecture that it mitigated it. By imposing
time thresholds on the maximum time difference between the
CPR and the BGP event spans and measuring the deviation

between the center-of-mass of the BGP event and the start
and end timestamps of the CPR event it becomes possible
not only to assign suspected peers or transit providers to a
given per-POP event, but also to provide a measure of the
association strength between a BGP event and a CPR event.
We use this to define a BGP affinity score to each per-POP
event. Finally, the resulting per-POP events are discarded if
they violate any one of a number of data quality policies, such
as any of the hosts involved being put into maintenance during
the per-POP event span; the total number of connections in
an edge node being too low, which could induce numerical
instability when calculating probabilities; the total number
of nodes which observed the per-POP event being too low,
which could point towards a false positive; etc.
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Abstract
Data center network faults are hard to debug due to their scale
and complexity. With the prevalence of hard-to-reproduce
transient faults, root-cause analysis of network faults is ex-
tremely difficult due to unavailability of historical data, and
inability to correlate the distributed data across the network.
Often, it is not possible to find the root cause using only
switch-local information. To find the root cause of such tran-
sient faults, we need: 1) Visibility: fine-grained, packet-level
and network-wide observability, 2) Retrospection: ability
to get historical information before the fault occurs, and 3)
Correlation: ability to correlate the information across the
network.

In this work, we present the design and implementation of
SyNDB, a tool with the aforementioned capabilities to enable
root cause analysis of network faults. We implement and
evaluate SyNDB with realistic topologies using large scale
simulation and programmable switches. Our evaluations show
that SyNDB can capture and correlate packet records over
sufficiently large time windows (∼4 ms), thus facilitating the
root cause analysis of various network faults.

1 Introduction

Large cloud providers need to quickly resolve network faults
to meet their high SLA (service level agreement) require-
ments [35, 66]. However, a data center is a distributed system
that is prone to bugs caused by non-deterministic timing of dis-
tributed events [43]. Therefore, debugging network failures
occurring in modern data centers is extremely challenging
due to the scale and complexity of interactions in a dynamic
environment. Network faults in modern data center networks
are often transient and non-reproducible. A recent study [66]
reports that some network faults could not be reproduced even
with techniques such as EverFlow [67] or Pingmesh [30]. Fur-
ther, for a given network fault, the root cause can come in
many forms. For example, a packet drop due to a table miss
can happen either due to a parity error [66] or due to tem-
poral inconsistency during a network update [36, 54]. Due
to the complex nature of network faults, the key bottleneck
in quickly resolving them lies in finding the root cause. For
example, in AliBaba’s production network, 90% of the total
time required to resolve a network fault is spent in finding the
root cause [66]. Another study from Facebook’s network [47]
notes that 29% of network failures go without establishing
the root cause.
∗Work done at National University of Singapore
†Equal Contribution

In this paper, we focus on the problem of finding the root
cause of transient and hard-to-reproduce network faults with
many possible root causes. To better understand the difficulty
in finding the root cause, let’s consider an example scenario of
a microburst. When a microburst occurs at a switch port, there
is a uniform distribution of packets from different sending
hosts responsible for the microburst (more details in §7.2.1).
This indicates a fan-in traffic pattern with no single offend-
ing flow. Now, there are two possible root causes for such
a fan-in to occur. First, the sending hosts themselves are
sending the data in a synchronized fashion. In this case, the
issue needs to be resolved at the sending hosts by using tech-
niques such as application-level jitter [53]. The other possible
cause could be that the sending hosts are already introducing
application-level jitter, but still result in a microburst due to
non-deterministic interaction with other network traffic (see
§7.2.1 for details).

One way to differentiate the root causes is to look at the
packets involved in the microburst before it happens. If the
packet arrival times at the first-hop switches connected di-
rectly to the sending hosts are synchronized, then the root
cause is synchronized traffic. Otherwise, the microburst is
due to non-deterministic interactions of flows in the network
and even more details are required to identify the root cause.
Therefore, in order to find the root causes of complex network
faults, we believe that a network monitoring system needs to
have the following capabilities:
• Visibility: Observability in space, the ability to observe

network-wide metrics at a packet-level resolution (e.g.
packet arrivals and departures at all ports for all switches).
Aggregate states such as flow level statistics will not be able
to provide sufficient visibility to the underlying sequence
of events.

• Retrospection: Observability in time, the ability to be “al-
ways on” and look back on past network-wide states before
the fault has occurred. When the problem is detected, the
events leading to the problem would have already occurred
and information related to these past events is lost unless ad-
ditional effort is made to preserve the history. Such a capa-
bility is especially necessary to deal with faults that are tran-
sient, hard to reproduce and caused by non-deterministic
interactions.

• Correlation: The ability to correlate network-wide events
at small timescales. This is required if faults occur due
to the interaction of traffic flows across multiple switches.
Without this capability, it would not be possible to correlate
events from different parts of the network.
Going back to the aforementioned microburst scenario,
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retrospection allows us to look at network metrics before the
microburst at the different first-hop switches with visibility
at the granularity of packet arrivals. Correlation allows us
to compare these arrival times across the different first-hop
switches. If the root cause is not synchronous source traffic,
we can again make use of these three capabilities to see what
other non-deterministic interactions transpired in the network
that led to the fan-in microburst. We elaborate more on this
latter root cause in §7.2.1.

Several of the existing approaches [7, 32, 34, 37, 62, 63, 66]
provide visibility to a good extent. But they either do not
provide retrospection and correlation capabilities or provide
them only partially (see Table 1). Since network faults oc-
cur unpredictably, providing retrospection typically requires
the system to be “always on” in terms of collecting teleme-
try information. In this sense, NetSight [32], an “always
on” version of postcard mode INT [7] comes closest to pro-
viding all the three properties with its packet-level visibility
and retrospection capabilities. However, it does not provide
a strong correlation property since it assumes that the post-
cards are received in order and out-of-order postcards can
be corrected using topology information. Therefore, it can
only correlate packets within a single flow at best. A straw-
man approach to achieving the three properties would be
to augment a NetSight like approach with a precise data-
plane time synchronization mechanism such as DPTP [38]
so that it can now provide strong correlation with synchro-
nized timestamps across the switches. However, such a so-
lution does not scale to today’s large data center networks
because of the “always on” approach of NetSight in record-
ing telemetry data. While efficient recording of telemetry
data is achieved by trigger-based approaches such as INT-
MX [7], PathDump [59], BurstRadar [37] and NetSeer [66],
they compromise on retrospection since the packet history is
not recorded, especially for switches and flows not involved
in the trigger.

In this paper, we present, SyNDB, a packet-level, synchro-
nized network-wide monitoring and debugging framework
that provides all the 3 desired capabilities of visibility, ret-
rospection and correlation. For visibility, SyNDB leverages
programmable data-plane switches to capture packet-level
telemetry information at nanosecond time resolution. A com-
mon issue with dataplane-based telemetry systems is that
the metrics to be captured need to be specified at compile
time [51]. To address this issue, SyNDB provides an in-
terface to the network operator to specify and change the
metrics at runtime without having to re-program the switch
data-plane. For achieving retrospection, the key trade-off is
that “always on” approaches are too expensive, while cheaper
trigger-based approaches do not provide strong network-wide
retrospection. We find a middle ground with SyNDB. Our
key idea is to leverage the switch data-plane as a fast tempo-
ral storage to perform continuous recording of packet-level
telemetry information (packet records) over a moving time

window (recording window). When no network fault is de-
tected, the recording window moves ahead and the older data
beyond the record time-length is discarded. When a network
fault is detected on any switch, the switch broadcasts a prior-
ity message to other switches in the network. On receiving
this message, these switches send the packet records from
the recent recording window to a monitoring server (collec-
tor) for permanent storage. At the monitoring server, the
synchronized, network-wide packet-level data enables root
cause analysis. In this way, SyNDB provides retrospection
efficiently by exporting network-wide historical telemetry in-
formation only when a fault occurs. To correlate the telemetry
information from different switches, SyNDB uses DPTP [38]
to synchronize the switch data-planes. DPTP is a recently
proposed time synchronization protocol for the network data-
plane. SyNDB is thus able to provide visibility, retrospection
and correlation capabilities all under the same framework.
In summary, we make the following contributions:

1. We present the design of SyNDB, the first network mon-
itoring and debugging framework that provides all the
three capabilities of visibility, retrospection and correla-
tion for finding the root cause of transient and hard-to-
reproduce network faults (§3).

2. For flexible visibility, we develop an abstract interface
and a run-time support for the operator to configure and
dynamically change the operating parameters of SyNDB
such as fault detection conditions and the recorded met-
rics, without needing to re-program the data-plane (§5).

3. In order to achieve efficient retrospection capability, we
design packet-level telemetry caching mechanism in the
data-plane (§3.2). In doing so, we address the challenges
of limited data-plane storage by developing compression
techniques to minimize memory requirement while still
retaining packet-level statistics (§3.2.1). We also develop
techniques to further reduce the telemetry information
exported for each fault trigger (§3.2.1).

4. We demonstrate the effectiveness of SyNDB by showing
how it can be used to identify the root cause for transient
and hard-to-reproduce network faults (§7). In particular,
we demonstrate how SyNDB can identify different root
causes for the same network fault using two different
scenarios involving a microburst.

We have implemented SyNDB on Intel Tofino [8] switches
using P4. The packet records at the collector are stored in
a relational DBMS facilitating debugging of network faults
using SQL queries (§4 and §6).

While SyNDB is designed to deal with transient and hard-
to-reproduce network faults, it can be used as a tool to debug
common network faults as well (Appendix B). In addition,
SyNDB can be considered complimentary to existing frame-
works such as INT [7] and NetSeer [66] by providing the
capability to perform network-wide event correlation and
retrospection.
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Table 1: Comparison of SyNDB with existing solutions
Solution Visibility Retrospection Correlation

Per-packet
Postcards [32] Packet-based Yes, Always On Partial

INT [7] Packet-based No, network
trigger Partial

SwitchPointer [60]
Packet-based
(Flow-level

locality)
Yes, host trigger Partial

Sketch Frame-
works [46, 62] Flow-based Past Aggregated

Counts, N/A No

BurstRadar [37] Packet-based No, fixed
network trigger No

Speedlight [63] Switch
Metrics No, Scheduled Causal

Consistency(µs)

NetSeer [66] Flow-based No, fixed
network triggers No

SyNDB Packet-based
Recent History,
Programmable

network triggers

<100ns
(DPTP [38])

2 Related Work
Network monitoring literature is wide and extensive, but none
of the existing works provide all the three capabilities of visi-
bility, retrospection and correlation required to find the root
causes of transient and non-reproducible network faults. Here
we mention some of the most relevant works.
Network Based. Query-based streaming telemetry systems
like Marple [51], Sonata [31], etc as well as sketch-based
frameworks [34, 46, 62] can provide network-wide visibil-
ity and retrospection but only with aggregated metrics and
without any network-wide correlation capability. SyNDB
is complementary to these streaming telemetry systems in
that it additionally correlates information collected across
the network and supports complex fault triggers based on
input from the streaming telemetry system. Systems such as
BurstRadar [37], Mozart [45], and INT-MX [7] that perform
trigger-based data collection cannot provide retrospection.
Mozart [45] involves coordination between network devices
to start collection of telemetry data while coordination in
SyNDB is to export already collected network-wide teleme-
try data. Through switch-local timestamps, INT-MX can
only provide partial correlation and no network-wide correla-
tion. Both PathDump [59] and SwitchPointer [60] leverage
end-host storage to collect packet-level telemetry information
providing retrospection. However, the fault triggers for both
of them are only host-based and SwitchPointer provides only
partial correlation with its millisecond-level epochs. Speed-
light [63] uses synchronized network snapshots to provide
microsecond-level casual consistency which is insufficient for
correlation required in the example scenario in §1. Further,
since it requires advance scheduling of snapshots every few
milliseconds, it cannot provide retrospection. NetSeer [66]
captures the flows that were affected by certain events like
packet drops, path changes, and congestion, and mainly helps
in fault localization - where the fault occurred and affected
which flow (5-tuple). It only provides flow-level visibility and
no retrospection or correlation. NetSight [32] which is equiv-

Collector

Rec

Rec

Rec

Rec

Rec

(1)Problem
Detected

(2)NotifyProblem

(3)Send Packet
Records

(4)Query-based Debugging

Figure 1: SyNDB Overview : Switches continuously maintain
packet records, but send them to collector for debugging only
upon detecting a problem

alent of an “always on” version of postcard mode INT [7]
(INT-XD) provides network-wide packet-level visibility and
retrospection. However, it does not provide strong correlation
capability as it generally assumes in order arrival of postcards.
Even if strong correlation can be achieved with mechanisms
such as DPTP [38], NetSight’s “always on” recording is very
expensive and does not scale to multi-petabit data center net-
works [58]. As we show in §7.3, NetSight can require 5TB or
more storage per switch for every hour. The main bottleneck
is the limited network bandwidth available for exporting the
recorded data from the switches and the slow write speeds
of data storage devices where the data would eventually end
up. Other than scalability, this approach is also wasteful since
network faults do not occur all the time [48] and, more than
60% of data center bugs occur due to the untimely delivery
of a single message [43].

End-Host Based. Trumpet [50] performs end-host based
monitoring of packets based on specific triggers to perform
coordinated monitoring of network events. DETER [44] per-
forms TCP replay for diagnosis of fine-grained TCP events.
It constructs switch queues using simulation of the recorded
TCP Packets in the end-hosts. Although it can help in de-
bugging obscure TCP performance issues, it cannot diag-
nose problems inside the network at small time scales. Con-
fluo [40] provides an end-host stack to diagnose network-wide
events. However, it cannot provide packet level event correla-
tion inside the network. SIMON [26] applies network tomog-
raphy technique to reconstruct the switch queuing behaviour
based on NIC packet timestamps. SyNDB is complementary
to these techniques as it provides visibility, retrospection and
correlation capabilities inside the network.

Table 1 summarizes recent related works based on their
capabilities of visibility, retrospection and correlation.

3 Design
SyNDB provides fine-grained (packet-level, nanosecond res-
olution) and network-wide telemetry information, in a syn-
chronized manner to ensure visibility, correlation and retro-
spection. Visibility and correlation are ensured by collecting
packet-level telemetry and leveraging data-plane time syn-
chronization. For Retrospection, the key idea is to leverage
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the switch data-plane as a fast temporal storage for recording
packet telemetry information over a moving time window.
One of the advantages of recording telemetry information in
the switch data-plane is that SyNDB can record information
about all packets within a time window at line rate.

When no network fault is detected, the recording window
moves ahead and older telemetry data beyond the window size
is discarded. Hence, the recording window always maintains
the recent history. When a trigger condition (e.g. packet
loss or high latency) is observed at any switch (Step 1), high
priority trigger packets are broadcast to all switches (Step
2), as shown in Figure 1. Upon reception of trigger packets,
a switch collects all the packet records from the recording
window and forwards them to the collector to be stored in
a database (Step 3). Once data collection is completed, the
operator can debug the fault using packet records collected
both before and after the fault (Step 4). Debugging can be
performed by operators using SQL queries. Details of the
various components of SyNDB are explained in the following
sections, namely Visibility (§3.1), Retrospection (§3.2) and
Correlation (§3.3).

3.1 Visibility

Packet Records. To generate packet-level telemetry data, we
record information for each packet that enters a switch. We
call this information a p-record. Each p-record contains 3
basic fields: [pID, pTimein, pTimeout ]. pID is the packet ID
which is comprised of a combination of the hash value of the
packet headers (5-tuple flow key) and TCP/UDP checksum.
The hash value helps in associating packets from the same
flow, whereas the checksum helps in uniquely tracking each
packet within the flow. Although hash collisions are possible,
we can resolve them using topology and timing information.
pTimein captures the time when the packet enters the switch.
pTimeout is the time when the packet leaves the switch.
Additional fields are appended by the network operator to a
p-record to capture statistics, such as queue depth, link utiliza-
tion, forwarding table version, port counters, etc. An operator
can specify such additional fields via SyNDB configuration
(§5). To identify a p-record with a particular flow, the flow
hash to 5-tuple flow key mapping could be temporarily stored
in NICs (or hosts) and retrieved on demand.

3.2 Retrospection

After a p-record is generated in the data-plane for each packet,
we store them in a ring buffer array in the switch data-plane.
This ring buffer array maintains only the recent p-records and
we call this the history buffer.

Trigger Initiation. While SyNDB collects p-records for
each packet in the data-plane, it requires a trigger to initiate
data collection. These triggers can be events such as conges-
tion at a link, packet drops or packet reordering. The trigger
conditions are monitored in the data-plane. Once a trigger is

hit, the p-records can be transmitted to the collector.
To initiate network-wide p-record collection, we create a

trigger packet to be broadcast (with priority) to other switches
through the data-plane. In SyNDB, when a trigger condition
is hit, a new trigger packet is created. The trigger packet is an
Ethernet frame with a trigger header consisting of: 1) Trigger
ID, 2) Trigger Type: unique type to classify trigger, and 3)
Trigger Time: time when the trigger was hit.

The switches receiving the trigger packets further broadcast
it to their neighboring switches and so on. Due to redundan-
cies in trigger packet broadcast (multiple paths in data center
topology), unless the network is partitioned, trigger packets
reach the entire network. On receiving a trigger packet in
the data-plane, the switch stops storing p-records in the his-
tory buffer and instead uses a fixed buffer (we call it future
buffer) for subsequent storage of p-records. If a switch had
previously received a trigger packet with the same ID, then
it is dropped. The history buffer and future buffer contains
p-records of packets before and after the trigger condition
respectively.

Conceptually, the size of the history buffer that is needed
to be stored for debugging purpose depends on the round-trip-
time (RTT). In a data center context, recent measurements
show that VM-to-VM RTTs vary between 5µs to 100µs [24].
For a packet rate of 1 Bpps, 1 million p-record entries could
maintain at least 1 millisecond duration of history if the switch
pipeline is fully utilized. This translates to packets corre-
sponding to at least 10’s of RTTs available for debugging. In
practice, the packet rate is usually much lower than 1 Bpps
and this translates to a much longer time window. We present
our evaluation on the time window in §7.1 and discuss the
sizing of future buffer to enable continuous recording in §7.3.

p-record Collection. Upon receiving a trigger packet with
a new trigger ID in the data-plane, collection of p-records
is performed. The control-plane initiates the data-plane
packet generator which generates collection packets to read
the p-records from the history buffer. A collection packet
can read only one p-record each time it traverses through
the switch [16], before being forwarded to the collector via
a mirror-port. Consequently, we recirculate the collection
packet multiple times in the data-pane to coalesce multiple
p-records into a single packet. This reduces the large serializa-
tion overhead, if each packet contained exactly one p-record.

Once the number of p-records in a packet has reached a
threshold (configured by switch control-plane), the collection
packet is forwarded to the collector. A collection cycle ends
when all the p-records stored in the data-plane have been
transmitted or sufficient time has elapsed since the trigger.
The collection cycle repeats upon a new trigger hit. It is im-
portant to note that regular traffic forwarding is not disrupted
during the trigger and collection process. For cases when an
additional trigger is hit during collection process of the previ-
ous trigger, a new trigger packet is generated and collection
period is extended (discussion in §7.3). Techniques such as
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bulk DMA read could also be employed to collect p-records.
However, such techniques require additional packetization
in the control-plane to forward the whole set of p-records
to a controller. The pseudo-code for recording, trigger and
collection is shown in Appendix A.

Aggregating Triggers. SyNDB supports operator to spec-
ify collection to be performed when a set of trigger conditions
occur within the historical time window. To support this, upon
receiving a trigger packet, SyNDB maps the trigger type to
a bit-index in a temporal trigger bit-array. It also sends the
trigger packet to the control-plane where a timer for each
trigger type is maintained, and the bit corresponding to the
trigger type is cleared upon expiration. Hence, the temporal
trigger bit-array represents the lists of triggers that occurred
in the network for the past historical time window. Based on
this trigger bit-array value, collection could be configured to
be performed. The triggers are customizable by the network
programmer, and is presented later (§5).

3.2.1 Reducing Collection Overhead

As SyNDB collects data only on event triggers, the amount
of data collected is expected to be much smaller compared to
continuous monitoring. To further reduce the data collected
for each trigger, SyNDB implements two mechanisms, a com-
pression scheme on the p-record and a scope reduction on the
network level.

p-Record Compression: SyNDB performs the following
p-record compression while ensuring packet ordering:
1. Compress pID : Consecutive packets from the same flow
do not need their pID stored. Instead, a counter corresponding
to the last pID is incremented.
2. Compress pTimein : Similarly, incoming packets within
a time window (e.g. 64 ns) do not need the pTimein stored
individually. Instead, a counter for the number of packets
received in the past time window is incremented. The packets
within the time window are assumed to have uniform inter-
arrival times. The same approach is applied to pTimeout . In
the best case, a single (pID, pTimein, pTimeout) tuple plus
the corresponding (n-bit) packet counters are sufficient to
represent (2n) packets in the same time window.

Reduction on the Network Level: On detecting a fault,
SyNDB performs collection of p-records from all switches in
the network. This may burden the collector with unnecessary
data if the network is huge and the root cause is localized. We
mitigate this by a simple technique. Each switch maintains a
list of links from which it received the packets for the histori-
cal time window. Upon fault trigger, instead of broadcasting
trigger packets, they are selectively multicast to only the links
from where the packets were received in the recent recording
window. The intuition behind this is that we are interested
in where the current set of packets came from. This solution
provides the ability to trace every packet which appeared in

the trigger switch to its source, while reducing the number of
switches involved in the collection.

3.3 Correlation
Time-synchronization. SyNDB uses global timing informa-
tion to correlate packet records from multiple switches to help
construct an accurate network-wide ordering of events. Hence,
the data-plane clocks (used for pTimein and pTimeout ) across
switches are synchronized to a fine granularity to avoid tim-
ing inconsistencies. To rightly correlate established events in
distributed systems using "happened before" relation, causal
consistency [41] is essential. In SyNDB, since a trigger event
is the captured reference point, causal consistency is the right
model to correlate events happened before the trigger event.
We derive the necessary condition to ensure causal consis-
tency below.

Let’s consider two directly connected switches X and Y,
with internal clocks CX and CY respectively. We denote the
synchronization error |CX −CY | between the internal clocks
by Terr. Packet A is transmitted from switch X to switch Y.
Packet A leaves switch X at TimeOutX , and enters switch
Y at TimeInY , after a propagation delay D. TimeOutX cor-
responds to the time packet A enters the egress pipeline in
switch X after queuing. This is the latest available time in
the data-plane for a packet [16]. Similarly, TimeInY corre-
sponds to the time packet A enters the ingress pipeline at
switch Y. Consequently, propagation delay now becomes the
sum of egress pipeline delay, packet deparsing delay, MAC
processing delay, and wire delay.

D = EgressDelay+DeparserDelay+MACDelay+WireDelay
(1)

To ensure causal consistency between packet records, we
should see packet A leave switch X before reaching switch Y.
In short, TimeOutX should be less than TimeInY . This will be
true if the synchronization error between the internal clocks
is less than the propagation delay.

Terr < D (2)

If the condition stated in this equation can be met, we can
ensure consistency between any set of packets transmitted
between two adjacent switches.

Previous works on network time synchronization have
shown that the Terr between neighbouring switches is in the
order of tens of ns [38, 42]. Additionally, real world data
shows that D between two adjacent switches ranges between
360 ns to 1900 ns under varying traffic conditions [38]. Thus
it is possible to achieve causal consistency between adjacent
switches, using current time synchronization techniques. The
same principle can also be extended between switches sepa-
rated by several hops in the network. In such cases, we ob-
serve that the increase in propagation delay is higher than the
increase in Terr, thus ensuring consistency between switches
across multiple hops.
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Figure 2: SyNDB Debugger Database Schema

4 SyNDB Debugger

The collector composes of multiple servers which store and
analyze the p-records. The p-records are stored in a relational
database (RDBMS) which allows the p-records to be queried
using SQL. The collector also stores information regarding
the trigger events, network topology, and position of switches
within the topology. Before storing p-records in database,
SyNDB performs hash collision removal using topology and
timing information. The hash collision removal is performed
using a simple heuristic based on the ground-truth of the
queuing time of a p-record and the identity of the switch.
Duplicate hashes found are then re-assigned with other p-
record ids. The p-records are organized using tables in a
relational database as shown in Figure 2.

1. Packetrecords: This table stores basic and custom fields
within each p-record. Each p-record stores: 1) Switch ID, 2)
Packet ID, 3) Packet Hash, 4) TCP/UDP Checksum 5) Time
In, 6) Time Queued, 7) Time Out and, 8) Operator-specified
statistics. Note that Packet ID is just a combination of packet
hash and the checksum. They are stored separately to facilitate
flow-level queries as well as packet-level queries.

2. Triggers: This table stores information regarding each
trigger event. Each trigger event stores: 1) Trigger Type, 2)
Trigger Time, and 3) Trigger Origin Switch. This enables
SyNDB to classify network faults based on the trigger type.

3. Links: This table stores the topology of the data center,
as specified by the network operator. We do not infer the
topology from the packetrecords table because it is possible
for some links to have zero utilization. Each link stores the
endpoints and the link capacity.

4. Switches: This table stores the position of a switch in
the topology, e.g. ToR, Aggregation, Core, etc.

To determine the root cause of a network fault, we use
SQL queries on the above tables. For example, in the case
of an incast, culprit packets and their routes can be obtained
by combining information from packetrecords, triggers, and
links tables. The output of these queries can also be used to
replay or build dashboards using tools [6, 12, 17], which are
beyond the scope of this work.

We list some example queries below (scenarios in §7.2):
1) List the events in the trigger switch using:

S e l e c t * FROM p a c k e t r e c o r d s JOIN t r i g g e r s
ON p a c k e t r e c o r d s . s w i t c h = t r i g g e r s . s w i t c h ;

2) List the packets in the trigger switch and the routes taken:
S e l e c t * FROM ( p a c k e t r e c o r d s as P ) WHERE i d

IN ( s e l e c t i d from p a c k e t r e c o r d s JOIN t r i g g e r s
ON p . s w i t c h = t r i g g e r s . s w i t c h
AND p . t i m e _ i n < t r i g g e r s . t ime ) ORDERBY t i m e _ i n ASC;

precord {
fields {

field_list_1;
field_list_2;
…

}
default_field : field_list_{x};
history : {y};
future : {z};
time_window : {t ms};

}
trigger {

conditions {
c1 = condition_1;
c2 = condition_2;
…

}
collection {

c1 [&|] c2' [&|] c3' …
}

}

Figure 3: SyNDB Configuration Syntax

5 SyNDB Configuration
SyNDB provides an interface for defining p-records and trig-
gers for programmable switches. The programmer configures
the following parameters in SyNDB: 1) the network statistics
(fields) to be collected in p-records, 2) the number of p-record
entries to be collected, and 3) the trigger (fault) conditions to
initiate a collection of p-records. The fields specified in the
configuration could be: 1) switch-provided metadata (queue
depth, ingress port, egress port), 2) packet header data (flow-
id), and 3) data that is computed and stored in user metadata
by the programmer (link_utilization, counters, EWMA). The
SyNDB configuration is compiled, then translated to P4 and
finally embedded with the original switch P4 program. Fig-
ure 3 shows the interfaces to define p-records and trigger
conditions.

A p-record defines a list of field_lists. Each field_list con-
tains one or more (metadata) fields [13] from the Packet
Header Vector (PHV) [16] supported by the switch architec-
ture and defined in the user’s P4 program. A "default_field"
list is specified by the programmer which is the active
field_list to be included in each p-record. The current active
field_list can be changed during runtime. The "history" refers
to the total size of the history buffer, while "future" refers
to the size of the future buffer. The "time_window" is the
target historical window (in milliseconds), and this is used to
maintain the trigger and broadcast window. The user declares
a list of trigger conditions, which are predicates operating on
header/metadata fields. For example, meta.link_utilization >
90. Finally, based on the triggers declared, the collection can
be configured to be performed using individual triggers or a
combination (AND(&), OR(|) of multiple triggers defined).
For example, let c be the local trigger condition and c′ be
a trigger condition happening elsewhere in the network. A
representation like c1&c2′ would trigger a coordinated col-
lection by a switch A only if condition c1 occurs at A, and
c2 has occurred in another switch in the network. Defining
triggers conditions and collection could be based on several
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Figure 4: SyNDB from Programmer’s perspective

network metrics in the network like packet drop, high packet
queuing, loops, etc. Additionally, it could be based on well
documented symptoms and alarms observed by network op-
erators [28, 43, 47].

SyNDB-Runtime. In practice, there is a need to make
changes to the p-record structure and trigger configurations
while SyNDB is running without the need to recompile and
load a new P4 program. SyNDB-Runtime facilitates changing
the configuration in the following ways: 1) Adding a new
field_list or editing the active field_list, and 2) Adding/remov-
ing trigger conditions. Note that these changes are restricted
to the available PHV contents in the data-plane as there is no
modification to the parser of the underlying P4 program.

When the SyNDB configuration is compiled, the compiler
enumerates all the PHV contents (packet headers, switch and
user-defined metadata) of the P4 program. It then creates tem-
plate tables with actions for each PHV container to be stored
in the p-record. This facilitates the runtime to dynamically ad-
d/remove the fields to be recorded in each p-record. The fields
could be TCP sequence number, TCP flags which are part of
packet headers, or ingress_port, queue_depth, etc. which are
part of the switch meta-data. The field to be added cannot be a
metric (e.g. EWMA) that is not defined or a packet header that
is not parsed by the already compiled P4 program. Since PHV
contents are limited, enumerating and storing them in actions
do not significantly increase data-plane resource consumption.
The maximum bytes in a p-record and the number of p-record
entries (recording window) is fixed at compile-time based on
the available hardware resources (stateful ALUs and SRAM).
To facilitate addition/removal of trigger conditions at runtime,
SyNDB configuration compiler uses similar enumeration tech-
nique and generates range-based match-action tables. Since
collection is performed based on the trigger bit-array value,
this value is added/modified based on the collection condition
changes. Additionally, SyNDB-Runtime updates the collector
each time the SyNDB configuration is changed, to ensure that
p-records are stored correctly.

Figure 4 summarizes the SyNDB workflow. A network
programmer configures the statistics to be recorded and the
fault triggers. The configuration can be continuously tweaked
to suit the statistics that the programmer wants to keep an eye
on using SyNDB-Runtime.

6 Implementation

SyNDB Dataplane. We have implemented SyNDB on Intel
Tofino [8] switches using P4 (∼1900 LoC). We use DPTP1 for
time synchronization between switches. We use DPTP since it
is implemented on PSA [16] and provides a global timestamp
in the data-plane. We store the baseline contents of p-record
in both ingress and egress pipeline. Ingress pipeline maintains
the write_index of the history ring buffer array upon a packet
arrival and stores the pID and pTimein. Egress pipeline stores
pTimeout and custom field_list to be captured. pID is a com-
bination of 16-bit flow hash, and 16-bit TCP/UDP checksum.
pTimein is a 32-bit global timestamp (at nanosecond gran-
ularity) of the packet when it enters ingress pipeline of the
switch. On the other hand, pTimeout is a 24-bit field which
captures time when the packet enters egress pipeline. A 24-bit
value allows to calculate upto 16 ms of queuing. The basic
uncompressed p-record is 11-bytes in size. To implement
compression, we maintain separate 8-bit counter array asso-
ciated with pID, pTimein and pTimeout . Trigger conditions
are implemented using TCAM tables which create a trigger
packet upon match. A trigger packet is created by cloning
the current packet and inserting a new header type for trigger
packet after stripping the payload and other headers. By us-
ing a TCAM match for the trigger table, different aggregate
conditions of individual triggers can be supported using wild-
cards. We implement SyNDB control-plane, which performs
: 1) Time-keeping of temporal trigger bit-array, 2) Updating
multicast port-group, 3) Set up packet generators for p-record
collection.

SyNDB Runtime. We have implemented the compiler for
SyNDB configuration using Rust (∼4000 LoC). It takes as
input the configuration and the switch P4 program, and gen-
erates a P4 code that implements p-record storage, trigger
conditions and collection logic. p-record storage and trigger
conditions are executed using stateful ALUs. Additionally,
the runtime environment (implemented in Python) accepts
commands to modify configuration such as: 1) changing the
active field_list, 2) adding new field_list, and 3) adding/re-
moving trigger conditions. These configurations translate to
control-plane configuration updates of the composed switch
P4 program. The runtime supports addition of new fields
to p-records, by varying the recording parameters of the set
of pre-enumerated PHV contents from the control-plane. A
similar approach is also used for modifying trigger condi-
tions. The maximum set of trigger conditions and contents
in p-records are specified during the generation of the P4
program.

Finally, we implement the collector using n2disk utility
(with PF_RING [15]) to store collection packets as PCAP
files in the local disk. Additionally, we implement a Python
program to parse the PCAP files, decompress and store indi-
vidual p-records in a MySQL database. The collector also

1https://github.com/praveingk/DPTP
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takes as input the SyNDB configuration for initializing the
database. Each time the active field_list is modified through
the SyNDB runtime, the update is passed on to the collector.

7 Evaluation
We evaluate SyNDB using a hardware testbed as well as large-
scale simulations. Our hardware testbed consists of 4 physical
servers, and 2 Intel Tofino Wedge100BF-32X switches [18].
The servers and the switches are virtualized to create a fat-tree
topology [19] (see Figure 5(a)). Switches S1-S5 are virtu-
alized on the first physical switch (“Tofino A”) using 10G
loopback links while switches S6-S10 are virtualized on the
other physical switch (“Tofino B”). Each virtual switch is
configured to have 10K and 5K p-records in the history and
future buffer respectively. Each p-record entry is 16 bytes in
size. Figure 7 shows the SyNDB configuration that we use
in the testbed-based evaluation. Additionally, we synchro-
nize each virtual switch’s data-plane to S10 using DPTP (see
Figure 5(b)).

For large-scale simulations, we have built a packet-level
simulator2 in C++ (∼6K LoC) that implements low-level
packet transmission and forwarding behaviors for hosts, links
and switches. To validate our simulator, we compare its re-
sults with those from the testbed for the following experiment.
For the topology in Figure 5(a), we send 10 Mpps CBR traffic
along the path S1-S4-S10-S9-S7 with each switch storing 10K
p-record entries. Switch S7 generates a trigger after receiving
10,000 packets which is then broadcast to other switches to
initiate p-record collection. Based on the p-records available
at the collector, in Figure 6, we plot the percentage of com-
mon p-records seen by other switches compared to those seen
by S7. We observe that the testbed and simulation results
match each other closely – due to hop delays experienced
by the trigger packet, the percentage of common p-records
reduces slightly with increasing number of hops from S7.

2https://github.com/rajkiranjoshi/syndb-sim

trigger {
conditions {

a = meta.time_queue > 10000;
b = meta.fwding_table_miss == 1;
c = meta.fwding_update == 1;
d = meta.pkt_sequence == 5000;

}
collection {

a;
b & c';
d;

}
}

field_list SyNDB_verification {
meta.packet_sequence;

}

field_list SyNDB_scenario {
meta.ingress_port;
meta.link_utilization;
meta.drop_counter;

}
precord {

fields {
SyNDB_verification;
SyNDB_scenario;

}
default_field : SyNDB_scenario;
history : 10000;
future : 10000;
time_window : 1;

}

Figure 7: SyNDB Configuration for Evaluation
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The evaluation is divided into three parts. In §7.1, we
evaluate SyNDB for consistency in p-records and large scale
operation. In §7.2, we present different network debugging
scenarios with one in full details. Finally, we evaluate the
overhead of SyNDB in §7.3.

7.1 Design Validation
In this section, we evaluate the SyNDB for its ability to pro-
vide consistent p-records at packet-level granularity and to
provide retrospection and correlation at scale.

7.1.1 Consistency of p-records
To ensure that the p-records captured by SyNDB are consis-
tent, the time synchronization error should be less than the
propagation delay between adjacent switches (equation (2)).
In our hardware testbed (Figure 5a), we measure DPTP syn-
chronization error as well as the propagation delay between
adjacent switches. We observe that the worst case synchro-
nization error is less than 50 ns while the propagation delay
varies between 400-450 ns. Thus, synchronization error is
much lower than the propagation delay between two switches
and hence captured p-records should be consistent with the
ground truth. To validate this further, we send a CBR traffic
of 10 Mpps (limited due to 10G host links) along the path S1-
S4-S10-S9-S7, with each packet annotated with a sequence
number along. The switches record the sequence number of
each packet in the corresponding p-record. After receiving
5000 packets, switch S1 generates a trigger packet (trigger
d in Figure 7) which when received, each switch sends the
p-records to the collector. In Figure 8, we plot the packet
sequence number against time for a sequence of 50 packets.
We observe that every packet is recorded in the next switch
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Figure 9: Simulation results for history captured at the trigger switch, correlation history and percentage of common p-records
for different trigger switch types

only after it has left the previous switch. Furthermore, the
timestamps increase linearly. This behavior confirms that the
p-records captured by SyNDB across all the switches in the
network are consistent and at expected intervals.

7.1.2 Retrospection and Correlation at Scale.

We perform large scale simulations to evaluate how much
retrospection and correlation SyNDB provides in realistic
traffic scenarios.

Simulation Setup. All simulation runs were done on
a k=24 fat-tree topology (720 switches, 3456 hosts) with
100G links. The network has a total bisection bandwidth of
172.8 Tbps. For generating packets from the hosts, we use
distributions of packet size and inter-packet gap as measured
by Benson et al. [20] from a data center hosting web applica-
tions. We configure the traffic pattern such that 75% of total
traffic is intra-rack as observed in cloud datacenters [20]. On
top of these basic traffic characteristics, we add additional
incast traffic such that 30% of the host links experience 100%
utilization for 10% of total simulation time. The inter-packet
gap distribution from Benson et al. is originally for 1 Gbps
switch links. We scale it to adjust the load on 100 Gbps host
links such that the average utilization (over 100 ms interval)
is about 34%, with the busiest 5% of links experiencing about
42% utilization. These utilization characteristics are similar to
those reported by Facebook [55]. All switches are configured
with a p-record history buffer of 1M entries. We also con-
figure a hop delay of 1 µs per switch such that the maximum
RTT across the network (inter-pod) is ∼11.5 µs [21]. Each
simulation run simulates 100 ms of network run time and de-
livers about 5.2B packets. Within each run, we generate 50
triggers on randomly chosen switches across the three switch
types – top-of-rack (ToR), aggregation (Aggr) and Core. The
following results are based on the aggregate data from 10
independent simulation runs.

We use two metrics to compare p-record buffers between
the triggering switch and the upstream switches from which it
receives packets: (i) Common p-records (Figure 9(c)): the per-
centage of common p-records between the trigger switch and
the upstream switches. (ii) Common History (Figure 9(b)):
the time difference between the latest and oldest common p-
record. While the first metric quantifies the correlation using
the similarity of p-records between the switches, the latter
reflects the ability of SyNDB to perform retrospection.

For triggers originating at the ToR switch, the maximum
common history that can be captured at other upstream
switches is limited by the history at the ToR switch (∼4 ms).
Note that∼4 ms history is worth∼350 RTTs since maximum
RTT in our setup is ∼11.5 µs. For triggers originating at the
Aggr/Core switches, history of ∼11 ms is recorded. This
is expected since the ToR switches experience higher packet
rates (due to 75% intra-rack traffic) and hence provide smaller
history relative to Aggr and ToR switches.

As for percentage of common p-record, we can capture
∼100% of common p-records in the upstream switches in
many cases. The exceptions are for cases where the trig-
ger switch is the Aggr/Core. The percentage of common p-
records with other ToR switches is ∼40% since the p-records
in upstream ToR switches are quickly overwritten by newer
intra-rack packets. Note that in a fat-tree topology a packet
passes through exactly one Core switch. Hence, if the trigger
switch is a Core switch, there is no upstream Core switch.

Figure 9(a) shows the time window history that can be
recorded for different p-record buffer sizes.

Takeaway: The simulation results show that the amount of
history that can be captured depends on the incoming packet
rate and the buffer size. For the traffic load and distribution
used in the evaluation, SyNDB is able to consistently capture
common p-record across different upstream switches. The
time history available for retrospection varies from 4ms to
11ms using a buffer size of 1M p-record.

7.2 Network Debugging Scenario

In this section, we show how SyNDB can be used to debug
one of the most common transient network faults, namely
microburst [37, 47]. The evaluation uses the same configura-
tion setup as defined in Figure 7 on the hardware testbed in
Figure 5. Each p-record is configured to contain the custom
"field_list: SyNDB_scenario". It contains three metrics : 1)
Ingress Port 2) Link Utilization and 3) Drop Counter.

Ingress port of a packet is provided by the switch meta-data.
Link utilization is calculated over a window of 10 µs in the
data-plane using a low-pass-filter. Drop counter is the number
of packets which missed the forwarding table. Additionally,
we configure SyNDB to perform collection of p-records based
on three triggers : (1) High Queuing Delay (trigger a), (2)
Table Lookup Miss (trigger b) and (3) Network Configuration
Update (trigger c). Data collection is initiated when a switch
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receives trigger a or a switch receives both triggers b and c.
In each of the following case studies, we generate data and
control traffic to emulate the corresponding network faults.
The host data traffic is generated using MoonGen [23].

7.2.1 Microbursts

Microburst is a common problem in data centers where con-
gestion is caused by a short burst of packets lasting for at most
a few hundred microseconds [56, 65]. Traffic bursts occur
due to various reasons like application traffic patterns (e.g.
DFS, MapReduce), TCP behavior and also NIC-offloads (seg-
mentation, receive) [39]. The complex interactions and traffic
patterns make microbursts debugging extremely complicated.
It is necessary to find the root cause to determine how the
issue should be resolved.

In this experiment, we demonstrate how two microburst
events that are detected by the same trigger can be attributed
to different root causes using SyNDB. In one scenario, the mi-
croburst is due to incast of synchronized application traffic. In
the other scenario, the microburst is caused by the interaction
of uncorrelated flows with different source-destinations.

Synchronized Application Traffic. We consider the com-
monly known fan-in traffic pattern of data center networks
exhibited by applications such as MapReduce and Distributed
File System (DFS). This is an incast traffic pattern where
many sources transmit to a small number of destinations
within a short time window. These short bursts of traffic
increase the queuing delay at microsecond time-scales. The
challenge in identifying the root cause of such microburst is
that many sources contribute to the total traffic and the burst
occurs only for a very short time.

We setup the experiment with hosts H1 to H6 sending data
to H8 as shown in Figure 10. Each host sends a burst of 10
1500-byte packets at an average rate of 1 Gbps to H8 via ToR
switch S7. All links have capacity of 10 Gbps. In the exper-
iment, the sources started in an asynchronized fashion, but
over time transmissions from different hosts can synchronize
their transmissions causing sudden spikes in queuing delays
on switch S7, triggering the trigger a. Such synchronization
of periodic messages over time has been known to occur in
routing message updates [25].

With SyNDB, to determine if the issue of microburst is
caused by synchronized fan-in traffic, a query of the queu-
ing delay at S7 together with the packet arrival information
at the ToR switches before the microburst detection can be
performed at the collector as shown below:
SELECT swi t ch , i n g r e s s _ p o r t , t i m e _ i n FROM p a c k e t r e c o r d s

WHERE i d IN (SELECT i d FROM p a c k e t r e c o r d s AS A
JOIN t r i g g e r s a s T ON (A. t i m e _ i n < T . t ime
AND A. s w i t c h = T . s w i t c h ) ) AND s w i t c h
IN (SELECT s w i t c h FROM s w i t c h e s WHERE t y p e = " t o r " ) ;

SELECT t ime_queue FROM p a c k e t r e c o r d s where s w i t c h =7;

Listing 1: Query to list the packet arrival times at ToR switch
ports and queuing delay at S7

The answer to the query is shown in Figure 10. The top
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Figure 10: Synchronized Fan-in : Correlating Queuing at S7
and Packets arrival sequence at ToR Switches

right plot in the figure illustrates the queue buildup over time.
When we correlate the packet arrivals from different hosts
before the bursts occurred, we see that the packets that make
up the bursts are transmitted by hosts H1 to H6 synchronously
and reach S7 at about the same time. The root cause of this
microburst from H1 to H6 can thus be determined as host-
based synchronized traffic.

Non-Synchronized Application Traffic. Synchronized
incast is just one possible cause for microburst. As discussed
by Shan et al. [57], there are many other scenarios for mi-
crobursts. In this experiment, we generate microburst events
through the interaction of traffic from multiple hosts that are
not synchronized at host. However the individual flows, due to
different queuing behaviour across hops (due to cross-traffic),
arrive synchronously at the bottleneck link. In this scenario,
hosts H1 to H6 send bursts of 10 packets at an average rate
of 1Gbps to H8. A randomized delay of upto 5µs is added
before sending a burst to minimize traffic synchronization. In
addition, another flow sends a burst of 10 packets every 1ms
of packets from H9 to H6 (through S1-S4-S5-S8-S6) at an
average rate of 2Gbps. Note that this flow (H9 - H6) runs
asynchronously and does not travel through the bottleneck
switch (S7) where the microburst occurred. Nevertheless, we
observe microbursts on the link from S7 to H8.

A query of the queuing delay at S7 together with the packet
arrival information is shown in Figure 11. The shaded por-
tion in the bottom right plot shows the duration in which the
flow from H9 to H6 can occur. The information provided by
SyNDB shows that the microburst is likely due to a combina-
tion of factors, namely (1) the synchronization of the bursts
among the pair of flows from H1 & H2, H3 & H4 and H5
& H6; (2) the burst from H9 to H6 arriving just before the
bursts from H1 & H2 in S1 and the bursts from H3 & H4 in
S5. This causes a queue buildup resulting in packets from H1
to H6 arriving at S7 at about the same time. The root-cause is
thus due to interaction of network queuing effect caused by
cross traffic.

Additional Use Cases: Table 2 presents a list of additional
use-case scenarios for SyNDB. We have experimentally eval-
uated (on the hardware testbed) the use-cases for debugging
network faults related to network configuration updates and
transient load imbalance whereby the use of multiple triggers
is demonstrated. The details are provided in Appendix B.

Takeaway: The scenarios we presented show that in or-
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Figure 11: Non Synchronized Fan-in : Correlating Queuing
at S7 and Packets arrival sequence at ToR Switches

Table 2: Use-cases of SyNDB
Fault and Description

Routing Bugs. Bugs in the routing protocols, for example, synchroniza-
tion between LDP IGP protocols [10] could be due to timing issues such
as race conditions [49]. Since SyNDB provides causal consistency, it
helps in correlating different protocol packets and to narrow down the
root-cause.
App Timing Bugs. SyNDB can be used to debug timing bugs in dis-
tributed systems (Hadoop [1], ZooKeeper [2]) where more than 60%
of the bugs are due to a single packet [43]. In these timing bugs, a
dead-lock is caused by a missed or delayed message. SyNDB can help to
identify and track message lost or delayed by raising trigger conditions
when it observes reordering or drops of certain packets.
Traffic Pattern Analysis. SyNDB collection could be triggered at reg-
ular intervals to study and profile traffic patterns [64] and to optimize
cloud applications. In this case, p-records could contain the flow-id (5
tuple) to understand the interactions on a flow-level granularity.
Routing Loops Routing Loops can be detected by observing duplicate
p-record ids at the switches.
Network Configuration Updates. Refer Appendix B
Transient Load imbalance. Refer Appendix B

der to identify the root cause of complex network faults, it
is often necessary to have the visibility into packet statis-
tics, the ability to look at past events (retrospection) and the
timing information to correlate observations across switches
(correlation). While NetSight [32] and INT-MX [7] can de-
tect routing loops and bugs, NetSight has higher collection
overhead due to its “always on” nature (§7.3). Also, while
NetSight cannot perform correlation across the network, INT-
MX cannot perform retrospection to identify whether the
root-cause of such issues is due to configuration, race con-
dition, etc. While Marple [51], BurstRadar [37] can detect
microbursts, they do not provide correlation and packet-level
visibility to inspect the root-cause of microbursts due to tim-
ing related issues like synchronized traffic. While it is possible
to analyze traffic patterns in a coarse manner using systems
like Speedlight [63] with tpprof [64], SyNDB can be used to
understand microsecond-level changes in traffic.

7.2.2 Partial Deployability

SyNDB-enabled switches can be deployed incrementally
with each new switch providing additional visibility into
the network. To maximize effectiveness, deployment can
start from ToR switches where most congestion events oc-
cur [65]. For DPTP synchronization, links can be added
between adjacent ToR switches, which is not a complex un-
dertaking [61]. With just SyNDB-enabled ToR switches, is-
sues like microbursts(§7.2.1), application timing bugs can be
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Figure 12: SRAM consumption for different packet rates and
p-record size

debugged fully with just the ToR switches’ p-records, while
issues like routing loops, bugs, load imbalance and configura-
tion updates can be partially debugged if the ToR switch is
involved in the fault. In such cases, to infer the core network’s
states, network tomography techniques [26] can be employed.

7.3 SyNDB Overhead

SRAM Overhead. We estimate the total amount of SRAM
consumption used by the history buffer based on a compressed
p-record size of: 11 bytes (baseline compressed p-record),
16 bytes (evaluation configuration in Figure 7 + baseline com-
pressed p-record) in Figure 12. We plot the SRAM con-
sumption for different profiles in Figure 7. For example,
“100K(11B)” represents 100K precords with 11-byte baseline
p-record.SyNDB consumes an average of ∼5 MB while con-
suming ∼10 MB of SRAM to record 1 Million uncompressed
baseline p-records respectively. For 16-byte p-records, we
observe the SRAM overhead to be about ∼7 MB on average.

Compression saves 50% of SRAM memory on average,
and can save upto 80% depending on the traffic pattern. The
SRAM consumption can be easily accommodated by latest
switching ASICs [3, 4, 11] which contain SRAM greater than
100 MB. Recent studies [65] have observed high utilization
only across a few switch ports during congestion events. Thus
the pipeline utilization is usually much lower than its capac-
ity. To support lower packet rates like <500 Mpps, SyNDB
uses about 2 MB of SRAM. The programmer can trade-off
between the total capture duration and the memory budget.

Collection Overhead. We measure the overhead incurred
at the switch to collect the p-records. To perform collection,
the switch control-plane sets up packet generator in the data-
plane packets to inject collection packets at 100 Mpps. The
collection packets typically coalesce p-records (64 p-records
per packet) by recirculation. Collection of 10000 compressed
p-records requires 104 collection packets on average. We ob-
serve that it takes a total time of 245µs to evict the p-records.
Also, it takes only 45µs to collect these packets in the data-
plane using packet generator and recirculation, with the major-
ity of the time being signalling from the control-plane to start
the packet generator. We believe this timing overhead would
be reduced drastically in upcoming architectures [9] which
support triggering packet generation from data-plane events.
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Figure 13: Storage overhead comparison with NetSight

The overall pipeline overhead incurred is about 100 Mpps and
bandwidth consumption is limited to re-circulation port and
the collection forwarding port (e.g. mirror port), thus not
affecting regular data-plane traffic. In order to collect 1M
compressed p-records (1ms history at 1 Bpps), it takes only
about 323µs on an average. Out of this, it takes 123µs to
recirculate 7800 packets to collect the compressed p-records,
and 200µs to trigger the packet generation. SyNDB can re-
sume recording (in history buffer) after half the p-records
are collected in about 260µs. This means SyNDB can ide-
ally support upto ≈ 6000 triggers/sec. Note that, SyNDB has
a future buffer to store p-records once trigger condition is
met. To support continuous recording of all future events, the
minimum duration the future buffer needs to capture is 260µs.

With a 1ms history buffer, the ability to support 1000 trig-
gers per second without any break in recording is sufficient
to enable continuous monitoring. Hence, SyNDB can capture
microbursts occurring every few milliseconds [65] as well as
network incidents separated by hours [47].

We observe that the latency to receive, decompress and
store the p-records in the collector takes few hundreds of
milliseconds per switch on a single collector server. Complex
queries with several join operations take several seconds or
more. Query optimizations are beyond the scope of this work.

Comparison with Other Debugging Tools. Next, we
compare the total storage overhead of SyNDB to that of Net-
Sight [32]. NetSight creates a post-card by stripping the
packet payload, and attaching switch ID and ingress port to
the post-card. We compare the storage overhead incurred at
the collector from a single switch for SyNDB compared to
NetSight for a period of 1 hour. SyNDB performs collection
only upon fault triggers while NetSight performs collection
throughout the network operation. In Figure 13, we plot the
overall storage incurred for an hour of network operation with
increasing number of triggers/hr. We assume both NetSight
and SyNDB store 16-byte post-cards/p-records per packet. Ir-
respective of the frequency of faults, NetSight collects about
500 GB and 5 TB of data per hour from a single switch at
10 Mpps and 100 Mpps packet rates, respectively. SyNDB
on the other hand collects only 56 GB per hour for 10000
triggers/hr and 1 Bpps data-plane traffic. This means, when
SyNDB monitors packets at the maximum rate (e.g. 1.6 Tbps),
the total fraction of data exported for debugging is 0.01%.

Switch Resource Overhead. We evaluate the total hard-

Table 3: Hardware resource consumption of SyNDB com-
pared to the baseline switch.p4

Resource switch.p4 DPTP [5] SyNDB Combined
SRAM 29.58% 2.29% 15.31% 47.18%
Stateful ALU 14.58% 8.83% 33.33% 56.74%
VLIW Actions 36.72% 4.43% 6.25% 47.4%
TCAM 32.29% 0% 1.04% 33.33%
Hash Bits 34.74% 3.99% 14.14% 52.87%
Ternary Xbar 43.18% 0% 0.63% 43.81%
Exact Xbar 29.36% 2.34% 12.5% 44.2%

ware resource consumption of SyNDB (with configuration
shown in Figure 7) compared to the baseline switch.p4 [14].
switch.p43 is a baseline P4 program that implements vari-
ous common networking features applicable to a typical data
center switch. As we implement SyNDB along with DPTP,
we show the total resources consumed by all the components
(switch.p4, DPTP and SyNDB) in Table 3. The majority of
resources required for SyNDB arise from the need to store p-
records in the data-plane. We observe that SyNDB consumes
33% of the stateful ALUs and 15% of the SRAM to store
p-records and trigger conditions in the evaluation configura-
tion. Thus, SyNDB can be implemented on top of switch.p4
in programmable switch ASICs available today.

8 Conclusion and Discussion
In this paper, we design and implement SyNDB, which to the
best of our knowledge, the first system providing packet-level
visibility, retrospection and correlation to tackle transient
faults. SyNDB leverages data-plane time synchronization
and data-plane storage (SRAM) to temporally store packet
records which can be exported to aid in debugging upon
network faults. It provides the unique ability of looking back
at the trace of events before the occurrence of a network
fault. Additionally, since it performs collection only upon
occurrence of programmable event triggers, it exports only a
small fraction of the data-plane traffic for targeted debugging.
We study case-studies which uncover SyNDB’s capabilities
in finding the root cause of transient faults.

We believe that SyNDB’s capability goes beyond debug-
ging. A network device’s configuration can be used along
with network traces to create a “replay” of the network fault.
This in turn, can be used to form regression test suites. Fi-
nally, it will also be interesting to develop tools that provide
dashboards, query suggestions and an assistant (Similar to
Dogga et al. [22]) to network operators using AI techniques
to facilitate faster debugging.
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A SyNDB Pseudocode

precordArray : Register Buffer Array
writeIndex : Current index to write
N : Size of the ring buffer
POST_TRIG_SIZE : Size of buffer for post trigger
pwriteIndex : Current index to write post trigger
triggerArray : Temporal Trigger bit-array
triggerConditions : Bitmask configuration of

TriggerArray for collection
TimeNow : Current Global Time
------------------------------------------------------
Packet Record Logic
if packet is normalPacket:

if collectInProgress == False:
Store Hash, Timenow, Timequeue,

CustomStats in precordArray[writeIndex]
writeIndex = (writeIndex + 1) % N
add_to_port_group(ingress_port)

else :
if pwriteIndex < POST_TRIG_SIZE:

Store Hash, Timenow, Timequeue,
CustomStats in precordArray[pwriteIndex]
pwriteIndex = (pwriteIndex + 1)

if triggerHit is True:
clone(packet)

if packet is clonedPacket:
add_header(trigger)
remove_header(ipv4/tcp/udp)
trigger.time = Timenow
trigger.id = triggerId
trigger.type = triggerType
recirculate()

Trigger Packet Logic
if packet is triggerPacket:

if trigger.id != lastSeenId[trigger.source]:
triggerArray |= 1 << (trigger.type - 1);
lastseenId[trigger.source] = trigger.id;

else:
drop()

if triggerArray in triggerConditions:
collectInProgress = True
Multicast(port_group)

Collection Packet Logic
if packet is collectPacket:

if collectPacket.entries < MAX_ENTRIES_PKT:
p-record = precordArray[readIndex]
readIndex = (readIndex + 1) % N
add_header(p-record)
collectPacket.entries++
recirculate()

else:
l2fwd_to_collector()

B More Network Debugging scenarios

B.0.1 Network Configuration Updates

Networks operate in a dynamic environment where opera-
tors frequently modify forwarding rules and link weights to
perform tasks from fault management, traffic engineering,
to planned maintenance [52]. However, dynamic network
configurations are complex and error prone especially if they
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Figure 14: Network Update Scenario causing a Forwarding
Blackhole at S8

 0
 250
 500
 750

 1000
 1250
 1500

Trigger

P
ac

ke
t D

ro
ps S8

S10

 0

 1

 2

 3

0 50 100 150

Fo
rw

ar
di

ng
 R

ul
e 

V
er

Time(µs)

Figure 15: Forwarding rule updates (S8 and S10) leading to
drops at S8
involve several devices. For example, updating the route for a
flow(s) can lead to unexpected packet drops if the updates are
not applied consistently or efficiently [36, 54]. In this case
study, we use SyNDB to identify whether a transient error is
due to a network update or localized hardware fault.

For the experiment, we add forward_rule_version to the
field_list SyNDB_scenario. We assume that each forwarding
rule indicates a version number and route based on destination
MAC address as shown below.
t a b l e _ a d d f o r w a r d

s e n d _ t o _ p o r t e t h e r n e t _ d s t A d d r <dstMac > =>
o u t p u t _ p o r t <num> e n t r y _ v e r <num>

A transient forwarding blackhole occurs when an out-
of-order execution of a network update gives rise to non-
deterministic network behavior leading to temporary packet
loss [29]. We emulate the transient blackhole using a setup
shown in Figure 14. Figures 14(a) and (b) depict the initial
and final state of the network after the updated route. The
routing of a flow from H1 to H7 is updated by rerouting traffic
from S10 to S8. However, transitioning from configuration
(a) to (b) requires updates to both S10 and S8.

In this network update, a new rule to route the flow needs to
be added to S8 first and then S10 needs to update the policy to
route the flows from S9 to S8. If the update at S8 occurs later
than the reroute at S10, a temporary forwarding blackhole
will form, resulting in packet drops.

However, the packet drop at S8 due to table lookup miss
could also be flagged as a parity error [66], when the context
of the table miss is unknown. To check if a delayed network
update is a possible cause, with SyNDB, we can query (List-
ing 2) the forwarding rule versions observed by each packets
at S10 and S8 along with the number of drops observed in
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Figure 15. From Figure 15, by correlating the rule version
number and packet drops in time, it is clear that the packet
dropped can be attributed to a transient inconsistency in rules
between switches S8 and S10.

SELECT f o r w a r d i n g _ r u l e _ v e r , d r o p _ c o u n t e r
FROM p a c k e t r e c o r d s WHERE s w i t c h =8 OR s w i t c h =10;

Listing 2: Query for correlating network update with drops

Note that in this experiment, data collection is trig-
gered based on an aggregating trigger defined over multiple
switches. Switch S8 broadcasts the trigger b to other switches
on detection of forwarding table miss and S10 broadcasts
the trigger c on policy update. Trigger b or c by itself does
not trigger data collection. When a switch receives both trig-
gers (within a time window), then data collection is triggered.
Such multi-switch trigger reduces both false-positives and
collection overhead.

B.0.2 Transient Load Balancing Issues

Modern data center topologies such as fat-tree provide redun-
dant paths between a source-destination pair. ECMP [27, 33,
58] is a common load balancing policy for handling multi-
path routes. However, it has a lot of inefficiencies in distribut-
ing the load evenly [27, 33]. As a result, it has been observed
that a subset of core-links regularly experience congestion
while there is spare capacity on other links [20].

In this scenario, we setup ECMP based load balancing.
Each switch calculates the hash of the 5-tuple and redirects
the flow via one out of the two links. We experiment with
a variety of combinations of 5-tuple flows, and use a set of
combinations which can lead to load imbalance in the network.
In one such combination, S9-S7 is congested, even though
spare capacity is available at S8-S7. We create multiple flows
in the network originating from H1 to H6 with the destination
as H7 and H8 (Figure 16). The traffic (containing faulty
combination) is sent at short bursts, with an overall throughput
of 1 Gbps per flow. The load imbalance happens when both
the core switches (S5 and S10) direct too many flows to S9,
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Figure 17: Link Utilization and Queuing delays observed at
the core links points to load imbalance

resulting in congestion on the S9-S7 link.

With only the congestion indication, it is be difficult to
determine the root cause. To determine if load imbalance
is the root cause, one would have to observe the queuing
duration and link utilization of various links at the same time.
These network metrics are not available with both NetSight
and INT. SpeedLight [63] can measure only coarse-grained
link utilization (several µs). With SyNDB, we can plot the
utilization of the links measured at the same time at packet-
level granularity using the query shown in Listing 2.

SELECT swi t ch1 , swi t ch2 , l i n k _ u t i l i z a t i o n *8 , t ime_queue
FROM (SELECT swi t ch1 , s w i t c h 2 FROM l i n k s
WHERE ( s w i t c h 1 IN ( s e l e c t s w i t c h FROM s w i t c h e s
WHERE t y p e !=" t o r " ) AND s w i t c h 2 IN (SELECT s w i t c h
FROM s w i t c h e s WHERE t y p e !=" t o r " ) ) ) AS L
JOIN (SELECT * FROM p a c k e t r e c o r d s ) AS A
JOIN (SELECT * FROM p a c k e t r e c o r d s ) AS B
ON (A. hash = B . hash AND A. s w i t c h = L . s w i t c h 1
AND B . s w i t c h = L . s w i t c h 2 ) ;

SELECT f o r w a r d i n g _ r u l e _ v e r
FROM p a c k e t r e c o r d s WHERE s w i t c h =10;

Listing 3: Query for link utilization and queue depths

The result is shown in Figure 17. We can observe that
there is high link utilization at S9-S7 while link S8-S7 sees no
significant utilization. Furthermore, the congestion trigger at
the link S9-S7 is preceded by higher than normal link utiliza-
tion in links S5-S9 and S10-S9. Thus, the load distribution
from the core switches (S5 and S10) to S8 and S9 is heavily
skewed, with most flows being routed via S9 during some
time intervals. Based on this observation, one can infer that
the root cause for the congestion at the link S9-S7 is the load
imbalance cause by the load balancing scheme.
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Abstract
Despite their promise, HTTP/2’s server push and preload

features have seen minimal adoption. The reason is that the
efficacy of a push/preload policy depends on subtle rela-
tionships between page content, browser state, device re-
sources, and network conditions—static policies that gener-
alize across environments remain elusive. We present Alo-
hamora, a system that uses Reinforcement Learning to learn
(and apply) the appropriate push/preload policy for a given
page load based on inputs characterizing the page structure
and execution environment. To ensure practical training de-
spite the large number of pages served by a site and the mas-
sive space of potential policies to consider for a given page,
Alohamora introduces several key innovations: a page clus-
tering strategy that favorably balances push/preload insight
extraction with the number of pages required for training,
and a faithful page load simulator that can evaluate a pol-
icy in several milliseconds (compared to 10s of seconds with
a real browser). Experiments across a wide range of pages
and mobile environments (emulation and real-world) reveal
that Alohamora accelerates page loads by 19-61%, provides
3.6-4× more benefits than recent push/preload systems, and
properly adapts to never degrade performance.

1 INTRODUCTION

Mobile web browsing has rapidly risen in popularity [15, 17,
51]. Given the importance of mobile web speeds for both
user satisfaction [6, 7, 19] and content provider revenue [18],
a vast array of optimizations have been developed [8, 30, 39,
40, 43, 54, 57, 61]. Yet page loads remain too slow for users
in practice, taking over 10 seconds to load even with state-
of-the-art mobile devices and LTE cellular networks [4, 54].

Recent studies have identified that a key culprit to slow
mobile page loads is the blocking network delays that arise
from the dependencies between a page’s objects [39, 54]. For
example, a browser may learn that it needs an image only af-
ter fetching and executing a JavaScript file, which is discov-
ered only after downloading and parsing the page’s top-level
HTML. Such dependency chains essentially serialize object
fetches, leading to high load times, particularly in mobile set-
tings where access link latencies tend to be high [23, 66].

The latest HTTP/2 standard [5] anticipated the negative
impact of network delays on web performance, and in re-
sponse, includes several relevant features. Most notable are
HTTP/2 push and preload. With push, servers can proac-
tively send objects to clients in anticipation of future re-
quests; requests for already-pushed objects can be satisfied

* These authors contributed equally to this work.

locally at the client, avoiding blocking network fetches. In
contrast, with preload, servers can notify clients of objects
that they will soon require (potentially from other domains)
by listing those URLs in HTTP headers. Clients issue re-
quests for those objects immediately after parsing HTTP
headers, and without evaluating response bodies, thereby
parallelizing network and computation tasks [54].

Unfortunately, despite their promise, developing perfor-
mant push/preload policies has proven to be challenging,
leading to low adoption rates. For example, we find that only
5% of the Alexa top 500 pages [3] include a domain that uses
push or preload; this drops to 0.9% for the Alexa top 10,000
pages. A major reason is that the performance of a given
push/preload policy depends on the subtle, low-level inter-
actions between page content, browser (cache) state and ex-
ecution dependencies, client device and network resources,
and QoE goals [53, 60, 69, 70]. Consequently, even for a
given page, we find that using a policy outside of the execu-
tion environment for which it was designed can either forego
significant (18-31%) performance benefits or degrade perfor-
mance by up to 20% compared to a default page load (§2).

These results preclude the use of the static policies and
guidelines promoted by prior push/preload systems [53, 54,
70], and instead highlight the need for dynamic, adaptive
policies that explicitly target the environments in which they
are deployed. For example, the aggressive push/preload poli-
cies that effectively utilize resources in high-bandwidth set-
tings must be shrunk or dispersed across a page load as link
rates drop to avoid potential network contention that slows
the downloads of blocking resources. Similarly, as device
CPU speeds decrease, policies should grow in size to take
advantage of the (increased) blocking compute delays that
leave the network idle.

We present Alohamora, a system that learns and applies
the appropriate push/preload policies for different pages and
execution environments (Figure 1). Alohamora represents its
policy generation logic as an expressive neural network that
is trained offline using Reinforcement Learning (RL); we list
the benefits of using RL in §3. During a client page load,
Alohamora’s model takes as input a set of features that sum-
marize the client’s execution environment (network, CPU,
cache contents), and structural information about the page
at hand, and outputs a push/preload policy intended to op-
timize QoE for the current load. Importantly, Alohamora
does not require new browser features, and involves minimal
server changes: servers provide structural information about
their pages (which content management systems commonly
track [14, 30, 67]), and Alohamora’s policy generation runs
transparently on a co-located frontend server.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    269



observation 
about 

environment

bandwidth latency cpu cache

page load 
simulator

push/preload 
policy agent

neural network

push/preload 
action

reward

preload a

push b

push c

push d

annotated page 
dependency graph

push/preload 
policy

push b with x

page load time

dependency graph 
generation (offline)

Alohamora

1. Bandwidth
2. Latency
3. CPU
4. Cache

GET /

client info

response according to 
push/preload policy

dependency 
graph cache

push/preload 
policy

web server

Alohamora co-located with web server

HTTP 
messages

Figure 1: Alohamora trains (left) its push/preload policy generation model using Reinforcement Learning, exploring a large search
space of environments and policies, and learning from the resulting (simulated) performance. During client page loads (right), for
each origin, Alohamora collects the required inference inputs from client browsers (using existing features) and servers which track
changes to their page dependency graphs; the generated policies are applied transparently for the remainder of the page load.

Realizing Alohamora’s data-driven approach to HTTP/2
push/preload policy generation requires overcoming two key
practical challenges with respect to training efficiency:

• Generalizing across pages (§4): websites commonly
serve thousands of pages, and it is impractical to in-
corporate each into the training process. However, fail-
ing to incorporate different pages during training may
hide push/preload insights, and result in poorly general-
izable models. To overcome this, Alohamora leverages
our observation that even though sites serve thousands
of URLs, their pages typically cover a far smaller num-
ber of page structures. The key idea is that these shared
structural properties typically dictate the efficacy of dif-
ferent push/preload strategies. Thus, Alohamora needs not
train on multiple pages with the same structural properties,
as those would contribute similar push/preload insights.
More specifically, push/preload benefits are dictated by
resource utilization during the load process, which in turn
can be characterized by 1) browser and inter-object depen-
dencies, and 2) the overheads imposed by tasks involving
the network and CPU. By extracting this structural infor-
mation from a site’s pages and clustering pages accord-
ingly, we find that Alohamora is able to strike a desirable
balance between the number of pages required for training
and model generalizability.

• Simulating page loads (§5): Alohamora’s training in-
volves testing different push/preload policies in diverse
environments. However, the large number of potential en-
vironments and push/preload policies per page (exponen-
tial in terms of object count), coupled with the high mobile
load times described above, make this approach far too
slow. For example, even for a single environment, explor-
ing the thousands of potential policies for nytimes.com
would require 30 days on a powerful desktop machine. To
handle this, Alohamora introduces a novel page load sim-
ulator which faithfully (errors of 0.4-2.2%) predicts the
performance of a policy 3-4 orders of magnitude faster
than running a real browser; for context, this cuts training
time to 20 minutes for nytimes.com. To the best of our

knowledge, Alohamora’s simulator is the first to faithfully
predict page load performance across metrics and environ-
mental conditions, without requiring costly profiles [68] or
emulation [60] for each environment. The key insight is in
judiciously extracting invariants about the page load pro-
cess and superimposing variable resource constraints by
simulating browser-environment interactions; invariants
(e.g., page/browser dependencies) are collected via a sin-
gle profiling run with a real browser, while variable prop-
erties about the target environment and push/preload pol-
icy are taken as input. The simulator is general enough to
support other optimizations that modulate network/com-
pute delays [2, 40, 43, 57] or scheduling policies [8, 39].

We evaluated Alohamora using more than 500 web pages,
and a wide range of mobile networks, client devices, and
cache conditions. Our experiments, both emulation and real-
world, reveal that Alohamora reduces page load time and
Speed Index by 19-61% and 15-48%, respectively, compared
to a default page load (i.e., no push/preload) and standard
push/preload-all policy. In addition, Alohamora marginally
(0.9-1.7×) outperforms WatchTower [43], a recent proxy-
based accelerator, and delivers 3.6-4× more benefits than
Vroom [54], a state-of-the-art push/preload system. Impor-
tantly, whereas Vroom slows down 24-34% of page loads,
Alohamora properly adapts to never degrade performance.
Source code and experimental data for Alohamora are avail-
able at https://github.com/nkansal96/alohamora.

2 BACKGROUND AND MOTIVATION

We begin with an overview of HTTP/2 (§2.1), and then
present measurements that illustrate the potential benefits
and challenges with HTTP/2 push and preload (§2.2).

2.1 HTTP/2 Overview
HTTP/2 [5] alters the traditional HTTP/1.1 page load process
primarily by adding the following new features:

• Request multiplexing: With HTTP/1.1, browsers can
open and reuse multiple concurrent TCP connections per
origin. In contrast, HTTP/2 permits only a single con-
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Figure 2: Push/preload benefits when policies are explicitly tuned to the deployment environment’s available resources. Environments
are listed as {bandwidth, latency, cache setting, CPU slowdown}. Results are shown for either Page Load Time (PLT) or Speed Index.

nection per origin, and allows browsers to multiplex re-
quests onto that connection as parallel streams. Unlike
HTTP/1.1 pipelining, HTTP/2’s multiplexing permits out-
of-request-order delivery to avoid head of line blocking.
HTTP/2 also mandates the use of TLS (and thus, HTTPS).

• Server push: Unlike HTTP/1.1 servers which only serve
objects in response to explicit client requests, HTTP/2
servers can push objects that they own in anticipation of
future requests. Servers have flexibility in defining a push
policy, which specifies the mapping between objects that
are explicitly requested and the set of files pushed along
with them. Pushed objects are usable for the duration of
the current page load, regardless of the associated HTTP
caching headers. Note that pushed objects that are already
in the browser’s cache imply wasted network bandwidth.

• Preload: HTTP/2 also carried over HTTP/1.1’s preload
feature, which enables servers to list URLs to fetch di-
rectly in HTTP Link headers. Upon parsing such Link
headers (i.e., before parsing the response body), browsers
will immediately issue requests for the listed URLs; re-
sponses are not evaluated until the objects are referenced
by the page. Thus, like push, preload enables servers to
help browsers pre-warm their caches rather than rely-
ing on object execution to discover downstream objects.
However, preload differs from push in that: 1) requests
are client-driven and still involve network delays to ori-
gin servers, 2) the risk of re-downloading cached ob-
jects is eliminated since preload requests pass through the
browser cache, and 3) servers can specify to preload third-
party objects, not just objects that they own.

• Stream prioritization: HTTP/2 offers a mechanism with
which both clients and servers can explicitly specify how
parallel request streams on a single TCP connection share
network and server-side processing resources. In particu-
lar, endpoints can annotate each request with a single in-
teger that denotes its target share of the resources.

In this paper, we focus on the HTTP/2 push and preload
features because they are configured by servers, i.e., Alo-
hamora’s target deployment location. In contrast, stream pri-
orities are usually specified by browsers [11, 64], and yield
limited benefits [31]. We note that push/preload policies ex-
hibit a notion of prioritization that we do consider: “push
A+B with C” and “push B+A with C” are different policies.

2.2 Limitations of Static Push/Preload Policies
Push/preload policies have been widely studied, yielding
mixed performance results [16, 53, 54, 60, 70]. The key rea-
son is that the performance of a policy depends on numer-
ous page and environmental properties. To better understand
the relationships between these properties and push/preload
policies, we performed a study involving 50 random pages
from the Alexa top 500 US sites [3]. Our results use the
same methodology and environmental parameters (network,
device CPU, cache, QoE metrics) described in §6.1.

For each environment and page combination, we selected
the best policy using a brute force search. Since the num-
ber of potential policies for a page scales exponentially with
the number of objects (which regularly exceeds 100), a com-
plete brute force search across environments is impractical.
Instead, to ensure practicality and sufficient coverage, we
weighted object types based on their potential for block-
ing the client-side page load (i.e., JS = CSS > image >
font) [39, 59]. To generate a policy, we randomly selected
the number N of objects to push/preload, and then sampled
the object types N times according to their relative priorities
(picking randomly within each type). Finally, we randomly
selected the fraction of objects to mark as push vs. preload,
and for each object, we randomly selected an earlier object
in the load to push/preload from. Using this approach, for
each page, we generated 200 policies and picked the one that
delivered the largest improvements.

Takeaway 1: Push/preload has potential. For each envi-
ronment and page pair, we compared the best push/preload
policy (selected explicitly for that pair) to a default page
load (i.e., no push/preload). Figure 2 shows representative re-
sults for several settings. As shown, when selected explicitly
based on the environment, push/preload policies are able to
provide significant speedups. For instance, in the {24 Mbps,
20 ms RTT, cold cache, 1x CPU slowdown} setting, median
(95th percentile) page load time benefits are 18% (44%).

Takeaway 2: Push/preload policies do not generalize well.
Despite the potential benefits, our results also highlight that
push/preload policies quickly degrade in performance when
run outside of the precise environments for which they were
tuned. To evaluate this, we performed multiple experiments
in which we started with a fixed environment, and selectively
modulated each environmental factor while keeping the oth-
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Figure 3: Push/preload performance degrades as the environ-
ment changes. The base configuration was {12 Mbps, 100 ms,
cold cache, 1x CPU, PLT}; each cluster modulates only one fac-
tor. “Best Policy” was tuned to each setting, and “X-Applied”
applies the base configuration’s best policy to each setting. Bars
show medians, with error bars spanning 25-75th percentiles.

ers fixed. In each resulting environment, we compared the
performance of 1) the best policy for the fixed environment,
2) the best policy for the resulting environment, and 3) no
push/preload. Figure 3 depicts our results for one fixed envi-
ronment; we omit results for others due to space constraints,
but note that the trends persist. These results illustrate two
significant drawbacks to using push/preload policies across
environments. First, they leave significant (18.4-30.7%) per-
formance gains on the table compared to policies designed
explicitly for the deployment setting. Second, and worse,
they can degrade performance compared to a default page
load. For instance, performance degrades by 6% (20%) at the
median (95th percentile) when device CPU speeds change.
These slowdowns are even more pronounced when multiple
environmental factors are modified in parallel.

Summary: Collectively, our results suggest that, to realize
the significant performance potential of push/preload, poli-
cies must be designed to explicitly consider page properties
and characteristics of the target deployment environment.

3 DESIGN OVERVIEW

Figure 1 shows the high-level design of Alohamora’s offline
training and online (i.e., during client page loads) inference
phases. In this section, we will describe the workflow for
each task in the context of a single web page. We present ex-
tensions to ensure practical training via cross-page general-
ization (§4) and page simulation (§5) in subsequent sections.

3.1 Offline Training

Why RL? Alohamora represents its push/preload policy
generator as a neural network that is trained using Reinforce-
ment Learning (RL) [32]. RL offers several advantages in
this setting compared to more standard, supervised learning
approaches. Most notably, the search space of push/preload
policies is massive (exponential in terms of the number of
objects in a page, which regularly exceeds 100), and it is
impractical to generate a labeled training dataset that incor-
porates all of the fruitful push/preload policies for a page.

RL overcomes this by using an efficient exploration strategy,
whereby experience of prior tested policies is used to dynam-
ically guide the traversal through the large search space.

Training with Reinforcement Learning involves learning
from a large number of experiments and generally operates
as follows. A learning agent interacts with an environment,
and at each step, the agent observes some state in the en-
vironment, performs an action, and receives a reward from
the environment. The overall goal of the learning agent is
to maximize the cumulative (discounted) reward that it re-
ceives from the environment. In our case, the environment
is a mobile page load setting, i.e., a combination of a de-
vice, network, and browser cache. The training process is
structured as a series of episodes, each of which consid-
ers a single page and environment, and evaluates a running
push/preload policy (starting with an empty one) that is in-
crementally modified to include an additional action. An ac-
tion is a push/preload decision for a single object. We de-
scribe each component in more detail below.
Action/Action space: The action space lists the set of possi-
ble push/preload decisions for all objects in a page. Each ac-
tion is represented as a six-tuple (type, domain, push ob ject,
push ancestor, preload ob ject, preload ancestor). type
lists the action to perform (push, preload, nothing);
domain represents the domain whose objects to con-
sider if the action is “push” (“preload” can consider
objects from any domain); push ob ject/preload ob ject
and push ancestor/preload ancestor list the object to
push/preload and the object to do so with, respectively. Note
that objects are identified by ID numbers here, not precise
URLs, because URLs can vary on short time scales [8]; IDs
are converted into URLs during inference (§3.2).
Episode: At the start of an episode, Alohamora first selects
a random operating environment by picking values for the
average network bandwidth, latency, and loss rate, as well
as the mobile device CPU speed, and browser cache set-
tings (time since the last load of the page, which in turn dic-
tates cache contents [41]). Because the space of each value
is continuous and thus infinitely large, we discretize each
into bins that are sized according to prior work [43] and
our own empirical analysis of the impact that changes to
each factor have on push/preload performance. In particular,
we group network bandwidth/latency/loss rate to the nearest
5Mbps/10ms/0.5%, and CPU speed to the nearest 1× slow-
down relative to a baseline. This lets us consider far fewer
environments without sacrificing model generalizability.

In addition to the environment specification, the agent is
given access to an annotated dependency graph for the page
(Figure 5). Traditional web dependency graphs [8, 39, 43,
59] are directed acyclic graphs with a node per page ob-
ject, and edges that represent initiator relationships (i.e., a
parent’s computation triggered the fetch of a child). We add
annotations (§5.1 details how annotations are made) which
list, for each object, information about its 1) size, 2) com-
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putation delays, 3) content type (e.g., HTML), 4) ordering
(timing) relative to both all other page objects and only those
objects belonging to the same domain, 5) cache status, and
6) candidacy for push/preload. Candidacy reflects the fact
that only recurring objects in a page should be considered
for push/preload, in order to reduce the potential for wasting
bandwidth; we determine candidacy in the same way as prior
work [54], by loading the page several times and extracting a
stable list of URLs. Collectively, the operating environment
and annotated dependency graph represent the observable
state that the agent can glean from the environment.

Throughout an episode, the agent selects actions accord-
ing to a probability distribution over the potential space of
6-tuples (i.e., the action space described above). The proba-
bility distribution function starts as uniform, but is dynam-
ically updated based on the agent’s experiences. More for-
mally, the agent uses a policy gradient method [33] in which
it estimates the gradient of the expected total reward for each
possible new action—the agent selects the action predicted
to deliver the highest reward. For each new action that is
added to the running push/preload policy, the updated pol-
icy is evaluated in the environment to obtain a reward that is
fed back to the agent along with the observable state.

Each episode ends when the agent either chooses an action
of type “nothing,” repeats an action to push/preload an object
that is already represented in the running policy, or selects an
invalid (i.e., disallowed) action, e.g., pushing across domains
or preloading an ancestor object. Regardless of which reason
ends an episode, upon completion, Alohamora automatically
assigns a reward of 0 to signal to the agent that the terminal
policy is not one to consider. The policies learned for each
episode are ultimately aggregated to generate Alohamora’s
overall push/preload policy generation model. We note that
training can be configured to adhere to a preset bandwidth
cap for pushed objects, i.e., we can end an episode if a policy
that pushes an undesirably high number of bytes arises.

Reward function: Structuring the reward function requires
careful thought because each action in an episode is not en-
tirely independent. Thus, rather than simply using the page
load metric of choice, we structured our reward function to
take into account the relative improvement or degradation
(on the metric of choice) per action, giving a boost in reward
as the agent discovers a set of actions that leads to a new
global (i.e., within an episode) minimum. More formally, we
define the reward for the ith action in an episode as:

Ri(Pi,Pi−1,Pbest) =


k1
Pi

Pi < Pbest
k2Pi−1

Pi
Pi < Pi−1

−k2Pi
Pi−1

Pi > Pi−1

where Pi, Pi−1, and Pbest are the raw values for the target
QoE metric for the current, previous, and best-so-far policies
in the episode, respectively. k1 and k2 are constants, where
k1 >> k2. The idea is to give a positive (negative) reward pro-

portional to an improvement (regression) in QoE. We note
that the reward function is compatible with any QoE metric
that denotes improved performance with lower values. We
consider different reward structures in §6.5.

Implementation: Alohamora trains its models with
Ray [36], using the RLLib [26] and Tune [27] libraries.
Each model is a recurrent neural network that consists of
2 densely-connected layers with 256 units and the tanh
activation function, followed by an LSTM with cell size 256.
As shown in §6.5, LSTMs are helpful given the sequential
nature of each episode: they prevent the agent from infinitely
deferring its reward and always choosing longer policies
over shorter ones. Training stops after 150 iterations, or if
the standard deviation in the past 50 rewards is less than 5%
of the last one (whichever comes first).

Our implementation uses the latest A3C [33] algorithm,
but is compatible with others [34, 65]. As reported in prior
work, A3C may incur high convergence times when net-
work conditions or reward signals exhibit high variance dur-
ing training [29]. Alohamora’s training process sidesteps this
in two ways. First, in addition to reducing training times,
Alohamora’s page load simulator eliminates noise in the ob-
served reward signal. Second, Alohamora trains on deter-
ministic emulated networks (including time-varying links)
using Mahimahi [44], so network characteristics are un-
changed within each training episode.

3.2 Online Inference
At runtime, Alohamora introduces a frontend server (or re-
verse proxy) that is colocated with the existing server for
a domain (Figure 1); colocating ensures that end-to-end
HTTPS security is preserved. All client requests first hit the
Alohamora server, whose goals are to 1) collect the informa-
tion required to query its policy generation model, 2) query
the model, and 3) apply the suggested policy to the current
load. Each origin in a page independently runs Alohamora to
generate its own policy; training explores a sufficient num-
ber of policies to enable an origin to hedge against the set
of policies that other origins may employ. We present results
for partial deployment scenarios in §6.

Data collection for inference: The information required to
query the policy generation model matches the observable
state from training, i.e., network bandwidth, latency, loss
rate, CPU speed, cache status, and annotated dependency
graph. Alohamora collects the required network, device,
and cache information through its interactions with clients,
and the annotated dependency graphs directly from origin
servers. Importantly, all data collection involving clients
leverages existing interfaces that modern browsers already
expose. In other words, Alohamora does not require any new
browser features, and instead only needs certain pre-existing
features to be enabled.

To extract network latencies, Alohamora’s server analyzes
the SYN/SYN-ACK time during the client’s initial connec-
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tion setup. Further, summaries of the client’s cache are col-
lected using either the latest cache manifest standards [46],
or a server-based cookie which logs the time since the user’s
last load of the page [12]. We note that caching information is
collected on a per-domain basis in order to preserve existing
web privacy guarantees, i.e., a domain only learns about the
cached objects that it owns. CPU speeds are set based on the
HTTP User-Agent header that denotes the client device [37].
Lastly, average network bandwidth and loss information are
collected using browser user experience reports [9].

Alohamora also requires an up-to-date dependency graph
to determine the precise URLs to push/preload according to
the generated policy. Alohamora relies on origin web servers
to collect and share updated dependency graphs offline [30],
as those servers are the first to be aware of page changes.
In particular, content management systems [14, 67] support
hooks that fire any time a page-altering change is pushed,
e.g., for A/B testing. Alohamora adds a transparent hook to
collect up-to-date dependency graphs, which requires only a
lightweight (headless) load of the largely local page [40, 43].

Applying push/preload policies: Upon receiving a client re-
quest for a page, Alohamora’s server queries its model to
generate a push/preload policy that directly targets the cur-
rent load. The resulting policy is a listing of object IDs to
push/preload, and the corresponding ancestors. Alohamora
then uses the latest dependency graph to translate IDs to pre-
cise URLs (according to positions in the dependency graph).
Finally, to enforce the policy, the Alohamora server issues
local HTTP(S) requests (mimicking client HTTP headers) to
the colocated origin server, which responds with the up-to-
date objects. Alohamora then applies the policy to the re-
turned object headers throughout the rest of the page load.

4 GENERALIZING ACROSS PAGES

In practice, sites commonly serve thousands of different
pages. Unfortunately, incorporating each page into the train-
ing process would be far too slow and resource intensive.
Consequently, Alohamora faces a tricky tradeoff: train on
only a few of a site’s pages and achieve efficient training at
the risk of omitting pages that warrant unique push/preload
strategies, or train on many of a site’s pages to develop gen-
eralizable policies at the expense of high training overheads.

Alohamora addresses this tradeoff by leveraging the ob-
servation that, even though sites serve thousands of different
pages, those pages typically cover a small number of page
structures, e.g., because they are automatically generated us-
ing a fixed set of templates, and thus share styles, JavaScript
libraries, etc. [30, 48]. For example, news sites intuitively
comprise a main home page, category home pages, and sev-
eral classes of article pages. The key idea here (validated be-
low) is that these shared structural properties typically dictate
the efficacy of different push/preload strategies, and thus, we
need not train on multiple pages that are structurally similar.

The primary challenge with leveraging this insight is in

determining precisely which pages in a site are necessary
to consider during training. Answering this implicitly re-
quires an understanding of what pages have sufficient struc-
tural similarity from the perspective of the push/preload poli-
cies that they warrant. In other words, how should we repre-
sent and compare pages to determine structural similarity?
Our goal is for representations to be coarse enough to avoid
deeming all pages as structurally different (which would
eliminate savings in training efficiency), but also detailed
enough to capture structural differences that affect policies.

4.1 Clustering by Page Structure
We observe that the efficacy of a push/preload policy de-
pends on the utilization of network and client device re-
sources throughout the page load process. Building off of
this, the primary determinants of resource utilization are 1)
browser- and page-imposed dependencies [38, 39, 59], e.g.,
JavaScript execution blocking HTML parsing, and 2) the du-
ration and overhead of different page load tasks involving the
network or CPU. To capture all of these factors and identify
page structures that warrant similar policies, Alohamora uses
the annotated dependency graphs described in §3. Recall
that the structure of these dependency graphs captures inter-
object dependencies and constraints on request scheduling,
while the per-object annotations characterize network and
CPU overheads of fetch and execution tasks.

Given these dependency graphs (or trees) for each page
that we hope to accelerate for a site, Alohamora defines the
distance between two page’s trees Ti and Tj as the tree edit
distance between them; we use the state-of-the-art APTED
algorithm [50]. The cost of inserting/deleting a node is set to
1, and the cost of each change to any part of a node’s label
(content type, size, execution time, etc.) is set to 0.25, i.e, la-
bel alterations are equally weighted such that changes to all
labels are equivalent to a node insertion/deletion. To avoid
incorporating label edits that minimally impact push/preload
strategies, Alohamora deems objects that have sizes or exe-
cution times within δ% of each other as equivalent; we use
δ = 25% but find the precise value to have little impact as
node insertions/deletions dominate difference values.

After computing the distances between each pair of
trees, we construct a distance matrix D where Di, j =
distance(Ti,Tj). With this, Alohamora can run any clus-
tering algorithm that operates on non-Euclidean distance
functions—we use agglomerative clustering [63]—to group
pages that are structurally similar from a push/preload per-
spective. During clustering, we minimize the average dis-
tance between the pages in a cluster while permitting islands
(a cluster of size 1); we sweep a range for the target number
of clusters, and choose the lowest one which, if increased,
does not result in a new island. From there, Alohamora only
considers a single (random) page per cluster for training.

Handling page changes: Recall that origin servers track
changes to their page dependency graphs and share those
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graphs with Alohamora’s runtime server (§3). A natural
question is how to determine when a change to a page’s de-
pendency graph is substantial enough to deem Alohamora’s
model suboptimal (for that page) and prompt a retrain? To
answer this, upon receiving a graph from an origin server,
Alohamora re-clusters by computing the pair-wise distances
between the new graph and graphs for all pages used in
training. If the new clustering results remain stable such that
the new graph falls into an existing cluster, then Alohamora
needs not retrain. On the other hand, if the new page forms an
island, then Alohamora will automatically trigger a re-train.
During re-training, Alohamora will still use its model to ser-
vice pages whose graphs have not substantially changed.

Prior work has shown that page dependency graphs remain
structurally similar over long time scales (e.g., weeks), with
only the precise URLs changing over short periods [8, 39,
43]. Thus, we expect retraining with Alohamora to be infre-
quent in practice. For example, we verified that the clustering
results from Figure 4 are unchanged across 2 weeks.

4.2 Evaluations
We performed case studies on 100 randomly selected sites in
the Alexa top 500 US list [3]. For each site, we ran a monkey
crawler [1] that generated a list of 300 URLs by perform-
ing random interactions (e.g., clicks) starting from the site’s
landing page. From this set of URLs, we selected 30 pages
that covered the logical clusters that we perceived for the
page, e.g., articles vs. home page vs. user profile pages. For
each of the 30 pages, we generated the corresponding an-
notated dependency graph, computed the pair-wise tree edit
distances to all other pages, and performed the clustering de-
scribed above. The generated clusters largely matched our
high-level clustering intuition, e.g., for The Atlantic’s
website, there exists a cluster for the home page (1), articles
(21), category pages (5), and user profile pages (3).

We evaluated our clustering strategy for each site as fol-
lows. We first ran a brute force search (§2.2) to find the best
push/preload policy for each of the site’s considered pages.
We then applied each page’s best policy to all of the other
pages for the site, including those in the same cluster, and
those in other clusters. In each case, we measured the frac-
tion of potential push/preload benefits that a page x’s best
policy achieved for another page y (as compared to the im-
provements delivered by y’s best policy). In the event that a
referenced object was missing for a page, we removed the
corresponding action from the policy; this was rare as poli-
cies are based on fetch order IDs, not precise URLs.

Figure 4 lists our results for one environment; we note that
the trends held for the other environments in §6.1. As shown,
we find that push/preload policies are able to generalize well
within a cluster, but not across clusters for a given page. In
particular, at the median, policies that are generated and ap-
plied to the pages within a cluster achieve 89.6% of the po-
tential push/preload benefits; this number drops to 36.3% for
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Figure 4: Policies generalize well within (but not across) Alo-
hamora’s clusters. Results are for the {24 Mbps, 20 ms, 2×CPU
slowdown, PLT} setting, and consider 100 sites, with 30 pages
each. For each site, we applied each page’s best policy to all
other pages, and measured the % of potential benefits achieved.

policies that are applied across clusters. §A.2 shows results
for two representative pages, and also presents end-to-end re-
sults for Alohamora’s policies given this clustering strategy.

5 PAGE LOAD SIMULATOR

Even for a single page, training is impractical due to the large
number of policies and environments, and the slowness of
mobile page loads. To accelerate training (§3), Alohamora
uses a novel page load simulator that, given an annotated de-
pendency graph for a page, a target execution environment,
and a push/preload policy as input, outputs an estimated QoE
(e.g., PLT, SI) value. Unlike prior simulators (§A.1), Alo-
hamora’s is able to faithfully predict load performance (with
any policy) across metrics and environments, without requir-
ing costly profiles [68] or emulation [60] per environment—
this is critical for Alohamora’s training as loading pages in
each environment would forego most simulation speedups.
We will start by describing our simulator’s operation in the
context of cold cache loads, no push/preload, and PLT, and
then relax those assumptions in §5.4 and §A.1. We note that
Alohamora’s simulator focuses on HTTP/2 page loads.

5.1 Collecting Simulator Inputs
The first step in the simulation process is to profile a load
of the target page to extract information characterizing prop-
erties dictated by page composition [39] or browser depen-
dencies [38, 59]. These properties do not describe the operat-
ing environment (which we will simulate), but instead dictate
how page load tasks should share the simulated resources.

To extract such information, Alohamora records the target
page with a record-and-replay tool [44], and replays the page
over an unshaped local network with desktop-level CPU re-
sources. During replay, Alohamora extracts an annotated de-
pendency graph (Figure 5) that matches the ones used in §3
and §4.1. In particular, the graph structure captures the inter-
object ordering and dependency constraints, and we add ad-
ditional annotations that characterize each object’s size, exe-
cution time, content type, etc. To aid simulation, we further
break down an object’s network and compute delays into:
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Figure 5: Operation of Alohamora’s page load simulator. The simulator operates in steps, as objects flow through these three queues,
incurring blocking (e.g., connection setup, inter-object dependencies), network, and compute delays, respectively. Once an object is
executed, its children are added to the top (as delayed) to simulate the browser discovering those dependencies.

• execution time: time spent parsing, executing, or render-
ing the object with the well-provisioned CPU; this does
not include the time to execute any referenced objects.

• request delay: the amount of time between when the ob-
ject’s parent has finished downloading, and when the ob-
ject’s request is issued; this embeds the parsing/execution
delays of the parent, as well as any synchronous process-
ing delays for objects referenced earlier in the parent’s ex-
ecution, e.g., a blocking external <script>.

• server-processing delay: server-side delay in generating
and serving the response; we extract this information di-
rectly from web record-and-replay frameworks [30, 44].

In addition to this dependency graph, Alohamora’s simu-
lator also takes as input an environmental specification, list-
ing the average network bandwidth, latency, and loss rate
(Mbps, ms, %), device CPU speed (slowdown compared to
profiling CPU speed), and browser cache contents.

5.2 Simulating the Execution Environment
In order to enforce the specified network and CPU values
on all page load tasks, Alohamora’s simulator uses a new
Request Queue abstraction. Here, we describe how the Re-
quest Queue operates on objects passed into it; we will then
describe how objects get added to the Request Queue.

At any time, the Request Queue keeps track of three types
of objects using three subqueues: delayed, downloading, and
downloaded. Delayed objects are those that have been dis-
covered by the browser, but whose downloads are currently
blocked, e.g., due to connection setup delays or the ob-
ject’s request delay; downloading objects are currently be-
ing fetched over the network; downloaded objects have been
fetched and are currently being evaluated (or awaiting evalu-
ation). At a high level, the Request Queue operates in steps,
whereby objects flow through these queues, and once exe-
cuted, children are added to the top (as delayed) to simulate
the browser discovering those dependencies. In order to de-
termine how long an object stays in each queue, the Request
Queue models the interaction between the browser and envi-
ronment, with respect to network and CPU usage.

Enforcing latency/loss overheads: In order to compute the
number of round trips required to download an object, the
Request Queue considers two factors. First, if the object is

the first to be downloaded from a given domain, the Request
Queue adds 2 RTTs to account for the TLS handshake that
HTTP/2 mandates. Second, the Request Queue estimates the
number of round trips required for the TCP-level data trans-
fer by (approximately) keeping track of TCP window state
for each connection (assuming cubic) and assuming that con-
current objects fairly share the window. More specifically,
it assumes an initial congestion window of 10 [22], addi-
tively increases the window as bytes are downloaded, and
halves the window on each idle RTO (200 ms) or probabilis-
tic packet loss. Note that these round trip counts are com-
puted when an object is added to the Request Queue, and are
thus approximate since currently downloading objects may
complete prior to the new object moving to downloading.

Enforcing bandwidth overheads: Across all concurrently
downloading objects, the Request Queue must enforce an
appropriate split of the specified network bandwidth. The
simulator treats the bandwidth specification (either average
bandwidth or a packet delivery trace [44]) as characterizing
the access link, which is commonly the bottleneck in wire-
less networks [66] and is shared by all origins’ connections.
By default, the Request Queue assumes that outstanding re-
quests fairly share the available bandwidth, thereby disre-
garding discrepancies in cross-connection window state.

Enforcing CPU overheads: The Request Queue modulates
the execution delay and request delay for each object by mul-
tiplying by the magnitude of the CPU slowdown factor. The
simulator ignores CPU core counts, and instead focuses on
clock speeds, which have been shown to be the main fac-
tor affecting browser performance [10]. To support parallel
iframe execution, the Request Queue subtracts out execution
times from concurrently delayed objects across frames.

Request Queue operation: The Request Queue proceeds
in discrete “steps”. In each, the Request Queue inspects the
lists of downloaded, downloading, and delayed objects, and
finds the object(s) that are scheduled to either finish execu-
tion first, finish downloading first (fewest bytes remaining),
or transition to downloading soonest, respectively. Each step
is clocked by the duration t until those object events com-
plete. After computing t, the Request Queue will subtract t
from the execution delays of all downloaded objects, subtract
the number of bytes that can be downloaded in t from all cur-
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rently downloading objects, and subtract t from the blocking
delays for all currently delayed objects. It will then move
all delayed objects whose blocking delays have expired to
the downloading queue, and mark all objects that complete
downloading as downloaded. We discuss how downloaded
objects affect subsequent resource discovery next.

5.3 Simulating Page Loads
Starting from the root node in the dependency graph (i.e., the
top-level HTML), each time an object is marked as down-
loaded by the Request Queue, the simulator immediately
adds all of that object’s direct children as delayed to the
Request Queue, simulating the browser’s discovery of those
objects. In other words, each child of the completed object is
scheduled in a one-step look-ahead process, resulting in a de-
pendency graph traversal that is breadth-first across each ob-
ject’s children, but not necessarily across siblings with differ-
ent parents (Figure 5). Note that, after its children are added
to the Request Queue, the parent object remains in the down-
loaded queue until its execution delay expires; in parallel,
each child incurs its own request delay which characterizes
the offset in the parent’s execution until it is discovered.

This simple approach closely mimics the browser graph
traversal strategy [39, 59], but with one issue: execution
dependencies between an object’s children. For instance,
consider a simple scenario in which the top-level HTML
includes two adjacent HTML <script> tags that refer-
ence files S1 and S2, both of which have children. Because
browsers are unaware of the potential state dependencies be-
tween these two JavaScript files, upon discovering the first
<script> tag, HTML parsing would halt and trigger a
synchronous (i.e., blocking) fetch and execution of S1 [39].
This has several implications on dependency graph traversal,
which Alohamora’s simulator must account for:

• during a real load, the children of a parent may not be
scheduled in a single burst. The simulator accounts for this
by including an object’s request delay (which accounts for
inter-children blocking delays) in the duration that the Re-
quest Queue marks it as delayed (§5.2).

• even with the enforced request delay, it is possible for
the Request Queue to mark S2 as downloaded before S1,
e.g., if S2 is far smaller and the simulated network is
bandwidth-constrained. This could result in cascading dis-
crepancies in graph traversal since S1’s children should be
handled before S2’s. To handle this, the simulator also ex-
poses the Request Queue to IDs listing the object fetch
orders logged in the profiled load. These IDs inherently
follow the order in which browsers require, or are blocked
on, specific objects. With this information, the Request
Queue treats downloaded objects as a priority queue, sig-
naling object completion to the graph traversal component
only once the next required object (i.e., the lowest incom-
plete ID) is complete. Asynchronously-fetched objects are
returned after their closest synchronous neighbors.
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Figure 6: Faithfulness of the Alohamora simulator’s predicted
PLT compared to measurements from a real browser.

We note that, despite these strategies, the simulator’s de-
pendency graph traversal still faces potential inaccuracy in
the fact that objects involving a blocking dependency, such as
S1 and S2 in the above example, may download concurrently
and share network resources. However, the simulator bounds
the cascading effects of these inaccuracies on the page load
process by ensuring that the ordering of downstream object
discovery faithfully mimics that of a real browser.

Measuring PLT: As downloaded objects complete execu-
tion in the Request Queue, they are marked with a comple-
tion time relative to the start of the page load. PLT is the
maximum object completion time [42]. In §A.1, we discuss
how other metrics such as Speed Index are measured.

5.4 Simulating Push/Preload Policies
To support push/preload, when an object is being added to
the Request Queue, the simulator also schedules the corre-
sponding objects to push and preload along with that object
(as per the input policy). The objects added for push/preload
largely share the blocking delays of the ancestor since
push/preload objects cannot begin downloading until the an-
cestor does. In particular, the Request Queue imposes the an-
cestor’s request delay, but alters the remaining delays in two
ways: 1) their server-side processing delays are preserved
(and not adopted from the ancestor), and 2) preload objects
incur an additional network RTT to account for the down-
load of the ancestor’s response HTTP headers (0.5 RTT) and
transmission of the preloaded object’s request (0.5 RTT).

Once scheduled, the key challenge is in determining how
pushed/preloaded objects affect the delays from the profiled
load; this delta could be positive or negative due to, e.g.,
bandwidth contention. To understand this, once the simu-
lator hits a pushed/preloaded object, it determines how the
object’s download progress compares (or will compare) to
the case when the object was not pushed/preloaded. This
is done by simulating the load without that object being
pushed/preloaded, and comparing the resulting delays. Note
that, if the pushed/preloaded object is blocking, delays for
downstream siblings are edited to reflect the observed deltas.

5.5 Evaluations
We evaluated our simulator by comparing to a real browser
on two metrics: fidelity in predicted performance and overall
runtime. We follow the same setup as described in §6.1.
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Median 95th Percentile
Alohamora’s simulator 4.7 22

Unshaped 1347 3815
24Mbps/20ms/2x CPU 5936 16683
12Mbps/60ms/4x CPU 9631 27765

Table 1: Per-page runtimes (ms) of Alohamora’s simulator (top
row) and a real browser in different execution environments.

Fidelity: Figure 6 shows that Alohamora’s simulator reports
highly faithful load times compared to a real browser. For ex-
ample, in an environment with no network or CPU shaping
and a cold browser cache, the simulator’s reported load times
were within 0.4% and 4.3% of the real browser, at the me-
dian and 95th percentile, respectively. Median discrepancies
marginally increase to 1.4%, 1.7%, and 2.2% as fixed-rate
(16 Mbps, 50 ms link) and time-varying (T-Mobile LTE) net-
work shaping, and caching are incrementally added; we note
that the errors for all other tested environments are within 4%
of these numbers. Further, the low error rates persist when
evaluating push/preload policies (§A.1).

Runtime: As shown in Table 1, Alohamora’s simulator eval-
uates page loads 3-4 orders of magnitude faster than real
browsers, with the discrepancies growing as the target envi-
ronment becomes more resource-constrained. §A.1 describes
how simulation times vary with policy length. For context,
these runtime savings enable Alohamora to reduce the train-
ing time for a page from 10s of days to just 10s of minutes.

6 EVALUATION

6.1 Methodology
To create a reproducible test environment and cover a wide
range of environments, our evaluation mainly involves emu-
lation using the Mahimahi record-and-replay tool [44]; we
present real-world experiments in §6.4. Our main corpus
comprised the Alexa top 500 US landing pages [3], but we
also used non-landing and less popular pages in §A.2. We
recorded versions of each page at multiple times to mimic
different warm cache scenarios: back to back loads, and
loads separated by 4, 12, and 24 hours. Mobile-optimized
(including AMP [21]) pages were used when available. Ex-
periments used Google Chrome for Android (v72).

Our emulation evaluation considered a broad range of
network bandwidths (6-48 Mbps, as well as Verizon and
AT&T LTE traces [44]), latencies (0-100 ms), loss rates
(0.5-5%), and client device conditions (CPU slowdowns of
1-4×, relative to a desktop with an Intel Xeon Gold 5220
CPU @ 2.20GHz). Network emulation was performed using
Mahimahi [44], and CPU constraints were enforced using
Chrome’s Devtools Protocol [13]. Unless otherwise noted,
Alohamora generated a single policy generation model per
page that covered the aforementioned conditions; results for
Alohamora’s cross-page models based on clustering (§4) are
shown in §6.6. Further, in accordance with §3, dependency
graphs for inference were made just prior to the experiments.

We compared Alohamora to default page loads (i.e., no
push/preload) and two standard push/preload strategies: 1)
the push/preload all strategy where, on the first incoming
request, each origin pushes all static resources that it owns,
and preloads all referenced static third-party resources, and
2) the push/preload all JavaScript strategy which operates
in the same manner but only considers JavaScript objects
that (unlike images) may trigger subsequent object fetches.
With both strategies, push/preload order matches the order
in which objects are referenced by a page. Our analysis, de-
scribed in §A.2, revealed that push/preload all consistently
delivers larger speedups than push/preload all JavaScript.
Thus, for brevity, we only present results comparing Alo-
hamora with push/preload all.

Our evaluation considers two performance metrics: page
load time (PLT) measured as the time between the
navigationStart and onload events, and Speed In-
dex (SI) (measured with pwmetrics [24]) which captures the
time needed to fully render the initial viewport. Due to space
constraints, we present results for select settings, but note
that presented trends persist in all tested scenarios. For all
results, domains make push/preload decisions independently
with Alohamora, and objects can only be pushed within a
given domain, e.g., google.com cannot push an image be-
longing to g.static (which Google owns).

6.2 Page Load Speedups

Cold cache: Figure 7 illustrates Alohamora’s ability to ac-
celerate cold cache page loads across four representative
settings. For example, in a {24 Mbps, 20 ms, 1× CPU
slowdown, 0% loss} environment, median (95th percentile)
PLT improvements with Alohamora were 24% (61%); the
push/preload all strategy achieved only -0.2% (22%) im-
provements. Alohamora’s benefits persist as network and
CPU conditions change, although the generated policies
vary: benefits are 19% (45%) when conditions degrade to
{18 Mbps, 60 ms, 4× CPU slowdown, 0% loss}, 22% (57%)
when 1% loss is introduced, and 14% (60%) over a time-
varying Verizon LTE trace (not shown). Figure 7 also shows
that Alohamora provides substantial SI benefits, ranging
from 15-19% and 36-48% at the median and 95th percentile.
Importantly, across all settings, Alohamora’s push/preload
policies never degraded performance compared to a default
page load. This is in stark contrast to the static push/preload
all policy, which slowed down 40% of pages by up to 22%.

Warm cache: Figure 8 shows that, across a wide range
of warm cache browsing scenarios, Alohamora accelerates
page loads compared to both a default page load and a static
push/preload all strategy. For instance, for back-to-back (i.e.,
perfectly warm-cache) page loads, median PLT improve-
ments are 0.9 s and 0.4 s for Alohamora and the push/preload
all strategy, respectively. These relative improvements per-
sist (12-18%) as the time between page loads increases.
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Figure 7: Load time (PLT and SI) improvements over a default page load for a static push/preload all strategy, and Alohamora.
Environments are listed as {bandwidth, latency, CPU slowdown, loss rate}. Results used cold browser caches.
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Figure 8: Load times in different warm cache scenarios; “No
push/preload” is a default page load. Bars represent medians,
with errors bars spanning 25-75th percentiles. Results are for
the {12 Mbps, 100 ms, 2×, 0%} setting.

6.3 Comparison to State-of-the-Art
We compared Alohamora with two recent mobile web ac-
celerators, Vroom [54] and WatchTower [43]. Vroom im-
proves upon the push/preload all policy by using a client-
side scheduler to integrate priorities into the ordering of
pushed/preloaded objects. In contrast, WatchTower selec-
tively uses proxies (per origin) that fetch objects on behalf
of clients using fast wired networks. Client-origin-proxy la-
tencies were set as if proxies were run on Amazon EC2 in
California, and WatchTower ran in HTTPS-sharding mode.

As shown in Figure 9, Alohamora outperforms Vroom on
both PLT and SI. For example, in a {12 Mbps, 100 ms, 2×
CPU slowdown, 0%, PLT} environment, benefits with Alo-
hamora are 3.6× and 1.4× higher than Vroom’s at the me-
dian and 95th percentile, respectively. The main reason for
this discrepancy is that, even though Vroom adds dynamism
to push/preload in the form of priority-based scheduling,
Vroom remains too constrained to adapt to diverse execution
environments. In particular, the set of objects to push/preload
are static and match the push/preload all approach. This is
partly evidenced by the fact that Vroom still harms a large
fraction of page loads, e.g., 34% in the {24 Mbps, 20 ms, 1×
CPU slowdown, SI} setting. In contrast, Alohamora can vary
all aspects of the push/preload policy (objects, orderings,
etc.) to best cater to the target setting, and never harm per-
formance. Figure 9 also shows that Alohamora marginally
outperforms WatchTower (0.9-1.7× more median benefits)
without requiring per-origin proxy servers.

6.4 Real-World Experiments
We also evaluated Alohamora in the wild, using the same
500-page corpus from §6.1, live Verizon LTE and residential
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Figure 9: Comparison with Vroom [54] and WatchTower [43].
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Figure 10: PLT improvements over a default page load with
Alohamora and Vroom, in the wild. Results used cold caches.

WiFi networks, and 2 mobile phones: a Nexus 6 (Android
Nougat; 2.7 GHz quad core processor; 3 GB RAM) and a
Galaxy Note 8 (Android Oreo, 2.4 GHz octa core; 6 GB
RAM). To apply Alohamora’s policies without relying on
origin web server modifications, our setup uses an NGINX
reverse proxy server [45]. The proxy was run on a c4.large
Amazon EC2 instance in California, which had a median la-
tency of 11 ms to the origin web servers in our corpus.1

Immediately prior to the experiment, the proxy down-
loaded the dependency graph for each page, and all of the
static objects in the graph that are candidates for pushing.
The proxy also housed Alohamora’s learned model for each
page. At runtime, all requests from the mobile device were
forwarded to the proxy via DNS rules; even with a single
proxy, browsers still opened a separate connection per origin
server since connection setup decisions are based on domain
name (not IP address). Upon receiving the first request per
origin in a page, the proxy generated and applied a policy (for
that origin), pushing cached resources and rewriting HTTP
headers to reflect preload decisions. The proxy could also
apply Vroom’s policies or forward requests to origin servers.

As shown in Figure 10, median PLT improvements were
2.3-11× higher with Alohamora than Vroom; SI results fol-
lowed the same trend, but were elided for space. Figure 10

1These proxy-to-origin latencies present a pessimistic setting, since Alo-
hamora is designed to run directly on origin web servers.
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Reward LSTM BW CPU Latency Loss
C1 66 (97) 61 (93) 49 (93) 48 (90) 57 (94) 59 (91)
C2 69 (97) 65 (95) 58 (95) 54 (94) 59 (92) 62 (92)

Table 2: Impact of removing features/properties in Alo-
hamora’s model. Results are reported as median (95th per-
centile) percentage of potential PLT improvements (compared
to Alohamora’s full model). “Reward” considers the intuitive
−PLT reward function. C1 and C2 are the {12 Mbps, 100 ms,
2×, 0%} and {24 Mbps, 20 ms, 1×, 1%} settings, respectively.

also illustrates Alohamora’s ability to properly adapt to con-
ditions in the wild: whereas Vroom harms performance for
up to 43% of pages, Alohamora always sped up loads.

6.5 Understanding Alohamora’s Benefits

Ablation study: To understand the relative impact of each of
Alohamora’s features and model properties, we performed
an ablation study (Table 2). Our results reveal that band-
width, latency, CPU, and loss information all play signif-
icant roles in Alohamora’s ability to generate performant
push/preload policies, with the removal of CPU inputs result-
ing in the largest median degradations (46-52%). Our results
also highlight the importance of Alohamora’s reward func-
tion and incorporation of LSTM. For instance, (intuitively)
setting the reward to −PLT leads to performance degrada-
tions of around 30% because it becomes easy for the agent to
artificially inflate the observed reward by selecting policies
with fewer actions, i.e., the earlier policies in an episode will
be favored as the cumulative reward will be lower. Remov-
ing LSTM, on the other hand, led to degradations of ∼35%,
largely due to the lack of a discount factor that guides the
agent to avoid unnecessarily favoring longer policies (§3).

Alohamora’s policies: To understand the learned insights
behind Alohamora’s benefits, we analyzed its generated
push/preload policies. Admittedly, we observe that policy
composition and the mix between push/preload varied dra-
matically across pages and resource settings; indeed, subtle
interactions between these properties were a primary motiva-
tor for Alohamora’s machine learning-based approach. How-
ever, we note the following common principles:

• In lower bandwidth settings, Alohamora either 1) reduced
the policy length or cut data-intensive objects, or more
commonly, 2) spread the same set of pushed/preloaded ob-
jects out across a larger set of parents in order to stagger
downloads and reduce bandwidth contention.

• With slower CPUs, Alohamora’s policies are careful to
only push objects whose bytes could be downloaded until
the next blocking JavaScript file is required; the goal is to
prevent downstream CPU tasks from blocking on the net-
work. In these cases, Alohamora’s policies preloaded ad-
ditional resources with the goal of having their downloads
start (after the 0.5 RTT to contact the server) only after the
next blocking resource was downloaded. In essence, the

idea is to perfectly interleave downloads of non-blocking
resources with the execution of blocking resources.

• For image-heavy sites (e.g., pinterest.com), Alo-
hamora commonly excluded JavaScript/CSS files from its
policies, and instead pushed/preloaded images that are
rendered towards the top of the viewport, particularly in
high-bandwidth settings or when SI is the target metric.
The reason is that these pages have flat (not deep) de-
pendency graphs, so blocking JavaScript files do not trig-
ger cascaded serial network fetches; instead, image down-
loads have a larger blocking impact on load times.

We leave a more detailed analysis of Alohamora’s generated
policies, and an exploration into whether those policies could
be converted into fixed general heuristics, to future work.
Unnecessary data usage: A well-documented risk with
HTTP/2 push is in having servers push objects that are not
needed by or already cached at the client browser [43, 54].
Alohamora avoids this issue in two ways: browser cache con-
tents are explicitly considered during policy generation, and
only resources that consistently appear in a page are consid-
ered for push/preload (§3.1). Consequently, we observe that
Alohamora’s policies do not waste any bandwidth, i.e., all
pushed/preloaded objects are used in the targeted page load.
Training times: Training an Alohamora model for the me-
dian page in our corpus required 76 iterations and took a total
of 19.4 minutes to reach convergence using an Amazon EC2
c5.18xlarge instance. This translates to a monetary cost
of $0.62. We note that training costs are incurred offline and
infrequently: Alohamora must retrain only when a new or
modified page falls outside of the previous cross-page clus-
ters, which we observe occurs on the order of weeks (§4.1).
Inference times: Alohamora’s policy generation adds negli-
gible delays to overall load times: median (95th percentile)
inference times are 11 ms (40 ms), respectively.

6.6 Additional Results
We briefly summarize our remaining experiments here due
to space constraints, and defer details to the §A.2.
Incremental deployment: We ran experiments to under-
stand how benefits vary with different adoption rates. We
found that benefits (unsurprisingly) increase as more do-
mains adopt Alohamora, but simply having the top-level ori-
gin can achieve 56% of the potential median benefits.
Cross-page clustering: We performed an end-to-end eval-
uation of Alohamora’s clustering strategy (§4) by training a
model for each of the 100 sites in Figure 4, using only a sin-
gle page per cluster. These models achieve 85-90% of the
improvements achieved when training on pages individually.
Other pages, input errors, and energy savings: Alo-
hamora’s benefits persist (and in fact, increase) for interior
pages and less popular sites, are robust to errors in network
or device measurements, and yield per-page mobile device
energy reductions of 16-23%.
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7 RELATED WORK

We discuss the most closely related work here, and present
additional related work in §A.3.

Server push systems: Numerous studies have explored the
performance of HTTP/2 (formerly SPDY), both with and
without server push and preload [16, 20, 53, 54, 60, 70].
Like us, these works have found mixed performance bene-
fits due to the subtle relationships between HTTP/2 and net-
work characteristics, page composition, and TCP semantics.
However, these prior efforts have all investigated and pro-
moted static policies and configuration guidelines. In con-
trast, Alohamora leverages a data-driven approach to dynam-
ically tune push/preload policies by explicitly factoring in
both page composition and the target execution environment.

Mobile-optimized pages: Certain systems, most notably
Prophecy [40], automatically rewrite web pages and return
post-processed versions of objects to clients that reduce
client compute and network costs. Unlike Prophecy, Alo-
hamora does not alter page content, which has proven to be
error-prone in practice [2]. Further, Alohamora can acceler-
ate Prophecy pages which require at least one HTML file per
frame, and unmodified image and style files—these are the
static files which Alohamora targets for push/preload.

Proxy-based accelerators: Compression proxies [2, 47, 55,
58] compress objects in-flight between clients and servers,
while remote dependency resolution proxies [43, 44, 56, 57]
perform certain object fetches and computations on behalf
of clients. Though performant, such acceleration proxies vi-
olate the end-to-end security guarantees of HTTPS. Watch-
Tower [43] addresses this dilemma, but at a significant de-
ployment cost, as each origin in a page must operate its own
proxy. Alohamora avoids such security concerns by relying
only on end-to-end HTTP/2 optimizations.

Dependency-aware scheduling: Klotski [8] analyzes pages
offline to identify high-priority objects, and uses knowledge
of network bandwidth and page structure to stream them to
clients before they are needed. Klotski’s dynamic prioriti-
zation hinges on global knowledge of object fetches, which
proxies provide at the cost of security; in contrast, Alo-
hamora origins operate independently and hedge against the
decisions that other origins may make. Polaris [39] uses a
client-side scheduler that reorders requests to minimize se-
rial round trips without violating dependencies. However,
unlike Alohamora, Polaris relies on clients to discover page
resources, and thus cannot eliminate certain serial fetches.

8 CONCLUSION

Configuring HTTP/2 push/preload policies has proven chal-
lenging, as benefits depend on complex interactions between
dynamic page, network, device, and browser properties. This
paper presents Alohamora, a mobile web optimization sys-
tem that dynamically generates HTTP/2 push/preload poli-
cies using Reinforcement Learning. To ensure practicality,

Alohamora introduces novel techniques that drastically re-
duce the number of pages to consider for training, and the
cost of training any one page—these benefits come without
a drop in model generalizability. Across a broad range of set-
tings, we find that Alohamora outperforms default loads and
recent push systems by 19-61% and 3.6-4×, respectively.
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Length 0 1-9 10-19 20-29 30-39
Runtime 4.7 (22) 12 (73) 45 (189) 105 (348) 172 (546)

Table 3: Median (95th percentile) simulator runtimes in mil-
liseconds with varying push/preload policy length.
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Figure 11: Alohamora’s simulator is able to correctly compare
push policy pairs (in terms of relative performance).

A APPENDIX

A.1 Additional Simulator Details
Additional performance metrics: We extended Alo-
hamora’s simulator to return the Speed Index and above-the-
fold time [42], which is the time-instant version of Speed
Index (§6.1). For this, during profiling, the simulator deter-
mines the positional information for each page component.
Note that this information is dictated by page content, and
can be parsed in relation to the target viewport size, i.e.,
we can collect positional coordinates for each page compo-
nent during the profiling load, and then determine the visible
content for any given viewport size [42]. With this informa-
tion, the simulator identifies the set of page objects that af-
fect the visual aspects of the target browser viewport, and
characterizes performance as the time when the last node in
the collected set completes its load. The simulator is also
amenable to other performance metrics. For instance, to eval-
uate Ready Index [42], the profiling step must measure the
fraction of the viewport that is visually or functionally af-
fected by each object’s execution; performance would be
progressively tracked as the weighted average between time
and each object’s fraction.
Warm cache page loads: In order to handle warm-cache
browsing scenarios, the simulator takes an additional input:
the list of resources that it should consider as cached, which
can be computed by analyzing HTTP headers according to
a desired warm cache timing, i.e., the time between the cold
and warm cache page load [41]. The simulator then oper-
ates as normal, but sets the network RTTs required to fetch
a cached resource, and the bytes that must be downloaded,
to 0; request delays for downstream children of blocking re-
source are also updated.
Simulator speed vs. push/preload policy length: Ta-
ble 3 shows that the simulator’s runtime does steadily in-
crease as the length of the push/preload policy under test
grows. The reason is that Alohamora’s approach to handling
push/preload policies requires re-simulations of the page a
number of times that is quadratic with the policy length. We
note, however, that the resulting runtimes are still several

orders of magnitude lower than default browsers, and Alo-
hamora rarely requires investigation of policies longer than
20 objects (§6).
Push/preload fidelity results: §5 presented results show-
ing the low error rates that Alohamora’s simulator achieves
for page loads that do not use push/preload policies. With
respect to push/preload policies, the key property required
for Alohamora’s training is to be able to determine which
of two policies results in superior performance. To evaluate
the simulator’s faithfulness for this, we generated 20 random
push/preload policies for each page in our corpus. For each
page, we counted the fraction of policy pairs for which the
simulator correctly predicted the relative performance (cor-
rectness was defined by a real browser). As shown in Fig-
ure 11, the simulator correctly reported the relative compar-
isons across pairs 90% of the time.
Comparison to prior simulators. Several recent works
have proposed web page load simulators and emulators. Here
we briefly describe these prior approaches, explain their lim-
itations for Alohamora’s training scenario, and contrast them
with the operation of Alohamora’s simulator.
• EPLOAD [60] controls the variability in the page load

process (for reproducible measurements) by profiling a
page load and recording fine-grained delays between
browser compute tasks (including dependencies captured
by WProf [59]). EPLOAD then replays the page load
process by replaying those blocking delays (via injected
sleeps), but making fetches over a live (controlled) net-
work. Thus, EPLOAD emulates the page load process,
running live network tasks and forcing compute delays
to match those from the profiled load. In contrast, Alo-
hamora simulates the entire page load process, by re-
specting the invariant dependencies enforced by a browser
and page content, as well as by modeling the interactions
between the browser and underlying environment. This
difference is critical to Alohamora’s simulation goals:
simulation enables Alohamora to evaluate push/preload
policies in a few milliseconds (rather than 10s of sec-
onds); EPLOAD’s emulation approach does not shrink
load times, and instead focuses on fine-grained repro-
ducibility. Consequently, EPLOAD would not be able to
accelerate training with Alohamora. Beyond this funda-
mental difference, Alohamora’s simulator also is able to
evaluate HTTP/2 push/preload policies, simulate a variety
of environmental factors (CPU speeds, etc.), and evaluate
performance on multiple performance metrics (e.g., Speed
Index)—EPLOAD lacks these features.

• RT-H2 [68] uses profiles of HTTP/1.1 page loads to es-
timate the predicted performance changes for the sce-
nario when those profiled loads were converted to using
HTTP/2. The system’s page load conversion model con-
siders how HTTP/2 features (e.g., request multiplexing)
affect the ordering of different page load tasks, as well as
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Figure 12: Performance comparisons between two exist-
ing (standard) push/preload strategies: push/preload all and
push/preload all JavaScript (JS). Results are relative to default
page loads (i.e., no push/preload).
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Figure 13: Percentage of potential benefits achieved when X%
of origins in each page run Alohamora. Results are for the {12
Mbps, 100 ms, 2×} setting. Bars show medians, with error bars
spanning 25-75 percentiles.

the cascading effects that those changes have on underly-
ing network resources (e.g., TCP semantics). While simi-
lar to Alohamora’s simulator with respect to approximate
TCP modeling, the core limitation of RT-H2 (with respect
to Alohamora’s training) is that RT-H2 can only predict
the performance of HTTP/2 page loads within the exact
same settings as seen in the HTTP/1.1 profiles. In other
words, RT-H2 cannot use its profiles to predict HTTP/2
performance outside of the profiling environments. This is
problematic for Alohamora’s setting, as this implies that a
profile would have to be collected for every environment
considering during training—this would forfeit most of
the simulation benefits. Beyond this, unlike Alohamora,
RT-H2 does not consider different performance metrics,
compute resources, preload, or variable push policies.

A.2 Other Results
Comparison of existing push/preload strategies: In de-
termining a competitive performance baseline to compare
Alohamora with, we considered two standard push/preload

(static) heuristics: push/preload all and push/preload all
JavaScript. As noted in §6.1, these strategies solely differ in
the set of objects that they consider for push/preload. Using
the same experimental setup from Figure 7, we compared
these two strategies in terms of speedups that they provide
over a default page load. Figure 12 presents representative re-
sults. As shown, push/preload all provides roughly the same
(0-1% more) speedups as push/preload all JavaScript at the
median, and 5-17% larger speedups at the 95th percentile.
Incremental deployment: Since origins make independent
push/preload decisions with Alohamora, we ran experiments
to understand how Alohamora’s benefits vary with different
adoption rates. For each page in our corpus, we ordered the
domains in the page according to the fraction of objects that
they contribute. We then ran experiments where only the top
X% of origins used Alohamora; origins not running Alo-
hamora did not push/preload any objects. We also specifi-
cally considered the case where only the top-level origin de-
ployed Alohamora. As expected, Figure 13 reveals that ben-
efits increase as more domains adopt Alohamora. However,
simply having the top-level origin can achieve 56% of the
potential (i.e., with 100% adoption) median benefits.
Cross-page clustering: To this point, the presented results
considered Alohamora models that were trained for a sin-
gle page (across environments). In order to evaluate Alo-
hamora’s ability to train generalizable models across a site’s
pages, we consider the 100 sites presented in §4 (Figure 4).
For each site, we trained a single Alohamora model using
only a single (randomly selected) page from each cluster,
and evaluated across all of the site’s pages. Alohamora’s
cross-page models are able to achieve within 85-90% of the
improvements achieved when training individually on each
tested page; this slight degradation comes with the signifi-
cant benefit of improved training efficiency.
Robustness to input errors: To generate push/preload poli-
cies, Alohamora’s models ingest a variety of observations
that collectively characterize the execution environment.
While cache contents require zero approximation to collect,
network and CPU measurements can be noisy and hard to re-
port accurately. We evaluated Alohamora’s ability to deliver
speedups in the face of noisy inputs characterizing network
and CPU speeds by considering the following errors: average
bandwidth, latency, and loss errors of {1, 2, 3} Mbps, {10,
20, 30} ms, and {0.5, 1, 2}%, and CPU slowdown errors of
{1, 2, 4}×. We find that Alohamora’s generated policies are
largely robust to such errors. For instance, median PLT im-
provements dropped by only 3.4%, 4.6%, and 3.9% in the
{24 Mbps, 20 ms, 2× CPU slowdown} environment with
errors of 2 Mbps, 20 ms, and 1%, respectively. Similarly, a
CPU slowdown error of 1× resulted in only a 2.6% reduction
in PLT improvements.
Additional pages: In addition to the 500-page corpus that
we used for our primary experiments (§6.1), we also eval-
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Cluster 1 Cluster 2 Cluster 3
Cluster 1 88% (91%) 50% (55%) 52% (59%)
Cluster 2 57% (52%) 94% (89%) 59% (55%)
Cluster 3 61% (56%) 49% (57%) 100% (93%)

Table 4: Evaluating Alohamora’s cross-page generalization ap-
proach. Results are for the {24 Mbps, 20 ms, 2× CPU slow-
down} setting, and 30 pages per site. Here we show results
for two representative pages that yielded 3 clusters each: NPR
(clusters with 19, 8, and 3 pages) and CNN (1, 17, and 12 pages).
For each cluster, we picked a random page and found its best
policy (via brute force search). We then applied that same pol-
icy to the other pages in the same cluster, and to pages in differ-
ent clusters. Results list the % of possible push/preload benefits
for the median page in each cluster, and are presented as CNN
(NPR). Takeaway: policies generalize well within clusters (blue
regions), but not across clusters (white regions).

uated Alohamora on two additional sets of sites: 1) 100 in-
terior pages that were collected using a monkey crawler [1]
that clicked links on each landing page in our primary cor-
pus, and 2) 100 less-popular landing pages that were ran-
domly selected from the Alexa top 10,000 list (excluding the
top 500). Using the same experimental setup described in
§6.1, we find that the previously reported trends persist, and
in fact, Alohamora’s benefits increase. For example, in the
{24 Mbps, 20 ms, 1× CPU slowdown, 0%} setting, median
PLT improvements with Alohamora were 26% and 27% for
the interior and less-popular corpora, respectively; for com-
parison, the push/preload all strategy achieved benefits of
only 3% and 5%. These results are consistent with the ob-
servations in prior work [40] that interior and less popular
pages are typically more complex, and involve longer serial
dependency chains that can be optimized.
Energy usage: To evaluate the impact that Alohamora has
on mobile device energy usage, we reused our real world

experimental setup (§6.4) and connected the Nexus 6 smart-
phone to a Monsoon power monitor [35]. Overall, we ob-
served that Alohamora reduces median per-page energy con-
sumption by 23% and 16% compared to a default page load,
on the LTE and WiFi networks, respectively. The savings
are higher in the LTE setting primarily due to the fact that
LTE radios consume more energy than WiFi hardware when
active [57]—the higher network latencies on LTE networks
lead to more significant load time reductions, which in turn
produce larger energy savings.
Clustering: Table 4 presents evaluation results for Alo-
hamora’s clustering strategy using two representative sites;
these results are a subset of those in Figure 4.

A.3 Additional Related Work

Mobile-optimized pages: Certain sites cater to mobile set-
tings by serving pages that involve less client-side computa-
tion, fewer bytes, and fewer network fetches. For example,
Google AMP [21, 25] is a recent mobile web standard that
requires developers to rewrite pages using restricted forms
of HTML, JavaScript, and CSS. Unlike AMP, Alohamora
accelerates legacy pages without developer effort. Further,
Alohamora’s adaptive push/preload policies can improve the
performance of AMP pages because all page resources still
must traverse a client’s slow mobile access link.
Prefetching: Prefetching systems predict user browsing be-
havior and optimistically download objects prior to user page
loads [28, 49, 62]. Unfortunately, such systems have wit-
nessed minimal adoption due to challenges in predicting
what pages a user will load and when; inaccurate page and
timing predictions can waste device resources or result in
stale page content [52]. In contrast, Alohamora generates
push/preload policies only after a user navigates to a page,
and considers the environmental conditions and page prop-
erties collected in situ.
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Abstract
Mobile devices are often stuck behind high-latency links.

Unfortunately for mobile browsers, latency (not bandwidth)
is often the key influence on page load time. Proxy-based
web accelerators hide last-mile latency by analyzing a page’s
content, and informing clients about useful objects to prefetch.
However, most accelerators require content providers to di-
vulge cleartext HTTPS data to third-party analysis servers. Ac-
celeration systems can be installed on first-party web servers,
avoiding the violation of end-to-end TLS security; however,
due to the administrative overhead (and additional VM costs)
associated with running an accelerator, many first-party con-
tent providers would prefer to outsource the acceleration
work—if outsourcing could be secure.

In this paper, we introduce Oblique, a third-party web ac-
celerator which enables secure outsourcing of page analysis.
Oblique symbolically executes the client-side of a page load,
generating a prefetch list of symbolic URLs. Each symbolic
URL describes a URL that a client browser should fetch, given
user-specific values for cookies, the User-Agent string, and
other sensitive variables. Those sensitive values are never
revealed to Oblique’s analysis server. Instead, during a real
page load, the user’s browser concretizes URLs by reading
sensitive local state; the browser can then prefetch the asso-
ciated objects. Experiments involving real sites demonstrate
that Oblique preserves TLS integrity while providing faster
page loads than state-of-the-art accelerators. For popular sites,
Oblique is also financially cheaper in terms of VM costs.

1 Introduction
Two trends are reshaping modern web services: the increasing
prevalence of mobile traffic, and the continued shift from
HTTP to HTTPS. 53% of all page requests now originate
from smartphones [5]. 90% of those requests use HTTPS [16].

Many mobile users (particularly in emerging markets) are
still stuck behind slow 3G and 4G links; even high-bandwidth
5G links often suffer from 4G latencies [11]. Unfortunately,
page load times are usually determined by latency, not band-
width [21, 24]. A variety of mobile page accelerators try
to mask last-mile latency by (1) analyzing the objects (e.g.,
HTML and JavaScript files) that are contained by a page, and
then (2) reducing the perceived fetch latencies for those ob-
jects (e.g., using server-side pushing [1,24,29,34,35] or client-
side prefetching [21,29]). Unfortunately, the shift from HTTP
to HTTPS has created tensions between security, performance,
and the financial cost of hosting a web site. Accelerators like
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Figure 1: Overview of Oblique’s design. A developer uploads
page content to Oblique’s analysis server ( 1©). Oblique returns
the path constraint tree for the page ( 2©). The developer up-
loads the page content to web servers ( 3©), injecting Oblique’s
JavaScript library into the page’s HTML. Later, when a user
loads the page ( 4©), the prefetching library uses the path con-
straint tree to prefetch objects ( 5©).

Silk [1] that perform remote dependency resolution [3,24,35]
route client traffic through third-party proxies; these proxies
are owned by browser vendors or mobile providers, and are
operated for the benefit of customers. The proxies require
access to cleartext HTTPS content to determine which objects
to prefetch (§2). Thus, content providers that use HTTPS are
faced with a dilemma: allow third-party proxies to man-in-the-
middle TLS connections, or forgo the performance benefits
provided by outsourced web accelerators. The former choice
breaks end-to-end TLS security, and the latter option hurts
page load times.

A content provider could decide to run a first-party web
accelerator like Vroom [29] locally; this approach would avoid
revealing cleartext HTTPS data to an untrusted middlebox.
However, the content provider would incur a new financial
penalty. Running a web accelerator requires extra CPU cycles
and memory space beyond what is required to run a traditional
web server. The content provider would have to pay for those
extra VM resources.
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Figure 2: A simplified example of a path constraint tree. At
page load time, Oblique’s client-side JavaScript library tra-
verses the tree, using load-time concrete values to trace a path
to a leaf. The leaf enumerates which URLs Oblique should
prefetch. Those URLs may need to be concretized with load-
time values (e.g., a cookie value in this example).

In this paper, we introduce Oblique, a new system for accel-
erating page loads. Oblique’s goal is to improve the load time
reductions provided by state-of-the-art accelerators, while en-
abling cheaper, more secure outsourcing of the analyses which
identify the objects that a client should prefetch. Figure 1 de-
picts Oblique’s architecture. When a content provider creates
a new page, the provider feeds the new content to a third-party
Oblique server. The server performs a symbolic page load, ex-
ploring the possible behaviors of a web browser and a web
server during the page load process. The output of the sym-
bolic page load is a path constraint tree, as shown in Figure 2.
Each leaf is a set of URLs that a client should prefetch, and
each path from root to leaf represents symbolic constraints
on the actual client-side and server-side state that is observed
at the time of a real page load. During an actual page load,
Oblique inspects concrete state like a client’s cookie, traces a
path through the constraint tree, and prefetches the relevant
objects using a client-side JavaScript library.

Security: Oblique’s offline analysis server does not see con-
crete instances of uniquely-identifying client data. For ex-
ample, the server does not observe concrete values for any
user’s cookies or User-Agent string. Instead, the analysis
server only sees page content that could have been fetched
by any actor on the internet who can issue HTTPS requests.
Later, during an actual page load, the analysis server is totally
uninvolved, and receives no information about sensitive con-
crete values. In contrast, remote dependency resolution (RDR)
forces clients to divulge cleartext HTTPS traffic, exposing
cookies and other private values.

Financial cost: Oblique’s offline symbolic analysis occurs
when a new page version is created. The analysis cost (as
measured by VM rental fees) is amortized across all client
loads of the page. For popular pages, this amortized expense
will be less than the aggregate per-page-load costs incurred
by third-party RDR or first-party accelerators like Vroom.
RDR must launch a proxy-side web browser for every client-

initiated page load, whereas a Vroom-enabled web server must
analyze HTML on-the-fly (§5.2).

Performance: In addition to Oblique’s security and cost
benefits, Oblique also loads pages up to 16% faster than RDR
and Vroom (§5.2). The reason is that Oblique’s symbolic
analysis enables more accurate prefetching: fewer unneces-
sary objects are prefetched, and more objects that are truly
needed are prefetched. For example, Oblique can accurately
model URLs that embed random numbers; these numbers
are represented symbolically in a path constraint tree, and are
late-bound to concrete values at page load time (when a client
generates concrete random numbers). In contrast, Vroom and
RDR early-bind random numbers at analysis time, resulting
in wasted prefetches, or potentially prefetchable objects being
ignored (§3.3).

Summary: This paper provides three contributions:

• We describe how to symbolically evaluate client-side
page load activity (§3.2), using concolic execution to
model the JavaScript engine and the rendering engine.
Core technical challenges involve tracking symbols that
flow across the DOM interface, and preventing Oblique’s
third-party server from gaining insights about sensitive
client-side values derived from nondeterministic func-
tions like Math.random().

• We also describe how to symbolically evaluate the
server-side half of a page load. By analyzing both sides
of a load, Oblique can generate even better prefetching
hints (§3.4). The core challenges involve the complex-
ities of HTML templating engines, and the careful or-
chestration needed to ensure that server-side symbols
propagate to the symbolic analysis of client-side behav-
ior. To analyze both client-side and server-side behavior,
Oblique requires access to backend code and data; that
state is sensitive, so Oblique should execute on first-party
machines in this mode.

• We build and evaluate an Oblique prototype, and com-
pare it to prior state-of-the-art load accelerators. When
Oblique executes in third-party analysis mode, it only
analyzes client-side symbols; in this mode, first-party
developers can securely outsource prefetch analysis to
Oblique, enjoying better security than RDR, and faster
page loads than both RDR and Vroom. For popular pages,
Oblique also provides lower economic costs due to bet-
ter amortization of analysis overheads. If page owners
are willing to run Oblique on first-party infrastructure,
Oblique’s client+server analysis can unlock even greater
reductions in load time.

Oblique requires no changes to end-user browsers, and reduces
overall page load times by up to 31%. To the best of our
knowledge, Oblique is the first web accelerator that securely
enables outsourced prefetch analysis for HTTPS content.

290    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



2 Background
A web page’s dependency graph [21] captures the load-order
relationships between a page’s constituent objects. For exam-
ple, a page’s top-level HTML might contain references to a
JavaScript file and an image. To load the page, a browser must
fetch and evaluate both objects. Evaluating the JavaScript file
might generate additional fetches, e.g., because the executed
JavaScript code uses the Fetch API to issue new HTTP re-
quests. Evaluating the image file causes the associated pixels
to be displayed; the reception of the image data may also
trigger JavaScript onload event handlers. Those handlers can
generate more fetches. The overall page load completes when
a critical subset of a page’s objects have been fetched and eval-
uated. Different load metrics use different criteria to identify
the critical subset (§5).

Web accelerators leverage knowledge of a page’s depen-
dency graph to reduce a page’s load time. One popular ap-
proach is remote dependency resolution (RDR) [1, 3, 23, 24,
26, 35]. An RDR system deploys a proxy server that has low-
latency paths to the internet core. An end-user’s browser sends
each page load request to the proxy. Upon receiving such a
request, the proxy launches a headless browser (i.e., a browser
that lacks a GUI). The proxy-side browser loads the requested
page and streams the fetched objects to the user’s browser.
By doing so, the proxy can partially mask the user’s high last-
mile latency: the page’s dependency graph is resolved via the
proxy’s fast network links, and the bytes in each discovered
object are pushed to the client as soon as the proxy receives
those bytes.

RDR can reduce page load times by up to 40% [24]. Un-
fortunately, RDR proxies are computationally expensive to
run, because web browsers (even headless ones) are complex,
resource-intensive applications. A proxy can use backwards
program slicing [37] to try to only execute the JavaScript
code that influences calls to functions like Fetch(). How-
ever, slices are often inexact, and the degraded prefetching
underperforms traditional RDR for 34% of pages [34].

An RDR proxy must act as a man-in-the-middle for TLS
connections. Doing so allows the headless browser to parse
cleartext web content and fetch the same objects that a user’s
browser will eventually want to fetch. However, breaking
TLS’s end-to-end security is obviously problematic; it allows
RDR proxies to see user cookies and other sensitive HTTPS
content.1 This security violation also plagues non-RDR ac-
celerators that perform third-party analysis of dependency
graphs [6, 22, 40]. Cryptographic schemes that allow middle-
box computation over encrypted TLS data [32] are insuffi-
ciently expressive to analyze dependency graphs; prefetch
analysis requires a Turing-complete language to parse HTML
and evaluate JavaScript.

Vroom [29] is a first-party web accelerator: dependency
1WatchTower [24] allows each HTTPS origin to run its own RDR proxy.

This approach solves the security problem by exacerbating the computational
overhead problem, since now every HTTPS origin must run a proxy.

analysis runs on infrastructure belonging to the content
provider. For each page, Vroom performs both offline and
online analysis. The offline phase runs periodically (e.g., once
an hour), using a headless browser to collect the set of URLs
loaded by a page. Across multiple offline page loads, Vroom
identifies a “stable set” of URLs that were fetched during
each load. When a client initiates a real page load, a Vroom-
modified web server parses HTML on-the-fly while stream-
ing it to the client, extracting the embedded URLs. These
embedded URLs, plus the ones found during offline analysis,
comprise the set of URLs to prefetch. The web server induces
the client to speculatively load these URLs via a combination
of HTTP/2 push [2] and <link> prefetch hints [42].

Vroom’s analyses run on first-party machines, so HTTPS se-
crets are not leaked to third parties. However, Vroom’s online
analysis cannot be outsourced securely: a benevolent mobile
provider who wants to run Vroom on behalf of its users will
have to break the HTTPS confidentiality of real user page
loads. Vroom’s offline phase also requires hand-tuning to
deal with the heterogeneity of client browsers. For example,
many sites define mobile and desktop versions of each page.
A server determines which version to return by examining
the User-Agent header in a client’s HTTP request. Vroom’s
offline phase must be manually configured to explore the state
space of all client-specific parameters like User-Agent and
the client’s screen size. Oblique’s symbolic analysis allows
Oblique to automatically explore this state space.

3 Design
At a high level, Oblique’s offline analysis generates a prefetch
tree for a page. The tree informs a client which HTTPS ob-
jects to prefetch in which situations. The input to the tree
traversal is client-specific, potentially-sensitive information
like cookie values; the output is a set of URLs. Oblique gener-
ates the tree by symbolically evaluating the client-side of a
page load (§3.2). The URLs (found at the leaf nodes) are sym-
bolic expressions that a client makes concrete by plugging in
client-specific information that is never revealed to Oblique.
If a page uses Node [25] (a popular server-side JavaScript
framework) to generate HTML, Oblique can also symboli-
cally evaluate server-side code (§3.4). Receiving visibility
into both client and server execution allows Oblique to gen-
erate prefetch trees with more true positives and fewer false
negatives: in other words, clients will fetch more useful ob-
jects and fewer unnecessary ones.

3.1 Overview of Concolic Execution
Oblique uses a particular variant of symbolic evaluation called
concolic execution [14, 31]. In concolic execution, a program
is given a concrete set of initial inputs. The program is then
executed under the observation of the concolic framework.
The concolic framework assigns a “shadow” symbolic ex-
pression to each input value and to each internal program
variable. An input’s initial symbolic expression is only con-
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strained by the limitations of the input’s type. For example,
a uint32 input x might receive an initial concrete value of 2,
but an initial symbolic constraint of (0 ≤ x ≤ 232 −1). Dur-
ing the program’s execution, the assignment y = x/2 would
result in y receiving the concrete value of 1, and the symbolic
constraint y == x/2. When the program’s execution hits a
branch statement (e.g., if(x >= 42){...}else{...}), ex-
ecution proceeds along the appropriate path, but the sym-
bolic expressions for the branch-test variables are updated. In
the running example, the else clause is executed because x
(equal to 2) is less than 42; x’s symbolic constraint is updated
to become (0 ≤ x < 42). As the program continues execu-
tion, variables receive updated concrete values and updated
shadow constraints. Eventually, the program halts or a time-
out fires. The concolic framework then explores a different
execution path by backtracking along the branch history and
selecting a branch direction to invert. In the running example,
the concolic framework might choose to explore the taken
side of the branch if(x >= 42){...}else{...}. To do so,
the framework inverts the relevant part of x’s symbolic expres-
sion, generating the constraint (42 ≤ x ≤ 232 −1). The frame-
work consults an SMT solver [7, 12] to generate a concrete
value for x that satisfies the new constraints. Concolic execu-
tion then proceeds down the new branch until the program
terminates or a timeout fires. This backtrack-and-explore pat-
tern repeats until all execution paths have been discovered or
(more likely) the overall time budget for concolic execution
expires. For each discovered path, the framework records the
path constraints, i.e., the symbolic constraints on all of the
input variables which must be true for the path to be taken.
Note that path constraints are different than the symbolic
constraints on a particular variable. In our running example,
the constraint on y is y == x/2. The path constraints for that
execution path are the aggregate set of constraints placed on
x and the rest of the program inputs.

3.2 Analyzing Client-side Behavior
In the context of a concolic page load, the program inputs are
client-specific environmental variables. These environmen-
tal variables determine the content returned by web servers,
and the execution paths taken by a page’s JavaScript. For
example, when a server receives the HTTP request for an
HTML file, the server may examine the User-Agent header
to determine whether to return the mobile-optimized HTML
or the desktop-optimized HTML. The value for the local
browser’s User-Agent header is accessible to JavaScript via
the navigator.userAgent variable; JavaScript code might
inspect that variable to execute different code paths for dif-
ferent browsers. Thus, a client’s user agent string is an input
to the concolic page load. Table 1 enumerates the client-side
inputs that Oblique considers.

Figure 3 depicts the life-cycle for a concolic page load. A
distributor assigns concrete values to the inputs; the cookie
value is set to an empty string, and other inputs are set to
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Figure 3: Overview of Oblique’s approach for symbolically
evaluating a client-side browser. See the mainline paper text
for a description of each step.

default values for mobile Chrome. The distributor hands these
values to the executor ( 1©). The executor launches a modified
web browser ( 2©) that fetches the page’s top-level HTML
( 3©). The HTTP request for the top-level HTML uses the
environmental values selected by the distributor. Note that the
returned HTML will be a concrete string, not a symbolic one.

As the browser parses the HTML, the browser fetches
and evaluates non-JavaScript files like CSS and images (4a©).
When a JavaScript file is fetched (4b©), Oblique evaluates it
using a modified version of the ExpoSE concolic engine [17].
As the JavaScript code executes, Oblique records the path
constraints, and updates JavaScript variables with concrete
values and symbolic constraints. When JavaScript code dy-
namically fetches an HTTP object (e.g., via fetch(url)),
Oblique uses the concrete value of url to issue a real fetch.
However, Oblique also records the symbolic constraints on
url. These constraints, which represent a symbolic URL, are
added to the prefetch list for the current execution path. As a
contrived example, a symbolic URL might have the value
“x.com/?{{encodeURI(navigator.userAgent)}}”; this
URL would allow a web server to return different HTML
to mobile clients and desktop clients.

In the prior example, the {{}} notation indicates a symbolic
expression. The example also demonstrates how Oblique is
enlightened about certain native functions like encodeURI().
Native functions are JavaScript-invocable methods whose
implementations are provided by C++ code inside the browser.
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Input name HTTP header JavaScript variable Description
User agent User-Agent navigator.userAgent The local browser type, e.g.,

"Mozilla/5.0 (Windows; U; Win98;
en-US; rv:0.9.2) Gecko/20010725
Netscape6/6.1"

Platform Included in User-Agent navigator.platform The local OS, e.g., "Win64"

Screen characteristics N/A window.screen.* Information about the local display,
e.g., the dimensions and pixel depth

Host Host location.host Specifies the host and port number
used by request

Referrer Referer document.referrer The URL of the page whose link was
followed to generate a request for the
current page

Origin Origin location.origin Like Referrer, but only includes the
origin, omitting path information

Last modified Last-Modified (response) document.lastModified Set by the server to indicate the last
modification date for the returned re-
source

Cookie Cookie (request), Set-
Cookie (response)

document.cookie A string containing "key=value" pairs

Table 1: Symbolic inputs to a client-side page load.

Oblique intentionally avoids the concolic execution of native
code, since JavaScript-level semantics are the only ones of
importance. However, to ensure that native methods correctly
propagate JavaScript-level symbolic constraints, Oblique must
associate a symbol policy with each native method. A policy
describes how the symbolic inputs to a native method should
be translated to symbolic outputs for the method. Oblique
assigns policies to the most popular native methods that were
seen in our test corpus (§5.1). Those methods include the ones
defined by the Math, String, and RegExp objects. If a page
invokes a native method that lacks a symbol policy, Oblique
uses the concrete return value as the symbolic constraint; in
other words, the native function acts as a black box that never
returns symbolic data.

An HTML renderer maintains an internal data structure
called the DOM tree. The DOM tree mirrors the structure of
a page’s HTML, with each HTML tag having a correspond-
ing DOM node. JavaScript code uses the DOM interface to
query or modify the DOM tree, e.g., to implement anima-
tions and register event handlers for GUI activity. During a
symbolic page load, Oblique associates the DOM tree with
a concrete HTML string and a symbolic one; the latter al-
lows JavaScript-level symbols to flow into and out of the
DOM tree via DOM methods. For example, given a refer-
ence r to a <div> tag’s DOM node, JavaScript code could
display the browser type using the assignment r.innerHTML
= navigator.userAgent. A read of r’s parent in the DOM
tree (e.g., r.parentNode.innerHTML) would return a string
whose symbolic value contains {{UserAgent}}.

As the page load unfolds, Oblique logs the symbolic URLs
that are passed to network APIs like fetch(). Oblique
also interposes on the DOM interface, and logs the sym-
bolic URLs which cross that interface. For example, suppose
that JavaScript code uses the Node.appendChild(imgNode)
method to add a new <img> tag to the page. Oblique would
log the symbolic URL associated with the imgNode.src
attribute; logging the URL reflects the fact that executing
Node.appendChild(imgNode) causes the browser to fetch
an image from a remote server.

Oblique’s HTML renderer also logs the static, non-
symbolic URLs in a page. These URLs are directly specified
in a page’s static HTML (e.g., <link rel=“stylesheet”
href=“styles.css”>) or dynamically injected by
JavaScript via the DOM interface. The prefetch list for an
execution path contains the static, non-symbolic URLs and
the dynamic, possibly-symbolic URLs that are fetched by the
path.

Oblique declares the page load to be done when the
JavaScript onload event fires. The browser fires this event
when the browser has finished the HTML parse, fetched all
objects discovered by the parse, and evaluated all of those ob-
jects. As shown in Figure 3, the JavaScript engine informs the
executor about the path constraints for the page load ( 5©). The
executor asks the SMT solver to invert a branch direction at
some point along the path ( 6©). Inverting the branch direction
changes the symbolic constraints on the input values (§3.1).
The SMT solver generates concrete input values that satisfy
the new constraints ( 7©). The executor returns those concrete
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input values to the distributor ( 8©). These values represent a
new test case that would cause the page to explore a different
execution path.

The distributor launches many executors in parallel, run-
ning each one on a separate core. As the executors complete
and return new test cases, the distributor launches new execu-
tors to explore new test cases. The distributor stops creating
new executors once a predetermined time budget expires, or
there are no more paths to explore. Higher budgets allow
Oblique to discover more execution paths, but are more ex-
pensive in terms of VM costs. We evaluate these tradeoffs in
Section 5.2.

When an executor completes its concolic page load, it
logs two things: the list of symbolic URLs fetched by the
page load, and the symbolic constraints on client-specific
inputs like cookies. Once all executors have finished, the
distributor analyses the aggregate set of executor logs to gen-
erate a tree of path constraints. Figure 2 provides an ex-
ample of such a tree. Each leaf contains a set of symbolic
URLs; each root-to-leaf path represents the client-specific
input values which indicate that a page load will fetch the
URLs at the leaf. The distributor translates the constraint
tree into a JSON data structure. Finally, the distributor gen-
erates a JavaScript library that traverses the tree; at each
node, the library applies regular expressions and compar-
ison operators to the JavaScript representation of client-
specific inputs (see Table 1). For example, the JavaScript
code /CriOS(54|55)/.test(navigator.userAgent) de-
termines whether the local browser is Chrome version 54 or
55 that runs atop iOS. Upon arriving at a leaf, the library con-
cretizes the symbolic URLs in the leaf, and then prefetches
those URLs using XMLHttpRequest.

Oblique sends the prefetching library (which embeds the
JSON constraint tree) to the first-party web developer. The
developer adds the library as an inline <script> tag at the
beginning of the associated page’s HTML. Later, when a
real client browser loads the page, the library issues asyn-
chronous prefetches, populating the local browser cache. As
the browser’s HTML parse examines the rest of the page
and discovers references to external objects, the browser can
pull those objects from its cache, avoiding wide-area fetch
latencies.

3.3 Nondeterministic JavaScript Functions
JavaScript defines two categories of nondeterminis-
tic functions. Timestamp functions like Date() and
Performance.now() read the system clock. Ran-
dom number generators like Math.random() and
crypto.getRandomValues() create pseudorandom or
cryptographically-random byte sequences.

JavaScript code may consult nondeterministic functions
during the construction of a dynamic URL. For exam-
ple, a page might contain code like if(Math.random() >
0.7){url=“a.jpg”}else{url=“b.jpg”}. In that example,

the URL embeds no symbols, but its value is controlled by the
output of a nondeterministic function. Code like url=Date()
+ “.jpg” would create a URL that directly embeds the output
of a nondeterministic function.

Both kinds of dynamic URLs will induce prefetch misses
for RDR. The reason is that RDR uses a headless browser
to generate a page’s dependency graph (§2). The headless
browser and the client-side browser will likely generate differ-
ent nondeterministic values; thus, the two browsers will likely
generate different dynamic URLs. To prevent such divergence,
RDR could log the nondeterminism observed by the headless
browser, and then force clients to use the logged sequence.
This approach is the same one used by deterministic replay de-
buggers to faithfully recreate previously-observed program ex-
ecutions [8, 20]. However, in the context of accelerating page
loads, this approach can break functionality. Clients will re-
ceive old wall-clock readings, and calculate elapsed time peri-
ods that do not accurately reflect the client’s true perception of
time. As a result, clients may fetch stale content or improperly
calculate frame rates for animations. From the security per-
spective, exposing a client’s crypto.getRandomValues()
sequence to a third party is undesirable, because the client
might use the sequence to derive keys or nonces.

Vroom will also suffer prefetch misses for dynamic URLs
that are influenced by nondeterministic functions. Vroom’s
offline analysis identifies a stable set of URLs that are fetched
by several different loads of a page (§2). Vroom’s stable set
analysis will drop URLs that only differ by a timestamp or a
random number. The analysis will also drop URLs that do not
directly embed nondeterminism, but are fetched via branching
paths whose directions are chosen by nondeterminism.

Oblique handles these dynamic URLs without forcing
clients to divulge their nondeterminism to third parties. Dur-
ing an offline symbolic execution, Oblique creates a unique,
hidden variable for each invocation of a nondeterministic func-
tion. Oblique treats this variable as a client-specific input, akin
to document.cookie or User-Agent. This approach enables
Oblique to track how the outputs of nondeterministic functions
influence branch decisions and the construction of dynamic
URLs. For example, suppose that during symbolic execution,
a page’s JavaScript code invokes Math.random() twice, and
then calls Performance.now(). Oblique generates the hid-
den variables rand0, rand1, and pnow0. As the symbolic page
load continues, the load may generate dynamic URLs like
https://foo.com/?{{rand0}}.js. Oblique places these
URLs in the prefetch list as normal. The symbolic execu-
tion may also branch on the values of rand1 and pnow0, just
like the symbolic execution might branch on User-Agent.
Later, during a real client-side page load, Oblique’s prefetch
library concretizes hidden variables before traversing the path
constraint tree. In the previous example, the prefetch library
would make two calls to Math.random(), and one call to
Performance.now(). With the hidden variables now con-
cretized, and with client-specific values like User-Agent in
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hand, the prefetch library can now traverse the path constraint
tree and concretize all of the URLs that reside at the appropri-
ate leaf.

The library prefetches the concretized URLs. Finally,
the library dynamically patches [20] nondeterministic func-
tions like Math.random() and Performance.now(), forcing
those methods to return the values in the log of concretized
hidden variables. The prefetching library is the first JavaScript
code that executes in a page. Thus, as the rest of the page’s
JavaScript code executes, that code will craft dynamic URLs
using the same nondeterministic values that Oblique used to
construct prefetched URLs.

This approach may still result in unnatural calculations
of elapsed time. For example, a page’s normal JavaScript
code may call Performance.now(), execute a lengthy com-
putation, call Performance.now() again, and then use the
elapsed time to construct a dynamic URL. If Oblique’s
prefetching library concretizes the two hidden variables using
back-to-back calls to Performance.now(), the elapsed time
used to influence prefetching will be much smaller than the
elaspsed time used by the page’s normal JavaScript. At worst,
this will cause a wasted prefetch; Oblique only prefetches
HTTP GET requests which (unlike POST requests) cannot
induce side effects on the server. In future work, we hope
to devise mechanisms to allow concolic execution to esti-
mate wall clock time. This ability would enable Oblique to
concretize hidden timestamp variables with higher fidelity.

JavaScript is an event-driven language. Thus, the execution
order of event handlers (e.g., timers and GUI events) is another
source of nondeterminism. Oblique does not attempt to control
these sources of randomness, because the event loop only
goes live after a page’s HTML parse completes. This means
that event-loop nondeterminism cannot affect URLs fetched
during the HTML parse (e.g., via the .src attribute of HTML
tags, or XMLHttpRequests issued by JavaScript). Event-loop
nondeterminism can affect URLs fetched after the HTML
parse completes.

3.4 Analyzing Server-side Behavior
When a web server receives a request for a page’s top-
level HTML, the server might dynamically construct the re-
turned HTML. For example, the server might inspect the
User-Agent string in the HTTP request, and return mobile
content or desktop content as appropriate. As another exam-
ple, the server might use the request’s cookie to populate the
HTML with user-specific URLs, e.g., corresponding to im-
ages of a user’s previous purchases on an e-commerce site.
Oblique’s analysis from the previous sections will not detect
this potential diversity of embedded URLs. The reason is that
the prior analysis assumes that a page has only one version
of its top-level HTML, and thus only one set of embedded
JavaScript files; if this assumption is true, then the only goal
of symbolic analysis is to explore branch paths in the fixed
JavaScript code, identifying the dynamically-fetched URLs.

3.4.1 The Workflow

To generate more accurate prefetch lists for dynamically-
generated pages, Oblique can optionally perform symbolic ex-
ecution of both client-side JavaScript (that runs in a browser)
and server-side JavaScript (that runs in the Node frame-
work [25]). The end-to-end workflow looks like this:

• Phase 1: Oblique first performs a concolic execution
of the server-side request handling code. For each
test, the inputs are the HTTP request state, as well
as nondeterministic function values (e.g., from Node’s
crypto.randomBytes() method). For each concolic
path that is explored, Oblique logs the concrete HTML
string that is generated, building a server-side path con-
straint tree. Each leaf contains a concrete HTML string,
with each root-to-leaf path representing the constraints
on server-side inputs that enable the concrete HTML
string to be generated.

• Phase 2: Each concrete HTML string is fed to the client-
side symbolic execution pipeline from Section 3.2. The
output of that pipeline is a client-side path constraint tree.
Each leaf contains symbolic URLs to prefetch, and each
root-to-leaf path represents the symbolic constraints on
client state that trigger the fetching of the leaf’s URLs.

• Phase 3: Once Oblique has finished all of the symbolic
executions (both client-side and server-side), Oblique
creates a “super-constraint tree” which combines the
knowledge gleaned from the individual constraint trees.
The super tree maps Phase 1 path constraints on server-
side inputs to the appropriate client-side path constraint
tree from Phase 2; in other words, each leaf in the super
tree is a client-side path constraint tree.

When a real client loads the page, the web server uses the
values in the HTTP request to traverse the super tree; if the
super tree branches on the return values of server-side nonde-
terministic function, the web server concretizes those values
using the approach from Section 3.3. When the server reaches
a leaf in the super tree, the server injects the leaf’s prefetching
library into the dynamically-constructed HTML. The subse-
quent construction process for the HTML is guided by the
values in the HTTP request, and possibly by nondeterminis-
tic functions; those functions return the already-concretized
values which guided the traversal of the super tree. When
the client receives the HTML, Oblique’s prefetching library
executes as described in Section 3.2.

3.4.2 Templating Engines

In Phase 1, Oblique symbolically executes the server-side
request handler. A developer has two options for specify-
ing an entry point into request-handling code. First, a devel-
oper can register an http.Server.request event handler
with Oblique. When a client request arrives, Node creates a
new http.IncomingMessage object and invokes the handler.
Oblique uses the object’s HTTP headers as test inputs for
concolic execution of the handler.
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------ Server-side JavaScript ------
app.get(’/’, function(req, res) {
//...examine req and derive the template parameters,
//and then...
res.render(’template.ejs’,

{userAgent: req.headers[’user-agent’],
userID: ’alice’,
userName: ’Alice’,
nonce: random_value});

});
----------- template.ejs -----------
<html>
<head></head>
<body>
<p1> Welcome to foo.com, <%= userName %>! </p1>
<% if (userAgent.includes(’Android’)) { %>
<img src=’site-logo-mobile.jpg’>

<% } else { %>
<img src=’site-logo-desktop.jpg’>

<% } %>
<img id=’session-<%= nonce %>’

src=’<%= userID %>.jpg’>
</body>

</html>

Figure 4: An example of dynamic HTML generation using
EJS templates. EJS directives are shown in bold.

The disadvantage of the prior approach is that, during the
construction of dynamic HTML, a server may consult IO-
based sources of nondeterminism. For example, the server
may issue a database query, or send an RPC to an external
server. Oblique does not log and replay such IO responses.
Thus, the concretized Phase 1 HTML that Phase 2 consumes
may be different than the dynamic HTML that is generated at
the time of an actual page fetch. Such a mismatch would hurt
Oblique’s prefetching accuracy.

Oblique can avoid this problem if server-side code uses
a template engine to generate dynamic HTML. For exam-
ple, consider EJS [9], a popular template framework. EJS
defines a render(html, dict) method. The first argu-
ment is a template string (e.g., “<html>Hello {{name}} at
{{tstamp}}”). The second argument is a dictionary which
maps template arguments to program variables (e.g., {name:
httpReq.cookie.uid, tstamp: Date.now()}). EJS ex-
amines the template and automatically generates a JavaScript
program; this program, which is executed by render(), per-
forms the necessary computations to parse dict and emit
the customized HTML. Figure 4 provides a more complex
example of an EJS template.

If a developer uses EJS, then she can tell Oblique to con-
colically analyze the EJS-created templating JavaScript. The
output of Phase 1 is now different: it consists of server-side
path constraint trees that are associated with just the tem-
plating JavaScript, not the overall handler call chain. Each
leaf still contains a concrete HTML string that is passed to
the concolic client-side analysis in Phase 2. However, a leaf

also contains the symbolic HTML string that was output by
the Phase 1 analysis. The symbols in this string come from
the dict argument to render(). In the example from Fig-
ure 4, the symbolic HTML references the dict arguments
userName, nonce, and userID. Note that the dict argument
userAgent does not appear in symbolic HTML; that argu-
ment is branched upon in the path conditions, but is not di-
rectly embedded in the HTML itself.

With template integration, Phase 3 is altered as well. When
the web server receives a request, the server executes the re-
quest handler up to the invocation of render(). At that point,
the server has queried any sources of nondeterminism (IO-
based or otherwise); the server now possesses concrete values
for all the inputs to render(). The server can then traverse
the super tree, find the appropriate symbolic HTML, con-
cretize it, extract the static URLs inside the concrete HTML,
and then inject the appropriate prefetching library. Note that
extracting static URLs from the concretized HTML is faster
than a naïve top-to-bottom HTML parse, since Oblique has a
priori knowledge of the offsets where the URLs will be.

3.5 Security Analysis
Oblique’s security properties depend on whether symbolic
analysis examines only client behavior, or both client and
server behavior. Consider the scenario in which Oblique only
analyzes client-side activity. In this case, Oblique only re-
quires access to first-party content that is already publicly
accessible via first-party web servers. From the perspective
of a first-party web server, Oblique’s third-party analysis en-
gine looks like a normal end-user browser that issues nor-
mal HTTPS fetches. During a concolic page load, Oblique
does track symbolic constraints on sensitive user values like
cookies and User-Agent strings. However, these constraints
represent a universe of possible values for sensitive variables;
the constraints are insufficiently precise to allow Oblique to
determine the specific sensitive values that belong to a particu-
lar user. For instance, we did empirically find JavaScript code
which tested cookies for substrings that were user-agnostic;
a common pattern was to inspect a cookie for a string rep-
resenting the current date. However, JavaScript code did not
contain the logical equivalent of a giant regular expression
which scanned the local cookie, testing whether the cookie
contained any value from an explicit list of valid user ids. Such
JavaScript code does not exist because it would allow anyone
to download the enclosing JavaScript file and learn all of the
valid user ids for a site! Thus, Oblique’s symbolic constraints
on cookies are insufficient to induce concrete cookie values
belonging to specific users. Similarly, if Oblique analyzes a
page and determines that a possible load path will target An-
droid users that possess a certain set of screen dimensions,
this information does not allow Oblique to infer the screen
dimensions and platform value for a particular user.

To analyze server-side behavior, Oblique requires access
to server-side code; that code is inaccessible to public web
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clients. During the concolic execution of that code, Oblique
might also query sensitive databases, or contact sensitive net-
work hosts that are inaccessible to public internet hosts. Thus,
if a developer wants Oblique to analyze both client-side and
server-side behavior, Oblique should be run on first-party
machines. Compared to Vroom (which is also a first-party
accelerator), Oblique will provide faster page loads (§5.2).

3.6 Limitations
Oblique is not guaranteed to optimize every object fetch made
by every page. For example, during concolic execution, a
page’s JavaScript may invoke unmodeled native functions,
i.e., browser-provided C++ functions for which Oblique lacks
a symbolic execution policy (§3.2). If concolic execution
reaches one of those functions, Oblique must always treat
the return value as fully concrete. Doing so will hurt path
coverage if the program later branches on the value, since
concrete values cannot be “inverted” to force a new branch
direction to be explored.

Even if a page avoids unmodeled native functions, path
coverage may suffer when symbolic path constraints are diffi-
cult to invert. If the constraint solver times out while trying to
generate concrete inputs for a new path to explore, the path
will not be explored. If this happens, Oblique can miss oppor-
tunities to discover prefetchable URLs. We evaluate Oblique’s
sensitivity to time-out parameters in Section 5.2.

During concolic execution, Oblique may trigger interac-
tions with external entities. For example, a concolically-
executed browser may issue XMLHttpRequests to remote
servers. Oblique should only be used with pages for which
such interactions are idempotent (either literally or for prac-
tical purposes). This limitation is shared by all prefetching
systems which issue queries to live services to perform con-
tent analysis.

4 Implementation
To implement Oblique’s symbolic analysis, we modified Ex-
poSE [17]. ExpoSE performs concolic execution of pure
JavaScript code, but does not handle environmental interac-
tions like network IO. We modified ExpoSE to interface with
two different environmental interfaces: the Node runtime and
the Electron [10] HTML renderer. Oblique uses the Node
runtime when analyzing server-side code, and uses the Elec-
tron runtime when simulating client-side loads. As explained
in Section 3.2, we enlightened ExpoSE to model a DOM
tree symbolically, so that JavaScript-level symbolic values
can flow into and out of the DOM interface. Our changes
to ExpoSE were non-trivial, totalling roughly 4,300 lines of
code.

Oblique’s client-side prefetching library is small, contain-
ing approximately 300 lines of Javascript code. When Oblique
runs in third-party mode (§3.2), web servers require no modi-
fications (other than having to include Oblique’s prefetching
library at the top of each page’s HTML). When Oblique runs

in first-party mode (§3.4), web servers must be enlightened to
traverse the super-constraint tree, concretize nondeterministic
values, and interact with Oblique’s templating infrastructure.
To implement an Oblique-compatible web server, we created
a front-end HTTP layer that sat in front of a commodity web
server. The front-end layer used the nghttp2 HTTP library
and the myhtml HTML parser to implement the activities
described above.

5 Evaluation
In this section, we compare Oblique’s performance to that of
Vroom and RDR, two state-of-the-art accelerators for mobile
page loads. Our evaluation primarily focuses on the variant of
Oblique that only analyzes client-side behavior, since we can
evaluate this variant on a large number of commercial sites.
Using a corpus of 200 real pages, we find that Oblique reduces
page loads by up to 31%, outperforming Vroom and RDR by
up to 17% while also reducing VM costs for popular sites
(§5.2). Oblique provides these advantages while also enabling
secure outsourcing of prefetch analysis (§5.2). In Section 5.3,
we use a site that we control to provide a case study of the
benefits of analyzing both client-side behavior and server-side
behavior. We demonstrate that, if first parties are willing to
run Oblique, they can unlock even greater reductions in load
time than what client-only analysis provides.

5.1 Methodology
Our experiments used a Galaxy S10e phone that ran
Chromium v78. The browser ran atop Linux on Dex [30],
a runtime that enables Samsung phones to execute traditional
Linux executables; Linux on Dex made it easier for us to write
testing scripts and other experimental infrastructure. We auto-
mated the initiation of page loads and the collection of load
time metrics using the Browsertime [33] library. Internally,
Browsertime manipulated Chrome via Selenium’s WebDriver
APIs [36, 43].

To test Oblique, Vroom, and RDR with real websites, we
built a Mahimahi-style tool [23] to record the objects in live
web pages. Afterwards, when our test phone sent an HTTP
request to an Oblique web server, a Vroom web server, or an
RDR proxy, the web server or proxy responded with recorded
content if the request hit in the replay cache; otherwise, the
web server or proxy issued a live fetch to the appropriate
content server. We ran Oblique and Vroom web servers, and
RDR proxies, on a Digital Ocean VM with 8 2.3 GHz cores,
16 GB of RAM, and a 2 Gbps NIC. The RDR proxy used
headless Chrome [28] to load pages. Vroom’s offline analysis
also used headless Chrome. The online Vroom web server
was a derivative of nghttp2 [38] that used MyHTML [4] and
Katana [27] to parse HTML and CSS.

Our phone had an LTE connection with a round-trip time
of 47 ms to our Digital Ocean VM. Our test corpus contained
200 pages from the Majestic Million [19]. We selected the
200 most popular pages for which the RTT between our phone

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    297



and a page’s web server was less than the the RTT between
our phone and our Digital Ocean VM. This setup resulted in
conservative estimates of the benefits provided by Oblique,
Vroom, and RDR, relative to the baseline scenario in which
our phone contacted normal web servers directly. For each
combination of <page, load time metric, acceleration tech-
nique>, we loaded each page 5 times and recorded the average.
By default, Oblique and Vroom pages were loaded one hour
after the completion of offline analysis, but we perform sensi-
tivity analysis on this parameter in Section 5.2.

5.2 Client-only Analysis
PLT: We first explored Oblique’s performance when only
the client side of a page load is analyzed. Figure 5 shows
results for the page load time (PLT) metric. PLT, as measured
by the time to the browser’s onload event, captures how long
a page needs to fetch and evaluate all objects referenced by
a page’s static HTML. Note that PLT only waits for some
dynamically-generated fetches to complete. In particular, PLT
waits for fetches triggered by the insertion of new DOM nodes
(e.g., document.body.appendChild(newImg)), but not for
fetches triggered directly by network APIs like fetch(url).
Thus, PLT underestimates the extent to which Oblique, Vroom,
and RDR reduce overall fetch latencies for a page.

Figure 5a shows that, for a 47 ms RTT and a cold browser
cache, Oblique provided the average page with a 24.1% re-
duction in PLT, relative to a baseline (i.e., non-accelerated)
page load. Oblique reduced PLTs by 17.3% more than RDR,
and 5.4% more than Vroom. To explore Oblique’s benefits
with higher RTTs; we connected the smartphone to a desk-
top machine via WiFi, and used netem [18] to inject addi-
tional latency along the smartphone/desktop link. As expected,
Oblique’s benefits improved as phone-server RTTs grew, be-
cause of the increasing value of hiding last-mile latency. For
example, Figure 5c shows PLT results for an emulated RTT
of 150 ms. Oblique improved the average baseline PLT by
31.4%, outperforming RDR by 16.3% and Vroom by 6.2%.

A page load’s prefetch hit rate is the fraction of requested
objects that hit in the browser cache due to a successful
prefetch. As shown in Figure 6a, Oblique enjoyed better
prefetch hit rates than both Vroom and RDR. Indeed, Oblique’s
primary advantage over Vroom was the ability to successfully
prefetch dynamic URLs that embedded nondeterministic sym-
bols (§3.3); this advantage is reflected in Figure 6b.

We define a page load’s wasted prefetch rate as the frac-
tion of prefetched objects that were never requested during
the page load. Figure 6c demonstrates that RDR has a much
higher percentage of wasted prefetches. The reason is that,
for each client-initiated page load, RDR loads the page twice:
once on the proxy, and once on the real client machine. Both
client-side and server-side nondeterminism may cause the
URLs fetched by the proxy’s page load to be different than
the URLs fetched by the client’s browser. Oblique avoids this
problem by handling nondeterministic URLs symbolically.

In contrast, Vroom’s stable-set algorithm simply filters out
many nondeterministic URLs. Thus, Vroom has fewer wasted
prefetches than RDR, because Vroom does not prefetch non-
deterministic URLs that RDR erroneously pulls; however, as
shown in Figure 6b, Vroom has a worse hit rate than Oblique
due to worse handling of nondeterministic dynamic URLs.

In comparison to RDR, both Oblique and Vroom benefited
from informing clients early about the URLs to prefetch. For
example, Oblique discovered all of these URLs offline, and
prefetched them via the first JavaScript code that executed
on a page. Vroom included <link> preload tags at the be-
ginning of a page’s HTML, and server-pushed other objects
to prefetch. In contrast, RDR streamed objects to a client
as the proxy discovered those objects; the deeper a page’s
dependency graph was (§2), the larger the comparative advan-
tage provided by Oblique offline discovery approach. Vroom
discovered some prefetch URLs offline, and others during
the online, server-side HTML parse. However, Vroom ag-
gressively notified clients about the offline-discovered URLs
using server push and <link> preload tags.

Warm caches: Figure 7a depicts PLTs for all four systems
when browser caches were warm. As expected, all systems
enjoyed lower PLTs. Oblique and Vroom had similar perfor-
mance, but still outperformed RDR.

Speed Index: We also evaluated the ability of Oblique,
Vroom, and RDR to improve a page’s Speed Index [41]. Speed
Index is a visual metric that represents how quickly a page’s
above-the-fold content is rendered. A page’s Speed Index is∫ end

0 1− p(t)
100 dt, where end is the time of the last pixel change,

and p(t) is the percentage of pixels that have already received
their final value; lower Speed Indices are better. The formula
rewards page loads whose overall rendering time is fast (mean-
ing that end values are small). Given two pages with the
same end value, the formula rewards the page which renders
more pixels earlier. Note that Speed Index ignores whether
JavaScript files or below-the-fold content has arrived; thus,
like PLT, Speed Index underestimates the extent to which
accelerators have successfully prepositioned objects.

Figures 7b and 7c show Speed Index results for RTTs of 47
ms and 150 ms. The basic trend is the same one observed for
PLT: Oblique has better performance than Vroom, and Vroom
has better performance than RDR. However, all of the ac-
celeration systems improve PLT more than Speed Index. For
example, with cold caches and a 150 ms RTT, Oblique reduces
PLT by 31.4%, but Speed Index by only 20.4%. The reason
is that Speed Index only considers visual content, and only
cares about the loading of JavaScript files to the extent that
the evaluated code modifies a page’s above-the-fold graphics.
However, deep chains in a page’s dependency graph are often
caused by JavaScript files whose evaluation triggers the load-
ing of additional JavaScript files [21]. All three accelerators
let clients resolve those dependency chains more quickly, but
this has less impact on Speed Index than PLT.
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Figure 5: Cold-cache PLTs for Oblique, Vroom, RDR, and a baseline, non-accelerated browser.
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Figure 6: Prefetch efficiency for Oblique, Vroom, and RDR.

0 1 2 3 4 5 6
     PLT (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Oblique (Avg: 2.68 s) 
Vroom (Avg: 2.69 s) 
RDR (Avg: 2.85 s) 
Baseline (Avg: 3.04 s)

(a) PLT (warm cache, 47 ms RTT)
Cold cache Warm cache

0

2

4

6

8

10

12

14

Sp
ee

d 
In

de
x 

sp
ee

du
p 

(%
) Oblique

Vroom
RDR

(b) Speed Index (47 ms RTT)

0

5

10

15

20

25
Sp

ee
d 

In
de

x 
sp

ee
du

p 
(%

) Oblique
Vroom

RDR

Cold cache Warm cache

(c) Speed Index (150 ms RTT)

Figure 7: Warm-cache PLTs and Speed Indices (both cold and warm caches). Note that subfigures (b) and (c) have different
y-axis scales.

Stale analytic results: In Figures 5 and 7, the offline anal-
yses for Oblique and Vroom occurred one hour before a page
load. Figure 8a depicts average PLTs when Oblique and
Vroom used analytic data from farther in the pass. Unsur-
prisingly, Oblique and Vroom performed better with more
recent analytic data. However, for up to 12 hours of staleness,
Oblique maintained its advantage over Vroom; both Oblique
and Vroom also maintained their advantages over RDR and a
non-accelerated browser.

Additional analysis time: Given an infinite amount of time,
Oblique’s offline analysis would be guaranteed to find a com-
plete tree of path constraints; in other words, every possible

concretization of client-side symbols would be covered by
some root-to-leaf tree path. In practice, Oblique’s symbolic
analysis is constrained by two parameters: t represents the
maximum execution time for a particular execution path,2

and T represents the overall amount of time that Oblique will
analyze the page. By default, Oblique uses t = 10 minutes and
T = 30 minutes. If fully exploring a particular path requires
more time than t, Oblique will only discover a subset of the
URLs associated with the path. If discovering all paths in a
page takes longer than T , Oblique will not generate a prefetch
list for the undiscovered paths.

2A timeout occurs when the SMT solver cannot negate a branch condition
in the current path (§3.1).
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Figure 8: The impact of stale Oblique/Vroom analyses, and the additional computational overheads of RDR and Vroom.

Figure 8b depicts Oblique’s PLT benefits for different val-
ues of t and T . In those experiments, the PLT for a page was
defined as the average PLT across all discovered paths; to test
the PLT for a particular discovered path, our test browser used
concretized client-side symbols that triggered the path. Fig-
ure 8b shows that Oblique is basically insensitive to t values
above 10 minutes and T values above 30 minutes. The reason
is that, for the average page in our test corpus, only 7 minutes
were needed to completely explore a path; furthermore, the
median page only contained 7 execution paths.

Economic costs: For a given version of a page, Oblique per-
forms an offline analysis once, constructs a path constraint
tree, and then incurs no online costs during a real client load.
In contrast, RDR must launch an RDR proxy for each client
load, and Vroom must perform online HTML parsing. Fig-
ures 8c and 8d depict those per-page-load CPU costs.

A VM owner pays for a virtual CPU by the second or by
the hour. Once a virtual CPU is fully loaded, any additional
computation to perform will force the VM owner to rent more
virtual CPU seconds. For a fully-loaded virtual CPU, Vroom
requires a VM owner to pay for an additional 15.7 ms of ad-
ditional compute time per page load. Thus, Oblique’s offline
analysis becomes cheaper than Vroom’s smaller (but repeated)
online costs after T /15.7 page loads, where T is Oblique’s of-
fline analysis time in units of milliseconds. For example, with
a T of 30 minutes, Oblique becomes financially cheaper after
114,650 page loads; with a T of an hour, Oblique becomes
cheaper after 229,299 loads. Since RDR imposes much heav-
ier computational overheads than Vroom, Oblique becomes
cheaper much faster—after 4,904 loads or 9,809 loads for
a T of 30 minutes or a T of an hour. Importantly, these es-
timates assume that, when a page changes, Oblique’s prior
analysis is totally invalidated. We are currently investigating
how Oblique can use incremental symbolic execution [13, 15]
to amortize our analysis costs even more aggressively.

5.3 Oblique in First-party Mode
When Oblique runs on first-party infrastructure, Oblique can
symbolically evaluate client-side and server-side behavior.

However, to do this, Oblique must be able to examine back-
end code. We had no access to server-side code for the com-
mercial sites in our test corpus; thus, we had to evaluate first-
party Oblique on a collection of modified open-source sites
that we ran ourselves. Due to space restrictions, we focus on
a single case study of an open-source EJS site. In the text
below, Oblique-C refers to a setup in which Oblique can only
analyze client-side activity. Oblique-SC refers to a setup in
which Oblique can evaluate both server and client behavior.

Gallery Viewer [39] is a site whose core functionality is
displaying a rotating set of images. Each image is associ-
ated with metadata like an author, a category (e.g., “nature
scenes”), and a description of the image; metadata is stored
in on-disk JSON files. Users can also chat with each other in
real time, and submit comments on particular images. From
the perspective of Oblique, the site is interesting because of
how it uses cookies and random number generators. The site
assigns a unique cookie to each user. When a user requests the
page’s top-level HTML, the server uses the cookie to query
a server-side table of user preferences. The table indicates
the types of images that a user likes to view. Given those
preferences, the server leverages a random number generator
to select random images from the user’s preferred image cate-
gories. The server inserts the associated image URLs into the
dynamically-generated HTML that is returned to the user’s
browser.

For this particular site, no client-side symbols are relevant
to prefetching. However, two kinds of server-side symbols
are relevant: the cookie value in the HTTP request for the
top-level HTML, and the random numbers that are used to
select image URLs.

• Oblique-SC correctly prefetches all of the image URLs.
During Phase 1 of analysis (§3.4), Oblique-SC symbol-
ically evaluates the templating JavaScript, creating a
symbolic HTML string. In Phase 3, i.e., during a real
page load, Oblique-SC runs the server-side event handler
up to the call to render(). At that point, Oblique-SC
concretizes the symbolic HTML using the live cookie
data and logged values from the random number genera-
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tor. Oblique-SC then extracts the image URLs from the
concretized HTML, and creates a prefetch library that
downloads those URLs.

• Oblique-C lacks visibility into server-side behavior. Thus,
an Oblique-C client incorrectly prefetches the URLs in
the concretized HTML that was seen during offline anal-
ysis.

• Vroom correctly prefetches the image URLs; the Vroom
web server identifies the URLs during the on-the-fly
HTML parse.

• RDR incorrectly prefetches the image URLs. The HTML
returned to the proxy’s headless browser will contain
different URLs than the ones in the HTML returned to
the user’s browser; the URLs in the first HTML file are
prefetched by the client.

For a cold browser cache and a 47 ms RTT, Oblique-SC and
Vroom had similar performance, with PLTs of 2.01 seconds
and 2.06 seconds, respectively. Oblique-C did only slightly
better than RDR (2.29 seconds versus 2.37 seconds). The
non-accelerated page load required 2.76 seconds.

Oblique-SC has larger computational costs than Oblique-C;
during offline analysis, more symbolic execution is required,
and during an actual page load, web servers must participate
in Phase 3 activity. The extent to which Oblique-SC is prefer-
able to Oblique-C depends on whether first parties want to
pay these costs, and the extent to which a site uses server-
side symbols to generate HTML. However, the results from
Section 5.2 demonstrate that Oblique-C alone can provide
impressive reductions in page load time.

6 Conclusion

Oblique is a new system for accelerating mobile page loads.
Oblique uses symbolic execution to analyze the various ways
that a page load could proceed. For each potential outcome,
Oblique creates a list of symbolic URLs that the corresponding
page load would fetch. These URLs are concretized at the time
of an actual page load, and then prefetched using Oblique’s
client-side JavaScript library. Oblique works on unmodified
browsers, and provides faster page loads than current state-of-
the-art approaches. When run in third-party mode, Oblique
enables secure outsourcing of prefetch analysis while also
enabling reductions in VM costs.

References

[1] Amazon. What Is Amazon Silk?, 2020.
https://docs.aws.amazon.com/silk/latest/
developerguide/introduction.html.

[2] M. Belshe, BitGo, R. Peon, Google, M. Thomson,
and Mozilla. Hypertext Transfer Protocol Version
2 (HTTP/2), May 2015. RFC 7540. https://
tools.ietf.org/html/rfc7540.

[3] D. Bhattacherjee, M. Tirmazi, and A. Singla. A Cloud-
based Content Gathering Network. In Proceedings of
HotCloud, Santa Clara, CA, July 2017.

[4] A. Borisov. Fast C/C++ HTML 5 Parser, January 8,
2020. https://github.com/lexborisov/myhtml.

[5] Broadband Search. Mobile vs. Desktop
Usage (Latest 2020 Data), 2020. https:
//www.broadbandsearch.net/blog/mobile-
desktop-internet-usage-statistics.

[6] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha,
and V. Sekar. Klotski: Reprioritizing Web Content to
Improve User Experience on Mobile Devices. In Pro-
ceedings of NSDI, Oakland, CA, May 2015.

[7] L. de Moura and N. Bjorner. Z3: An Efficient SMT
Solver. In Proceedings of Tools and Algorithms for the
Construction and Analysis of Systems, Budapest, Hun-
gary, April 2008.

[8] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,
and P. M. Chen. ReVirt: Enabling Intrusion Analy-
sis through Virtual-Machine Logging and Replay. In
Proceedings of OSDI, Boston, MA, December 2002.

[9] M. Eernisse. EJS: Embedded JavaScript Templating,
2020. https://ejs.co/.

[10] Electron Community. Electron Documentation, 2020.
https://www.electronjs.org/docs/development/
v8-development.

[11] F. Rizzato and I. Fogg. How AT&T, Sprint, T-Mobile
and Verizon differ in their early 5G approach, February
20, 2020. https://www.opensignal.com/2020/
02/20/how-att-sprint-t-mobile-and-verizon-
differ-in-their-early-5g-approach.

[12] V. Ganesh and D. L. Dill. A Decision Procedure for
Bit-Vectors and Arrays. In Proceedings of the Interna-
tional Conference in Computer Aided Verification, Berlin,
Germany, July 2007.

[13] P. Godefroid. Compositional Dynamic Test Generation.
ACM SIGPLAN Notices, 42, January 2007.

[14] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In Proceedings of PLDI,
Chicago, IL, June 2005.

[15] P. Godefroid, S. K. Lahiri, and C. Rubio-Gonzalez. Stat-
ically Validating Must Summaries for Incremental Com-
positional Dynamic Test Generation. In Proceedings
of the International Static Analysis Symposium, Venice,
Italy, September 2011.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    301

https://docs.aws.amazon.com/silk/latest/developerguide/introduction.html
https://docs.aws.amazon.com/silk/latest/developerguide/introduction.html
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7540
https://github.com/lexborisov/myhtml
https://www.broadbandsearch.net/blog/mobile-desktop-internet-usage-statistics
https://www.broadbandsearch.net/blog/mobile-desktop-internet-usage-statistics
https://www.broadbandsearch.net/blog/mobile-desktop-internet-usage-statistics
https://ejs.co/
https://www.electronjs.org/docs/development/v8-development
https://www.electronjs.org/docs/development/v8-development
https://www.opensignal.com/2020/02/20/how-att-sprint-t-mobile-and-verizon-differ-in-their-early-5g-approach
https://www.opensignal.com/2020/02/20/how-att-sprint-t-mobile-and-verizon-differ-in-their-early-5g-approach
https://www.opensignal.com/2020/02/20/how-att-sprint-t-mobile-and-verizon-differ-in-their-early-5g-approach


[16] Google. Google Transparency Report:
HTTPS encryption on the web, 2020. https:
//transparencyreport.google.com/https/
overview?hl=en.

[17] B. Loring, D. Mitchell, and J. Kinder. ExpoSE: Prac-
tical Symbolic Execution of Standalone JavaScript. In
Proceedings of SPIN, Santa Barbara, CA, July 2017.

[18] F. Ludovici and H. P. Pfeifer. NetEm - Network Emula-
tor. http://man7.org/linux/man-pages/man8/tc-
netem.8.html.

[19] Majestic. The Majestic Million: The million domains
we find with the most referring subnets, 2020. https:
//majestic.com/reports/majestic-million.

[20] J. Mickens, J. Elson, and J. Howell. Mugshot: Determin-
istic Capture and Replay for JavaScript Applications. In
Proceedings of NSDI, San Jose, CA, April 2010.

[21] R. Netravali, A. Goyal, J. Mickens, and H. Balakrishnan.
Polaris: Faster Page Loads Using Fine-grained Depen-
dency Tracking. In Proceedings of NSDI, Santa Clara,
CA, March 2016.

[22] R. Netravali and J. Mickens. Prophecy: Accelerating
Mobile Page Loads Using Final-State Write Logs. In
Proceedings of NSDI, Renton, WA, USA, April 2018.

[23] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Win-
stein, J. Mickens, and H. Balakrishnan. Mahimahi: Ac-
curate Record-and-Replay for HTTP. In Proceedings of
ATC, Santa Clara, CA, July 2015.

[24] R. Netravali, A. Sivaraman, J. Mickens, and H. Balakr-
ishnan. WatchTower: Fast, Secure Mobile Page Loads
Using Remote Dependency Resolution. In Proceedings
of Mobisys, Seoul, South Korea, June 2019.

[25] OpenJS Foundation. Node.js Homepage, 2020. https:
//nodejs.org/en/.

[26] Opera Norway. Opera Mini, 2020. https://
www.opera.com/mobile/mini/android.

[27] QFish. A CSS Parsing Library in Pure C99,
2020. https://github.com/hackers-painters/
katana-parser.

[28] J. Ribeiro. Chrome Headless, 2020. Docker
Hub. https://hub.docker.com/r/justinribeiro/
chrome-headless.

[29] V. Ruamviboonsuk, R. Netravali, M. Uluyol, and H. V.
Madhyastha. Vroom: Accelerating the Mobile Web with
Server-Aided Dependency Resolution. In Proceedings
of SIGCOMM, Los Angeles, CA, August 2017.

[30] Samsung. Web Development on a Phone. Up-
dated for Linux on DeX., 2020. https://
webview.linuxondex.com/.

[31] K. Sen, D. Marinov, and G. Agha. CUTE: A Concolic
Unit Testing Engine for C. In Proceedings of ESEC/FSE,
Lisbon, Portugal, September 2005.

[32] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. Blind-
Box: Deep Packet Inspection over Encrypted Traffic. In
Proceedings of SIGCOMM, London, United Kingdom,
2015.

[33] Sitespeed.io. Browsertime: Your browser, your page,
your scripts, April 15, 2020. https://github.com/
sitespeedio/browsertime.

[34] A. Sivakumar, C. Jiang, Y. S. Nam,
S. Puzhavakath Narayanan, V. Gopalakrishnan,
S. G. Rao, S. Sen, M. Thottethodi, and T. N. Vijayku-
mar. Nutshell: Scalable whittled proxy execution for
low-latency web over cellular networks. In Proceedings
of Mobicom, Snowbird, Utah, October 2017.

[35] A. Sivakumar, S. Puzhavakath Narayanan, V. Gopalakr-
ishnan, S. Lee, S. Rao, and S. Sen. PARCEL: Proxy
Assisted BRowsing in Cellular Networks for Energy
and Latency Reduction. In Proceedings of CoNEXT,
Sydney, Australia, December 2014.

[36] Software Freedom Conservancy. SeleniumHQ: Browser
Automation, 2020. https://www.selenium.dev/.

[37] F. Tip. A Survey of Program Slicing Techniques. Jour-
nal of Programming Languages, 3:121–189, 1995.

[38] T. Tsujikawa. Nghttp2 Proxy, 2020. https://
nghttp2.org.

[39] R. Villalobos. Building a Website with Node.js
and Express.js, 2018. https://github.com/
planetoftheweb/expressjs.

[40] X. S. Wang, A. Krishnamurthy, and D. Wetherall. Speed-
ing Up Web Page Loads with Shandian. In Proceedings
of NSDI, Santa Clara, CA, March 2016.

[41] WebPageTest.org. Documentation: Speed Index, 2020.
https://sites.google.com/a/webpagetest.org/
docs/using-webpagetest/metrics/speed-index.

[42] World Wide Web Consortium (W3C). Resource
Hints, July 2, 2019. W3C Working Draft. https:
//www.w3.org/TR/resource-hints.

[43] World Wide Web Consortium (W3C). WebDriver,
March 27, 2020. W3C Working Draft. https://
www.w3.org/TR/webdriver/.

302    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
https://transparencyreport.google.com/https/overview?hl=en
http://man7.org/linux/man-pages/man8/tc-netem.8.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html
https://majestic.com/reports/majestic-million
https://majestic.com/reports/majestic-million
https://nodejs.org/en/
https://nodejs.org/en/
https://www.opera.com/mobile/mini/android
https://www.opera.com/mobile/mini/android
https://github.com/hackers-painters/katana-parser
https://github.com/hackers-painters/katana-parser
https://hub.docker.com/r/justinribeiro/chrome-headless
https://hub.docker.com/r/justinribeiro/chrome-headless
https://webview.linuxondex.com/
https://webview.linuxondex.com/
https://github.com/sitespeedio/browsertime
https://github.com/sitespeedio/browsertime
https://www.selenium.dev/
https://nghttp2.org
https://nghttp2.org
https://github.com/planetoftheweb/expressjs
https://github.com/planetoftheweb/expressjs
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://www.w3.org/TR/resource-hints
https://www.w3.org/TR/resource-hints
https://www.w3.org/TR/webdriver/
https://www.w3.org/TR/webdriver/


SENSEI: Aligning Video Streaming Quality with Dynamic User Sensitivity

Xu Zhang
University of Chicago

Yiyang Ou
University of Chicago

Siddhartha Sen
Microsoft Research

Junchen Jiang
University of Chicago

Abstract
This paper aims to improve video streaming by leveraging a

simple observation—users are more sensitive to low quality

in certain parts of a video than in others. For instance, re-

buffering during key moments of a sports video (e.g., before

a goal is scored) is more annoying than rebuffering during

normal gameplay. Such content-dependent dynamic quality

sensitivity, however, is rarely captured by current approaches,

which predict QoE (quality-of-experience) using one-size-fits-

all heuristics that are too simplistic to understand the nuances

of diverse video content.

The problem is that none of these approaches know the true

dynamic quality sensitivity of a video they have never seen

before. Therefore, instead of proposing yet another heuristic,

we take a different approach: we run a separate crowdsourc-
ing experiment for each video to derive the quality sensitivity

of users at different parts of the video. Of course, the cost

of doing this at scale can be prohibitive, but we show that

careful experiment design combined with a suite of pruning

techniques can make the cost negligible for content providers.

For example with a budget of just $31.4/minute video, we can

predict QoE 37.1% more accurately than recent QoE models.

Our ability to accurately profile time-varying user sensitiv-

ity inspires a new approach to video streaming—dynamically
aligning higher (lower) quality with higher (lower) sensitivity
periods. We present a new video streaming system called SEN-

SEI that profiles and incorporates dynamic quality sensitivity

into existing quality adaptation algorithms. We apply SENSEI

to two state-of-the-art adaptation algorithms, one rule-based

and one based on deep reinforcement learning. SENSEI can

take seemingly unusual actions, e.g., lowering quality even

when bandwidth is sufficient to prepare for higher quality

sensitivity in the near future. Compared to state-of-the-art

approaches, SENSEI improves QoE by 15.1% or achieves the

same QoE with 26.8% less bandwidth on average.

1 Introduction
An inflection point in Internet video traffic is afoot, driven

by more ultra-high resolution videos, more large-screen de-

vices, and ever-lower user patience for low quality [2, 10].

At the same time, the video streaming industry, after several

decades of evolution, is seeing diminishing improvements:

recent adaptive bitrate (ABR) algorithms (e.g., [45, 56, 83])

achieve near-optimal balance between bitrate and rebuffer-

ing events, and recent video codecs (e.g., [54, 72]) improve

encoding efficiency but require an order of magnitude more

computing power than their predecessors. The confluence

of these trends means that the Internet may soon be over-

whelmed by online video traffic,1 and new ways are needed

to attain fundamentally better tradeoffs between bandwidth
usage and user-perceived QoE (quality of experience).

We argue that a key limiting factor is the conventional

wisdom that users care about quality in the same way through-

out a video, so video quality should be optimized using the

same standard everywhere in a video. This means that lower

quality—due to rebuffering, low visual quality, or quality

switches—should be avoided identically from the beginning

to the end. We argue that this assumption is not accurate. In

sports videos (e.g., the one in Figure 1), a rebuffering event

that coincides with scoring tends to inflict a more negative

impact on user experience than rebuffering during normal

gameplay. But there are also sports videos where scoring is

not the most quality-sensitive part. Thus, user quality sensi-

tivity varies with the video content dynamically over time.

Unfortunately, both the literature on ABR algorithms and

the literature on QoE modeling adopt the conventional wis-

dom. Most ABR algorithms completely ignore the content

of each video chunk: they focus on balancing high bitrates

and low rebuffering times, and thus consider only the size and

download speed of the chunks. Traditional ways of modeling

QoE are also agnostic to the substance of videos, although re-

cent QoE models—e.g., PSNR [38], SSIM [80], VMAF [11],

and deep-learning models [33, 48]—try to find frames that

users are more sensitive to by studying the structure of pixels

and motions to gauge their saliency. These heuristics seek to

generalize across all videos and thus resort to generic mea-

sures (like pixel-level differences), but it is unclear if any

heuristic can capture the diverse and dynamic influence a

video’s content can have on users’ sensitivity to quality.

For example, models like LSTM-QoE [33] assume that

users are more sensitive to rebuffering events in more “dy-

1This is vividly illustrated by the recent actions taken by YouTube and

Netflix (and many others) to lower video quality in order to save ISPs from

collapsing as more people stay at home and binge watch online videos [12].
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namic” scenes. In sports videos, however, non-essential con-

tent like ads and quick scans of the players can be highly

dynamic, but users may care less about quality during those

moments. In the video in Figure 1, LSTM-QoE considers

normal gameplay to be the most dynamic part, but the most

quality-sensitive part of the video according to our user study

is the goal. A key insight is that the impact of the substance

of a video on users’ sensitivity to quality cannot be fully ex-

plained by pixel-level patterns or cross-frame motions. Some

recent work tries to predict user’s dynamic sensitivity, but

they either need access to users’ viewing history [35] or use

off-the-shelf computer-vision saliency models [34] whose

predictions have little correlation with quality sensitivity on

videos they have never seen before (§2.3 elaborates on this).

The dynamic nature of quality sensitivity suggests a new

avenue for improvement. One can achieve higher QoE with
the same bandwidth by carefully lowering the current quality

in order to save bandwidth and allow higher quality when

users become more sensitive. Similarly, one can attain similar
QoE with less bandwidth by judiciously lowering the quality

when quality sensitivity is indeed low. In short, we seek

to align higher (lower) quality of video chunks with higher
(lower) quality sensitivity of users.

We present SENSEI, a video streaming system that incorpo-

rates dynamic quality sensitivity into its QoE model and video

quality adaptation. SENSEI addresses two key challenges.

Challenge 1: How do we profile the unique dynamic quality
sensitivity of each video in an accurate and scalable manner?

Crowdsourcing the true quality sensitivity per video: In-

stead of proposing another heuristic, SENSEI takes a different

approach. We run a separate crowdsourcing experiment for
each video to derive the quality sensitivity of users at differ-

ent parts of the video. Specifically, we elicit quality ratings

directly from real users (obtaining a “ground truth” of their

QoE) for multiple renderings of the same video, where each

rendering includes a quality degradation in some part of the

video. SENSEI automates and scales this process out using

a public crowdsourcing platform (Amazon MTurk), which

provides a large pool of raters, while using pruning techniques

to reduce the number of rendered videos that need to be rated.

We then use these ratings to estimate a weight for each video

chunk that encodes its quality sensitivity, independent of the

quality of other chunks. While crowdsourcing has previously

been used to model QoE, SENSEI is to our knowledge the first

to scale it to per-video QoE modeling.

Challenge 2: How do we incorporate dynamic quality sensi-
tivity into a video streaming system to enable new decisions?
Today’s video players are designed to be “greedy”: they pick

a bitrate that maximizes the quality of the next chunk while

avoiding rebuffering events. But in order to utilize dynamic

quality sensitivity, a player must “schedule” bitrate choices

over multiple future chunks, each having a potentially differ-

ent quality sensitivity. This means that some well-established

behaviors of video players, e.g., only rebuffer when the buffer

is empty, may need to be revisited.

Refactoring ABR logic to align with dynamic quality sen-
sitivity: SENSEI works within the popular DASH framework.

It integrates the aforementioned per-chunk weights into exist-

ing ABR algorithms to leverage the dynamic quality sensitiv-

ity of upcoming video chunks when making quality adapta-

tion decisions. The per-chunk weights enable new adaptation

actions that “borrow bandwidth” from low-sensitivity chunks

and give them to high-sensitivity chunks. For example, SEN-

SEI may lower the bitrate even when bandwidth is sufficient,

or initiate a rebuffering event with a non-empty buffer, to af-

ford higher bitrates when quality sensitivity becomes higher.

We apply SENSEI to two state-of-the-art ABR algorithms:

Fugu [83], a more traditional rule-based algorithm, and Pen-

sieve [56], a deep reinforcement learning-based algorithm.

Using its scalable crowdsourcing approach, SENSEI can

predict QoE more accurately than state-of-the-art QoE mod-

els. For example, with a budget of just $31.4/minute video,

SENSEI achieves 55% less QoE prediction error than existing

models. Compared to state-of-the-art ABR algorithms, SEN-

SEI improves QoE on average by 15.1% or achieves the same

QoE with 26.8% less bandwidth across various video genres.

Contributions and roadmap: Our key contributions are:

• A measurement study revealing substantial temporal vari-

ability in users’ quality sensitivity and its potential for im-

proving video streaming QoE and bandwidth usage (§2).

• The design and implementation of SENSEI, including: 1)

a scalable crowdsourcing solution to profiling the true dy-

namic quality sensitivity of each video (§4,§5),2 and 2) a

new ABR algorithm that incorporates dynamic user sensi-

tivity into existing algorithms and frameworks (§6).

2 Motivation
We begin by showing that existing approaches to modeling

video streaming QoE fail to accurately capture the true user-

perceived QoE (2.1). We then present user studies that reveal

a missing piece in today’s QoE modeling: users’ quality sen-

sitivity varies dynamically throughout a video (§2.2), and

this dynamic quality sensitivity is hard to capture using prior

heuristics or vision models (§2.3). However, by incorporating

dynamic quality sensitivity into existing ABR algorithms, we

can significantly improve QoE and save bandwidth (§2.4).

2.1 Prior QoE modeling and their limitations
QoE models are crucial to modern video streaming systems.

A QoE model takes a streamed video as input and returns a

predicted QoE as output. When streaming a video, the video

player optimizes QoE by adapting the bitrate of each video

chunk to the available bandwidth. QoE is often measured by

the mean opinion score (MOS) assigned by a group of users

to the quality of a video.3

2Our study was IRB-approved (IRB18-1851).
3Our methodology extends to other QoE metrics as well.
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Figure 1: Example of dynamic quality sensitivity. Users are
asked to rate the quality (on a scale of 1 to 5) of different
renderings of a source video (Soccer1), where a 1-second
rebuffering event occurs at a different place in each rendering.
We observe substantial differences in the QoE impact (mea-
sured by mean opinion score, or MOS) across the renderings.

Quality metrics: Today’s QoE models consider two aspects.

• Pixel-based visual quality tries to capture the impact of

visual distortion on QoE. These metrics, such as PSNR and

VMAF, are based on pixel/motion-based patterns [11, 38,

48,63,68,79,80] and recently on visual attention [27,44,86].

• Streaming quality incidents during the streaming process

can negatively impact user experience, such as rebuffering,

low bitrate, and bitrate switches. Their impact is modeled

by metrics, such as rebuffering ratio, average bitrate, and

frequency of bitrate switches during a video (e.g., [18, 28]).

Some work also considers contextual factors (e.g., viewer’s

emotion, acoustic conditions, etc.), but these are orthogonal

to our focus on the video’s content.

QoE models: Recent QoE models combine both pixel-based

visual quality metrics and quality-incident metrics for more

accurate QoE prediction. We consider three such QoE models:

KSQI [29], P.1203 [66], and LSTM-QoE [33], which were

proposed within the past two years and have open-source

implementations. KSQI combines VMAF, rebuffering ratio,

and quality switches in a linear regression model. P.1203

combines QP (quantization parameter) and quality incident

metrics in a random-forest model. Most recently, LSTM-QoE

takes STRRED [68] and individual quality incidents as in-

put to a long short-term memory (LSTM) neural network

designed to capture the “memory effect” of human perception

of past quality incidents. (We discuss related work in §8.)

User study methodology: We evaluate these QoE models

(KSQI, P.1203, LSTM-QoE) on 16 source videos randomly

selected from four public datasets [21, 30, 36, 78], covering

a wide range of content genres (sports, scenic, movies, etc.).

These videos are streamed using one of three ABR algorithms:

Fugu [83], Pensieve [56], and BBA [45], over 7 through-

put traces randomly selected from real-world cellular net-

works [5, 65], with bandwidths ranging from 200Kbps to

Figure 2: Existing QoE models exhibit substantial QoE pre-
diction errors (x-axis), which cause them to frequently mis-
predict the relative QoE ranking between two ABR algorithms
on the same video, i.e., a discordant pair (y-axis).

6Mbps. §7.1 and Appendix A provide more details on the

videos and network traces. This creates 336 (16×7×3) ren-

dered videos. To obtain the ground truth QoE of each rendered

video, we elicit QoE ratings from crowdsourced workers on

Amazon MTurk [1]. We obtain at least 30 ratings from differ-

ent MTurkers and use the MOS over these ratings as the true

QoE of the rendered video. §4 and §5 describe our crowd-

sourcing methodology in detail.

QoE prediction accuracy: Given the ground-truth QoE, we

evaluate the three QoE models both with their pre-trained

parameters and after customizing (retraining) them on 315 of

the rendered videos selected at random. All models are tested

on the remaining 21 videos; we scale their output range and

the true QoE to [0,1]. The x-axis of Figure 2 shows the mean

relative prediction error of each QoE model on the test set;

relative prediction error is defined as |Qpredict−Qtrue|/Qtrue, where

Qpredict and Qtrue are the predicted and true QoE of the video.

We see that these errors are nontrivial; even the most accurate

QoE model has over 10.4% error on average.

We also examine whether these models can correctly rank
the QoE achieved by two different ABR algorithms. For each

pair of source video and throughput trace, we first rank every

two of the three ABR algorithms using their true QoE and

then again using the predicted QoE. If the rank is different,

this pair is called a discordant pair. The y-axis of Figure 2

shows the fraction of discordant pairs among all possible pairs

(a common measure used in rank correlation): over 10.2% of

pairs are discordant even for the most accurate QoE model.

This suggests that using QoE predictions to compare different

algorithms (e.g., [45, 56, 83]) may not be reliable.

2.2 Temporal variability of quality sensitivity
Figure 2 shows that, unlike prior methods, our QoE model

(§4) can predict QoE and rank ABRs significantly more accu-

rately when applied on the same train/test set. We argue that

this gap stems from a common assumption shared by all pre-

vious QoE models, which is that all factors affecting QoE can

be captured by a handful of objective metrics. This premise

ignores the impact of high-level video content (rather than

low-level pixels and frames) on users’ sensitivity to quality

at different parts of the video. We now demonstrate how this

quality sensitivity varies as video content changes.

Quantifying dynamic quality sensitivity: Users’ sensitiv-
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Figure 3: Impact of different quality incidents at different
points in the video in Figure 1. The pattern of variability
remains the same across the different quality incidents. Error
bars show standard deviation of the means.

ity to quality at a certain part of a video is reflected by the

QoE drop when a low-quality incident occurs at that part of

the video, i.e., Δ=Qbe f ore−Qa f ter, where Qbe f ore is the MOS of the

video without the low-quality incident and Qa f ter is the MOS

of the video with the low-quality incident. To measure the true

quality sensitivity at different parts of a source video, we cre-

ate a rendered video series as follows. Rendered videos in a

video series have the same source content and highest quality

(highest bitrate without rebuffering), except that a low-quality

incident (a rebuffering event or a bitrate drop) is deliberately

added at different positions, e.g., at the 4th second, 8th sec-

ond, and so forth. Then, as before, we use Amazon MTurk to

crowdsource the true QoE of each rendered video, following

our crowdsourcing methodology (§4,§5).

Figure 1 shows an example video series created using a

25-second soccer video as the source video and a one-second

rebuffering event as the low-quality incident. We observe

significant differences between the QoE drops caused by the

rebuffering event at different parts of the video. The high-

est QoE drop (caused by rebuffering at the 15th second) is

2.1× higher than the lowest QoE drop (rebuffering at the

10th second). This shows that a low-quality incident can have

a significantly higher/lower impact on user experience if it

occurs a few seconds earlier or later.

Quality sensitivity is inherent to video content: Our user

study also suggests that the type of low-quality incident does

not affect the ranking of QoE drops within a video series, even

though it affects the absolute QoE drops. In other words, qual-

ity sensitivity seems to be inherent to different parts (contents)

of the video. Figure 3 shows the dynamic user sensitivity

of three low-quality incidents on the same source video: 1-

second rebuffering, 4-second rebuffering, and a bitrate drop

from 3Mbps to 0.3Mbps for 4 seconds. Although the abso-

lute values of the QoE drops depend on the particular quality

incident, the relative rankings are identical. The strong rank

correlation (measured by Spearman’s rank coefficient) is per-

sistent across all videos in our dataset: 0.95 rank coefficient

between the 1-second and 4-second rebuffering events and

0.94 between the 1-second rebuffering and bitrate drop.

Sources of dynamic quality sensitivity: We speculate that

the dynamic quality sensitivity stems from users paying dif-

ferent degrees of attention to different parts of a video. In our
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Figure 4: QoE rating drop when adding a 1-sec rebuffering
at different points in the video, compared to chunk sensitivity
levels inferred by saliency models.

dataset, we identify at least three types of moments when users

tend to be more (or less) attentive to video quality than usual.

The first are key moments in the storyline of a video when ten-

sions have built up; e.g., in BigBuckBunny (animation) when

the bullies fall into a trap set by the bunny, or in Soccer1
when a goal is scored. The second are moments when users

must pay attention to get important information; e.g., showing

the scoreboard in sports videos (Soccer2), or acquiring sup-

plies after killing an enemy (FPS2). The third are transitional

moments with scenic backgrounds, when users tend to be less

attentive to quality; e.g., the universe background in Space.

2.3 Modeling quality sensitivity
Can it be captured by QoE models? Traditional QoE mod-

els predict the same QoE for all rendered videos in a video

series. Even models that do predict different QoE assume

that the impact of video content can be captured by pixels

and motions; e.g., VMAF [11] (the visual quality metric used

by KSQI) gives lower QoE estimates if a bitrate drop occurs

when the frame pixels are more “complex”. Unfortunately, the

impact of content on user sensitivity discussed above cannot

be fully captured by pixel-level patterns. In Figure 1, the true

highest QoE drop occurs when the low-quality incident oc-

curs during the goal, but both VMAF and LSTM-QoE predict

that it occurs during normal gameplay.

Can it be captured by vision saliency? User sensitivity is

conceptually similar to temporal saliency in computer vision.

Can saliency/highlight detection models capture user sensitiv-

ity to quality? We examine three representative approaches.

• Traditional motion-based models, such as AMVM (average

motion-vector magnitude) [13, 52], use the motion vector

magnitudes of pixels in a chunk to indicate user sensitivity—

i.e., users are more sensitive to more dynamic scenes.

• Interestingness score per frame (highlight detection), such

as Video2GIF [39] and [34], train a regression model (us-

ing C3D [75] neural network as the spatio-temporal feature

extractor) on videos with human-annotated per-frame inter-

estingness scores.4 The model then produces a per-frame

interestingness score which might indicate user sensitivity.

4We notice that some content providers passively monitor the number of

viewers at different parts of a video (e.g., [6]), which is an alternative way of

identifying highlights or high-interestingness chunks.
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Figure 5: Distribution of sensitivity variability when a low-
quality incident (1-second rebuffering, 4-second rebuffering,
or a bitrate drop for 4 seconds) is added at different points
in the same video. The trend is similar even if the low-quality
incident and QoE gap are localized to a 12-second window.

• Video summarization models, such as dppLSTM [87] and

DSN [90], infer how important each frame is to the whole

story of a video, by extracting vision features [74] and

using an LSTM to model temporal dependencies. The more

important a frame is, the higher user sensitivity might be.

Figure 4 shows the average saliency scores (normalized to

[0,1]) returned by these models at each chunk of two example

videos. We see a weak correlation between the QoE drops

caused by a 1-sec rebuffering event at different chunks and

the true user sensitivity. Overall, such correlation is low for

all videos in our dataset: less than 0.23 (Pearson’s correlation)

and 0.18 (Spearman’s rank correlation). To see an example, in

the soccer video (Figure 1), the part right before the goal is the

most quality sensitive. However, the highlight detection and

motion-based models highlight the highly dynamic scenes

that pan across the audience, and the video summarization

model picks diverse moments of a video, such as shot/rewind

clips, whereas users pay more attention to when a goal might

be scored. Appendix D gives more discussions. As a result,

ABR logic based on saliency scores performs poorly (§7).

2.4 Potential gains
Dynamic quality sensitivity is prevalent: We repeat the

same experiment from Figure 1 on all 16 source videos in

our dataset and three low-quality incidents: 1-second rebuffer-

ing, 4-second rebuffering, and a bitrate drop from 3Mbps

to 0.3Mbps for 4 seconds. This creates 48 video series in

total. Figure 5 plots the sensitivity variability defined by

(Δmax−Δmin)/Δmin for each video series, where Δmax and Δmin are

the maximum and minimum QoE drop of the videos in a

series. We see that 21 of the 48 video series have a sensitiv-

ity variability of over 0.99, while some have less than 0.20

variability. A similar trend holds even if we localize the low-

quality incident and sensitivity gap measurement to 12-second

windows. The fact that quality sensitivity varies substantially

even among very nearby chunks suggests a new opportunity:

we can lower the quality when sensitivity is low in order to

save bandwidth for nearby chunks whose sensitivity is high.

Potential sensitivity-aware improvement: The above sug-

gests that we can improve ABR algorithms to optimize QoE

and save bandwidth by aligning quality adaptation with dy-
namic user sensitivity. We demonstrate the potential gains
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Figure 6: Being aware of dynamic quality sensitivity can
significantly improve QoE and save bandwidth.

using an idealistic but clean experiment. We create two sim-

ple ABR algorithms whose only difference is the QoE model

they optimize: one algorithm optimizes KSQI, the most ac-

curate QoE model from Figure 2 that is unaware of dynamic

quality sensitivity, and the other optimizes our eventual QoE

model from §4, which is aware of dynamic quality sensitiv-

ity. Both algorithms take as input an entire throughput trace

and the same 4-second video chunks encoded using the same

bitrate levels. They then determine a bitrate-to-chunk assign-

ment that maximizes their respective QoE model. Note that

these ABR algorithms are idealistic because they have access

to the entire throughput trace in advance, and hence know

the future throughput variability. However, this allows us to

eliminate the confounding factor of throughput prediction. We

pick one of the throughput traces (results are similar with the

other traces) and rescale it to {20,40, . . . ,100}% to emulate

different average network throughputs.

For each source video, we create the rendered video as if it

were streamed by each ABR algorithm (with bitrate switches,

rebufferings, etc.). We use Amazon MTurk as before to assess

the true QoE of the rendered video. Figure 6 shows the aver-

age QoE of the two ABR algorithms across 16 source videos

and different average bandwidths. We see that being aware of

dynamic quality sensitivity could improve QoE by 22-52%

while using the same bandwidth, or save 39-49% bandwidth

while achieving the same QoE.

3 Overview of SENSEI
We have shown that knowing the true quality sensitivity of a

video can lead to significant performance improvements when

streaming the video. To unleash this potential, we present

SENSEI, a video streaming system that unearths and leverages

dynamic quality sensitivity. Here, we overview SENSEI (§3.1)

and then introduce our crowdsourcing-based approach to per-

video QoE modeling and its limitations (§3.2).

3.1 SENSEI’s approach
As shown in Figure 7, SENSEI has two main components.

Per-video QoE modeling: Before streaming a video, SEN-

SEI profiles the quality sensitivity of its chunks. As we saw in

§2.2, prior QoE models fail to capture content-induced user

sensitivity to quality. Instead, we advocate for directly asking

human viewers to rate the quality of rendered videos with

quality incidents inserted at various chunks. This reveals the

true user sensitivity to quality incidents. Since quality sensi-

tivity is unique to each video, this user study must be scaled
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Figure 7: Overview of SENSEI.

to many videos. SENSEI uses crowdsourcing to automate and

scale the per-video QoE modeling, by addressing two chal-

lenges: (1) how many (and which) rendered videos must be

rated to build a sensitivity-aware QoE model (§4); and (2)

how to get reliable ratings from crowdsourced workers (§5).

Sensitivity-aware ABR: Video players today are designed

to maximize bitrate without rebuffering on every chunk. This

is ill-suited to our goal of aligning quality adaptation with

dynamic quality sensitivity: quality should be optimized in

proportion to the quality sensitivity of the content. To achieve

this, SENSEI refactors the control logic of video players to en-

able new adaptation actions that “borrow” resources from low-

sensitivity chunks and give them to high-sensitivity chunks.

We discuss the details in §6.

Instead of building a separate QoE model for each video,

SENSEI reuses existing QoE models but reweights each chunk

by its quality sensitivity. This is inspired by our observation

that relative quality sensitivity is inherent to the content, rather

than the specific quality incident (§2.2). Thus we assign a

weight to each chunk to encode its inherent quality sensitiv-

ity. The abstraction of per-chunk weights has two benefits.

First, it allows us to reuse existing QoE models by simply

reweighting the quality of different chunks. Second, by us-

ing the sensitivity weights as input, the same SENSEI ABR

algorithm can be used to optimize QoE for any new video.

3.2 Crowdsourcing quality sensitivity per video
SENSEI directly elicits quality ratings from human viewers

to reveal their quality sensitivity to various quality incidents.

However, these user ratings must be elicited per video and the

sheer scale of this feedback can be prohibitive! To put it into

perspective, QoE models are usually built from user ratings

on just a handful of source videos [21,31], but getting enough

user ratings requires a lab environment (or survey platform)

to recruit participants and have them watch over two orders

of magnitude more video content than the source videos. 5

This does not scale if we repeat the process per video.

To address this, we use crowdsourcing platforms like Ama-

zon MTurk [1] to automate the user studies and scale them

out to more videos. Crowdsourcing reduces the overhead

of participant recruitment, survey dissemination, and result

collection (down to about 78 minutes), and provides a large

pool of participants. This allows for repeated experiments to

5For instance, in the WaterlooSQOE-III dataset [31], each video is

streamed over 13 throughput traces with 6 ABR algorithms, and each ren-

dered video is then rated by 30 users.

Figure 8: Workflow of profiling dynamic quality sensitivity
using a crowdsourcing platform. The arrow back to the sched-
uler means that crowdsourced ratings may be used to suggest
more rendered videos to iteratively refine the QoE modeling.

help control for human-related statistical noise. Although the

crowdsourcing cost grows with video length, SENSEI offers

several techniques to reduce the cost (see §4). Thus, the con-

tent providers can decide whether and how to initiate profiling

given their budgets. Note that our reliance on crowdsourcing

makes some scenarios, e.g., live video streaming, currently

inapplicable (see §9).

4 Profiling Quality Sensitivity at Scale
In this section, we show how to build an accurate and cost-

efficient QoE model using crowdsourcing. We overview our

workflow (§4.1) and then discuss low-cost methods for chunk-

level reweighting (§4.2) and crowdsourcing scheduling (§4.3).

4.1 QoE modeling workflow
Figure 8 shows SENSEI’s workflow for QoE modeling. SEN-

SEI takes a source video and a monetary budget as input

and returns a QoE model that incorporates dynamic quality

sensitivity (customized for this video) as output.

• Rendered video scheduling (§4.3): We first generate a set

of rendered videos from the source video. Each rendered

video is created by injecting a carefully selected low-quality

incident at a certain point in the video.

• MTurk campaign (§5): The rendered videos are published

on the MTurk platform and we specify how many par-
ticipants (MTurkers) to recruit for this campaign. When

an MTurker signs up, they start a survey that asks them to

watch K rendered videos and, after each video, rate its QoE.

• QoE modeling (§4.2): Finally, we use the MOS of each

rendered video as its QoE and use regression to derive the

per-chunk weights, which are then incorporated into an

existing QoE model to derive the QoE model for this video.

4.2 Cutting cost via chunk-level reweighting
While crowdsourcing scales QoE profiling elastically, profil-

ing each video can still be prohibitively expensive. Since a

QoE model must capture the impact of both quality incidents

and the quality sensitivity of each chunk, a strawman solution

would build a QoE model with O(N ·P) parameters, where N
is the number of chunks and P is the number of parameters

in a traditional QoE model. This could require a prohibitive

number of ratings to build (e.g., KSQI has tens of parameters).

Encoding quality sensitivity with per-chunk weights: We
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e.g.

Figure 9: A running example of the crowdsoucring scheduler
for a source video with 3 chunks, 2 bitrate levels (high and
low), 2 rebuffering event levels (0 and 1 second).

leverage the insight that quality sensitivity at a chunk is in-

herent to its video content (§2.2). Thus, SENSEI assigns a

single weight to each chunk irrespective of the quality in-

cident, reducing the number of model parameters to O(N).
Then, SENSEI reuses an existing QoE model but reweights
the chunks by their quality sensitivity. If the QoE model is

additive, e.g., the overall QoE is the sum of the QoE estimates

of individual chunks qi, or Q = ∑N
i=1 qi, then SENSEI can di-

rectly reweight the chunks by their quality sensitivity. Though

some QoE models are non-additive (e.g., LSTM-QoE), many

mainstream QoE models including KSQI and others [56, 85]

are. For KSQI, the qi take into account the impact of visual

quality, rebuffering, and quality switches. SENSEI reweights

the QoE model as follows:

Q = ∑N
i=1

wiqi, (1)

where wi is the weight of the ith chunk, reflecting how much

more sensitive users are to quality incidents in this chunk than

in other chunks.

Weight inference: Given any V rendered videos, if Q j is the

QoE (MOS) of the jth rendered video and qi, j is the estimated

QoE of the ith chunk of the jth rendered video, then we can

write V equations, Q j = ∑N
i=1 wiqi, j for j = 1, . . . ,V . We can

then infer the wi using a linear regression.

In the remainder of the paper, we assume that KSQI

reweighted by Equation 1 is the QoE model of SENSEI.

4.3 Crowdsourcing scheduler
We now turn our attention to compiling a small set of rendered

videos that, after being rated, will produce enough data to

reliably estimate the per-chunk weights.

Two-step scheduling: Given a source video, SENSEI’s sched-

uler uses a two-step process to decide which rendered videos

to publish and how many participants to elicit ratings from.

• First, SENSEI creates a set of N rendered videos, each with

a single 1-second rebuffering event at a different chunk

(recall N is the number of chunks). It then publishes these

videos and asks M1 participants to rate each video. The total

rendered video duration is O(N ·M1). Once the videos are

rated, we infer the per-chunk weights as described above.

• Second, we pick N′ � N chunks whose inferred weights

are α-high or low (e.g., 6 % higher or lower than the average

weight). We then repeat the first step with two differences:

(1) low-quality incidents are added only to these chunks,

and (2) the quality incidents include B bitrates (below the

highest bitrate) and F rebuffering events (1,2,. . . seconds).

We publish the rendered videos and ask M2 participants to

rate them, for a total video duration of O(N′ ·B ·F ·M2).

The purpose of the first step is to use a small number of

participants (M1) to get a noisy but indicative estimate of

which chunks have quality sensitivity that is very high or low,

so we can focus the second iteration on these chunks using

a larger number of participants (M2). In general, for an ABR

algorithm to improve QoE-bandwidth tradeoffs, it is more

important to identify which chunks have very high/low quality

sensitivity than to precisely estimate the quality sensitivity

of every chunk. §5 discusses the number of participants; we

evaluate the effect of α,B and F in §7.4. These parameters are

empirically selected and held constant throughout our tests.

Figure 9 shows an example two-step schedule for a source

video. In the first step, we generate a series of rendered video

with the same rebuffering event injected at different chunks.

By examining the ratings of these videos from the MTurkers,

we determine that chunks 2 and 3 have similar sensitivity to

the rebuffering event, allowing them to share the same chunk-

level weight. Thus, in the second step, we only need to enu-

merate the quality incidents for chunks 1 and 2. In practice,

for a 20-second video, we generate 5 rendered videos in the

first step for the N = 4 chunks, of which N′ = 2 chunks may

have high/low sensitivity, and generate 15 rendered videos in

the second step for these chunks.

Quality incidents used in profiling: For the set of B bitrates,

we use the bitrate levels of YouTube videos and pick three

of them to cover high, medium and low visual quality; we

found this to be a practical compromise. The set of rebuffering

events F are chosen to match those we plan to proactively add

to the video (see §6). Testing on a larger set of quality inci-

dents would yield more data points, but our microbenchmark-

ing results in §7.4 show that this only marginally improves

model accuracy, while significantly increasing the cost.

5 Reliable QoE Crowdsourcing
SENSEI’s QoE model crucially depends on the reliability of

MTurkers’ quality ratings. This section describes our user

survey procedure and techniques for increasing reliability.

While SENSEI mostly follows known practices [41, 43, 57],

we provide some key details that arose from our experience

(described below and in Appendix B).

Single-survey procedure: As shown in Figure 21, each sur-

vey starts with the instructions and rejection criteria under

which the ratings will be rejected. The MTurker then watches

an example video that includes a quality incident, so they

know what their ratings should be based on. Then the MTurker

is asked to watch a sequence of rendered videos (determined

by the scheduler) and, after each video, rate its quality on a

scale of 1-5. Finally, the MTurker does an exit survey.
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Quality control per survey: Several measures are taken to

prevent and filter out spurious user ratings. First, we show

the test videos in a randomized order to each MTurker. This

eliminates biases due to viewing order and which videos were

previously watched. Second, we add reliability checks: we

show a video without any quality incident at a random position

among the test videos, and if an MTurker does not give the

highest score to this video, we discard all of their ratings. We

also ask the MTurker what quality incident(s) they just saw

in the last video, and if they report more quality incidents

than were included, that rating is discarded. This may occur

if the MTurker’s network connection is poor and new quality

incidents are introduced. Third, we implement an engagement

test to verify if the MTurker watched the video in its entirety,

by monitoring the time spent on the video playback page

and discarding the rating if the time is shorter than the video

length. We also implement other filters, such as limiting the

number or length of videos per MTurker to prevent fatigue.

Use of Master MTurkers: We follow a common practice

(e.g., [53]) and restrict our tests to Master MTurkers, a class of

reliable MTurkers who have participated in over 1000 surveys

and whose feedback was accepted for over 99% of their prior

surveys. We find that our rejection rate from Master MTurk-

ers is over 4× lower than normal MTurkers. One lesson we

learned is that Master MTurkers are more willing to partici-

pate if the publisher (us) historically has a low rejection rate

because they wish to maintain their rejection rate below 1%.

Sanity check of our dataset: To check if MTurker ratings

are similar to prior lab studies [41, 77], we select three 12-

second videos from a public dataset [31] whose quality ratings

are collected in a lab environment, and obtain MTurker ratings

for these videos. We find that the MTurker responses are

similar to the in-lab study: after normalizing the ratings to the

same range, the MTurkers’ MOS differs by less than 3% from

the in-lab study’s MOS on the same video.

How many MTurkers are needed? We did a head-to-head

comparison with WaterlooSQOE-III [31] and found that we

need 17% more MTurkers to reduce the variance of QoE

ratings down to the levels of the in-lab study. §7.4 shows how

the number of MTurkers affects SENSEI’s performance.

Despite the above, we acknowledge that our MTurk survey

methodology could be susceptible to human factors.

6 SENSEI’s ABR Logic
The key difference between SENSEI’s ABR logic and tradi-

tional ABR logic is that SENSEI aligns quality adaptation

with the temporal variability of quality sensitivity. We first

show how SENSEI modifies a traditional ABR framework

(§6.1), and then show how existing ABR algorithms can be

minimally modified to benefit from SENSEI (§6.2).

6.1 Enabling new adaptation actions
SENSEI takes a pragmatic approach by working within the

framework of existing players. It proposes specific changes

Figure 10: ABR framework of SENSEI. The differences with
traditional ABR framework are highlighted.

(a) Traditional bitrate selection (b) Sensei bitrate selection

(c) Traditional rebuffering (d) Sensei rebuffering

Figure 11: Illustrative examples of SENSEI vs traditional ABR
logic: how SENSEI improves quality (a vs. b) or avoids bad
quality (c vs. d) for high-sensitivity chunks.

to their input and output, as highlighted in Figure 10.

Input: Besides the current buffer length, next chunk sizes,

and history of throughput measurements, SENSEI’s ABR al-

gorithm takes as input the sensitivity weights of the next h
chunks, where h is the lookahead horizon. A larger h allows

us to look farther into the future for opportunities to trade

current quality for future quality, or vice versa. In practice, we

are also constrained by the reliability of our bandwidth pre-

diction for future chunks. We microbenchmark the selection

of h in §7.5.

Output: SENSEI’s ABR algorithm selects the bitrate for

future chunks as well as when the next rebuffering event

should occur.6 In contrast, traditional players only initiate

rebuffering events when the buffer is empty.

QoE model objective: If the ABR algorithm explicitly op-

timizes an additive QoE model, SENSEI can modify its ob-

jective as described in §4.2. While SENSEI can be applied to

most ABR algorithms (e.g., [56, 83, 85]), some (e.g., BBA)

do not have an explicit objective that SENSEI can build on.

In theory, these changes are sufficient to enable at least the

following optimizations, which traditional ABR algorithms

are unlikely to explicitly do. (1) Lowering the current bitrate

so that it can raise the bitrate for the next few chunks, if they

have higher quality sensitivity (Figures 11(a) and (b)). (2)

Raising the current bitrate slightly over the sustainable level

if quality sensitivity is expected to decrease in the next few

chunks. (3) Initiating a short rebuffering event now in order

to ensure smoother playback for the next few chunks, if they

have higher quality sensitivity (Figures 11(c) and (d)).

6SENSEI currently makes adaptation decisions only for the next chunk,

but in principle it could plan adaptations for multiple chunks in the future.
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6.2 Refactoring current ABR algorithms
We apply SENSEI to two ABR algorithms: Pensieve [56],

based on deep reinforcement learning, and Fugu [83], a more

traditional algorithm based on bandwidth prediction.

Applying SENSEI to Pensieve: SENSEI leverages the flex-

ibility of deep neural networks (DNNs) and augments Pen-

sieve’s input, output and QoE objective—its states, actions,

and reward, in the terminology of reinforcement learning—

as described in §6.1. It then retrains the DNN model in the

same way as Pensieve; we call this variation SENSEI-Pensieve.

SENSEI-Pensive makes two minor changes to reduce the ac-

tion space (which now includes rebuffering). First, we restrict

possible rebuffering times to three levels ({0,1,2} seconds)

that can only happen at chunk boundaries. Second, instead

of choosing among combinations of bitrates and rebuffer-

ing, SENSEI-Pensieve either selects a bitrate or initiates a

rebuffering event at the next chunk. If it chooses the latter,

SENSEI-Pensieve will increment the buffer state by the chosen

rebuffering time and rerun the ABR algorithm immediately.

Applying SENSEI to Fugu: Let us first explain how Fugu

works. At a high level, before downloading the ith chunk, Fugu

considers the throughput prediction for the next h chunks.

For any throughput variation γ (with predicted probability

p(γ)) and bitrate selection B = (bi, . . . ,bi+h−1), where b j is

the bitrate of the jth chunk, it simulates when each of the

next h chunks will be downloaded and estimates the rebuffer-

ing time t j(B,γ) of the jth chunk (which could be zero). It

then picks the bitrate vector (bi, . . . ,bi+h−1) that maximizes

the expected total quality over the next h chunks and possi-

ble throughput variations: ∑γ p(γ)∑i+h−1
j=i q(b j, t j(B,γ)). Here,

q(b, t) estimates the quality of a chunk with bitrate b and re-

buffering time t using a simplified model of KSQI.

The SENSEI variation of Fugu, which we call SENSEI-

Fugu, uses Fugu’s throughput prediction and the sensitivity

weights w j of the next h chunks. SENSEI-Fugu picks the

bitrate vector B = (bi, . . . ,bi+h−1) and the rebuffering time

vector T = (ti, . . . , ti+h−1), where t j is the rebuffering time of

the jth chunk, that maximizes the expected total quality over

the next h chunks and possible throughput variations:

∑
γ

p(γ)
i+h−1

∑
j=i

w jq(b j, t j) (2)

Here, the chosen rebuffering times must be feasible, i.e., the

buffer length can never be negative.

In short, SENSEI-Pensieve and SENSEI-Fugu add an extra

action (rebuffering time per chunk), and their objective func-

tion reweights the contribution of each chunk’s quality using

the sensitivity weights provided by our QoE model.

6.3 Player implementation and integration
We implement SENSEI on DASH.js [3], an open-source player

that several commercial players are based on. We add a new

field in the DASH manifest file (under Representation) to

represent per-chunk sensitivity weights and change the parser

ManifestLoader to parse these weights. Unlike other ABR

players, SENSEI may initiate rebuffering when the buffer is

not empty. We use Media Source Extensions [7] (an API that

allows browsers to change player states) to delay a down-

loaded chunk in the browser buffer from being loaded into

the player buffer. We also describe the implementation of our

crowdsourcing pipeline for MTurk surveys in Appendix C.

7 Evaluation
Our evaluation of SENSEI shows several key findings:

• Compared to recent proposals, SENSEI can improve QoE

by 7.7-52.5% without using more bandwidth or can save

12.1-50.3% bandwidth while achieving the same QoE.

• The performance gains of SENSEI come at a cost of

$31.4/minute video, which is marginal compared to the

investments made by content providers.

• SENSEI can improve QoE prediction accuracy by 11.8-

37.1% over state-of-the-art QoE models.

• SENSEI’s ABR algorithm consistently outperforms baseline

ABR algorithms even when bandwidth fluctuates.

7.1 Experimental setup
Test videos and throughput traces: Our test videos are se-

lected from four datasets: LIVE-MOBILE [36], LIVE-NFLX-

II [21], and WaterlooSQOE-III [31] are professional-grade

datasets often used to train/compare QoE models in the lit-

erature. We complement these sources with videos from a

user-generated dataset, YouTube-UGC [78]. The videos are

randomly selected from four video genres: sports, gaming,

nature, and animation. Appendix §A provides more details

about the videos. To create an adaptive video streaming setup,

we chop videos into 4-second chunks and encode each chunk

at 5 bitrate levels: {300,750,1200,1850,2850}Kbps. We ran-

domly select 10 throughput traces from two public datasets,

FCC [24] and 3G/HSDPA [65], restricting our selection to

those whose average throughput is between 0.2Mbps and

6Mbps, forcing the ABR algorithms to adapt their bitrates.

Baselines: We compare SENSEI’s ABR algorithm with three

baselines: Buffer-based adaptation (BBA) [45], Fugu [83],

and Pensieve [56]. We keep their default settings (e.g., same

DNN architecture and training network traces for Pensieve,

etc.). For fairness, we use KSQI as the QoE model for

Pensieve, Fugu, and the SENSEI variants. This modification

should improve the quality of Pensieve and Fugu, because

the QoE models used in their original implementations are

special cases of KSQI. We use SENSEI-Pensieve (i.e., the ap-

plication of SENSEI to Pensieve) as SENSEI, but confirm that

the improvements of SENSEI-Fugu are similar (Figure 18a).

Performance metrics: We use three performance metrics.

For a given source and video and throughput trace, we report

the QoE gain of one ABR algorithm (Q1) over another (Q2),

i.e., (Q1 −Q2)/Q2, where Q1 and Q2 are rated by MTurkers.
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Figure 12: End-to-end performance of SENSEI over traditional and saliency-based ABR baselines, across all videos.

We calculate SENSEI’s bandwidth saving by scaling down

the throughput traces and determining how much bandwidth

each ABR algorithm needs to achieve the same QoE. We

normalize all QoE values to the range [0,1]. We measure the

crowdsourcing cost paid to MTurk to get enough ratings to

profile a 1-minute video. Only SENSEI incurs this cost.

7.2 End-to-end improvement
QoE gains: Figure 12a shows the distributions of QoE gains

of SENSEI, Pensieve, and Fugu over BBA, across all combi-

nations of the 16 source videos and 10 network traces. Com-

pared to BBA, SENSEI has at least 14.4% QoE gain for half of

the trace-video combinations, whereas Pensieve’s and Fugu’s

median QoE gains are about 5.7%. The tail improvement of

SENSEI is greater: SENSEI’s QoE gain at the 80th percentile

is 4.8%, whereas Pensieve’s and Fugu’s are 0.2% and 0.7%

respectively. The fact that SENSEI’s gains over Pensieve (its

base ABR logic) are similar to Pensieve’s gains over BBA

suggests the significant potential in making an existing ABR

algorithm aware of dynamic quality sensitivity.

Bandwidth savings: Figure 12b shows the average QoE of

different ABR algorithms across the source videos, under one

throughput trace scaled down by different ratios (x-axis). We

confirm the results are consistent across different throughput

traces. We see that when setting a target QoE of 0.8, the

bandwidth savings of SENSEI is about 27% higher compared

to Pensieve and Fugu, and 32% higher compared to BBA.

QoE vs. crowdsourcing cost: Figure 12c shows the crowd-

sourcing cost and resulting QoE of SENSEI relative to Pen-

sieve, both with and without the cost-pruning optimization

(which is evaluated separately in Figure 16). Compared to

enumerating all combinations of the quality incidents, we see

that costs can be reduced by more than 32× with only a 3.1%

degradation in QoE, and SENSEI is still 14.7% better on av-

erage than its base ABR logic (Pensieve with KSQI). This

cost is equivalent to ∼$31.4 per 1-minute video, which is a

negligible cost for large content providers that may spend on

the order of $10 billion annually [4] for licensing popular TV

shows (or making such shows).

Improvements by video and trace: Figure 13a shows the

QoE gains for each video across the network traces. We see

significant variability in the QoE gains across videos and

even within the same genre. Figure 13b shows the QoE gains
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Figure 13: QoE gains over BBA for genre and for each
throughput trace (ordered by increasing average throughput)

for each network trace across all videos. Overall, SENSEI

yields more improvement when the average throughput is

lower (towards the left). This shows that SENSEI can better

maintain high QoE even when the network is under stress.

SENSEI vs. saliency-reweighted ABR: Finally, Figure 12d

shows the QoE gains of SENSEI when the per-chunk weights

are based on crowdsourcing results (our approach) and when

the weights are based on the saliency scores produced by var-

ious saliency models (see §2.3). We normalize each model’s

saliency scores to sum to the sum of chunk weights of SENSEI.

We see that SENSEI’s gain significantly reduces if the weights

are based on these saliency models, because as explained in

§2.3, they fail to capture users’ quality sensitivity.

7.3 QoE prediction accuracy
We now microbenchmark SENSEI’s QoE model introduced

in §4 using all 640 rendered videos generated by running

SENSEI and the baseline ABR algorithms on all combina-

tions of source videos and network traces. We obtain the

“ground truth” QoE of each rendered video using our MTurk

survey procedure (§4,§5). We calculate Pearson’s linear cor-

relation coefficient (PLCC) and Spearman’s rank correlation

coefficient (PRCC) between the predicted QoE and actual

user-rated QoE. Figure 14 compares SENSEI with three base-

lines QoE models (KSQI, LSTM-QoE, P.1203). The PLCC

(and PRCC) of SENSEI’s QoE prediction is over 0.85 (and

0.84), whereas the baselines are below 0.76 (and 0.73). We

evaluated several variants of KSQI (the best baseline QoE

model) re-weighted by per-chunk saliency scores from the

saliency models in §2.3, but their accuracies are even lower.

7.4 Cost savings on crowdsourcing
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Figure 14: QoE prediction accuracy of SENSEI, SENSEI’s
variants, and baseline QoE models.

Figure 15: The effect of the number of raters

We microbenchmark the effects of different crowdsourcing

parameters on SENSEI’s QoE model.

Impact of number of raters per video: Figure 15(a) shows

that while the quality ratings have substantial variance with

less than 5 raters, their mean value (MOS) stabilizes with

more than 15 raters. As a result, having 15 raters per video (as

used in SENSEI) produces a similar QoE prediction accuracy

(b) and QoE gains (c) as having 30 raters.

Impact of crowdsourcing schedule granularity: Figure 16

shows the effect of reducing MTurk cost by considering (a)

fewer bitrate levels (B), (b) fewer rebuffering events (F), or (c)

higher threshold α used to pick which chunks to investigate in

the second step. These terms are defined in §4.3. By reducing

B to 3, F to 2, or raising α to 6%, we greatly reduce the cost

while incurring less than 3% drop in accuracy.

7.5 SENSEI’s ABR logic
Finally, we microbenchmark SENSEI’s ABR logic (§6). To

scale this experiment out, we use real videos and throughput

traces but use the QoE predicted by SENSEI (instead of real

user ratings) to evaluate QoE. We have confirmed that this

yields the same QoE estimates on average as real user ratings

under the same setting.

Impact of bandwidth variance: Figure 17 shows the per-

formance of SENSEI under increasing throughput variance.

We pick one throughput trace and increase its throughput vari-

ance by adding unbiased Gaussian noise. The graph begins

at the variance of the original throughput trace; as variance

increases, SENSEI’s QoE degrades gracefully, but it still main-

tains a significant gain over its base ABR logic (Pensieve or

Fugu). This is because SENSEI only needs to predict how

likely low throughput will occur on high quality-sensitivity

chunks, not all future chunks, so if the average throughput

until the next such chunk is predictable, it will work well. We

Figure 16: QoE model accuracy changes with cost.
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Figure 17: QoE under increasing bandwidth variance.

confirm the results are similar on other throughput traces.

Performance breakdown: Figure 18a shows that SENSEI

achieves comparable improvement when either Pensieve or

Fugu is the base ABR logic. This suggests that SENSEI’s

gains do not depend on the choice of the base ABR logic.

Figure 18b shows that both aspects of SENSEI’s control logic

contributes to its improvements: (1) making ABR logic aware

of dynamic quality sensitivity (1st vs. 2nd bar), and (2) inject-

ing rebuffering judiciously (2nd vs. 3rd bar). Thus, even if a

content provider cannot control rebuffering, it can still benefit

significantly from SENSEI’s dynamic quality sensitivity.

Impact of video contents: While the videos in our dataset

have varying fractions (from 20% to 60%) of high-sensitivity

chunks, Figure 18c tests Sensei’s performance under an even

wider range of high-sensitivity chunk fractions (from 0% to

100%). We create source videos with the specific fractions of

high and low quality-sensitivity chunks and randomize the

positions of the chunks. SENSEI has marginal improvement

when the video is dominated by either high or low quality-

sensitivity chunks. However, SENSEI significantly improves

QoE when high quality-sensitivity chunks are 20-40% of a

video (most of our videos fall in this range).

Lookahead horizon: Figure 18d tests the impact of looka-

head horizon—the number of future chunks h whose quality-

sensitivity weights are revealed to the ABR algorithm. A

longer horizon increases SENSEI’s ability to schedule qual-

ity events between low and high quality-sensitivity chunks.

Empirically in our dataset, the QoE gains diminish after the

lookahead horizon is greater than 4 chunks.

Systems overhead: We confirm empirically that compared

to a video player without SENSEI, the runtime overhead of

SENSEI is less than 1% in both CPU cycles and RAM usage.

8 Related Work
ABR algorithms: Mainstream ABR algorithms maximize

bitrate under dynamic available bandwidth. Traditional ones

are buffer-based (e.g., [46, 50]) or rate-based algorithms

(e.g., [45, 69, 70]). Recent ABR algorithms explicitly opti-

mize a given QoE objective via control theory [85], ML-based
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Figure 18: Understanding SENSEI’s improvements.

throughput prediction [73, 83], or deep reinforcement learn-

ing [34, 35, 56]. Some ABR algorithms also rely on server-

side processing [17,47,84]. Key parameters of the ABR logic

can be customized to the network conditions or devices [16].

Though SENSEI reuses existing ABR algorithms, its contri-

bution lies in identifying minimum changes (e.g., adaptation

actions they never would have taken) needed for these algo-

rithms to fully leverage users’ dynamic quality sensitivity.

Modeling and optimizing user-perceived quality: Visual

quality assessment (VQA) traditionally models user’s percep-

tion of encoded video using pixel-level patterns (e.g., [38,

64, 68, 79]) as well as advanced data-driven models, such

as SVM [11] and deep learning models (e.g., [48]). Adap-

tive quality assessment (AQA), on the other hand, mod-

els streaming-related incidents, including join time, bitrate

switches, rebuffering (e.g., [18, 28, 49]). Recent QoE mod-

els combine VQA and AQA (e.g., [19, 20, 22, 25, 29, 31, 33])

and sometimes uses spatial/temporal visual attention (e.g.,
[30, 34, 34, 37, 59, 60, 82]). These perception-centric QoE

models have inspired a large body of work that maximizes

user-perceived quality with bitrate adaptation [58, 61], adap-

tive video encoding [17,67,89], adaptive bitrate levels [14,15],

dynamic chunk lengths [51], and super resolution [47, 84, 88].

Since the user-perceived quality metrics can vary across

chunks, they may also treat video chunks differently, like

SENSEI does. However, as elaborated in §2.3, SENSEI is com-

plementary to these efforts: while they propose heuristics to

how pixel-/motion-based visual features affect QoE, SENSEI

customizes itself for each video (in a cost-efficient way) to

capture the impact of the substance of video content on true

user sensitivity to video quality. That said, actions like dy-

namic bitrate levels, chunk lengths, and super resolution could

be used in SENSEI too, though SENSEI only considers actions

directly supported by current DASH players.

QoE research using crowdsourcing: Prior work (e.g., [23,

42, 43, 57, 62, 81]) provides methodologies for using com-

mercial crowdsourcing platforms, e.g., Amazon MTurk [1]

and Microworkers [8], to systematically model user percep-

tion using objective quality metrics [23, 42, 43, 62, 81], inves-

tigate QoE impact of different types of low-quality events

(e.g., [32]), and build crowdsourcing platforms themselves

for similar purposes (e.g., [77, 83]). While SENSEI follows

conventional crowdsourcing methodology (§5), SENSEI faces

a unique challenge of scaling crowdsourcing to per-video
QoE modeling. The cost of modeling QoE of each video

separately is prohibitive, and SENSEI drastically prunes the

cost by reusing an existing QoE model while profiling only a

single weight per representative chunk to encode the content-

induced quality sensitivity of each chunk.

9 Discussion

Participant selection bias: A concern of any crowdsourced

user study is that the results could be biased because the work-

ers who are willing to participate in the user study might

have different characteristics than the real video viewers. A

common approach to address this bias is to reweight the par-

ticipant responses based on the demographics of real users

(e.g., [26, 55, 71, 76]). SENSEI could apply reweighting to the

user study if we have knowledge of the target viewers’ demo-

graphics, or it could directly recruit the user study participants

from the target viewers themselves (e.g., subscribers of the

content provider).

Inapplicable scenarios: SENSEI does not apply to live video

streaming and copyrighted videos. Live videos have strict de-

lay requirements which our crowdsourcing-based video profil-

ing cannot meet. Showing copyrighted videos to crowdsource

workers poses the risk of copyright violation, though SENSEI

could be used on already-released videos. Moreover, the pro-

filing cost of ∼ $31.4/minute video may still be impractical

for videos with only a few views. Instead, we envision that

SENSEI will be used for popular on-demand video by content

providers who seek to improve their QoE-bandwidth trade-

offs. For example, providers such as Amazon, Netflix and

YouTube recently lowered the default bitrate in Europe due

to increased network traffic during the COVID lockdown [9].

10 Conclusion
We have described SENSEI, a video streaming system that

optimizes video quality by exploiting dynamic quality sensi-

tivity. Observing that quality sensitivity is inherent to video

content and hence unique to each video, SENSEI scales out

the profiling of quality sensitivity using a reliable crowdsourc-

ing methodology. We show that with minor modifications to

state-of-the-art ABR algorithms, SENSEI can improve their

QoE by 15.1% or save bandwidth by 26.8% on average.
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A Dataset
Figure 19 provides screenshots and descriptions of the 16

source videos used in our dataset. Table 1 summarizes the test

videos.

B Reliable QoE Crowdsourcing
We provide a few additional details on our crowdsourcing

methodology.

Population bias of MTurk: As mentioned in §9, the per-

chunk quality sensitivity could be biased by the population

Name Genre Length Source dataset
(a) Basket1 Sports 3:40 LIVE-MOBILE

(b) Soccer1 Sports 3:20 LIVE-NFLIX-II

(c) Basket2 Sports 3:40 YouTube-UGC

(d) Soccer2 Sports 3:40 YouTube-UGC

(e) Discus Sports 3:40 YouTube-UGC

(f) Wrestling Sports 3:40 YouTube-UGC

(g) Motor Sports 3:40 YouTube-UGC

(h) Tank Gaming 3:40 YouTube-UGC

(i) FPS1 Gaming 3:40 YouTube-UGC

(j) FPS2 Gaming 3:40 YouTube-UGC

(k) Mountain Nature 1:24 LIVE-MOBILE

(l) Animal Nature 3:40 YouTube-UGC

(m) Space Nature 3:40 YouTube-UGC

(o) Girl Animation 3:40 YouTube-UGC

(n) Lava Animation 3:40 LIVE-NFLIX-II

(p) BigBuckBunny Animation 9:56 WaterlooSQOE-III

Table 1: Summary of the test video set.

distribution of MTurkers. We confirm that about 43.8% (and

67.3%) of the received ratings come from MTurkers who

participate in our survey only once (at most twice). This sug-

gests that the pool of MTurkers is large enough to avoid small

population bias, which corroborates our sanity-check results

(§5) that on average MTurker quality ratings are strongly

correlated with in-lab survey results.

Fast MTurker recruitment: While the MTurk platform cuts

the overhead to publish our survey, if MTurkers sign up slowly,

this can slow down the entire process. We take following steps

to speedup the recruitment of MTurkers.

• Competitive compensation: We offer an hourly rate of $10,

a competitive compensation on the MTurk platform — only

4% MTurkers are paid more than $7.25/hour [40], though

we have not explored the impact of raising/lowering this

rate. To prevent people from gaming the system by sitting

on a job for too long, we pay each MTurker by the esti-

mated amount of time needed to finish a survey (which is

proportional to the total length of the videos per MTurker),

rather than by how much time the MTurker actually spends.

In practice, this only weeds out MTurkers who spend too

much time on a survey.

• Maintaining good reputation: The MTurkers’ signing-up

speed also depends largely on the reputation of the pub-

lisher (i.e., us), because MTurkers tend to sign up if the

publisher historically has a low rejection rate. Thus, it is

critical to be clear upfront about our study’s rejection cri-

teria. In the meantime, to keep our rejection rate low, we

try to target reliable MTurkers by restricting ourselves to

Master MTurkers (a common practice for publishers on

MTurk [53]).

C Implementation
Automation of MTurk tests: We implement the pipeline

shown in Figure 8 in Python (for the logic) and Javascript

(for the video server). Given a source video, it first creates the
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Figure 19: Summary of source videos in our dataset. They span four genres: sports (a - g), gaming (h - j), natural (k - m), and

animation (n - p). They are compiled randomly from public QoE datasets: LIVE-MOBILE [36](a,k), LIVE-NFLX-II [21] (b, n),

YouTube-UGC [78] (c - j and l - o); and WaterlooSQOE-III [31] (p).

0 50 100 150 200 250
Weights difference from crowdsourcing(%)

0

0.5

1

C
D

F

AMVM
Video2GIF
DSN

Figure 20: Chunk weight difference

rendered videos by adding specific low-quality incidents in

the source video (via ffmpeg). It then uploads these videos

to a video server, from which MTurkers later download the

video. After that, it generates a unique link for this campaign

and posts it on the MTurk website (the only step that requires

manual intervention). MTurkers can join the test by clicking

the link, which redirects them to our video server. Once an

MTurker has rated all assigned videos, the server logs the

ratings and notifies us. Once enough ratings are received, the

server trains the per-chunk weights as described in §4.2.

Single survey procedure: As shown in Figure 21:

• (a) Each survey starts with the instructions and rejection

criteria under which ratings of an MTurker will be rejected.

Each MTurker is expected to read the instructions carefully.

• (b) The MTurker then watches an example video that in-

cludes a quality incident so that they know what their ratings

should be based on.

• (c, d) After that, the MTurker is asked to watch a sequence

of rendered videos (determined by the scheduler) and, after

each video, rate the quality on a scale of 1-5.

• (d) Finally, the MTurker does an exit survey.

D More discussion on saliency models
Saliency models used in §2.3: We test four models in total, a

traditional motion-based heuristic (AMVM [52]), a highlight

detection model (video2GIF [39]), and a video summarization

model (DSN [90], dppLSTM [87]). We used the pretrained

models of Video2GIF (https://github.com/gyglim/vi
deo2gif_code), DSN (https://github.com/KaiyangZh
ou/pytorch-vsumm-reinforce), and dppLSTM (https:
//github.com/kezhang-cs/Video-Summarization-wi
th-LSTM).

Saliency score vs. quality sensitivity: Although a variety

of saliency models have been proposed, we argue that these

visual heuristics can be misaligned with video quality sensi-

tivity. For example, in the soccer video (Figure 1), the scene
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Figure 21: A diagram of our QoE survey interface. In each survey, an MTurker is asked to rate K rendered videos; after watching
each rendered video, an MTurker is asked to rate its quality on a scale of 1 (worst) to 5 (best).

right before the goal is most quality sensitive, but the highlight

detection models and motion-based heuristics we evaluated

believe the scenes showing the audience are the most impor-

tant (probably because they show more human movements).

Video summarization models pick all diverse moments of a

video, but many of them may not be quality-sensitive. For

example, in the same soccer video, the video summarization

models identify every shot, rewind, and celebration clip as

important, but the users pay more attention to shots that might

score a goal.

We also acknowledge the potential use of viewership in-

formation to detect video highlights. While the popularity of

a chunk is closely related to highlights (or high interesting-

ness scenes) in a video, as we found in §2.3 and §7.3, these

incidents may not perfectly align with users’ sensitivity to

video quality. Below are two examples specifically regarding

the potential misalignment between content popularity and

quality sensitivity.

• Example 1: A less popular part of a video can still be

quality-sensitive. The “animal” video in our dataset is a

part of a video about wildlife in Africa. Although a more

“popular” or “interesting” scenes is one where the lions

chase antelopes, we find that users are still highly quality-

sensitive in the scene where warthogs jump into a small

pond for bathing.

• Example 2: A quality-sensitive part of a video may be a

small fraction of a popular segment. One of the soccer

videos in our dataset is a compilation of highlight moments

from a long game, so all of its content is supposed to be

“popular”. However, we still see that there is heterogeneity

in the sensitivity of its chunks.
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Abstract
GAIA (GrAph Interactive Analysis) is a distributed system
designed specifically to make it easy for a variety of users
to interactively analyze big graph data on large clusters at
low latency. It adopts a high-level language called Gremlin
for graph traversal, and provides automatic parallel execution.
In particular, we advocate a powerful new abstraction called
Scope that caters to the specific needs in this new computation
model to scale graph queries with complex dependencies
and runtime dynamics, while at the same time maintaining
the simple and concise programming model. GAIA has been
deployed in production clusters at Alibaba to support a variety
of business-critical scenarios. Extensive evaluations using
both benchmarks and real-world applications have validated
the effectiveness of the proposed techniques, which enables
GAIA to execute complex Gremlin traversal with orders-of-
magnitude better performance than existing high-performance
engines, and at much larger scales than recent state-of-the-art
Gremlin-enabled systems such as JanusGraph.

1 Introduction
Nowadays an increasing number of Internet applications gen-
erate large volume of data that are inherently connected in
various forms. Examples include data in social networks, e-
commerce transactions, and online payments. Such data are
naturally modeled as graphs to encode complex relationships
among entities with rich set of attributes. Unlike traditional
graph processing that requires programming for each individ-
ual task, it is now very common for domain experts, typically
non-technical users, to directly explore, examine, and present
graph data in an interactive environment in order to locate
specific or in-depth information in time.

As an example, consider the graph depicted in Figure 1,
which is a simplified version of a real query employed at
Alibaba for credit card fraud detection. By using a fake iden-
tifier, the “criminal” may obtain a short-term credit from a
bank (vertex 1). He/she tries to illegally cash out money by
forging a purchase (edge 2→ 3) at time t1 with the help of a
merchant (vertex 3). Once receiving payment (edge 1→ 3)

Figure 1: An example graph model for fraud detection.

from the bank (vertex 1) at time t2, the merchant tries to send
the money back (edges 3→ 4 and 4→ 2) to the “criminal”
via multiple accounts of a middle man (vertex 4) at time t3
and t4, respectively. This pattern eventually forms a cycle
(2→ 3→ 4 · · · → 2). Such fraudulent activities have become
one of the major issues for online payments, where the graph
could contain billions of vertices (e.g., users) and hundreds
of billions to trillions of edges (e.g., payments). In reality,
the entire fraudulent process can involve a complex chain of
transactions, through many entities, with various constraints,
which thus requires complex interactive analysis to identify.

Our goal is to make it easy for a variety of users to interac-
tively analyze big graph data on large clusters at low latency.
Achieving this goal requires a different distributed infrastruc-
ture than the popular batch-oriented big graph processing
systems [4, 15, 16, 26, 39, 49] in two aspects:
Programming Model. Existing systems, including the most
recent high-performance data engines such as Naiad [27],
demonstrate that it is possible to scale well-known graph algo-
rithms such as PageRank [5] and connected components [23]
to large clusters. Even so, their programming interfaces all
leave room for improvement for our target users, who typically
lack the background on distributed computing or program-
ming in general [13].
Memory Management. Existing systems1 typically base
their execution on the bulk synchronous parallel (BSP)
model [44], where the computation proceeds iteratively, and

1Here, we focus on the distributed graph analytical systems. Other systems
such as Neo4j, ZipG, and JanusGraph, etc. will be surveyed in Section 7.
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Q1: g.V(’account’).has(’id’,’2’).as(’s’)
.repeat(out(’transfer’).simplePath())
.times(k-1)
.where(out(’transfer’).as(’s’))
.path().limit(1)

Figure 2: An example Gremlin query for cycle detection.

in each iteration, all vertices in a graph will conduct the same
computation , and send any updates along their edges to drive
the computation of the next iteration. The BSP-based engines,
however, are not suitable for interactive graph queries because
of two reasons. Firstly, the interactive queries typically require
maintaining application state along with the traversal paths to
enable complex analysis [14, 37], which can grow exponen-
tially with the number of iterations, and cause memory crisis
in the underlying execution platforms. Secondly, in interactive
environments, there are typically multiple queries sharing the
limited amount of memory on the same set of machines, on
which (a large part of) the input graph is cached in memory
to provide required performance, making the above memory
crisis a more critical issue.

In this work, we exploit Gremlin [37] to provide a high-
level language for interactive graph queries. Gremlin is widely
adopted by leading graph system vendors [1, 6, 21, 29, 30],
which offers a flexible and expressive programming model
to enable non-technical users to succinctly express complex
traversal patterns in real-world applications. For example, one
can write the above fraud-detection query in just a couple of
lines using Gremlin, as shown in Figure 2 (which we explain
in Section 3). In contrast, even common operations like cycle
detection, which is a core part of the fraud-detection use case,
is tricky to implement in existing graph systems [16, 36].

The flexibility of Gremlin mainly stems from nested traver-
sal with dynamic control flow such as conditionals and loops.
While attempting to scale Gremlin queries, we are immedi-
ately confronted with the challenges of resolving fine-grained
data dependencies [10] with dynamic control flow [45]. There-
fore, existing Gremlin-enabled, large-scale systems either
adopt a sequential implementation in centralized query pro-
cessing with data being pulled from a remote storage (such as
JanusGraph [21] and Neptune [1]), or offer a limited subset
of the language constructs (such as the lack of nested loops
in [20]). In addition, GAIA must handle dynamics related to
variations in memory consumption in an interactive context.

In this paper, we present a system, GAIA, that takes on the
challenges of making Gremlin traversal work efficiently at
scale with low latency. In particular, GAIA makes the follow-
ing technical contributions.
• Scope Abstraction. We propose the Scope abstraction to

allow GAIA to dynamically track fine-grained data depen-
dencies in a Gremlin query. This enables Gremlin traversal
to be modeled as a dataflow graph for efficient parallel
execution with correctness guarantee.

• Bounded-Memory Execution. Leveraging the Scope ab-

Figure 3: GAIA system architecture.

straction, we are able to devise advanced optimizations in
parallel graph traversal, such as bounded-memory execution
and early-stop optimization, which lead to further runtime
improvement and memory saving.

• GAIA System. We have developed a full-fledged distributed
system, GAIA, and made it available at: https://github.
com/alibaba/GraphScope/tree/main/research/gaia. An
extended version of GAIA with enterprise features has been
deployed in real production clusters at Alibaba to support
a variety of business-critical scenarios. Extensive evalua-
tions using both benchmarks and real-world applications
have validated the effectiveness of the proposed techniques,
which enables GAIA to execute complex Gremlin traversal
with orders-of-magnitude better performance than existing
engines, and at much larger scales than the state-of-the-art
Gremlin-enabled systems such as JanusGraph.

2 System Architecture
GAIA is a full-fledged, in-production system for interactive
analysis on big graph data. Achieving this goal requires a
wide variety of components to interact, including software
for cluster management and distributed execution, language
constructs, and development tools. Due to space limit, we
highlight the three major layers that are sufficient to under-
stand this paper, namely application, execution, and storage,
in Figure 3, and give an overview to each of them below.

Apache TinkerPop [3] is an open framework for develop-
ing interactive graph applications using the Gremlin query
language [37]. GAIA leverages the project to supply the ap-
plication layer. GAIA implements the Gremlin Server [18]
interface so that the system can seamlessly interact with the
TinkerPop ecosystem, including development tools such as
Gremlin Console [17] and language wrappers such as Java
and Python.

The GAIA execution runtime provides automatic support
for efficient execution of Gremlin queries at scale, which con-
stitutes the main contribution of this paper. Each query is
compiled by the front-end service into a distributed execu-
tion plan that is partitioned across multiple compute nodes
for parallel execution. Each partition runs on a separate com-
pute node, managed by a local executor, that schedules and
executes computation on a multi-core server.

The storage layer maintains an input graph that is hash-
partitioned across a cluster, with each vertex being placed
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Figure 4: An example “e-commerce” property graph.

together with its adjacent (both incoming and outgoing) edges
and their attributes. In this paper, we assume that the stor-
age is coupled with the execution runtime for simplicity, that
is each local executor holds a separate graph partition. In
production, we implement a distributed graph storage with
index and cache features, decoupled from the execution, that
supports real-time updates with snapshot isolation (similar to
Kineograph [11]), which allows users to query fast-changing
graphs with consistency guarantee. Furthermore, GAIA pro-
vides multiple options for fault tolerance using checkpoints,
replication, and/or relying on a Cloud storage. Production
details are outside the scope of this paper.

3 Programming with GAIA
GAIA is designed to faithfully preserve the programming
model of TinkerPop [3], and as a result it can be used to scale
any existing TinkerPop applications to large compute clusters
without any modification. In this section, we provide a high-
level view of the programming model, highlighting the key
concepts including the data model and query language.

Gremlin [37] enables users to define ad-hoc traversals on
property graphs [2]. A property graph is a directed graph in
which vertices and edges can have a set of properties. Every
entity (vertex or edge) is identified by a unique identifier (ID),
and has a (label) indicating its type or role. Each property is
a key-value pair with combination of entity ID and property
name as the key. Figure 4 shows an example property graph.
It contains user, product, and address vertices connected by
order, deliver, belongs_to, and home_of edges. A path fol-
lowing vertices 1→ 2→ 3, shown as the dotted line, indicates
that a buyer “Tom” ordered a product “gift” offered by a seller
“Jack”, with a price of “$99”.

In a Gremlin traversal, a set of traversers walk a graph
according to particular user-provided instructions, and the
result of the traversal is the collection of all halted traversers.
A traverser T = (l,P)2 is the basic unit of data processed by a
Gremlin engine. Each traverser maintains a location l that is a
reference to the current vertex, edge or property being visited,
and (optionally) the path history P. For example, consider a
traversal which starts from vertex 1 (with only one traverser at
the location of vertex 1), follows outgoing edges, and reaches
its 2-hop neighbors in Figure 4. A possible intermediate result

2In [37], a traverser is modelled as a 6-tuple set, while we include neces-
sary elements to understand this paper.

can be a collection of a single traverser located at vertex 2 with
the corresponding path history. The final result is a collection
of two traversers, located at vertex 3 and 4, respectively, with
different paths, 1→ 2→ 3 and 1→ 2→ 4.

Nested traversal is another key concept in Gremlin. It al-
lows a traversal to be embedded within another operator, and
used as a function to be invoked by the enclosing operator
for processing input. The role and signature of the function
are determined by the type of the enclosing operator. For ex-
ample, a nested traversal within the where operator acts as a
predicate function for conditional filters, while that within the
select or order operator maps each traverser to the output or
ordering key for sorting the output, respectively.

Nested traversal is also critical to the support for loops,
which are expressed using a pair of the repeat and
until/times operators. A nested traversal within the repeat

operator will be looped over until the given break predicate is
satisfied. The predicate (or termination condition) is defined
within the until operator, applied to each output traverser
separately from each iteration. The times operator can also
terminate a loop after a fixed number of k iterations.

Example 3.1. Figure 2 shows a Gremlin query Q1 for the
motivating example in Section 1 that tries to find cyclic paths
of length k, starting from a given account. First, the source op-
erator V (with the has filter) returns all the account vertices
with an identifier of “2”. The as operator is a modulator that
does not change the input collection of traversers but intro-
duces a name (s in this case) for later references. Second, it
traverses the outgoing transfer edges for exact k−1 times,
skipping any repeated vertices (by the simplePath opera-
tor). Third, the where operator checks if the starting vertex
s can be reached by one more step, that is, whether a cycle
of length k is formed. Finally, for qualifying traversers, the
path operator returns the full path information. The limit
operator at the end indicates only one such result is needed.

4 Compilation of Gremlin
GAIA compiles a Gremlin query into a dataflow graph, where
each vertex (operator) performs a local computation on input
streams from its incoming edges and produces output streams
to its outgoing edges, and can optionally maintain a state. The
input graph is modeled as a read-only state shared by all the
dataflow operators. We map each Gremlin operator onto a
dataflow operator, and the collections of traversers as data
streams. In the following, we will use the term traverser inter-
changeably with data. Figure 5(b) shows an example dataflow
graph corresponding to the following Gremlin query (Q2) that
conducts a 2-hop traversal followed by an aggregation that
counts the total number of traversed paths.

Q2: g.V(2).out().out().count()

We introduce source operators as special drivers that gen-
erate output only from the input graph to drive the rest of the
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Figure 5: Dataflow graph and execution for query Q2.

dataflow computation (e.g., V(2)). We use sink operators to
denote those that generate output streams for the computa-
tion to be consumed elsewhere (e.g., count). Since Gremlin
imposes no restrictions on the execution order of traversers,
we can pack a segment of traversers to a same operator into
a batched input and schedule the computation at a coarse
granularity for efficient execution.

To preserve the operator semantics for barriers, we insert
an End-of-Stream (or EOS) marker at the end of the output
streams of each source operators, as a special punctuation
event that asserts the completeness of output. The EOS mark-
ers will be propagated through the dataflow, layer by layer,
so that any downstream operators can be notified on the com-
pleteness of their inputs by waiting to collect those markers.

Example 4.1. Figure 5(c) illustrates the progression of the
dataflow execution of Q2 against the input graph in Fig-
ure 5(a). o1 generates a data stream of {(v2, /0), EOS} as
output, where v2 denotes the vertex with ID 2. Note that the
path history has been pruned (and omitted later) as the down-
stream operators do not need it. o2 consumes v2, generates
output {v3, v4}, and finally propagates EOS to its output. Sub-
sequently, o3 outputs {v1, v2} after consuming v3, and {v3,
EOS} for the rest of its input. Finally, o4 outputs the counting
of {3} - it can do so as the EOS marker has been received.
The dataflow thus terminates.

4.1 Challenges in Compiling Nested Traversal
Many of the salient features of Gremlin such as dynamic con-
trol flow rely on nested traversal, which introduces additional
complexity to the above design. Let’s look into another query
Q3 slightly amended from Q2, in which a segment of opera-
tors (out().count()) is nested within a select-projection.

Q3: g.V(2).out()
.select(’neighbor_count’)
.by(out().count())

Given a set of vertices N(v2) as the outgoing neighbors of
a vertex v2, the query asks to count the number of k-hop paths
starting from each vertex u ∈ N(v2) (let k = 1 for simplicity),
and output pairs of (u, # paths starting from u). In this ex-
ample, each input traverser that represents a vertex of N(v2)
does its own computation (of the counting of paths), namely

Figure 6: Dataflow and scope example: the filled circle high-
lights a scope with input stream I and output stream O.

at a fine granularity. In other words, the count operation has
to be executed separately for each vertex u ∈ N(v2).

We define a context as an execution environment for a
dataflow that includes a unique (possibly empty) state for
its computation. Without nested traversal (and/or dynamic
control flow), all computation of each Gremlin operator, and
the whole dataflow, can run in a single context. For example,
in query Q2, only count maintains a state (for partial counting)
- there is only one such state needed to count all traversed
paths. With nested traversal, this property no longer holds
as a stateful operator in a nested traversal can dynamically
demand the separation of contexts. For example, in query Q3,
due to the semantics of select, there must be an individual
state (context) maintained for each vertex u ∈ N(v2) in order
to produce correct results.

One may argue that the above example is not so hard to
tackle. However, this is just a simplest example involving
sub-traversals in Gremlin. Such context separation is also
important in dynamic control flow such as loop, in which
each iteration must run separately from another. One can even
encounter sub-traversals involved with arbitrary combination
of complex structuring constructs, making the system design
uncontrollably complex. In addition, the number of separate
contexts required for the correct execution of a single Grem-
lin traversal can be proportional to that of the intermediate
traversers (e.g., select in query Q3), which can be of millions
to billions in our case. While it is possible to dynamically
create physical contexts as in [45], doing so at such a fine
granularity for Gremlin is clearly infeasible in practice.

4.2 The Scope Abstraction
To address the issues posted by Gremlin traversal, we propose
the Scope abstraction to help emancipate the system from the
need of maintaining context information.We first define the
concept of a Scope.

Definition 4.1. A Scope is a subgraph in a dataflow (sub-
dataflow) that satisfies the following condition: for any op-
erators o1 and o2 in the sub-dataflow and any operator o in
the dataflow, o must also be in the sub-dataflow if o is on a
directed path from o1 to o2.

A Scope has the same logical structure (and function) as
a dataflow operator, which can thus be reduced to one vir-
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tual “operator” in the dataflow graph. Naturally, we refer
to a Scope context, as the context of its enclosed operator.
It is allowed that a Scope Sp contains another sub-dataflow
as a nested Scope Sc as long as it satisfies the definition of
Definition 4.1. Sp is called the parent Scope of Sc, and Sc is
accordingly the child Scope of Sp. The whole dataflow is a
special Scope that we call as root Scope. The dataflow re-
garding the nested relationships of Scopes naturally form a
hierarchical structure.

Example 4.2. In the dataflow graph as shown in Figure 6,
the sub-dataflow comprised of o2, o3, o4 and o5 (as well as
all their edges) is a Scope Sc (as highlighted) and can be
reduced to one operator with I as its input stream, and O as
its output stream. The whole dataflow is the root Scope, which
is the parent Scope of Sc.

As we mentioned earlier, it is costly to create physical
dataflow operators as in [45] for a Gremlin query that poten-
tially requires a separate context for each data item. We there-
fore propose the Scope abstraction to handle the separation
of execution contexts in a Scope in a more light-weighted
manner. A Scope abstraction consists of three primitives,
namely Enter, Exit, and GoTo, and the interface of Scope pol-
icy. Specifically, Enter forwards a data item from a parent
Scope3 to a child Scope, while Exit sends data item back to a
parent Scope. As GoTo is primarily used for loop control flow,
we will introduce it in Section 4.3.

The Scope policy is installed by the compiler on each Enter

and GoTo primitives to fulfil different context-switch mecha-
nisms. Logically, we use a sequence number as context iden-
tifier to identify an execution context in a Scope, the Scope
policy contains the following interfaces (their implementa-
tions are in Section 4.4):

• CreateOrOpen(Data:e,CtxID:s): To create a new isolated
context for the input data e, or open an existing context
uniquely identified by s.

• GetContext(Data:e): To obtain the context identifier of the
data e.

• Complete(Data:e,CtxID:s): To mark that there will be no
more data for the context of s, after receiving e.

As an example, we present a built-in scope policy called
CONTEXT_PER_ENTRY (more policies will be introduced as fol-
lows). CONTEXT_PER_ENTRY creates a new context for each
input data. Let seq be a sequence number, initialized to 0.
For each input e, the CONTEXT_PER_ENTRY policy first applies
CreateOrOpen(e,seq) to create a new context for e. It then
immediately calls Complete(e,seq) to indicate that there will
be no more data for the context of seq. Finally, the policy
increments seq by 1 such that any future data will enter a
different context. In the following, we will detail how the
Scope abstraction facilitates the compilation of a Gremlin
query with nested traversals.

3It is more precisely a context of the Scope, while we refer to it as Scope
for short.

Figure 7: An example Scope execution with separate contexts.

4.3 Compilation of Gremlin using Scope
Compilation of a Gremlin query without dynamic control
flow or nested traversal is as similar to that in existing sys-
tems [41, 46, 47], we do not elaborate on it further. Both
dynamic control flow and nested traversal introduce sub-
traversals in a Gremlin query. GAIA compiles each such sub-
traversal into a Scope enclosed by a pair of Enter and Exit

primitives (can be multiple of them nested within each other).
The Scope abstraction handles the context separation in a
unified way. Due to space limit, this section presents the com-
pilation process of three representative Gremlin operators
(select, where, and repeat) to highlight the common pattern
of using the Scope abstraction.

Example 4.3. Figure 7 illustrates an example that GAIA
compiles the query Q3 (Section 4.1) into a dataflow using
Scope, in which the select-projection introduces a Scope
that encloses the sub-traversal of out().count(). As there
requires a separate execution context for each data entering
the Scope, GAIA installs a CONTEXT_PER_ENTRY policy on
the Enter. This way, each data can drive their own compu-
tation of out().count() in isolation, without concerning
about the context separation as posted in Section 4.1.

Dynamic control flow such as where-conditionals and
repeat-loops introduce addition complexity, as presented in
the following query:

Q4: g.V(2).as(’s’)
.repeat(out().simplePath())
.times(k-1)
.where(out().eq(’s’))
.path().limit(1)

We next focus on the compilation of these constructs, in-
spired by TensorFlow [45]. However, unlike [45], they can be
applied to a much finer granularity of each individual traversal
path in Gremlin. This is enabled by the Scope abstraction. We
further introduce the following primitive operators:

• Copy takes in a data e and outputs two identical data.
• Switch takes a data from its input and a boolean value p,

and forwards the data to either the True branch of dt or
False branch of d f , based on the predicate p.

• Merge accepts two input streams and merges them into one
single output stream.
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Figure 8: Compilation of control-flow constructs.

Conditional. Figure 8(a) shows an example of compiling a
where-conditional. Conceptually, the where statement deter-
mines whether a data, while arriving at where, will continue
to traverse, if the sub-traversal is evaluated to be true, or be
abandoned otherwise. As the conditional check happens for
each individual data, a CONTEXT_PER_ENTRY policy will be in-
stalled by the compiler in the Enter while entering the where

Scope. Each data enters the Copy, where one data goes into
the predicate body to drive the sub-traversal, and the other
data goes to the Switch. Based on returned boolean value of
the predicate body, the data with a True predicate will get out
of the Scope via the True branch, and the data with a False

predicate will go via the False branch (and get discarded if
not further used).
Loop. We first introduce other two built-in Scope policies.

• SINGLE_CONTEXT policy calls CreateOrOpen(e,0) for each
data e indicating that they all enter one context of 0. It calls
Complete(e,0), if and only if e = EOS.

• GET_AND_INC policy first calls GetContext(e) to obtain the
context of e as seq. Then it increases seq by 1 as seq′,
and calls CreateOrOpen(e,seq′) to enter the new context. It
finally calls Complete(e,seq′), if and only if e = EOS.

Figure 8(b) illustrates the compilation of repeat-loop. The
compiler installs the SINGLE_CONTEXT policy on the Enter

that forwards a data into the loop Scope, with a new con-
text of 0, or, in the 0-th iteration. Additionally, it installs
the GET_AND_INC policy on the GoTo. The GoTo primitive, as
mentioned earlier in Section 4.2, is used to explicitly switch
the context of data. Specifically in a loop, it leverages the
GET_AND_INC policy to allow any data produced from current
loop context to get switched to the next iteration. Naturally,
the context identifier can now serve as the loop count. The
loop body compiles any sub-traversal that will be run itera-
tively. Eventually, the data in the loop context will go though
a conditional Scope as we have discussed above. This condi-
tional Scope checks whether a termination condition is satis-
fied (such as arriving at the maximum iteration by times, or
traversing to a certain vertex by until). The data with a False

predicate is able to exit the loop, while the data with a True

predicate will proceed to the next iteration as a feedback data

stream via the GoTo, updating its context via the GET_AND_INC

policy to indicate entering the next iteration. Note that a con-
text must have been created or opened for each data e in a
Scope, and thus GetContext(e) can be safely called. The feed-
back data will be eventually merged back to the input (of the
sub-traversal) to drive the computation of next iteration.

4.4 Implementing Scope
It is challenging to implement Scope both correctly and effi-
ciently. While it is always possible to create physical dataflow
operators for each separate context, due to potentially un-
bounded number of such contexts in graph traversals (as de-
scribed in Section 4.1), this is clearly infeasible in practice.
GAIA instead dynamically tracks dependencies among input,
output, and internal states for each operator in a dataflow.

GAIA labels each traverser with a tag, which is a k-ary
vector of context identifiers, denoted as T = [s1,s2, . . . ,sk]

4,
where the dimension indicates the level of potentially nested
Scope. The root Scope is by default identified by a tag of [ ].
We define the following operations on a tag T :

T [∧] To get the last context identifier of T .
T [∧→ s] To replace the last context identifier of T

with s.
T [+1] To increase the dimension of T by 1, with

the new slot filled with a /0.
T [−1] To reduce the dimension of T by 1.

From now, each data e will be tagged as (T ;e), which al-
lows the system to be aware of the Scope and its different
contexts. The primitives of Enter and Exit, and the interface
functions in the Scope abstraction will explicitly modify the
tag, as follows.

• Enter increases the dimension of the tag by 1 to indicate
entering a Scope, as (T [+1];e).

• Exit reduces the dimension of the tag by 1 to indicate
leaving a Scope, as (T [−1];e).

• CreateOrOpen((T ;e),s) return a newly tagged data with the
last context identifier of T replaced as s, as (T [∧→ s];e).

• GetContext((T ;e)) returns the last context identifier of T ,
as T [∧].

• Complete((T ;e),s) produces a tagged EOS marker to indi-
cate the end of current context s, as (T [∧→ s];EOS).

Such data tagging is automatically handled by GAIA sys-
tem, and is transparent to any user interface. For the primitive
operators introduced in Section 4.3, they do not need to worry
about tags, and hence can still treat the tagged data as a “nor-
mal” data. For a computing operator o (with the logic fo) in
Gremlin, such as out and count, GAIA handles the computa-
tion as follows. It first extracts the actual data e, and apply the
computation logic fo(e). The computation will generate a set

4Such tagging appears to be similar to the timestamps in Naiad [27], but
it is used for dependency tracking in GAIA, without any physical meaning
of event time as in Naiad [27].
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Figure 9: An execution with dynamic dependency tracking.

of traversers Ω, and potentially modify a state τ of the opera-
tor. Then for all e′ ∈Ω, GAIA re-tags e′ with T and sends it to
the output stream. To handle any stateful computation, GAIA
maintains an associated map with tag T as the key and state
τ as the value, so that it can operate on the right state from
different execution contexts transparently, as if the operator
runs in isolation.

Example 4.4. Figure 9 shows the above process for the
dataflow in Figure 7. Initially, it accepts and computes inputs
{([ ];v3), ([ ];v4)} (path history is omitted) from the parent
Scope context. The Enter of the select Scope turns the
inputs to o3 as {([0];v3), ([0];EOS), ([1];v4), ([1];EOS)} ac-
cording to the CONTEXT_PER_ENTRY policy. Next, o3 outputs
{([0];v1), ([0];v2), ([1];v3)}. Note that EOS is omitted for
now. o4 can then maintain a hash table with the tag as key
and the partial count as value. Finally, while o4 receives the
EOS for the corresponding context, it can output the results as
{([0];2), [[1];1]}. The Exit restores the tags from o4’s output
and generates {([ ];2), ([ ];1)}.

Handling EOS Markers. An EOS marker can be introduced
by both the source operator and the Complete function in-
side a Scope (Enter). An EOS marker can go through any
computing operator without doing any de-facto computation,
while it must be carefully handled in the primitive operators,
especially Enter and Exit with the presence of Scopes.

Given a Scope, we call an EOS marker produced from out-
side the Scope as external EOS, and an EOS produced inside
the Scope as internal EOS. An external EOS marks the termi-
nation of a context in the parent Scope, and must exit back
to the parent Scope. Conversely, an internal EOS fulfills the
same purpose only in the current Scope, and should only be
propagated within. It is thus critical to differentiate the seman-
tics of the EOS markers in a Scope. To do so, we implement
the policy installed on the Enter to not call CreateOrOpen on
the external EOS marker, which can then be recognized as a
/0 context. In the Exit, GAIA only allows the external EOS to
leave the Scope.

Recall that Switch is another primitive operator used in con-
ditional and loop Scope that delivers a data to either branch
based on the predicate. The EOS marker, however, will always
be propagated to both branches. In the loop Scope, the exter-

Figure 10: Distributed execution on two compute nodes.

nal EOS, once propagating through the nested conditional,
will be held in the Exit of loop, and only released after the
system verifies that all loop contexts terminate (using known
techniques [45]). For the internal EOS, it will be tagged as
the other data in the GoTo. As long as any data with a tag T
is propagated to the next iteration, the EOS with T must also
be propagated over to GoTo (meaning that the associated loop
context has not terminated); otherwise, it will leave the loop
Scope and get discarded.

5 Distributed Execution
GAIA runs queries via a set of worker processors in a shared-
nothing cluster, where each worker executes a fragment of
the computation. For each query, GAIA first compiles it into
a dataflow graph using the techniques in Section 4, then it
partitions the source operator in the dataflow according to
the input graph partition, with the segment of operators that
follow the source replicated across the set of workers. A local
executor manages the computation on each worker by schedul-
ing the operators to run. It starts from the source operator and
repeatedly executes the following ready operators. Here, an
operator is ready if all its inputs are available to consume. For
now, GAIA requires the users to manually specify a degree of
parallelism (DOP) for a query upon submission. We leave it
as an interesting future work to automatically derive the DOP.
According to the DOP, the local executor parallelizes the op-
erators to execute on the multiple CPU cores, as illustrated
in Figure 10. While GAIA can support multiple concurrent
queries, we focus on single query processing in this paper.

5.1 Bounded-Memory Execution
Graph traversal can produce paths of arbitrary length, leading
to memory usage growing exponentially with the number of
hops. Although it is very common for Gremlin queries to
terminate with a top-k constraint and/or aggregate operation,
such an explosion of intermediate results can often lead to
memory crisis, especially in an interactive environment with
limited memory configuration. While several techniques exist
for alleviating memory scarcity in dataflow execution, such as
backpressure and memory swapping, they cannot be directly
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applied in GAIA due to potential deadlocks [25, 31] and/or
high (disk I/O) latency. To ensure bounded-memory execu-
tion without sacrificing performance (parallelism), the local
executor in GAIA employs a new mechanism for dataflow
execution, called dynamic scheduling.
Dynamic Scheduling. For each operator, GAIA packs a seg-
ment of consecutive traversers in a stream into a single batch,
and such a batch constitutes the finest data granularity for com-
munication and computation. A task can be logically viewed
as the combination of an operator and a batch of data to be
computed. GAIA dynamically creates tasks corresponding to
each operator when there is one or more batches available
from all its inputs5. The local executor maintains all the tasks
in a same scheduling queue to share resources.

We implement our own memory allocator that will report
the total amount of memory used (for each query) so that
the executor can watch the memory consumption. When it
reaches a predefined threshold (high-watermark), the execu-
tor stops scheduling more tasks from the queue, except for
those corresponding to the sink operators that will be sent to
the clients. The executor resumes scheduling tasks when the
memory consumption drops below another predefined thresh-
old (low-watermark). It is possible that a single task (with a
high-degree vertex) execution may produce too much output
to exhaust the memory. To avoid this issue, we suspend a task
when its output data exceeds a capacity bound, and resume it
after the data has been consumed.

Data shuffling between two machines may introduce depen-
dencies between their task scheduling. For example, a task can
cause another executor to run into low memory, if it sends too
much data to that executor. In this case, the sender task will
be suspended until the receiver executor recovers from low
memory. We implement a mechanism to send backpressure
signals across network to allow cooperation of schedulers.

An execution of a dataflow graph with cyclic edges can
potentially deadlock using bounded memory. In the specific
context of graph traversal, this can be caused either by infinite
loops such as traversing along a cyclic path without termina-
tion, or inappropriate scheduling such as buffer exhausted by
a BFS-prioritized traversing (will be discussed later) that pre-
vents downstream or sink operators from being scheduled to
drain the buffered intermediate data. To address infinite loops,
we apply a configurable limit N of the maximum number of
iterations allowed in a loop (with a small buffer reserved for
each iteration), and let the GoTo declare a deadlock when the
limit N is reached. Once a deadlock is detected, the corre-
sponding query is terminated with a clear error message. To
handle inappropriate scheduling, we adopt a hybrid traversal
strategy as described below.
Hybrid Traversal Strategy. As mentioned above, the mem-
ory crisis mainly stems from the intermediate paths, and
therefore the traversal strategies can greatly impact the

5The only exception is Merge, which is ready to run when data become
available at any of its inputs.

Figure 11: A loop execution with wasted computation.

memory usage. There are two typical traversal strategies,
namely (breadth-first-search) BFS-like traversal and (depth-
like-search) DFS-like traversal. BFS-like traversal can better
utilize parallelism, while it may produce data all at once that
drives high the memory usage. On the contrary, DFS-like
traversal tends to consume much less memory, while it may
suffer from low parallelism. With this observation, we propose
to allow the local executor to schedule tasks with priorities
according to its topological order (i.e. the traversal depth) in
the dataflow. Specifically, the executor can schedule the tasks
located at the same order with higher priority for a BFS-like
traversal, and prioritize those at downstream to follow a DFS-
like traversal. Note that such strategy works naively for all
the tasks but those in a loop context, where the traversers
from different iterations may be executed in the same task. To
resolve this, we let the operator’s buffer reorder (and group)
traversers by their iteration markers (obtained from the con-
text identifier) before packing them into batches. This makes
sure that we can prioritize tasks unambiguously even within
loops. To balance the memory usage with the performance
(parallelism), GAIA by default adopts a hybrid traversal strat-
egy, that is, it uses BFS-prioritized scheduling as it has better
opportunities for parallelization, and automatically switches
to DFS-prioritized in case that the current operator arrives at
the memory bound.

5.2 Early-Stop Optimization
Traversing all candidate paths fully is often unnecessary, espe-
cially for interactive queries with dynamic conditions running
on diverse input graphs. For example, in the following query
Q5, only the first k results are needed.

Q5: g.V(2).repeat(out().simplePath())
.times(4).path()
.limit(k)

This leads to an interesting tradeoff between parallel traver-
sal and wasted computation, as further illustrated in Figure 11.
It shows an example run of query Q5 with k = 1. The circle
denotes the traversal specified by the repeat-loop. Assume
we have enough computation resource (CPU cores), the paths
can be explored in a fully parallel fashion. However, once a
4-hop path is found, all the remaining parallel traversal will
be no longer required.
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For real-world queries on large graph data, such wasted
computation can be hidden deeply in nested traversals (e.g., a
predicate that can be evaluated early from partial inputs) and
significantly impact query performance. While avoiding such
wastage is straightforward in a sequential implementation, it
is challenging to do so for a fully-parallel execution.

Normally, the execution of a particular context terminates
when the EOS markers arrive at all the exits (from this con-
text), including any Exit or GoTo. In the above example, an
operator (e.g., limit) can actually terminates early after pro-
ducing k outputs, before receiving any input EOS markers.
GAIA further allows Complete((T ;e),s) to be called by any
operators in a Scope to explicitly produce a tagged EOS
marker (for current context s) to indicate the completeness
of its output (after sending e downstream). However, this
alone does not prevent upstream computation from continu-
ing producing output that is no longer required and thus the
corresponding computation is wasted.

To minimize such wastage, when a Complete is issued by
an operator, it creates a cancellation token associated with
the same context tag that is sent backward along input edges
to its upstream operators within the Scope. The token serves
as a signal for receiving operators to clear any unsent output
data and immediately insert an EOS marker for the particular
output stream. If such a token has been received from all
output streams, the operator further propagates it to its own
upstream operators, recursively, until it encounters the Enter

for the same Scope. Such cancellation notification is imple-
mented at a system level by GAIA. Due to space limit, We
omit further details on propagation of cancellation tokens in
any child Scope and/or through the GoTo to its dependent, pre-
vious contexts. We validate that such early-stop optimization
can significantly improve query performance in Section 6.

6 Evaluation

6.1 Experimental Setup
Datasets. We generate 5 graph datasets as shown in Table 1
for experiments using Linked Data Benchmark Council (or
LDBC) data generator [12], where Gx denotes that the graph
is generated with scale= x. We use G300 as the default dataset
if not otherwise specified. Note that G1000 is the largest data
graph that LDBC can generate.

Table 1: The LDBC datasets.

Name # vertices # edges Agg. Mem.
G1 3M 17M 4GB
G30 89M 541M 40GB
G100 283M 1,754M 156GB
G300 817M 5,269M 597GB
G1000 2,687M 17,789M 1,960GB

Queries. For comparison, we consider graph queries from the
Social Network Benchmark defined by LDBC [12] to model

industrial use cases on a social network akin to Facebook.
We choose 10 out of 14 complex read queries (denoted as
CR-1 . . .14) from LDBC’s Interactive Workload6.

In addition, the cycle-detection query Q6 is considered:
given m (by default 10) starting nodes in V , it traverses from
V via at most k (by default 4) hops, and returns those vertices
among V that can form at least n (by default 10) cycles along
the traversal. We modify the query based on the production
query as shown in Figure 1 to align with the LDBC data.
This query also shows the functionality of prepared statement
(“Discussion”, Section 4.3) enabled by the Scope abstraction,
which wraps multiple starting vertices into one query.

The driver client provided by LDBC is modified to run
each of the queries 20 times from a set of randomly selected
parameters. Average query latency is reported.
Configurations. In the following experiments, we by default
warm up all the systems to keep the computation-relevant
data in memory. We do this to focus on benchmarking the
computing engine instead of storage access.

All the queries have been implemented using Gremlin for
all systems except Neo4j (using Cypher officially), with cor-
rectness cross-verified. The compiling time of these queries in
our system is typically within 1ms, which is negligibly small
compared to the query runtime, and will be ignored thereafter.
We allow each query to run for at most 1 hour, and mark an
OT if a query can not terminate in time. We manually con-
figure the degree of parallelism (DOP) while running each
query in GAIA. In the following, we denote DOP = [x]× [y]
for running y threads in x machines.

We compare GAIA with the systems in Table 2. While Nep-
tune [1] is another popular Gremlin-enabled graph database,
we do not benchmark it as it is only available in AWS, and
its performance is similar to JanusGraph as shown in [42].
Timely [43] is the publicly available implementation of Na-
iad [27]. Plato [32] is an open-sourced implementation of
Gemini [49] (Gemini does not support (de)serializing vector-
like data for sending paths across network). We implement
GAIA using Rust [38], and are working on open-sourcing the
engine and storage.

Table 2: The evaluated systems.

System Version
TinkerGraph [3] 3.4.1
Neo4j-Community [29] 3.5.8
OrientDB [30] tp3-3.0.15
JanusGraph [21] 0.4.0-hadoop2
Timely [43] latest release in Github
Plato [32] latest release in Github

We deploy a cluster of up to 16 machines, and each machine
configures one 24-core Itel(R) Xeon(R) Platinum 8163 CPUs

6The remaining queries are either too simple (such as simple point-lookup
queries) or rely on user-defined logic (such as CR-4,10,13,14), which is not
supported by other popular TinkerPop-based systems.
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Figure 12: The scalability experiment.

at 2.5GHz and 512GB memory. The servers are connected
through 25Gbps network.

6.2 Scalability
To the best of our knowledge,GAIA is the only system that can
handle Gremlin queries at scale. In this experiment, we study
the scalability of GAIA while running all LDBC queries. We
divide these queries into two groups based on their runtime
to better present the result: (1) large queries CR-3, 5, 6 and 9;
(2) small queries CR-1, 2, 7, 8, 11, 12.
Scale-out. To study the scale-out performance, we fix y to
4 while varying x as 2, 4, 8, 167, and report the latency of
each case in Figure 12a and Figure 12b. We analyze the result
regarding the two query groups:
Large queries. These queries traverse large amount of data

and run relatively longer, while they scale well with up to 6×
performance gain from 2 machine to 16 machines. While CR-
3 performs the worst to obtain only 3× performance gain, we
recognize that it contains very complex nested sub-traversals
that may introduce extra cost in synchronization (e.g. waiting
for the EOS marker).
Small queries. Due to either effective filtering or small range
of traversal, the small queries only touch a small amount
of data and thus are not computation-intensive. We expect
that their performance may not be improved with more par-
allelism, while CR-2 and CR-12 still run consistently faster
as shown in Figure 12b. CR-1, as a relatively slow query in

7G300 is too large to be held on one machine.
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Figure 13: The experiment of our design choices.

this group, demonstrates seemingly counter-intuitive result.
The query actually asks to print out a lot of information after
locating the target vertices, which constitutes a majority of
the computation that cannot benefit from more parallelism.

Scale-up. We then fix x to 4, and vary y as 2, 4, 8, 16, and
report the result in Figure 12c and Figure 12d. Similar to
the scale-out cases, the large queries scale consistently, while
small queries do not gain speedup, as more parallelism is
used. It is interesting to compare the scale-out and scale-
up cases with the same DOP, [4]× [16] vs. [16]× [4] as an
example, we can observe [16]× [4] cases in-general perform
better, even it requires more communication. The result shows
that (1) communication cost is not a critical impact factor
for GAIA, for which the dynamic scheduling techniques can
seamlessly hide the communication cost by allowing ready
tasks to get scheduled; (2) data contentions may be a more
serious issue for interactive graph queries, as they are more
often confronted in fewer machines.

Data Size. Finally, we fix the DOP as [16]× [4], and run the
queries over the datasets of G30, G100, G300 and G1000. Note
that the sizes of these graphs are roughly linear to their scale
factors. The result is in Figure 12e and Figure 12f. For the
large queries, GAIA scales quite well with the growing of the
data. For the small queries (except CR-1, as explained earlier),
the performance stays roughly stable, as these queries only
touch a small amount of data.

Discussions. The experiment demonstrates reasonable trends
of scalability of GAIA: in general, the larger the query, the
better the scalability. Due to the irregularity of graph data
(and queries), it is challenging to derive the optimal DOP for
each query, while we leave it as an interesting future work.
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6.3 Our Design Choices
We study our design choices in this experiment by drilling
down to the performance factors including bounded-memory
execution (Section 5.1), hybrid traversal strategies (Sec-
tion 5.1) and early-stop optimization (Section 5.2). We run
Q6 on G300 using the DOP of [16]× [4], and report the query
latency and peak memory usage among all machines. We
use Q6 here as it includes complex nested Scopes with fine-
grained dependency, and it is a real query in production. We
conduct this experiment while adjusting the query parame-
ters m (number of starting vertices), k (the hop limit) and n
(the result limit) in Q6, and the system parameter of memory
upper-bound of each query (default 10GB) and traversal strate-
gies (default hybrid), and whether early stop is enabled (de-
fault enabled). We configure the following variants of GAIA,
namely GAIA (default settings), GAIA-DFS (manual DFS-
prioritized strategy)8, GAIA-NoMB (without/infinity memory
bound) and GAIA-NoES (without early stop).
Dynamic Scheduling. In this experiment, we study the effec-
tiveness of dynamic scheduling. We vary the memory upper-
bound as 256, 512, 1024, 2048, 4096 (MB) and infinity with
m = 10 starting vertices, and report the result in Figure 13a.
The actual memory usage (as labelled) of all cases is very
close to the bounded value, and is noticeably smaller than the
unbounded case, which has surged to more than 25GB. An
interesting observation is that the latency increases with the
memory bound. Note that graph traversal exhibits massive
parallelism and all the CPU cores available can be fully uti-
lized with just “enough” memory. Additional memory incurs
overheads (in allocation, buffering, etc.) rather than benefits.
Traversal Strategy. To verify the effectiveness of the hybrid
traversal strategy in GAIA, we compare GAIA with GAIA-
DFS/BFS. We vary n from 10 to 105, and report the time cost
and memory usage in Figure 13b. GAIA-DFS outperforms
GAIA when n ≤ 1000. This is because that DFS strategy
will prioritize scheduling operators in the deeper order (in the
dataflow), which can potentially escape earlier (thanks to early
stop) as soon as n cycles have been found. As n increases,
the hybrid strategy gradually catches up with, and eventually
outperforms DFS, as it can compute the required number of
cycles in a lower order. This experiment shows that the best
traversal strategy can be query- (and data-) dependent, and
the hybrid strategy is a more generic option.
Early Stop. We compare the performance of GAIA and GAIA-
NoES (without early stop). We vary n from 10 to 104, and
report the query latency and memory usage in Figure 13c.
When early stop is turned off, both the query latency and
memory usage remain fairly stable, as GAIA always computes
all result, regardless of the limit number. When early stop is
turned on, it can be observed that both the query latency and
memory consumption drop noticeably, compared to the cases
without early stop. In particular, the early-stop optimization

8Note that the BFS-prioritized strategy often causes out-of-memory, and
is thus excluded from our test.

Table 3: Comparison GAIA variants with big-data engines.

GAIA -DFS -NoMB -NoES Plato Timely
Lat./Sec. 79 4 440 972 1431 1690
Mem./GB 5.2 0.3 25.6 6.1 108 205

enables 12× improved performance and 1GB memory saving
when the limit number is 10.
Comparing with Big-Data Engines. Finally, we compare
our GAIA with existing high-performance engines, Timely
and Plato, in this experiment. We implement Q6 in Timely
and Plato9, which contains 105 and 95 logical lines of codes,
respectively. In comparison, the Gremlin query is written in 5
lines as presented in Figure 2. The query latency and memory
consumption of these engines, while varying m as 1, 5, 10,
15, 20, is shown in Figure 13d. GAIA achieves 16× and 14×
better performance, and consumes 21× and 10× less mem-
ory, than Timely and Plato, respectively. To demonstrate how
GAIA benefits from the proposed techniques to outperform
existing engines, we further bring different variants of GAIA
into the comparison, and the results of m = 10 are in Table 3.
The performance of GAIA drops by 5.5× without memory
bound, and by over 12× without early stop, while the latter is
already in the same order as those of Plato and Timely. Note
that GAIA-DFS even outperforms the default GAIA (hybrid)
due to the small result limit (n = 10). This experiment shows
that the novel design choices of GAIA, notably the Scope ab-
straction, and the techniques proposed on top of it, enable
more convenient programming and efficient execution of the
Gremlin queries over big-data engines.

6.4 Comparison with Graph Databases
Small-Scale DB. Although GAIA is designed to scale, we
show that GAIA demonstrates efficiency while compared to
graph databases on one single machine. Specifically, we use
the small graph G1 so that all the systems can load and process
queries in reasonable time; and for each LDBC query, we
choose the best query performance among the 4 systems
(TinkerGraph, Neo4j, OrientDB and JanusGraph) as the BSTI
for the query; then we vary the DOP of GAIA, and report the
relative performance of GAIA to BSTI in Figure 14.

GAIA performs comparably to the BSTI in most cases ex-
cept for queries CR-3 (up to 7× worse) and CR-12. Neo4j
performs better than any other systems on these queries. Fur-
ther investigation shows that, instead of faithfully traversing
the graph, Neo4j applies a join on some partial result to gen-
erate the output, which turns out to be more efficient in these
cases. We leave better query optimization of Gremlin on GAIA
as future work. As a whole, GAIA has an average relative per-
formance of just around 1.8 using single thread, and of 0.73
using 16 threads, among all LDBC queries.
Large-scale DB. We use G100 in this experiment to run all
LDBC queries. Note that we only compare JanusGraph, as

9For fair comparison, we implement cycle detection in Timely and Plato
using the same algorithm as in GAIA. In addition, we exploit all possible
optimizing options from both systems for the test.
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it is the only system that can store graph at this scale. Janus-
Graph cannot process query in parallel, and we run GAIA in
one machine for fair comparison. The graphs are stored in
8 machines for JanusGraph, and one single machine10 for
GAIA. We run each query on GAIA with DOP varying from 1
to 16, and report its max and min latency for each query while
compared to JanusGraph. The result is reported in Figure 15.
JanusGraph fails to answer many queries (CR-3,5,9) due to
OT. As shown, even the maximum latency (single-thread) of
GAIA is much shorter than that of JanusGraph in all cases.
Although GAIA is designed to scale in a cluster, it can further
benefit from multi-core parallelism in a single machine to
improve query performance, especially for large queries, as
can be seen in Figure 15.

7 Related Work
Graph Databases. Gremlin is widely supported by many
graph databases, such as Neo4j [29], OrientDB [30], Janus-
Graph [21], and cloud-based services including Cosmos
DB [6] and Neptune [1]. However, their query processing
is limited to one single process. Driven by rapidly growing
needs to query large graph data, several distributed in-memory
graph systems emerge, such as Trinity [40], ZipG [24],
Wukong+S [48], Grasper [20], and A1 [9]. Trinity and ZipG
offer their own programming models that are less flexible than
Gremlin. Grasper adopts Gremlin but provides a limited sub-
set of the language constructs (e.g., the lack of nested-loop

10Note that JanusGraph is properly warmed up to reduce the cost of pulling
data from remote storage.

support). Wukong+S and A1 leverage RDMA for serving
micro-second queries with much higher concurrency, which
is not the main target scenario of GAIA.
Graph Processing Systems. In contrast to many other sys-
tems that deal with batch-oriented iterative graph processing,
such as Pregel [26], PowerGraph [15], GraphX [16], and Gem-
ini [49], GAIA focuses on low-latency graph traversal at scale.
It is hard to support graph traversal in existing graph pro-
cessing systems. Firstly, their programming abstractions [22]
are usually low-level, makes these systems a privilege for
experienced users only [13]. Moreover, they typically adopt
the bulk synchronous parallel (BSP) execution model, which
is more suitable for an iterative routine processing over the
whole graph, but can be inefficient for running graph traversal
that visits an arbitrary portion of the graph.
Dataflow Engines and Dependency Tracking. A number
of existing systems such as CIEL [28], Naiad [27], and Ten-
sorFlow [45] offer generic data-parallel computing infras-
tructures with support for dynamic control flow. While it is
possible to program the logic of a Gremlin query on top of
these frameworks, it is extremely challenging to do so in the
pursuit of both correctness and efficiency, largely due to the
fine-grained dependency in Gremlin traversal. Tracking de-
pendency has been exploited to compute what is absolutely
necessary when there are limited changes to the input (e.g.,
incremental computing as in Incoop [7], DryadInc [33], Nec-
tar [19]), or frugal re-computation to repair lost state as in
MadLINQ [34] and TimeStream [35].
Declarative Programming Languages. Graph queries are
typically expressed using graph traversal and pattern match-
ing. Correspondingly, Gremlin [37] and Cypher [14] are the
most popular query languages. Cypher allows users to spec-
ify a graph pattern with variables. However, based on our
production experience, it is often challenging to compose
ad-hoc query pattern for a particular task. Therefore, we sup-
port Gremlin instead of Cypher in this work. Other notable
research projects in parallel declarative languages, such as
Cilk [8], can be leveraged by GAIA in theory, but they are not
particularly tailored for distributed graph traversal.

8 Conclusion
GAIA has been in use by a small community of domain ex-
perts for over a year in production at Alibaba. Our overall
experience is that GAIA, by combining the benefits of Grem-
lin with the power of distributed dataflow execution, proves
to be a simple, useful and efficient programming environment
for interactive analysis on big graph data.
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Abstract
Several emerging evolving graph application workloads de-
mand support for efficient ad-hoc analytics—the ability to
perform ad-hoc queries on arbitrary time windows of the
graph. We present TEGRA, a system that enables efficient ad-
hoc window operations on evolving graphs. TEGRA allows
efficient access to the state of the graph at arbitrary windows,
and significantly accelerates ad-hoc window queries by using
a compact in-memory representation for both graph and in-
termediate computation state. For this, it leverages persistent
data structures to build a versioned, distributed graph state
store, and couples it with an incremental computation model
which can leverage these compact states. For users, it exposes
these compact states using Timelapse, a natural abstraction.
We evaluate TEGRA against existing evolving graph analysis
techniques, and show that it significantly outperforms state-of-
the-art systems (by up to 30×) for ad-hoc window operation
workloads.

1 Introduction
Graph-structured data is on the rise, in size, complexity and
dynamism [1, 61]. This growth has spurred the development
of a large number of graph processing systems [16, 17, 19,
26, 27, 30, 33, 39, 42, 51, 54, 57, 59, 60, 68] in both academia
and the open-source community. By leveraging specialized
abstractions and careful optimizations, these systems have the
ability to analyze large, static graphs, some even in the order
of a trillion edges [20].

However, real-world graphs are seldom static. Consider,
the familiar example of social network graphs such as in
Facebook and Twitter. In these networks, “friends” relations
and tweets with “mentions” are created continuously result-
ing in the graph’s constant evolution. Similarly, each new
call in a cellular network connects devices with receivers
and can be used in real-time for network monitoring and di-
agnostics [31]. Additionally, emerging applications such as
connected cars [13], real-time fraud detection [9], and dis-
ease analysis [23] all produce such graph data. Analyzing
these time-evolving graphs can be useful, from scientific and
commercial perspectives, and is often desired [61].

In this paper, we focus on the problem of efficient ad-hoc
window operations on evolving graphs—the ability to per-
form ad-hoc queries on arbitrary time windows (i.e., segments
in time) either in the past or in real-time. To illustrate the need
for such operations, consider two examples. In the first, a

financial expert wishes to improve her fraud-detection algo-
rithm. For this, she retrieves the complete states of the graph
at different segments in time to train and test variants of her
algorithm. In the second example, a network administrator
wishes to diagnose a transient failure. To do so, she retrieves
a series of snapshots1 of the graph before and after the failure,
and runs a handful of queries on them. She iteratively refines
the queries until she comes up with a hypothesis. In such
scenarios, neither the queries nor the windows on which the
queries would be run are predetermined.

To efficiently perform ad-hoc window operations, a graph
processing system should provide two key capabilities. First,
it must be able to quickly retrieve arbitrary size windows start-
ing at arbitrary points in time. There are two approaches to
provide this functionality. The first is to store a snapshot every
time the graph is updated, i.e., a vertex or edge is added or
deleted. While this allows one to efficiently retrieve the state
of the graph at any point in the past, it can result in prohibitive
overhead. An alternative is to store only the changes to the
graph and reconstruct a snapshot on demand. This approach
is space efficient, but can incur high latency, as it needs to
re-apply all updates to reconstruct the requested snapshot(s).
Thus, there is a fundamental trade-off between in-memory
storage and retrieval time.

Second, we must be able to efficiently execute queries
(e.g., connected components) not only on a single window,
but also across multiple related windows of the graph. Exist-
ing systems, such as Chronos [30] allows executing queries
on a single window, while Differential Dataflow [54] and
GraphBolt [45] support continuously updating queries over
sliding windows. However, none of the systems support effi-
cient execution of queries across multiple windows, as they
do not have the ability to share the computation state across
windows and computations. This fundamental limitation of
existing systems arises from their inability to efficiently store
intermediate state from within a query for later reuse.

We present TEGRA2, a system that enables efficient ad-hoc
window operations on time-evolving graphs. TEGRA is based
on two key insights about such real-world evolving graph
workloads: (1) during ad-hoc analysis graphs change slowly
over time relative to their size , and (2) queries are frequently
applied to multiple windows relatively close by in time.

1A snapshot is a full copy of the graph, and can be viewed as a window
of size zero. Non-zero windows have several snapshots.

2for Time Evolving GRaph Analytics.
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Leveraging these insights TEGRA is able to significantly
accelerate window queries by reusing both storage and com-
putation across queries on related windows. TEGRA solves
the storage problem through a highly efficient, distributed,
versioned graph state store which compactly represents graph
snapshots in-memory as logically separate versions that are
efficient for arbitrary retrieval. We design this store using per-
sistent (functional) data-structures that lets us heavily share
common parts of the graph thereby reducing the storage re-
quirements by several orders of magnitude (§5). Second, to
improve the performance of ad-hoc queries, we introduce
an efficient in-memory representation of intermediate state
that can be stored in our graph state store and enables non-
monotonic3 incremental computations. This technique lever-
ages the computation pattern of the familiar graph-parallel
models to create compact intermediate state that can be used
to eliminate redundant computations across queries. (§4).

TEGRA exposes these compact persistent snapshots of the
graph and computation state using a logical abstraction named
Timelapse, which hides the intricacies of state management
and sharing from the developer. At a high level, a timelapse
is formed by a sequence of graph snapshots, starting from the
original graph. Viewing the time-evolving graph as consisting
of a sequence of independent static snapshots of the entire
graph makes it easy for the developer to express a variety
of computation patterns naturally, while letting the system
optimize computations on those snapshots with much more
efficient incremental computations (§3). Finally, since Time-
lapse is backed by our persistent graph store, users and com-
putations always work on independent versions of the graph,
without having to worry about consistency issues. Using these,
TEGRA outperforms state-of-the-art systems significantly on
ad-hoc window operation workloads (§7).

In summary, we make the following contributions:

• We present TEGRA, a time-evolving graph processing sys-
tem that enables efficient ad-hoc window operations on
both historic and live data. To achieve this, TEGRA shares
storage, computation and communication across queries by
compactly representing the evolving graph and intermediate
computation state in-memory.

• We propose Timelapse, a new abstraction for time-evolving
graph processing. TEGRA exposes timelapse to the devel-
oper using a simple API that can encompass many time-
evolving graph operations. (§3)

• We design DGSI, an efficient distributed, versioned property
graph store that enables timelapse APIs to perform efficient
operations. (§5)

• Leveraging timelapse and DGSI, we present an incremental
graph computation model which supports non-monotonic
computations across (non-contiguous) windows. (§4)

3Allows vertex/edge deletions, additions and modifications on any graph
algorithm implemented in a graph-parallel fashion.

2 Background & Challenges
We begin with a brief background on graph-parallel systems
(§2.1) and then describe various types of time-evolving graph
workloads (§2.2). The limitations of existing systems are
discussed (§2.3) before we layout the challenges in enabling
efficient ad-hoc analytics on evolving graphs (§2.4).

2.1 Graph-Parallel Systems

Most general purpose graph systems provide a graph-parallel
abstraction for performing computations. In the graph-parallel
abstraction, a user-defined program is run (in parallel) on ev-
ery entity in the graph, who then change their state depend-
ing on the neighborhood. This process is iteratively done
until convergence. Thus, the graph-parallel abstraction lets
the end-developer view distributed graph computations as
simpler entity centric computations, leaving the burden of
orchestration to the system. The simplest of the graph-parallel
abstraction is a vertex-centric model [46], where every vertex
independently runs the user program. Several other forms
have been proposed, such as the graph centric models [66],
edge centric models [59] and the more recent subgraph centric
models [57]. In all these models, the basic form of compu-
tation is implemented as message exchanges between the
entities and their corresponding state changes. Communi-
cation is enabled either via shared memory model [63] or
message passing interface [43]. PowerGraph [27] introduced
the Gather-Apply-Scatter (GAS) model, a popular vertex-
centric model adopted by many open-source graph processing
systems, where a vertex program is represented as three con-
ceptual phases: gather phase that collects information about
adjacent vertices and edges and applies a function on them,
apply phase that uses the function’s output to update the ver-
tex, and scatter phase that uses the new vertex value to update
adjacent edges. To perform a graph algorithm computation,
the system iteratively applies these phases until convergence.
TEGRA focuses on the GAS model. (§6).

2.2 Time-evolving Graph Workloads

Time-evolving graph workloads, an important graph work-
load [61], can be classified into three categories:

Temporal Queries: Here, an analyst is querying the graph
at different points in the past and evaluates how the result
changes over time. Examples are “How many friends did Al-
ice have in 2017?” or “How did Alice’s friend circle change
in the last three years?”. Such queries may have time win-
dows of the form [T −δ, T ] and are performed on offline data,
executed in a batch fashion.

Streaming/Online Queries: These workloads are aimed
at keeping the result of a graph computation up-to-date as
new data arrives (i.e., [Now− δ, Now]). For example, the
analyst may ask “What are the trending topics now?”, or use
a moving window (e.g., “What are the trending topics in the
last 10 minutes?”). These focus on the most recent data, thus
streaming systems operate on the live graph.
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Which towers were 
congested then?

What was the reason for 
congestion at these?

How about at 10am?

What did the network look 
like at 9am?

Figure 1: Carol, a network administrator, diagnoses issues by per-
forming ad-hoc queries on snapshots of the network at disjoint but
close-by points in time.

Ad-hoc Queries: In these workloads, an analyst is likely to
explore the graph by performing ad-hoc queries on arbitrary
windows. Below, we illustrate a real-world use case. We omit
some details and use fictitious names for anonymity.

Carol is a network administrator at a large cellular network
operator in the United States [58]. Her job is to manage several
thousands of wireless base stations, deployed across a large
geographic region. When problems occur, Carol is tasked with
finding the reason for the issue and fix them. For instance,
she may be trying to answer "What is the reason for poor
download throughput for (several) users at 9:00am?".

Cellular network operators collect extensive data (several
terabytes per day) from their network, and previous studies
have shown the benefits of viewing cellular network analytics
as a time-evolving graph problem [31]. Carol might start by
asking "What did the network look like at 9am?", when the
problem was reported. The query returns a graph view of
the network, depicted in fig. 1, where there are several base
stations (towers) serving many users. Carol doubts congestion
as the cause for low throughput, so the next query is "Which
towers were congested at this point?" that returns a subset
of towers from the original answer. Based on her extensive
domain knowledge, she knows that temporary congestion in
some towers do not cause persistent poor throughput, so she is
interested in learning if clusters of towers were congested. To
do so, she runs a connected component algorithm on the net-
work graph. Then, to confirm her hypothesis, she asks "How
about at 10am?" meaning to repeat the entire analysis again,
but now on a different subset of the data. By the time Carol
finishes her investigation, she has retrieved 100s of different
subsets of data, each depicting a snapshot of the network at
some disjoint, random point in time around the failure, con-
ducted exploratory analysis to test several of her hypothesis
including one where she runs connected components.

Thus, in ad-hoc workloads, not only does the analyst need
to access arbitrary windows, but also the queries and the
windows on which they are executed are determined just-in-
time (i.e., not predetermined). Further, the analyst applies the
same query to multiple (close-by, discontinuous) windows.

2.3 State of the Art & Limitations

Recent work in graph systems has made considerable progress
in the area of evolving graph processing. (§8)

Temporal analysis engines (e.g., Chronos [30], Immortal-
Graph [50]) operate on offline data and focus on executing
queries on one or a sequence of snapshots in the graph’s
history. Upon execution of a query, these systems load the rel-
evant history of the graph and utilize a pre-processing step to
create an in-memory layout that is efficient for analysis. Such
preprocessing can often dominate the algorithm execution
time [44]. As a result, these systems are tuned for operating
on a large number of snapshots in each query (e.g., temporal
changes over months or year), and are efficient in such cases.
Fundamentally, the in-memory representation in these sys-
tems cannot support updates. Additionally, these systems do
not allow updating the results of a query.

Proposals such as GraphOne [35,36] and Aspen [21] focus
on providing efficient storage for streaming computations.
These (typically single-machine) systems allow only storing
a few recent versions of the graph and do not support stor-
ing intermediate state, or updating the results of a previous
query. GraphOne [35, 36] combines circular edge logs and
adjacency store to allow storing a few recent versions of the
graph and dual versioning to decouple computation from stor-
age. However, the use of chaining (with compaction) in the
adjacency store to enable versioning introduces an ordering
constraint among the versions, and traversing (and applying
operations e.g., deletions) is necessary to retrieve a specific
snapshot. For ad-hoc analysis where arbitrary changes maybe
applied on a version, this may be expensive and fundamentally
difficult. Aspen [21] leverages functional/persistent datastruc-
tures to preserve previous version of the graph upon mutation
and presents C-trees, a highly compressed functional tree
that can store graphs efficiently (they do not allow property
graphs). This is similar in spirit to our use of persistent datas-
tructures in designing DGSI (§5). However, C-trees are tuned
for streaming workloads where there is one (or a few) previ-
ous version(s) and thus employ aggressive garbage collection
for efficiency. When large number of versions are required,
main memory becomes a bottleneck and thus it is necessary
to have a persistent storage based hybrid store (e.g., DGSI).

Streaming systems (e.g., Kineograph [19], Differential-
Dataflow [49], Kickstarter [67], GraphBolt [45]) operate on
live data and allow query results to be updated incrementally
(rather than doing a full computation) when new data arrives.
These systems only allow queries on the live graph, and do
not support ad-hoc retrieval of previous state. Additionally,
the incremental computation is tied to the live state of the
graph, and cannot be utilized over multiple windows.

Differential Dataflow (DD) [49] is a distributed system
that allows general, non-monotonic incremental computations
using special versions of operators. Each operator stores “dif-
ferences” to its input and produces the corresponding dif-
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ferences in output (hence the full output is not materialized),
automatically incrementalizing algorithms written using them.
While this technique is very efficient for real-time streaming
queries, incorporating ad-hoc window operations in it is fun-
damentally hard. Since the computation model is based on the
operators maintaining state (differences to their input and out-
put) indexed by data (rather than time), accessing a particular
snapshot can require a full scan of the maintained state. Fur-
ther, since every operator needs to maintain state, the system
accumulates large state over time which must be compacted
(at the expense of forgoing the ability to retrieve the past). Fi-
nally, intermediate state of a query is cleared once completed
and storing these efficiently for reuse is an open question.

GraphBolt [45], a single-machine streaming system,
presents a dependency driven "refinement" based computa-
tion model for (non-monotonic) incremental computations
that tracks dependency information as aggregation values
at vertices thus reducing the state requirements to O|V| (in
contrast to DD’s O|E|). Users can implement incremental
algorithms by defining user-defined refinement functions
(e.g., repropagate, retract and propagate) whose imple-
mentations are algorithm specific (e.g., Algorithm 3 in [45] for
PageRank), and iteratively refines aggregation values. Graph-
Bolt only stores the value aggregations for the current snap-
shot of the graph and does not present a solution for storing
multiple versions of aggregations or efficiently using/operat-
ing on them. Thus, GraphBolt does not support ad-hoc anal-
ysis. Building ad-hoc support requires building a state store,
similar to the solution we present (DGSI), tuned for Graph-
Bolt’s computation model and exposing the right APIs.

2.4 Challenges

Several challenges stand in the way of enabling efficient ad-
hoc analytics on evolving graphs. First is the ability to ef-
ficiently store and retrieve snapshots of the graph at arbi-
trary time windows. Second, we must be able to compactly
represent large amounts of computation state and use it to
accelerate future queries, across multiple windows using a
computation model that can leverage the state efficiently. Fi-
nally, the system should be able to provide users a natural and
intuitive way to operate on evolving graphs. Based on this,
our solution, TEGRA, consists of three components:
Timelapse Abstraction (§3): In TEGRA, users interact with
time-evolving graphs using the timelapse abstraction, which
logically represents the evolving graph as a sequence of static,
immutable graph snapshots (fig. 2). TEGRA exposes this ab-
straction via a simple API that allows users to save/retrieve/-
query the materialized state of the graph at any point.
Computational Model (§4): TEGRA proposes a computation
model that allows ad-hoc queries across windows to share
computation and communication. The model stores compact
intermediate state as a timelapse, and uses it to perform gen-
eral, non-monotonic incremental computations.
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Figure 2: A timelapse of graph G consisting of three snapshots. For
temporal analytics, instead of applying graph-parallel operations
independently on each snapshot (left), timelapse enables them to be
applied to all snapshots in parallel (right).

Distributed Graph Snapshot Index (§5): TEGRA stores
evolving graphs, intermediate computation state and results
in DGSI, an efficient indexed, distributed, versioned property
graph store which shares storage between versions of the
graph. Such decoupling of state from queries and operators
allow TEGRA to share it across queries and users.

3 Timelapse Abstraction & API
TEGRA introduces Timelapse as a new abstraction for time-
evolving graph processing that enables efficient ad-hoc ana-
lytics. The goal of timelapse is to provide the end-user with
a simple, natural interface to run queries on time-evolving
graphs, while giving the system opportunities for efficiently
executing those queries. In timelapse, TEGRA logically repre-
sents a time-evolving graph as a sequence of immutable, static
graphs (fig. 2), each of which we refer to as snapshot in the
rest of this paper. A snapshot depicts a consistent state of the
graph at a particular instance in time. TEGRA uses the popular
property graph model [26], where vertices and edges in the
graph are associated with arbitrary properties, to represent
each snapshot in the timelapse. For the end-user, timelapse
provides the abstraction of having access to a materialized
snapshot at any point in the history of the graph. This enables
the usage of the familiar static graph processing model in
evolving graphs (e.g., queries on arbitrary snapshot).

Timelapses are created in TEGRA in two ways—by the
system and by the users. When a new graph is introduced to
the system, a timelapse is created for it that contains a sin-
gle snapshot of the graph. Then, as the graph evolves, more
snapshots are added to the timelapse. Similarly, users may
create timelapses while performing analytics. Because snap-
shots in a timelapse are immutable, any operation on them
creates new snapshots as a result (e.g., a query on a snapshot
results in another snapshot as a result). Such newly created
snapshots during an analytics session may be added to an
existing timelapse, or create a new one depending on the
kind of operations performed. For instance, for an analyst
performing what-if analysis by introducing artificial changes
to the graph, it is logical to create a new timelapse. Mean-
while, snapshots created as a result of updating a query result
should ideally be added to the same timelapse. The system
does not impose restrictions on how users want to book-keep
timelapses. Instead, it simply tracks their lineage and allows
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save(id): id Save the state of the graph as a
snapshot in its timelapse. ID can
be autogenerated. Returns the id of
the saved snapshot.

retrieve(id):
snapshot

Return one or more snapshots
from the timelapse. Allows simple
matching on the id.

diff(snapshot,
snapshot): delta

Difference between two snapshots
in the timelapse. (§4)

expand(candidates):
subgraph

Given a list of candidate vertices,
expand the computation scope by
marking their 1-hop neighbors.
Used for implementing incremen-
tal computations ( §4)

merge(snapshot,
snapshot,func):
snapshot

Create a new snapshot using the
union of vertices and edges of two
snapshots. For common vertices,
run func to compute their value.
Used for implementing incremen-
tal computations ( §4)

Table 1: TEGRA exposes Timelapse via simple APIs.

users to efficiently operate on them. We describe how TEGRA
implements timelapses in §5.3.

Since timelapse logically represents a sequence of related
graph snapshots, it is intuitive to expose the abstraction using
the same semantics as that of static graph. In TEGRA, users
interact with timelapses using a language integrated API. It
extends the familiar Graph interface, common in static graph
processing systems, with a simple set of additional operations,
listed in table 1. This enables users to continue using exist-
ing static graph operations on any snapshot in the timelapse
obtained using the retrieve API. (§6.2)

3.1 Evolving Graph Analytics Using Timelapse

In addition to providing ad-hoc access to any snapshot, time-
lapse is also useful in enabling efficient time-evolving graph
analysis. The natural way to do graph computations over the
time dimension is to iterate over a sequence of snapshots. For
instance, an analyst interested in executing the degrees query
on three snapshots, G1, G2 and G3 depicted in fig. 2 can do:

for(id <- Array(G1,G2,G3))
result = G.retrieve(id).degrees

However, applying the same operation on multiple snap-
shots of a time-evolving graph independently is inefficient. In
graph-parallel systems (§2), degrees() computation is typi-
cally implemented using a user-defined program where every
vertex sends a message with value 1 to their neighbors, and
all vertices adding up their incoming message values. Such
message exchange accounts for a non-trivial portion of the
analysis time [62]. In the earlier example, sequentially ap-
plying the query to each snapshot results in 11 messages of
which 5 are duplicates (fig. 2).

To avoid such inefficiencies, timelapse allows access to
the lineage of graph entities. That is, it provides efficient
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Figure 3: 1 Connected components by label propagation on snap-
shot G1 produces R1. 2 Vertex A and edge A−B is deleted in G2.
Using the last result to bootstrap computation results in incorrect
answer R2. 3 A strawman approach of storing all messages during
the initial execution and replaying it produces correct results, but
needs to store large amounts of state.

retrieval of the state of graph entities in any snapshot. Using
this, graph-parallel phases can operate on the evolution of
an entity (vertex or edge) as opposed to a single (at a given
snapshot) value. In simple terms, each processing phase is
able to see the history of the node’s property changes. This
allows temporal queries (§2.2) involving multiple snapshots,
such as the degree computation, to be expressed as:

results = G.degrees(Array(G1,G2,G3))

where degrees implementation takes advantage of time-
lapse by combining the phases in graph-parallel computation
for these snapshots. That is, the user-defined vertex program
is provided with state in all the snapshots. Thus, we are able
to eliminate redundant messages and computation.

4 Computation Model
To improve interactivity, TEGRA must be able to efficiently
execute queries by effectively reusing previous query results
to reduce or eliminate redundant computations, commonly
referred to as performing incremental computation. Here, we
describe TEGRA’s incremental computation model.

4.1 Incremental Graph Computations

Supporting incremental computation requires the system to
manage state. The simplest form of state is the previous com-
putation result. However, many graph algorithms are iterative
in nature, where the graph-parallel stages are repeatedly ap-
plied in sequence until a fixed point. Here, simply restarting
the computations from previous results do not lead to correct
answers. To illustrate this, consider a connected components
algorithm using label propagation on a graph snapshot, G1
as shown in 1 in fig. 3 which entails result R1 after three
iterations. When the query is to be repeated on G2, restarting
the computation from R1 as shown in 2 computes incorrect
result. In general, correctness in such techniques depend on
the properties of the algorithm (e.g., abelian group) and the
monotonicity of updates (e.g., the graph only grows). Hence,
supporting general non-monotonic iterative computations re-
quires maintaining intermediate state.
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Figure 4: Two examples that depict how ICE works. Dotted circles indicate vertices that recompute, and double circles indicate vertices that
need to be present in the subgraph to compute the correct answer, but do not recompute state themselves. 1 5 Iterations of initial execution is
stored in the timelapse. 2 6 ICE bootstraps computation on a new snapshot, by finding the subgraph consisting of affected vertices and their
dependencies (neighbors). In 6 , C is affected by the deletion of A−C. To recompute state it needs D (yields subgraph C−D). 3 7 At every
iteration, after execution of the computation on the subgraph, ICE copies state for entities that did not recompute. Then finds the new subgraph
to compute by comparing the previous subgraph to the timelapse snapshot. In 7 , though C recomputes the same value as in previous iteration,
its state is different from the snapshot in timelapse and hence needs to be propagated. 4 8 ICE terminates when the subgraph converges and
no entity in the graph needs the state copied from stored snapshots in the timelapse.

TEGRA proposes a general, incremental iterative graph-
parallel computation model that is algorithm independent. It
leverages the fact that graph-parallel computations proceed
by making iterative changes to the original graph. Thus, it-
erations of a graph-parallel computation can be seen as a
time-evolving graph, where the snapshots are the material-
ized state of the graph at the end of each iteration. In each
of the snapshots, the intermediate state can be stored as ver-
tex and edge properties. Since timelapse can efficiently store
and retrieve these snapshots, we can perform incremental
computations in a generic fashion by invoking graph-parallel
computations on affected neighborhood. We call this model
Incremental Computation by entity Expansion (ICE).

4.2 ICE Computation Model

ICE executes computations only on the subgraph that is af-
fected by the updates at each iteration. To do so, it needs to
find the relevant entities that should participate in computa-
tion at any given iteration. For this, it uses the state stored as
timelapse, and the computation proceeds in four phases:
Initial execution: When an algorithm is executed for the
first time, ICE stores the state (using the save API) of the
vertices (and edges if the algorithm demands it) as properties
in the graph. At the end of every iteration, a snapshot of the
graph is added to the timelapse. The ID is generated using a
combination of the graph’s unique ID, an algorithm identifier
and the iteration number. As depicted in 1 and 5 in fig. 4,
the timelapse contains three and four snapshots, respectively.
Bootstrap: When the computation is to be executed on a
new snapshot, ICE needs to bootstrap the incremental com-
putation. Intuitively, the subgraph that must participate in the
computation at bootstrap consists of the updates to the graph,
and the entities affected by the updates. For instance, any
newly added or changed vertices should be included. Simi-
larly, edge modifications would result in the source and/or

destination vertices to be included in the computation. How-
ever, the affected entities alone are not sufficient to ensure
correctness of the results. This is because in graph-parallel
execution, the state of a graph entity is dependent on the col-
lective input from its neighbors. Thus, ICE must also include
the one-hop neighbors of affected entities, and so the boot-
strapped subgraph consists of the affected entities and their
one-hop neighbors. ICE uses the expand API for this purpose.
The graph computation is run on this subgraph. 2 in fig. 4
shows how ICE bootstraps when a new vertex D and a new
edge A−D is added. D and A should recompute state, but
for A to compute the correct state, it must involve its one-hop
neighbor B, yielding subgraph D−A−B.

Iterations: At each iteration, ICE needs to find the right sub-
graph to perform computations. ICE exploits the fact that
the nature of the graph-parallel abstraction restricts the prop-
agation distance of updates in an iteration. Intuitively, the
graph entities that might possibly have a different state at
any iteration will be contained in the subgraph that ICE has
already executed computation on from the last iteration. Thus,
after the initial bootstrap, ICE can find the new subgraph at
a given iteration by examining the changes to the subgraph
from the previous iteration (using diff) and expanding to
the one-hop neighborhood of affected entities (using expand).
For the vertices/edges that did not recompute the state, ICE
simply copies the state from the timelapse (using merge). For
instance, in 3 in fig. 4, though A and D recomputed, only D
changed state and needs to be propagated to its neighbor A
which needs B.

Termination: It is possible that modifications to the graph
may result in more (or less) number of iterations compared
to the initial execution. Unlike normal graph-parallel com-
putations, ICE does not necessarily stop when the subgraph
converges. If there are more iterations stored in the timelapse
for the initial execution, ICE needs to check if the unchanged
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parts of the graph must be copied over. Conversely, if the sub-
graph has not converged and there are no more corresponding
iterations, ICE needs to continue. To do so, it simply switches
to normal (non-incremental) computation from that point.
Thus, ICE converges only when the subgraph converges and
no entity needs their state to be copied from the stored snap-
shot in the timelapse. ( 4 and 8 in fig. 4)

By construction, ICE generates the exact same intermediate
states for all edges and vertices at all iterations, as compared
to running a full execution on the entire graph. Thus, not
only does ICE guarantee correctness of the incremental ex-
ecution, but also enables any algorithm implemented in a
graph-parallel fashion to be made incremental.

4.3 Improving ICE Model

Sharing State Across Different Queries Many graph algo-
rithms consist of several stages of computations, some of
which are common across different algorithms. For example,
variants of connected components and pagerank algorithms
both require the computation of vertex degree as one of the
steps. Since ICE decouples state, such common computations
can be stored as separate state that is shared across differ-
ent queries. Thus, ICE enables developers to generate and
compose modular states. This reduces the need to duplicate
common state across queries which results in reduced memory
consumption and better performance.
Incremental Computations Can Be Inefficient Incremen-
tal computation is not useful in all cases. For instance, in
graphs with high degree vertices, a small change may result in
a domino effect in terms of computation—that is, during later
iterations, a large number of graph entities might need to par-
ticipate in computation (e.g., Example 2 in fig. 4). To perform
incremental computation, ICE needs to spend computations
cycles to identify the set of vertices that should recompute
(using diff) and copy the state of vertices that did not do com-
putations (using merge). As a result, the total work done by
the system may exceed that of completely executing the com-
putation from scratch [24, 67]. Fortunately, the design of ICE
lets us overcome this inefficiency. Since ICE generates the
same intermediate states at every iteration as full re-execution,
it can switch to full re-execution at any point.
A Simple Learning Based Model for Switching A key re-
quirement for avoiding the inefficiencies with incremental
execution detailed previously is to determine when to switch
to full re-execution. This can be done at two places: at the start
of the incremental execution, or at iteration boundaries (i.e., at
the beginning of an iteration during the execution). In TEGRA,
we picked the latter. A strawman approach is to use a simple
threshold—for instance, active vertices in an iteration—to
determine when to switch. Unfortunately, such approaches
did not perform well in our evaluation, as we found that the
optimal point for the switch depends on a number of factors,
including the query, the properties of the graph and the nature

of the modifications. Thus, we use a simple learning based
approach to determining when TEGRA makes the switch.

In our approach, we train a simple random forest classi-
fier [14] to predict, at the beginning of an iteration, if switch-
ing to full re-execution from that point would be faster com-
pared to continuing with incremental execution. We do the
training in an offline phase, where we use several runs of
queries both in a full incremental and full re-execution mode
as the input, ensuring enough runs in both cases to avoid class
sensitivity. For each run, in every iteration, we record the fol-
lowing fields that we use as features for the learning: number
of vertices that participate in the computation, the average
degree of the active vertices, the number of partitions active,
the number of messages generated per vertex, the number
of messages received per vertex, the amount of data trans-
ferred over the network and the time taken for the iteration
to complete. To make the learning general, we also use a few
graph-specific characteristics such as the average degree of
vertices, the average diameter and clustering coefficient. The
label indicates whether switching to full recomputation in the
next iteration resulted in faster execution.

While simple, we found that this approach works well as
we show in fig. 11. Examination of the model revealed that it
tries to learn the significance of vertices that participate in the
computation (in terms of average degrees), the layout (how
they are partitioned) and graph characteristics (in terms of
diameter and clustering coefficient) in relation to the execu-
tion time. We plan to explore ways to improve our technique
(e.g., better/robust models) as part of our future work.

5 Distributed Graph Snapshot Index (DGSI)
To make timelapse abstraction and ICE computation model
practical, TEGRA needs to back them with a storage that satis-
fies the following three requirements: (1) enable ingestion of
updates in real-time, and make it available for analysis in the
minimum time possible, (2) support space-efficient storage
of snapshots and intermediate computation state in a time-
lapse, and (3) enable fast retrieval and efficient operations on
stored timelapses. These requirements, crucial for efficiently
supporting ad-hoc analytics on time-evolving graphs, pose
several challenges. For instance, they prohibit the use of pre-
processing, typically employed by many graph processing
systems, to compactly represent graphs and to make com-
putations efficient. In this section, we describe how TEGRA
achieves this by building DGSI. It addresses (1) and (2) by
leveraging persistent data structures to build a graph store
(§5.1, §5.2) that enables efficient operations (§5.3) while man-
aging memory over time (§5.4).

5.1 Leveraging Persistent Data Structures

In TEGRA, we leverage persistent data structures [22] to build
a distributed, versioned graph state store. The key idea in
persistent data structures is to maintain the previous versions
of data when modified, thus allowing access to earlier ver-
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Snapshot 1
v1 v2

{”name: Foo”} {”name: Bar”}

Snapshot 2

Figure 5: DGSI has one pART for vertices and one for edges in
each partition. Version 1 (v1) of a vertex pART stores properties of
vertices in its leaves. Vertex id traverses the tree to its properties
(e.g., name). Changes to vertices (e.g., property name changed from
Foo to Bar) generates a new version v2. The snapshot of the vertex
pART before (Snapshot 1, shown in solid box) and after (Snapshot
2, shown in dotted box) the change share common leaves. (§5.2)

sions. DGSI uses a persistent version of the Adaptive Radix
Tree [38] as its data structure. ART provides several properties
useful for graph storage such as efficient updates and range
scans. Persistent Adaptive Radix Tree (PART) [5] adds per-
sistence to ART by simple path-copying. For the purpose of
building DGSI, we reimplemented PART (hereafter pART) in
Scala and made several modifications to optimize it for graph
state storage. We also heavily engineered our implementation
to avoid performance issues, such as providing fast iterators,
avoiding unnecessary small object creation and optimizing
path copying under heavy writes.

5.2 Graph Storage & Partitioning

TEGRA stores graphs using two pART data structures: a ver-
tex tree and an edge tree. The vertices are identified by a 64-bit
integer key. For edges, we allow arbitrary keys stored as byte
arrays. By default, the edge keys are generated from their
source and destination vertices and an additional short field
for supporting multiple edges between vertex pairs. pART
supports prefix matching, so using matching on this key en-
ables retreiving all the destination edges of a given vertex.
The leaves in the tree store pointers to arbitrary properties.We
create specialized versions of pART to avoid (un)boxing costs
when properties are primitive types.

TEGRA supports several graph partitioning schemes, simi-
lar to GraphX [26], to balance load and reduce communica-
tion. To distribute the graph across machines in the cluster,
vertices are hash partitioned and edges are partitioned using
one of many schemes (e.g., 2D partitioning). We do not parti-
tion the pART structures, instead TEGRA partitions the graph
and creates separate pART structures locally in each parti-
tion. Hence logically, in each partition, the vertex and edge
trees store a subgraph (fig. 5). By using local trees, we further
amortize the (already low) cost4 associated with modifying
the tree upon graph updates.

To consume updates, TEGRA needs to send the updates to
the right partition. Here, we impose the same partitioning as
the original graph on the vertices/edges in the update.

4Modifications to nodes in ART trees only affect the O(log256 n) ancestors

5.3 Version Management

DGSI is a versioned graph state store. Every “version” corre-
sponds to a root in the vertex and edge tree in the partitions—
traversing the trees from the root pair materializes the graph
snapshot. For version management, DGSI stores a mapping
between a root and the corresponding “version id” in every
partition. The version id is simply a byte array.

For operating on versions, DGSI exposes two low level
primitives inspired by existing version management systems:
branch and commit. A branch operation creates a new working
version of the graph by creating a new (transient) root that
points to the original root’s children. Users operate on this
newly created graph without worrying about conflicts because
the root is exclusive to them and not visible in the system.
Upon completing operations, a commit finalizes the version
by adding the new root to version management and makes
the new version available for other users in the system. Once
a commit is done on a version, modifications to it can only
be done by “branching” that version. Any timelapse based
modifications cause branch to be called, and the timelapse
save API invokes commit.

TEGRA can interface with external graph stores, such as
Neo4J [4] or Titan [6] for importing and exporting graphs.
While importing new graphs, DGSI automatically assigns an
integer id (if not provided) and commits the version when the
loading is complete. We create a version by batching updates.
The batch size is user-defined. In order to be able to retrieve
the state of the graph in between snapshots, TEGRA stores
the updates between snapshots in a simple log file, and adds
a pointer to this file to the root.

The simplest retrieval is by using its id. In every partition,
DGSI then gets a handle to the root element mapped to this
id, thus enabling operations on the version (e.g., branching,
materialization). By design, versions in DGSI have no global
ordering because branches can be created from any version at
any time. However, in some operations, it may be desirable
to have ordered access to versions, such as in incremental
computations where the system needs access to the consecu-
tive iterations. For this purpose, we enable suffix, prefix and
simple ranges matching primitives on version id.

5.3.1 Implementing Timelapses

TEGRA implements timelapses using DGSI with its version
ids and the matching primitives it provides. Recall that each
timelapse logically represents a sequence of graph snapshots.
Hence, every snapshot stored in DGSI is part of one or more
timelapses. As a simple example, a user intending to track the
Twitter graph by time could create snapshots by appending
UNIX epoch to a unique ID for the graph (e.g., TWTR). In this
scheme, a snapshot created at 9:00AM on 01/01/2020 may be
given ID TWTR_1577869200. Prefix matching TWTR provides the
entire timelapse for this graph. When this snapshot is chosen
for a query, say PageRank, TEGRA can automatically append
an algorithm ID (e.g., PR) and an iteration number to gener-
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Figure 6: DGSI has fine-grained control over leaves (where data is
stored). Here DGSI has 1000s of snapshots. All snapshots except S
are on disk, their parents just hold pointers to files on disk. Parents
are also dynamically written to disk if all of their children are on
disk. Data structure uses adaptive leaf sizes for efficiency.

ate version IDs such as TWTR_1577869200_PR_1. Here, prefix
matching on TWTR_1577869200_PR provides the timelapse of
the execution of the page rank algorithm.

Currently, TEGRA only manages automatic ID genera-
tion for time-based snapshots and iterations of query exe-
cution. For instance, creating snapshots every hour is auto-
mated by doing a branch on the last snapshot in the TWTR

timelapse and commiting the new changes with new times-
tamp appended (e.g., TWTR_1577872800). Similarly, saving it-
erations of a query is as simple as keeping track and branch

ing the last snapshot in the corresponding timelapse, and
saving the new iteration with incremented iteration number
(e.g., TWTR_1577869200_PR_2). However, since TEGRA stores
IDs as byte arrays, users are free to choose any ID generation
schemes; for instance it is possible to come up with complex
hierarchical IDs that enable sophisticated retrievals using the
matching capabilities on IDs provided by DGSI.

5.4 Memory Management

Over time, DGSI stores several versions of a graph, and hence
TEGRA needs to manage these versions efficiently. We employ
several ways to do this. Between branch and commit opera-
tions, it is likely that many transient child nodes are formed.
We aggressively remove them during the commit operation.
In addition, we enable in-place updates when the operations
are local, such as after a branch and before a commit. Further,
during ad-hoc analysis, analysts are likely to create versions
that are never committed. We periodically mark such orphans
and adjust the reference counting in our trees to make sure
that they are garbage collected.

For managing stored versions, we leverage a simple Least
Recently Used (LRU) eviction policy. Each time a version is
accessed, we annotate the version and all its children with a
timestamp. The system then employs a thread for periodically
removing versions that were not accessed in a long time.
The eviction is done by saving the version to local disk (or
distributed file system). We do this in the following way. Since
every version in DGSI is a branch, we write each subtree in
that branch to a separate file and then point its root to the file
identifier (e.g., in fig. 5, we can store v2’s leaf that is different
from v1 in disk as a file and point the parent node to this file).

By writing subtrees to separate files, we ensure that different
versions sharing tree nodes in memory can share tree nodes
written to files. Due to this technique, we can ensure that leaf
nodes (which are most memory consuming) that are specific
to a version (not shared with any other version) are always
written to disk if the version is evicted. As depicted in fig. 6,
a large number of versions can be flushed to disk over time
while still being retrievable when necessary. Thus, only active
snapshots are fully materialized in memory, thereby allowing
TEGRA to store several snapshots.

6 Implementation
TEGRA is a drop-in replacement for GraphX [26]. It uses
the popular Gather-Apply-Scatter (GAS) [27] graph parallel
model. We utilize the barrier execution mode to implement
direct communication between tasks to avoid most Spark
overheads. Spark provides fault tolerance by checkpointing
inputs and operations for reconstructing the state. TEGRA
provides coarse-grained fault tolerance by leveraging Spark’s
rdd.checkpoint semantics. Users can explicitly run check-
point operation, upon which TEGRA flushes the contents in
DGSI to persistent storage. We currently do not support fine-
grained lineage-based fault tolerance provided by Spark.

6.1 ICE on GAS Model

As described in §4.2, the diff() API marks the candidates
that must perform graph-parallel computation in a given it-
eration. In GAS decomposition [27], the scatter() function,
invoked on scatter_nbrs, determines the set of active vertices
which must perform computation. Starting with an initial can-
didate set (e.g., at bootstrap the changes to the graph, and at
any iteration the candidates from the previous iteration) the
diff() API uses scatter_nbrs (EdgeDirection in GraphX) in
the user-defined vertex program to mark all necessary ver-
tices for computation. We mark all scatter_nbrs of a vertex
if its state differs from the previous iteration, or from the
previous execution stored in the timelapse. For instance, a
vertex addition must inspect all its neighbors (as defined by
scatter_nbrs) and include them for computation.

The vertices in GAS parallel model perform computation
using the user defined gather(), sum() and apply() functions,
where gather_nbrs determine the set of neighbors to gather
state from. The expand API enables correct gather() oper-
ations on the candidates marked for recomputation by also
marking the gather_nbrs of the candidates. After the diff

and expand, TEGRA has the complete subgraph on which the
graph-parallel computation can be performed.

6.2 Using TEGRA as a Developer

TEGRA provides feature compatibility with GraphX, and ex-
pands the existing APIs in GraphX to provide ad-hoc anal-
ysis support on evolving graphs. It extends all the opera-
tors to operate on user-specified snapshot(s) (e.g., Graph.

vertices(id) retrieves vertices at a given snapshot id, and
Graph.mapV([ids]) can apply a map function on vertices of
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def IncPregel(g: Graph[V, E],
prevResult: Graph[V, E],
vprog: (Id, V, M) => V,
sendMsg: (Triplet) => M,
gather: (M, M) => M): Graph[V, E] = {

iter = 0
// Loop until no active vertices and nothing to copy
// from previous results in timelapse.
while (!converged) {
// Restrict to vertices that should recompute
val msgs: Collection[(Id, M)] =
g.expand(g.diff(prevResult.retrieve(iter))).
.aggregateMessages(sendMsg, gather)

iter += 1
// Receive messages and copy previous results
g = g.leftJoinV(msgs).mapV(vprog)

.merge(prevResult.retrieve(iter)).save(iter) }
return g }

Listing 1: Implementation of incremental Pregel using TEGRA APIs.

the graph on a set of snapshots). Graph-parallel computation
is enabled in GraphX using the Graph.aggregateMessages()

(previously mrTriplets()) API. To use TEGRA, users in-
corporate the TEGRA API in table 1 in their normal, static
(non-incremental) versions of the algorithm at places where
graph’s state is mutated. These are places where GraphX’s
Graph.aggregateMessages() is used.

GraphX further offers iterative graph-parallel computation
support through a Pregel API which captures the GAS decom-
position using repeated invocation of the aggregateMessages

and joinVertices until a fixed point. Listing 1 shows how
a user might use TEGRA APIs to implement an incremental
version of Pregel. The code is reproduced from GraphX [26],
with minimal changes to incorporate TEGRA APIs to store
and retrieve state. In general, a developer can write incremen-
tal versions of any iterative graph parallel algorithm by using
the TEGRA APIs along with aggregateMessages.

7 Evaluation
We have evaluated TEGRA through a series of experiments.
Comparisons: We compare TEGRA against many state-
of-the-art systems (§2.3). For streaming system, we use
GraphBolt [45] and the Rust implementation of Differential
Dataflow (DD) [3]. Since we were unable to obtain an open
source implementation of a temporal engine, we developed
our version of Chronos [30] in GraphX [26], which we call
Chlonos (Clone of Chronos) in this section. This implementa-
tion emulates the array based in-memory layout of snapshots
and the incremental computation model in Chronos. We note
that while Chronos supports updates to graphs by storing the
temporal changes on disk, it uses a pre-processing step to
create an in-memory layout which is used for every query.
This in-memory layout does not support updates (§2.3) and
needs to be recreated every time. We compare DGSI against
GraphOne [35] and Aspen [21].

Dataset Vertices / Edges

twitter [11] 41.6 M / 1.47 B
uk-2007 [12] 105.9 M / 3.74 B
Facebook Synthetic Data [2] Varies / 5, 10, 50 B

Table 2: Datasets in our evaluation. M = Millions, B = Billions.

Evaluation Setup: All of our experiments were conducted on
16 commodity machines available as Amazon EC2 instances,
each with 8 virtual CPU cores, 61GB memory, and 160GB
SSDs. The cluster runs a recent 64-bit version of Linux. We
use Differential Dataflow v0.10.0 and Apache Spark v2.4.4.
We warm up the JVM before measurements. For single ma-
chine systems, we use a x1.32xlarge instance with 128 virtual
CPUs and 2 TB memory to be comparable with our cluster.
Dataset & Workloads: We evaluate TEGRA on a number of
real-world graphs depicted in table 2, with up to 50 billion
edges. TEGRA creates default properties at vertices and edges
to allow queries that compute on them (our comparisons do
not support arbitrary properties). We use three standard, well
understood, iterative graph algorithms with varying computa-
tion and state requirements, commonly used to evaluate graph
processing systems as queries: Connected Components (CC),
Page Rank (PR) [55] and Belief Propagation (BP) [74]. We
run PR until a specific convergence or 20 iterations, whichever
is lower. Note that while the queries in this section do not
access the vertex and edge properties explicitly (i.e., queries
do not ask for them), TEGRA depends on them extensively to
store intermediate state (§4).
Caveats. While perusing the evaluation results, we wish to
remind the reader a few caveats. Though many of the graphs
we use fit in the memory of a modern machine, TEGRA is
focused on ad-hoc analytics which requires storage of multi-
ple snapshots (and computation state) of the graph. Further,
ad-hoc analytics requires the use of property graphs. TEGRA
supports edge and vertex properties and creates a default
value, which increases the graph size by several magnitudes
and also affects performance. Finally, DD’s connected com-
ponent uses the union-find based implementation (hard to fit
in a vertex centric model) which is superior to TEGRA’s label
propagation based implementation.

7.1 Microbenchmarks

We first present experiments that highlight the effectiveness
of DGSI. GraphBolt is excluded as it doesn’t allow storing
multiple versions or intermediate state. (§2.3).
Snapshot Retrieval Latency: We generate 1000 snapshots
of the Twitter and UK graphs by randomly modifying (adding
and removing equal number) 1% of the edges (no computa-
tions are performed) to emulate the evolution of the graph.
Table 3 shows the average latency for 10 random retrievals
with varying number of snapshots in the system.
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Graph System # Snapshots in memory
200 400 600 800 1000

Twitter

DD 30.2 44.8 92.4 131.6 180.2
GraphOne 32.3 50.1 105.5 141.2 201.2
Aspen 0.43 0.54 0.53 0.57 0.65
TEGRA 1.34 1.5 1.25 1.78 2.1

UK

DD 63.1 86.4 220 271.5 283.2
GraphOne 74.3 102.2 263.5 321.4 332.5
Aspen 0.86 1.04 1.12 1.25 1.31
TEGRA 2.2 2.5 2.6 2.25 2.3

Table 3: Snapshot retrieval latency (in seconds). DD and GraphOne
require reconstruction, while TEGRA and Aspen can simply traverse
the data structure from a version’s root.

We see that TEGRA is able to return the queried snapshot
within seconds due to DGSI which stores and retrieves mate-
rialized snapshots efficiently. In contrast, DD needs to recon-
struct the graph from indexed differences and takes several
minutes. It also exhibits high variance in retrieval time based
on the amount of reconstruction required. GraphOne faces
similar challenge with its get-prior-edges() API which
needs to reconstruct the historic view from the durable edge
log. While not shown, Chlonos too exhibits similar character-
istics as DD but is significantly slower, in some cases up to
an order of magnitude. This is because it stores updates on
disk and needs an intensive preprocessing step to create the
in-memory layout. DD exhausts the memory available in our
cluster (≈1TB) in this experiment which limited the number
of snapshots we could store to ≈1000. One solution is to store
the updates in a persistent storage, but this incurs significant
performance degradation while retrieving (like Chlonos). As-
pen performs similar to TEGRA (slightly faster since it is able
to compress the graph significantly better) due to its use of
persistent data structures, hence it only needs to traverse the
tree from a specific root to retrieve a version (like DGSI).
However, it neither supports intermediate state storage nor
includes an incremental computation model.(§2.3)
Computation State Storage Overhead: To measure the
memory overhead due to computation state, we perform PR
and CC computation on the Twitter graph in an incremental
fashion, where we add and delete 1000 edges to create a snap-

shot. We note the memory usage by each system after every
200 such computations until 1000 computations (for a total
of 1 million edge updates). Figure 7 shows this experiment’s
results. When the number of updates is small, both TEGRA
and DD use comparable amount of memory to store the state,
even with DD’s highly compact layout (native arrays com-
pared to TEGRA’s property graph). However, DD’s state size
increases rapidly as it does more computation and takes up
to 2× that of TEGRA. TEGRA’s memory requirement also
increases over time, but much more gracefully. This is due to
the combined effect of TEGRA’s compact state representation
(proportional to the number of vertices) and the ability of
DGSI to manage memory efficiently (§5.4), while DD needs
to keep state (proportional to the number of edges) at every
operator. The amount of increase also depends on the algo-
rithm. For instance, page rank generates the same amount of
state in every iteration while connected component’s state
requirement reduces over iterations. Note that DD uses com-
paction in this experiment which is automatically done by the
system. While GraphBolt also reduces the state requirement
to be proportional to the number of vertices, it does not allow
storing computational state for later reuse.

7.2 Ad-hoc Window Operations

Here, we present evaluations that focus on TEGRA’s main
goal. In these experiments, we emulate an analyst performing
ad-hoc analytics. We load the graph, and apply a large number
of sequential updates to it, where each update modifies 0.1%
of the edges (adds and removes equal number) to adhere to
our assumption that during ad-hoc analysis the graph doesn’t
change much and it is possible to leverage incremental com-
putation (we show results with large changes in fig. 11). We
then retrieve 100 random windows of the graph that are close-
by, and apply queries in each. We assume that some earlier
results are available so that the system could do incremental
computations. We do not consider the window retrieval time
in this experiment for any system. We present the average
time taken to compute the query result.
Single Snapshot Operations: In the first experiment, we set
the window size to zero so that every window retrieval re-
turns a single snapshot. The results are depicted in fig. 8. DD,
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Graph 5B 10B 50B

PR CC BP PR CC BP PR CC BP
DD 1m 8s 1.5m 2m 34s - - - -
GraphBolt 29s 21s 1.1m 1.2m 28s 2.2m 5.3m 54s 12m
TEGRA 10s 5s 6.5s 19s 7s 9.3s 1.5m 18s 2.4m

Table 4: Ad-hoc analytics on big graphs, with 5 billion, 10 billion
and 50 billion edges. A ’-’ indicates the system failed to run the
workload. TEGRA can handle big graphs and large amounts of state
due to its efficient memory management (§5.4)

GraphBolt and Chlonos do not allow reusing computation
across queries, so they compute from scratch for every re-
trieval. In contrast, TEGRA is able to leverage the compact
computation state stored in its DGSI from earlier queries to
do incremental computation. In this case, most of the snap-
shots incur no computation overhead because of the small
amount of changes between them, and TEGRA is able to pro-
duce an answer within a few seconds. DD and GraphBolt take
a few 10s of seconds, while Chlonos requires 100s of seconds.
TEGRA’s benefits range from 18-30× compared to DD and
8-18× compared to GraphBolt.
Window Operations: Here we set the window size to be 10
snapshots. GraphBolt, Chlonos and DD are able to apply in-
cremental computations once the query has been computed
on the first snapshot. Figure 9 shows the results. We see that
DD is fast once the first result has been computed. This is due
to the combination of its extremely efficient streaming com-
putation model (no materialization) and recent optimizations
such as shared arrangements [48]. Chlonos incurs a penalty
initially because it uses the first result to bootstrap the rest
using its LABS model. TEGRA’s performance remains consis-
tent. This is due to two reasons. First, since TEGRA separates
state from computation, it can reuse the state across multiple
snapshots. Second, due to the use of persistent data structures,
snapshot can be independently and concurrently operated on
(§3.1). Since GraphBolt does not support concurrent process-
ing, it does sequential computation (in an incremental fashion)
on the snapshots. For simple queries (e.g., CC), the penalty
is unnoticeable. It becomes pronounced in BP which is more
computationally heavy. TEGRA is still 9-17× (5-23×) faster
compared to DD (GraphBolt).
Large Graphs & Large Amounts of State: Here we an-
swer two questions: (1) can TEGRA support ad-hoc analysis
on large graphs, and (2) can TEGRA efficiently manage mem-
ory when large amounts of state need to be stored? We use
synthetic graphs provided by Facebook [2] modeled using the
social network’s properties. We execute the queries once on
the original graph, then modify the graph by a tiny percentage
(0.01%) randomly 1000 times to create 1000 snapshots. We
then pick a snapshot, run the queries on it and provide the
average of 100 such runs in table 4. DD works well when
both the graph and the updates (and the generated state) are
small. However, as the graph becomes larger, DD needs to
push a large number of updates through the computation, and

Twitter UK
1K 10K 100K 1K 10K 100K

GraphBolt 15.1 15.3 15.0 21.5 21.8 21.7CF TEGRA 1.2 1.3 1.5 1.4 1.4 1.6
GraphBolt 17.1 17.6 17.8 28.1 28.6 28.9CoEM TEGRA 1.7 1.8 2.1 1.8 1.8 2.3
GraphBolt 22.1 22.4 22.6 30.1 30.2 32.4LP TEGRA 1.8 1.9 1.9 2.0 2.2 2.3
GraphBolt 68.1 68.5 69.2 5.2 5.4 5.7TC TEGRA 0.10 0.12 0.14 0.11 0.15 0.25
GraphBolt 0.6 0.7 0.8 0.8 0.8 0.9BFS TEGRA 0.15 0.16 0.16 0.21 0.21 0.25
GraphBolt 1.1 1.1 1.2 1.2 1.2 1.3k-hop (4-hop) TEGRA 0.6 0.6 0.55 0.7 0.7 0.8

Table 5: Running time (in seconds) for TEGRA and GraphBolt when
doing ad-hoc analysis with different batch sizes and algorithms.

state becomes a bottleneck in its performance. On the largest
graph, we were unable to get DD to work as it failed due to
excessive memory usage during initial execution. GraphBolt
doesn’t store any previous state, and hence is unable to do
incremental computations. It also required several optimiza-
tions to support the largest graph. In contrast, TEGRA is not
only able to efficiently use memory and disk (§5.4) and scale
to large graphs and snapshots, but also provide significant
benefits by using previous computation state.
Effect of Batch Size & Additional Algorithms: In this ex-
periment, we evaluate the effect of batch size on the ad-hoc
analysis capability of TEGRA. For this, we fix the batch size to
a specific number in each run, and use several other algorithms.
Specifically, we use Label Propagation (LP), Collaborative
Filtering (CF) and Triangle Count (TC) and Co-Training Ex-
pectation Maximization (CoEM) as used in GraphBolt [45].
For CoEM, we use the Latent Dirichlet Allocation (LDA)
implementation in GraphX which uses EM. We also provide
results on k-hop, which computes the set of vertices that are
k hops away, and Breadth First Search (BFS). For the k-hop
algorithm, we set k to 4 for all batch sizes.

In each run, we execute the algorithm first. We then gen-
erate several snapshots using varying batches of equal edge
additions and deletions. We choose three fixed numbers: 1K,
10K and 100K. We pick a random snapshot and repeat the
same algorithm on it. The results are shown in table 5.TEGRA
is able to perform incremental computation using previous
results, while GraphBolt does not support ad-hoc analysis and
hence need to execute the algorithm fully. We also notice that
varying batch size doesn’t affect TEGRA much, and that it is
able to provide results efficiently.

We note a few caveats here. In TC, the incremental compu-
tations are simple (edge additions and deletions do not result
in multiple iterations) and involves just updating a count based
on the edges added or deleted. Similarly, BFS and 4-hop al-
gorithms are light weight and result in only a very small part
of the graph to be active, especially during incremental com-
putation. Due to this reason, for these algorithms, we only
measure the actual computation time and ignore the schedul-
ing overhead in TEGRA. Hence, the times we report for these
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three algorithms are not end-to-end, but just the time it takes
for the computation task to complete.

7.3 Timelapse & ICE

Parallel computations. Here we evaluate the ability of Time-
lapse to do temporal queries, where a query is applied to a
sequence of snapshots in parallel (§3.1). We create 20 snap-
shots of the Twitter graph by starting with 80% of the edges
and adding 1% to it repeatedly. We run the connected compo-
nents algorithm, each time varying the number of snapshots
on which the computation is run. In each run, we measure the
time taken to obtain the results on all the snapshots considered.
For comparison, we use GraphX and apply the algorithm to
each snapshot in a serial fashion. The results are depicted in
fig. 10. We see that TEGRA significantly outperforms GraphX.
The improvement for a single snapshot is due to TEGRA’s
optimizations and use of barrier execution mode in Spark.
Further, we see a linear trend with increasing number of snap-
shots. By sharing computation and communication, TEGRA
is able to achieve up to 36× speedup.
ICE’s switching capability: To test ICE’s switching capabil-
ity when incremental computations are not useful (§4.3), we
run the CC algorithm on the Twitter graph. Next, we intro-
duce a batch of deletions in the largest components so that
incremental computation executes on a large portion of the
graph. We then make TEGRA recompute with and without
the switching enabled and average the results over 10 such
runs. The results are shown in fig. 11. We see that without
the switching, TEGRA incurs a penalty—the incremental ex-
ecution takes more time than complete re-execution of the
algorithm. With switching, TEGRA is easily able to identify
that it needs to switch and hence does not incur this penalty.
ICE’s versatility: Since ICE differs from streaming engines,
it can also provide flexibility in how it uses state. For in-
stance, if updates are monotonic (only additions), then ICE
can simply restart from the last answer instead of using full
incremental computations. Figure 12 shows this on two algo-
rithms on the UK graph. PR and CC can benefit, but PR is
faster since it only needs to converge within a given tolerance.
Sharing state across queries: To evaluate how much benefits
sharing state between different queries provides, we run an

experiment with CC and PR. For these queries, the degree
computation can be shared. We run the algorithms with and
without sharing enabled on the Twitter graph, and average
the results of 10 runs of incremental computations on random
snapshots. The results in fig. 13 show 20% and 30% reduction
in memory usage and runtime.

7.4 TEGRA Shortcomings

Finally, we ask “What does TEGRA not do well?”.
Purely Streaming Analysis: We consider an online query
(§2) of CC. To emulate a streaming graph, we first perform
CC computation on the graph. Then we continuously change
0.01% of the graph by adding and deleting equal number of
edges. After fixed number of changes (every 200), we show
the average runtime of 10 runs in fig. 14. We see that DD
and GraphBolt are significantly better than TEGRA for such
workloads. This is due to a combination of DD and GraphBolt
optimized for online queries (pushing small updates really
fast through computation) and their Rust/C++ implementation.
We remind the reader of two caveats here. First, DD uses
a much superior union-find approach to CC while TEGRA
and GraphBolt use an iterative approach. Second, TEGRA
only executes queries when it is asked to, whereas DD and
GraphBolt executes queries for every batch of updates (thus
TEGRA accumulates more updates when executing queries).
While TEGRA can theoretically process each small update
separately, the computation engine it builds on (Spark) is
tuned for batched updates.
Purely Temporal Analysis: We assume that the queries and
the window are known, and the system has optimized the data
layout. We run a query on a window size of 10 and compare
TEGRA and Chlonos on the incremental processing time (we
discard the time for full execution). Excluding processing
time, fig. 15 shows that TEGRA incurs a 15% performance hit
due to its use of tree structure.
COST Analysis: The COST metric [47] is not designed for
incremental systems, but we note that TEGRA is able to match
the performance of an optimized single threaded implemen-
tation using 4 machines, each with 8 cores and has a COST
of 32 cores. However, TEGRA uses property graphs while the
optimized implementation does not.
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8 Related Work

Analytics on Static Graphs: A large number of graph pro-
cessing systems [7, 8, 16, 18, 25–28, 37, 39–41, 56, 57, 59, 60,
65, 68–73, 76–81] focus on static graph processing, some of
which are single machine systems and some are distributed.
These systems do not consider evolving graph workloads.
(Transactional) Graph Stores: The problem of managing
time-evolving graph has been studied in the context of graph
stores [15,52,53,56]. These focus on optimizing point queries
which retrieves graph entities and do not support storing mul-
tiple snapshots. This yields a different set of challenges com-
pared to iterative graph analytics.
Managing Graph Snapshots: DeltaGraph [33] proposes a
hierarchical index that can manage multiple snapshots of a
graph using deltas and event lists for efficient retrievals, but
lacks the ability to do windowed iterative analytics. TAF [34]
fixes this, but it is a specialized framework that does not
provide a generalized incremental model or ad-hoc opera-
tions. LLAMA [42] uses a multi-version array to support
incremental ingestion. It is a single machine system, and
it is unclear how the multi-version array can be extended
to support data parallel operations required for iterative an-
alytics. Version Traveler [32] achieves switching between
snapshots of a graph by loading the common subgraph in the
compressed-sparse-row format and extending it with deltas. It
does not support incremental computation. GraphOne [35,36]
uses dual-versioning to provide access to recent snapshots.
It doesn’t support ad-hoc analysis or efficient retrieval of
arbitrary snapshots. Aspen [21] leverages functional data
structures to build a compressed streaming graph engine,
but doesn’t support incremental computations. Chronos [30]
and ImmortalGraph [50] optimizes for efficient computation
across a series of snapshots. They propose an efficient model
for processing temporal queries, and support snapshot stor-
age of the graph on-disk using a hybrid model. While their
technique reduces redundant computations in a given query,
they cannot store and reuse intermediate computation results.
Their in-memory layout of snapshots requires preprocessing
and cannot support updates. None of these systems support
storing computation state for later reuse.

Incremental Maintenance on Evolving Graphs: Kineo-
graph [19] supports constructing consistent snapshots of an
evolving graph for streaming computations but does not al-
low ad-hoc analysis. WSP [75] focuses on streaming RDF
queries. GraphInc [17] supports incremental graph processing
using memoization of the messages in graph parallel computa-
tion, but does not support snapshot generation or maintenance.
Kickstarter [67] and GraphBolt [45] support non-monotonic
computations, but do not support ad-hoc analysis or compactly
storing graph and state. Differential Dataflow [48, 49, 51, 54]
leverages indexed differences of data in its computation model
to do non-monotonic incremental computations. However, it
is challenging to do ad-hoc window operations using indexed
differences (§2.3). As we demonstrate in our evaluation, com-
pactly representing graph and computation state is the key to
efficient ad-hoc window operations on evolving graphs.
Incremental View Maintenance (IVM): In databases, IVM
algorithms [10,29] maintain a consistent view of the database
by reuse of computed results. However, they are tuned for dif-
ferent kinds of queries and not iterative graph computations.
Further, they generate large intermediate state and hence re-
quire significant storage and computation cost [49].
Versioned File Systems (e.g., [64]) allow several versions of
a file to exist at a time. However, they are focused on disk
based files in contrast to in-memory efficiency.

9 Conclusion

In this paper, we present TEGRA, a system that enables ef-
ficient ad-hoc window operations on evolving graphs. The
key to TEGRA’s superior performance in such workloads is a
compact, in-memory representation of both graph and inter-
mediate computation state, and a computation model that can
utilize it efficiently. For this, TEGRA leverages persistent data
structures and builds DGSI, a versioned, distributed graph
state store. It further proposes ICE, a general, non-monotonic
iterative incremental computation model for graph algorithms.
Finally, it enables users to access these states via a natural ab-
straction called Timelapse. Our evaluation shows that TEGRA
is able to outperform existing temporal and streaming graph
systems significantly on ad-hoc window operations.
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Abstract

This paper presents DST, a decentralized scalar timestamp

scheme to scale distributed transactions using multi-version
concurrency control (MVCC). DST is efficient in storage and
network by being a scalar timestamp but requiring no central-
ized timestamp service for coordination, which may become
a scalability bottleneck. The key observation is that concur-
rency control (CC) protocols like OCC and 2PL already im-
ply a serializable order among concurrent read-write transac-
tions through conflicting database tuples. To this end, DST
piggybacks on CC protocols to maintain the timestamp or-
dering with low cost and no new scalability bottleneck for
read-write transactions. DST further provides snapshot reads
with bounded staleness by using a hybrid scalar timestamp
(physical clock and logical counter).

To demonstrate the generality of DST, we provide a gen-
eral guideline for the integration of DST and further show
the effectiveness by using three representative transactional
systems (i.e., DrTM+R, MySQL cluster, and ROCOCO) with
different CC protocols. Experimental results show that DST
can achieve more than 95% of optimal performance (using
Read Committed) without compromising correctness. With
DST, DrTM+R achieves up to 1.8X higher peak throughput
for TPC-E and outperforms other timestamp schemes by 6.3X
for TPC-C. DST also leads up to 1.9X and 2.1X speedup on
TPC-C for MySQL cluster and ROCOCO, respectively.

1 Introduction

Many large-scale applications like Web services, stock ex-
change, and e-commerce require accessing scalable sharded
data stores in a consistent way. Among such accesses, a
large fraction requires consistently scanning data over many
shards despite concurrent updates on the fly. For example, an
examination of TPC-E [57], a sophisticated online transaction
processing benchmark that models stock exchange, uncovers
that 79% of transactions are read-only ones at run time. It
was also reported that 99.8% of accesses to Facebook’s dis-
tributed data store TAO are reads [16], which need strong
consistency along with transactional writes [7].

However, it is costly to provide transactional isolation to
read-only transactions [39] because a user read request may
result in thousands of sub-queries [7]. Pessimistically exe-
cuting a read-only transaction may cause unnecessary block-
ing to itself and concurrent read-write transactions, while op-
timistically executing it is likely to cause excessive aborts.
For instance, as shown in Fig. 1(a), there is a notable per-
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Fig. 1: Performance of (a) TPC-E and (b) TPC-C on a local 16-node

cluster using different CC protocols and TS schemes (see §5 for de-

tails). GTS and VTS stand for using OCC protocol, while the read-

only transactions read the snapshots delimitated by GTS and VTS.

RC/Incorrect stands for using RC protocol, which can provide opti-

mal performance, but at the expense of correctness. One machine is

dedicated for timestamp oracle, even OCC and RC have no need.

formance gap between using optimistic concurrency control
(OCC) [29] and read committed (RC) protocol for TPC-E.1

A common approach is to leverage multi-version concur-
rency control (MVCC) [13, 65] for transactional systems,
which has been widely adopted by nearly every commer-
cial database like PostgreSQL [3], Oracle [4], MySQL/Inn-
oDB [2], Hekaton [21], and SAP HANA [50]. MVCC si-
multaneously maintains multiple database snapshots by us-
ing timestamps to delimitate them. Thus, readers may read
tuples from a stale snapshot while writers can write the tu-
ples concurrently. It essentially unleashes the parallelism be-
tween concurrent readers and writers.

While MVCC extracts more concurrency for transactions
(especially for read-only transactions), it does not necessarily
approach optimal performance and/or scalability improve-
ment (see Fig. 1), due to the overhead of maintaining times-
tamp ordering at scale (§2.3). More specifically, a central-
ized sequencer (timestamp oracle) is usually used to provide
snapshot timestamp to transactions, which reflects a total or-
der among transactions (i.e., global timestamp (GTS)). How-
ever, such a mechanism not only adds more communications
but also causes overly-constrained concurrency control for
read-write transactions, leading to performance degradation
and scalability bottlenecks [14]. Vector timestamp (VTS),
which leverages a clock per worker or machine, only mit-
igates the scalability bottleneck of centralized timestamp
schemes but causes more network traffic, which grows lin-

1We evaluate different timestamp schemes on DrTM+R [18]. RC cannot
provide correct results as it completely disregards the conflicts between
read-write and read-only transactions. Detailed setup can be found in §5.
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early with the increase of workers or machines in the system.
Although recent work ameliorates the performance of cen-
tralized and/or vectorized timestamp schemes (e.g., batch-
ing requests [46, 27], timestamp compression [70], and ded-
icated fetch thread [70]), the fundamental performance and
scalability bottlenecks remain.

In this paper, we propose a new timestamp scheme,
namely, decentralized scalar timestamp (DST), which en-
ables MVCC without a centralized sequencer or vector times-
tamps. DST is motivated by a key observation: transac-

tion ordering provided by existing CC protocols already im-

plies serializable ordering among transactions, which can

be reused to maintain timestamp ordering in a lightweight

and scalable way. This is because any pair of conflicting
transactions must have conflicting accesses to a particular tu-
ple. Thus, the later transaction should see the timestamp of
the former transaction from the conflicting tuple and have a
larger timestamp.

DST piggybacks on CC protocols to derive a scalable
timestamp, in contrast to providing a separate timestamp
scheme. Specifically, DST starts with a scalar timestamp for
each transaction from a local clock and dynamically refines
the tentative timestamp through transaction execution with
the largest one from tuples in the read/write set. Upon com-
mit, a transaction will also install the refined timestamp to
the read/write set so that any transactions serialized after this
transaction will have a larger timestamp.

One key challenge is how to derive a consistent yet fresh

snapshot. DST leverages a decentralized design for read-only
transactions, which introduces a hybrid scalar timestamp to
provide snapshot reads with bounded staleness. Specifically,
the read-only transaction can read fresh tuples whose times-
tamp is within two times the maximum physical clock drift
under loosely synchronized clocks.2 The fresh and consistent
snapshot is obtained by attempting to read tuples using the
latest hybrid timestamp while detecting and reordering any
concurrent conflicting read-write transactions. In the hybrid
timestamp, the physical part (a loosely synchronized clock)
ensures the read-only transaction can read a fresh snapshot,
and the logical part (a monotonically increasing counter)
avoids possible overflow of the physical part.

To demonstrate the effectiveness and generality of DST,
we have implemented DST on three representative trans-
actional systems with different CC protocols, namely
DrTM+R [18] (OCC), MySQL cluster [1] (2PL), and
ROCOCO [43]. We also implemented two centralized times-
tamp schemes (GTS and VTS) on DrTM+R by following the
state-of-the-art [46, 70]. The experimental results on three
clusters show that DST can achieve more than 95% of op-
timal performance (using RC protocol) without compromis-
ing correctness. With DST, DrTM+R achieves up to 1.8X
and 6.1X performance improvements for TPC-E and TPC-C.

2The clock drift (aka clock skew) can be obtained using a network time pro-
tocol like the precision time protocol (PTP), which only affects the fresh-
ness of reads in DST rather than correctness.

A comparison with other timestamp schemes shows DST is
up to 1.7X and 6.3X faster than best of them for TPC-E and
TPC-C, respectively. Further, DST also leads up to 1.9X and
2.1X speedup on TPC-C for MySQL cluster and ROCOCO.

DST shares some similarities with decentralized times-
tamps proposed in prior work [68, 37], which optimize a
specific CC protocol for multi-core databases. For instance,
TicToc [68] uses a data-driven timestamp scheme to reduce
transaction aborts for OCC. Differently, DST is a general
timestamp scheme for various CC protocols (§4.2) and can
piggyback on each one efficiently in a distributed setting.

In summary, the contributions of this paper are:

• A decentralized scalar timestamp scheme called DST for
MVCC that enables efficient read-only transactions with
little impact on read-write transactions (§3.1 and §3.2), as
well as an intuitive proof of correctness (§3.3).

• A consistent yet fresh snapshot-read approach based on a
hybrid timestamp that provides bounded staleness (§3.4).

• To demonstrate the generality, DST is integrated into
three representative transactional systems with different
CC protocols, including OCC, 2PL, and ROCOCO (§4).

• A set of evaluations on three clusters with both mi-
crobenchmarks and applications (e.g., TPC-E, TPC-C, and
SmallBank) confirms the performance gains of DST (§5).

The source code of three transactional systems with DST,
including all benchmarks and experimental results, are avail-
able at https://github.com/SJTU-IPADS/dst.

2 Background and Motivation

2.1 Target Systems

DST is designed for general distributed transactions over
database data partitioned to multiple storage nodes. The
client’s transaction request is handled by a coordinator,
which interacts with storage nodes for executing the transac-
tion. During the transaction’s execution, the coordinator may
send read/write requests to read/write data from the storage
nodes; or send transactional requests (e.g., lock or unlock)
according to the database’s concurrency control protocol. It
batches requests (e.g., write and unlock) to avoid extra net-
work roundtrip.

Our goal is to support serializable read-only transaction
that never aborts, and does not interfere with read-write trans-
action. Further, it is desirable to execute reads in the read-
only transaction in one-roundtrip, i.e., the coordinator can
retrieve a consistent view of the data from the storage nodes
in one request.

2.2 MVCC and Timestamps

A common approach to support serializable read-only trans-
action without interfering with read-write transaction is
through multi-version concurrency control (MVCC). There
are two major design considerations for an efficient MVCC
system compared with single-version mechanisms [65]. The
first is how to cheaply allocate a globally-ordered version
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2PL with global timestamp (GTS)

At Oracle:                       ✁ timestamp server

+ GlobalTS             ✁ monotonic global timestamp

+ StableGTS             ✁ snapshot global timestamp 

+ Queue                  ✁ pending global timestamp

INSTALL(gts):

+1  add gts to Queue

STABILIZE( ):                 ✁ run asynchronously

+1  for each gts in Queue do

+2    if gts is ready then

+3      dequeue gts and gts → StableGTS

At Workeri:            ✁ i denotes the worker number

WRITE(tx,	id,	data)

1  acquire lock

2  add �id,	data� to tx.wset 

READ(tx,	id)

1  acquire lock and get latest �data�

2  add �id,	data� to tx.rset

3  return �data�

COMMIT(tx)

+1  tx.TS ← Oracle.GlobalTS   ✁ network round trip

2  for each w in tx.wset do

:3    update �w.data,	tx.TS� and release lock

3  for each r in tx.rset do

4    release lock

+5  Oracle.INSTALL(tx.TS)   ✁ network round trip

ROTX(tx)                         ✁ snapshot read

+1  tx.TS ← Oracle.StableGTS

+2  for each r in tx.rset do

+3   get �r.data� up to tx.TS

Fig. 2: Using GTS (i.e., blue code lines) to enable consistent snap-

shots for read-only transactions with 2PL. +N and :N denote new

and modified lines of code respectively.

for updating tuples transactionally. Deciding the version in-
stalled with tuples should have minimal impacts on read-
write transactions. The second is how to efficiently allocate a

freshly-stable version for reading tuples consistently. Read-
only transactions should have access to consistent snapshots
with low latency and high freshness. MVCC schemes typ-
ically adopt the concept of timestamps for tuple versions.
However, it is non-trivial to design a general timestamp
scheme that supports efficient snapshot reads while incurring
minimal overhead for broad CC protocols.

To motivate the design of DST, we start by briefly re-
viewing how existing timestamp schemes are applied to two-
phase locking (2PL) for MVCC and snapshot reads [45, 65].

Global timestamp (GTS). This approach leverages a times-
tamp service, namely timestamp oracle, to manage globally
ordered timestamps [46, 15, 21]. It provides two functions
for MVCC systems, as shown in Fig. 2. First, the read-
write transaction contacts the oracle for a commit timestamp
(GlobalTS) at the commit phase. Upon a successful commit,
this transaction creates a new version denoted by the commit
timestamp for each tuple in the write set (line:3 of COM-
MIT) and sends back the committed timestamp to the oracle
(line:5). Second, the read-only transaction contacts the ora-
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Fig. 3: A sample case of using GTS, where four transactions (TX1-

TX4) operate on three tuples (A, B, and C).

cle for a read timestamp (StableGTS) and retrieves tuples in
the read set with versions no larger than the read timestamp
(line:2-3 of ROTX).

Given the specification of extensions to 2PL with GTS in
Fig. 2, we analyze the transaction behavior in the case shown
in Fig. 3 to explain the design of GTS. There are four transac-
tions (TX1–TX4), which operate on three tuples (A, B, and C).
Note that non-conflicting transactions TX1 (green) and TX2

(orange) are both forced to acquire GlobalTS according to
the specification. This operation is necessary to maintain the
global timestamp ordering, yet results in overly-constrained
concurrency control and an extra network round trip com-
pared to the vanilla 2PL.

The necessity of the oracle to maintain StableGTS can be
revealed with the conflict between the timestamp order and
the commit order concerning TX1 and TX2. In this case, TX2

acquires a larger GlobalTS but commits before TX1. When
read-only transaction TX4 (red) starts, it cannot simply use
the latest committed timestamp (GlobalTS=5) for snapshot
reads. The snapshot would be inconsistent if the read-only
transaction observes TX2 before TX1 commits. Thus, transac-
tions must install commit timestamps so that the oracle can
determine the read timestamp (StableGTS=3) for TX4.

Vector timestamp (VTS). To reduce the overhead of acquir-
ing GlobalTS in the critical path of read-write transactions,
VTS replaces the global timestamp counter with a vector of
local timestamps. The vector contains a slot for each worker,
which records the per-worker timestamp. In each worker, a
local counter (LocalTS) is used to assign the commit times-
tamp for transactions, hence reducing one network round trip
compared to GTS. However, the oracle is retained in VTS to
maintain the StableVTS with similar reasons as GTS. Fig. 4
shows the specification of extensions to 2PL with VTS.

Fig. 5 presents a concrete case of using VTS. Each worker
maintains its local counter (W1:3, W2:2, and W3:5). The ver-
sion of a tuple is represented as 〈i : ts〉, where i is the
worker ID, and ts is the commit timestamp of the transaction
that writes the tuple. The initial StableVTS is (3, 2, 5), which
means that tuples with versions less than 〈1 : 3〉, 〈2 : 2〉, and
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2PL with vector timestamp (VTS)

At Oracle:                        � timestamp server

+ StableVTS              � snapshot global timestamp 

+ Queues                  � pending global timestamp

INSTALL(�i:ts�,	deps)

+1  add ��i:ts�,	deps� to a Queues[i]

STABILIZE( )                   � run asynchronously

+1  for each queue in Queues do

+2    for each ��i:ts�,	deps� in queue do

+3      if deps is ready then   � stability protocol

+4        dequeue ��i:ts�,	deps�

+5        �i:ts� → StableVTS

At Workeri:        � i denotes the worker number

+ LocalTS                � monotonic local timestamp

WRITE(tx,	id,	data)

:1  acquire lock and get latest �i:ts�

2  add �id,	data� to tx.wset 

+3  add �i:ts� to tx.deps

READ(tx,	id)

:1  acquire lock and get latest �data,	�i:ts��

2  add �id,	data� to tx.rset

+3  add �i:ts� to tx.deps

4  return �data�

COMMIT(tx)

+1  tx.TS ← LocalTS

2  for each w in tx.wset do

:3    update �w.data,	�i:tx.TS�� and release lock

4  for each r in tx.rset do

5    release lock

+6  Oracle.INSTALL(�i:tx.TS�,	tx.deps) � NT round trip

ROTX(tx)                          � snapshot read

+1  tx.TS ← Oracle.StableVTS

+2  for each r in tx.rset do

+3    get �r.data� up to tx.TS

Fig. 4: Using VTS (i.e., blue code lines) to enable consistent snap-

shots for read-only transactions with 2PL. +N and :N denote new

and modified lines of code respectively.

〈3 : 5〉 can be consistently read by read-only transactions.
Maintaining the stable timestamp (StableVTS) becomes

more complex in VTS because the per-worker timestamps
are not directly comparable [70, 8]. To convey the ordering
of transactions to the oracle for deciding StableVTS, workers
collect observed timestamps of accessed tuples from other
workers (e.g., 〈1 : 2〉 of C for TX2). Note that when read-
write transactions (TX1, TX2, and TX3) commit, they must
send all observed timestamps (deps) to the oracle (INSTALL

in Fig. 4). Moreover, read-only transactions (TX4) must re-
quest the whole vector timestamp (StableVTS) from the ora-
cle to start a snapshot read.

2.3 Analysis of Network Overhead

We present an in-depth analysis of centralized timestamp
schemes3 and attribute performance overhead and scalability
bottleneck to three main aspects:

3For brevity, we avoid prior sophisticated optimizations (incl. batching re-
quests [46, 27], timestamp compression and dedicated fetch thread [70])
for timestamps in here, but enable all of them in the evaluation (§5).
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Non-scalable timestamp oracle. Prior work [46, 61, 11, 59,
67, 37] has shown that a centralized timestamp oracle will
become the scalability bottleneck of MVCC systems. The
throughput of schemes using a shared counter with atomic
operations (GTS) [31, 21, 25] is limited to less than 10 M op-
s/s (GlobalCNT in Fig. 6(a)). The throughput will further de-
crease due to maintaining the stable timestamp for read-only
transactions (+StableTS). VTS mitigates the scalability issue
by using a local counter for read-write transactions. Besides,
prior work [70] avoids the mechanism for the stable times-
tamp (reaching close to 40 M ops/s) at the expense of increas-
ing transaction aborts. However, the network will first be-
come the bottleneck for both GTS and VTS (Network). Con-
sequently, the throughput of timestamp oracle (TSOracle)
can only reach 1.26 M and 2.39 M ops/s for GTS and VTS
respectively, which may be enough for TPC-E (281 K txns/s)
but far not enough for TPC-C (1.64 M txns/s) and SmallBank
(80 M txns/s) even only scaling out to 16 machines.

Using fast networks can boost the throughput of times-
tamp oracle, while the performance of transactional sys-
tems will also increase much [23, 64, 26, 70], and CPU
may first become the bottleneck [59]. Moreover, batching
requests [46, 27] or dedicated fetch thread [70] can allevi-
ate the timestamp-related load on the network4, while these
techniques also amplify the staleness of the data retrieved by
read-only transactions, and increase the abort rate and the
end-to-end latency of read-write transactions (see §5.1).

Costly timestamp allocation. A centralized timestamp
scheme will inevitably cause extra network communication
overhead for each read-write transaction. GTS demands two
network round trips, one for obtaining the commit timestamp
and one for installing it. VTS uses per-worker local coun-
ters to assign the commit timestamp, but still demands one
network round trip to install the timestamp. Given that most
transactions operate on tuples in local partitions [56, 54, 55],
especially for read-write transactions, additional network
round trips will notably lengthen the critical section of trans-

4We enabled these optimizations for GTS and VTS in our evaluation (§5).
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One machine is dedicated for timestamp oracle, even NoTS has no need. Each machine spawns 24 server workers.

actions and further increase the chance of conflicts, causing
extra transaction aborts or blocking time. Thus, it is non-
trivial to hide the network round trips without sacrificing the
latency of transactions (e.g., batching requests [46, 27]).

The overhead of timestamp allocation highly depends on
the execution time of transactions. Hence, we implement a
microbenchmark only consisting of read-write transactions,
which do not access any tuples and just spin in a loop for a
given time. As shown in Fig. 6(b), the overhead of VTS is
moderate (from 10% to 30%) compared to not using times-
tamp schemes (NoTS), when the execution time is close to
that of read-write transactions in TPC-E (from 1,400µs to
470µs). The throughput will significantly drop more than
80% when transactions execute in about 50µs, which is sim-
ilar to that of read-write transactions in TPC-C. Further, GTS
can only achieve half of VTS throughput, since it demands
one more round trip to obtain the commit timestamp.

Large traffic size. VTS mitigates the timestamp overhead
by using per-worker local counters as the commit timestamp
for read-write transactions. However, a critical downside is
that a whole vector of per-worker timestamps must be ob-
tained as the read timestamp first, and then be transferred to
every tuple for performing consistent snapshot reads. In con-
trast to the scalar timestamp (e.g., GTS), this overhead grows
linearly with the increase of workers or machines in the sys-
tem. For most transactional workloads [54, 55, 56, 57], the
size of the vector timestamp can become orders of magni-
tude larger than the tuple size, even in a moderate-sized clus-
ter. Using the per-machine counter in VTS (i.e., all workers
on one machine share one timestamp slot) can reduce traf-
fic size [8]. However, these workers have to share a local
counter by using atomic operations (e.g., CAS), which will
incur additional overhead on read-write transactions [70].

To demonstrate the impact of traffic size, we implement
a microbenchmark only consisting of read-only transactions,
which read ten 8-byte tuples with 90% of which being local
accesses. In Fig. 6(c), the performance collapse of VTS is
due to the increase of timestamp vector obtained from the
oracle and transferred to remote tuples. Note that GTS is still
one order of magnitude slower due to extra one round-trip to
fetch the read timestamp (even scalar), compared to NoTS.

3 Decentralized Scalar Timestamp (DST)

Managing globally ordered timestamps in a centralized ser-
vice inevitably results in the problem of maintaining the con-
sistency between timestamp ordering and transaction order-
ing. More importantly, without a holistic decentralized de-
sign, the timestamp scheme cannot achieve good scalability.
This observation can be backed by the aforementioned per-
formance bottlenecks due to acquiring commit/read times-
tamps and installing committed timestamps. Such operations
add significant overhead to the execution of CC protocols.

To fundamentally overcome the above drawbacks of tradi-
tional timestamp schemes, we propose DST, a decentralized

scalar timestamp that facilitates the multi-version concur-
rency control (MVCC) implementation for broad CC proto-
cols with efficient snapshot read support and minimal over-
head. The intuition behind our design is that the timestamp

scheme can piggyback on concurrency control protocols to

maintain the timestamp ordering with low cost and no new

scalability bottleneck to read-write transactions.
In this section, we first use two-phase locking (2PL) as an

example to explain the basic protocol of DST for read-write
and read-only transactions (§3.1 and §3.2). We then prove
the serializability of read-only transactions with DST (§3.3)
and introduce a hybrid scalar timestamp to provide snapshot
reads with bounded staleness (§3.4). Finally, we discuss the
impact of DST on the fault-tolerance scheme (§3.5).

3.1 Timestamps in Read-write Transaction

DST is a fully decentralized timestamp without a centralized
sequencer (timestamp oracle) to provide total order times-
tamps for read-write transactions and stable timestamps for
read-only transactions. Therefore, DST must ensure that the
derived timestamps for read-write transactions always match
the transaction ordering.

The CC protocol is used to ensure the serializable trans-
action ordering and provide the following three properties,
where Transaction A (TXA) commits before Transaction B
(TXB), and both of them access a conflicting tuple O.

PROPERTY 1: Write-Write. TXB’s write (WB(O)) should
overwrite TXA’s write (WA(O)) or generate a newer version.
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Read-write Transaction: 2PL with DST

At Workeri:          ✂ i denotes the worker number

+  LocalTS            ✂ monotonic local timestamp

START(x)

+1   x.TS ← LocalTS

WRITE(x,	id,	data)

:1   acquire lock and get ts

2   add �id,	data� to x.wset 

+3   x.TS ← max(x.TS,	ts+1)

READ(x,	id)

:1   acquire lock and get latest �data,	ts�

2   add �id,	data� to x.rset

+3   x.TS ← max(x.TS,	ts+1)

4   return data

COMMIT(x)

1   for each w in x.wset do

:2     update �w.data,	x.TS and release lock

3 for each r in x.rset do

:4 update �x.TS� and release lock

+5   LocalTS ← max(LocalTS,	x.TS)

Fig. 7: Specification of read-write transaction for 2PL with DST.

+N and :N denote new and modified lines of code respectively.

PROPERTY 2: Write-Read. TXB’s read (RB(O)) should re-
trieve TXA’s write (WA(O)).

PROPERTY 3: Read-Write. TXA’s read (RA(O)) should not
retrieve TXB’s write (WB(O)).

To match the transaction ordering, DST should ensure TXB’s
commit timestamp (TSB) is larger than TXA’s commit times-
tamp (TSA) under the above case. The general idea is to
piggyback over the CC protocol to derive a commit times-
tamp from conflicting tuples. Fig. 7 presents how DST is
integrated with two-phase locking (2PL), and Fig. 8 also
illustrates the execution of sample transactions with DST.
DST leverages conflicting tuples and above three properties
to transmit commit timestamps between dependent transac-
tions. The additional codes for DST in WRITE, READ, and
COMMIT (see Fig. 7) are commented on corresponding oper-
ations in the following explanations.

Write-Write property. Transaction TXA installs value (VA)
with commit timestamp (TSA) into the tuple O.

〈VA, TSA〉 → O

TSA → O.ts ⊲ line:2 of COMMIT

Transaction TXB reads the timestamp of tuple O (O.ts) and in-
stalls new value (VB) with a larger commit timestamp (TSB)
into the tuple O.

O.ts → ts ⊲ line:1 of WRITE

max(ts+1, TSB) → TSB ⊲ line:3 of WRITE

〈VB, TSB〉 → O

TSB → O.ts ⊲ line:2 of COMMIT

In Fig. 8, TX1 (green) commits before TX3 (purple), and both
of them write tuple A. Therefore, the commit timestamp of
TX3 should be larger than that of TX1. Using DST, TX1 in-
stalls its value (5) with its commit timestamp (TS1=4) into
tuple A. After that, TX3 should derive a larger timestamp

(TS3=5) from the timestamp of tuple A (A.ts=4) and use it
to install new value (3) into tuple A. Note that the write oper-
ations will update both the tuple’s timestamp and the value’s
timestamp (as a tuple may have multiple values with differ-
ent versions).

Write-Read property. Transaction TXA installs value VA with
its commit timestamp TSA into tuple O.

〈VA, TSA〉 → O

TSA → O.ts ⊲ line:2 of COMMIT

Transaction TXB reads value VA of tuple O with timestamp
O.ts and installs a larger commit timestamp TSB.

O → 〈VA, ts〉 ⊲ line:1 of READ

max(ts+1, TSB) → TSB ⊲ line:3 of READ

TSB → O.ts ⊲ line:4 of COMMIT

In Fig. 8, TX1 (green) commits before TX3 (purple), and TX1

writes tuple A before TX3 reads it. Therefore, the commit
timestamp of TX3 should be larger than that of TX1. Using
DST, TX1 installs its value 5 with its commit timestamp
(TS1=4) into tuple A. After that, TX3 reads the timestamp of
tuple A (A.ts=4) and derives a larger timestamp (TS3=5).

Read-Write property. Transaction TXA installs commit times-
tamp TSA into tuple O since it has read the value of tuple O.

TSA → O.ts ⊲ line:4 of COMMIT

TXB reads timestamp of tuple O (O.ts) and installs new value
VB with a larger timestamp TSB into tuple O (O.ts).

O.ts → ts ⊲ line:1 of WRITE

max(ts+1, TSB) → TSB ⊲ line:3 of WRITE

〈VB, TSB〉 → O

TSB → O.ts ⊲ line:2 of COMMIT

In Fig. 8, TX1 (green) commits before TX3 (purple), and TX1

reads tuple B before TX3 writes it. Therefore, the commit
timestamp of TX3 should be larger than that of TX1. Using
DST, TX1 reads an old value (5) of tuple B and installs its
commit timestamp (TS1=4) into tuple B. After that, TX3 will
derive a larger timestamp (TS3=5) and use it to install new
value (2) into tuple B.

3.2 Timestamps in Read-only Transaction

DST ensures that the order of derived commit timestamps for
read-write transactions always matches the transaction order-
ing. Therefore, read-only transactions can directly pick any
timestamp (TSRO) to read a consistent snapshot by compar-
ing its read timestamp with the timestamps of tuples.

Since the (snapshot) read-only transaction does not follow
the CC protocol (e.g., lock/unlock tuples before/after read-
ing values), the read-only transaction may read a part of up-
dates of a concurrent read-write transaction. For example, in
Fig. 8, the read-only transaction TX4 (red) and the read-write
transaction TX3 (purple) are concurrently executed. If TX3

commits between the read operations to tuple A and tuple B

in TX4, and then TX4 will read an old version of tuple A (5)
and a new version of tuple B (2).
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To ensure the serializability of read-only transactions,
DST asks the read-only transaction to claim its operations
actively before reading the tuple. It first installs its read times-
tamp (TSRO) into the tuple and waits until the conflicting
read-write transaction commits (e.g., the tuple is not locked),
if the timestamp of the tuple is not larger than the read times-
tamp (DEP_READ in Fig. 9). Note that the read-only trans-
action will only wait for at most one conflicting read-write
transaction because if the concurrent read-write transaction
starts after the claim, it will definitely see the read times-
tamp through accessing the tuple and derive a larger com-
mit timestamp. Consequently, the read-only transaction will
skip all of the updates from this transaction. If the concurrent
read-write transaction starts before the claim, it will hold the
lock of the tuple. The read-only transaction will wait until
the read-write transaction commits. No matter the commit
timestamp is larger or smaller than the read timestamp, a
read-only transaction can always read a consistent snapshot
by ignoring or reading all of the updates from conflicting
transactions. Note that CC protocols ensure the atomicity of
read-write transaction’s updates.

As shown in Fig. 8, the read-only transaction TX4 will
install its read timestamp (TS4=7) into tuples with smaller
tuple timestamps (line:1 of DEP_READ in Fig. 9). For un-
locked tuple C, TX4 will directly read the value up to the
timestamp (1). For locked tuple A and B, TX4 will wait until
the concurrent read-write transaction TX3 commits. In this
example, since TX3 does not see the read timestamp of TX4,
the commit timestamp of TX3 is still smaller than the read
timestamp of TX4 (5 vs. 7). Hence, TX4 can read all updates
from TX3 (A=3 and B=2).

3.3 Proof of Correctness

THEOREM (SERIALIZABILITY). DST implements serializ-

able read-only transactions, which always read a consistent

snapshot generated by serializable read-write transactions.

PROOF SKETCH. The intuition of the proof is that if a read-
only transaction can be serialized with read-write transac-

Read-only Transaction: 2PL with DST

At Workeri:          ✄ i denotes the worker number

+  LocalTS             ✄ monotonic local timestamp

ROTX(x)                         ✄ snapshot read

+1   x.TS ← LocalTS

+2   for each r in x.rset do

+3     DEP_READ(x,	r)

DEP_READ(x,	r)     

+1   if r.ts <= x.TS then              

+2     r.ts ← x.TS     ✄ atomic (CAS)

+3     wait until r not locked      ✄ if conflict

+4   get �r.data� up to x.TS

Fig. 9: Specification of read-only transaction for 2PL with DST.

tions, then it reads a consistent snapshot. We provide a proof
sketch by contradiction based on this intuition: i.e., if a read-
only transaction cannot be serialized with read-write transac-
tions, then it leads to a contradiction. Before giving the proof,
we need to prove following two lemmas first:

LEMMA 1. Given two dependent read-write transactions

TX1 and TX2, if TX2 depends on TX1, then TX2’s timestamp

(TS2) is larger than TX1’s timestamp (TS1).

PROOF. If TX2 directly depends on TX1
5, this lemma follows

directly from the algorithm (see §3.1) that TX2 always calcu-
lates TS2 based TS1. If TX2 transitively depends on TX1, in
a proof by contradiction we assume TS1 is not smaller than
TS2, then in the partial dependent graph denoted by TX1 →
... → TXi → TXj ... → TX2

6, there exists TXi and TXj that TXj

directly depends on TXi, but its timestamp is not larger than
TXi’s, which is a contradiction with the first case.

LEMMA 2. Given a read-only transaction TXRO and a read-

write transaction TXRW, TXRO observes TXRW’s update on tu-

ple O
7, if and only if TXRO’s timestamp (TSRO) is not smaller

than TXRW’s timestamp (TSRW).

PROOF. First, if TXRO observes TXRW’s update on O, then
TSRO is not smaller than TSRW. Because TXRW updates O

with TSRW and content atomically (e.g., 2PL), TXRO waits for
TXRW’s commit. Second, if TSRO is not smaller than TSRW,
then TXRO eventually observes TXRW’s update on O. Assume
TXRO does not observe TXRW’s update, then TXRO reads O be-
fore TXRW commits its update. One situation is TXRO reads
O before TXRW’s request arrives, it leads a contradiction that
TXRO update O’s timestamp to be TSRO before the read. An-
other situation is TXRO reads O after TXRW calculates TSRW,
but before committing its update. This leads to the contra-
diction that TXRO always waits for the concurrent TXRW to
commit (e.g., 2PL).

PROOF OF THE THEOREM. TX1 updates A, TX2 updates B,
and TX2 depends on TX1. Assume read-only transaction TXRO

only observes TX2’s update on B, but does not observe TX1’s

5TX2 is conflicting with TX1, and TX2 accesses the conflicting tuples imme-
diately after TX1.

6The symbol → indicates the happen-before relation.
7It means TXRO’s read on O happens after TXRW’s update.
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update on A (i.e., inconsistent reads).8 From LEMMA 2, we
have TSRO is not smaller than TS2, while TS1 is larger than
TSRO. Therefore, we have TS1 is larger than TS2, which is
contradictory to LEMMA 1.

3.4 Hybrid Timestamp and Bounded Staleness

Hybrid timestamp. The commit timestamp of a read-write
transaction is derived from the timestamps of tuples in its
read/write set, and the read timestamp of a read-only trans-
action can be any timestamp in the past, at present, or even
in the future. Therefore, the local timestamp (LocalTS) is not
essential for the correctness of DST. However, the read-only
transaction may suffer from either staleness or performance
issues if using an improper read timestamp. If the read times-
tamp is too small (past), the read-only transaction may read
an excessively stale snapshot. If the read timestamp is too
large (future), the read-only transaction will frequently in-
stall its read timestamp into tuples and wait until conflicting
read-write transactions commit (DEP_READ in Fig. 9).

DST adopts a combination of physical clock and logic

counter as a hybrid timestamp. The 64-bit timestamp con-
sists of the 48-bit physical part (high-order bits) and the 16-
bit logic part (low-order bits). DST uses a loosely synchro-
nized clock as the physical part and uses a monotonically
increasing counter as the logical part. At the beginning of
the transaction, it will acquire a local hybrid timestamp com-
posed of the current physical clock and zero-initialized logic
counter (START in Fig. 7 and line:1 of ROTX in Fig. 9). The
logical part of the hybrid timestamp is used to avoid possi-
ble overflow of the physical part since the timestamp will
be incremented when calculating the maximum timestamp
(e.g., line:3 of WRITE in Fig. 7). On the other hand, the
physical part of the hybrid timestamp is used to ensure the
read-only transaction can read a fresh snapshot.

Bounded staleness. Based on the hybrid timestamp, DST
can provide snapshot reads with bounded staleness.

THEOREM (BOUNDED STALENESS). The updates of read-

write transactions can be observed in at most ∆, where ∆
is the maximal duration any machine needs to make its local

clock increased by 2 × ε, and ε is the maximal clock drift

between any two machines in the cluster.

PROOF SKETCH. First, we prove the following two lemmas:

LEMMA 1. Given a read-write transaction TXRW, its commit

timestamp (TSRW) is not larger than tm + ε, where tm is the

local machine time on TXRW commits.

PROOF. If TSRW is larger than tm + ε, then there is a TXi

which accesses a tuple before TXRW, and TSi is larger than
tm+ε. As the timestamp is calculated from its local machine
time or the tuples it accessed, we can inductively find a trans-
action TXj whose timestamp is larger than tm + ε, and it is
calculated from its local machine time. It is a contradiction
to the maximal clock drift between any two nodes is ε.

8The proof is also correct for TX1 and TX2 are the same transaction.

LEMMA 2. For any read-only transaction TXRO starts after

TXRW commits, its read timestamp TSRO is larger than tm−ε.

PROOF. This follows that TXRO calculates its timestamp
based on local machine time and the clock drift between any
two nodes cannot be larger than ε.

PROOF OF THE THEOREM. With LEMMA 1 and 2, we can
have a fact that, if TXRO starts after TXRW, then TSRO cannot
be smaller than TSRW−2 × ε. Since any machine is able to
increase its local machine time by 2 × ε in ∆, we can con-
clude that the updates of TXRW will be visible in the duration
of ∆.

3.5 Failure and Recovery

The CC protocol should provide a proper fault-tolerance
scheme to recover the transactional system from various fail-
ures. For example, the primary-backup replication [30] is
widely used to provide high availability in prior work [23, 18,
26]. The fault-tolerance schemes can usually work with var-
ious timestamp schemes by replicating tuples together with
the commit timestamps of read-write transactions. However,
the fully decentralized design of DST has two sides. The ad-
vantage of this approach is to avoid handling the failure of
centralized timestamp oracle, which may cause a stop-the-
world recovery [70]. The disadvantage is the potential cost
to maintain the consistency of decentralized timestamps be-
fore and after some failure occurs.

An obvious, but costly solution is to replicate the read
timestamps of read-only transactions together with tuples, as
the commit timestamps of read-write transactions. Because
the missing read timestamp may cause a new conflicting
read-write transaction to use a smaller commit timestamp to
write tuples; the read-only transaction may read some tuples
with an old version and other tuples with a new version be-
fore and after the failure occurs, respectively.

To avoid replicating or persisting read timestamps, DST
provides two alternative solutions that can be selected ac-
cording to the behavior of workloads or the CC protocol asso-
ciated. More specifically, after recovery, DST can selectively
abort and re-execute either the remaining read-only transac-
tions that read tuples on crashed machines or the remaining
read-write transactions that write tuples on crashed machines.
Consequently, there is no additional overhead and modifica-
tion associated with the normal execution of transactions, re-
gardless of which approach is selected.

4 Generality of DST

DST is a general timestamp scheme to enable efficient read-
only transactions with little impact on read-write transac-
tions. Hence, it is easy to integrate DST with various CC
protocols, and DST can also cooperate with many optimiza-
tions [37, 43] on CC protocols. In this section, we first lay
out a general guideline for piggybacking DST on various CC
protocols, and then demonstrate the efficacy of this guideline
by applying it to three representative transactional systems
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(DrTM+R, MySQL cluster, and ROCOCO) with different CC
protocols (OCC, 2PL, and ROCOCO).

4.1 A Guideline for Integrating DST

Read-write transaction. DST should allocate a commit
timestamp for the read-write transaction that is larger than
any dependent transactions’ timestamp. Thus, two following
tasks (RW1 and RW2) should piggyback on CC protocols.

1. select a commit timestamp larger than both the current

local timestamp and the timestamps of tuples in the

read/write set. (RW1)
2. install the commit timestamp to tuples in the read/write

set before the transaction commits. (RW2)

Read-only transaction. DST should guarantee the read-only
transaction can read the value of tuples up to the read times-
tamp. Thus, two following tasks (RO1 and RO2) should piggy-
back on CC protocols.

1. select an appropriate read timestamp according to the

current local timestamp. (RO1)
2. ensure the tuple has an equal or larger timestamp

before reading its value up to the read timestamp. (RO2)

4.2 Case Study

The description below focuses on the general comments
about integrating DST; we omit a few details and corner
cases due to space limitations.

DrTM+R. Optimistic concurrency control (OCC) is widely
adopted by modern transactional systems [21, 10, 59, 62,
22, 23, 18, 26, 63]. The read-only transaction in OCC will
take two or more rounds of reads for consistent results with-
out MVCC and timestamp schemes, due to conflicting read-
write transactions. We use DrTM+R [18] to demonstrate how
DST piggybacks on OCC.9

For the read-write transaction, we can obtain the times-
tamp of tuples in the read and write set when validating and
locking them respectively and then derive a larger commit
timestamp (RW1). Before committing, we should install the
commit timestamp to the tuples in the read and write set
(RW2). Note that there is no need to lock tuples in the read
set since dummy timestamps from aborted transactions are
benign. For the read-only transaction, all CC protocols share
(almost) the same implementation (see Fig. 9). The only dif-
ference is how to wait for conflicting transactions (line:3 of
DEP_READ). For OCC, the conflicting read-write transac-
tion will lock the tuple when installing its timestamp for up-
dates. Therefore, similar to 2PL, the read-only transaction
will confirm that the tuple is not locked before reading the
value up to its read timestamp.

MySQL cluster. Two-phase locking (2PL) is another classic
CC protocol used by many transactional systems [1, 19, 36].
The read-only transaction in 2PL will be blocked without
MVCC and timestamp schemes, due to conflicting read-
write transactions. We use MySQL cluster [1] (v7.6.8) to
9We use the version of DrTM+R [63] without HTM, which also enables
coroutine and supports various networks (e.g., TCP/IP and RDMA).

Table 1: Measurement clusters.

Name # Hardware

AWS 32 r4.2xlarge (8x vCPU, 61GB DRAM, up to 10GbE)

VAL 16 2x Intel Xeon E5-2650 v4 (12 cores), 128GB DRAM,
1x Intel I350 10GbE

VLR 16 2x Intel Xeon E5-2650 v4 (12 cores), 128GB DRAM,
2x Mellanox ConnectX-4 100Gbps InfiniBand RNICs

show the integration of 2PL and DST, mainly following the
specification in Fig. 7 and 9.10 To support the read-write lock
in MySQL cluster, the transaction only needs to install times-
tamp into tuples in the read set atomically (i.e., compare-and-
swap) and avoids overwriting a larger timestamp. Further,
we leverage the lock queue mechanism in MySQL cluster
to wait for conflicting transactions (line:3 of DEP_READ in
Fig. 9), which avoids spinning on the tuple.

ROCOCO. ROCOCO [43] is a research CC protocol that
outperforms traditional protocols under high contention
workloads by reordering conflicting read-write transactions
instead of aborting them. The read-write transaction is
chopped into pieces by an offline checker and uses a two-
phase mechanism. The start phase explores a dependency
graph, and then the commit phase executes conflicting trans-
actions with a serializable order according to the dependency
graph. The read-only transaction in ROCOCO is blocked until
the completion of conflicting transactions and uses multiple
rounds for reading consistent results.

To extend ROCOCO11 with DST, the general idea is to use
the dependency graph to collect timestamps of dependent tu-
ples and derive a larger commit timestamp for the read-write
transaction in the start phase (RW1). Then the commit times-
tamp can be installed to tuples in the commit phase (RW2).
For the read-only transaction, the blocking mechanism in
ROCOCO is reused to wait for conflicting transactions (line:3

of DEP_READ in Fig. 9).

5 Evaluation

We have integrated DST with three representative trans-
actional systems, namely DrTM+R, MySQL cluster, and
ROCOCO, with different CC protocols, and also implemented
two centralized timestamp schemes (GTS and VTS) by fol-
lowing the state-of-the-art [46, 70]12 with many carefully
tuned optimizations (e.g., batching requests [46, 27], coop-
erative multitasking [26], timestamp compression and dedi-
cated fetch thread [70]). These optimizations have significant
performance improvements on GTS and VTS. For exam-
ple, cooperative multitasking improves the peak per-machine
throughput of GTS on DrTM+R by 3.04X, and timestamp
compression improves VTS by 2.7X on a 16-node cluster.

Testbed and setup. To study the impact of hardware plat-

10Although MySQL cluster uses read committed (RC) protocol by default,
it also provides serializability by using per-row 2PL.

11Source code: https://github.com/shuaimu/rococo.
12Different than Percolator [46], we use the stabilization process to avoid

holding locks when acquiring write timestamp, since it will significantly
increase transaction abort rate.
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Fig. 10: Performance of (a) TPC-E and (b) TPC-C on AWS.
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Fig. 11: Performance of (a) TPC-E and (b) TPC-C on VAL.

forms on DST, we use three clusters with different networks
and CPU processing power (Table 1). Without explicit men-
tion, one machine in each cluster is dedicated to the times-
tamp oracle, even only GTS and VTS need. Other machines
serve as both database nodes and clients. We use these ma-
chines in a symmetric setting [23], namely each machine
both executes transactions and store database data.

Benchmarks and performance overview. As the perfor-
mance benefit of using MVCC and snapshot reads is sen-
sitive to characteristics of read-only transactions in OLTP
workloads, we chose three different benchmarks, namely
TPC-E, TPC-C, and SmallBank, to show the benefits of DST
comprehensively. TPC-E [57] presents the workload of a bro-
kerage firm with a high proportion of read-only transac-
tions (79% of the standard mix) and complicated operations
(massive range queries and distributed accesses). DST is ex-
pected to improve the performance much compared to the
vanilla CC protocols for this target workload, with a relaxed

consistency level from strict serializability to serializability.
TPC-C [56] simulates a warehouse-centric order processing
application with a few read-only transactions (8% of the
standard mix). DST is expected to show gradual improve-
ment with the increase of execution time in read-only trans-
actions (not affect proportion). We increase the number of
districts (one district by default) accessed by the read-only
stock-level transactions (4%). SmallBank [54] models a
simple banking application where transactions perform very
simple read and write operations (less than four) on user ac-
counts. DST is expected not to incur perceptible overhead
and show order-of-magnitude speedup compared to central-
ized timestamp schemes (GTS and VTS). In all benchmarks,
DST should achieve close to optimal performance using RC
(5%) but without compromising correctness, which can be
backed by the experimental results of DST on motivating mi-
crobenchmarks (see Fig. 6).

5.1 DrTM+R

We deploy one server at each machine and co-locate clients
to saturate the performance of servers as prior work [58, 60,
23, 64, 26]. Due to space limitations, we do not report the
experimental results on SmallBank, which are as expected.

TPC-E. Fig. 10(a) shows the results of TPC-E on AWS.
TPC-E has a high proportion of read-only transactions, and
most of them are distributed. Compared to using snapshot
reads (GTS, VTS, and DST), the vanilla OCC protocol pro-
vides strict serializability and requires an additional round to
validate tuples in the read set. Thus, many read-only transac-
tions will abort under heavy workloads. As a reference, RC
can outperform OCC by 1.79X (yet with incorrect results),
since it simply skips the validation phase. DST achieves al-
most the same performance as RC, as it also avoids the vali-
dation phase and never aborts read-only transactions. Differ-
ently, DST ensures the read-only transaction can read a con-
sistent yet fresh snapshot. Moreover, compared to GTS and
VTS with the same consistency level (serializability), DST
can outperform the throughput of them by 1.16X and 1.72X,
respectively. Because DST omits the communication to the
timestamp oracle and avoids large traffic size due to using a
fully decentralized design and scalar timestamps (see §2.3).

We further evaluate TPC-E on VAL. As shown in Fig. 11(a),
DST can still achieve similar performance as RC and pro-
vides 1.13X and 1.29X speedup compared to GTS and VTS,
respectively. VTS performs slightly better on VAL due to us-
ing a relatively smaller vector timestamp.

TPC-C. Fig. 10(b) and Fig. 11(b) show the peak throughput
of TPC-C on AWS and VAL with the increase of districts ac-
cessed by the read-only stock-level transactions. Note that
the default setting in TPC-C accesses one district (the first
data point of every line). Besides, we retain all default set-
tings, like the proportion of stock-level transactions (4%).

As shown in Fig. 10(b), when accessing one district, DST
has a very close performance compared to RC. These results
indicate that DST has little overhead to read-write transac-
tions. In comparison to DST, GTS and VTS are 6.29X and
2.93X slower than RC, due to the significant cost for main-
taining centralized and/or vectorized timestamps (see §2.3).

OCC performs well on the original TPC-C due to the lim-
ited read-only transactions in the standard-mix (8%). On the
other hand, when increasing the execution time of read-only
stock-level transactions (by accessing more districts), the
performance difference between RC and OCC is more ev-
ident because OCC has more overheads for validating the
read-set of the stock-level. DST still performs close to RC
and is 4.94X faster than vanilla OCC (accessing 20 districts)
with a relaxed consistency level. Finally, DST still outper-
forms VTS and GTS by 2.29X and 3.56X when accessing
20 districts, respectively.

In Fig. 11(b), the performance of DST is also very close
to RC for TPC-C on VAL. On the other hand, the overhead
of GTS and VTS still incurs up to 2.57X (from 1.95X) and
1.73X (from 1.47X) slowdown, compared with DST. Differ-

366    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



 0

 1

 2

 3

 4

0 0.5 1.0 1.5 2.0 2.5

M
e
d
ia

m
 l
a
te

n
c
y
 (

m
s
)

Throughput (M txns/s)

RC/Incorrect

OCC

OCC+DST

OCC+GTS

OCC+VTS

 0

 3

 6

 9

 12

1 4 8 12 16 20

T
h
ro

u
g
h
p
u
t 
(M

 t
x
n
s
/s

)

Number of districts

RC/Incorrect

OCC

OCC+DST

OCC+GTS

OCC+VTS

Fig. 12: Performance of (a) TPC-E and (b) TPC-C on VLR.

ent than AWS, the lower latency of network round-trip on
VAL (90µs) is beneficial for centralized timestamp schemes,
but the effect is quite limited.

Using fast network (i.e., RDMA). Readers might be inter-
ested in how the performance of networks impacts the per-
formance of timestamp schemes, especially using RDMA.
DrTM+R naturally supports RDMA, and we adopt FaSST-
RPC [26] to implement the timestamp oracle for GTS and
VTS. By using 100Gbps RDMA, the CPU may become the
bottleneck in the timestamp oracle for GTS, about 3.0 M op-
s/s (see §2.3). For VTS, the timestamp oracle will not limit
the performance of TPC-E and TPC-C with only 16 machines,
while the increase of transaction abort rate (due to optimiza-
tions [70]) and large traffic size still incur non-trivial costs,
compared to the decentralized scalar timestamp (like DST).

As shown in Fig. 12, the fast network (RDMA) in VLR
has a significant positive impact on all of the settings, as ex-
pected. For TPC-E, DST still outperforms GTS and VTS by
1.07X, and 1.32X, respectively. RDMA reduces the overhead
of centralized timestamp allocation for GTS, while the im-
pact of traffic size in VTS remains. For TPC-C, DST is still
4.49X (from 1.19X) and 1.76X (from 1.15X) faster than GTS
and VTS.

5.2 MySQL cluster

We evaluate MySQL cluster with DST by using TPC-C and
SmallBank on VAL. We increase the number of clients un-
til the throughput is saturated. As shown in Fig. 13, with
DST, MySQL cluster achieves up to 1.91X (from 1.09X)
and 1.28X (from 1.07X) higher throughput for TPC-C and
SmallBank, respectively. The main reason is due to enabling
snapshot reads to avoid blocking for the read-only transac-
tions. It also mitigates the contention in the read-write trans-
actions. DST is more effective in TPC-C since it is more sen-
sitive to blocking time from conflicting transactions due to
relatively longer execution time compared to SmallBank. On
the other hand, DST can provide comparable performance to
RC but still guarantee serializability for correctness.

5.3 ROCOCO

We follow the methodology (benchmarks and settings) in
prior work [43, 39] to evaluate ROCOCO on VAL.13 Fig. 14
shows the performance of ROCOCO by increasing the num-

13We try our best to compare with ROCOCO-SNOW [39], which also op-
timizes the read-only transaction of ROCOCO. Unfortunately, it failed to
run on our testbed.
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ber of concurrent requests per server. In Fig. 14(a), using
DST on ROCOCO can improve the throughput of new-order
transactions by 2.09X with 100 concurrent requests per
server, due to reducing transaction aborts and skipping the
validation process in read-only transactions. For example,
less than 4% of stock-level transactions can be committed
when there are more than 50 concurrent requests per server.
Thus, the server CPU is wasted on retrying and validat-
ing read-only transactions. Further, as shown in Fig. 14(b),
ROCOCO+DST has a much lower median latency of (read-
only) stock-level transactions, thanks to reading a consis-
tent snapshot by one round of execution without validation.

5.4 A Study of DST Cost

To study the overhead from blocking and additional times-
tamp updates in DST, we use two workloads that share most
characteristics with TPC-C. We tuned the workload behavior
to better reflect these overheads.

Blocking overhead. One read-only transaction accesses 10
tuples, while another write-only transaction continuously up-
dates these tuples with locking. This is considered as the
worst-case scenario for DST, since the read tuples are locked
most of the time. Fig. 15(a) shows the impact on the me-
dian latency of read-only transactions when varying the stal-
eness of read timestamps. When using the current time (stal-
eness=0ms) as the read timestamp, 10% of the reads are
blocked by concurrent writes, which incur 83% overhead of
the median latency (1.72ms vs. 0.96ms). With the increase of
staleness (smaller timestamp), fewer reads are blocked since
the tuples have been updated with larger commit timestamps.
The blocking overhead becomes trivial when staleness ex-
ceeds 100ms. Note that this is an extreme case for blocking:
reads always touch the locked tuples. In reality, we only ob-
serve about 160 and 200 blocks per second at each machine
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under peak throughput for TPC-E and TPC-C, respectively.

Timestamp update overhead. Fig. 15(b) presents the over-
head of DST to read-write transactions. Each transaction ac-
cesses 10 tuples, while some tuples are made read-only. We
can see that when all tuples are updated, there is no over-
head for DST, since the timestamp update will piggyback
on the unlock operation. With the increase of read(-only)
ratio, DST adds up to 25% overhead to the overall perfor-
mance. Because DST will update the timestamp of tuples
even just reading them, which requires additional synchro-
nizations using atomic operations. Fortunately, most of the
read and write sets are overlapping in OLTP workloads.

6 Discussion

Performance overhead. Compared to traditional centralized
timestamp schemes, DST needs to update the timestamps
of tuples in the read set for read-write transactions, which
may incur additional costs. However, these operations can
easily piggyback on original operations in CC protocols (see
Fig. 7), like the locking and the validating in 2PL and OCC,
respectively. Moreover, the read-only transaction may also
update the timestamps of tuples, while it only happens as the
read timestamp is larger (DEP_READ in Fig. 9). Thus, us-
ing a hybrid timestamp can effectively mitigate it. To study
the potential performance overhead for DST, we designed
two microbenchmarks to model the worst-case scenarios (see
§5.4), and the experimental results show limited cost.

Range scans and phantom reads. DST relies on the CC pro-
tocol to detect conflicts, including range scans and phantom
reads, and also needs to assign timestamps to certain “guard”
(e.g., index structures) [32, 48]. For example, the next-key
locking mechanism [42] is widely used by 2PL to support
range scans. The CC protocol acquires such locks, and DST
assigns timestamps to them. For OCC, DST assigns times-
tamps to the internal nodes in the index structure as the ver-
sions during the validation phase.

The SNOW theorem. The SNOW Theorem [39] describes
the fact that strict serializability (S), non-blocking read-only
transactions (N), one-response from each tuple (O), and com-
patible with conflicting write transactions (W) cannot be sat-
isfied at the same time. Yet, SNOW-optimal and latency-
optimal read-only transactions can achieve three of the above
properties (i.e., N+O+W) without strict serializability (S). DST

also relaxes S to serializability for read-only transactions,
and satisfies O and W apparently. DST can simply satisfy N by
letting reads return a relatively stale data. However, it may
be not reasonable; thus, DST chooses to provide bounded
staleness with much fewer blocking operations (see §5.4).

Session strict serializability. DST only ensures serializabil-

ity to read-only transactions rather than strict serializability,
while it is equal to or better than most snapshot-based sys-
tems [39, 19, 6, 1]. Further, DST can provide session guaran-
tees [53, 8] (i.e., read-my-write [52] and read-after-write [40]
consistency), such that read-only transactions can always ob-
serve the latest updates of read-write transactions within the
same session (e.g., issued from the same client or handled by
the same server). DST returns the commit timestamp to the
session manager (e.g., client or server) after the transaction
commits. The session manager will always use the largest
observed commit timestamp as the read timestamp for suc-
cessive read-only transactions.

7 Related Work

Using timestamp for snapshot reads. A centralized times-
tamp is the most straightforward way to support MVCC for
snapshot reads, which is widely adopted by centralized sys-
tems [21, 25, 31, 28, 44, 66, 33]. Many distributed systems
also use timestamps to provide MVCC [46, 17, 51, 19, 6,
14, 70], while most of them only support weaker isolation
guarantees (e.g., Snapshot Isolation) [46, 6, 14, 70]. For ex-
ample, Percolator [46] uses a global timestamp oracle, and
NAM-DB [70] uses vectorized centralized timestamps. Span-
ner [19] is based on a combination of 2PL and MVCC devel-
oped in previous decades [45]. Spanner relies on TrueTime
API to provide scalable timestamps for strict serializable
read-only transactions and snapshot reads, which requires
specific hardware (GPS and atomic clocks) to ensure clocks
with bounded uncertainty. Further, the read-write transac-
tions still require blocking to ensure the match of times-
tamp and transaction ordering. DST chooses to support se-
rializable read-only transactions with bounded staleness. It
requires no external timestamp service and does not block
read-write transactions. RAMP [9] introduces Read Atomic
isolation and uses timestamps to identify and retry inconsis-
tent reads. TxCache [47] provides a distributed transactional
cache that always returns a consistent snapshot by lazily se-
lecting the timestamps for transactions. Causalspartan [49]
also uses Hybrid Logical Clocks to optimize timestamps in
causal consistency systems.

DST naturally piggybacks timestamp allocation to exist-
ing CC protocols, which avoids additional communications
for maintaining timestamps. Further, DST can work with a
border range of CC protocols and is orthogonal to prior opti-
mizations on CC protocols [37, 43].

Using timestamp for concurrency control. Many systems
directly leverage a timestamp-based mechanism to commit
transactions orderly [12, 5, 20, 34, 35, 71, 8]. CLOCC [5]
combines optimistic timestamp ordering with loosely syn-
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chronized clocks, which avoids a centralized counter for
checking serializability in the original OCC protocol [29].
Granola [20] uses the timestamp based on a distributed vot-
ing mechanism to order independent transactions determin-
istically and treats distributed transactions in locking mode.
TAPIR [71] uses loosely synchronized clocks at the clients in
OCC’s validation for read-write transactions. The clock drift
in these systems will increase false aborts and impact the ex-
ecution of read-write transactions. On the contrary, the clock
drift in DST only affects the freshness of snapshot reads.

Several variant timestamp schemes have been proposed to
mitigate the cost from frequent aborts due to the violation be-

tween timestamp and transaction ordering. Lomet et al. [38]
introduce timestamp ranges to reduce transaction conflicts,
while the timestamp management is centralized. MaaT [41]
uses dynamic timestamp ranges to avoid distributed locking
for the atomic commitment in OCC. Further, some prior sys-
tems also use decentralized timestamp schemes, but most of
them focus on optimizing one particular CC protocol. Tic-
Toc [68] introduces a data-driven timestamp scheme for mul-
ticore platforms, which allows each read-write transaction
to compute a valid commit timestamp from tuples before it
commits. However, the read-only transaction still needs ad-
ditional validations and incurs more aborts due to conflicts.
Clock-SI [24] also uses loosely synchronized clocks to create
consistent snapshots with fewer network round trips, while
snapshot reads must be delayed due to concurrent transac-
tions and clock drift. Sundial [69] uses logical timestamps as
leases to reduce aborts in distributed read-write transactions.
Pelieus [52] derives a commit timestamp for the read-write
transaction from all involved servers (not tuples), which is
used in the validation phase with different rules to support
different concurrency levels (e.g., SI and Serializability).

Differently, DST is a decentralized timestamp scheme for
various CC protocols and can piggyback on them efficiently.
Thus, DST will not interfere with the execution of read-write
transactions and has no need of extra validations and aborts.

8 Conclusion

This paper presents DST, a decentralized scalar timestamp
that can unify timestamp management with existing CC
protocols. We have integrated DST with two classic proto-
cols, namely 2PL and OCC, and a recent research proposal,
ROCOCO. Our evaluation with three transactional systems
and three benchmarks confirmed the benefit of DST.
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Abstract
In online data-intensive (OLDI) services, each client re-

quest typically executes on multiple servers in parallel; as a
result, “system hiccups”, although rare within a single server,
can interfere with many client requests and cause violations
of service-level objectives. Service providers have long been
fighting this “tail at scale” problem through “hedging”, i.e.,
issuing redundant queries to mask system hiccups. This, how-
ever, can potentially cause congestion that is more detrimental
to tail latency than the hiccups themselves.

This paper asks: when does it make sense to hedge in
OLDI services, and how can we hedge enough to mask sys-
tem hiccups but not as much as to cause congestion? First, we
show that there are many realistic scenarios where hedging
can have no benefit—where any hedging-based scheduling
policy, including the state-of-the-art, yields no latency reduc-
tion compared to optimal load balancing without hedging.
Second, we propose LÆDGE, a scheduling policy that com-
bines optimal load balancing with work-conserving hedging,
and evaluate it in an AWS cloud deployment. We show that
LÆDGE strikes the right balance: first, unlike the state of the
art, it never causes unnecessary congestion; second, it per-
forms close to an ideal scheduling policy, improving the 99th

percentile latency by as much as 49%, measured on 60% sys-
tem utilization—without any difficult parameter training as
found in the state of the art.

1 Introduction

This work concerns Online Data-Intensive (OLDI) services
like web search (searching through inverted document in-
dices), content-based image similarity search, recommenda-
tion services, graph processing and social applications. Such
services involve hundreds or thousands of “leaf” nodes, each
holding a part (“shard”) of the data needed to answer client
requests; a tier of “root” nodes receives client requests, breaks
each client request into distinct queries, forwards the queries

∗The project was completed while the author was at EPFL.

to different leaves, and waits for the slowest query to finish in
order to create the final client response.

OLDI services typically operate under hard-to-meet
service-level objectives (SLOs) expressed in terms of tail
latency [7, 8, 16, 18, 32, 36, 37, 40]. Each SLO captures a
customer expectation and failing to meet it has concrete con-
sequences, e.g., a hit to the service provider’s reputation, a
loss of customers, and a drop in revenue [11, 15, 23, 73]. The
nature of OLDI services makes meeting such SLOs challeng-
ing at large scale: because answering a client request involves
many queries, a small fraction of slow queries can impact a
significant fraction of client requests [16].

We focus on two main causes of latency variability:
One is variable queuing delay, e.g., due to load fluctua-
tions [16, 20, 31, 62]. Another one is variable service time,
which, in turn, comes from two distinct sources: (1) Different
queries may take different amounts of time to execute on a
given hardware and software stack, because of different com-
plexities [33, 44, 53, 81]. (2) Different instances of the same
query may take significantly different amounts of time to exe-
cute on a given system because of system events that are unre-
lated to the service itself: decisions made by an OS scheduler
or power-management algorithm, interrupts, garbage collec-
tion, virtualization effects, interfering with other applications,
etc., [12, 16, 19, 26, 41–43, 46–48, 54, 57, 59, 69, 75, 80].

Even though a lot can and has been done to reduce latency
variability, completely eliminating its causes has proved elu-
sive. In a modern cloud environment, where different services
share resources, there always exist unexpected performance
“hiccups”. Debugging these hiccups is notoriously hard. For
instance, there is the case of an application suffering ran-
dom 12ms scheduling delays, because a kernel feature caused
the jitter of interrupt requests to be significantly higher than
the timer interval [12]; or the case of non-work-conserving
scheduling, in which the kernel was throttling programs that
exceeded a misconfigured purchase quota [69]. But even when
performance hiccups are easy to debug, fixing them is often
beyond the control of the interested parties: most service
providers do not own a datacenter and do not develop their
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own operating systems and entire software stacks—yet they
still offer interactive services that need to meet strict SLOs.

This reality has given birth to hedging. In a modern large-
scale service, each data shard is typically replicated in at
least two nodes for fault tolerance [16, 55]. Hence, any query
for a distinct shard can be replicated and sent to multiple
nodes that serve that shard. This way, the system “hedges
its bets”, as it needs to wait only for the fastest response
to each query. Hedging was initially proposed and adopted
in combination with performance monitoring, to improve
completion time of map-reduce-style [17] jobs that may take
tens to hundreds of seconds [3–5]. More recently, hedging
is proposed as a general solution for reducing tail latency in
large-scale services, including OLDI services [16, 25, 32, 37,
39, 40, 64, 67, 72, 74, 78], where expected query completion
time is orders of magnitude shorter. This change in time scale
makes it significantly harder to determine whether hedging
will improve tail latency or make it worse.

Hedging masks service-time variability at the cost of extra
system load (caused by the replicated queries), hence extra
queuing delay. So, if we take any standard hedging policy
and any standard load-balancing policy (that tries to minimize
latency without hedging), and we measure latency as a func-
tion of system load, we expect to see a tipping point: at first,
hedging will outperform plain load balancing; however, for
some offered system load, the cost of replicating queries will
start to outweigh the benefit and the situation will be reversed.
The challenge, then, is knowing when to hedge in order to
operate before the tipping point.

In this paper, we look critically at hedging for OLDI ser-
vices. We make two contributions:
• We study when hedging makes sense: when does it have
the potential to improve tail latency relative to plain load bal-
ancing, and by how much? To answer this question, we define
Idealized Hedge, a theoretical hedging policy that, by design,
maximizes the hedging potential of any implementable hedg-
ing policy for a given setup. We experimentally compare Ide-
alized Hedge to Per-Shard Queuing, which is, in our context,
the best load-balancing policy that does not hedge [45, 76].
This allows us to identify regimes where hedging has the
potential to improve tail latency, and to bound the potential
improvement.
• We propose LÆDGE (short for “Load-Aware Hedge”, pro-
nounced like “ledge”), a combination of Per-Shard Queuing
and hedging that hedges only if the current system load al-
lows for latency improvement through hedging. The gist of
LÆDGE is to only hedge when a replica is idle, through a
work-conserving centralized scheduler.

Through a combination of simulations and experiments, we
show that LÆDGE approximates Idealized Hedge and outper-
forms the state-of-the-art hedging policies. We implemented
LÆDGE within an open-source OLDI framework [28] and
evaluated it on a popular enterprise search engine deployed
in the AWS cloud. Our experimental results closely match

Per-shard
LB

Root Root Root Root

Replicated
shards

PSLB PSLB PSLB

Figure 1: Architecture of an OLDI service with per-shard load
balancers (PSLBs).

theoretical expectations and show significant gains: for jobs
with mean service times as low as 800µs, and system utiliza-
tion up to 60%, LÆDGE reduces the 99th percentile latency of
Per-Shard Queuing by, on average, 5.3ms—an improvement
that corresponds to 6.4× the mean service time.

The rest of the paper is organized as follows: §2 presents
our simulation setup and defines IQ-jitter—the metric we
use to model and measure performance hiccups. §3 presents
Idealized Hedge and uses it to identify when hedging has
the potential to improve tail latency. §4 presents LÆDGE and
evaluates it through simulation, while §5 evaluates it based
on a system implementation using a real OLDI application
deployed in the AWS cloud. §6 discusses open issues, §7
presents related work, and §8 concludes.

2 Background and Setup

In this section, we describe a standard OLDI setup (§2.1);
define IQ-jitter, which helps us model performance hiccups
(§2.2); summarize state-of-the-art hedging (§2.3) and load-
balancing (§2.4) policies; and describe the simulation (§2.5)
that drives the rest of the paper (up until §5).

2.1 OLDI Setup
We consider a cluster that serves OLDI applications, as illus-
trated in Fig. 1: a tier of root nodes serves client requests,
while a tier of leaf nodes stores shards of application data sets;
the root and leaf tiers are connected via a tier of per-shard
load balancers (PSLBs). The load balancers are “per shard,”
in the sense that they maintain a distinct queue per shard.
In practice, the same process implements multiple PSLBs;
PSLB processes run either in servers that are dedicated to load
balancing, or within the root nodes when that is permitted by
the scheduling policy.

A client request requires accessing multiple data shards.
When a root receives a client request, it issues one query per
distinct shard, and sends each query to the corresponding
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Policy Queuing model Hedging probability Load balancing
a) Naïve Hedge [16, 72] push 1 random
b) d-Hedge [16, 40] push Pr(RT T > d) random
c) p-Hedge [40] push q ·Pr(RT T > d) randomization + JSQ
d) Random load balancing push 0 none
e) Join-shortest-queue (JSQ) [29] push 0 JSQ
f) Join-bounded-shortest-queue (JBSQ) [45] push & pull 0 JBSQ
g) Per-Shard Queuing (PSQ) pull 0 centralized queue
h) Idealized Hedge (IH) (§3) pull load-dependent centralized queue
i) Load-aware Hedge (LÆDGE) (§4) pull load-dependent centralized queue

Table 1: Existing and proposed tail-mitigation strategies using hedging and load balancing.

PSLB, which schedules the query on one or more leaves.
Each leaf is equipped with a queue and processes queries
first-come, first-serve (FCFS) [40, 57], which is the best non-
preemptive scheduling policy when tail latency is the most
important metric [10,40,48,57,76]. To compute the final client
response, the root needs one response per distinct shard.

We define the end-to-end latency of a client request as the
time from the moment a root fans-out the original request into
multiple queries until it has received at least one response per
distinct shard. It is equal to the service time plus queuing delay
experienced by the slowest query that needs to be answered
in order to compute the final response.

2.2 IQ-jitter: Modelling Hiccups
Consider a set of leaves with identical hardware and software
configuration, serving queries of a given application.

We define IQ-jitter (short for intra-query jitter), denoted
by J, as the service-time variability that results from the fact
that two leaves hosting the same data shard may take different
amounts of time to serve the same query.

Similarly to Mirhosseini et al. [57], we express the query
service time S as the sum of two random variables:

S = P+ J,

where P is determined by query complexity and shard con-
tent/size, while J (IQ-jitter) is determined by system events
that are independent of the application: OS-scheduler deci-
sions, power-management algorithm decisions, interference
by other applications—in general, the current software and
hardware state of the leaf executing the query.

2.3 Hedging State of the Art
Hedging was invented to mitigate the effect of IQ-jitter on tail
latency: As long as the system events causing performance
hiccups are independent across leaves, two or more leaves
hosting the same data shard are unlikely to all suffer a hiccup

while serving the same query. Hence, by replicating a query
across multiple leaves and collecting the response that arrives
first, we reduce the probability of the query suffering a hiccup.

In this paper, we consider three representative hedging
policies (top three rows in Table 1):

Naïve Hedge [72]: The PSLB always and immediately sends
each query to any two leaves that host the corresponding
shard. This is conceptually the simplest hedging policy as it
does not require storing any state at the PSLB. It has been
applied to many different contexts, including map-reduce
jobs [3–5, 14, 82], DNS queries, database servers, and packet
forwarding [72].

Delayed Hedge (d-Hedge) [16, 40]: For each query, the
PSLB randomly picks a leaf that hosts the relevant shard
and sends the query to it; if the reply does not arrive within a
pre-configured, fixed delay d, the PSLB replicates the query
on another leaf. When a query finishes, the PSLB cancels
its replica if it exists. The value of d is tuned by the system
operator to control the number of replicated queries in the
system. This is the policy that was proposed by Dean et al.
when they introduced the “tail at scale” problem [16].

Probabilistic Hedge (p-Hedge) [40]: This is similar to d-
Hedge, but introduces an extra tuning knob: the probability q
of replicating each delayed query; both the probability q and
the delay d are trained based on the workload. This was pro-
posed by Kaler et al. in their recent study of hedging policies
for data centers [40] and is the most sophisticated hedging
policy that we found in the literature.

We should clarify that all these policies—as any hedging
policy we are aware of—limit the number of simultaneously
run hedged requests to two. We follow the same strategy in
all the policies that we define in this paper.

Ideally, a hedging policy walks the fine line between (a)
replicating too many queries and adding too much system load
(hence queuing delay), and (b) not replicating enough queries
and failing to mitigate the effect of IQ-jitter on tail latency.
Naïve Hedge errs toward the former (it always replicating as
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much as possible); Vulimiri et al. [72] have showed that this
reduces tail latency only when system load is below 30% [72].
d-Hedge and p-Hedge provide knobs for controlling the added
load; however, as we will see, they still do not enable a good
balance between (a) and (b), i.e., they can still unnecessarily
overload the system or fail to mitigate the effect of IQ-jitter,
even if their knobs are carefully tuned (§3.3).

2.4 Load Balancing: State of the Art

The standard approach to managing latency is load balancing
(LB). In this paper, we compare hedging with four standard
LB policies ((d) to (g) in Table 1):

Random: For each query, the PSLB randomly picks a leaf
that hosts the relevant shard and sends the query to it.

Join-shortest-queue (JSQ) [29]: For each query, the PSLB
picks a leaf that hosts the relevant shard and sends the query
to it; of all the candidate leaves, the PSLB picks the one
with the smallest number of pending queries for that shard.
JSQ outperforms Random but is far from optimal for FCFS
servers with highly-variable job sizes [29,34,35]. We consider
it because it is simple to implement and very popular in the
industry, e.g., it is widely deployed in reverse-proxies [29,58].

Per-Shard Queuing (PSQ): The PSLB stores each query
until a leaf that can serve it becomes available. In other words,
the PSLB dispatches a query to a leaf only if the leaf is idle.
From a queuing-theory perspective, PSQ corresponds to a
single-queue M/G/k model, where k is the number of leaves
to choose from. In theory, this outperforms any LB policy that
uses multiple distinct queues (e.g., JSQ) in the presence of
non-deterministic service times [68]. In practice, PSQ exposes
the round-trip latency between the PSLB and the leaf tiers,
which may significantly impact throughput. It is, however, an
excellent candidate for low-latency environments like modern
datacenters [57, 60] (e.g., it takes < 20µs to perform an RPC
between two VMs in Microsoft Azure [22]).

Join-bounded-shortest-queue (JBSQ) [45]: This policy
combines PSQ and JSQ by splitting the pending queries be-
tween the PSLB and leaf tiers. It takes a parameter n, which
specifies the number of pending requests that each leaf can
hold, e.g., JBSQ(1) is equivalent to PSQ, while JBSQ(∞) is
equivalent to JSQ. The value of n can be configured so as to
hide the round-trip latency between the PSLB and leaf tiers
and enable full throughput.

2.5 Simulation Setup

In the next two sections, we rely on discrete event simulation
to compare hedging against standard LB policies. The goal is
not to evaluate precisely how these policies perform in real
systems (we use different experiments for that, later in the
paper), but to understand some of their fundamental properties,

e.g., how does hedging compare to PSQ in an idealized setting
(where PSQ is the optimal LB policy)?

Our simulation setup mimics an OLDI application de-
ployed in a small- to medium-sized cluster: (a) The num-
ber of shards ranges from N = 5, which represents small-
scale public-cloud deployments, and it is the default number
of shards in Elasticsearch [21]; to N = 500 distinct shards,
which represents larger public-cloud deployments [21, 70].
Each shard is replicated in r = 2, 3 or 6 leaves (depending
on the experiment). The number of replicas in OLDI appli-
cations tends to be limited given DRAM costs [55]; 6 was
the highest number of replicas per shard that we found in the
literature [14, 40, 63, 70]. There are N× r leaves processing
queries, all with the same hardware and software configu-
ration. Leaves process queries FCFS [40]. All queues have
infinite capacity. (b) Each PSLB fans out queries to leaves
according to the simulated (hedging or LB) policy. Network
latency between any two nodes is zero (revisited in § 5). (c)
Client requests arrive at the root tier following an open-loop
Poisson arrival process. (d) As stated earlier, guided by previ-
ous studies [57] and our own observations, we model query
service time as the sum of two components, S = P+ J. Un-
less otherwise noted, P follows an exponential distribution
(the randomness comes from different queries of a workload),
while J (IQ-jitter) follows a bimodal distribution. This means
that, in any single experiment, an instance of a query execut-
ing at a leaf node experiences a hiccup with some probability
(e.g., 10−3), while all hiccups have the same duration (e.g.,
15× P̄)—which approximates the results in [12] and reflects
our observations from § 5.1. Across experiments, we vary
hiccup probability and duration to model a range of real prob-
lematic system events.

We report tail latency as a multiple of P̄ (average
application-dependent latency). For example, when we report
that 99th percentile latency is equal to 30, this means that the
slowest 1% of client requests experience end-to-end latency
that is higher than 30× P̄. We think that this provides more
insight than an absolute number, especially since (in these par-
ticular experiments) we are measuring a simulated, idealized
setup. In several plots, we show tail latency as a function of
system utilization; a maximum utilization of 1.0 corresponds
to r/S̄ queries per time unit, where r is the replication factor.

3 Idealized Hedging

In this section, we present Idealized Hedge—an idealized
hedging policy—and use it to gain insight into the applicabil-
ity of hedging, as a general policy, to OLDI services.

3.1 Two Simple Observations
We start by comparing all the LB policies and Naïve Hedge:
Fig. 2 shows 99th percentile latency as a function of system
utilization in a cluster with N = 50 shards, each replicated
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(b) No IQ-jitter.

Figure 2: 99th percentile latency as a function of utilization, in a cluster with 50×2 leaves, with and without IQ-jitter.

in r = 2 leaves, first with IQ-jitter of probability 10−3 and
duration 15× P̄ (left), then without IQ-jitter (right).

We make two observations:
First, PSQ outperforms the other LB policies in all situa-

tions. This is expected from queuing theory. The performance
difference is greater in the presence of IQ-jitter (Fig. 2a),
which makes sense given that performance hiccups increase
the dispersion of service-time distribution—and more service-
time dispersion creates a bigger challenge for policies like
JSQ and Random.

Second, in the presence of IQ-jitter (Fig. 2a), there is a clear
“turning point”: At low utilization, Naïve Hedge (despite its
naïveté) delivers significantly lower tail latency than any LB
policy. For instance, in an unloaded system, tail latency is
8× P̄ with Naïve Hedge and 17× P̄ with PSQ—close to a 2×
improvement. However, when utilization exceeds 25%, the
LB policies deliver lower tail latency and higher throughput.

As a side note, in the absence of IQ-jitter (Fig. 2b), hedging
unsurprisingly does not improve tail latency relative to LB,
for any system utilization.

These observations suggest that a combined hedging/PSQ
policy, which adapts the fraction of hedged queries to sys-
tem utilization, might achieve lower tail latency than either
hedging or LB alone.

3.2 The Design of Idealized Hedge
Idealized Hedge maximizes the potential of hedging to reduce
latency in the following way:

1. A leaf is never idle when it can serve a pending query
currently being served by at most one other leaf.

2. A leaf serves a hedged (replicated) query only when it
cannot serve a non-hedged (yet-unserved) one.

The second property ensures that hedged queries never in-
crease the queuing delay experienced by non-hedged queries.
The two properties together ensure what we might call work
conservation in the presence of hedging: no resources are idle
when they could be doing useful work, and no resources are
dedicated to hedging when they could be used for other work.

Idealized Hedge is not implementable because it requires
perfect prediction of the completion times of currently exe-
cuting queries: To ensure that the two properties stated above
always hold, the system may need to cancel one copy of a
hedged query currently executing on a leaf (so that the leaf
can serve a new, non-hedged query that just arrived). To max-
imize the potential of hedging in our setup, Idealized Hedge
must always cancel the copy that will take longer to complete,
hence the need for perfect prediction.

We simulated Idealized Hedge as follows: Each PSLB
maintains a queue with all the pending queries in order of
arrival, and it knows the status of each leaf and which query
it is processing (if busy). Moreover, if two copies of a hedged
query are executing on different leaves and a new query ar-
rives (that can be served by the same leaves), the PSLB’s
scheduler perfectly predicts which copy will finish executing
first. With this knowledge, the PSLB performs the following
operations: (a) Dispatches queries to the leaves in an FCFS
manner using a pull-based discipline like PSQ. (b) Hedges
a query as soon as a leaf that can serve it becomes idle. (c)
Cancels any copy of a hedged query if another copy finishes
first (we call this a cleanup cancellation or CC for brevity).
(d) Cancels one copy of a hedged query upon arrival of a
new query that can be served by the same leaf (we call this a
pre-emptive cancellation or PC).

Fig. 3 shows the finite-state machine of Idealized Hedge
for a given shard that is replicated in two leaves:

S0 Both leaves are idle. There are no pending queries.

S1 (Initial hedging) Both leaves are serving the same query
QA, which they started to serve simultaneously; there
are no other pending queries. This state occurs on a
transition from S0, following the arrival of query QA.

S2 (No hedging) The two leaves are serving different
queries, QA and QB, and there are no additional pend-
ing queries. This state occurs on a transition from S1,
following the arrival of query QB, at which point one
copy of QA (the one that would have finished later) was
pre-emptively cancelled.

S3 (PSQ) The two leaves are serving different queries, QA
and QB, and there are additional pending queries. In this
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Figure 3: The finite-state machine of both Idealized Hedge
and LÆDGE with CC+PC on one shard with two replicas.
The states show: whether the shard queue is empty, whether
replicas are running the same or different queries (Q), and
whether the queries started at the same time (t).

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

0

5

10

15

20

25

30

99
th

p
er
ce
nt
ile

la
te
nc
y

Naive Hedge

Best d-Hedge w/ CC

p-Hedge

PSQ LB

Idealized Hedge

Figure 4: 99th percentile latency as a function of utilization.
Ideal Hedge vs. existing hedging policies and PSQ. Same
setup as in Fig. 2a.

state, when a leaf finishes serving its query, it pulls the
next one from the head of the queue (without hedging),
as in the PSQ policy.

S4 (Delayed hedging) Both leaves are serving the same
query QA, which they started to serve at different times;
there are no other pending queries. This state occurs on
a transition from S2, following the completion of one
query, at which point the other query (QA) is reissued to
the otherwise idle leaf.

3.3 Idealized Hedge versus State of the Art
Fig. 4 compares Idealized Hedge against the three hedging
policies (Naïve Hedge, d-Hedge, p-Hedge), as well as PSQ
(the best LB policy). The experimental setup matches that of
Fig. 2a (50×2 leaves and IQ-jitter with probability 10−3 and
duration 15× P̄).

Idealized Hedge outperforms (as expected) the real policies
and exhibits the following behavior: at low utilization (until
around 5%), when the leaves are mostly in states S0 and S1, it
behaves like Naïve Hedge; at high utilization (from around

60%), when the leaves are mostly in state S3, it converges to
PSQ; in between, it clearly outperforms (by up to 8× P̄) all
the real policies.

The most interesting comparison is between Idealized
Hedge (black dotted line) and PSQ (green solid line with
vertical lines), because it provides an upper bound on the tail-
latency benefit that can be expected from any form of hedging.
This comparison indicates two points: (1) There exists a sig-
nificant utilization range (from ∼60% and up, in our setup)
where no real hedging policy may bring any significant bene-
fit relative to PSQ. (2) Outside this range, hedging may bring
significant benefit, but the two state-of-the-art hedging poli-
cies cannot fulfill this potential. Only Naïve Hedge (blue solid
line with squares) achieves all the benefit that hedging could
achieve, but only at low utilization (until around 5%, in our
setup). d-Hedge (gray solid line) outperforms the other real
policies for a utilization range between ∼10 and ∼45%, but
it remains far from Idealized Hedge. p-Hedge (purple solid
line with pentagons) is outperformed by PSQ in all situations.

Of course, the behavior of d-Hedge and p-Hedge depends
dramatically on how their configuration parameters are tuned;
we followed all the instructions in the relevant literature, and
we did our best to maximize their performance. For instance,
in d-Hedge, we set the delay after which hedging occurs to
d = 5× P̄, because we experimentally found that higher val-
ues do not noticeably mitigate tail latency on low and medium
loads; differently said, we allowed the least amount of hedg-
ing that has an impact on tail latency on low and medium
loads comparable to that of Naïve Hedge (and yet the algo-
rithm still led to congestion collapse at ∼60% utilization). In
p-Hedge, we trained the parameters d and q, using the most
successful of the methods explored in [40]: for each level
of system utilization, we computed a “reissue budget” (the
percentage of hedged queries in the system) using their itera-
tive algorithm; then, for each level of system utilization, we
trained d and q on sampled latency measurements using the
proposed training algorithm that accounts for queuing delays
for a fixed reissue budget. We tried sampling rates up to 80%;
the results we show are for a sampling rate of 60%, because
increasing it further did not significantly change the results:
p-Hedge did not capture the rare hiccups through sampling, as
they only occur once every 1000 queries. None of this proves
that d-Hedge and p-Hedge could not perform any better, but
it illustrates the difficulty of tuning them so as to achieve a
desired balance between too little and too much hedging.

3.4 Beyond One Example

We now extend our observations beyond the specific setup of
Fig. 4: how much potential does hedging have to improve tail
latency as the cluster size and nature of IQ-jitter vary?

We consider the following scenarios: clusters of 5×2, 50×
2, and 500×2 leaves, i.e., small, medium, and large; hiccup
probability ranging from 10−1 to 10−5; hiccup duration 15×
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(c) LÆDGE with CC

Figure 5: Heat maps showing how much various hedging
policies improve the 99th percentile latency relative to PSQ.
Hiccup duration is 15× P̄.

P̄ and 30× P̄. Regarding the latter, our choice of parameters is
motivated by the literature: 15× P̄ has occurred as the result
of badly configured timer intervals [12], while 30× P̄ as a
result of non-conserving job-to-core allocation [69].

We summarize our results in two sets of heat maps, one for
hiccup duration 15× P̄ (Fig. 5a), the other for 30× P̄ (Fig. 6a).
Each heat map illustrates the relative improvement in 99th

percentile latency that Idealized Hedge brings relative to PSQ:
the x-axis is system utilization, the y-axis is hiccup probability
(on a logarithmic scale), and the intensity of each data point
is the relative improvement in the 99th percentile latency (so,
a darker data point indicates higher potential for hedging to
improve tail latency). We only show improvement greater
than 20%, to focus on scenarios with significant improvement
potential. Each column corresponds to a different cluster size:
5×2, 50×2, and 500×2 leaves, from left to right. The dashed
horizontal line in Fig. 5a, middle heat map (so, 50×2 leaves)
corresponds to the setup of Fig. 2a and 4.

First, we observe that hedging cannot significantly im-
prove tail latency when system utilization exceeds ∼60%
(all heat maps are empty beyond ∼60% utilization). Beyond
this turning point, hedging improves latency at most by 20%,
independently from cluster size and hiccup probability or du-
ration. The intuition is simple: as system utilization increases
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(c) LÆDGE with CC

Figure 6: Heat maps showing how much various hedging
policies improve the 99th percentile latency relative to PSQ.
Hiccup duration is 30× P̄.

and leaves become busier, opportunities for hedging disap-
pear; as a result, Idealized Hedge eventually converges to PSQ.
The turning point corresponds to medium-heavy utilization,
where queues are starting to form, and below the point where
the well-known heavy-traffic approximation determines be-
havior irrespective of service-time distribution [30]. Between
∼60% and ∼80% utilization, hedging provides at most 10%
improvement (not visible in the heat maps); and beyond
∼80% utilization, no improvement at all.

Second, hiccup duration does not affect the existence
of potential improvement (the heat-map shape), only the
amount of potential improvement (the heat-map inten-
sity). Compare any two heat maps for the same cluster size in
Figures 5a and 6a: they shade mostly the same (x,y) surface,
but the heat map on the right (longer hiccup duration) is darker
than the one on the left. The intuition is that, for any given
cluster size, hedging can be useful only within a given hiccup
probability range; outside this range, performance hiccups
are either too rare or too frequent for hedging to make any
difference, and this is independent of hiccup duration.

Third, the larger the cluster size, the smaller the hiccup
probability for which hedging may be useful. For example,
when the hiccup probability is between 10−4 and 10−5, hedg-
ing may be useful only in the 1000-leaf cluster (and would
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be useful in larger clusters as well); in the two smaller clus-
ters, each request needs access to fewer distinct shards, and
the probability of IQ-jitter slowing down the serving of one
or more of these shards becomes insignificant. Conversely,
the higher the hiccup probability, the smaller the cluster size
for which hedging may be useful. For example, when hiccup
probability exceeds 10−2, hedging may be helpful in all three
clusters (but less so in the 1000-leaf cluster, where it may
improve tail latency by at most 35%).

4 LÆDGE: Approaching Idealized Hedge

In this section, we present Load-Aware Hedge (LÆDGE), an
implementable policy that approximates Idealized Hedge by
adapting hedging to system utilization.

Algorithm 1 shows LÆDGE in pseudo code: SQ[i] is a shard
queue that corresponds to shard i; q is a query that belongs to
request r and concerns shard s, while q′ is a replica of q. Each
query that concerns a given shard may be: (a) hedged, i.e., sent
to two nodes that serve the shard (line 7), (b) sent to a single
node that serves the shard if that is the only available one
(line 9), or (c) queued up at a shard queue if zero nodes that
serve the shard are available (line 11). When a node becomes
available, the oldest query in the shard’s queue is sent to the
node (line 18). If there are no queries in the shard’s queue,
the oldest running query that concerns the shard is hedged,
i.e., a replica of the query is sent to the node (line 21).

LÆDGE has the following properties:

1. A leaf is never idle when it can serve a pending query
currently being served by at most one other leaf.

2. A leaf starts to serve a hedged (replicated) query when
it cannot serve a non-hedged (yet-unserved) one.

Unlike Idealized Hedge, LÆDGE does not guarantee that, at
any point in time, any leaf serving a hedged query could not be
serving a non-hedged one; it only guarantees that when a leaf
starts to serve a hedged query it could not be serving a non-
hedged one. Like PSQ, an efficient LÆDGE implementation
requires a PSLB with µs-scale round-trip latency to the leaves,
which is commonly found in datacenter environments [22,45].

We implemented three variants of LÆDGE, which differ
only in the type of query cancellation that they support:

Plain LÆDGE: Similarly to PSQ, a PSLB dispatches queries
to leaves from a centralized queue; similarly to Idealized
Hedge, a leaf serves both non-hedged and hedged queries,
prioritizing the former. There are no query cancellations.

LÆDGE with CC: This policy augments plain LÆDGE with
cleanup cancellation (CC), i.e., all copies of a hedged query
are cancelled when another copy finishes executing first.
An efficient implementation of this policy requires a low-
overhead mechanism for interrupting a query and cleaning
up its side effects. Whether such a mechanism exists or not

Algorithm 1: Generalized LÆDGE

1 // Initialize a shard queue (SQ) per shard
2 SQ[i]← [ ], i ∈ [1, . . . ,nshards] ;
3 on request r arrival
4 for each shard s do
5 if available replicas of shard s ≥ 2 then
6 // Replication on arrival
7 send q and q′ to 2 random replicas of shard s;
8 else if available replicas of shard s == 1 then
9 send q to the available replica ; // No replication

10 else
11 enqueue q to SQ[s] ;
12 end
13 end
14 end;
15 on response p arrival from node n serving shard s
16 if size(SQ[s]) > 0 then
17 pop a pending query q from SQ[s] ;
18 send q to n ; // No replication
19 else
20 if ∃ a non-replicated unfinished query on shard s then
21 replicate the oldest query to node n ;

//Delayed replication
22 end
23 end
24 end;

depends on the application itself (for instance, Boucher et
al. [13] enabled efficient µs-scale cancellations for microser-
vices [1, 27, 56] written in Rust).
LÆDGE with CC+PC: This policy adds pre-emptive cancel-
lation (PC), i.e., one copy of a hedged query is cancelled when
a new query arrives that can be served by the same leaves.
The state machine corresponds to that of Idealized Hedge,
shown in Fig. 3; the only difference is the lack of perfect
completion-time prediction (while transitioning from S1 to
S2, and from S4 to S2); instead, this policy cancels the copy
that started executing most recently.

All cancellations are zero cost, in the sense that they intro-
duce no extra processing delay and no extra communication
between the PSLB and leaf tiers.

4.1 LÆDGE versus Idealized Hedge
Fig. 7a compares the three LÆDGE variants against Idealized
Hedge, as well as d-Hedge and PSQ (the two best existing
policies among the ones we simulated). The setup matches
that of Figures 2a and 4.

We observe that plain LÆDGE reduces the gap to Idealized
Hedge to at most 3.8× P̄ (while hiccup duration is 15× P̄, in
this setup). At low utilization (up to ∼20%), it behaves like
d-Hedge, which is the best existing policy at that utilization
range. From some point on (∼50%), it converges to PSQ,
which is the best existing policy at that utilization range. In
between 20% and 50% utilization, it outperforms the existing
policies, without using cancellations or parameter training,
closing the average gap to Idealized Hedge to only 2.16× P̄.

380    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



0.0 0.2 0.4 0.6 0.8 1.0
Utilization

0

10

20

30

99
th

p
er
ce
nt
ile

la
te
nc
y

PSQ LB

Best d-Hedge w/ CC

LÆDGE

LÆDGE w/ CC

LÆDGE w/ CC & PC

Idealized Hedge

(a) 50×2 shards (2 replicas)

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

0

10

20

30

99
th

p
er
ce
nt
ile

la
te
nc
y

Naive Hedge

PSQ LB

LÆDGE

LÆDGE w/ CC

Idealized Hedge

(b) 50×3 shards (3 replicas)

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

0

10

20

30

99
th

p
er
ce
nt
ile

la
te
nc
y

Naive Hedge

PSQ LB

LÆDGE

LÆDGE w/ CC

Idealized Hedge

(c) 50×6 shards (6 replicas)

Figure 7: 99th percentile latency as a function of utilization. Comparing LÆDGE with different number of replicas per shard.

Second, we observe that cancellations not only do not sig-
nificantly help LÆDGE but may actually hinder it. Adding
CCs to LÆDGE marginally improves tail latency (given our
assumption of zero-cost cancellations, it could not increase it).
More interestingly, adding PCs to LÆDGE-with-CC increases
tail latency at some utilization levels, starting from ∼30%. It
turns out that cancelling the wrong copy of a hedged query
(the one that would have finished first) is an expensive mis-
take; without any sophisticated completion-time predictors,
one is better off not cancelling at all.

To better understand these results, we completed a careful
analysis of PCs and their effect on tail latency. We define
the “prediction accuracy” of a LÆDGE policy with cancella-
tions as the proportion of PCs that correctly cancel the copy
that would finish later. Overall, LÆDGE achieves > 99% pre-
diction accuracy, which is unsurprising given the rarity of
IQ-jitter events. However, once we consider only the PCs
where at least one copy of the cancelled query experiences
IQ-jitter, LÆDGE’s prediction accuracy drops significantly.
For example, at 40% system utilization, when transitioning
from S1 to S2 in the presence of IQ-jitter, LÆDGE achieves
prediction accuracy ∼50%; when transitioning from S4 to
S2, prediction accuracy drops to ∼19%. The reason is that
LÆDGE does not attempt to predict whether an IQ-jitter event
is likely to have occurred—it simply picks the most-recently
started copy. Cancellations appear to pay off only if we can as-
sume a good predictor of performance hiccups due to system
events; while this may be feasible according to Hao et al. [32],
LÆDGE was designed in the absence of such an assumption.

So far, we considered only r = 2 replicas per shard. While
this is typical in practice (the replication factor is often limited
by high DRAM costs [55]), research proposals consider repli-
cation factors between r = 2 and 6 replicas per shard [40, 63].
The simulation behind the Figures 7b and 7c is set up the
same way as Figure 7a, but with 3 and 6 replicas per shard,
respectively. We see that, for the larger number of replicas, (1)
the tail latency of Idealized Hedge and LÆDGE follows the
minimal latency of Naïve Hedge up to 60% utilization (for 6
replicas), and (2) LÆDGE continues to achieve a significant
part of the tail latency reduction of Idealized Hedge.

Finally, we should note that, out of curiosity, we experi-
mented with two more types of application-independent noise
(other than bimodal): exponential and bimodal+exponential.

For the former, not even Idealized Hedge can improve tail
latency, PSQ is the best policy, and LÆDGE performs almost
the same as PSQ; this is not surprising, given that hedging
was invented to deal with noise due to unpredictable system
events, which is better modelled with a bimodal distribution.
For the latter, the results were almost identical to the ones we
got for bimodal noise.

4.2 Beyond One Example

We now extend our observations beyond the specific setup of
Fig. 7: how well does LÆDGE fulfill the hedging potential as
the cluster size and nature of IQ-jitter vary?

We consider the same scenarios as in §3.4 and once more
summarize our results in heat maps in Figures 5 and 6. To
assess how well LÆDGE approximates Idealized Hedge, we
have to compare the heat maps. To simplify the comparison,
we introduce Table 2, which summarizes Figures 5 and 6 as a
percentage of the “surface” of each heat map that indicates
improvement above a certain threshold (20%, 30% and 40%).
For instance, consider the row that corresponds to hiccup
duration 30× P̄ and cluster size 50× 2 leaves, and the two
columns that correspond to Idealized Hedge and LÆDGE, with
> 30% latency improvement; the two cells where this row and
columns intersect indicate that Idealized Hedge achieves such
improvement for 29.7 % of the data points, while LÆDGE
does for 12.6 % of data points.

To summarize, LÆDGE fulfills as much as half of the hedg-
ing potential, depending on the setup. Consider again the
columns that correspond to Idealized Hedge and LÆDGE with
> 30% latency improvement, and compare the values of these
two columns that are in the same row; LÆDGE improves from
23% to 56% of the data points that are improved by Idealized
Hedge (i.e., that could possibly be improved through hedg-
ing). In general, LÆDGE is closer to Idealized Hedge for the
medium and large clusters, and the longer hiccup duration.

On a side note, LÆDGE does not deteriorate lower latency
percentiles compared to PSQ (e.g., the median), but improves
the tail. The rare hiccups that we analyzed, however, only in-
fluence the tail—not, for example, the 50th percentile latency.
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% reduction Idealized Hedge LÆDGE LÆDGE with CC LÆDGE with PC
wrt PSQ→ > 20 > 30 > 40 > 20 > 30 > 40 > 20 > 30 > 40 > 20 > 30 > 40

15
×

P̄ 5×2 leaves 26.3 19.6 15.6 9.8 8.3 6.4 13.6 11.8 9.6 14.4 11.6 10.1
50×2 leaves 29.9 21.5 15.4 13.4 9.8 3.8 16.8 12.2 5.2 15.9 12.3 9.2

500×2 leaves 31.9 17.9 4.4 12.6 4.2 0.2 14.8 5.2 0.2 15.5 8.0 0.9

30
×

P̄ 5×2 leaves 36.9 28.1 22.3 9.6 7.6 6.2 18.9 13.4 11.8 21.8 15.6 12.6
50×2 leaves 40.5 29.7 22.5 15.2 12.6 11.1 22.6 17.4 15.5 23.3 18.2 14.5

500×2 leaves 43.1 33.4 26.7 20.9 19.0 16.7 27.2 22.2 20.5 25.1 21.2 17.9

Table 2: Percentage of the total surface (in Figures 5 and 6) that has more than 20%, 30% and 40% reduction in 99th percentile
tail latency over Per-Shard Queuing for the workloads with the hiccup duration of 15× P̄ and 30× P̄.

4.3 Are Cancellations Worth the Effort?

First, in agreement with [4], our sensitivity analysis con-
firms that cleanup cancellation (CC) improves LÆDGE only
marginally. Consider the columns of Table 2 that correspond
to LÆDGE and LÆDGE with CC; on average, LÆDGE with
CC offers the same improvement to 2.3% more data points
than LÆDGE when hiccup duration is 15× P̄, and to 5.6%
more data points than LÆDGE when hiccup duration is 30× P̄.

Second, while our sensitivity analysis in Table 2 shows that
PCs have a marginally positive impact on LÆDGE, actually
there exist a few areas of highly-negative impact. We have
already discussed the intuition in §4.1; further analysis shows
that the effect persists across the parameter space.

In a way, the non-effectiveness of cancellations is good
news for application developers: Cancellations can be com-
plicated and expensive to implement, they often require non-
trivial application changes and language-specific mechanisms
to avoid memory leaks and inconsistent application state [13],
as well as additional interaction between the scheduler and
the leaves. The fact that our simulated zero-cost cancellations
bring no significant improvement to tail latency suggests that
real-life cancellations are not worth the effort in our context.

5 System Evaluation with Lucene

We now evaluate LÆDGE on Lucene, a popular open-source
enterprise search engine. It is representative of OLDI services
because (1) it involves sharding, and (2) client requests are
interactive, with expected latency in the millisecond scale.

Our workload is Lucene’s standard nightly regression test,
which consists of ∼10,000 search queries of four different
types: phrase, term, multiterm and boolean [51]. The data
consists of an inverted index of 18 million Wikipedia English
web pages [77], split into 16 sub-indices (for parallel execu-
tion in 16 threads). Lucene comes in C++ and Java flavors;
we used the former [52].

We implemented two LB policies (Random and PSQ) and
two hedging policies (Naïve Hedge and LÆDGE) in OLD-
Isim, Google’s open-source OLDI cloud benchmarking frame-
work [28]. We changed its architecture to support shard repli-
cation, and we added PSLBs (as in Fig. 1). The I/O part

of the framework stayed unchanged: it uses the event-based
libevent API [49], on top of vanilla Linux and TCP. We
extended the framework with request generation following an
open-loop Poisson arrival process.

We ran our Lucene workload on AWS EC2 virtual ma-
chines (VMs) organized in a “cluster” placement group [2]
in the same availability zone. We used two VM types: (1)
compute-optimized instances with 16 vCPUs @3.0 GHz and
32 GB of memory (c5.4xlarge), and (2) general-purpose in-
stances with 16 vCPUs @2.2 GHz and 64 GB of memory
(m5a.4xlarge). All VMs were running the default Ubuntu
16.04.6 image, kernel version 4.4.0-1092-aws.

We deployed 5×2 leaf servers, i.e., 5 distinct shards, each
replicated in 2 leaves. When a leaf executes a query, it uses 16
parallel threads (one per vCPU). To avoid the introduction of
data-driven bias in our results, we replicated the same index on
all 5 shards (though, from the point of view of the application,
they are still distinct shards served by different leaves). This
decision simplifies the comparison with the simulation results
in §4 without fundamentally changing the conclusions.

5.1 Empirical IQ-jitter Measurement
We started our experimental evaluation by measuring the real
IQ-jitter experienced by our Lucene workload.

We executed the 10,000 queries of our workload 1000
times each, in a random order, always on the same server type.
Consider a specific query Q. For each execution of this query,
Qi, i = 1...1000, we measured the service time Si (which does
not include any queuing or network delay). We approximated
the application-dependent component of the service time expe-
rienced by Q as the minimum service time across executions:
P(Q) = mini=1...1000 Si. Then we approximated the IQ-jitter
experienced by each query execution Qi as Ji = Si−P(Q).
By putting together all the IQ-jitter values for a given query
type, we obtained the IQ-jitter distribution for this query type.

Fig. 8a and 8b show (in the form of CCDFs) the empirical
distributions of P, J, and P+J, for the four query types of our
workload, and for the two different server types. The curves
differ in length as P’s distribution size depends on the number
of queries (∼10,000), whereas the two other distribution sizes
depend on the duration of the measurement experiment. The
means of P and J in the two server types are 0.637 ms and
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Figure 8: Mitigating the Lucene hiccups in a system implementation deployed on 2×5 leaves in EC2 VMs.

0.198 ms in Fig. 8a, and 0.926 ms and 0.444 ms in Fig. 8b,
while the hiccup duration and probability are 10.162 ms and
0.0027 in Fig. 8a, and 10.249 ms and 0.0109 in Fig. 8b.

As a side note, we measured the latency between our VMs
and found that the round-trip time is on average 91.2µs, with
minimum and maximum latency 61.5µs and 150.6µs, respec-
tively. The average network latency amounts to 10.94% and
6.7% of Lucene’s mean service time (P+ J) in the compute-
optimized and general-purpose scenario, respectively.

We observe that IQ-jitter is substantial in both server types,
and that the empirical distributions are consistent with our
simulation setup: the application-dependent component (P)
can be well approximated with an exponential distribution
(a straight line on a log-based CCDF), while the IQ-jitter
component (J) has a clear bimodal nature. This holds across
the four query types that vary significantly in complexity
(with “multiterm” queries being the most complex ones).

We investigated the reasons behind IQ-jitter and found
that a significant part is due to involuntary rescheduling of
Lucene threads, which occurs less frequently in the compute-
optimized VMs. Of course, different Lucene deployments
may experience less IQ-jitter: if the same workload runs on
fully-controlled physical machines, IQ-jitter can be reduced
by tweaking the OS or the application itself to mitigate the
impact of involuntary thread rescheduling on tail latency.

5.2 Mitigating Tail Latency Through Hedging
Next, we measured the end-to-end latency experienced by our
Lucene workload under varying system load. Figures 8c and
8d show the 99th percentile latency as a function of queries
per second, for the two server types, respectively.

LÆDGE behaves as expected: it matches Naïve Hedge at

low utilization, converges to PSQ at some point, and outper-
forms the best alternative in between. The exact behavior
depends on server type: On the compute-optimized VMs,
LÆDGE converges to PSQ at about 60% utilization; before
that, it improves tail latency by 49%, or 5.3 ms, on average,
relative to PSQ. On the general-purpose VMs, convergence
to PSQ happens quite earlier—at about 27% utilization—and
the improvement of tail latency before that point is somewhat
smaller (40%, or 4.7 ms, on average).

Our LÆDGE implementation (deployed in the cloud with
real system noise and non-zero network latencies) behaved
as our simulation predicted: With compute-optimized VMs,
our experimental setup consists of 5×2 leaves with IQ-jitter
of hiccup probability 0.0027 and hiccup duration 15.95× P̄.
The closest simulated setup is a cluster of the same size with
IQ-jitter of the same hiccup probability and hiccup duration
15×P̄. This corresponds to the leftmost heat map in Fig. 5b, y-
axis value 0.0027 (which is close to the base of the triangular
shape of the heat map). If we observe this heat map at the
given y-axis value, we can see that our simulated LÆDGE
policy significantly outperforms PSQ until utilization ∼40%
and then converges to PSQ at utilization ∼60%—matching
the behavior of our LÆDGE implementation.

6 Discussion

Scalability: PSQ-based scheduling scales naturally with the
number of leaves, because the queues are centralized only
within a shard. The degree of shard replication is typically
small due to DRAM costs [55], and easily manageable by
a single PSLB. As more shards are needed, this design
scales horizontally by adding more machines for (co-located)

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    383



PSLBs, as well as adding more root nodes.

Higher network latency: LÆDGE exposes the round-trip
latency between the PSLB and leaf tiers. In the Amazon en-
vironment that we used for our system evaluation (§5), this
latency is an order of magnitude smaller than the service time.
In an environment with higher PSLB-leaf latency, however,
exposing this latency could significantly impact throughput.
Adapting LÆDGE to such an environment would be straight-
forward: we would replace LÆDGE’s Per-Shard Queuing com-
ponent with JBSQ [45] (described in §2.4). More specifically,
in Alg. 1, instead of always enqueuing the query at line 11,
the PSLB would keep track of the queue sizes on the leaf
nodes and send the query to the leaf with the shortest queue.

Hedging to more replicas: Kaler et al. [40] have shown that
hedging the same query to more than two replicas does not
provide additional latency benefits. This is consistent with our
evaluation results, where hedging to two replicas was enough
to mitigate rare hiccups.

Fault-tolerance: The architecture in Fig. 1 is resilient to the
failure of all of its components: (1) the state in PSLBs is soft,
(2) the shards are replicated across different leaf nodes, and
(3) if a root fails, another one can take over.

Scheduling in the leaf nodes: We considered only FCFS
scheduling in the leaf nodes (see § 2.1). It is possible that a
change in scheduling discipline affects service time. However,
as long as service time has a component J that depends on
application-independent events and has a bimodal distribution,
our insights still apply.

7 Related Work

Taming map-reduce latency: Early attempts of hedging
studied long-running map-reduce jobs with execution times
measured in seconds or minutes [17]. This timescale allows
for “observe-then-predict” type of algorithms, with sophisti-
cated execution profiling based on which a decision can be
made about when it pays off to hedge [4, 5, 61, 82]. Systems
such as LATE [82], Mantri [5] and Dolly [4] used hedging to
mitigate the stragglers that would delay the entire phase. We
focused on OLDI services operating at different timescales
and do not lend themselves to heavy-weight profiling.

Hedging at low latencies: § 2.3 describes Naïve Hedge [72],
d-Hedge [16] and p-Hedge [40] that we compared against.
State-of-the-art reissue policies such as p-Hedge [40] address
the throughput limitations of Naïve Hedge and d-Hedge. Re-
cent work by Mirhosseini et al. [57], advocates PSQ as a plau-
sible means to reduce tail latency. We show in §3.3 that PSQ-
based hedging policies can outperform carefully-designed
push-based ones. Hedging techniques that target network la-
tency [24, 72, 79] are out of the scope of this work.

Early stop: In some cases, the user can receive a meaningful
response without her request querying all the shards. In the

literature, there are two main such scenarios: First, when
accuracy of the results is sacrificed for lower latency [36, 66].
Second, when the final result can be decoded if only a part of
queries finish [46, 65]. Such approaches are orthogonal ours
and can be integrated to further reduce latency.
Advanced load balancing: Lu et al. [50] decouple discovery
of lightly-loaded servers from job assignment. Since it offers
no redundancy, this technique is prone to increased tail latency
in the presence of IQ-jitter. “Snitching” is another interesting
LB technique in which the root node monitors request latency
and picks the fastest replica [6,71]. This technique also offers
no redundancy and is ineffective in case of bursty noise [32].
Adaptive parallelism: Many researchers have tried to predict
the service time of interactive services and accordingly adjust
the level of parallelism in the processing nodes, or prioritize
short-running queries over long-running ones [33, 38, 44, 53,
70]. This approach trades-off service-time for throughput
adaptively as a function of the load but does not attempt to
reduce jitter due to underlying system events.
Cancellations: Prior work extensively studied cancella-
tions [4, 9, 13, 16, 32]. Ananthanarayanan et al. [4] ob-
served that cancellations do not improve tail latency of map-
reduce workloads. Recent advances have shown that cancel-
ing microsecond-scale RPCs can be feasible, but memory
leaks remain a problem. Bashir et al. [9] recently studied
duplications and cancellations at multiple layers of a cloud
system, while Hao et al. studied application-specific or OS-
level instrumentation to increase the accuracy of cancellation
decisions [32]. LÆDGE is simple and can be deployed every-
where, including in the cloud. It applies duplication only at
the application level, and our results show comparable latency
reductions with and without cancellations. We leave the study
of combining cancellations with profiling to future work.
Infrastructure jitter: §1 includes numerous examples of
system events that cause jitter. Hao et al. [32] observe and
quantify noise in EC2 with a focus on disk read and write jitter.
Our work focuses on in-memory, CPU-bound applications,
which also observe a varying amount of jitter determined in
part by the underlying cloud VM.

8 Conclusion

This paper demonstrates that hedging can be applied without
significant throughput reduction by combining the best of
hedging and load balancing, i.e., by hedging only when the
current system load allows it. We show the drawbacks of ex-
isting policies and, in turn, propose LÆDGE, an integration of
hedging within a per-shard load-balancer, and quantify its ben-
efits against an idealized hedging policy designed to outper-
form any realistic hedging policy. We show that LÆDGE can
yield significant latency reductions over the state-of-the-art
approaches. We also validate its benefits with a cloud-based
deployment of an interactive web search application.
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Abstract
Resource provisioning in multi-tenant stream processing sys-
tems faces the dual challenges of keeping resource utilization
high (without over-provisioning), and ensuring performance
isolation. In our common production use cases, where stream-
ing workloads have to meet latency targets and avoid breach-
ing service-level agreements, existing solutions are incapable
of handling the wide variability of user needs. Our framework
called Cameo uses fine-grained stream processing (inspired
by actor computation models), and is able to provide high
resource utilization while meeting latency targets. Cameo dy-
namically calculates and propagates priorities of events based
on user latency targets and query semantics. Experiments
on Microsoft Azure show that compared to state-of-the-art,
the Cameo framework: i) reduces query latency by 2.7×in
single tenant settings, ii) reduces query latency by 4.6×in
multi-tenant scenarios, and iii) weathers transient spikes of
workload.

1 Introduction
Stream processing applications in large companies handle
tens of millions of events per second [16, 68, 89]. In an at-
tempt to scale and keep total cost of ownership (TCO) low,
today’s systems: a) parallelize operators across machines, and
b) use multi-tenancy, wherein operators are collocated on
shared resources. Yet, resource provisioning in production
environments remains challenging due to two major reasons:
(i) High workload variability. In a production cluster at a
large online services company, we observed orders of magni-
tude variation in event ingestion and processing rates, across
time, across data sources, across operators, and across ap-
plications. This indicates that resource allocation needs to be
dynamically tailored towards each operator in each query, in
a nimble and adept manner at run time.
(ii) Latency targets vary across applications. User expec-
tations come in myriad shapes. Some applications require
quick responses to events of interest, i.e., short end-to-end

∗Contact author: Le Xu <lexu1@illinois.edu>

Figure 1: Slot-based system (Flink), Simple Actor system (Or-
leans), and our framework Cameo.

latency. Others wish to maximize throughput under limited re-
sources, and yet others desire high resource utilization. Violat-
ing such user expectations is expensive, resulting in breaches
of service-level agreements (SLAs), monetary losses, and cus-
tomer dissatisfaction.

To address these challenges, we explore a new fine-grained
philosophy for designing a multi-tenant stream processing
system. Our key idea is to provision resources to each operator
based solely on its immediate need. Concretely we focus on
deadline-driven needs. Our fine-grained approach is inspired
by the recent emergence of event-driven data processing ar-
chitectures including actor frameworks like Orleans [10, 25]
and Akka [1], and serverless cloud platforms [5, 7, 11, 51].

Our motivation for exploring a fine-grained approach is
to enable resource sharing directly among operators. This
is more efficient than the traditional slot-based approach,
wherein operators are assigned dedicated resources. In the
slot-based approach, operators are mapped onto processes or
threads—examples include task slots in Flink [27], instances
in Heron [57], and executors in Spark Streaming [90]. Devel-
opers then need to either assign applications to a dedicated
subset of machines [13], or place execution slots in resource
containers and acquire physical resources (CPUs and mem-
ory) through resource managers [8, 47, 84].

While slot-based systems provide isolation, they are hard
to dynamically reconfigure in the face of workload variability.
As a result it has become common for developers to “game”
their resource requests, asking for over-provisioned resources,
far above what the job needs [34]. Aggressive users starve
other jobs which might need immediate resources, and the
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upshot is unfair allocations and low utilization.
At the same time, today’s fine-grained scheduling systems

like Orleans, as shown in Figure 1, cause high tail latencies.
The figure also shows that a slot-based system (Flink on
YARN), which maps each executor to a CPU, leads to low re-
source utilization. The plot shows that our approach, Cameo,
can provide both high utilization and low tail latency.

To realize our approach, we develop a new priority-based
framework for fine-grained distributed stream processing.
This requires us to tackle several architectural design chal-
lenges including: 1) translating a job’s performance target
(deadlines) to priorities of individual messages, 2) developing
interfaces to use real-time scheduling policies such as earliest
deadline first (EDF) [65], least laxity first (LLF) [69] etc.,
and 3) low-overhead scheduling of operators for prioritized
messages. We present Cameo, a new scheduling framework
designed for data streaming applications. Cameo:

• Dynamically derives priorities of operators, using both: a)
static input, e.g., job deadline; and b) dynamic stimulus,
e.g., tracking stream progress, profiled message execution
times.

• Contributes new mechanisms: i) scheduling contexts,
which propagate scheduling states along dataflow paths,
ii) a context handling interface, which enables pluggable
scheduling strategies (e.g., laxity, deadline, etc.), and iii)
tackles required scheduling issues including per-event
synchronization, and semantic-awareness to events.

• Provides low-overhead scheduling by: i) using a stateless
scheduler, and ii) allowing scheduling operations to be
driven purely by message arrivals and flow.

We build Cameo on Flare [68], which is a distributed data
flow runtime built atop Orleans [10, 25]. Our experiments are
run on Microsoft Azure, using production workloads. Cameo,
using a laxity-based scheduler, reduces latency by up to 2.7×
in single-query scenarios and up to 4.6× in multi-query sce-
narios. Cameo schedules are resilient to transient workload
spikes and ingestion rate skews across sources. Cameo’s
scheduling decisions incur less than 6.4% overhead.

2 Background and Motivation

2.1 Workload Characteristics
We study a production cluster that ingests more than 10 PB
per day over several 100K machines. The shared cluster has
several internal teams running streaming applications which
perform debugging, monitoring, impact analysis, etc. We first
make key observations about this workload.
Long-tail streams drive resource over-provisioning. Each
data stream is handled by a standing streaming query, de-
ployed as a dataflow job. As shown in Figure 2(a), we first
observe that 10% of the streams process a majority of the
data. Additionally, we observe that a long tail of streams,
each processing small amount data, are responsible for over-
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Figure 2: Workload characteristics collected from a produc-
tion stream analytics system.

provisioning—their users rarely have any means of accu-
rately gauging how many nodes are required, and end up
over-provisioning for their job.
Temporal variation makes resource prediction difficult.
Figure 2(c) is a heat map showing incoming data volume
for 20 different stream sources. The graph shows a high de-
gree of variability across both sources and time. A single
stream can have spikes lasting one to a few seconds, as well
as periods of idleness. Further, this pattern is continuously
changing. This points to the need for an agile and fine-grained
way to respond to temporal variations, as they are occurring.
Users already try to do fine-grained scheduling. We have
observed that instead of continuously running streaming appli-
cations, our users prefer to provision a cluster using external
resource managers (e.g., YARN [2], Mesos [47]), and then run
periodic micro-batch jobs. Their implicit aim is to improve
resource utilization and throughput (albeit with unpredictable
latencies). However, Figure 2(b) shows that this ad-hoc ap-
proach causes overheads as high as 80%. This points to the
need for a common way to allow all users to perform fine-
grained scheduling, without a hit on performance.
Latency requirements vary across jobs. Finally, we also
see a wide range of latency requirements across jobs. Fig-
ure 2(b) shows that the job completion time for the micro-
aggregation jobs ranges from less than 10 seconds up to 1000
seconds. This suggests that the range of SLAs required by
queries will vary across a wide range. This also presents an
opportunity for priority-based scheduling: applications have
longer latency constraints tend to have greater flexibility in
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54, 55, 67, 68, 85]
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Figure 3: Existing Dataflow Reconfiguration Solutions.

terms of when its input can be processed (and vice versa).

2.2 Prior Approaches
Dynamic resource provisioning for stream processing.
Dynamic resource provisioning for streaming data has been
addressed primarily from the perspective of dataflow recon-
figuration. These works fall into three categories as shown in
Figure 3:
i) Diagnosis And Policies: Mechanisms for when and how
resource re-allocation is performed;
ii) Elasticity Mechanisms: Mechanisms for efficient query
reconfiguration; and
iii) Resource Sharing: Mechanisms for dynamic performance
isolation among streaming queries.
These techniques make changes to the dataflows in reaction
to a performance metric (e.g., latency) deteriorating.

Cameo’s approach does not involve changes to the dataflow.
It is based on the insight that the streaming engine can delay
processing of those query operators which will not violate
performance targets right away. This allows us to quickly
prioritize and provision resources proactively for those other
operators which could immediately need resources. At the
same time, existing reactive techniques from Figure 3 are
orthogonal to our approach and can be used alongside our
proactive techniques.
The promise of event-driven systems. To achieve fine-
grained scheduling, a promising direction is to leverage emerg-
ing event-driven systems such as actor frameworks [43, 74]
and serverless platforms [24]. Unlike slot-based stream pro-
cessing systems like Flink [27] and Storm [83], operators here
are not mapped to specific CPUs. Instead event-driven sys-
tems maintain centralized queues to host incoming messages
and dynamically dispatch messages to available CPUs. This
provides an opportunity to develop systems that can manage a
unified queue of messages across query boundaries, and com-
bat the over-provisioning of slot-based approaches. Recent
proposals for this execution model also include [11,24,26,58].

Cameo builds on the rich legacy of work from two commu-
nities: classical real-time systems [63,75] and first-generation
stream management systems (DSMS) in the database com-
munity [14, 15, 31, 71]. The former category has produced
rich scheduling algorithms, but unlike Cameo, none build a
full working system that is flexible in policies, or support

streaming operator semantics. In the latter category the clos-
est to our work are event-driven approaches [14, 22, 28]. But
these do not interpret stream progress to derive priorities or
support trigger analysis for distributed, user-defined operators.
Further, they adopt a centralized, stateful scheduler design,
where the scheduler always maintains state for all queries,
making them challenging to scale.

Achieving Cameo’s goal of dynamic resource provisioning
is challenging. Firstly, messages sent by user-defined opera-
tors are a black-box to event schedulers. Inferring their impact
on query performance requires new techniques to analyze and
re-prioritize said messages. Secondly, event-driven schedulers
must scale with message volume and not bottleneck.

3 Design Overview
Assumptions, System Model: We design Cameo to support
streaming queries on clusters shared by cooperative users, e.g.,
within an organization. We also assume that the user specifies
a latency target at query submission time, e.g., derived from
product and service requirements.

The architecture of Cameo consists of two major compo-
nents: (i) a scheduling strategy which determines message pri-
ority by interpreting the semantics of query and data streams
given a latency target. (Section 4), and (ii) a scheduling frame-
work that 1. enables message priority to be generated using
a pluggable strategy, and 2. schedules operators dynamically
based on their current pending messsages’ priorities (Sec-
tion 5).

Cameo prioritizes operator processing by computing the
start deadlines of arriving messages, i.e., latest time for a
message to start execution at an operator without violating the
downstream dataflow’s latency target for that message. Cameo
continuously reorders operator-message pairs to prioritize
messages with earlier deadlines.

Calculating priorities requires the scheduler to continu-
ously book-keep both: (i) per-job static information, e.g., la-
tency constraint/requirement1 and dataflow topology, and (ii)
dynamic information such as the timestamps of tuples being
processed (e.g., stream progress [19,61]), and estimated execu-
tion cost per operator. To scale such a fine-grained scheduling
approach to a large number of jobs, Cameo utilizes scheduling
contexts— data structures attached to messages that capture
and transport information required to generate priorities.

The scheduling framework of Cameo has two levels. The
upper level consists of context converters, embedded into
each operator. A context converter modifies and propagates
scheduling contexts attached to a message. The lower level is
a stateless scheduler that determines target operator’s priority
by interpreting scheduling context attached to the message.
We also design a programmable API for a pluggable schedul-
ing strategy that can be used to handle scheduling contexts.
In summary, these design decisions make our scheduler scale
to a large number of jobs with low overhead.

1We use latency constraint and latency requirement interchangeably.
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Figure 4: Scheduling Example: J1 is batch analytics, J2 is latency-sensitive. Fair-share scheduler creates schedules “a” and “b”.
Topology-aware scheduler reduces violations (“c”). Semantics-aware scheduler further reduces violations (“d”). We further
explain these examples in Section 4.2

Example. We present an example highlighting our approach.
Consider a workload, shown in Figure 4, consisting of two
streaming dataflows J1 and J2 where J1 performs a batch
analytics query and J2 performs a latency sensitive anomaly
detection pipeline. Each has an output operator processing
messages from upstream operators. The default approach used
by actor systems like Orleans is to: i) order messages based
on arrival, and ii) give each operator a fixed time duration
(called “quantum”) to process its messages. Using this ap-
proach we derive the schedule “a” with a small quantum, and
a schedule “b” with a large quantum — both result in two
latency violations for J2. In comparison, Cameo discovers the
opportunity to postpone less latency-sensitive messages (and
thus their target operators). This helps J2 meet its deadline
by leveraging topology and query semantics. This is depicted
in schedules “c” and “d”. This example shows that when and
how long an operator is scheduled to run should be dynami-
cally determined by the priority of the next pending message.
We expand on these aspects in the forthcoming sections.

4 Scheduling Policies in Cameo
One of our primary goals in Cameo is to enable fine-grained
scheduling policies for dataflows. These policies can prioritize
messages based on information, like the deadline remaining
or processing time for each message, etc. To enable such
policies, we require techniques that can calculate the priority
of a message for a given policy.

We model our setting as a non-preemptive, non-uniform
task time, multi-processor, real-time scheduling problem.
Such problems are known to be NP-Complete offline and
cannot be solved optially online without complete knowledge
of future tasks [33, 81]. Thus, we consider how a number
of commonly used policies in this domain, including Least-
Laxity-First (LLF) [69], Earliest-Deadline-First (EDF) [65]
and Shortest-Job-First (SJF) [82], and describe how such poli-
cies can be used for event-driven stream processing.We use
the LLF policy as the default policy in our description below.

The above policies try to prioritize messages to avoid vio-
lating latency constraints. Deriving the priority of a message
requires analyzing the impact of each operator in the dataflow
on query performance. We next discuss how being deadline-
aware can help Cameo derive appropriate priorities. We also
discuss how being aware of query semantics can further im-
prove prioritization.

Symbol Definition
IDM ID of Message M.
ddlM Message start deadline.
oM target operator of M.

CoM
Estimated execution cost of M

on its target operator.

tM , and pM
Physical (and logical) time associated

with the last event required to produce M.

L
Dataflow latency constraint of the

dataflow that M belongs to.
pMF , and tMF Frontier progress, and frontier time.

Table 1: Notations used in paper for message M.

4.1 Definitions and Underpinnings

Event. Input data arrives as events, associated with a logical
time [30] that indicates the stream progress of these events in
the input stream.

Dataflow job and operators. A dataflow job consists of a
DAG of stages. Each stage operates a user-defined function.
A stage can be parallelized and executed by a set of dataflow
operators.

We say an operator ok is invoked when it processes its input
message, and ok is triggered when it is invoked and leads to an
output message, which is either passed downstream to further
operators or the final job output.

Cameo considers two types of operators: i) regular oper-
ators that are triggered immediately on invocation; and ii)
windowed operators [61] that partitions data stream into sec-
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tions by logical times and triggers only when all data from
the section are observed.
Message timestamps. We denote a message M as a tuple
(oM,(pM, tM)), where: a) oM is the operator executing the
message; b) pM and tM record the logical and physical time
of the input stream that is associated with M, respectively.
Intuitively, M is influenced by input stream with logical time
≤ pM . Physical time tM marks the system time when pM is
observed at a source operator.

We denote CoM as the estimated time to process message
M on target operator O, and L as the latency constraint for the
dataflow that M belongs to.
Latency. Consider a message M generated as the output of a
dataflow (at its sink operator). Consider the set of all events
E that influenced the generation of M. We define latency as
the difference between the last arrival time of any event in E
and the time when M is generated.

4.2 Calculating Message Deadline
We next consider the LLF scheduling policy where we wish
to prioritize messages which have the least laxity (i.e., flexi-
bility). Intuitively, this allows us to prioritize messages that
are closer to violating their latency constraint. To do this, we
discuss how to determine the latest time that a message M
can start executing at operator O without violating the job’s
latency constraint. We call this as the start deadline or in short
the deadline of the message M, denoted as ddlM . For the LLF
scheduler, ddlM is the message priority (lower value implies
higher priority).

We describe how to derive the priority (deadline) using
topology-awareness and then query (semantic)-awareness.

4.2.1 Topology Awareness

Single-operator dataflow, Regular operator. Consider a
dataflow with only one regular operator oM . The latency con-
straint is L. If an event occurs at time tM , then M should
complete processing before tM +L. The start deadline, given
execution estimate CoM , is:

ddlM = tM +L−CoM (1)

Multiple-operator dataflow, Regular operator. For an op-
erator o inside a dataflow DAG that is invoked by message
M, the start deadline of M needs to account for execution
time of downstream operators. We estimate the maximum
of execution times of critical path [49] from o to any output
operator as Cpath. The start deadline of M is then:

ddlM = tM +L−COM −Cpath (2)

Schedule “c” of Figure 4 showed an example of topology-
aware scheduling and how topology awareness helps reduce
violations. For example, ddlM2 = 30+50−20 = 60 means
that M2 is promoted due to its urgency. We later show that

even when query semantics are not available (e.g., UDFs),
Cameo improves scheduling with topology information alone.
Note that upstream operators are not involved in this calcula-
tion. COM and Cpath can be calculated by profiling.

4.2.2 Query Awareness

Cameo can also leverage dataflow semantics, i.e., knowledge
of user-specified commands inside the operators. This enables
the scheduler to identify messages which can tolerate further
delay without violating latency constraints. This is common
for windowed operations, e.g., a WindowAggregation opera-
tor can tolerate delayed execution if a message’s logical time
is at the start of the window as the operator will only produce
output at the end of a window. Window operators are very
common in our production use cases.

Multiple-operator dataflow, Windowed operator. Con-
sider M that targets a windowed operator oM , Cameo is able
to determine (based on dataflow semantics) to what extent M
can be delayed without affecting latency. This requires Cameo
to identify the minimum logical time (pMF ) required to trigger
the target window operator. We call pMF frontier progress.
Frontier progress denotes the stream progress that needs to
be observed at the window operator before a window is com-
plete. Thus a windowed operator will not produce output until
frontier progresses are observed at all source operators. We
record the system time when all frontier progresses become
available at all sources as frontier time, denoted as tMF .

Processing of a message M can be safely delayed until all
the messages that belong in the window have arrived. In other
words when computing the start deadline of M, we can extend
the deadline by (tMF − tM). We thus rewrite Equation 2 as:

ddlM = tMF +L−COM −Cpath (3)

An example of this schedule was shown in schedule “d” of
Figure 4. With query-awareness, scheduler derives tMF and
postpones M1 and M3 in favor of M2 and M4. Therefore
operator o2 is prioritized over o1 to process M2 then M4.

The above examples show the derivation of priority for
a LLF scheduler. Cameo also supports scheduling policies
including commonly used policies like EDF, SJF etc. In fact,
the priority for EDF can be derived by a simple modification
of the LLF equations. Our EDF policy considers the deadline
of a message prior to an operator executing and thus we can
compute priority for EDF by omitting COM term in Equation 3.
For SJF we can derive the priority by setting ddlM =COM —
while SJF is not deadline-aware we compare its performance
to other policies in our evaluation.

4.3 Mapping Stream Progress
For Equation 3 frontier time tMF may not be available until
the target operator is triggered. However, for many fixed-sized
window operations (e.g., SlidingWindow, TumblingWindow,
etc.), we can estimate tMF based on the message’s logical time
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pM . Cameo performs two steps: first we apply a TRANS-
FORM function to calculate pMF , the logical time of the
message that triggers oM . Then, Cameo infers the frontier
time tMF using a PROGRESSMAP function. Thus tMF = PRO-
GRESSMAP(TRANSFORM(pM)). We elaborate below.
Step 1 (Transform): For a windowed operator, the comple-
tion of a window at operator o triggers a message to be pro-
duced at this operator. Window completion is marked by the
increment of window ID [61,62], calculated using the stream’s
logical time. For message M that is sent from upstream oper-
ator ou to downstream operator od , pMF can be derived using
pM using on a TRANSFORM function. With the definition
provided by [62], Cameo defines TRANSFORM as:

pMF = TRANSFORM(pM)=

{
(pM/Sod +1) ·Sod Sou < Sod

pM otherwise

For a sliding window operator od , Sod refers to the slide size,
i.e., value step (in terms of logical time) for each window com-
pletion to trigger target operator. For the tumbling window
operation (i.e., windows cover consecutive, non-overlapping
value step), Sou equals the window size. For a message sent
by an operator ou that has a shorter slide size than its target-
ing operator od , pMF will be increased to the logical time to
trigger od , that is, = (pM/Sod +1) ·Sod .

For example if we have a tumbling window with window
size 10 s, then the expected frontier progress, i.e., pMF , will
occur every 10th second (1, 11, 21 ...). Once the window
operator is triggered, the logical time of the resultant message
is set to pMF , marking the latest time to influence a result.
Step 2 (ProgressMap): After deriving the frontier progress
pMF that triggers the next dataflow output, Cameo then esti-
mates the corresponding frontier time tMF . A temporal data
stream typically has its logical time defined in one of three
different time domains:
(1) event time [3, 6]: a totally-ordered value, typically a times-
tamp, associated with original data being processed;
(2) processing time: system time for processing each opera-
tor [19]; and
(3) ingestion time: the system time of the data first being ob-
served at the entry point of the system [3, 6].
Cameo supports both event time and ingestion time. For pro-
cessing time domain, M’s timestamp could be generated when
M is observed by the system.

To generate tMF based on progress pMF , Cameo utilizes a
PROGRESSMAP function to map logical time pMF to physical
time tMF . For a dataflow that defines its logical time by data’s
ingestion time, logical time of each event is defined by the
time when it was observed. Therefore, for all messages that
occur in the resultant dataflow, logical time is assigned by the
system at the origin as tMF = PROGRESSMAP(pMF ) = pMF .

For a dataflow that defines its logical time by the data’s
event time, tMF 6= pMF . Our stream processing run-time pro-
vides channel-wise guarantee of in-order processing for all
target operators. Thus Cameo uses linear regression to map

pMF to tMF , as: tMF = PROGRESSMAP(pMF ) = α · pMF + γ,
where α and γ are parameters derived via a linear fit with run-
ning window of historical pMF ’s towards their respective tMF ’s.
E.g., For same tumbling window with window size 10s, if pMF

occurs at times (1,11,21 . . .), with a 2s delay for the event to
reach the operator, tMF will occur at times (3,13,23 . . .).

We use a linear model due to our production deployment
characteristics: the data sources are largely real time streams,
with data ingested soon after generation. Users typically ex-
pect events to affect results within a constant delay. Thus the
logical time (event produced) and the physical time (event
observed) are separated by only a small (known) time gap.
When an event’s physical arrival time cannot be inferred from
stream progress, we treat windowed operators as regular op-
erators. Yet, this conservative estimate of laxity does not hurt
performance in practice.

5 Scheduling Mechanisms in Cameo

We next present Cameo’s architecture that addresses three
main challenges:
1 How to make static and dynamic information from both

upstream and downstream processing available during prior-
ity assignment?
2 How can we efficiently perform fine-grained priority as-

signment and scheduling that scales with message volume?
3 How can we admit pluggable scheduling policies without

modifying the scheduler mechanism?

Our approach to address the above challenges is to sep-
arate out the priority assignment from scheduling, thus de-
signing a two-level architecture.This allows priority assign-
ment for user-defined operators to become programmable.To
pass information between the two levels (and across different
operators) we piggyback information atop messages passed
between operators.

More specifically, Cameo addresses challenge 1 by propa-
gating scheduling contexts with messages. To meet challenge
2 , Cameo uses a two-layer scheduler architecture. The top

layer, called the context converter, is embedded into each op-
erator and handles scheduling contexts whenever the operator
sends or receives a message. The bottom layer, called the
Cameo scheduler, interprets message priority based on the
scheduling context embedded within a message and updates
a priority-based data structure for both operators and opera-
tors’ messages. Our design has advantages of: (i) avoiding
the bottleneck of having a centralized scheduler thread calcu-
late priority for each operator upon arrival of messages, and
(ii) only limiting priority to be per-message. This allow the
operators, dataflows, and the scheduler, to all remain stateless.

To address 3 Cameo allows the priority generation pro-
cess to be implemented through the context handling API. A
context converter invokes the API with each operator.
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5.1 Scheduling Contexts
Scheduling contexts are data structures attached to mes-
sages, capturing message priority, and information required
to perform priority-based scheduling. Scheduling contexts
are created, modified, and relayed alongside their respective
messages. Concretely, scheduling contexts allow capture of
scheduling states of both upstream and downstream execu-
tion. A scheduling context can be seen and modified by both
context converters and the Cameo scheduler. There are two
kinds of contexts:

1. Priority Context (PC): PC is necessary for the scheduler
to infer the priority of a message. In Cameo PCs are defined
to include local and global priority as (ID, PRIlocal , PRIglobal ,
Data f low_De f inedField). PRIlocal and PRIglobal are used
for applications to enclose message priorities for scheduler to
determine execution order, and Data f low_De f inedField in-
cludes upstream information required by the pluggable policy
to generate message priority.

A PC is attached to a message before the message is sent.
It is either created at a source operator upon receipt of an
event, or inherited and modified from the upstream message
that triggers the current operator. Therefore, a PC is seen and
modified by all executions of upstream operators that lead to
the current message. This enables PC to address challenge 1
by capturing information of dependant upstream execution
(e.g., stream progress, latency target, etc.).

2. Reply Context (RC): RC meets challenge 1 by captur-
ing periodic feedback from the downstream operators. RC is
attached to an acknowledgement message 2, sent by the target
operator to its upstream operator after a message is received.
RCs provide processing feedback of the target operator and all
its downstream operators. RCs can be aggregated and relayed
recursively upstream through the dataflow.

Cameo provides a programmable API to implement these
scheduling contexts and their corresponding policy handlers
in context converters. API functions include:

1. function BUILDCXTATSOURCE(EVENT e) that creates
a PC upon receipt of an event e;

2. function BUILDCXTATOPERATOR(MESSAGE M) that
modifies and propagates a PC when an operator is invoked
(by M) and ready to send a message downstream;

3. function PROCESSCTXFROMREPLY(MESSAGE r) that
processes RC attached to an acknowledgement message r
received at upstream operator; and

4. function PREPAREREPLY(MESSAGE r) that generates
RC containing user-defined feedbacks, attached to r sent by
a downstream operator.

5.2 System Architecture
Figure 5(a) shows context converters at work. After an event
is generated at a source operator 1a (step 1), the converter

2A common approach used by many stream processing systems [27, 57,
83] to ensure processing correctness

(a) Scheduling contexts circulating between two operators.

(b) Cameo Scheduler Architecture. Operators sorted by global
priority. Messages at an operator sorted by local priority.

Figure 5: Cameo Mechanisms.

creates a PC through BUILDCXTATSOURCE and sends the
message to Cameo scheduler. The target operator is scheduled
(step 2) with the priority extracted from the PC, before it is
executed. Once the target operator 3a is triggered (step 4), it
calls BUILDCTXATOPERATOR, modifying and relaying PC
with its message to downstream operators. After that 3a sends
an acknowledgement message with an RC (through PREPAR-
EREPLY) back to 1a (step 5). RC is then populated by the
scheduler with runtime statistics (e.g, CPU time, queuing de-
lays, message queue sizes, network transfer time, etc.) before
it is scheduled and delivered at the source operator (step 6).

Cameo enables scheduling states to be managed and trans-
ported alongside the data. This allows Cameo to meet chal-
lenge 2 by keeping the scheduler away from centralized
state maintenance and priority generation. The Cameo sched-
uler manages a two level priority-based data structure, shown
in Figure 5(b). We use PRIlocal to determine M’s execution
priority within its target operator, and PRIglobal of the next
message in an operator to order all operators that have pending
messages. Cameo can schedule at either message granularity
or a coarser time quanta. While processing a message, Cameo
peeks at the priority of the next operator in the queue. If the
next operator has higher priority, we swap with the current
operator after a fixed time quantum (tunable).
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Algorithm 1 Priority Context Conversion

1: function BUILDCXTATSOURCE(EVENT e) . Generate
PC for message Me at source triggered by event e

2: PC(Me)← INITIALIZEPRIORITYCONTEXT()
3: PC(Me).(PRIlocal ,PRIglobal)← (e.pe,e.te)
4: PC(Me)← CONTEXTCONVERT(PC(Me),RClocal)
5: return PC(Me)

6: function BUILDCXTATOPERATOR(MESSAGE Mn) .
Generate PC for message Md at an intermediate operator
triggered by upstream message Mu

7: PC(Md)← PC(Mu)
8: PC(Md).(PRIlocal ,PRIglobal)← PC(Mu).(pMF , tMF )
9: PC(Md)← CONTEXTCONVERT(PC(Md),RClocal)

10: return PC(Md)

11: function CXTCONVERT(PC(M),RC) . Calculating
message priority based on PC(M),RC provided

12: pMF ← TRANSFORM(PC(M).pM)
13: tMF ← PROGRESSMAP(pMF ) . As in Section 4.3
14: if tMF defined in stream event time then
15: PROGRESSMAP.UPDATE(PC.tM,PC.pM) .

Improving prediction model as in Section 5.3
16: PC(M).pM,PC(M).tM ← pMF , tMF

17: ddlM ← tMF +PC(M).L−RC.Cm−RC.Cpath
18: PC(M).(PRIlocal ,PRIglobal)← (pMF ,ddlM)

19: function PROCESSCTXFROMREPLY(MESSAGE r) .
Retrieve reply message’s RC and store locally

20: RClocal.update(r.RC)
21: function PREPAREREPLY(MESSAGE r) . Recursively

update maximum critical path cost Cpath before reply
22: if SENDER(r) = Sink then
23: r.RC← INITIALIZEREPLYCONTEXT()
24: else r.RC.Cpath← RC.Cm +RC.Cpath

5.3 Implementing the Cameo Policy
To implement the scheduling policy of Section 4, a PC is
attached to message M (denoted as PC(M)) with these fields:

ID PRIlocal PRIglobal Data f low−De f inedField
IDM pMF ddlMF (pMF , tMF ,L)

The core of Algorithm 1 is CXTCONVERT, which generates
PC for downstream message Md (denoted as PC(Md)), trig-
gered by PC(Mu) from the upstream triggering message. To
schedule a downstream message Md triggered by Mu, Cameo
first retrieves stream progress pMu contained in PC(Mu). It
then applies the two-step process (Section 4.3) to calculate
frontier time tMF using pMu . This may extend a message’s
deadline if the operator is not expected to trigger immediately
(e.g., windowed operator). We capture pMF and estimated
tMF in PC as message priority and propagate this downstream.
Meanwhile, pMu and tMu are fed into a linear model to improve
future prediction towards tMF . Finally, the context converter
computes message priority ddlMu using tMF as described in

Figure 6: Proportional fair sharing using Cameo.

Section 4.
Cameo utilizes RC to track critical path execution cost Cpath

and execution cost CoM . RC contains the processing cost (e.g.,
CPU time) of the downstream critical path up to the current
operator, obtained via profiling.

5.4 Customizing Cameo: Proportional Fair
Scheduling

We next show how the pluggable scheduling policy in Cameo
can be used to support other performance objectives, thus
satisfying 3 . For instance, we show how a token-based rate
control mechanism works, where token rate equals desired
output rate. In this setting, each application is granted tokens
per unit of time, based on their target sending rate. If a source
operator exceeds its target sending rate, the remaining mes-
sages (and all downstream traffic) are processed with operator
priority reduced to minimum. When capacity is insufficient to
meet the aggregate token rate, all dataflows are downgraded
equally. Cameo spreads tokens proportionally across the next
time interval (e.g., 1 sec) by tagging each token with the times-
tamp at each source operator. For token-ed messages, we use
token tag PRIglobal , and interval ID as PRIlocal . Messages
without tokens have PRIglobal set to MIN_VALUE. Through PC
propagation, all downstream messages are processed when
no tokened traffic is present.

Figure 6 shows Cameo’s token mechanism. Three
dataflows start with 20% (12), 40% (24), and 40% (24) tokens
as target ingestion rate per source respectively. Each ingests
2M events/s, starting 300 s apart, and lasting 1500 s. Dataflow
1 receives full capacity initially when there is no competition.
The cluster is at capacity after Dataflow 3 arrives, but Cameo
ensures token allocation translates into throughput shares.

6 Experimental Evaluation
We next present experimental evaluation of Cameo. We
first study the effect of different queries on Cameo in a
single-tenant setting. Then for multi-tenant settings, we study
Cameo’s effects when:

• Varying environmental parameters (Section 6.2): This
includes: a) workload (tenant sizes and ingestion rate),
and b) available resources, i.e., worker thread pool size,
c) workload bursts.

• Tuning internal parameters and optimization (Sec-
tion 6.3): We study: a) effect of scheduling granularity, b)
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frontier prediction for event time windows, and c) starva-
tion prevention.

We implement streaming queries in Flare [68] (built atop
Orleans [10, 25]) by using Trill [30] to run streaming opera-
tors.We compare Cameo vs. both i) default Orleans (version
1.5.2) scheduler, and ii) a custom-built FIFO scheduler. By
default, we use the 1 ms minimum re-scheduling grain (Sec-
tion 5.2). This grain is generally shorter than a message’s
execution time. Default Orleans implements a global run
queue of messages using a ConcurrentBag [9] data structure.
ConcurrentBag optimizes processing throughput by prioritiz-
ing processing thread-local tasks over the global ones. For
the FIFO scheduler, we insert operators into the global run
queue and extract them in FIFO order. In both approaches, an
operator processes its messages in FIFO order.

Machine configuration. We use DS12-v2 Azure virtual ma-
chines (4 vCPUs/56GB memory/112G SSD) as server ma-
chines, and DS11-v2 Azure virtual machines (2 vCPUs/14GB
memory/28G SSD) as client machines [12]. Single-tenant
scenarios are evaluated on a single server machine. Unless
otherwise specified, all multi-tenant experiments are evalu-
ated using a 32-node Azure cluster with 16 client machines.

Evaluation workload. For the multi-job setting we study
performance isolation under concurrent dataflow jobs. Con-
cretely, our workload is divided into two control groups:

• Latency Sensitive Jobs (Group 1 ): This is representa-
tive of jobs connected to user dashboards, or associated
with SLAs, ongoing advertisement campaigns, etc. Our
workload jobs in Group 1 have sparse input volume across
time (1 msg/s per source, with 1000 events/msg), and re-
port periodic results with shorter aggregation windows (1
second). These have strict latency constraints.

• Bulk Analytic Jobs (Group 2): This is representative of
social media streams being processed into longer-term
analytics with longer aggregation windows (10 seconds).
Our Group 2 jobs have input of both higher and variable
volume and high speed, but with lax latency constraints.

Our queries feature multiple stages of windowed aggrega-
tion parallelized into a group of operators. Each job has 64
client sources. All queries assume input streams associated
with event time unless specified otherwise.

Latency constraints. In order to determine the latency con-
straint of one job, we run multiple instances of the job until the
resource (CPU) usage reaches 50%. Then we set the latency
constraint of the job to be twice the tail (95th percentile) la-
tency. This emulates the scenario where users with experience
in isolated environments deploy the same query in a shared
environment by moderately relaxing the latency constraint.
Unless otherwise specified, a latency target is marked with
grey dotted line in the plots.

(a) (b)

(c)

Figure 7: Single-Tenant Experiments: (a) Query Latency. (b)
Latency CDF. (c) Operator Schedule Timeline: X axis = time
when operator was scheduled. Y axis = operator ID color
coded by operator’s stage. Operators are triggered at each
stage in order (stage 0 to 3). Job latency is time from all
events that belong to the previous window being received at
stage 0, until last message is output at stage 3.

6.1 Single-tenant Scenario
In Figure 7 we evaluate a single-tenant setting with 4 queries:
IPQ1 through IPQ4. IPQ1 and IPQ3 are periodic and they
respectively calculate sum of revenue generated by real time
ads, and the number of events generated by jobs groups by dif-
ferent criteria. IPQ2 performs similar aggregation operations
as IPQ1 but on a sliding window (i.e., consecutive window
contains overlapped input). IPQ4 summarizes errors from
log events via running a windowed join of two event stream,
followed by aggregation on a tumbling window (i.e., where
consecutive windows contain non-overlapping ranges of data
that are evenly spaced across time).

From Figure 7(a) we observe that Cameo improves me-
dian latency by up to 2.7×and tail latency by up to 3.2×.We
also observe that default Orleans performs almost as well as
Cameo for IPQ4. This is because IPQ4 has a higher execution
time with heavy memory access, and performs well when
pinned to a single thread with better access locality.

Effect on intra-query operator scheduling. The CDF in
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(a) Varying ingestion rate of group 2 tenants (Bulk Analytics).

(b) Varying number of group 2 tenants (Bulk Analytics).

(c) Varying worker thread pool size.

Figure 8: Latency-sensitive jobs under competing workloads.

Figure 7(b) shows that Orleans’ latency is about 3× higher
than Cameo. While FIFO has a slightly lower median latency,
its tail latency is as high as in Orleans.

Cameo’s prioritization is especially evident in Figure 7(c),
where dots are message starts, and red lines separate windows.
We first observe that Cameo is faster, and it creates a clearer
boundary between windows. Second, messages that contribute
to the first result (colored dots) and messages that contribute
to the second result (grey dots) do not overlap on the timeline.
For the other two strategies, there is a drift between stream
progress in early stages vs. later stages, producing a prolonged
delay. In particular, in Orleans and FIFO, early-arriving mes-
sages from the next window are executed before messages
from the first window, thus missing deadlines.

6.2 Multi-tenant Scenario
Figure 8 studies a control group of latency-constrained
dataflows (group 1 LS jobs) by fixing both job count and
data ingestion rate. We vary data volume from competing
workloads (group 2 BA jobs) and available resources. For LS
jobs we impose a latency target of 800 ms, while for BA jobs
we use a 7200s latency constraint.
Cameo under increasing data volume. We run four group 1
jobs alongside group 2 jobs. We increase the competing group
2 jobs’ traffic, by increasing the ingestion speed (Figure 8(a))
and number of tenants (Figure 8(b)). We observe that all three

strategies (Cameo, Orleans, FIFO) are comparable up to per-
source tuple rate of 30K/s in Figure 8(a), and up to twelve
group 2 jobs in Figure 8(b). Beyond this, overloading causes
massive latency degradation, for group 1 (LS) jobs at median
and 99 percentile latency (respectively): i) Orleans is worse
than Cameo by up to 1.6 and 1.5× in Figure 8(a), up to 2.2
and 2.8× in Figure 8(b), and ii) FIFO is worse than Cameo
by up to 2 and 1.8× in Figure 8(a), up to 4.6 and 13.6× in
Figure 8(b). Cameo stays stable. Cameo’s degradation of
group 2 jobs is small— with latency similar or lower than
Orleans and FIFO, and Cameo’s throughput only 2.5% lower.

Effect of limited resources. Orleans’ [74] underlying SEDA
architecture [86] resizes thread pools to achieve resource bal-
ance between execution steps, for dynamic re-provisioning.
Figure 8(c) shows latency and throughput when we decrease
the number of worker threads. Cameo maintains the per-
formance of group 1 jobs except in the most restrictive 1
thread case (although it still meets 90% of deadlines). Cameo
prefers messages with impending deadlines and this causes
back-pressure for jobs with less-restrictive latency constraints,
lowering throughput. Both Orleans and FIFO observe large
performance penalties for group 1 and 2 jobs (higher in the
former). Group 2 jobs with much higher ingestion rate will
naturally receive more resources upon message arrivals, lead-
ing to back-pressure and lower throughput for group 1 jobs.

Effect of temporal variation of workload. We use a Pareto
distribution for data volume in Figure 9, with four group 1 jobs
and eight group 2 jobs. (This is based on Figures 2(a), 2(c),
which showed a Power-Law-like distribution.) The cluster
utilization is kept under 50%.

High ingestion rate can suddenly prolong queues at ma-
chines. Visualizing timelines in Figures 9(a), 9(b), and 9(c)
shows that for latency-constrained jobs (group 1), Cameo’s
latency is more stable than Orleans’ and FIFO’s. Figure 9(d)
shows that Cameo reduces (median, 99th percentile) latency
by (3.9×, 29.7×) vs. Orleans, and (1.3×, 21.1×) vs. FIFO.
Cameo’s standard deviation is also lower by 23.2× and 12.7×
compared to Orleans and FIFO respectively. For group 2,
Cameo produces smaller average latency and is less affected
by ingestion spikes. Transient workload bursts affect many
jobs, e.g., all jobs around t = 400 with FIFO, as a spike at one
operator affects all its collocated operators.

Ingestion pattern from production trace. Production work-
loads exhibit high degree of skew across data sources. In Fig-
ure 10 we show latency distribution of dataflows consuming
two workload distributions derived from Figure 2(c): Type 1
and 2. Type 1 produces twice as many events as Type 2. How-
ever, Type 2 is heavily skewed and its ingestion rate varies by
200× across sources. This heavily impacts operators that are
collocated. The success rate (i.e., the fraction of outputs that
meet their deadline) is only 0.2% and 1.5% for Orleans and
7.9% and 9.5% for FIFO. Cameo prioritizes critical messages,
maintaining success rates of 21.3% and 45.5% respectively.
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(a) Orleans Latency Timeline (b) FIFO Latency Timeline

(c) Cameo Latency Timeline
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Figure 9: Latency under Pareto event arrival.

Figure 10: Spatial Workload Variation.

Figure 11: Cameo Policies. Left: Single query latency distri-
bution. Right: Multi-Query Latency Distribution.

6.3 Cameo: Internal Evaluation
We next evaluate Cameo’s internal properties.
LLF vs. EDF vs. SJF. We implement three scheduling poli-
cies using the Cameo context API and evaluate using Sec-
tion 6.1’s workload. The three scheduling policies are: Least
Laxity First (LLF, our default), Earliest Deadline First (EDF),
and Shortest Job First (SJF). Figure 11 shows that SJF is
consistently worse than LLF and EDF (with the exception of
query IPQ4– due to the lack of queuing effect under lighter
workload). Second, EDF and LLF perform comparably.

In fact we observed that EDF and LLF produced similar
schedules for most of our queries. This is because: i) our
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Figure 12: Cameo Scheduling Overhead.

Figure 13: Effect of Batch Size.

operator execution time is consistent within a stage, and ii)
operator execution time is� window size. Thus, excluding
operator cost (EDF) does not change schedule by much.

Scheduling Overhead. To evaluate Cameo with many small
messages, we use one thread to run a no-op workload (300-
350 tenants, 1 msg/s/tenant, same latency needs). Tenants are
increased to saturate throughput.

Figure 12 (left) shows breakdown of execution time (in-
verse of throughput) for three scheduling schemes: FIFO,
Cameo without priority generation (overhead only from pri-
ority scheduling), and Cameo with priority generation and
the LLF policy from Section 4 (overhead from both prior-
ity scheduling and priority generation). Cameo’s scheduling
overhead is < 15% of processing time in the worst case, com-
prising of 4% overhead from priority-based scheduling and
11% from priority generation.

In practice, Cameo encloses a columnar batch of data in
each message like Trill [30]. Cameo’s overhead is small com-
pared to message execution costs. In Figure 12 (right), under
Section 6’s workload, scheduling overhead is only 6.4% of
execution time for a local aggregation operator with batch
size 1. Overhead falls with batch size. When Cameo is used
as a generalized scheduler and message execution costs are
small (e.g., with < 1 ms), we recommend tuning scheduling
quantum and message size to reduce scheduling overhead.

In Figure 13, we batch more tuples into a message, while
maintaining same overall tuple ingestion rate. In spite of de-
creased flexibility available to the scheduler, group 1 jobs’ la-
tency is unaffected up to 20K batch size. It degrades at higher
batch size (40K), due to more lower priority tuples block-
ing higher priority tuples. Larger messages hide scheduling
overhead, but could starve some high priority messages.

Varying Scope of Scheduler Knowledge. If Cameo is un-
aware of query semantics (but aware of DAG and latency con-
straints), Cameo conservatively estimates tMF without dead-
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500 750 1000 1250
0.0

0.5

1.0
GrouS1(LS)

500 1000 1500

GrouS2(BA)

σ Ln Ps
0
1
100
1000

0.0 0.2 0.4 0.6 0.8 1.0
LatencLes (Ps)

0.0

0.5

1.0

Pe
rc

en
tLl

e

Figure 15: Profiling Inaccuracy. Standard deviation in ms.

line extension for window operators, causing a tighter ddlM .
Figure 14 shows that Cameo performs slightly worse without
query semantics (19% increase in group 2 median latency).
Against baselines, Cameo still reduces group 1 and group 2’s
median latency by up to 38% and 22% respectively. Hence,
even without query semantic knowledge, Cameo still outper-
forms Orleans and FIFO.

Effect of Measurement Inaccuracies. To evaluate how
Cameo reacts to inaccurate monitoring profiles, we perturb
measured profile costs (COM from Equation 3) by a normal
distribution (µ=0), varying standard deviation (σ) from 0 to
1 s. Figure 15 shows that when σ of perturbation is close
to window size (1 s), latency is: i) stable at the median, and
ii) modestly increases at tail, e.g., only by 55.5% at the 90th
percentile. Overall, Cameo’s performance is robust when stan-
dard deviation is ≤ 100ms, i.e., when measurement error is
reasonably smaller than output granularity.

7 Related Work

Streaming system schedulers. The first generation of Data
Stream Management Systems (DSMS) [15, 32], such as Au-
rora [28], Medusa [23] and Borealis [14], use QoS based
control mechanisms with load shedding to improve query
performance at run time. These are either centralized (single-
threaded) [28], or distributed [14, 23] but do not handle
timestamp-based priorities for partitioned operators. Tele-
graphCQ [31] orders input tuples before query processing
[21, 79], while Cameo addresses operator scheduling within
and across query boundaries. Stanford’s STREAM [71] uses
chain scheduling [22] to minimize memory footprints and
optimize query queues, but assumes all queries and sched-
uler are execute in a single-thread. More recent works in
streaming engines propose operator scheduling algorithms
for query throughput [20] and latency [41, 64]. Reactive and
operator-based policies include [20, 64], while [41] assumes
arrivals are periodic or Poisson—however, these works do not
build a framework (like Cameo), nor do they handle per-event
semantic awareness for stream progress.

Modern stream processing engines such as Spark Stream-
ing [90], Flink [27], Heron [57], MillWheel [18], Naiad [72],
Muppet [59], Yahoo S4 [73]) do not include native support for
multi-tenant SLA optimization. These systems also rely on
coarse-grained resource sharing [13] or third-party resource
management systems such as YARN [84] and Mesos [47].

Streaming query reconfiguration. Online reconfiguration
has been studied extensively [48]. Apart from Figure 3, prior
work addresses operator placement [39, 76], load balanc-
ing [56, 66], state management [29], policies for scale-in and
scale-out [44–46, 67]. Among these are techniques to address
latency requirements of dataflow jobs [44, 67], and ways to
improve vertical and horizontal elasticity of dataflow jobs
in containers [87]. The performance model in [60] focuses
on dataflow jobs with latency constraints, while we focus on
interactions among operators. Online elasticity was targeted
by System S [40,80], StreamCloud [42] and TimeStream [78].
Others include [35, 53]. Neptune [38] is a proactive scheduler
to suspend low-priority batch tasks in the presence of stream-
ing tasks. Yet, there is no operator prioritization within each
application. Edgewise [37] is a queue-based scheduler based
on operator load but not query semantics. All these works are
orthogonal to, and can be treated as pluggables in, Cameo.

Event-driven architecture for real-time data processing.
This area has been popularized by the resource efficiency of
serverless architectures [4, 5, 7]. Yet, recent proposals [17, 26,
58, 70] for stream processing atop event-based frameworks
do not support performance targets for streaming queries.

8 Conclusion

We proposed Cameo, a fine-grained scheduling framework
for distributed stream processing. To realize flexible per-
message scheduling, we implemented a stateless scheduler,
contexts that carry important static and dynamic information,
and mechanisms to derive laxity-based priority from contexts.
Our experiments with real workloads, and on Microsoft Azure,
showed that Cameo achieves 2.7×−4.6× lower latency than
competing strategies and incurs overhead less than 6.4%.

Acknowledgements

We thank our shepherd Matei Zaharia and our anonymous
referees for their reviews and help with improving the paper.
We thank Kai Zeng for providing feedbacks for initial ideas.
This work was supported in part by the following grants:
NSF IIS 1909577, NSF CNS 1908888, NSF CNS 1319527,
NSF CNS 1838733, a Facebook faculty research award, the
Helios project at Microsoft [77], and another generous gift
from Microsoft. Shivaram Venktaraman is also supported by
the Office of the Vice Chancellor for Research and Graduate
Education with funding from the Wisconsin Alumni Research
Foundation. We are grateful to the Cosmos, Azure Data Lake,
and PlayFab teams at Microsoft.

400    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



References
[1] Akka. https://akka.io/.

[2] Apache Hadoop. https://hadoop.apache.org/.

[3] Apache Kafka Core Concepts. https:
//kafka.apache.org/11/documentation/
streams/core-concepts.

[4] AWS Lambda. https://aws.amazon.com/lambda/.

[5] Azure Functions. https://azure.microsoft.com/
en-us/services/functions/.

[6] Flink Time Attribute. https://ci.apache.org/
projects/flink/flink-docs-release-1.7/dev/
event_time.html.

[7] Google Cloud Functions. https://cloud.google.
com/functions.

[8] Kubernetes: Production-Grade Container Orchestration.
https://kubernetes.io/.

[9] .NET ConcurrentBag. https://docs.
microsoft.com/en-us/dotnet/api/system.
collections.concurrent.concurrentbag-1?
view=netframework-4.8.

[10] Orleans. https://dotnet.github.io/orleans/.

[11] Serverless Streaming Architectures and Best
Practices, amazon web services. https:
//d1.awsstatic.com/whitepapers/Serverless_
Streaming_Architecture_Best_Practices.pdf.

[12] Sizes for Windows virtual machines in Azure.
https://docs.microsoft.com/en-us/azure/
virtual-machines/windows/sizes.

[13] Storm Multitenant Scheduler. https://storm.
apache.org/releases/current/javadocs/
org/apache/storm/scheduler/multitenant/
package-summary.html.

[14] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska,
Ugur Cetintemel, Mitch Cherniack, Jeong-Hyon Hwang,
Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther
Ryvkina, et al. The design of the Borealis stream pro-
cessing engine. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR), volume 5,
pages 277–289, 2005.

[15] Daniel J Abadi, Don Carney, Ugur Çetintemel, Mitch
Cherniack, Christian Convey, Sangdon Lee, Michael
Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: a
new model and architecture for data stream management.
Proceedings of the VLDB Endowment, 12(2):120–139,
2003.

[16] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak
Borkar, Bhuwan Chopra, Ciprian Gerea, Daniel Merl,
Josh Metzler, David Reiss, Subbu Subramanian, et al.
Scuba: diving into data at facebook. Proceedings of the
VLDB Endowment, 6(11):1057–1067, 2013.

[17] Adil Akhter, Marios Fragkoulis, and Asterios Katsifodi-
mos. Stateful functions as a service in action. Pro-
ceedings of the VLDB Endowment, 12(12):1890–1893,
2019.

[18] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava
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Abstract— Today’s data analytics frameworks are compute-
centric, with analytics execution almost entirely dependent on
the predetermined physical structure of the high-level com-
putation. Relegating intermediate data to a second class en-
tity in this manner hurts flexibility, performance, and effi-
ciency. We present WHIZ, a new analytics execution frame-
work that cleanly separates computation from intermediate
data. This enables runtime visibility into intermediate data
via programmable monitoring, and data-driven computation
where data properties drive when/what computation runs. Ex-
periments with a WHIZ prototype on a 50-node cluster using
batch, streaming, and graph analytics workloads show that
it improves analytics completion times 1.3-2× and cluster
efficiency 1.4× compared to state-of-the-art.

1 Introduction
Many important applications in diverse settings rely on analyz-
ing large datasets, including relational tables, event streams,
and graph-structured data. To analyze such data, several exe-
cution frameworks have been introduced [4, 7, 15, 24, 36, 42–
45, 50, 51]. These enable data parallel computation, where an
analytics job’s logic is run in parallel on data shards spread
across cluster machines.

Almost all these frameworks build on the MapReduce exe-
cution engine [21]. Like MapReduce, they leverage compute-
centric execution (§2). Their execution engines’ focus is on
splitting a job’s computational logic, and distributing it across
tasks to be run in parallel. All aspects of the subsequent exe-
cution of the job are rooted in the job’s computational logic,
and its task-level computation distribution. These include the
fact that compute logic running inside tasks is static and/or
predetermined; intermediate data is partitioned and routed to
where it is consumed based on the task-level structure; and de-
pendent tasks are launched when a fraction of upstream tasks
they depend on finish. These attributes of job execution are
not related to, or driven by, the properties of intermediate data,
i.e., how much and what data is generated. Thus, intermediate

†These authors contributed equally to this work.
*Work done while at University of Wisconsin–Madison.

data is a second-class citizen.
Compute-centricity was a natural early choice: knowing job

structure beforehand simplifies carving containers to execute
tasks; compute-centricity provided clean mechanisms to re-
cover from failures – only tasks on a failed machine needed to
be re-executed; and job scheduling became simple because of
having to deal with static inputs, i.e., fixed tasks/dependency
structures.

Unfortunately, today, compute-centricity severely hinders
analytics performance and cluster efficiency due to four fun-
damental issues (§2, §9): (1) Intermediate data-unawareness
means there is no way to quickly adapt job execution based
on changing run-time data properties (e.g., volume, key dis-
tribution, etc.) to ensure performance- and resource-optimal
data processing. (2) Likewise, static parallelism and interme-
diate data partitioning inherent to compute-centricity prevent
adaptation to intermediate data skew and resource flux which
are difficult to predict ahead of time, yet, common to mod-
ern datasets [30] and multi-tenancy. (3) Execution schedules
being tied to compute structure can lead to resource waste
while tasks wait for input data to become available - an effect
that is exacerbated under multi-tenancy. (4) The skew due to
compute-based organization of intermediate data can result
in storage hotspots and poor cross-job I/O isolation; it also
curtails data locality.

We observe that the above limitations arise from (1) tight
coupling between intermediate data and compute, and (2) in-
termediate data agnosticity in today’s execution frameworks.
To improve analytics performance, efficiency, isolation, and
flexibility, we develop a new execution framework, WHIZ, that
eschews compute-centricity, cleanly separates computation
from all intermediate data, and treats both intermediate data
and compute as equal first-class entities during analytics ap-
plications’ execution. WHIZ applies equally to batch analytics,
streaming and graph processing.

In WHIZ, intermediate data is written to/read from a logi-
cally separate distributed key-value datastore. The store offers
programmable visibility – applications can provide custom
routines for monitoring runtime data properties. The store
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notifies an execution layer when an application’s runtime
data satisfies predicates based on data properties. Decoupling,
monitoring, and predicates enable data-driven incremental
computation: based on data properties, WHIZ decides on the
fly what logic to launch in order to further process the data
generated, how many parallel tasks to launch, when/where to
launch them, and what resources to allocate to tasks.

We make the following contributions in designing WHIZ:
(1) We present a scalable approach for programmable interme-
diate data monitoring which forms the basis for data-driven
actions. (2) We show how to organize intermediate data from
multiple jobs in the datastore so as to achieve data locality,
fault tolerance, and cross-job isolation. Since obtaining an
optimal data organization is intractable, we develop novel
heuristics that carefully trade-off among these objectives. (3)
We build an execution layer that incrementally decides all
aspects of the job execution based on data property predi-
cates being satisfied. We develop novel iterative heuristics for
the execution layer to decide, for each ready-to-run analytics
stage, task parallelism, task placement, and task sizing. This
minimizes runtime skew in the data processed, lowers data
shuffle cost and ensures optimal efficiency under resource dy-
namics. The execution layer also decides the optimal per-task
logic to use at run-time.

We build a WHIZ prototype using Tez [47] and YARN [52]
(15K LOC). We conduct experiments on a 50 machine clus-
ter in CloudLab [6]. We compare against several state-of-
the-art compute-centric (CC) batch, stream and graph pro-
cessing approaches. Using data-driven incremental computa-
tion, WHIZ improves median (95%-ile) job completion time
(JCT) 1.3−1.6× (1.5−2.2×) and cluster efficiency 1.4× by
launching the right number of appropriately-sized tasks only
when predicates are met. We observe up to 2.8× improvement
in efficiency due to WHIZ’s ability to change processing logic
on the fly. Furthermore, we observe that the impact on JCT
under failures is minimal due to WHIZ’s data organization.
We observe that WHIZ’s gains relative to CC improve with
contention due to data-driven execution and better data man-
agement which mitigate I/O hotspots and minimize resource
wastage.

2 Compute-Centric vs. Data-Driven
We begin with an overview of existing data analytics frame-
works (§2.1). We then discuss the key design principles of
WHIZ (§2.2). Finally, we list the performance issues arising
from compute-centricity and show how the data-driven design
adopted by WHIZ overcomes them (§2.3).

2.1 Today: Compute-Centric Engines
Frameworks for batch, graph and streaming analytics rely
on execution engines [2, 57]; the engine can be an internal
component of the framework or a stand-alone one that the
system leverages. The engine is responsible for orchestrating
the execution of the analytics job across the cluster.

Physical PlansPhysical Plans
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Optimized Logical Plan
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Execution Engine
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Figure 1: Job Execution Pipelines: Today frameworks hand over
physical graphs to the underlying CC execution engine. With WHIZ,
the framework instead hands down a data-driven logical graph and
WHIZ decides the physical graph at runtime.

Users submit their jobs to these frameworks (Figure 1) via
high-level interfaces (e.g., SQL-like query in case of batch
analytics). On submission, the high-level job is handed over
to the internal planner of the framework which decides the
execution plan of the job (expressed in the form of a directed
graph). Specifically, the high-level job is translated to a logical
graph in which different vertices represent different compute
stages of the overall job and edges represent the dependencies.
The logical graph may optionally undergo further optimiza-
tions (e.g., to decide the execution order of the stages) and is
finally converted to a physical graph by undergoing physical
optimizations during which low-level execution details such
as number of tasks per stage (parallelism), dependencies be-
tween tasks, resource needs and exact task processing logic
are decided.

The execution engine takes the physical graph and orches-
trates its execution starting with root stages’ tasks processing
input data to generate intermediate data, which is consumed
by downstream stages’ tasks.

We explain how the execution engine orchestrates the phys-
ical graph and its interplay with intermediate data for different
analytics. Figure 2a is an example of a simple batch analytics
job. Here, two tables need to be filtered based on provided
predicates and joined to produce a new table. There are 3
stages: two maps for filtering and one reduce to perform the
join. Execution proceeds as follows: (1) Map tasks from both
the stages execute first with each task processing a partition
of the corresponding input table. (2) Map intermediate results
are written to local disk by each task, split into files, one per
consumer reduce task. (3) Reduce tasks are launched when
the map stages are nearing completion; each reduce task shuf-
fles relevant intermediate data from all map tasks’ locations,
and generates output.

A stream analytics job (e.g., Figure 2b) has a similar
model [11,37,58]; the main difference is that tasks in all stages
are always running. A graph analytics job, in a framework

408    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



1	 1	
M11	

1	 1	
M12	

1	 1	
M21	

1	 1	
M22	

R11	 R12	

Intermediate	Data		
Shuffle	

(a) A batch analytics job.
Intermediate data is parti-
tioned into two key ranges,
one per reduce task, and
stored in local files at map
tasks.

time

CPU idling – S2 
CPU idling – S3 

Records from S1

100 recordsS2 starts work

(b) Data flow in a streaming job. Tasks
in all stages are always running. Out-
put of a stage is immediately passed
to a task in downstream stage. How-
ever, CPU is idle until task in Stage 2
receives 100 records after which com-
putation is triggered.

Figure 2: Simplified examples of existing analytics systems.

that relies on the popular message passing abstraction [42],
has a similar but simplified model: the different stages are
iterations in a graph algorithm, and thus all stages execute the
same processing logic (with the input being the output of the
previous iteration).
Compute-centricity: Today’s execution engines early-bind
to a physical graph at job launch-time. Their primary goal
is to split up and distribute computation across machines.
The composition of this distributed computation, in terms of
physical tasks and their dependencies, is a first class entity.
The exact computation in each task is assumed to be known
beforehand. The way in which intermediate data is partitioned
and routed to consumer tasks, and when and how dependent
computation is launched, are tied to compute structure. We
use the term compute-centric to refer to this design pattern.
Here, intermediate data is a second class entity as important
aspects of job execution such as parallelism, processing and
scheduling logic are decided without taking it into account
(§2.3).

2.2 WHIZ: A Data-Driven Framework
WHIZ is an execution engine that makes intermediate data a
first class citizen and supports diverse analytics. WHIZ adopts
the following design principles:
1. Decoupling compute and data: WHIZ decouples compute
from intermediate data, and the data from all stages across
all jobs is written/read to/from a logically separate key-value
(KV) datastore (§4), i.e, the datastore resides across the same
set of machines on which computations take place. The store
is managed by a distinct data management layer called the data
service (DS). Similarly, an execution service (ES) manages
compute tasks.
2. Programmable data visibility: The above separation en-
ables low-overhead and scalable approaches to gain visibil-
ity into all runtime data (§5.1). WHIZ DS allows gathering
custom runtime properties of intermediate data, via narrow,
well-defined APIs.
3. Runtime physical graph generation: During the job exe-
cution pipeline, WHIZ skips physical optimization (Figure 1)
and thus, does not early-bind to a physical graph. Instead, the
framework’s internal planner performs data-driven embellish-
ment on the logical graph to give a data-driven logical graph.

This embellishment adds predicates to decide when and what
logic should be used to process data of each stage, and gives
WHIZ the ability to incrementally generate the physical graph
at runtime (§6).
4. Data-driven computation: Building on data visibility and
data-driven logical graphs, WHIZ initiates data-driven com-
putation by notifying applications when intermediate data
predicates within each stage are satisfied (§5.2). Data prop-
erties drive all further aspects of computation: task logic,
parallelism and sizing (§6).

2.3 Overcoming Compute-centricity Issues
We contrast WHIZ with compute-centricity along flexibility,
performance, efficiency, placement, and isolation.
Data opacity, and compute rigidity: In compute-centric
frameworks, there is no visibility into intermediate data of a
job and the tasks’ computational logic are decided a priori.
This prevents adapting the tasks’ logic based on their input
data. Consider the job in Figure 2a. Existing frameworks
determine the type of join for the entire reduce stage based
on coarse statistics [3]; unless one of the tables is small, a
sort-merge join is employed to avoid out-of-memory (OOM)
errors. On the other hand, having fine-grained visibility into
input data for each task enables dynamically determining the
type of join to use for different reduce tasks. A task can use
hash join if the total size of its input is less than the available
memory, and merge join otherwise. WHIZ enables deciding
the logic at runtime through its ability to provide visibility
and incrementally generate the physical graph (§6.1).
Static Parallelism, Partitioning: Today, jobs’ per-stage par-
allelism, inter-task edges and intermediate data partitioning
strategy are decided independent of runtime data and resource
dynamics. In Spark [57] the number of tasks in a stage is de-
termined a priori by the user application or by SparkSQL [10].
A hash partitioner is used to place an intermediate (k,v) pair
into one of |tasks| buckets. Pregel [42] vertex-partitions the
input graph; partitions do not change during the execution of
the algorithm.

This limits adaptation to resource flux and data skew. A
running stage cannot utilize newly available compute re-
sources [26, 27, 41] and dynamically increase its parallelism.
If some key in a partition has an abnormally large number
of records to process, then the corresponding task is signifi-
cantly slowed down [14], affecting both stage and overall job
completion times.

By not early-binding, WHIZ can decide task parallelism and
task size based on resources available and data volume. This
controls data skew, and provisions task resources proportional
to the data to be processed (§6.2).
Idling due to compute-driven scheduling: Modern sched-
ulers [23,52] decide when to launch tasks for a stage based on
the static computation structure. When a stage’s computation
is commutative+associative, schedulers launch its tasks once
90% of all tasks in upstream stages complete [5]. But the

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    409



remaining 10% of producers can take long to complete [14],
resulting in tasks idling.

Idling is worse in streaming, where consumer tasks are
continuously waiting for data from upstream tasks. E.g., con-
sider the streaming job in Figure 2b. Stage 2 computes and
outputs the median for every 100 records received. Between
computation, S2’s tasks stay idle. As a result, the tasks in the
downstream S3 stage also stay idle. To avoid idling, tasks
should be scheduled only when, and only as long as, relevant
input is available. In our example, computation should be
launched only after ≥ 100 records have been generated by
an S1 task. Likewise, in batch analytics, if computation is
commutative+associate, it is beneficial to “eagerly” launch
tasks to process intermediate data whenever enough data has
been generated to process in one batch, and exit soon after
it’s done.

Idling is easily avoided with WHIZ as it does data-driven
scheduling: launches tasks only when predicates are met, i.e,
relevant data has been generated (§5.2).
Placement, and storage isolation: Because intermediate
data is spread across producer tasks’ locations, it is impossible
to place consumer tasks in a data-local fashion. Such tasks
are placed at random [21] and forced to engage in expensive
shuffles that consume a significant portion of job runtimes
(∼30% [20]).

Also, when tasks from multiple jobs are collocated, it be-
comes difficult to isolate their hard-to-predict intermediate
data I/O. Tasks from jobs generating large intermediate data
may occupy much more local storage and I/O bandwidth than
those generating less.

Since the WHIZ store manages data from all jobs, it can
enforce policies to organize data to meet per-job objectives,
e.g., data locality for any stage (not just input-reading stages),
and to meet cluster objectives, such as I/O hotspot avoidance
and cross-job isolation (§4).

3 WHIZ Overview
We now describe the end-to-end control flow in WHIZ. The
end-user submits the job through a high-level interface ex-
posed by the application-specific framework. The frame-
work’s internal planner converts the job into a data-driven log-
ical graph through data-driven embellishment during which
each stage in the graph is annotated with execution predicates
and modification predicates.

Execution predicates determine when data generated by
the current stage can be consumed by its downstream stages
(e.g., start downstream processing when number of records
cross a threshold). Modification predicates determine which
processing logic should be chosen at runtime (e.g., decide the
join algorithm for the task, say, sort-merge join or hash join)
based on data properties.

This data-driven logical graph (e.g., directed acyclic graph
in case of batch analytics) , that is expressed via WHIZ APIs
(Appendix. A), is submitted to WHIZ via a client (Figure 3).

Data properties to be 
collected and execution 

predicates

EXECUTION 
SERVICE 

Logical graph 
and modification 

predicates

Manages computation Push intermediate data Manages data

Notification: data ready for processing

1

DATA 
SERVICE 

1

3
2

WHIZ CLIENT

Job submitted via framework

Figure 3: WHIZ control flow.

The WHIZ client is the primary interface between the frame-
work running atop WHIZ and the core WHIZ services - the DS
and the ES. The client provides the DS with details regard-
ing data properties to be collected and execution predicates.
The client also transfers the logical graph and modification
predicates to the ES (step 1).

The ES runs the first stage(s) of the logical graph and writes
its output to the datastore (step 2). The DS stores the received
data and when the execution predicate corresponding to the
stage(s) is met, it notifies the ES. The DS piggybacks data
statistics (e.g., per-key counts) on this notification to the ES
(step 3). On receiving the notification, the ES checks the mod-
ification predicates to decide the processing logic and then
processes the data. This process repeats. Interactions between
the ES, DS and the client are transparent to the framework.

The DS organizes data from all jobs and ensures both per-
job and cross-job objectives are met (§4) while simultaneously
enabling data visibility through programmable monitoring
(§5). The ES, in addition to deciding the processing logic,
also determines task parallelism, location and resource use at
runtime (§6). In this manner end-users are no longer required
to specify low-level details such as task parallelism and data
partitioning strategy. In the rest of the paper, we focus on
how WHIZ handles data-driven logical graphs and plan to
explore designing data-driven embellishers (responsible for
embellishment of logical graphs with predicates) that can be
added to existing frameworks in the future.

4 Data Store
In WHIZ, all jobs’ intermediate data is written to/read from a
logically separate datastore (managed by the DS), where it
is structured as <key,value> pairs. In batch/stream analytics,
the keys are generated by the stage computation logic itself;
in graph analytics, keys are identifiers of vertices to which
messages (values) are destined for processing in the next
iteration. The DS via a cluster-wide master DS-M organizes
data in the store.

An ideal data organization should achieve three goals: (1)
load balance and spread all jobs’ data, specifically, avoid
hotspots and improve cross-job isolation, and minimize within-
job skew in tasks’ data processing. (2) maximize job data
locality by co-locating as much data having the same key as
possible. (3) be fault tolerant - when a storage node fails,
recovery should have minimal impact on job runtime. Our
data storage granularity, described next, forms the basis for
meeting our goals.
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Figure 4: Data organization flow when a stage starts generating
data.

4.1 Capsule: A Unit of Data in WHIZ

WHIZ groups intermediate data based on keys into groups
called capsules. A stage’s intermediate data is organized into
some large number N capsules; crucially N is late-bound as
described below, which helps meet our goals above. Interme-
diate data key range is split N-ways, and each capsule stores
all <k, v> data from a given range. WHIZ strives to material-
ize all capsule data on one machine; rarely (e.g., when there is
less space left on a machine), a capsule may be spread across
a small number of machines. This materialization property of
capsules forms the basis for consumer task data locality.

Furthermore, WHIZ capsule key ranges are late-bound: we
first determine the set of machines on which capsules from
a stage are to be stored; machines are chosen to maximally
support isolation, load balance, locality and fault tolerance;
the choice of machines then determines the number N for a
stage’s capsules (§4.2).

Given these machines and N, as the stage produces data
at runtime, N capsules are materialized, and dynamically al-
located to right-sized tasks; this enables the ES to preserve
data-local processing, lower skew, and optimally use compute
resources (§6).

4.2 Fast Capsule Allocation
We consider how to place multiple jobs’ capsules on ma-
chines to avoid hotspots, ensure data locality and minimize
job runtime impact on data loss. We formulate an ILP to
this end (see Table 7 in Appendix. B). However, solving this
ILP at scale can take several tens of seconds delaying capsule
placement. WHIZ instead uses a practical approach for the cap-
sule placement problem. First, instead of jointly optimizing
global placement decisions for all the capsules, WHIZ solves
a “local” problem of placing capsules for each stage indepen-
dently while still considering inter-stage dependencies; when
new stages arrive, or when existing capsules may exceed job
quota on a machine, new locations for some of these capsules
are determined (see Figure 4). Second, instead of solving a
multi-objective optimization, WHIZ uses a linear-time rule-
based heuristic to place capsules; the heuristic prioritizes load
and locality (in that order) in case machines satisfying all
objectives cannot be found. Isolation is always enforced.
Capsule location for new stages (Figure4): When a job j is

h1
// Q j: max storage quota per job j and machine m.
Based on fairness considerations across all
runnable jobs J.
// Mv: number machines (out of M) to organize data that
//generated by v of j.

h2
a. Count number machines M j75 where j is using

< 75% of Q j;
b. Mv = max(2,M j75×

M−M j75
M ).

// Given Mv, compute list of machines
−→
Mv.

h3

Considers only machines where j is using < 75% of Q j;
a. Pick machines that provide load balance (LB),

data locality (DL) and maximum possible
fault tolerance (FT);

b. If |−→Mv| < Mv, relax FT guarantees and pick machines
that provide LB and DL;
c. If |−→Mv| is still < Mv, pick machines

that just provide LB.
// Given Mv, compute total capsules N.

h4 N = G X Mv, where G = capsules per machine
// Which machines are at risk of violating Q j?

h5
−→
M j: machines which store data of j and j is using
≥ 75% of Q j.

// Which capsules are hot on
−→
M j?

h6
Significantly larger in size or have a higher
increasing rate than others.

Table 1: Heuristics employed in data organization.

ready to run, DS-M invokes an admin-provided heuristic h1
(Table 1) that assigns job j a quota Q j per machine. Setting
up quotas helps ensure isolation across jobs.

When a stage v of job j starts to generate intermediate data,
DS-M invokes h2 to determine the number of machines Mv
for organizing v’s data. h2 picks Mv between 2 and a fraction
of the total machines which are≤ 75% of the quota Q j for job
j. Mv ≥ 2 ensures opportunities for data parallel processing;
a bounded Mv (Table 1) controls the ES task launch overhead
(§6.2).

Given Mv, DS-M invokes h3 to generate a list of machines
−→
Mv to materialize data on. It starts by creating three sub-lists:
(1) For load balancing (LB), machines are sorted lightest-
load-first, and only ones which have ≤ 75% quota usage for
the corresponding job are considered. (2) For data locality
(DL), we prefer machines which already materialize other
capsules for this stage v, or capsules from other stages whose
output will be consumed by same downstream stage as v (e.g.,
two map stages in Figure 2a). (3) For fault tolerance (FT),
we strive to place dependent capsules on different machines
to minimize failure recovery time. We pick machines where
there are no capsules from any of v’s k upstream stages in
the job, sorted in descending order of k. Thus, for the largest
value of k, we have all machines that do not store data from
any of v’s ancestors; for k = 1 we have nodes that store data
from the immediate parent of v.

We pick machines from the sub-lists to maximally meet
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our objectives in 3 steps: (1) Pick the least loaded machines
that are data local and offer as high fault tolerance as possible
(machines present in all three sub-lists). Note that as we go
down the fault tolerance list in search of a total of Mv ma-
chines, we trade-off fault tolerance. (2) If despite reaching the
minimum possible fault tolerance, i.e., reaching the bottom of
the fault tolerance sub-list – the number of machines picked
falls below Mv, we completely trade-off fault tolerance and
pick the least loaded machines that are data local. (3) If still
the number of machines picked falls below Mv, we simply
pick the least-loaded machines and trade-off data locality too.

Finally, given
−→
Mv, DS-M invokes h4 and instantiates a fixed

number (G) of capsules per machine leading to total capsules
per-stage (N) to be G×Mv. While a large G would aid us in
better handling of skew and computation as the capsules can
be processed in parallel, it comes at the cost of significant
scheduling and storage overheads. We empirically study the
sensitivity to G (in §9.4); based on this, our prototype uses
G = 24.
New locations for existing capsules: Data generation pat-
terns can vary across different stages, and jobs, due to het-
erogeneous compute logics and data skew. Thus a job j may
run out of its Q j on machine m, leaving no room to grow
already-materialized capsules of job j on m. DS-M reacts
to such dynamics by determining, ∀ j: machines where job
j is using ≥ 75% Q j ( h5 ), closing capsules that are signifi-
cantly larger or have a higher growth rate than others on such
machines ( h6 ), and invokes heuristic h3 to compute the ma-
chines to spread these capsules. This focuses on capsules that
contribute most load to machines at risk of being overloaded
and thus bounds the number of capsules that will spread out.

5 Data Visibility
We now describe how WHIZ offers programmable data mon-
itoring via the DS (§5.1), and how it initiates data-driven
computations using execution predicates (§5.2).

5.1 Data Monitoring
Given that intermediate data properties form the basis of
data-driven computation, native support for data monitoring
is extremely crucial. The DS through its data organization
simplifies monitoring as it consolidates a capsule at one or
a few locations rather than it being spread across the cluster
(§4.1). WHIZ achieves scalable monitoring via per-job masters
DS-JMs which track light-weight properties related to their
capsules.

WHIZ supports built-in and custom monitors that gather
properties per capsule. They are periodically sent to the rel-
evant DS-JM. Built-in monitors constantly collect coarse-
grained properties such as current capsule size, total or num-
ber of unique (k,v) pairs, location(s) and rate of growth; apart
from being used for data-driven computation, these are used
in runtime data organization (§4.2).

Custom monitors are UDFs (user defined functions) that

ES

DS
ES

data_spills

data_ready data_ready_all

data_generated1

v1

v2

data_spills notification non-ready 
CAPSULES

ready 
CAPSULES

2

3

4
t0

t0

tn tm

tn tm time

Figure 5: Data-driven computation facilitated by notifications. (1)
Intermediate data (v1) batches sent from ES to DS. (2) DS detects
that 2 capsules are ready and sends data_ready notification from
DS to ES leading to downstream computation (v2). (3) ES sends
data_generated notification to DS when entire output of v1 pushed
to DS. (4) DS sends data_ready_all notification to ES indicating that
all data_ready notifications have been sent.

are used to get fine-grained data properties per the job specifi-
cation. We restrict UDFs to those that can execute in linear
time and O(1) state, such as (a) number of entries s.t. values
are <,=, or > than a threshold; (b) min, max, avg. of keys;
and (c) whether data is sorted or not.

Getting visibility into intermediate data through monitors
enables data-driven computation as we describe next.

5.2 Indicating Data Readiness
The DS is responsible for initiating data-driven computation.
The DS achieves this via two key abstractions: notifications
and execution predicates. The decoupled DS and ES interact
via notifications which enable, and track progress of, data-
driven computation. Execution predicates enable the DS-JM
to decide when capsules can be deemed ready for correspond-
ing computation to be run on them.
Notifications: WHIZ introduces 3 types of notifications: (1) A
data_ready notification is sent by the DS-JM to the ES when-
ever a capsule becomes ready (as per the execution predicate)
to trigger corresponding computation. (2) A data_generated
notification is sent by the ES to the DS-JM when a stage
finishes generating all its intermediate output. This notifica-
tion is required because the DS-JM is unaware of the num-
ber of tasks that the ES launches corresponding to a stage,
and thus cannot determine when a stage is completed. (3)
A data_ready_all notification is sent by the DS-JM to the
ES when a stage has received all its input data (occurs when
data_ready notifications regarding all ready input capsules
are sent). This notification is required because the ES is un-
aware of the total number of capsules that the DS deems
ready.

The use of these notifications is exemplified in Figure 5.
Here: 1 when a stage v1 generates a batch of intermediate
data, a data_spill containing the data is sent to the data store,
which accumulates it into capsules (t0 through tm). 2 When-
ever the DS-JM determines that a collection of v1’s capsules
(2 capsules in Figure 5 at tn) are ready for further processing,
it sends a data_ready notification per capsule to the ES; the
ES launches tasks of a consumer stage v2 to process such
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capsules. This notification carries per-capsule information
such as: a list of machine(s) on which each capsule is spread,
and a list of statistics collected by the data monitors. 3 Fi-
nally, a data_generated notification – from the ES, generated
upon v1 computation completion – notifies the DS-JM that
v1 finished generating data_spills. 4 Subsequently, DS-JM
notifies the ES via the data_ready_all event, that all capsules
corresponding to v1 have sent their data_ready events (at tm).
This enables the ES to determine when the immediate down-
stream stage v2, that is reading the data generated by v1, has
received all of its input data.
Execution predicates: The interaction between ES and DS
via notifications is initiated by execution predicates whose
logic is based on the properties collected by the monitors.
Each job stage is typically associated with an execution pred-
icate as indicated by the input program, which is transferred
to the DS-JM by the WHIZ client. If not, default analytics-
specific predicates are applied. WHIZ supports diverse execu-
tion predicates such as:
1. Data Generated: This predicate deems capsules ready
when the computation generating them is done; this is the
default predicate for batch and graph analytics in WHIZ; akin
to a barrier in batch systems today and bulk synchronous
execution in graph analytics.
2. Record Count ≥ X: The vanilla version of this predicate
deems a capsule ready when it has ≥ X records from produc-
ers tasks; this is the default predicate for streaming systems
in WHIZ; akin to micro-batching in existing streaming sys-
tems [58], with the crucial difference that the micro-batch is
not wall clock time-based, but is based on the more natural
intermediate data count.

This predicate can be extended to support pipelining via
ephemeral compute, i.e, compute is launched once there is
partial data and just for the processing duration. The ability
to launch compute ephemerally is particularly useful under
heavy resource contention. Ephemeral compute can be used
to speed up jobs across analytics if they contain commuta-
tive+associative operations (§9).

For example, consider the partial execution of a batch (or
graph) analytics job, consisting of the first two logical stages
(likewise, first two iterations) v1→ v2. If the processing logic
in v2 contains commutative+associative operations, it can
start processing its input before all of it is in place. Using this
predicate, a capsule generated by v1 is ready whenever the
number of records in it reaches a threshold X . This enables
the ES to overlap v2’s computation with v1’s data genera-
tion as follows: (1) Upon receiving a data_ready notification
from the DS-JM for capsules which have ≥ X records, the
ES launches ephemeral tasks of v2. (2) Tasks read the current
data, compute the associative+commutative function on the
(k,v) data read, push the result back to data store (in the same
capsules advertised through the received data_ready notifi-
cation) and immediately quit. (3) The DS-JM waits for each
capsule to grow back beyond threshold X for generating sub-

sequent data_ready notifications leading to ephemeral tasks
being launched again. (4) Finally, when a data_generated
notification is received from v1, the DS-JM triggers a final
data_ready notification for all the capsules generated by v1,
and a subsequent data_ready_all notification, to enable v2’s
final output to be written in capsules and fully consumed by a
downstream stage, say v3 (similar to Figure 5).

This predicate can be further extended to across capsules,
i.e., the DS-JM could deem all capsules ready when the num-
ber of entries generated across all capsules cross a threshold.
In streaming, such predicates help improve efficiency and
performance as ephemeral tasks are launched only when the
required input records have streamed into the system and quit
post processing (§9.1.3). On the other hand, systems today
lack support for ephemeral compute and are forced to deploy
long-standing tasks.
3. Special Records: This predicate deems all output capsules
of a stage ready on observing a special record in any one
capsule. Stream processing systems often rely on “low wa-
termark” records to ensure event-time processing [19, 40],
and to support temporal joins [40]. Such predicates can be
used to launch, on demand, temporal operators whenever a
low watermark record is observed at any of a stage’s output
capsules. In contrast, systems today have the operators always
running and this leads to compute idling when there are no
records to process.

6 Execution Service
While the DS initiates data-driven computation by notifying
when data is ready for processing, the ES carries out all other
data-driven execution aspects by incrementally generating the
physical graph. It does so via a per-job master ES-JM that
given ready capsules, and available resources1: (a) determines
the appropriate processing logic to use (§6.1); (b) determines
optimal parallelism and deploys tasks to minimize skew and
shuffle; (c) maps capsules to tasks in a resource-aware fashion
(§6.2).

6.1 Selecting Compute Logic
Upon detecting a ready capsule, the DS-JM sends the
data_ready notification, with capsule properties (including
fine-grained ones) piggybacked, to the ES-JM. The ES-JM
then uses modification predicates associated with this stage
to determine the exact processing logic.

Modification predicates give the ability to decide process-
ing logic at runtime based on the received data properties
and available resources. Importantly, WHIZ also provides jobs
with the flexibility to use different processing logic for dif-
ferent input capsules of the same stage. For e.g., consider a
batch analytics job that involves joining two tables.2 In such

1Similar to existing frameworks, a cluster-wide Resource Manager de-
cides available resources as per cross-job fairness.

2DS via per-job quotas ensures that the input tables use the same # of
capsules and because both tables use the same key, i.e., the join key, while
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h7

//
−→
C : subsets of unprocessed capsules.

a. CaMax = 2×|c|, c is largest capsule ∈C;
b. Group all capsules ∈C into subsets in strict order:

i. data local capsules together;
ii. each spread capsule, along

data-local capsules together;
iii. any remaining capsules together;
subject to:
iv. each subset size ≤CaMax;
v. conflicting capsules don’t group together;
vi. troublesome capsules always group together.

h8

//
−→
M: preferred machines to process each subset ∈ −→C .

c. no machine preference for troublesome subsets ∈ −→C
d. for every other subset ∈ −→C pick machine m such that:

i. all capsules in the subset are only
materialized at m;

ii. otherwise m contains the largest
materialization of the subset.

h9

Compute
−→
R : resources to execute each subset ∈ −→C :

e.
−→
A = available resources for j on machines

−→
M ;

f. F = min(
−→
A [m]

total size of capsules allocated to m , for all m ∈ −→M);

g. for each subset i ∈ −→C :
−→
R [i] = F× total size of capsules allocated to

−→
C [i].

Table 2: Heuristics to group capsules and assign them to tasks.

a scenario, the SQL framework running atop sets the modifi-
cation predicates of the join stage to choose the appropriate
join algorithm between, say, sort-merge join3 and hash join4

as follows: (a) if both capsules are already sorted, and the
max value in the first capsule is less than the min value in
the other capsule (no intersection), then skip unnecessarily
launching a task to do the join; (b) if the size of one capsule
is significantly smaller than the other one (and data is not
sorted), then use hash join (as it is typically less expensive
to create a hash table of the smaller capsule, than sorting the
large one); and (c) if data is sorted or (a)–(b) don’t satisfy,
then default to sort-merge join.

Crucially, such predicates enable stream jobs submitted to
WHIZ, to change their processing logic over time, as opposed
to being early bound to processing logic (status-quo today).
For e.g., predicates allow a job involving temporal join to
change its join algorithm over time and choose the appropri-
ate one, from the three choices (a)–(c) above, based on data
properties and available resources.

6.2 Task Parallelism, Placement, and Sizing
Given a set of ready capsules (C) for a stage, the ES-JM needs
to map capsules to tasks, and determine their location (across
machines M) and sizes (resources) so as to minimize cross-

writing to the store, key-range split for both tables is the same.
3This (a) sorts the two input capsules on the join key and (b) merges them

by comparing the records.
4This (a) builds a hash table on the join key using the smaller capsule and

(b) probes for matches using the other capsule.

task skew and shuffle while taking available resources into
account. To do so, we propose an iterative procedure that
applies a set of heuristics (Table 2) repeatedly until tasks for
all ready capsules are allocated, and their locations and sizes
determined.

The iterative procedure consists of 3 steps: (a) generate
optimal subsets of capsules to minimize cross-subset skew
(using h7 ), (b) decide on which machine should a subset
be processed to minimize shuffle ( h8 ), and (c) determine
resources required to process each subset ( h9 ).

First, we group capsules C into a collection of subsets
−→
C

using h7 . We then try to assign each group to a task. Our
grouping into subsets attempts to ensure that data in a subset
is spread on just one or a few machines (lines (b.i-b.iii)), which
minimizes shuffle, and that the data is spread roughly evenly
across subsets (line (b.iv)) making cross-task performance
uniform. We place a bound CaMax, equaling twice the size of
the largest capsule, on the total size of a subset (see line (a)).
This ensures that multiple (at least 2) capsules are present in
each subset and allows mitigating stragglers by only assigning
the yet-to-be-processed capsules to the speculative task.5

Second, we determine a preferred machine to process each
subset using h8 ; this is a machine where most if not all cap-
sules in the subset are materialized (line (d)). Choosing a
machine in this manner minimizes shuffle.

Finally, given available resources across the preferred ma-
chines (from the cluster-wide resource manager [52]) we need
to allocate tasks to process subsets. But some machines may
not have resource availability. For the rest of this iteration, we
ignore such machines and the subsets of capsules that prefer
such machines.

Given machines with resources
−→
A , we assign a task for

each subset of capsules which can be processed, and allocate
task resources altruistically using h9 . That is, we first com-
pute the minimum resource available to process unit data (F ;
line (f)). Then, for each task, the resource allocated (line (g))
is F times the total data in the subset of capsules allocated to
the task (|−→C [i]|).

Allocating task resources proportional to input size ensures
that tasks have similar finish times. Allocating resources corre-
sponding to the minimum available helps further: if a job gets
more resources than what is available for the most constrained
subset, then it does not help the job’s completion time (which
is determined by the most constrained subset’s processing).
Altruistically “giving back” such resources speeds up other
jobs/stages.

The above 3 steps repeat whenever new capsules are ready,
or existing ones can’t be scheduled. Similar to delay schedul-
ing [56], we attempt several tries to execute a group which
couldn’t be scheduled on its preferred machine due to resource
unavailability, before marking capsules conflicting. These are

5Speculative tasks today [12–14,38,59] reprocess the entire input leading
to duplicate work and resource wastage.
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Figure 6: [Batch Analytics] (a) CDF of JCT; (b) CDF of factors of improvement of individual jobs using WHIZ w.r.t. baselines; (c) Snapshot
of running tasks during one of the experiments. Gains are lower w.r.t. Spark due to our Hadoop-based implementation, and thus using a
non-optimized in-memory store.

re-grouped in the next iteration (line (b.v)). Finally, capsules
that cannot be executed under any grouping are marked trou-
blesome (line (b.vi)) and processed on any machine (line
(d.ii)).

7 Fault Tolerance
Task Failure. When a task fails due to a machine failure, only
the failed tasks need to be re-executed if the input capsules are
not lost. But, this will result in duplicate data in all capsules
for the stage leading to data inconsistencies. To address this,
we use checksums at the consumer task-side WHIZ library to
suppress duplicate data.

However, if the failed machine also contains the input cap-
sules of the failed task, then the ES-JM triggers the execution
of the upstream stage(s) to regenerate the input capsules of the
failed task. Recall that WHIZ’s fault tolerance-aware capsule
storage (§4) helps control the number of upstream (ancestor)
stages that need to be re-executed in case of data loss.
DS-M/DS-JM/ES-JM. WHIZ maintains replicas of DS-
M/DS-JM daemons using Apache Zookeeper [28], and fails
over to a standby. Given that WHIZ generates the physical
graph of a job at runtime in a data-driven manner, upon ES-
JM failure, we simply need to restart it so that it can resume
handling notifications from the DS. During this time already
launched tasks continue to run.

8 Implementation
We prototyped WHIZ by modifying Tez [5] and leveraging
YARN [52]. The DS, implemented from scratch, has three
kinds of daemons (managed via YARN): cluster-wide master
DS-M, per-job masters DS-JM and workers DS-W. DS-M
does data organization across DS-Ws. DS-JMs collect statis-
tics and notify ES-JM when execution predicates are met.
DS-Ws run on cluster machines and do node-level manage-
ment: (a) store data received from ES/other DS-Ws in local
in-memory file system (tmpfs [48]) and transfer data to other
DS-Ws per DS-M directives; (b) report statistics to DS-M/DS-
JMs via heartbeats; and (c) provide ACK to tasks for data
written.

The ES was implemented by modifying Tez. It consists of
per-job masters ES-JM which are responsible for generating

the physical graph at runtime. ES tasks are modified Tez tasks
that have an interface to the local DS-W as opposed to local
disk or cluster-wide storage. The WHIZ client is a standalone
process per-job.

All communication (asynchronous) between DS, ES and
client is through RPCs in YARN using Protobuf [8]. We also
use RPCs between the YARN Resource Manager (RM) and
ES-JM to propagate resource allocations (§6).

9 Evaluation
We evaluated WHIZ on a 50-machine cluster deployed on
CloudLab [6] using publicly available benchmarks – batch
TPC-DS jobs, PageRank for graph analytics, and synthetic
streaming jobs. Unless otherwise specified, we set WHIZ to
use default execution predicates, equal storage quota (Q j =
2.5GB) and 24 capsules per machine.

9.1 Experiment Setup
Workloads: We consider a mix of jobs, all from TPC-DS
(batch), or all from PageRank (graph). For streaming, we
use a variety of different queries described in detail later.
In each experiment, jobs are randomly chosen and follow a
Poisson arrival distribution with average inter-arrival time of
20s. Each job lasts up to 10s of minutes, and takes as input tens
of GBs of data. We run each experiment thrice and present
the median.
Cluster, baseline, metrics: Machines have 8 cores, 64GB
memory, 256GB storage, and a 10Gbps NIC. We com-
pare WHIZ as follows: (1) Batch: vs. Tez [5] running atop
YARN [52], for which we use the shorthand “Hadoop” or
“CC”; and vs. SparkSQL [15]; (2) Graph: vs. Giraph (i.e.,
open source Pregel [42]); and vs. GraphX [24]; (3) Stream-
ing: vs. SparkStreaming [58].

For a fair comparison, we ensure Hadoop/Giraph use
tmpfs. We study the relative improvement in the average
job completion time (JCT), or JCTCC/JCTWHIZ. We measure
efficiency using makespan.

9.1.1 Batch Analytics

Performance and efficiency: Figure 6a shows the JCT dis-
tributions of WHIZ, Hadoop, and Spark for the TPC-DS work-
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Figure 7: Cross-job average, min and max intermediate data per
machine during one of our batch analytics experiments.

load. Only 0.4 (1.2) highest percentile jobs are worse off by
≤ 1.06× (≤ 1.03×) than Hadoop (Spark). WHIZ speeds up
jobs by 111...444××× (111...222777×××) on average, and 222...000222××× (111...777555×××) at
95th percentile w.r.t. Hadoop (Spark). Also, WHIZ improves
makespan by 111...333222××× (111...222×××).

Figure 6b presents improvement for individual jobs. For
more than 88% jobs, WHIZ outperforms Hadoop and Spark.
Only 111222% jobs slow down to ≤ 0.81× (0.63×) using WHIZ.
Gains are > 1.5× for > 35% jobs.
Sources of improvements: We observe that more rapid pro-
cessing due to data-driven execution, and better data man-
agement contribute most to benefits.

First, we snapshot the number of running tasks across all
the jobs in one of our experiments when running WHIZ and
Hadoop (Figure 6c). WHIZ has 1.45× more tasks scheduled
over time which translates to jobs finishing 1.37× faster. It
has 111...333888××× better cluster efficiency than Hadoop. Similar
observations hold for Spark (omitted).

The main reasons for rapid processing/high efficiency are:
(1) The DS ensures that most tasks are data local (777666% in our
expts). This improves average consumer task completion time
by 1.59×. Resources thus freed can be used by other jobs’
tasks. (2) Based on DS-provided properties, ES’s data-driven
actions provide similar input sizes for tasks in a stage – within
14.4% of the mean.

Second, Figure 7 shows the size of the cross-job total in-
termediate data per machine. We see that Hadoop generates
heavily imbalanced load spread across machines. This creates
many storage hotspots and slows down tasks competing on
those machines. Spark is similar. WHIZ mitigates hotspots
(§4) improving overall performance.

We observe jobs generating less intermediate data are more
prone to performance losses in WHIZ, especially under ample
resource availability as WHIZ strives for capsule-local task ex-
ecution (§6.2). If resources are unavailable, WHIZ will assign
the task to a data-remote node, or get penalized waiting for
data-local placement.

9.1.2 Graph Processing

We run multiple PageRank (40 iterations) jobs on the Twitter
Graph [17, 18]. In each iteration, vertices run the processing
logic and exchange their output as messages with each other.
WHIZ groups messages into capsules based on vertex ID. We
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Figure 8: [Graph Analytics] (a) CDF of JCT using WHIZ, GraphX
and Giraph; (b) CDF of factors of improvement of individual jobs
using WHIZ w.r.t. GraphX and Giraph.
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Figure 9: [Stream Analytics] (a) CDF of JCT using WHIZ and
SparkStreaming; (b) CDF of factors of improvement of individual
jobs using WHIZ w.r.t. SparkStreaming.

use an execution predicate that deems a capsule ready when
≥ 1000 messages are present.

Figure 8a shows the JCT distribution of WHIZ, GraphX and
Giraph. WHIZ speeds up jobs by 111...333333××× (111...555777×××) on average
and 111...555777××× (222...222444×××) at the 95th percentile w.r.t. GraphX (Gi-
raph) (Figure 8b). Gains are lower w.r.t. GraphX, due to its
efficient implementation atop Spark. However, <<< 111000% jobs
are slowed down by ≤ 1.13×.

Improvements arise for two reasons. First, WHIZ is able
to deploy appropriate number of ephemeral tasks: execution
predicates immediately indicate data availability, and run-
time parallelism (§6.2) allows messages to high-degree ver-
tices [24] to be processed by more than one task. Also, WHIZ

has 1.53× more tasks (each runs multiple vertex programs)
scheduled over time; rapid processing and runtime adaptation
to data directly leads to jobs finishing faster. Second, because
of ephemeral compute, WHIZ doesn’t hold resources for a task
if not needed, resulting in 111...222555××× better cluster efficiency.

9.1.3 Stream Processing

We run multiple stream jobs, each calculating top 5 common
words for every 100 distinct words from synthetic streams
replaying GBs of text data from HDFS.

Spark Streaming discretizes the records stream into time-
based micro-batches and processes every micro-batch dura-
tion. We configure the micro-batch interval to 1 minute. With
WHIZ, given the semantics of the processing logic, we use an
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Figure 10: Hadoop w.r.t. WHIZ fraction of tasks allocated vs. the
fraction of skew in a given stage: (a) for a job with 12 stages where
WHIZ improves JCT by 1.6×; (b) for a job with 6 stages, where
WHIZ improves JCT by 1.2×. CCSkew

WhizSkew > 1 means WHIZ has less
skew; CCTasks

WhizTasks < 1 means Hadoop under-parallelizes.

execution predicate to enable computation whenever ≥ 100
distinct records are present.

Figures 9a, 9b show our results. WHIZ speeds up jobs by
111...333333××× on average and 111...555555××× at the 95th %-ile. Also, 15%
of the jobs are slowed down to around 000...888×××.

The gains are due to data-driven computation via execu-
tion predicates; WHIZ does not have to delay execution till
the next micro-batch if data can be processed now. A Spark
Streaming task has to wait as it has no data visibility. In our
experiments, more than 777333% executions happen at less than
40s time intervals with WHIZ.

Additionally, we evaluate the role of modification predi-
cates in streaming in §9.2.

9.1.4 WHIZ Overheads

CPU, memory overhead: We find that DS-W (§8) processes
inflate the memory and CPU usage by a negligible amount
even when managing data close to storage capacity. DS-M
and DS-JM have similar resource profiles.
Latency: We compute the average time to process heartbeats
from various ES/DS daemons, and WHIZ client. For 5000
heartbeats, the time to process each is 2− 5ms. We imple-
mented the WHIZ client and ES-JM logic atop Tez AM. Our
changes inflate AM decision logic by ≤ 14ms per request
with negligible increase in AM memory/CPU.
Network overhead from events/heartbeats is negligible.

9.2 Benefits of Data-driven Computation
The overall benefits above included the effects of execution
predicates and incrementally generating the physical graph.
We now delve deeper to further shed light into late-binding
benefits.
Skew and parallelism: Figure 10 shows fractions of skew
and parallelism as generated by Hadoop w.r.t. WHIZ for two
TPC-DS jobs from one of our runs. WHIZ’s ability to dynam-
ically change parallelism at runtime, driven by the number
of capsules for each vertex, leads to significantly less data
skew than Hadoop. When Hadoop is under-parallelizing, the

% Skew Improvement Factor
10% 1.1
30% 1.47
50% 1.87
70% 2.48
90% 2.67

Table 3: Improvement in cumulative time using modification predi-
cates w.r.t no predicates. Predicate chooses hash join if the ratio of
input capsules’ sizes is ≥ 3.

skew is significantly higher than WHIZ (up to 1.43×). Over-
parallelizing does not help either; Hadoop incurs up to 1.15×
larger skew, due to its rigid data partitioning and tasks allo-
cation schemes. Even when WHIZ incurs more skew (up to
1.26×), corresponding tasks will get allocated more resources
to alleviate this overhead (§6.2).
Modification predicates: To evaluate the benefits enabled by
WHIZ’s ability to late-bind processing logic, we pick a query
from our TPC-DS workload which has a join and run it with
and without modification predicates while varying the skew
between the input tables. Modification predicates allow the
job to pick the join algorithm between sort-merge join and
hash join (see §6.1) for the different tasks. Table 3 shows the
relative improvement in cumulative time (summation over
duration of all tasks of the job) with and without predicates
(sticks to sort-merge join). We see that predicates improve
the cumulative time 111...111×××–222...888××× as the skew in capsule sizes
increases. This is because with modification predicates, WHIZ

chooses to use the hash join when skew between the task
inputs exists as building a hashmap on the smaller input is
typically cheaper than sorting the other input (occurs when
sort-merge join is used instead). Gains increase with skew as
the join performance difference also increases.

We also quantify the benefits of modification predicates
for stream processing. We run a stream query that performs
event-time temporal join over 3 minute intervals (execution
predicate indicates to wait for watermark) with and with-
out the above modification predicates. We change skew-%
randomly (from 10%, 20%,..., 90%) between the two input
sources over the same time interval and observe that using
modification predicates leads to 1.7× average improvement
in cumulative time.

Additionally, we run microbenchmarks to delve further into
WHIZ’s data-driven benefits (results in Appendix C).

9.3 Load Balancing, Locality, Fault Tolerance
To evaluate DS load balancing (LB), data locality (DL) and
fault tolerance (FT), we stressed the data organization under
different cluster load. We used job arrivals and all stages’
capsule sizes from one of our TPC-DS runs.

Figure 11 shows that: (1) WHIZ prioritizes load balanc-
ing and data locality over fault tolerance across cluster loads
(§4.2); (2) when the available resources are scarce (5× higher
load than initial), all three metrics suffer. However, the maxi-
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Figure 11: (a) Average, min and max fraction of capsules which are
data local (DL) respectively fault tolerant (FT) across all the jobs for
different cluster load; (b) Max, min and ideal storage load balance
(LB) on every machine for different cluster load.

% Machines JCT [Seconds]
Failed Avg Min Max
None 725 215 2100
10% 740 250 2320
25% 820 310 2360
50% 1025 350 2710
75% 1600 410 3300

Table 4: JCT under random machine failures.

mum load imbalance per machine is < 1.5× than the ideal,
while for any job, ≥ 47% of the capsules are data local. Also,
on average 16% of the capsules per job are fault tolerant; (3)
less cluster load (0.6× lower than initial) enables more oppor-
tunities for DS to maximize all of the objectives: ≥ 84% of
the per-job capsules are data local, 71% are fault tolerant, with
at most 1.17× load imbalance per machine than the ideal.
Failures: Using the same workload, we also evaluated the per-
formance impact in the presence of machine failures (Table 4).
We observe that WHIZ does not degrade job performance by
more than 1.13× even when 25% of the machines fail. This
is mainly due to DS’s ability to organize capsules to be fault
tolerant across ancestor stages and avoid data recomputations.
Even when 75% of the machines fail, the maximum JCT does
not degrade by more than 1.57×, mainly due to capsules be-
longing to some ancestor stages still being available, which
leads to fast recomputation for corresponding downstream
vertices.

9.4 Sensitivity Analysis
Impact of Contention: We vary storage load, and hence re-
source contention, by changing the number of machines while
keeping the workload constant; half as many servers lead to
twice as much load. We see that at 1× cluster load, WHIZ im-
proves over Hadoop by 1.39× (1.32×) on average in terms of
JCT (makespan). Even at high contention (up to 4×), WHIZ’s
gains keep increasing 1.83× (1.42×). This is because of data-
driven execution and better data management which mini-
mizes resource wastage, time spent in shuffling, and leads to
few hotspots.

Multiple of # Capsules
Original Load 8 16 20 24 28 32 36 40

1 1.07 1.33 1.46 1.52 1.57 1.63 1.54 1.46
2 1.10 1.16 1.53 1.58 1.56 1.61 1.47 1.31
4 0.85 1.12 1.34 1.39 1.32 1.16 0.95 0.74

Table 5: Factors of improvement w.r.t. Hadoop for different number
of capsules per machine and cluster load.

Impact of G (number of capsules per machine): We now
provide the rationale for picking G = 24. Table 5 shows the
factors of improvements w.r.t. Hadoop for different values of
G and levels of contention.

The main takeaways are as follows: for G = 8 the perfor-
mance gap between WHIZ and Hadoop is low (< 1.1×). This
is expected because small number of capsules results in less
data locality (each capsule is more likely to be spread). Fur-
ther, the gap decreases at high resource contention. In fact,
at 4× the cluster load, Hadoop performs better (0.85×). At
larger values of G the performance gap increases. For exam-
ple, at G = 24, WHIZ gains are the most (between 1.39× and
1.58×). This is because larger G implies (1) more flexibility
for WHIZ to balance the load across machines; (2) more likely
that few capsules are spread out; (3) lesser data skew and
more predictable per task performance. However, a very large
G does not necessarily improve performance, as it can lead to
massive task parallelism. The resulting scheduling overhead
degrades performance, especially at high load.
Altruism: Assigning resources altruistically is beneficial as it
improves median (95th %-ile) JCT by 1.48× (4.8×) for our
TPC-DS runs w.r.t a greedy approach where tasks use all of
their available resources. Only 16% jobs are slowed down by
≤ 0.6×.

10 Related Work
We now discuss the various related efforts to overcome the
various limitations of compute-centricity. WHIZ, with its clean
separation of compute and intermediate data, overcomes the
various limitations of compute-centricity in a unified manner
while prior related efforts propose point-fixes to a subset of
the limitations that plague compute-centric execution engines.
Data opacity: Almost all database and bigdata SQL sys-
tems [10, 12, 54] use statistics computed ahead of time to
optimize execution. Adaptive query optimizers (QOs) [22]
use dynamically collected statistics and re-invoke the QO to
re-plan queries top-down. In contrast, WHIZ alters the query
plans on-the-fly at the execution layer based on run-time data
properties, thereby circumventing additional expensive calls
to the QO. Tukwila [30] reformulates queries by using run-
time visibility in a limited fashion to fix poor statistics mainte-
nance in QOs. WHIZ instead enables much richer visibility and
supports a richer set of actions that enable true data-centric
behavior. RoPE [12] leverages historical statistics from prior
plan executions in order to tune future executions. WHIZ,

418    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



instead uses runtime properties.
CIEL [45] is an execution engine that provides support for

data-dependent iterative or recursive algorithms by dynami-
cally deciding the execution graph as tasks execute. However,
low-level execution aspects such as per-stage parallelism are
decided beforehand. Optimus [33] extends frameworks such
as CIEL [45] and Dryad [29] to enable runtime logic rewrit-
ing and parallelism selection by using streaming-based algo-
rithms to collect aggregated statistics on intermediate data.
RIOS [39] is an optimizer for Spark that solely focuses on
optimizing joins by deciding the join order and stage-level
join implementation using the approximate statistics collected
at runtime. While Optimus and RIOS attempt to provide data
visibility, neither of them does a clean separation of com-
pute and data; this limits data-local processing and imposes
I/O interference as intermediate data organization is deter-
mined by the compute structure. Moreover, both still resort to
compute-driven scheduling and do not use data visibility to de-
cide if/when tasks should be scheduled. Further, RIOS adopts
static per-stage parallelism, and cannot make fine-grained
logic changes (e.g., task-level) as table-level statistics are ag-
gregated by a separate Spark job and then sent to the Spark
driver which is responsible for making runtime changes. Over-
all, WHIZ is a general approach to data-driven computation
that subsumes all prior efforts, and enables new data-driven
execution benefits; its clean separation of data enables data-
locality and I/O isolation management.
Skew and parallelism: Some parallel databases [25, 34, 55]
and big data systems [38] dynamically adapt to data skew
for single large joins. In contrast, WHIZ holistically solves
data skew for all joins across multiple jobs. [25, 38] deal with
skew in MapReduce by dynamically splitting data for slow
tasks into smaller partitions and processing them in parallel.
But, they can cause additional data movement from already
slow machines leading to poor performance. Hurricane [16]
mitigates skew via an adaptive task partitioning scheme by
cloning slow tasks at runtime and performing data organiza-
tion such that all tasks, be it the primary task or its clones,
can access data that requires processing. However, Hurricane
can lead to additional processing overheads as it does not
take data locality into account while organizing data (data
corresponding to the same key can be spread across mul-
tiple machines) and also involves an additional merge step
that combines the partial outputs of the clones using the end-
user provided merging logic. Moreover, Hurricane does not
have fine-grained visibility into intermediate data and thus
cannot do fine-grained task logic changes and still adopts
compute-driven scheduling. Henge [32] supports multi-tenant
streaming by deciding parallelism based on SLOs. However,
it still adopts compute-driven scheduling.
Decoupling: Naiad [44] and StreamScope [53] also decou-
ple intermediate data. They tag intermediate data with vector
clocks which are used to trigger compute in the correct or-
der. Both support ordering driven computation, orthogonal to

data-driven computation in WHIZ. Also, StreamScope is not
applicable to batch/graph analytics. Crail [49] decouples inter-
mediate data from compute so that various execution engines
can easily leverage modern storage hardware (including tiered
storage) to perform intermediate data management. However,
the compute structure still decides the number of partitions
across which data is organized. Additionally, it adopts a simi-
lar data storage abstraction as well as data placement policy to
Hurricane and thus incurs additional overheads as it does not
take data locality into account. Moreover, Crail recommends
replicating data in case fault tolerance is required which can
further lead to additional overheads. Instead, WHIZ provides
fault tolerance by intelligent placement of intermediate data
so as to minimize recovery time. Also, similar to Hurricane,
it does not have fine-grained data visibility to drive all aspects
of execution.
Storage inefficiencies: For batch analytics, [31,46] addresses
storage inefficiencies by pushing intermediate data to the
appropriate external data services (like Amazon S3 [1], Re-
dis [9]) while remaining cost efficient and running on server-
less platforms. Similarly, [35] is an elastic data store used
to store intermediate data of serverless applications. How-
ever, since this data is still opaque, and compute and storage
are managed in isolation, these systems cannot support data-
driven computation or achieve data locality and load balancing
simultaneously.

11 Summary
The compute-centric nature of existing data analytics frame-
works hurts flexibility, performance, efficiency, and job iso-
lation. With WHIZ, analytics undergo data-driven execution
aided by a clean separation of compute from intermediate
data. WHIZ enables monitoring of data properties and using
these properties to decide all aspects of execution - what to
launch, where to launch, and how many tasks to launch, while
ensuring isolation. Our evaluation using batch, stream and
graph workloads shows that WHIZ significantly outperforms
state-of-the-art.
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A WHIZ APIs
Table 6 shows the various APIs exposed by WHIZ that are used
by frameworks running atop WHIZ to submit programs. Simi-
lar to APIs today, (1)–(3) APIs are job composition APIs to
create logical directed graphs (WHIZ has similar APIs to load
a graph). Crucially, WHIZ does not require the frameworks
to specify low-level details like parallelism and partitioning
strategy. The addCustomMonitor API is used by the frame-
work to submit UDFs to collect custom statistics (apart from
the built-in monitors that WHIZ supports).

During the data embellishment phase, the framework
annotates the logical graph with execution and modifi-
cation predicates using addExecutionPredicate API and
addModi f icationPredicate API respectively. The frame-
work provides the predicates based on data properties via
a UDF.

We now show how to write execution and modification
predicates for a number of applications used in our testbed
experiments (§9).

Figure 12a shows the execution predicate used to run the
PageRank algorithm. Specifically, the UDF specifies that as
soon as 1000 messages corresponding to a vertex are received,
the data is ready to be processed. Similarly, Figure 12b shows
the execution predicate used to run the streaming job that
returns the top 5 words when we see 100 distinct words. This
predicate indicates that as soon as 100 unique key records
globally have been received, the data is ready to be processed.

Lastly, Figure 12c shows how to specify modification pred-
icates to decide the join algorithm on the fly for a batch SQL
query as well as a streaming query involving a temporal join.
This predicate takes as input the properties collected of the
two capsules (from the two input tables) and chooses the join
algorithm based on the amount of skew. If the amount of skew
is less than the threshold specified by the framework, then
sort-merge join is used; otherwise hash join is chosen.

B Allocating Capsules to Machines ILP
We consider how to place multiple jobs’ capsules to avoid
hotspots, reduce per-capsule spread (for data locality) and
minimize job runtime impact on data loss. We formulate a
binary integer linear program (see Table 7) to this end. The
indicator decision variables, xk

i , denote that all future data
to capsule gk is materialized at machine Mi. The ILP finds
the best xk

i ’s that minimizes a multi-part weighted objective
function, one part each for the three objectives mentioned
above.

The first part (O1) represents the maximum amount of data
stored across all machines across all capsules. Minimizing
this ensures load balance and avoids hotspots. The second
part (O2) represents the sum of data-spread penalty across
all capsules. Here, for each capsule, we define the primary
location as the machine with the largest volume of data for that
capsule. The total volume of data in non-primary locations
is the data-spread penalty, incurred from shuffling the data

prior to processing it. The third part (O3) is the sum of fault-
tolerance penalties across capsules. Say a machine m storing
intermediate for current stage s fails; then we have to re-
execute s to regenerate the data. If the machine also holds
data for ancestor stages of s then multiple stages have to be
re-executed. If we ensure that data from parent and child
stages are stored on different machines, then, upon child data
failure only the child stage has to be executed. We model
this by imposing a penalty whenever a capsule in the current
stage is materialized on the same machine as the parent stage.
Penalties O2, O3 need to be minimized.

Finally, we impose isolation constraint (C1) requiring the
total data for a job to not exceed an administrator set quota
Q j. Quotas help ensure isolation across jobs.

However, solving this ILP at scale can take several tens
of seconds delaying capsule placement. Thus, WHIZ uses a
linear-time rule-based heuristic to place capsules (as described
in §4).

C WHIZ Microbenchmarks
Apart from the experiments on the 50-machine cluster (§9),
we also ran several microbenchmarks to delve deeper into
WHIZ’s data-driven benefits. The microbenchmarks were run
on a 5 machine cluster and the workloads consists of the
following jobs: J1 (v1→ v2) and J2 (v1→ v2→ v3). These
patterns typically occur in TPC- DS queries.
Skew and parallelism: Figure 13a shows the execution of
one of the J2 queries from our workload when running WHIZ

and CC. WHIZ improves JCT by 2.67× over CC. CC decides
stage parallelism tied to the number of data partitions. That
means stage v1 generates 2 intermediate partitions as config-
ured by the user and 2 tasks of v2 will process them. However,
execution of v1 leads to data skew among the 2 partitions
(1GB and 4GB).On the other hand, WHIZ ends up generating
capsules that are approximately equal in size and decides at
runtime a max. input size per task of 1GB (twice the largest
capsule). This leads to running 5 tasks of v2 with equal input
size and 2.1× faster completion time of v2 than CC.

Over-parallelizing execution does not help. With CC, v2
generates 12 partitions processed by 12 v3 tasks. Under re-
source crunch, tasks get scheduled in multiple waves (at 570s
in Figure 13a) and completion time for v3 suffers (85s). In
contrast, WHIZ assigns at runtime only 5 tasks of v3 which
can run in a single wave; v3 finishes 1.23× faster.
Straggler mitigation: We run an instance of J1 with 1 task
of v1 and 1 task of v2 with an input size of 1GB. A slowdown
happens at the v2 task, which was assigned 2 capsules by
WHIZ.

In CC (Figure 13b), once a straggler is detected (v2 task
at 203s), it is allowed to continue, and a speculative task v′2
is launched that duplicates v2’s work. The work completes
when v2 or v′2 finishes (at 326s). In WHIZ, upon straggler
detection, the straggler (v2) is notified to finish processing
the current capsule; a task v′2 is launched and assigned data
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API Description
1 createJob(name:Str, type:Type) Creates a new job which can be of type BATCH, STREAM or GRAPH.
2 createStage(j:Job, name:Str, impl:StageImpl, prop:StageProperties) Adds a logical stage of to a Job with a default processing logic. StageProperties specifies

properties of the logic (e.g., if it is commutative+associative).
3 addDependency(j: Job, s1: Stage, s2: Stage) Adds a starts before relationship between stages s1 and s2.
4 addCustomMonitor(j:Job, s:Stage, impl:DataMonitorImpl) Adds a custom data monitor to compute statistics over data generated by stage s. Data-

MonitorImpl is a UDF.
5 addExecutionPredicate(j:Job, s:Stage, predicates:ExecutionPred) Decides when downstream stages can consume current stage’s data based on the predicates

specified by ExecutionPred. ExecutionPred is used by DS to decide when data is ready for
processing.

6 addModificationPredicate(j:Job, s:Stage, predicates:ModifyPred) Decides processing logic for the input capsules that are ready based on the predicates
specified by ModifyPred. ModifyPred is used by the ES to decide which processing logic
to use based on the data properties from the DS.

Table 6: WHIZ APIs - Used by the frameworks running atop WHIZ to translate the high-level job submitted by end users to WHIZ-compatible
data-driven logical graphs.

1 def ExecutionPredicate():
2 for key in keys:
3 if (DS.monitor.num_entries(key) >= 1000):
4 return true
5 return false

1 def ExecutionPredicate():
2 if (DS.monitor.global_unique_entries >= 100):
3 return true
4 return false

1 def ModificationPredicates(capA, capB):

2 // THRESHOLD is set by the framework

3 sizeRatio = max(capA.size, capB.size)/ min(capA.size, capB.size)
4 if (sizeRatio >= THRESHOLD):

5 return HashJoinImpl //Refers to hash join
6 return SortMergeJoinImpl //Refers to sort-merge join

Figure 12: Examples of predicates. (a) Execution predicate for the PageRank algorithm - deem capsule ready when it has 1000 messages, (b)
Execution predicate for the streaming application - deem capsules ready when we see 100 unique entries and (c) Modification predicate for
changing join algorithm on the fly.
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f k Binary parameter indicating that capsules for same
stage as gk share locations with capsules for preceding
stages

I◦ Set of machines where capsules of preceding stages
are stored

Q j Administrative storage quota for job, j.

Table 7: Binary ILP formulation for capsule placement.

from v2’s unprocessed capsule. v2 finishes processing the first
capsule at 202s; v′2 processes the other capsule and finishes
1.7× faster than v′2 in CC.
Modification Predicates: We consider a job which processes
words and, for words with < 100 occurrences, sorts them by
frequency. The program structure is v1→ v2→ v3, where v1
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Figure 13: (a) Controlling task parallelism significantly improves
WHIZ’s performance over CC. (b) Straggler mitigation with WHIZ

and CC.

processes input words, v2 computes word occurrences, and v3
sorts the ones with < 100 occurrences. In CC, v1 generates
17GB of data organized in 17 partitions; v2 generates 8GB
organized in 8 partitions. Given this, 17 v2 tasks and 8 v3
tasks execute, leading to a CC JCT of 220s. Here, the entire
data generated by v2 has to be analyzed by v3. In contrast,
WHIZ uses modification predicates for v3 as follows - (a) if
all the # entries of all keys in the capsule is > 100, then we
unnecessarily don’t launch a task; (b) otherwise we launch the
task to do the sort. We observe that WHIZ ignores processing
two capsules at runtime, and 6 tasks of v3 (instead of 8) are
executed; JCT is 165s (1.4× better).
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Abstract
Small, low-cost IoT devices are typically equipped with only
a single, low-quality antenna, significantly limiting commu-
nication range and link quality. In particular, these antennas
are typically linearly polarized and therefore susceptible to
polarization mismatch, which can easily cause 10− 15 dB
of link loss when communicating with such devices. In this
work, we highlight this under-appreciated issue and propose
the augmentation of IoT deployment environments with pro-
grammable, RF-sensitive surfaces made of metamaterials. Our
smart metasurface mitigates polarization mismatch by rotat-
ing the polarization of signals that pass through or reflect from
the surface. We integrate our metasurface into an IoT network
as LLAMA, a Low-power Lattice of Actuated Metasurface
Antennas, designed for the pervasively used 2.4 GHz ISM
band. We optimize LLAMA’s metasurface design for both
low transmission loss and low cost, to facilitate deployment
at scale. We then build an end-to-end system that actuates
the metasurface structure to optimize for link performance in
real time. An empirical evaluation demonstrates gains in link
power of up to 15 dB, and wireless capacity improvements
of 100 and 180 Kbit/s/Hz in through-surface and surface-re-
flective scenarios, respectively, attributable to the polarization
rotation properties of LLAMA’s metasurface.

1 Introduction

Internet of Things (IoT) devices have achieved widespread
adoption due to shrinking hardware costs and software man-
agement tools that ease installation by the end user. In recent
years, a wide range of IoT devices have resulted in diverse
systems including mobile devices such as smartwatches [31]
and health trackers or statically deployed devices including
sensors, cameras, voice assistants, and other appliance au-
tomation [14, 15]. One key property these devices share is
low-cost hardware, in particular low-cost radios, allowing for
a minimal consumer price point. Such devices are typically

∗Work conducted on internship at Univ. of Massachusetts Amherst.

Figure 1: Low-cost IoT devices and wearables suffer from
polarization mismatch when their antennas become oriented
perpendicularly with respect to an AP’s antenna.

deployed by non-experts who understand neither their home’s
wireless environment nor the deployment considerations that
govern wireless performance. Devices are typically deployed
in a configuration that is well-suited for a particular appli-
cation or use-case, but may not be the ideal placement in
terms of communications performance. This combination of
cheap hardware and non-ideal network topology results in
significant opportunities to improve wireless performance.

One source of performance degradation in such deploy-
ments is a significant power loss caused by a polarization
mismatch [13, 32] between a low-cost dipole antenna on an
IoT device and antennas on a Wi-Fi access point (AP)—in
higher performance devices (i.e., mobile handsets) this loss is
usually mitigated through the use of circularly polarized or
dynamically-switched linearly polarized antennas in different
orientations. Low-cost IoT devices instead use one cheap,
linearly polarized dipole antenna that results in weak, frag-
ile links between transmitters and receivers. In addition to
misaligned stationary devices, mobile devices such as wear-
ables can suffer from dynamic antenna misalignment as a
user swings their arm, for example, as Figure 1 illustrates.
This effect can be significant: microbenchmark experiments
show that moving between orthogonal and aligned relative
antenna polarization results in ≈ 10 dB of power variation
at the receiver, for both the low power Wi-Fi link between
an Arduino equipped with an ESP8266 module [19] and an
802.11g Wi-Fi AP [5] shown in Figure 2 (a), and for a Blue-
tooth link between a smartwatch [1] and a Raspberry Pi 3 [36]
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(a) Wi-Fi communication (802.11g)
between an AP [5] and a cheap
ESP8266-based Arduino [19].
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(b) Bluetooth communication be-
tween a Huawei Watch [1] and a
Raspberry Pi 3 [36].

Figure 2: Impact of polarization mismatch. Received signal
power distributions for matching and mismatching antenna
orientations between IoT transmitter-receiver pairs. Polariza-
tion mismatch significantly reduces link signal power.

shown in Figure 2 (b).
In this work, we specifically investigate how to change the

effective relative orientation of antennas at the communication
endpoints, without hardware modifications to the endpoints
themselves. Achieving this objective would allow us to main-
tain a low bill of materials cost for IoT wireless communica-
tions components, and significantly improve the performance
for existing off-the-shelf devices. Our approach to changing
effective polarization alignment hinges instead, on chang-
ing the radio propagation environment itself, with a Low-
Power Lattice of Actuated Metasurface Antennas (LLAMA),
a tunable smart surface made with inexpensive metamateri-
als [39, 41]. LLAMA is deployed in the radio environment
near the IoT endpoints, and is able to change the polarization
of incident waves as they travel from sender to receiver. As we
show in this paper, the LLAMA substrate can be programmed
dynamically to effect just the right amount of polarization
rotation needed to help the ongoing communication between
nearby endpoints. LLAMA follows the PRESS [43] approach,
which was the first to outline a vision of programmable radio
environments along with a preliminary experimental setup
that validates the feasibility of change the perceived channel
at the communication endpoints.

Designing a metasurface in the 2.4 GHz ISM band requires
us to overcome significant challenges. First, longer wave-
lengths in the 2.4 GHz band require larger and thicker meta-
surface substrates, which can attenuate the incident signal
significantly. While an inefficient structure could rotate polar-
ization, losses would dominate and the structure would atten-
uate the incident signal, hampering communication. There-
fore, the metasurface structure needs to be optimized for low
transmission loss. Second, since we aim to realize pervasive
deployments of these structures, we need to develop materials
that are low cost, avoiding high performance but relatively
expensive RF materials commonly used in other implementa-
tions of metasurfaces. Overcoming both of these challenges
results in a pervasively deployable substrate that can compen-

sate for losses between different endpoint pairs.
Indeed, naively replacing a high performance substrate (i.e.,

Rogers 5880 [38]) with a low-cost substrate (i.e., FR4 [20])
results in higher transmission loss due to FR4’s inherent phys-
ical properties; this in turn significantly attenuates power at
the receiver, reducing link throughput and communication dis-
tance. To deal with this problem, we optimize the metasurface
structure to ensure the overall system has both low transmis-
sion loss, as well as a scalable price point. Specifically, we
choose a cheap material (FR4) as the substrate, use a mini-
mum number of substrate layers for the required bandwidth,
and minimize the thickness of each layer to significantly re-
duce the losses associated with FR4.

To enable real-time polarization optimization, a receiver
must report received power to a controller which in turn ro-
tates polarization by modifying a pair of bias voltages. We
provide a novel method to estimate the polarization rotation
angle induced by the metasurface which can vary with link
distance—understanding this mapping can enable rotation
sensing and tracking.

Contributions. To summarize, LLAMA is the first system
that leverages an inexpensive RF substrate to optimize the
radio environment in real time, thereby avoiding signal losses
caused by polarization mismatch, and thus enables higher
quality communication links between IoT devices. In this
work, we optimize a metasurface structure based on mi-
crowave attenuation theory and achieve comparable polar-
ization tunability to a similar system that uses relatively ex-
pensive materials. We validate a proof-of-concept implemen-
tation of LLAMA for both communication and sensing with
comprehensive experiments. Our results show that LLAMA
enables polarization rotation within 3◦− 45◦, improves the
signal strength by 15 dB (transmission) and 17 dB (reflection)
with respect to mismatched antenna polarizations. LLAMA
also holds great potential to enhance sensing applications, as
demonstrated in § 5.2.2.

2 A Polarizing View of Wireless

Electromagnetic polarization describes the parametric trajec-
tory of the electric and magnetic field vectors of a planar
electromagnetic wave as it propagates through space. The
polarization of RF wave propagation is a fundamental char-
acteristic of wireless communication, but it has not received
as much attention as issues like multipath fading and inter-
ference. An antenna constrains outgoing or incoming RF
propagation to a particular plane. Therefore, communication
is only possible if the signal propagation planes at both the
transmitter and the receiver are well aligned.

Polarization loss. One challenge in mobile wireless commu-
nication links is the significant power loss due to polarization
mismatch. Three examples of various transmitter antennas
and their associated far-field electric fields are depicted in
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Figure 3: Signal transmission loss under different antenna po-
larization combinations between transmitter and receiver [13].

Figure 3. If the signal is being received by a horizontally
polarized receiver antenna, it will be polarization matched
to the transmitter antenna with horizontal linear polarization
and the power received will primarily be a function of the
transmit power and free space path loss. If the transmitter an-
tenna is rotated in space, the received signal will continue to
degrade due to polarization mismatch to the point where the
very little signal is received when the antennas are completely
mismatched with orthogonal polarizations. The signal loss is
less when one of the antennas is circularly polarized 1.

As shown in Figure 2, polarization mismatch can be debili-
tating for IoT devices. Higher performance devices such as
mobile phones use switched antennas or circular polarized
antennas to mitigate polarization mismatch, but low-cost IoT
devices like smartwatches typically have a single low-quality
antenna.
Correcting polarization mismatch. Intuitively, polarization
mismatch can be corrected by rotating the polarization of
the signal before it arrives at the receiver. Here we show the
mathematical foundation of polarization rotation.

In general, the polarization state of radio waves can be de-
scribed by a 2×1 Jones vector J. Consider a plane perpendic-
ular to the direction of signal propagation. Any polarization
state can be represented by two orthogonal components in
that plane (i.e., projected onto the X and Y axes) with different
amplitude and phase. The Jones vector is [28]:

J =

[
ax

aye jπ/2

]
, (1)

where ax and ay represent the X and Y polarized signal com-
ponents respectively.

When a manipulation surface is aligned with the x-y coor-
dinate axis, the Jones matrix is defined as [28]:

M = e jα
[

1 0
0 e jπ/2

]
, (2)

1A theoretical 3 dB degradation in coupling due to polarization mismatch
will also occur when one of the antennas is circularly polarized while the
other is linearly polarized.

Tx Rx

Wall integrated with 
polarization rotator

+
−

RxTx

Wall

+
−

Figure 4: Wireless communication system without/with po-
larization rotator between mismatched transmitter (Tx) and
receiver (Rx).

where α is a phase delay between the X and Y axes. If the
surface is rotated counterclockwise by a degree of θ, the Jones
matrix becomes [28]:

Mθ = R(θ)MRT (θ), R(θ) =
[

cosθ −sinθ

sinθ cosθ

]
, (3)

where R(θ) is a rotation matrix.
In systems with multiple layers of polarization manipula-

tion surface between the incident wave and outgoing wave,
the outgoing Jones vector Jout is obtained by multiplying the
Jones vector of incident wave with the Jones matrix of each
surface layer [28]:

Jout = MN ...M2M1Jin, (4)

where MN is a 2×2 Jones matrix, representing the Nth sur-
face.

3 System Design

In this section, we introduce the LLAMA architecture (§ 3.1)
and illustrate the properties of the metasurface hardware with
HFSS simulation results (§ 3.2). Next, we illustrate our ap-
proach towards actuating polarization angle in real-time by
manipulating bias voltages for the polarization rotator (in
§ 3.3). While the primary goal of LLAMA is to enhance sig-
nal quality between two endpoints, it can also be used for
orientation sensing, which requires estimating relative polar-
ization rotation between endpoint; § 3.4 describes a technique
for this purpose.

3.1 System Overview
LLAMA is a low power system that is designed to reduce sig-
nificant wireless signal loss caused by polarization mismatch
between the transmitter and receiver. As shown in Figure 4,
the signal from a mismatched transmitter arrives at the re-
ceiver with a lower loss when the intermediate wall includes
a polarization rotator. LLAMA has the ability to improve the
communication quality and extend the sensing range in the
widely used ISM frequency band.
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Figure 5: LLAMA system architecture, showing transmitter
and receiver endpoints, the LLAMA substrate deployed in the
environment, and control signal flow.

An overview of our system architecture is depicted in Fig-
ure 5 and consists of these four elements:
Metasurface. The metasurface used in LLAMA is a polar-
ization rotator implemented using a low-cost FR4 substrate;
the polarization rotator is tunable and uses biasing voltages
within phase shifters in both the X and Y axes to define a
rotation angle. The metasurface is deployed in a structural
element (i.e., wall) and influences wireless signals that reflect
from or propagate through the metasurface.
Centralized controller. A centralized controller observes the
power measured at a receiver and uses a search algorithm to
determine a set of bias voltages that maximize received signal
power by finding the optimal rotation angle that achieves a
polarization match between the antennas at the endpoints.
Power supply. The bias voltages used to tune the metasurface
are set with a programmable DC power supply. By synchro-
nizing the power supply output with the receiver, we can
manipulate the polarization rotator with an optimal rotation
angle in real time, with a rotation that maximizes signal power.
Two bias voltages are needed for the phase shifters in the X
and Y axes; while bias voltages as high as 30 V are needed,
the metasurface draws only 15 nA of current. In future imple-
mentations, a circuit that generates these bias voltages could
be integrated directly on the metasurface.
Endpoints. The endpoint receiver reports its received signal
strength to the controller, which then determines how to actu-
ate the metasurface by manipulating the two bias voltages.

3.2 Metasurface Architecture
Tunable metasurfaces are implemented as layered structures
that consist of copper patterns printed on controlled dielectric
substrates; these layers perform different functions that reflect,
bias, or guide EM waves. A transmissive metasurface uses a
biasing network sandwiched between or adjacent to waveg-
uide layer(s) to modify the transmissive signal properties in a
controlled manner. In contrast, a reflective metasurface uses
a metallic plane as one of its layers, where the signal passes
through a wave guide layer and a biasing layer, and reflects
from the metallic plane in the same relative direction with a

different angle of departure. Depending on the bias voltages
used LLAMA can operate in either a transmissive or reflective
mode.
Cost-effective metasurface design. Our design was inspired
by a 10 GHz design [45], and we calculate the correct ge-
ometries of circuit elements for 2.4 GHz instead based on the
impedance matching.

To achieve polarization rotation for both x-polarized and y-
polarized waves, we construct a polarization rotator consisting
of a tunable birefringent structure (BFS) placed between two
quarter wave plates (QWP) [17]. The QWPs are rotated by
+45◦ and −45◦ with respect to the BFS, which causes the
phase delays for two orthogonal polarizations differ by 90◦.
The Jones matrices of the two QWPs can be expressed as:

Q+45◦ = e jαR(+45◦)
[

1 0
0 e jπ/2

]
RT (+45◦), (5)

Q−45◦ = e jαR(−45◦)
[

1 0
0 e jπ/2

]
RT (−45◦). (6)

The tunable BFS is a transmissive metasurface that can rotate
the polarization of the X and Y axes, independently. The Jones
matrix of the BFS is:

B = e jβ
[

1 0
0 e jδ

]
, (7)

where β is the transmission phase as the signal passes through
the BFS, irrespective of initial polarization orientation, while
δ represents the transmission phase difference between the X
and Y polarizations, which can be adjusted by manipulating
the biasing voltages of the X and Y axes as shown in Figure 5.
The entire Jones matrix of the polarization rotator is:

P = Q+45◦BQ−45◦

= e j(α+(π/2)+β+(δ/2))
[

cos(δ/2) −sin(δ/2)
sin(δ/2) cos(δ/2)

]
.

(8)

In summary, the proposed structure can rotate the polarization
of a wave by δ/2 rotation degrees, according to the rotation
matrix presented in Equation (3).

In Figure 6 (a) we show the microstrip geometries used
in our metasurface design. The metasurface consists of a
tunable BFS (layers 2 and 3 in Fig. 6 (a)) placed between
two QWPs (layers 1 and 4 in Fig. 6 (a)) rotated 45◦ with
respect to the BFS. The BFS includes two birefringent boards
rotated by 90◦ with respect to each other, each board acts as
a phase shifter that supports different polarization rotations
by manipulating the bias voltages (Vx and Vy) of integrated
varactor diodes (black) along X and Y axes. The metallic
patterns (orange) plated on the substrate boards (green and
blue) act as admittance components.

We next consider the transmission efficiency (S21) of X and
Y axis polarized signals, as that is among the most important
performance metric of the overall metasurface design. Higher
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Figure 6: Polarization rotator structure designed for the
2.4 GHz ISM band. The distances between adjacent boards
are d1 = 7 mm and d2 = 11 mm, the FR4 substrate thicknesses
of QWP and BFS are c1 = 12 mm and c2 = 0.6 mm.

transmission efficiency indicates better performance. For a
two-port network as shown in Figure 7, the amplitude (normal-
ized voltage) of incoming waves (a1 and a2) and the outgoing
waves (b1 and b2) are given by [35]: a1 =

V1+Z0I1
2
√

Z0

a2 =
V2+Z0I2

2
√

Z0

,

 b1 =
V1−Z0I1

2
√

Z0

b2 =
V2−Z0I2

2
√

Z0

, (9)

where V1 and V2 are the normalized voltage of port 1 and port
2, I1 and I2 are the normalized current of port 1 and port 2, Z0
is the matched impedance. The scattering matrix S relates the
incoming waves to the outgoing waves as [35]:[

b1
b2

]
=

[
S11 S12
S21 S22

]
×
[

a1
a2

]
, Si j =

bi

a j
|ak = 0 ∀ k 6= j.

(10)
S11 and S22 are reflection coefficients, S21 and S12 are trans-
mission coefficients. Then the transmission efficiency can be
calculated according to the following equation [35]:

e f f =

{
|Sxx

21|2 + |S
yx
21|2 , f or x− polarized wave

|Sxy
21|2 + |S

yy
21|2 , f or y− polarized wave

,

(11)
where Syx

21 is obtained from the x-polarized component of
incoming wave ax

1 and the y-polarized component of outgoing
wave by

2.
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Figure 7: The scattering parameters of metasurface can be
measured according to the matched impedance of the input
and output ports [35].

We can potentially obtain high transmission efficiency (see
Figure 8) by directly scaling the circuit geometry of an exist-
ing 10 GHz design [45] to 2.4 GHz, but a key limitation is
its use of an expensive, low-loss dielectric substrate (Rogers
5880) [45]. While this material achieves high transmission
efficiency, it is cost prohibitive at scale. Instead, we choose
a commodity FR4 substrate and characterize the behavior of
the FR4 structure using an HFSS simulation environment to
analyze critical parameters in the 2.4 GHz ISM band. The
key problem is that FR4 (0.02 dielectric loss tangent) causes
much larger signal loss than Rogers 5880 (0.0009 dielectric
loss tangent), and thus severely decreases the transmission
efficiency, as shown in Figure 9.

To reduce transmission loss, we simplify the structure of
the tunable phase shifter layers, and decrease the thickness of
FR4 by replacing it with an air gap since the dielectric loss
tangent of air is 0. By comparing Figure 10 and Figure 8, we
can see that our optimized structure made of cheap FR4 can
achieve comparable transmission efficiency to more complex
structures and expensive materials. We use fewer (i.e., two)
phase shifting layers made with thinner substrate; since the
supported bandwidth of a phase shifter changes approximately
linearly with the transmission line length, that is, the thickness
of the substrate. Suppose the thickness of substrate is λ/m,
the bandwidth can be represented as below [35]:

∆ f = f0(2−
m
π

arccos[
Γ√

1−Γ2

2
√

ZIZL

|ZL−ZI |
]), (12)

where f0 is the design center frequency of phase shifter, Γ

is the maximum tolerable reflection coefficient, ZI and ZL
are input impedance and load impedance, respectively. Our
design achieves (150 MHz of bandwidth with efficiency >
−5 dB), which is wider than the target ISM frequency band
that has less than 100 MHz of bandwidth.
Estimating Polarization Efficiency. A voltage controlled ca-
pacitance is used to actuate the tuning of the X and Y planes
— here we use an x-polarized incident wave as an example
to show the polarization rotation results. The transmission
efficiencies of the simulated frequencies under various volt-
age combinations are shown in Figure 11, which are always
higher than −8 dB in the 2.4−2.5 GHz ISM frequency band.
The other set of measurements looks at how the polarization
angle can be controlled by adjusting the lumped tuning ca-
pacitance used for the X and Y axis biasing layers. Varying
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Table 1: Simulated rotation degrees (θr).

θr (◦) Vx(V )
2 3 4 5 6 10 15

Vy(V )

2 11.6 26.1 36.8 41.0 44.3 48.3 48.7
3 6.5 12.4 26.6 32.2 35.2 38.6 39.2
4 23.0 4.9 10.9 17.3 20.8 25.0 25.6
5 27.0 9.3 7.4 14.0 18.0 22.6 23.2
6 41.8 25.0 7.9 2.1 4.2 10.2 10.7

10 45.8 30.0 13.7 7.9 2.8 5.1 5.6
15 48.2 33.1 18.2 12.9 7.3 1.9 2.0

this capacitance from 0.84 pF to 2.41 pF for both the X and
Y axes resulted in a polarization rotation angle that varied
between 1.9◦ and 48.7◦ (see Table 1). We have also simulated
the polarization rotator structure in the 900 MHz band used
for RFID and found comparable performance after additional
scaling.

3.3 Metasurface Control

To enable polarization rotation control, we need to change
the capacitance of the X and Y axis phase shifters; in our
design this is accomplished by changing the bias voltage of
the integrated varactor diodes (SMV1233) in the X and Y
polarities, which in turn changes their capacitance and thus
phase. All diodes in a given polarization are controlled using
the same bias voltage; we use a programmable power supply

Algorithm 1: Biasing Voltage Sweep
Input: Number of iterations: N; Number of voltage

tuning steps for X and Y axes per iteration: T
Initialization: Voltage sweep range of X and Y axes
in first iteration (n = 1): [V min

x,1 ,V max
x,1 ] = [0,30],

[V min
y,1 ,V max

y,1 ] = [0,30]
for n = 1, ...,N do

for τx = 1, ...,T do
Vx,n,τx =V min

x,1 +(τx−1)(V max
x,n −V min

x,n )/T
for τy = 1, ...,T do

Vy,n,τy =V min
y,1 +(τy−1)(V max

y,n −V min
y,n )/T

end
end
if Received signal power at voltage combination
(Vx,n,τx ,Vy,n,τy) is strongest then

V min
x,n+1 =Vx,n,τx − (V max

x,n −V min
x,n )/T ,

V max
x,n+1 =Vx,n,τx ,

V min
y,n+1 =Vy,n,τy − (V max

y,n −V min
y,n )/T ,

V max
y,n+1 =Vy,n,τy

end
end
Output: Optimal voltage combination:
(Vx,N,τx ,Vy,N,τy)

for this purpose and these voltages can be as high as 30 V to
account for errors induced during fabrication and assembly,
hence we set 0−30 V as the voltage sweep range of the X and
Y axes. The power supply is connected to a desktop computer
through a USB interface, and is controlled by a Python script
that uses the Virtual Instrument Software Architecture (VISA)
standard with a maximum voltage switching frequency of
50 Hz. With a voltage step of 1 V, the full scan across both
X and Y axes takes ∼ 30 seconds, which prevents real-time
applications.

To reduce the sweep time, we start with a coarse-grained
voltage sweep then increase the resolution of control as sum-
marized in Algorithm 1. Specifically, we define N as the
number of iterations, and T as the number of voltage adjust-
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Figure 12: Polarization rotation degree estimation according to the received signal power. The acceptable “band” around the
optimal value shown in (c) is chosen by considering multipath interference.

ments per iteration. The total time cost of N iterations is
0.02×N×T 2. We empirically set T to 5 and N to 2 , accord-
ing to the switching speed and the voltage resolution of the
programmable power supply. After N iterations across the X
and Y axes, we can determine the optimal voltage combina-
tion to yield the strongest received signal.
Synchronization between rotator and receiver. For real-
time polarization correction and communication link opti-
mization, it is necessary to correlate the currently received
sample with the bias voltage state, so that we can determine
an optimal voltage combination that enables the strongest
received signal power. In our prototype, for simplicity we di-
rectly connect the receive antenna to the voltage supply, which
allows us to assume the voltage switch speed and receiver
sampling rate have a constant relationship over time. This al-
lows us to relate received signal samples with the voltage state
of LLAMA at a given time instance. A full implementation
can have the receiver explicitly send channel state information
to the controller, as in previous work [18, 29].

One important aspect of the design we want to highlight is
that the leaking current of our metasurface is as low as 15 nA,
which means the metasurface does not need a large battery or
significant power from the AC mains to keep it powered; it
can maintain operation with a modestly sized capacitor.

3.4 Polarization Rotation Degree Estimation

Besides increasing SNR, we can also sense the relative orien-
tation of the two endpoints with LLAMA. Here we present
our approach for rotation angle estimation according to the
received signal power reported by the endpoint receiver, no
matter the transmitter-receiver distance; as distances between
the transmitter and receiver become comparable to the size
of the metasurface (See Figure 4), a fraction of the signal can
bypass the metasurface without polarization rotation, and this
results in less overall perceived rotation at the receiver. Ac-
cording to our benchmark experimental result plotted in Fig-
ure 12 (a), we observed that the received signal power (before
the dBm conversion) can be approximated as a linear change

with the orientation difference between transmitter and re-
ceiver. When we perform measurements across a full voltage
sweep, we can get the maximum potential improvement to
signal power. To obtain the polarization rotation angle for
an unknown transmitter-receiver distance (i.e., the potential
power improvement over an orientation sweep is unknown),
the key is determining the minimum and maximum polariza-
tion rotation angles. We take the following steps.
Step 1: Fix the receiver at the same orientation with the trans-
mitter, by rotating the receiver to find an orientation θ0 where
the received power is largest.
Step 2: Sweep across voltage combinations Vmin and Vmax cor-
responding to min and max powers, respectively (i.e., parallel
and orthogonal polarizations).
Step 3: Set the voltage state to the two searched combina-
tions, respectively. At each voltage state, rotate the receiver by
180◦ to find the new orientation where the power is strongest.
The two new orientations of Vmin and Vmax can be defined
as θmax and θmin as shown in Figure 12 (c). The differences
of the receiver’s initial orientation and two new orientations
|θ0−θmin| and |θ0−θmax| correspond to the minimum and
maximum polarization rotation angles, respectively.

The antenna that needs to be rotated is fixed on a turntable
and rotated via remote control [2]. From the experimental
results of the match setup shown in Figure 12 (b-d), we can see
that the polarization rotation angle varies between 5◦−45◦

during the voltage sweep.

4 Implementation and Experimental Setup

Metasurface. We fabricated the metasurface with a total sur-
face area of 48×48 cm2 and a thickness of 5 cm, including
180 functional units (Figure 13 (a-d)). The biasing voltages
of the metasurface are provided by a programmable power
supply (TektronixSeries 2230G [6]) through two DC chan-
nels, as shown in Figure 13 (a). LLAMA utilizes 720 varactor
diodes (SMV1233), costing ∼ $0.50 each. The total cost of
LLAMA for all PCB layers is∼ $540, resulting in a total cost
of ∼ $900. Given economies of scale, the unit cost can be
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Figure 13: LLAMA prototype and evaluation setups. (a-d) show the PCBs with diodes embedded in the BFS layer. (e) presents
the two experimental setups used in the evaluation. The first is a transmissive configuration where endpoints are placed on either
side of LLAMA; the second is a reflective configuration where both endpoints are placed on the same side of LLAMA.

reduced to $2 when there are more than 3000 units per PCB.
Experimental setup. For controlled experiments, we utilize
one USRP N210 software-defined radio with a UBX-40
daughterboard as the ISM signal transceiver, operating at
a default center frequency of 2.44 GHz. The transmitter and
receiver antennas are separated by a specified distance. We ex-
periment with both directional [9] and omni-directional anten-
nas [3]. We configure and control the USRP using the GNU
radio software development toolkit [22] run on a PC. The
transmitter continuously transmits a cosine waveform over
500 KHz, while the sampling rate of the receiver is 1 MHz.
We also evaluate LLAMA using low-cost Wi-Fi and Blue-
tooth devices (the same setup as benchmark experiments as
shown in Figure 2). Additionally, we perform an experiment
with a pair of GIGABYTE mini-PCs [4] with Intel 5300 wire-
less cards, to evaluate performance over a larger frequency
range (i.e., 20 MHz, including 52 OFDM subcarriers).

We perform both through-surface (transmissive) and
surface-reflection (reflective) experiments as shown in Fig-
ure 13 (e). In transmissive experiments, the metasurface is
placed between the transmitter and receiver. In reflective ex-
periments, the transmitter and receiver are placed on the same
side of the metasurface. In each experiment, the baseline re-
ceived signal power without the metasurface is measured by
averaging 30 seconds of received samples, and the maximum
signal power with the metasurface is obtained after a fast
sweep of voltages as detailed in § 3.3. To avoid multipath
effects confounding the performance behavior of LLAMA,
we cover the test area with RF absorbing material, and use
directional antennas by default in USRP-based experiments.

5 Evaluation

In this section, we conduct extensive experiments to evaluate
the performance of LLAMA. We first answer how metasur-
face improves the transmissive signal power in polarization
mismatch setup. Then we analyze the relationship between
signal enhancement induced by the metasurface across a num-
ber of parameters including transmitted power, multipath ef-
fect, antenna directionality and operating frequency. We also

evaluate LLAMA’s performance for practical low-cost IoT
communication links. In addition, we validate LLAMA’s abil-
ity to enhance a reflected signal, and demonstrate the influence
of the proposed metasurface structure for sensing.
Performance metrics. We measure signal strength at the re-
ceiver as our performance metric, since this directly charac-
terizes the benefit of polarization rotation. An increase in the
received power usually translates to a throughput improve-
ment. While it is common to measure link throughput directly,
the size limit of our current prototype makes it challenging to
characterize link throughput in diverse settings.

5.1 Transmissive Operation
5.1.1 Transmissive Signal Enhancement

To verify LLAMA’s ability to rotate the polarization of trans-
missive signals, we conduct experiments with the metasurface
under different transmitter-receiver (Tx-Rx) distances (from
24 cm to 60 cm by half wavelength steps of 6 cm). The trans-
mitter and receiver are placed orthogonally such that they are
in a mismatched polarization configuration. In each exper-
iment, we measure the received signal power across a full
sweep of voltage combinations (both Vx and Vy vary from
0− 30 V). Figure 14 (a-g) show how the received signal
power changes with different voltage combinations at each
Tx-Rx distance and how the maximum achieved rotation an-
gle diminishes as the distance becomes comparable to the size
of the surface. The signal power changes significantly with
changes in biasing voltage. We also find the mapping between
these voltages as the rotation shifts gradually with respect to
Tx-Rx distance. Figure 14 (h) shows the polarization rotation
degree measured by the proposed method in § 3.4. We find
that the metasurface can rotate the polarization over a range
of 3◦− 45◦, which allows the metasurface to correct for a
significant amount of mismatch. To understand the signal im-
provements provided by the metasurface, we also measure the
signal power in mismatch configuration with no metasurface
present as a baseline. By comparing the results with and with-
out the metasurface as depicted in Figure 15, we can see that
the metasurface enhances the transmissive signal power by up
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(e) 48cm Tx-Rx distance. (f) 54cm Tx-Rx distance. (g) 60cm Tx-Rx distance.
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Figure 14: Measurements with metasurface under polarization mismatch setup. (a-g) show the received signal power heatmap
with different voltage combinations. (h) presents the maximum polarization rotation degree caused by metasurface.
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Figure 15: Received signal power with/without metasurface
in polarization mismatch setup.

2.4 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.5

Operating frequency (GHz)

-40

-30

-20

-10

0

R
e

c
e

iv
e

d
 s

ig
n

a
l

 p
o

w
e

r 
(d

B
m

)

With metasurface Without metasurface

Figure 16: Power improvement VS. operating frequency in
polarization mismatch setup.

to 15 dB, which extends the potential transmission distance
by up to 5.6× according to the Friis equation [21].

5.1.2 Performance Benchmarks

Validating operational bandwidth. In order to evaluate
LLAMA’s performance over the entire ISM frequency band,
we conduct experiments that vary the operating frequency
from 2.4 GHz to 2.5 GHz by steps of 0.01 GHz. We measure
the maximum signal power with and without the metasurface.
From the results shown in Figure 16, we can see that LLAMA
enables > 10 dB signal enhancement across the entire ISM
frequency band, when compensating for polarization mis-
match (orthogonal antenna orientation). This indicates that
LLAMA has potential for optimizing IoT communication
links with protocols including Wi-Fi, Bluetooth and Zigbee.
Impact of incident power on performance gains. In this
experiment, we sweep through transmit power settings to un-
derstand how incident power affects the performance improve-
ment (measured in terms of channel capacity enhancement)

provided by the metasurface — lower transmit powers could
potentially be dominated by loss within the metasurface. The
capacity is calculated according to the SNR measurement and
channel bandwidth. We perform experiments with both direc-
tional [9] and omnidirectional [3] antennas on the transceiver.
Figure 17 shows that the capacity initially increases slowly
with transmitting power for both the directional and omnidi-
rectional antennas.

Impact of multipath. In these experiments we seek to under-
stand the impact of multipath propagation on LLAMA’s per-
formance. We perform experiments in an indoor lab environ-
ment without absorber material. We also measure the channel
capacity by using two types of antennas at different transmit
power. By comparing the results of Figure 18 with Figure 17,
we find that for a directional antenna, the metasurface can still
contribute similar capacity improvements to without multi-
path. However, the results from omni-directional antennas are
different – when the transmitted power is lower than 2 mW,
the metasurface will no longer enhance the passing signal,
and in fact degrade the channel capacity. Directional antennas
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(b) Directional antenna.

Figure 17: Channel capacity with varying incident power.
We eliminate multipath by using RF absorbing material.
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(b) Directional antenna.

Figure 18: Experimental results in rich multipath environ-
ment (laboratory) without using RF absorbing material.
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Figure 19: Experimental results of low-cost IoT devices in
polarization mismatch setup.
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Figure 20: Experimental results of OFDM frequency bins
in polarization mismatch setup.

“concentrate” the signals through the metasurface, so the inci-
dent power is higher and the metasurface can let more power
through; omni-directional antennas do not send as much inci-
dent power to the metasurface, so the enhancement from po-
larization matching may not compensate for the loss through
the surface. For that reason, the metasurface can effectively
block out some weaker multipath components, and therefore
the endpoint receiver will not get constructive interference
from these multipath components. In that sense, it is possible
the metasurface can reduce performance.

5.1.3 Experiments with Low-cost IoT Devices

Finally, we evaluate LLAMA’s performance with low-cost
IoT devices. We perform tests with conventional Wi-Fi and
Bluetooth links. The Wi-Fi link is between a Wi-Fi router
and an Arduino with a low-cost ESP8266 module, and the
Bluetooth link is between a Huawei Watch and a Raspberry Pi
3. From the signal power distributions shown in Figure 19, we
find that for the Wi-Fi link, LLAMA creates around 10 dB sig-
nal power improvement in a mismatched polarization setup,
which looks similar to the matched configuration depicted
in Figure 2 (a). While the improvement for the Bluetooth
link is lower, this is expected according to the result shown
in Figure 18 (a), which indicates the amount of signal qual-
ity change that can be affected by LLAMA depends on the
incident power level at the metasurface. Nevertheless, we be-
lieve LLAMA could still help Bluetooth receivers when the
transmitter is a higher-power device, such as a mobile handset.

We next study how LLAMA performs when operating
across a wider band channel. Most Wi-Fi transmissions today
leverage OFDM over 20−40 MHz. To answer this question,
we leverage GIGABYTE mini-PCs equipped with conven-
tional off-the-shelf Intel 5300 wireless cards as transceivers to
conduct an experiment – the center frequency and bandwidth
are 2.47 GHz and 20 MHz, respectively. Figure 20 shows the
channel gain measurements with and without the metasur-
face in a mismatched configuration. The results show that the
overall channel gain is improved, but the enhancement of indi-
vidual subcarriers are different given the specific bias voltages
used for the metasurface; this is consistent with the simula-
tion results shown in Figure 11. The subcarrier channel gains
with the metasurface are more consistent over frequency than
without. We believe the presence of LLAMA blocks weak
multipath signal components that traverse longer paths and
tend to exhibit frequency-selectivity more, and the remaining
components are aligned through polarization rotation.

5.2 Reflective Operation
5.2.1 Reflective Signal Enhancement

In addition to evaluating transmissive configurations, we also
look at LLAMA’s effect on reflected signals. We place the
transmitter and receiver on the same side of the metasur-
face, and separate the transmitter and receiver by 70 cm. We
perform experiments at different Tx-metasurface distances
by moving the metasurface along the vertical line of the
transceiver pair. Figure 22 shows the maximum received sig-
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(a) 24cm Tx-Metasurface distance. (b) 30cm Tx-Metasurface distance. (c) 36cm Tx-Metasurface distance. (d) 42cm Tx-Metasurface distance.

(e) 48cm Tx-Metasurface distance. (f) 54cm Tx-Metasurface distance. (g) 60cm Tx-Metasurface distance. (h) 66cm Tx-Metasurface distance.

Figure 21: Experimental results in reflection scenarios. We find that LLAMA also changes the reflective signal power.
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Figure 22: LLAMA provides improvements to channel ca-
pacity and power in a reflective configuration.
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Figure 23: Human respiration sensing results with/without
metasurface at low transmitting power of 5 mW.

nal power and channel capacity with the metasurface , as well
as the baseline measurements without the metasurface in a
mismatched configuration. These results show that LLAMA
also has a positive impact on the reflection scenario—the
signal power and capacity can be improved with respect to
mismatch by as much as 17 dB and 180 kbps/Hz, respectively.
However, the signal power difference over voltage combina-
tions (see Figure 21) is much smaller than that in the trans-
mission scenario. We believe this is because the rotation will
be cancelled after reflection.

5.2.2 Employing LLAMA for Sensing

Based on the reflective configuration, we conjecture that
LLAMA can be utilized to enhance sensing. To validate this,
we consider human respiration detection as a case study to
test LLAMA’s potential. In this experiment, the metasurface
is placed 2 m away from the center of the transceiver pair, the
human subject is located on the side between the transmitter
and the metasurface. First, we remove the metasurface and
reduce the transmitting power to where the human subject’s
respiration can no longer be detected from the received sig-

nal. Then we introduce the metasurface at the predetermined
location, and measure the received signal strength. The de-
tection results with and without the metasurface are plotted
in Figure 23. It is clear that the metasurface can enhance the
reflected signal and allow the target’s respiration rate to be
detectable under a low transmit power configuration (5 mW).
We believe that LLAMA can also be extended to other low
SNR sensing applications [23, 50].

6 Discussion and Future Work

Scaling to a dense IoT deployment. This work marks the
first step towards mitigating polarization issues for individual
communication links with a LLAMA prototype. Next, we
plan to scale up the size of the metasurface for a larger de-
ployment and explore more challenging multi-link scenarios.
When there are multiple IoT devices in different polarization
orientations, tuning the signal polarization can lead to a new
form of polarization reuse or access control and improve the
network throughput of a dense IoT deployment.
Adapting to device mobility. The current search time for
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optimal voltage is limited by the switching speed of the com-
modity power supply we used, hence there is still a latency
issue in mobility scenarios. In the future, we will look at
methods that can speed this up once the relative antenna ori-
entations are determined and then track the changes.

7 Related Work

Broadly speaking, our work is related to work in three areas:
Endpoint optimizations. Most efforts for improving com-
munication quality focuses on controlling the endpoints them-
selves. For instance, Multiple Input, Multiple Output (MIMO)
links leverage multiple antennas to exploit spatial diversity
at a sub-link level, while Multi-User MIMO exploits spatial
diversity at an inter-link level [24, 25]. Massive MIMO in-
troduces many more antennas at an access point than both
radio chains and users, so that the AP may search for a set
of antennas that forms a well-conditioned MIMO channel to
those users [34,40,47]. However, these approaches are funda-
mentally limited if the cause of performance loss is antenna
polarization mismatch between endpoints. At the endpoints,
the only directly relevant mitigation strategies are to use either
circularly polarized antennas or multiple linearly polarized
antennas. Once the antennas are fixed, not much can be done
about polarization match at the endpoints. Using an antenna
array like massive MIMO can enhance the received signal
power, but without directly addressing the polarization issue.

In contrast, an approach that changes the radio environment
itself (e.g., deploying low-cost reflectors) offers the possibili-
ties to increase the number of degrees of freedom.
Environment-based optimizations. Previous work on radio
environment optimizations fall into two categories: phase-
based and amplitude-based. Initial attempts of phase based
approaches such as leveraging static mirrors [52] or pro-
grammable phased-array reflectors [7, 8, 42] are in the abil-
ity of generating constructive propagation paths. These
methods focus on millimeter wave links on high frequency
bands (i.e., 10 GHz and above). More generally, several pro-
posals argue for dynamically reconfiguring the radio envi-
ronments [11, 12, 30, 37, 43, 44, 48]. Specifically, recent pro-
totypes manipulate the signal propagation behavior in the
2.4 GHz band, by using a large array of inexpensive anten-
nas [18, 29, 43] or conductive surfaces [16] as phase shifting
elements. These systems align phase elements according to
a channel decomposition. Amplitude-based designs, such as
RFocus [10], sidestep the difficulty in measuring phase. Based
on the signal amplitude measurements from the receiver, RFo-
cus configures the signal to either pass through or reflect from
the surface element by setting the “on” or “off” state of each
element, so that the transmitted signal is focused at the in-
tended receiver.

Orthogonal to prior work that aligns multiple paths to
achieve beamforming effects or improve spatial multiplexing
efficiency, LLAMA optimizes low-cost IoT communication

links by specifically overcoming the pervasive issue of po-
larization mismatch that affects both single and multi-path
communication.
Metamaterials. Metamaterials are an earlier, more general
form of metasurfaces that are constructed in 3D rather than
2D. These are artificially constructed with special properties.
Recent work in the applied physics community has devel-
oped metamaterials that can directly alter existing signals
in the environment itself, such as creating materials with
a negative refraction index [27] and engineering complex
beam patterns [33]. Other work has verified the feasibility
of leveraging metamaterials to change the signal polariza-
tion [26, 45, 46, 49, 51]. With a biasing network, different
voltages are provided to diodes integrated on the metasurface
for rotating the polarization of a transmitted wave. While
these designs have shown great promise in controlled ex-
periments that quantify performance in a higher frequency
band (i.e., > 5 GHz), they were constructed using expensive,
low loss substrate materials such as Rogers or F4B. Further-
more, they have not been integrated into an end-to-end system
that optimizes signal paths in real time.

In contrast, we present an end-to-end system incorporating
the structure of a metasurface design for the 2.4 GHz ISM
band using cheaper, but higher loss FR4 material, and specifi-
cally control the structure’s polarization rotation to optimize
the communication link between a pair of devices.

8 Conclusion

This paper highlights the under-appreciated issue of polar-
ization mismatch for low-cost IoT devices that are physi-
cally limited to employing a single low-quality antenna. We
present LLAMA, a system designed to mitigate the polariza-
tion mismatch without hardware modifications to the end-
points. LLAMA is capable of manipulating the polarization
state of the signal arriving at the receiver with a tunable meta-
surface structure made with cheap material. It can optimize
the communication quality in real time, and enhance the per-
formance of sensing applications.
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Abstract

Due to their favorable size, cost, and sustainability, battery-
free devices are preferable in various applications. However,
battery-free devices operate only intermittently since ambient
energy sources, such as light and radio-frequency signals, are
often too weak to continuously power the devices. This paper
addresses the unsolved problem of efficient device-to-device
communication in the face of intermittency. We present Find,
the first neighbor discovery protocol for battery-free wireless
networks that uses randomized waiting to minimize discovery
latency. We also introduce Flync, a new hardware/software
solution that synchronizes indoor light harvesting nodes to
powerline-induced brightness variations of widely used lamps,
which we exploit to further speed up neighbor discovery. Ex-
periments with an open-source prototype built from off-the-
shelf hardware components show that our techniques reduce
the discovery latency by 4.3× (median) and 34.4× (99th per-
centile) compared with a baseline approach without waiting.

1 Introduction
Despite technological advances, the maintenance costs and
environmental impact of batteries remain a major threat to the
vision of a truly ubiquitous Internet of Things [3,11]. Battery-
free devices that store energy harvested from light, vibrations,
radio-frequency (RF) signals, and other ambient sources in a
capacitor are one of the most viable alternatives today [45].
Capacitors store electrical energy in an electrical field rather
than in the form of chemical energy, and thus have negligible
aging effects and are sustainable [1, 6]. Moreover, their fa-
vorable size, weight, and cost points enable new applications
where batteries would be inconvenient or infeasible [30].

Challenge. The power that can be harvested from ambient en-
ergy sources can vary significantly across time and space [15],
and is often too weak to directly power a battery-free node,
such as a smart sensor [32]. Thus, as illustrated in Fig. 1 and
further discussed in detail in Sec. 7, a battery-free device first
needs to buffer sufficient energy in its capacitor before it can
operate for a short period of time; then the device turns off

Figure 1: Because ambient power is often weak, a battery-free node
must buffer energy before it can wake up and operate for a short
time period. This is known as intermittent operation.

until the capacitor is sufficiently charged again. As a result,
battery-free devices operate intermittently.

Intermittency is in stark contrast to conventional duty cy-
cling. While duty cycling is intentionally introduced to save
energy and thus predictable, intermittency is mainly dictated
by uncontrollable environmental factors and thus impacts the
device operation in unpredictable ways. The resulting chal-
lenges in terms of, for example, reliable time keeping [12,18]
or ensuring application progress and data consistency [8, 34]
have been widely studied in the recent literature.

The impact of intermittency on wireless networking has in-
stead received little attention. Just like in conventional battery-
supported networks, direct communication between battery-
free devices is desirable, for example, to increase the availabil-
ity of the system [36], to enable novel applications [20, 32],
and to reduce infrastructure costs [35]. However, to commu-
nicate with one another, sender and receiver must be active
simultaneously for at least the airtime of one complete packet.
This is challenging in battery-free networks for three reasons:

1. Battery-free nodes can only become active when they
have accumulated sufficient energy in their capacitors.

2. They may only be active for a short period, which renders
excessive sampling of the wireless channel infeasible.

3. Their duty cycles are often low and may change unpre-
dictably due to varying availability of ambient energy.

For example, our prototype battery-free node needs to charge
its capacitor for hundreds of milliseconds to sustain 1 ms of
activity when harvesting from indoor light. Because the short
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(a) Battery-free nodes may need a long time to discover each other
due to low duty cycles and the interleaving of short activity phases.

(b) Using Find, nodes randomly delay their wake-ups to avoid inter-
leaving, thereby discovering each other faster and more efficiently.

(c) Using Find + Flync, nodes implicitly align their wake-ups to an
external synchronization signal, further accelerating discovery.

Figure 2: Illustration of the battery-free neighbor discovery challenge
in (a) and of our proposed mechanisms to address it in (b) and (c).

activity phases of different nodes are generally interleaved, as
shown in Fig. 2a, it takes a long time until nodes encounter
each other. And this is not a one-time endeavor: While nodes
may attempt to synchronize their activity phases at the first
encounter, they lose track of time during extended periods
without energy [12, 18], which forces them to re-synchronize.

This challenge is fundamental and pertains to battery-free
networks regardless of the type of wireless communication:
While backscatter communication can lower the energy costs
compared to active radio communication, sender and receiver
still need to have sufficient energy at the same time. Prior
work on backscatter has primarily focused on pushing the
envelope of communication range and throughput, avoiding
intermittency by evaluating the designs under high ambient
energy availability [20, 32] or by powering the devices via
USB or batteries to not disturb the measurements [35]. To our
knowledge, direct radio communication between real battery-
free devices has not been explored so far, as the overhead due
to intermittency is considered too demanding [36].

Contribution. We set out to bootstrap battery-free wireless
networks by presenting two mechanisms that enable battery-
free nodes to discover each other quickly and efficiently.

The first mechanism, Find, is a neighbor discovery protocol.
As illustrated in Fig. 2b, the key idea behind Find is to address
the interleaving problem by introducing random delays after
the devices have sufficiently charged their capacitors before
becoming active. We develop analytical models to determine
an optimized delay distribution that minimizes discovery la-
tency. At runtime, each Find node dynamically adapts the
delay distribution to changes in its energy availability.

The second mechanism, Flync, is a hardware/software solu-
tion that further speeds up the discovery process. Flync phase-
synchronizes solar energy harvesting devices to powerline-
induced flicker of state-of-the-art lamps; the proposed circuit
draws only 5 µW of power. As shown in Fig. 2c, using Find
together with Flync, nodes can implicitly align their activity
phases to this external synchronization signal, dramatically
increasing their chances to be active at the same time.

We prototype our mechanisms on a custom-designed ultra
low-power battery-free node. It is based on a state-of-the-
art microcontroller (MCU) with a 2.4 GHz Bluetooth Low
Energy (BLE) radio, and buffers energy harvested via three
small solar panels in a tiny 47 µF ceramic capacitor.

We use 6 of our prototype battery-free nodes to conduct
extensive experiments and a contact-tracing case study. We
summarize our key findings as follows:

• Find provides shorter discovery latencies than greedy and
naïve random node activations. Find + Flync improves
on greedy by 4.3× in terms of the median latency (141 s
vs. 604 s); the 99th percentile improvement is 34.4×.

• Our hardware prototype works with 14 out of 19 fluo-
rescent, halogen, and light emitting diode (LED) lamps
we tested, demonstrating that Flync is broadly applicable
in indoor environments. Flync provides a stable clock
signal when nodes are deployed across different rooms,
carried around, or exposed to temporary shadowing.

• We conduct a contact-tracing case study in an open-air
pub with Find and in an office kitchen using Find + Flync.
The median time between consecutive encounters of the
same two nodes is 1.5 s and 7.5 s in the outdoor and in-
door environment, respectively. This shows the potential
of our battery-free designs for real-world applications.

Overall, this paper makes the following contributions:
• Find, the first neighbor discovery protocol for battery-

free networks. Find is agnostic to the energy harvesting
modality and the type of wireless communication.

• Flync, the first solution extracting a stable clock from
solar harvesting current, whose amplitude changes due
to powerline-induced flicker of state-of-the-art lamps.
While we use Flync in tandem with Find to speed up
discovery in indoor scenarios, Flync is useful for other
purposes and also applicable to battery-supported nodes.

• A novel battery-free node design including an implemen-
tation of an efficient intermittent runtime.

• Empirical evidence that the proposed techniques work
well under a diverse set of real-world conditions.
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2 Battery-free Neighbor Discovery
This section presents the design of Find, the first neighbor
discovery protocol for battery-free wireless networks. Find
empowers battery-free nodes to quickly discover each other’s
presence despite intermittent operation and varying ambient
energy availability. It is agnostic as to how the nodes harvest
energy (from solar, vibrations, RF, etc.) and as to whether they
communicate using backscatter or radio communication.

The design of Find is based on the observation that the only
way battery-free nodes can reliably avoid interleaving is to
not wake up and become active immediately after reaching
the minimum energy level required to do so. We refer to this
as the greedy approach. Instead, Find delays each wake-up
for a random time. A crucial question is how to choose this
random delay to ensure fast and energy-efficient discovery.

To answer this question, we devise a model that captures the
impact of key parameters, such as the charging time needed
to reach the minimum energy level and the random delay, on
the discovery latency (Sec. 2.1). Using this model, we then
determine an optimized delay distribution that minimizes the
discovery latency (Sec. 2.2). Finally, we describe how these
considerations materialize in the practical design of the Find
protocol and its runtime operation (Sec. 2.3).

2.1 Modeling Discovery Latency
Suppose that a node needs to charge for c slots until it reaches
the minimum energy level required to be active for one slot.
Let k0 denote the first slot in which a node reaches the min-
imum energy level. Using Find, a node waits for a random
delay x in units of slots before it wakes up and becomes active.
We model x as a discrete random variable X with probability
mass function (pmf) pX (x). During an active slot, a node
fully depletes its energy storage. The probability that a node
becomes active for the first time in slot k is given by

pwk,0(k) = pX (k− k0) (1)

Afterward, a node needs to recharge for c slots before it
can become active again. The time of the second wake-up is
the sum of the time of the first wake-up, the charging time,
and the second random delay. The same reasoning applies
recursively to all future wake-up times. Because the random
delay is independently chosen across all wake-ups, we can
use a recursive convolution to determine the probability that
a node wakes up for the n-th time in the k-th slot

pwk,n(k) = (pwk,n−1 ∗ pX )(k− c) (2)

By summing over n→ ∞ we obtain the probability that a
node is active in slot k

pa(k) =
∞

∑
n=0

pwk,n(k) (3)

To model discovery latency, we consider a fully connected
network of N nodes (i.e., a clique of size N). Using a suitable
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(b) Random delay drawn from X ∼U [0,60].

Figure 3: Probability of being active in a slot for two nodes with
identical charging times but an initial offset in their wake-ups. The
more wide-spread the random delay, the faster nodes break up their
interleaved wake-up pattern at the cost of a lower average duty cycle.

sequence of message exchanges in active slots (see Sec. 2.3),
one of the M = N(N−1)/2 bi-directional links i↔ j is dis-
covered if nodes i and j are active in the same slot while all
other nodes in the network are inactive. Otherwise, a colli-
sion occurs and no link is discovered, a typical assumption in
neighbor discovery protocols [24]. The probability that link
i↔ j is discovered within k slots is the complement of the
probability that the link is not discovered in slots 0, . . . ,k:

ci↔ j(k) = 1−
k

∏
κ=0

(
1− pa,i(κ) · pa, j(κ) ·∏

l 6=i, j
(1− pa,l(κ))

)
(4)

ci↔ j(k) can be regarded as the cumulative distribution func-
tion (cdf) of the discrete random variable describing the slot
in which link i↔ j is discovered. With pi↔ j(k) denoting the
corresponding pmf, we compute the expected fraction of links
discovered up to slot k by averaging pi↔ j(k) over all M links

d(k) =
1
M ∑

i↔ j
pi↔ j(k) (5)

If the nodes’ charging times are finite, d(k) is a valid cdf,
and we define the discovery latency as

Tnd =
∞

∑
k=0

(1−d(k)) (6)

2.2 Optimized Delay Distribution
With the above model we are able to get a better understanding
of how nodes should delay their wake-ups to help discovery.
Example. Suppose two nodes i and j with the same charging
time of c= 100 slots, but different slots k0 in which they reach
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Figure 4: Cumulative distribution function of the slot in which two
nodes discover each other, for the two delay distributions in Fig. 3. A
more wide-spread delay performs better initially, but leads to lower
performance in the long run due to a lower average duty cycle.

the minimum energy level for the first time (i.e., initial offset).
Using (3) we plot in Fig. 3a for both nodes the probability of
being active in a slot when they pick random delays from the
discrete uniform distribution X ∼U [0,30]. We see that in the
first thousand slots there is hardly any overlap in the activity
of the nodes: Due to the initial offset, node i is likely active
when node j is powered off, and vice versa. The probability of
being active smears out over time and converges to an average
duty cycle of 1/(c+E[X ])≈ 0.0087. Fig. 3b plots the same
when the two nodes pick random delays from X ∼U [0,60].
Compared to Fig. 3a we find that the probability of being
active smears out sooner as nodes tend to choose more wide-
spread delays. However, as nodes also tend to pick longer
delays, they have a lower average duty cycle of 0.0077.

Fig. 4 directly compares the two delay distributions by
plotting the cdf of the slot in which nodes i and j discover each
other according to (4). We observe that the more wide-spread
delay induced by the second distribution X ∼U [0,60] initially
provides a higher probability of discovery. In the long run,
however, the higher average duty cycle of the first distribution
X ∼U [0,30] leads to a higher probability of discovery.

Choosing a distribution. The above example suggests that
a non-negative delay distribution with high randomness and
low mean is preferable. Entropy is a commonly used mea-
sure of randomness. Maximizing the entropy of a general
non-negative distribution with a given mean yields the ex-
ponential distribution [38]. Thus, in Find, we draw random
delays from the geometric distribution, the discrete analogue
of the exponential distribution, with scale parameter 1/r and
pmf (1− r)kr for k ∈ {0,1,2, . . .}.

To confirm our reasoning, we compare the geometric dis-
tribution against other well-known distributions, namely the
discrete uniform distribution and the Poisson distribution. We
sweep the scale parameter of the three distributions and com-
pute the discovery latency using (6) for the two-node case,
where nodes i and j have equal charging times (25, 100, 500,
or 1000 slots). We find that the geometric distribution achieves
the lowest discovery latency across all charging times. Fig. 5
shows the resulting curves for a charging time of 100 slots.
The differences in the minimum discovery latencies are rel-
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Figure 5: Discovery latency against scale parameter for three differ-
ent probability distributions. The geometric distribution performs
best as it yields delays with high randomness and low mean.

atively small. One reason for this is that, according to the
central limit theorem, the probability that a node wakes up
for the n-th time in slot k converges to a normal distribution
for large n, irrespective of the underlying delay distribution.
Determining optimized distribution parameters. Having
chosen a suitable delay distribution, we now turn to the prob-
lem of determining the scale parameter that minimizes the
discovery latency. To formally state the optimization problem,
we consider the worst case in terms of discovery latency: all N
nodes have the same charging time c, and their initial wake-up
times k0,i are all interleaved as in Fig. 3, that is,

k0,i = i · c+2E[X ]

N
(7)

where i is the node index and E[X ] is the expected delay. For
specific N and c, we minimize the discovery latency given by
(6) and the initial offsets given by (7)

min
r

Tnd(N,c) (8)

Numerical evaluation suggests that Tnd(N,c) is convex (see
Fig. 5) and hence straightforward to optimize. We use Brent’s
method [9] to approximate the scale parameter 1/r∗ that min-
imizes the discovery latency. The next section explains how
we adapt the scale parameter at runtime on a real node.

2.3 Practical Protocol Design
The above analysis makes a number of simplifying assump-
tions that do not hold in practice. For example, the charging
times are generally different across nodes and vary over time.
A node typically only knows its own charging time c and is
unaware of the total number N of nodes in the network.

Nevertheless, prior work has shown that neighboring nodes
have similar energy availability because they harvest energy
from the same ambient source(s) [4,15]. Thus, in the absence
of any prior information, a reasonable approach for a node
is to assume that its neighbors harvest the same amount of
energy and thus have the same charging time c like itself.

Moreover, we found that knowledge of the number of nodes
N is often not required: optimizing for the case of a two-node
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Figure 6: Discovery latency against network density ρ when opti-
mizing for the known density, for a fixed density of ρ = 1, and for a
two-node network. For ρ≤ 2.5, all approaches perform similarly.

network yields competitive performance across a wide range
of network densities. In other words, in practice it is often
sufficient for a node to assume that it is has only one neighbor
(although over time it may discover that it has many more).
To understand why, we plot in Fig. 6 the discovery latency for
a charging time of 25 slots when optimizing for (i) the known
network density ρ=N/c, (ii) a fixed network density of ρ= 1,
and (iii) a two-node network. We can see that for a network
density of ρ ≤ 2.5 the three approaches achieve almost the
same performance. For realistic charging times, the network
density rarely exceeds this threshold. For example, based on
the charging times and beacon length in our real-world case
study (see Sec. 6), a network density of ρ = 2 would require
a network of around 4000 fully connected nodes.
Runtime operation. Prior to each wake-up, a Find node sam-
ples a geometric distribution to determine the random delay.
A node dynamically adapts the scale parameter of the distribu-
tion to changes in its charging time, under the assumption that
it has one neighbor with the same charging time, as explained
above. To achieve an efficient runtime operation, we store a
look-up table of optimized scale parameters in non-volatile
memory and use inverse transform sampling to convert sam-
ples from a uniform pseudo-random number generator to the
optimized, geometric distribution.
Frame structure. Taking inspiration from existing neighbor
discovery protocols for battery-powered sensor nodes [5, 13],
we adopt the frame structure shown in Fig. 7. During each
active slot, a node first transmits a beacon, then listens for po-
tential beacons from neighboring nodes, and finally transmits
another beacon at the end of the slot. The second beacon en-
sures that nodes can discover bi-directional links in one com-
mon active slot. Specifically, if the slot offset T between two
nodes (see Fig. 7) is uniformly distributed between −Tslot/2
and Tslot/2, where Tslot is the slot length, the probability that
two nodes successfully discover each other’s presence is

p = 1− 2 · (Tta +Ttx)

2 · (Tta +Ttx)+Trx
(9)

Here, as depicted in Fig. 7, Ttx, Trx, and Tta denote the times

Figure 7: Find’s frame structure specifying the sequence of beacon
transmissions and the intermediate listening window during an active
slot. Using our prototype implementation, nodes can successfully
discover each other if the slot offset T is between 88 µs and 848 µs.

needed to transmit a beacon, to listen for potential beacons,
and to switch from receive to transmit mode (or vice versa).
In order to maximize the success probability according to
(9), Find keeps the beacon transmission time Ttx as short as
possible to maximize the listening window Trx.

3 Further Accelerating Neighbor Discovery
Find provides fast and energy-efficient neighbor discovery
in battery-free networks. Nevertheless, if the ambient energy
availability is low, discovery may still take a long time due
to the low duty cycles. For example, according to our model,
under dim indoor light conditions it takes on average 8 min
until two of our prototype battery-free nodes (see Sec. 4)
discover each other. Similar observations are to be expected
when nodes harvest from weak RF signals or miniature vibra-
tions [7]. The discovery latencies in those challenging energy
environments can be prohibitively long for many applications.

This section introduces an approach that facilitates, accord-
ing to our model, a 10× speed-up in the above-mentioned
scenario, allowing two nodes to discover each other in 45 s on
average instead of 8 min at an additional cost of only 5 µW.
The underlying idea is that neighboring nodes harvest energy
from the same ambient source(s) and may therefore have ac-
cess to a common energy signal that can be used as a time
reference. In combination with Find, nodes can exploit this
common time reference to align their wake-ups, thereby in-
creasing the chances that nodes are active in the same slot.

To assess the potential of this idea, we focus in this work on
harvesting energy from indoor light. While this is a popular
method for powering battery-free nodes due to the ubiquity
of interior lamps, the energy density of indoor light is signifi-
cantly lower than that of sunlight. As such, it represents both
a challenging environment for battery-free neighbor discov-
ery and a highly relevant setting for real applications. In the
following, we provide answers to three key questions:

1. What common energy signal can nodes use? (Sec. 3.1)
2. How to efficiently extract a time reference? (Sec. 3.2)
3. How to exploit this for faster discovery? (Sec. 3.3)
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Figure 8: Time and frequency domain of solar panel current when
harvesting energy from light emitted by a UP-PL30120-45W LED
panel. The current varies with double the powerline frequency.

3.1 Powerline Flicker in Solar Current
When harvesting energy from indoor light, we observed that
the solar panel current varies with double the powerline fre-
quency (50 or 60 Hz depending on the region). As an example,
Fig. 8 shows the solar panel current when harvesting energy
from an LED panel light found in a typical office space.

Practically all indoor lamps are connected to mains power,
which induces phase-synchronized brightness variations (pow-
erline flicker) of the lamps through different effects. Despite
their relatively high inertia, the alternating current through the
filament of incandescent and halogen lamps causes temper-
ature and, as a result, brightness variations. A similar effect
occurs in gas-discharge lamps like the ubiquitous fluorescent
lamps, where the alternating current through the gas modu-
lates the brightness. Due to the exponential relation between
forward voltage and brightness, voltage-controlled LEDs are
also sensitive to residual ripple of the rectified supply voltage.
Because the power available from a solar panel is propor-
tional to the brightness of the incident light, it also varies with
double the powerline frequency, as visible in Fig. 8.

To assess the potential of using powerline flicker as a com-
mon energy signal, we characterize the magnitude of power-
line frequency induced fluctuations of the solar panel current
for a wide variety of lamps. To compare lamps across diverse
average brightness levels, we define the flicker index FI as the
ratio of the amplitude of the powerline frequency component
and the DC component of the solar panel current ip

FI =
Ip(2π · fpl)

Ip(0)
(10)

where Ip(ω) = F {ip(t)} is the Fourier transform of the solar
panel current and fpl is the powerline frequency.

We attach an IXYS SM141K06L solar panel to a Shepherd
node [15] and record 15 s of solar panel current at a sampling
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Figure 9: Flicker index for 19 tested lamps. The gray line marks the
sensitivity of our Flync prototype. The proposed circuit works with
all fluorescent and halogen lamps and the majority of LED lamps.

frequency of 100 kHz from each of the 19 lamps in Fig. 9.
For each trace we compute the flicker index using (10). The
results in Fig. 9 show that all lamps we tested exhibit varying
levels of powerline flicker. We observe that all fluorescent
and halogen lamps have a relatively large flicker index. The
results for the tested LED lamps are more ambiguous. We
suspect that highly integrated, bulb-shaped LED lamps tend to
have high-quality current-controlled drivers with little flicker,
whereas commercial panel-style LED lamps often rely on
voltage-controlled drivers with significant levels of flicker.

We conclude that most types of lamps exhibit significant
powerline flicker, which makes this an attractive common
energy signal. Next, we present our design of Flync, a hard-
ware/software solution that extracts a frequency- and phase-
synchronized clock signal from this common energy signal
on distributed battery-free nodes. The dashed line in Fig. 9 is
the measured sensitivity (see Sec. 5.2) of our Flync prototype,
showing that the proposed design works with all fluorescent
and halogen lamps and the majority of tested LED lamps.

3.2 Extracting a Clock from Solar Current
To be viable, Flync needs to provide a stable clock signal
while keeping the required energy costs as low as possible.

Hardware. We propose the circuit shown in Fig. 10, which
converts the modulated current signal from the solar panel into
a digital clock signal that can be connected to a general pur-
pose input/output (GPIO) pin of a MCU. The current through
shunt resistor RS causes a voltage drop that is filtered with a
narrow-band bandpass filter to extract and amplify the pow-
erline frequency component. We tune the band-pass filter to
a gain of 36 dB at a center frequency of exactly double the
powerline frequency, taking into account the limited gain-
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Figure 10: Flync circuit to extract a clock signal from the powerline-
induced solar panel current variations (see Fig. 8 for an example).

bandwidth product of the low-power operational amplifier.
The resulting signal is connected to a comparator directly and
through a low-pass filter to convert it into a digital signal.

The TI TLV521 operational amplifier used in the band-pass
filter has a typical current draw of 350 nA, and the TLV7031
comparator has a typical current draw of 315 nA. Including
the losses over the 300 Ω shunt resistor, the Flync circuit draws
a total of around 5 µW under typical harvesting conditions.
This is orders of magnitude lower than the power draw of
related approaches, using a light sensor and an analog-to-
digital converter (ADC) (5.394 mW [31]) or an antenna to
extract the signal from powerline radiation (300 µW [42]).

Software. To achieve a stable clock signal, we use a phase-
locked loop (PLL) in combination with a proportional integral
derivative (PID) controller to synchronize the MCU’s real-
time clock (RTC) to the powerline frequency signal extracted
with our proposed circuit. In Sec. 4.2, we describe our soft-
ware implementation of Flync in more detail.

3.3 Exploiting the Clock for Faster Discovery
Using Flync, neighboring battery-free nodes have access to a
common clock. Nodes can use the phase information of this
clock to implicitly agree on times at which they potentially
become active. For the powerline flicker, this could be the
rising edges of the solar panel current (see Fig. 8).

When using Find without Flync, we set the slot length to
the duration of a node’s active period. When using Find with
Flync, we increase the slot length to 1/(2 · fpl) and let nodes
only become active at the beginning of a slot. This increases
the probability that nodes become active in the same slot. For
example, consider two nodes that randomly and uniformly
wake up once within a 1 s time window. Using a slot length
of 1 ms, the probability that both nodes wake up in the same
slot is 1/1000. With a slot length of 10 ms, this probability is
10× higher, which speeds up the neighbor discovery process.

Flync exploits the well-behaved, widely available powerline
flicker as sychronization source, but the concept applies to
any phase-synchronized signal available on different nodes.
Because the benefit in terms of a shorter discovery latency
stems from increasing the effective slot length, the signal’s
period must be longer than the duration of a node’s active
period. The lower the frequency, the longer the slot length

(a) Front (b) Back

Figure 11: Prototype battery-free node based on the nRF52840 MCU.
Solar panels on the back charge a tiny capacitor that powers the node.

and the greater the potential benefit. If the period is longer
than the charging time of a node, it can be divided down to
avoid nodes wasting energy while waiting for the next slot.

4 Prototype Implementation

This section describes the hardware and software components
of our prototype implementation.

4.1 Hardware

We design a low-power battery-free node that integrates the
circuit from Fig. 10. The node is based on a Nordic Semi-
conductor nRF52840 MCU, which features a 64 MHz ARM
Cortex-M4F and a 2.4 GHz radio with support for Bluetooth
5.2 and IEEE 802.15.4. The node harvests energy using three
23 mm× 8 mm IXYS KXOB25-05X3F solar panels. A TI
BQ25505 DC-DC boost converter steps up the voltage of the
solar panels and charges a 2 mm× 1.25 mm× 1.25 mm 47 µF
multilayer ceramic capacitor (MLCC). However, due to DC
bias, the capacitor has only an effective capacitance of around
17 µF at 3.3 V. The BQ25505 implements a maximum power
point tracking (MPPT) mechanism that aims to operate the
solar panels close to their optimal voltage of around 80 % of
the panels’ open-circuit voltage. The MPPT circuit obtains
a new reference voltage every 16 s by disabling the charger
for 256 ms and sampling the panels’ open-circuit voltage.
Once the capacitor voltage reaches a hardware-programmable
threshold of 3.3 V, the BQ25505 sets one of its pins high.
This pin is connected to a TI TS5A23166 analog switch that
connects the MCU to the capacitor-buffered supply voltage.

The two-layer printed circuit board (PCB) shown in Fig. 11
measures 29 mm× 29 mm. The total cost of all components is
$13.89, including $8.11 for the relatively expensive, highly in-
tegrated nRF52840 module. Comparing our design to recently
proposed battery-free platforms with similar capabilities in
Table 1, we see that our prototype is indeed one of the first
truly battery-free nodes in the sense that the energy storage is
negligible in terms of cost, size, and environmental impact:
The ceramic capacitor does not contain problematic materials,
costs $0.024, and takes up only 0.3 % of the PCB area.
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Platform Year Capacitor Communication

Pible [14] 2018 220 mF super-cap BLE
luxBeacon [22] 2019 1.5 F super-cap BLE
Sigrist et al. [46] 2020 520 µF MLCC BLE
Botoks [12] 2020 100 µF MLCC 868 MHz
This work 2021 47 µF MLCC BLE PHY

Table 1: Our battery-free prototype node has a sustainable ceramic
capacitor that is significantly smaller and cheaper than the energy
storage of other recently proposed battery-free platforms.

4.2 Software
Next, we describe our implementation of an efficient runtime
for battery-free nodes. We also detail the PLL implementation
of Flync and key configuration parameters of Find.

Efficient runtime. Many existing battery-free runtimes dis-
charge the capacitor until the voltage drops below the min-
imum and the MCU is powered off [12, 17]. To avoid the
high energy costs of frequent hardware resets, we implement
a different approach that we call soft intermittency. During
charging, the MCU enters the lowest possible sleep mode, pe-
riodically waking up to sample the capacitor voltage with the
built-in ADC. In this mode, we measure a total average power
draw of 15 µW, including the power for the Flync circuitry and
software processing. When the capacitor voltage reaches a
software-defined turn-on threshold, the node arms the power-
fail comparator, a dedicated peripheral that raises an interrupt
when the capacitor voltage drops below a software-defined
turn-off threshold. Then the node executes protocol and appli-
cation code until it is notified by the power-fail comparator
upon which it immediately transitions to deep sleep, dras-
tically reducing its power draw until it has again buffered
enough energy. While this soft intermittency approach cannot
prevent hard resets when there is no energy input for sev-
eral hundreds of milliseconds, it greatly increases the average
efficiency without using additional comparators and switches.

Flync PLL. The comparator at the output of the circuit in
Fig. 10 has a relatively small hysteresis, occasionally causing
flickering at signal transitions. Furthermore, while MPPT ob-
tains a new reference value, the harvesting current approaches
zero, causing the clock signal to pause for hundreds of mil-
liseconds. To provide a stable clock signal despite these dis-
turbances, we implement a PLL that synchronizes the MCU’s
RTC to the signal extracted with the Flync circuit. We config-
ure the GPIO peripheral to generate an interrupt on a rising
edge at the GPIO pin connected to the output of the compara-
tor of the circuit. After a reset, we wait for the first GPIO
interrupt. Upon this interrupt, we set up an RTC interrupt to
reset the RTC counter after the nominal powerline frequency
interval. Ideally, all following GPIO interrupts should coin-
cide with that RTC interrupt. Thus, the counter value at the
time of the GPIO interrupt can be interpreted as phase devi-
ation between the external clock signal and the local timer.
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Figure 12: Example trace from a prototype node running Find.

We implement a control loop to continuously adjust the timer
period in order to minimize the phase deviation. In this way,
we obtain a highly stable interrupt that is phase-synchronized
with the variations of the solar panel current and works even
during the MPPT sampling or other disruptions.

Find settings. Each beacon in Find’s frame structure shown in
Fig. 7 consists of 2 B preamble, 3 B base address, 6 B payload,
and 1 B cyclic redundancy check (CRC). When using the
2 Mbit BLE mode of the radio, this corresponds to a beacon
transmission time of Ttx = 48µs. With 17 µF of capacitance,
the time required to start the high-frequency oscillator, and
a turn-around time of Tta = 40µs, we can afford a maximum
listening window of Trx = 800µs. As a result, two nodes can
successfully detect each other if they wake up with an offset
T between 88 µs and 848 µs (see Fig. 7).

4.3 Example Real-world Trace
Fig. 12 shows capacitor voltage and activities over time while
one of our prototype nodes runs Find. We see that the node
charges its capacitor until reaching the turn-on threshold of
3.3 V. It wakes up and samples a random delay from Find’s
optimized distribution. The necessary computations cause a
noticeable drop in the capacitor voltage when transitioning
from charging to waiting. After the random delay, the node
becomes active and quickly drains its capacitor below the
turn-off threshold of 2.8 V. The overview on the left side of
Fig. 12 also shows how the capacitor discharges during MPPT
at around 1.5 s. The detailed view on the right side shows the
individual stages while the node is active. We see that the
node first starts the high-frequency clock required to run the
radio. Then it sends the first beacon and starts to listen for
potential beacons from other nodes. After listening for 800 µs,
the node sends the trailing beacon. The remaining energy in
the capacitor is assigned to the application that can run until
the capacitor voltage hits the turn-off threshold.

5 Evaluation
We manufacture six prototype battery-free nodes to evaluate
Find and Flync. We first look at their effectiveness in terms
of discovery latency, followed by a detailed characterization
of Flync’s robustness and performance. Sec. 6 reports on the
results of a contact tracing case study based on our techniques.
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Figure 13: Discovery latency of four different approaches in a net-
work of 6 battery-free nodes. Our techniques outperform the compar-
ison approaches by up to 4.3× (median) and 34.4× (99th percentile).

5.1 Neighbor Discovery Performance
To fairly compare the neighbor discovery performance of our
techniques against baseline approaches, we conduct experi-
ments under controlled conditions. Sec. 6 reports on results
when using Find and Flync in uncontrolled environments.

Setup. All experiments are conducted in a darkened room
with a controllable light source. We place six prototype nodes
next to each other on a flat surface. The nodes are programmed
to output the ID of any discovered node over universal asyn-
chronous receiver transmitter (UART), while a logic analyzer
logs the output of every node. For each run, we let nodes wake
up with a random initial delay, and consider the measured time
until all 15 bi-directional links are discovered as the discovery
latency. We compare Find and Find + Flync with a greedy ap-
proach, where nodes become active as soon as their capacitor
voltage reaches the turn-on threshold, and a uniform approach,
where nodes randomly delay their wake-ups by a uniformly
distributed time. Overall, the measurement campaign took
more than 4 days, in which we performed between 48 and
128 runs for each of the four approaches.

Results. Fig. 13 shows the measured discovery latency for
each approach, including the median, the 25th and 75th per-
centiles, and the 1.5× of the interquartile range. Clearly, the
greedy approach performs worst. This is mainly because of
interleaved activity phases of the nodes, as visible from the
trace in Fig. 14. If we zoom in on the first three and the last
three wake-ups in the trace, we notice that nodes repeatedly
wake up with the same pattern that prevents discovery despite
different charging times and MPPT intervals. In Fig. 15, in-
stead, we see that when nodes use Find to randomly delay
each wake-up, they are more likely to be active at the same
time. For instance, at about 4.5 s, the nodes wake up with an
offset of less than 848 µs and are therefore able to success-
fully exchange beacons as shown in the detailed plot on the
right side of Fig. 15. This explains the significant reduction
in median discovery latency from 604 s with greedy to 390 s
with Find, as visible in Fig. 13. We also see that Find’s op-
timized delay distribution performs slightly better than the
uniform approach (median of 431 s), which matches the mag-
nitude of improvement predicted by our model (see Fig. 5).
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Figure 14: Interleaved activity phases of two nodes when using the
greedy approach. The zoomed in plots on the bottom show that,
despite the disturbances caused by MPPT, the two nodes repeatedly
wake up with the same pattern, preventing successful discovery.
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Figure 15: Using Find, nodes prevent interleaving by delaying each
wake-up by a small random time, enabling quick discovery.

Find + Flync achieves the lowest median discovery latency of
142 s, which corresponds to an overall improvement of 4.3×
(median) and 34.4× (99th percentile) compared with greedy.

5.2 Flync Sensitivity
To extract a clock signal, the Flync circuit requires a minimum
magnitude of the powerline frequency component in the solar
panel current. We empirically determine the corresponding
minimum flicker index for our hardware prototype.

Method. The magnitude of the powerline frequency com-
ponent is proportional to the DC component and decreases
with smaller panel size and increasing distance from the light
source. We define the worst-case minimum flicker index as
the flicker index sufficient to extract a clock signal even at the
lowest possible harvesting current. The latter is defined by the
minimum power requirements of our prototype when running
Find, the panel voltage, and the corresponding efficiency of
the DC-DC converter. Our solar panels have a typical panel
voltage of 1 V at the maximum power point. At this voltage,
our DC-DC converter has an efficiency of 80 %. Thus, the
minimum harvesting current to cover the power requirements
of our prototype of about 37.5 µW is 50 µA.

We use a Keithley 2600B sourcemeter to generate a current
signal with a DC offset of 50 µA while sweeping the ampli-
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Figure 16: For a flicker index ≥0.008 Flync provides a stable clock.
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Figure 17: Current signal and time difference between two nodes
while one node changes its distance and angle to the light source.

tude of the 100 Hz AC component. The current is fed to the
input of our prototype that is usually connected to the solar
panel. By limiting the voltage at the output of the sourcemeter
to 1.25 V, the MPPT circuit regulates the input to around 1 V.
For every setting of the AC amplitude, we record 5 s of clock
signal with a mixed-signal oscilloscope. To quantify the qual-
ity of the clock signal, we compute the correlation coefficient
between the signal and a phase-aligned 100 Hz reference. We
repeat these measurements for four of our prototype nodes.
Results. The results in Fig. 16 show that there is a distinct
threshold at around FI = 0.008 beyond which all nodes begin
to output a clean clock signal. Comparing this with Fig. 9,
we conclude that, with the exception of 5 LED lamps, our
prototype works with the vast majority of the lamps we tested.

5.3 Flync Robustness
We now assess the robustness of Flync when a node changes
its position and orientation relative to the light source, when
the solar panels of a node are temporarily covered, and when
electrical loads are temporarily connected to the same power
strip. To this end, we experiment with two nodes powered by
a desk lamp and connect them to an oscilloscope. We quantify
robustness by measuring the time difference between clock
edges on the two nodes. As a benchmark, we note that our
implementation can tolerate a time difference of up to 848 µs.
Mobility. We keep one node static and attach the other one
to the wrist of a person. The person waves, changing distance
and angle between the node’s solar panels and the light source.

Fig. 17 shows a period where the node moves closer and
farther away from the lamp. The changes in the amplitude of
the current signal affect the time difference between the nodes.
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Figure 18: Capacitor voltage and time difference between two proto-
type nodes while temporarily covering the solar panel of one node.

The comparator that thresholds the sine wave uses a low-pass
filter that reacts slowly to changes in the average amplitude.
As a result, the clock signal deteriorates temporarily, causing
an increased time difference of up to 1 ms. However, after a
short while, the time difference recovers to previous levels.

Shadowing. To investigate the impact of shadowing, we put
both nodes on a table and temporarily cover one of them by
slowly moving a hand between the lamp and the node.

Fig. 18 shows that the time difference increases after cover-
ing the panel as the PLL loses its reference signal. However,
without significant energy input, the node does not reach the
turn-on threshold, which renders communication infeasible
anyhow. As soon as the panel is uncovered, the node quickly
charges up again and, after less than a second, the clock re-
turns with a small time difference.

Electrical loads. We repeatedly switch on and off a drilling
machine and a vacuum cleaner connected to the same power
strip as the lamp. We do not observe any noticeable effect of
the loads on the time difference between the two nodes.

5.4 Flync Jitter
In a final set of experiments, we look at the time difference
between the clock signals of different nodes when these are:
(i) powered by a single light source, (ii) placed in different
rooms, and (iii) powered by different types of light sources.

Testbed. For these experiments, we built a distributed testbed
of observer nodes. The observer nodes are accurately time-
synchronized to within 479 ns, and record the clock signals
of the attached prototype nodes with a resolution of 62.5 ns.

Single light source. We place six of our prototype nodes in
the same room with a single halogen lamp. The experiments
are conducted during the day, and the nodes receive a mixture
of natural sunlight and artificial light from the lamp. Using
our testbed, we record the clock edges of all six nodes for 1 h.

Fig. 19 shows the pairwise time difference between nodes.
Because the phase offset resulting from propagation delays of
light is negligible, the jitter must be introduced on each node.
For example, a slight difference in the offset voltage of the
comparator can lead to a significant mean difference of the
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Figure 19: Pairwise time difference between clock edges on different
prototype nodes when these are powered by a single light source.
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Figure 20: Pairwise time difference between clock edges on proto-
type nodes placed in different rooms with the same type of lamp.

resulting clock signal. Nevertheless, with 95 % of the more
than five million recorded pairs below 244 µs, the jitter is well
below the 848 µs tolerated by our Find implementation.

Different rooms. We conduct experiments in three rooms of
an office building equipped with fluorescent tubes. The rooms
are located on a long hallway with a distance of around 15 m
between the middle room and the other two. We place two
nodes in each room, and record with our testbed for 4 h while
the nodes receive light from the tubes as well as sunlight.

Fig. 20 shows that there is a small offset between rooms
2 and 3 with 95 % of the recorded values being smaller than
700 µs. The offsets between rooms 1 and 2 and rooms 1 and
3 are centered around 3.3 ms. While residential homes are
often connected to a single phase, larger apartment blocks or
commercial buildings are typically fed by three-phase power.
Apparently, the lights in room 1 are connected to a different
phase than the lights in rooms 2 and 3, leading to a 60° phase
and 3.3 ms time shift between the light intensity variations.
Thus, when nodes need to discover neighbors across rooms
with lights potentially connected to different power phases,
they must be able to become active not only at the edge of
their own Flync clock signal, but also with a 60° phase shift.

Different types of light sources. We plug an LED, a fluores-
cent, and two halogen lamps into the same power strip. We
place one node under each lamp so that it only receives light
from this lamp, and record for 30 min with our testbed.

Fig. 21 reveals large offsets between the clocks of nodes
powered by different types of lamps. These offsets are due
to varying phase shifts between the powerline voltage and
the brightness variations of the lamp. For example, although
the current through an incandescent lamp is in phase with
the supply voltage, the filament may take some time to heat
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Figure 21: Pairwise time difference between clock edges on different
prototype nodes when these are powered by different types of lamps.

up and cool down, leading to the observed phase shift. Other
types of lamps contain inductors or capacitive elements, a
switching power supply, or an electronic ballast that cause
different phase shifts. This shows that Flync does not work out
of the box when different nodes are powered by different types
of lamps. The static phase shifts would need to be measured
during deployment or learned at runtime. On the other hand,
Flync may not work reliably when individual nodes receive
a mixture of light from different types of lamps. The results
from the previous experiments (see Figs. 19 and 20) show
that Flync works well when nodes receive a mixture of natural
sunlight and artificial light from the same type of lamp.

6 Case Study: Contact Tracing
Automatic contact tracing is important to contain the spread of
infectious diseases (e.g., SARS-CoV2) in a scalable manner.
It allows to quickly identify contacts of an infected person
and to quarantine potentially infected individuals before they
become contagious. To assess the potential of our proposed
designs for real-world battery-free applications, we conduct a
contact tracing case study with our prototype nodes.
Setup. We attach six nodes to the shirts of human partici-
pants, as shown in Fig. 22a. The nodes run the Find protocol,
logging the timestamp and ID of each discovered node to
non-volatile memory. As we are only interested in relatively
close contacts that would allow a virus to transmit from one
person to another, we set the transmission power of the bea-
cons to −16 dBm. We run experiments indoors and outdoors,
as detailed below. After each run, we dump the content of the
non-volatile memory of each node to a computer for analysis.

(a) Node on shirt. (b) Setup of experiment in an open-air pub.

Figure 22: Battery-free contact tracing.
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ment. Vertical markers show rendezvous with the respective person.

Indoor experiment: coffee kitchen. Two persons sit at a ta-
ble in a small coffee kitchen, roughly 1.5 m apart from each
other. After 3 min a third person enters the kitchen and pre-
pares a coffee for 2 min. The kitchen is equipped with fluo-
rescent lamps, and we use Flync together with Find.

Fig. 23 plots the charging times and recorded rendezvous
of the three nodes over time. We see a total of 49 received bea-
cons. All contacts are logged successfully with low latency,
despite the relatively long charging times of hundreds of mil-
liseconds. Specifically, the first contact between persons 1 and
2 is detected after 43.9 s. When person 3 enters the kitchen, it
takes 26.6 s and 17.9 s until the contacts with persons 1 and 2
are detected, respectively. Overall, the median time between
rendezvous of the same two nodes is 7.5 s.

Outdoor experiment: open-air pub. Three pairs of persons
sit at opposite sides of three tables (see Fig. 22b). Two ta-
bles are next to each other; the third table is at a distance of
around 4.5 m. We perform the experiments in the morning
of a slightly overcast day at an open-air pub without direct
sunlight. Receiving only natural sunlight, the nodes do not
make use of Flync. We conduct three consecutive 15 min runs.

We measure a total of 4426 received beacons. All contacts
between persons on the same table are successfully recorded.
More importantly, contacts between persons on different ta-
bles in close vicinity are also reliably detected. Due to the low
transmit power, we do not see any rendezvous between the
first two tables and the third remote table, which is expected
and in fact desirable because we only want to trace contacts
that are associated with an actual risk of virus transmission.
Fig. 24 shows the histogram of the time between consecu-
tive rendezvous between the same two nodes. As expected,
the time between rendezvous is approximately exponentially
distributed, and the mean is estimated between 2.61 s and
2.78 s with 95 % confidence. This means, under the given
conditions, we are able to detect contacts with a resolution of
around 2.67 s, allowing for fine-grained contact tracing.
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Figure 24: Histogram of the time difference between rendezvous of
the same two nodes in the open-air pub experiment.

Summary. The results from our contact tracing case study
show that Find and Flync are also effective under uncontrolled
real-world conditions. Outdoors, energy availability is high
and therefore Find alone enables fast rendezvous and fine-
grained contact tracing. Indoors, Flync can compensate for the
significantly lower energy density of interior light, providing
decent performance even under these challenging conditions.

7 Discussion
We have presented two novel techniques that enable for the
first time efficient device-to-device communication in the
face of intermittency. By introducing random delays, Find
breaks interleaved activity patterns of battery-free devices to
discover each other faster and more efficiently. By tapping
into the powerline-induced flicker of state-of-the-art lamps,
Flync phase-synchronizes devices that harvest energy from
indoor light. While we have exploited Flync to further speed
up discovery in battery-free networks, Flync is useful for other
purposes and also applicable to battery-supported devices.

Recent work tackles the intermittency problem on individ-
ual battery-free devices in terms of, for example, computing
and time keeping [8,12,18,34]. We instead focus on communi-
cation between battery-free devices that operate intermittently.
Like prior work, our techniques are relevant if intermittency
makes traditional approaches inefficient or unreliable. To un-
derstand the scope of our work, we discuss intermittency and
relevant impact factors below. Afterward, we discuss the in-
fluence of built-in randomness on our proposed techniques.

7.1 When Does Intermittency Occur?
A battery-free device goes through periods with low power re-
quirements (e.g., system-off and sleep modes) and high power
requirements (e.g., sensing, processing, and communication).
Since the instantaneous power available from a harvester is of-
ten insufficient to support a battery-free device during periods
with high power requirements, some form of energy storage
is needed that buffers energy when the device is inactive to
support a high-power workload for a short period of time.

The minimum size of the energy storage is determined by
the demands of the largest atomic operation that must not be
interrupted. For example, to transmit or receive a packet, the
buffered energy needs to be sufficient to power the radio for
at least the airtime of one complete packet; other examples of
atomic operations include reading out a sensor or executing
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a checkpoint [21]. In our proposed Find protocol, the largest
atomic operation is the frame sequence depicted in Fig. 7.

If a device with an active power draw higher than the har-
vesting power is equipped with an energy storage that does
not support executing multiple iterations of the largest atomic
operation from a single full charge, it is forced to go through
periods of inactivity—the device is said to operate intermit-
tently. Intermittency is in stark contrast to duty cycling, which
is intentionally used on devices with primary or rechargeable
batteries, yet the devices can become active at any point in
time subject only to an upper bound on the average duty cycle.
By contrast, intermittency prevents a device from becoming
active at any point in time, and when a device enters and exits
the inactivity phases is only partially controllable, at best.

7.2 What Factors Impact Intermittency?
Three key dimensions influence the extent of the intermittency
problem: energy input, energy storage, and workload.
Energy input. An ambient energy source may exhibit inter-
mittent behavior, including periods where it emits no energy.
Clearly, a battery-free device can only harvest energy when
the ambient source emits energy. In this case, provisioning a
device with a harvester that provides the power required to
continuously operate the device in high-power mode prevents
the intermittency problem. This, however, would come with
major drawbacks in terms of size, weight, and costs. For ex-
ample, a battery-free device may draw only 10 µW on average
but 10 mW when active, thus requiring to over-provision the
harvester by a factor of 1000. While such over-provisioning
is in theory always possible, it is severely limited in practice
by the constraints imposed by the application requirements.
Energy storage. If permitted by the application requirements,
an energy storage larger than the minimum required to exe-
cute the largest atomic operation may be used. For example,
using a high-capacity rechargeable battery can prevent inter-
mittency. Such batteries have a high energy density, but their
minimum physical dimensions are typically orders of magni-
tude larger than those of capacitors. Batteries are also more
expensive and subject to aging, losing capacity over time and
eventually malfunctioning with excessive heat and leakage of
potentially toxic chemicals. By contrast, capacitors have low
energy density, but are extremely cheap, readily available in
sizes well below 0.1 mm3, have negligible aging effects, and
do not contain problematic materials (e.g., toxic chemicals).
Thus, despite advances in battery technology, alternative sys-
tems to store energy are being explored [3] and capacitors are
widely regarded as a more sustainable option [11, 45].

When a device is inactive, it accumulates charge until the
capacitor voltage reaches a turn-on threshold. The amount of
energy that can be stored depends on the turn-on threshold,
which is limited by the breakdown voltage of the capacitor
and the device’s maximum operating voltage. When a device
is active, it discharges the capacitor until the voltage reaches a
turn-off threshold, which is dictated by the device’s minimum

operating voltage. Thus, for the same capacitor, a device with
a lower minimum operating voltage or a higher maximum op-
erating voltage can increase the effective amount of buffered
energy that can be used. This allows to either use a smaller ca-
pacitor or execute longer from a single full charge, potentially
alleviating the intermittency problem.

Workload. While lower-power hardware can reduce the av-
erage power draw in sleep mode and thus the charging time,
it does not generally avoid intermittency. This would require
pushing also the active power below the harvesting power.

Reducing the transmission power of the radio can extend
the time a device can operate from a single full charge. While
this may alleviate the intermittency problem, it also reduces
the communication range, which may render device-to-device
communication infeasible or require multi-hop networking.

Similarly, using backscatter communication instead of ac-
tive radio communication may bring the active power draw
of a device below the harvesting power and thereby enable
continuous operation. However, backscatter requires the pres-
ence of an external carrier and may pose limitations in terms
of communication range and data rate. In particular, existing
practical implementations of tag-to-tag backscatter receivers
do not yet reach the point where the end-to-end power draw is
negligible (i.e., below sleep power of around 1 µW) [35, 39],
thus leaving a significant region in the design space of battery-
free backscatter devices where intermittency occurs.

7.3 Impact of Built-in Spatial Randomness
Find tackles interleaving by letting nodes randomly and inde-
pendently delay their wake-ups. This approach is particularly
effective in scenarios with little built-in spatial randomness,
that is, when the harvested energy exhibits limited variability
between nodes, regardless of a potentially high temporal vari-
ability in harvested energy. We believe this holds for a broad
class of battery-free application scenarios, because nodes in a
confined space often harvest energy from the same ambient
source(s). On the other hand, a high built-in spatial random-
ness may alleviate the interleaving problem. Although our
case study experiments exhibit built-in spatial and temporal
randomness, it remains an open question how built-in spatial
randomness may influence the choice of Find’s delay distribu-
tion and scale parameter as well as its overall effectiveness.

8 Related Work

Battery-free device-to-device communication. Prior work
on battery-free wireless device-to-device communication is
mainly theoretical [25, 51], studying the capacity limits for
different energy scheduling, transmission, and decoding poli-
cies. Understanding energy issues on the receiver side [2] and
the impact of intermittency have been open problems. On the
other hand, practical work on tag-to-tag backscatter commu-
nication has primarily focused on physical-layer issues and
considers intermittency an orthogonal problem [20, 32, 35].
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Work Type Sensing Signal Power

Syntonistor [42] frequency EM radiation 300 µW
Flight [31] frequency light sensor 5394 µW
Flync freq.+phase solar current 5 µW

Table 2: Compared with prior work using powerline frequency for
synchronization, Flync provides frequency and phase synchroniza-
tion from the solar panel current at significantly lower power draw.

Rendezvous and neighbor discovery protocols. Blind ren-
dezvous is the process of establishing a communication link
between nodes in a distributed system without any prior in-
formation [16]. Neighbor discovery protocols for wireless
networks target a sub-class of the blind rendezvous problem
with the goal of optimizing the trade-off between discovery
latency and energy consumption. Deterministic protocols let
nodes wake up according to a schedule based on (co-)prime
numbers [13, 23], a quorum [19, 27, 28], or by systematically
traversing slots [5,50]. This way, they can provide guaranteed
bounds on discovery latency [24]. Probabilistic protocols are
stateless, robust to varying conditions, and offer low average
discovery latency [10]. For example, the influential birthday
protocol [37] and follow-up work [48, 49] analyze optimal
transmit probabilities to maximize the fraction of links discov-
ered in a given time. However, none of the existing neighbor
discovery protocols are applicable to battery-free networks
because they require nodes to be able to wake up at arbitrary
points in time, not taking into account intermittency.
Powerline-based clock synchronization. We are not the first
to exploit the powerline frequency signal for synchroniza-
tion. The Syntonistor extracts a stable clock signal from
electromagnetic (EM) powerline radiation using a large
coil [42]. It draws 300 µW of power, 60× more than Flync.
Flight samples a light sensor to synchronize a node’s oscillator
to the powerline-induced brightness variations of fluorescent
lamps [31]. Using Flight, synchronization takes 100 ms at a
power draw of 5394 µW, 1000× more than Flync. As sum-
marized in Table 2, both approaches only synchronize the
frequency of local clocks, eliminating the need to periodically
compensate for clock drift, but do not exploit phase informa-
tion. They also use dedicated high-power sensors, whereas
Flync uses a low-power circuit to extract the signal from the
current of the solar panel.
Energy harvesters as sensors. Previous work has explored
the use of the harvesting current or voltage as a sensing sig-
nal for indoor positioning [41], gait recognition [33], gesture
recognition [47], activity classification [44], and transport-
mode detection [43]. To the best of our knowledge, we are
the first to exploit context information from harvested energy
for synchronization. Furthermore, Flync is the first design that
extracts the sensing signal from current variations of a solar
panel that is simultaneously used to power the system.

Visible light communication. Flync exploits the powerline-
induced brightness variations as an intrinsic property of ubiq-
uitous lamps. When modifying existing lighting infrastruc-
ture, it is possible to encode arbitrary data into the brightness
variations. This opportunity has been used for downlink com-
munication [40], indoor positioning [26], and battery-free
duplex visible light communication [29]. By modulating light
with a well-defined synchronization signal, the efficiency and
applicability of Flync could be further improved. Also, our
approach to harvest energy while simultaneously demodulat-
ing encoded signals from the same panel may reduce the size
and power of existing visible light communication receivers.

9 Conclusions
Leaving batteries behind allows for building cheap, tiny, and
maintenance-free devices that can be embedded into smart
textiles, intelligent surfaces, or even the human body. In this
paper, we have addressed the problem of enabling efficient
battery-free device-to-device communication. Experiments
with a prototype platform and implementation show that our
proposed techniques empower battery-free devices to quickly
and efficiently discover each other despite their unpredictable
intermittent operation. By bootstrapping battery-free wireless
networks, we believe that our work provides a stepping stone
for future research toward full system and communication
stacks for this emerging kind of networked system.

Availability
Artifacts are available to the public under a permissive MIT
license at https://find.nes-lab.org/. These include a
Python implementation of the Find model from Sec. 2, which
can be used to reproduce the analytical results in Figs. 3 to 6,
as well as the hardware design files and the firmware of our
prototype implementation from Sec. 4, which we used for the
experiments and case study described in Secs. 5 and 6.
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Abstract
Hidden screen-camera communication emerges as a key en-

abler for the next generation videos that allow side infor-

mation, such as TV commercials, augmented contents, and

even the video itself, to be delivered to machines during nor-

mal watching. To guarantee imperceptibility to human eyes,

existing solutions have to sacrifice data rate and reliability

enormously. This paper presents AIRCODE, a hidden screen-

camera communication system built upon invisible visual

and inaudible audio dual channel. While ensuring great unob-

trusiveness, AIRCODE achieves robust communication at a

remarkably high rate of >1Mbps, for the first time, enabling

imperceptible transmission of not only texts but also videos.

AIRCODE makes two key technical contributions. First, AIR-

CODE takes the complementary advantages of video and au-

dio channels by exploiting the reliable yet low-rate inaudible

audio link as the control channel while the unreliable but

high-rate visual link as the data channel. Second, AIRCODE

incorporates visual odometry to accurately identify and track

the captured screen, regardless of dynamic video contents

and surrounding interference. Experiments on commercial

monitors and smartphones demonstrate that AIRCODE sig-

nificantly outperforms the state-of-the-art system, yielding a

remarkable data rate of 1069 Kbps while with BER of 5%.

1 Introduction
Over the past few decades, video has risen into popularity

across the globe. Billions of video are produced, captured,

shared, and viewed every day and everywhere. Rather than

merely watching them, audience often desires to acquire extra

information related to the video content, especially with their

carry-on devices, e.g., smart phone and smart glasses. For

example, an advertisement can deliver a second video intro-

ducing detailed usage and function of the advertised product

to its potential users. Instead of letting the viewers record a

blurry video with unintended surrounding contents and color

distortion, a video can provide a low quality version of itself

1 Zheng Yang is the corresponding author.

for direct sharing. An AR video can compute and send the

augmented contents to a viewer’s device for direct rendering

without draining its limited computing and power resources.

To make these applications a reality, convenient and friendly

communication approach, better with high data rates and reli-

ability, is needed.

One intuitive solution is to integrate screens with Wi-Fi or

Bluetooth, like nowadays smart TV, and convey side informa-

tion through the wireless channel. However, such combination

has several drawbacks. First, wireless connection requires ex-

plicit setup. A viewer wearing smart glasses may see multiple

screens during his daily life and be bothered to search their

Wi-Fi from many available networks. Second, wireless device

and screen are not well synchronized. For example, a screen

playing an AR video should deliver the augmented contents

synchronized at the frame level, e.g., 16.7 ms with a frame

rate of 60 Hz, which cannot be always achieved by Wi-Fi due

to occasionally large latency and jitter [29]. Last but not least,

the broadcasting behavior of wireless devices causes informa-

tion spamming or leakage to unwanted people. For example,

in TV commercial, only the viewers of the advertisement need

the side information about the product. In video sharing, an

eavesdropper must not access the low quality video due to

copyright protection.

Alternatively, as cameras are indispensable to smart de-

vices, it is more convenient, impromptu and secure to embed

extra information into video and deliver them through the

screen-camera channel without impacting viewers’ watch-

ing experience. Thanks to the high refresh rates (≥ 120 Hz)

of modern screens, pioneer works [24, 36, 41] hide data in

high frame rate videos to cheat human eyes that have much

lower perception rates (40-50 Hz) [31]. However, they em-

phasize on human perception but sacrifice data rates (e.g., 551

Kbps with a bit error rate (BER) of 8% [41]), hardly reliable

for real data communication of potential applications. Im-

proving reliable data rates on hidden screen-camera channel,

however, is non-trivial. Unlike conventional communication

channels [8, 17, 22, 27], enhancing the signal does not help

for the screen-camera channel because it immediately sets up

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    457



Raw VideoEmbedded Data

Raw AudioEmbedded MetaData

Monitor

Data Cell Size: 10x10
RS Code Level: 2 
Conv Code Level: 1 
… … … …  

Phone

Undistorted Frame

100011011111110000000
111110010111001110010
010010101100000010101
011001101011011111000
1110100010000011 … … 

Screen Detection (§4)

MetaData Decoding (§5) Data Decoding (§6)

Figure 1: System overview of AIRCODE. The monitor displays a video with embedded data in raw video frames, and metadata

(control information) in raw audio signals. The phone records the video, then detects screen in camera images to equalize

distorted video frames, decodes metadata from audio signals, and finally decodes data embedded in video.

a conflict with unobtrusiveness to human eyes. We refer the

reader to Section 2 for the more detailed analysis of the unique

characteristics of the screen-camera channel. Essentially, we

are facing the dilemma of foregoing three contradicting goals.

In this study, we first investigate the state-of-the-art works

from distinct perspectives and discuss the root causes of un-

reliability. On this basis, we present AIRCODE, an imper-

ceptible screen-camera communication system that supports

high-throughput and reliable data transmission on top of regu-

lar video viewing, as demonstrated in Figure 1. The working

scenario of AIRCODE is non-sophisticated: When a watcher

intends to acquire information on the side channel, she sim-

ply shoots a video of the screen playing the encoded video

using her smartphone, which automatically receives and de-

codes the embedded bits, at a rate of as high as 1069 Kbps,

almost 2× higher than the state-of-the-art ChromaCode [41],

underpinning various applications like video-in-video shar-

ing. AIRCODE boosts data throughput while reducing BER

by an invisible visual and inaudible audio dual-channel in

three distinct ways:

(1) Precise screen tracking: Precise screen detection and

tracking is critical to equalization of video frames, the key

process for successful decoding of visual codes. According to

our measurements, errors of a few pixels may significantly af-

fect packet reception (§2). Precise screen detection, however,

is non-trivial due to various factors, such as video contents,

surrounding background, hand motions, etc. In AIRCODE,

we exploit the idea of visual odometry [21] for this purpose.

Specifically, AIRCODE constructs a 3-D map of a screen of

interest and tracks the screen by estimating the phone pose

with projections of map points and then projecting the screen

with the pose estimated.

(2) Reliable audio channel: While the video channel

shares the same frequency band with the ambient illumi-

nance [41], the near-ultrasound audio channel is resistant to

ambient low-frequency noises [38] and more reliable. Thus,

AIRCODE allocates the inaudible speaker-microphone link as

the control channel for the critical metadata of visual codes

(e.g., code layout, coding scheme, etc.). To seamlessly com-

ply with the video channel, the audio channel should fulfill

two conditions, i.e., short packet duration that matches the

high frame rate of the video channel, and low packet error

rate (PER) that is required by the overall communication. To

achieve this, AIRCODE carefully designs acoustic packets to

overcome problems of reverberation and frequency spectral

leakage caused by short packet duration and achieves high

reliability with nearly zero PER.

(3) High-rate visual channel: AIRCODE leverages the

screen-camera link as the high-rate data channel. Data bits

are transmitted via imagery codes imperceptibly embedded in

the primary carrier video. To minimize flickers, we adaptively

choose the required lightness changes according to the spatial

texture of the primary video content and perform lightness

alteration as introduced in [36, 41]. The high data rate is then

achieved by 1) embedding full-frame visual codes with a care-

fully designed frame structure; 2) effective error correction

with an adaptive concatenated coding scheme.

We implement AIRCODE using commodity computer mon-

itors and smartphones. We conduct real-world experiments

and extensive evaluations on key metrics including BER,

throughput, goodput and screen-tracking accuracy. Besides,

various system parameters, such as distance, angle, signal

strength, background interference, and frame size, are tested.

Videos with various texture, luminance, quality and audios

with different types of sound are used for evaluation. The im-

perceptibility is tested with a user study. Experimental results

demonstrate that AIRCODE achieves a remarkable data rate

of 1069 Kbps with an average BER of 5%, which significantly

outperforms existing approaches.

The core contributions of this paper are:

• We present AIRCODE, a hidden screen-camera commu-

nication system that achieves >1Mbps throughput for

the first time, allowing not only text but also image and

video transmission.

• To the best of our knowledge, we are the first to exploit

an invisible visual and inaudible audio channel, which

jointly enables fully imperceptible, high-rate, and reli-

able communication by their complementary advantages.

• We propose an algorithm using visual odometry that pre-

cisely tracks screen locations even with dynamic video

content, complex ambient contexts, and camera motions

caused by unconsciously hand motion and shake.
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Figure 2: Key factors for screen-camera link quality. (a) Screen

localization error, and (b) Metadata error.
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Figure 3: Examples of screen detection failure. (a) rule-based

approach [41], and (b) learning-based approach [10].

2 Motivation
Hidden screen-camera communication is possible with the

natural difference between the human vision system and

camera system: Human eyes cannot resolve flickers, or lumi-

nance fluctuations, at frequencies higher than 100Hz, but in-

stead only perceive the average lightness, due to the low-pass

flicker-fusion property of human vision system [31]. Thus,

if we inversely modify the lightness of a pair of subsequent

video frames, which are termed as complementary frames,

and play them at high frame rate, e.g., 120 frames per second

(fps) that is supported by modern commercial monitors and

TVs, human eyes will not perceive the change of lightness.

Instead, they will only observe the original video content,

which is the average of complementary frames. In contrast,

commodity cameras with a high capturing rate can acquire

the differences and decode the data if certain information is

modulated on top of the change of lightness. Pioneer work has

exploited this phenomenon for hidden screen-camera com-

munication by embedding data bits unobtrusively in primary

carrier videos. The visual channel of AIRCODE is also built

upon this idea. The hidden screen-camera channel is reported

error-prone due to some unique intrinsic errors [24, 36, 41],

such as projection distortions, blurring, Moiré patterns, rolling

shutter effects, and frequent changes of camera pose caused

by hand motion and shake, etc.

2.1 Challenges and Measurements
Previous proposals mainly aim at minimizing flickers for

good unobtrusiveness, yet sacrifice data rates and robustness.

The best result to date reported is from ChromaCode, with

the data rate of up to 551 Kbps and BER of 8%, which is

far from sufficiency for many applications such as the above-

mentioned video-in-video sharing. What’s even worse, such

performance is obtained with limitations including visible

border markers [36] and stable cameras [24, 41].

To reveal the root causes of these limitations, we consider

the state-of-the-art works, ChromaCode, and evaluates how its

reliability suffers when (1) the detected screen deviates from

the ground-truth, and (2) the received metadata (e.g. visual

code layout, coding scheme, etc.) has bit errors. Experiments

are conducted in a cubicle space and with different types of

videos, as listed in Table 1. During experiments, the phone is

placed static with several fixed poses, so that the ground-truth

of the screen can be manually marked. Besides, the metadata

is known prior as well. To evaluate the impact of screen de-

tection, we gradually shift the input of the screen location by

a small number of pixels and calculate BER accordingly. To

evaluate the impact of metadata decoding, we manually add

random error bits in the channel code of metadata.

(1) Impact of screen detection. Figure 2a shows that the

BER of the screen-camera link remains around 2% when the

location error of the screen is less than 4 pixels (in a 720p

video), which is about the half-length of the smallest data cell

in ChromaCode, but explodes when the location error exceeds

4 pixels. It fails when the location error reaches 15 pixels. It

means that highly accurate screen detection is necessary for

the screen-camera link. Recent phones incorporates image

stabilization [20, 32] to reduce blurring caused by camera

motion. However, these techniques can only remove small

handshakes and thus require the user to uncomfortably hold

the phone at a fixed position during the recording. Figure 3

further illustrates failure cases of screen detection with two

representative approaches, the rule-based approach used in

ChromaCode, and Mask R-CNN [10], a learning-based ap-

proach. The rule-based approach tries to find a quadrilateral

whose outer bound consists of edges in the image and has

consistent similar lightness, which may be misled by video

contents and the surrounding environment. While Mask R-

CNN can accurately recognize objects in images after suf-

ficient training, it fails to meet the stringent requirement on

accurate segmentation with errors of only several pixels for

screen-camera communication. Besides, both approaches lack

pertinent mechanisms to deal with continuous tracking of the

screen in a video.

(2) Impact of metadata decoding. Figure 2b shows that

the screen-camera link becomes lost when the number of er-

ror bits in metadata exceeds 4, which is consistent with that

ChromaCode encodes 5-bit metadata with 15-bit code and

corrects at most 3-bit errors. Through all experiments, 24.6%

frames have BERs over 8%, among which 29.3% are due to

failure in decoding metadata. The drawback of existing sole

screen-camera communication schemes is that while metadata

is more important than data and requires robust communica-

tion with lower BER, it is conveyed in the same erroneous

visual channel as data. To achieve reliable communication

with the screen-camera link, a more robust channel is needed

for transmission of metadata.
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3 System Overview
Motivated by the measurements above, we design AIRCODE

to address the two significant drawbacks, namely erroneous

screen tracking and vulnerable transmission of metadata and

deliver an imperceptible, high-rate, and reliable screen-camera

communication system.

Figure 1 shows the system overview of AIRCODE. At the

sender side, AIRCODE embeds data (visual codes) into raw

video frames and embeds metadata of visual codes into raw au-

dio signals. During playing the video, users run AIRCODE on

their phones and shoot the monitor. At the receiver side, upon

receiving camera images and acoustic signals, AIRCODE si-

multaneously tracks the screen in images with visual odome-

try to equalize distorted frames (§ 4) and decodes metadata

embedded in acoustic signals (§ 5). Afterward, both undis-

torted frames and metadata are used to decode data conveyed

in video frames (§ 6).

4 Screen Detection
Detecting screen is the key process for successful decod-

ing of visual code, due to unknown perspective distortion of

the screen in images. However, various video content and

background environments may interfere in screen detection,

leading to failure of decoding, as discussed in § 2. Existing

works embed specific position codes at the edges and corners

of video for screen detection, which wastes communication

resources and affects the watching experience of audiences.

In contrast to existing solutions that try hard to reduce the

interference caused by complex background environment,

AIRCODE exploits it as visual clues for odometry [21] to

track the screen in frames.

Visual odometry alternately tracks the poses of image

frames and maintains a global map of 3-D points seen by

multiple image frames. Generally, visual odometry consists of

three main steps. (1) Initialization. Visual odometry matches

feature pixels of two image frames and estimates their re-

laive pose. The global map is then initialized with the 3-D

map points of the matched feature pixels. (2) Tracking. Upon

receiving a new frame, visual odometry matches its feature

pixels with 3-D points in the global map, estimates the pose of

the frame, and updates 3-D map points of the matched feature

pixels in the global map. (3) Optimization. Visual odometry

periodically buffers some frames, termed as keyframes, to

refine the global map and avoid drifting error. When a new

keyframe arrives, visual odometry jointly optimizes poses of

all buffered keyframes that share common feature pixels with

the new keyframe and all 3-D points seen by these keyframes

in the global map.

To enable screen detection, AIRCODE modifies the main

steps of visual odometry to further keep 4 screen points in the

global map. Each screen point corresponds to one corner point

of the rectangular screen. Thus, the screen can be uniquely

identified and represented by its four corner points. Figure 4

shows the logic flow of screen detection of AIRCODE. In

addition to visual odometry, during initialization, AIRCODE

estimates the initial 3-D locations of the screen points. During

the tracking process, AIRCODE projects the screen points in

the frame with the frame pose for decoding. In the optimiza-

tion process, AIRCODE updates the screen points with the

refined poses of keyframes and the projections of the screen

points on these keyframes to avoid drifting error.

4.1 Feature Extraction
Feature pixels are representative pixels invariant to transla-

tion, scaling and rotation of an image and can be used for

robustly tracking successive image frames and mapping 3-D

points corresponding to these feature pixels. AIRCODE uses

ORB [28] which is fast to compute and match, and remains

invariant across different viewpoints, yielding sufficient effi-

ciency and accuracy for visual odometry.

In practice, the video content may change with time, and

feature pixels within the screen are not consistent across suc-

cessive frames. To avoid the negative impact of mismatching

these feature pixels, AIRCODE first obtains a coarse estima-

tion of the screen frame, and filter out all feature pixels within

it. The initial screen frame is calculated by the rule-based

algorithm during initialization (as in § 2) or inherited from

the last frame during the tracking process. Figure 5a shows

examples of feature extraction, where the screen frame is

highlighted and feature pixels within it are removed.

4.2 Initialization
The initialization process computes the relative pose between

two frames and triangulates an initial set of 3-D map points

for tracking and 4 screen corner points for communication.

Lacking the knowledge of screen points, AIRCODE uses the

rule-based algorithm to detect the screen and decode frames

during initialization. As a successful decoding indicates accu-

rate screen detection, AIRCODE selects two decoded frames

with their detected projections of the screen for initialization.

Figure 5a illustrates an example of initialization with two

matched frames. Denote the two selected frames as F0 and

F1, any matched feature pixels as p0 and p1, and any matched

projection pixels of screen corner points as s0 and s1, AIR-

CODE uses epipolar geometry and computes the fundamental

matrix F10 that connects any pair matched pixels [9]:

pT
0 F10p1=0, sT

0 F10s1=0. (1)
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F10 can be solved by integrating eight pairs of matched pix-

els [18]. Since the successful decoding strongly indicates

that screen points are accurately located in the two frames,

AIRCODE selects the projection pixels of four screen points

(i.e., s) as four pairs of the matched pixels, and four pairs of

matched feature pixels (i.e., p) as the rest.

To recover the camera pose, the fundamental matrix F10

is converted to the essential matrix E10 using the intrinsic

matrix K of the camera:

E10≡ t∧10R10=KT F10K, (2)

where t10 and R10 the are relative translation vector and rota-

tion matrix respectively, and the operator (·)∧ is to calculate

the skew-symmetric matrix from a vector. The four possi-

ble poses (i.e., t10 and R10) are derived from the essential

matrix E10 via singular value decomposition [9]. With each

ambiguous candidate, AIRCODE triangulates 3-D points cor-

responding to all matched feature pixels and projection pixels

of four screen points. A valid 3-D point with high confidence

should be in front of the camera and have a significant par-

allax between the two frames. Thus, AIRCODE selects the

candidate with most such points as the true pose. Finally,

AIRCODE initializes the 3-D global map and the screen with

all valid 3-D points of the true pose. The two frames used in

initialization are set as initial keyframes.

4.3 Screen Tracking
After initialization, AIRCODE continuously tracks poses of

new frames and projects the screen accordingly for decod-

ing. As visual odometry, AIRCODE optimizes the pose of the

current frame by minimizing the location error between the

projections of map points and their matched feature pixels in

the frame. Specifically, suppose that the pose matrix of the

i-th frame is Ti=[Ri | ti], where Ri and ti are the correspond-

ing rotation matrix and translation vector, and N matches

〈P j,pi, j〉 are detected, where P j is the j-th map point and pi, j
is the matched feature pixel in the i-th frame, the pose Ti can

be optimized via bundle adjustment [35]:

Ti,opt =argmin
Ti

N

∑
j=1

‖pi, j −π(Ti,P j)‖2, (3)

where π(·) projects the 3-D map points onto the image frame

given its pose [9]:

π(Ti,P j)=[
(K(RiP j + ti))0

(K(RiP j + ti))2
,
(K(RiP j + ti))1

(K(RiP j + ti))2
]T . (4)

With the estimation of the pose, AIRCODE projects screen

points onto the current frame:

si, j =π(Ti,S j), (5)

where S j is the j-th screen point ( j=1,2,3,4). To further

minimize projection error, AIRCODE searches outstanding

Shi-Tomasi corners [34] within neighborhoods of these pro-

jections as the final estimation.

AIRCODE may fail to decode due to small but intolerant

deviations of screen tracking. In contrast, despite frequent

failures, the rule-based algorithm can accurately detect edges

and corners in the frame and yield more accurate estimation

if the screen is successfully detected. Thus, when decoding

fails, AIRCODE further executes the rule-based algorithm to

obtain a second estimation of the screen, denoted as s′i, j. Then,

it merges the corner points of the two screens as:

s′′i, j =
{

s′i, j ‖si, j − s′i, j‖≥δh

si, j ‖si, j − s′i, j‖≤δl
, (6)

As screen tracking yields consistently small errors, an upper

threshold, δh, is used to reject totally wrong estimation from

the rule-based algorithm. Meanwhile, a lower threshold, δl ,

is used to accept more accurate estimation from the rule-

based algorithm. When δl <‖si, j − s′i, j‖<δh, AIRCODE has

no extra information to determine which estimation is better.

Thus, it forks two screen candidates, whose j-th points are

assigned as si, j and s′i, j respectively. Finally, AIRCODE tries

all screen candidates until the frame is successfully decoded.

Note that in the worst case where the screen tracking fails, e.g.,

due to lack of visual features around the screen, AIRCODE
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Figure 7: Main problems of short packet duration. (a) enlarged

impact of reverberation, and (b) aggravated spectral leakage.

degenerates to the rule-based algorithm and still maintains

a moderate decoding rate. Figure 5b illustrates the process

of screen tracking, where all matched feature pixels in the

frame and both the tracked screen and the merged screen are

highlighted.

To avoid drifting error during tracking, AIRCODE periodi-

cally selects frames and passes them to the optimizing thread.

Specifically, it creates new keyframes only when one of the

following conditions are satisfied:

1. More than 0.5 fps frames have passed after the creation

of the last keyframe, and the current frame tracks less

than 90% points than the last keyframe.

2. The current frame fails to be decoded with the tracking

screen but can be decoded with the merged screen.

Condition (1) avoids computing cost with redundant frames,

while condition (2) ensures timely updating of the screen.

4.4 Screen Updating
The optimizing thread periodically refines map points and

screen points to avoid drifting error. Figure 5c shows the

structure of global map and keyframes. Upon receiving a

new keyframe, AIRCODE first deletes obsolete map points

that are seen by fewer than 3 keyframes and add new points

from matches between the current keyframe and previous

keyframes, as that in visual odometry. Next, AIRCODE col-

lects all map points seen by the current keyframe and all

keyframes that see any of these map points for optimization.

Specifically, suppose M key frames together with the current

keyframe are selected, the pose of the i-th keyframe is Ti,

and Ni matches 〈Pi j ,pi, j〉 are detected in the i-th keyframe.

The pose Ti and map points Pk are optimized via bundle

adjustment:

{Ti,opt}M
i=0,{Pk,opt}K

k=1=

argmin
{Ti}M

i=0,{Pk}K
k=1

M

∑
i=1

Ni

∑
j=1

‖pi, j −π(Ti,Pi j)‖2.
(7)

Then, AIRCODE optimizes screen points via multi-view

triangulation with the refined poses of keyframes. Specifically,

denote the projection of the j-th screen point S j on the i-th
key frame as si, j, the 3-D location of the j-th screen point is

calculated by minimizing the following projection error:

S j,opt =argmin
S j

M

∑
i=1

‖TiS̄ j − (ŝT
i, jTiS̄ j)ŝi, j‖2, (8)

where ŝi, j =
K−1 s̄i, j
‖K−1 s̄i, j‖ is the direction vector of the projection

si, j, and S̄ j and s̄i, j are the homogeneous representation of

S j and si, j, respectively. The term (ŝT
i, jTiS̄ j)ŝi, j calculates the

projection coordinate of S j along the direction ŝi, j. Intuitively,

when S j is accurately localized, TiS̄ j has the same direction as

ŝi, j and the error term becomes 0. The optimal solution S j,opt
is the eigenvector corresponding to the minimal eigenvalue of

the matrix ∑M
i=1(Ti − ŝi, j ŝT

i, jTi)
T (Ti − ŝi, j ŝT

i, jTi), and can be
calculated directly in closed form.

Finally, after optimization, AIRCODE discards redundant

keyframes whose map points have been seen in at least other

three keyframes, as in [33], to maintain a reasonable number

of keyframes for fast optimization, and avoid large estimation

uncertainty caused by co-located key frames [19].

5 Audio Control Channel
Despite orders of magnitude smaller throughput, the speaker-

microphone link is more reliable than the screen-camera link

due to little interference in the near ultrasound band. Thus,

AIRCODE exploits the speaker-microphone link to send crit-

ical metadata of visual codes, e.g., coding layout, coding

scheme, etc. By doing so, not only is metadata robustly de-

livered, but also more video coding area is saved to convey

more data. Figure 6 shows the logic flow of the audio com-

munication part. At the sender side, metadata is encoded with

a two-layer encoding scheme, which includes Golay coding

and Manchester coding, and then modulated on frequency

subcarriers. A chirp signal is prepended as a preamble for tim-

ing alignment. The raw audio signal is low-pass filtered and

then embedded with the control signal. At the receiver side,

the signal is first high-pass filtered to remove raw audio signal

and background noises, then aligned with a chirp template,

and finally demodulated and decoded to yield metadata.

5.1 Design Challenges
Frame-level Packet Duration. To convey metadata for the

video channel, whose data frame (a pair of complementary

video frames) rate is 60 fps, the audio packets should be sent

within tens of milliseconds. However, most existing solutions

send packets at the second level, which is sufficiently reliable

but cannot be agilely adjusted according to the video channel.

For example, Dolphin [38] adopts long OFDM packets, which

is 3.56 s long. Chirp packets, whose duration is 1.463 s, are

used in [12]. To match the need for the high packet rate, a

shorter packet should be designed.

However, reducing packet duration will cause two prob-

lems, reverberation in the time domain and spectral leakage in

the frequency domain. First, the impact of reverberation is en-

larged. Due to the multi-path effect, the microphone not only

hears the direct signal but also delayed reverberating signals

reflected by surrounding environments. Figure 7a shows an ex-

ample of a 10 ms chirp signal received and its reverberations.
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Figure 8: Audio packet design. (a) The 66.7 ms packet consists of one 20 ms preamble, two 20 ms data symbols and one silence

pad. (b) The preamble and data symbol are separately located within 2 ranges of 20−22 kHz and 17−19.2 kHz, the data symbol

consists of 23 subcarriers spaced at 100 Hz apart.

The dominant echo, spans the first 3 ms of the reverberation

period, making it impossible to modulating bits at the sub-

millisecond level in the time domain. Second, the spectral

leakage aggravates as the length of bit duration decreases.

Figure 7b depicts the spectrum of chirp signals modulated

with on-off keying with different bit duration. Though with a

duration of 5 ms, the leakage significantly increases, leading

to the perception of the audience.

Low Packet Error Rate. AIRCODE assigns the audio link

as the control channel. Thus, it must be reliable with a low

packet error rate (PER). As audio channel suffers from multi-

path effect and frequency selectivity of speakers and micro-

phones, pilot symbols are usually used to account for different

channel responses of subcarriers and decide demodulation

thresholds accordingly [38]. However, the threshold-based

method requests that all bits ’1’ across all symbols are modu-

lated with the same amplitude, leading to waste of energy and

low SNR, when some symbols contain only a few bits ’1’.

5.2 Audio Packet Design
Figure 8a shows the audio packet format in both time and

frequency domain. To cope with the video channel, we set

the packet duration as 1
15 s, corresponding to 4 data frames,

during which video configuration is unlikely to change.

To solve the challenge of short packet duration, AIRCODE

modulates bits in the frequency domain and sets data symbol

length as 20 ms, which is about 4 times longer than the major

echo and has low spectral leakage. To further avoid the impact

of reverberation, AIRCODE separates the preamble and the

data into different frequency bands. Specifically, as shown

in Figure 8b, the chirp preamble is within 20−22 kHz, and

the data symbol is within 17−19.2 kHz. Both of which are

inaudible to most human ears [42]. To further reduce spectral

leakage, AIRCODE applies a tapered-cosine window on the

preamble and each data symbol.

To solve the challenge of low packet error rate, AIRCODE

adopts the two-layer coding scheme. Specifically, each packet

contains 12 control bits. The 12 control bits are first encoded

into 23 bits codeword via Golay code [23], which can correct

any 3-bit error. Then, to fully exploit signal power allocated

to the control signal, AIRCODE further adopts Manchester

coding, which encodes bits ’1’ as ’10’ and bits ’0’ as ’01’.

During modulation, AIRCODE assigns 22 Manchester bits of

the first 11 bits and the first Manchester bit of the 23rd bit

of the Golay codeword to the 23 subcarriers of the first data

symbol, and the rest 23 Manchester bits to the second data

symbol. Figure 8b shows an example of the spectrum of one

data symbol, where the subcarrier spacing is 100 Hz. Since

each pair of Manchester bits are assigned to either adjacent

subcarriers or data symbols, they experience similar channel

responses caused by multipath effect and frequency selectivity

of audio devices. Thus, the receiver can demodulate the data

symbol by directly comparing amplitudes of pairs of Manch-

ester bits without thresholds, and the sender can distribute all

allocated signal power evenly to bits ’1’ in each data symbol,

to increase average SNR and reduce overall PER.

6 Video Data Channel
The screen-camera link supports high throughput communi-

cation with imagery codes invisible to human eyes. The basic

principle is to exploit the low-pass flicker fusion property

of human eyes. Specifically, screen-camera communication

generates high-rate complementary frames by inversely mod-

ifying the lightness of a pair of adjacent raw video frames.

When videos are played at high frame rate, e.g., 120 FPS,

human eyes can only observe raw video frames, which are

the average of complementary frames, and cannot perceive

the embedded data frames. In contrast, cameras with a high

capturing rate can still acquire and decode data frames. AIR-

CODE takes the idea of hidden screen-camera communication,

but focus on lower BER as well as higher data rate, by incorpo-

rating robust speaker-microphone link as the control channel,

and accurate screen detection based on visual odometry.

Figure 6 shows the video communication part of AIRCODE.

At the sender side, data bits are firstly encoded with a concate-

nated coding scheme, including Reed-Solomon (RS) coding

as source code and Convolutional coding as channel code.

The coding scheme is adaptively selected according to the

texture complexity of the raw video, to achieve high through-

put in plain frames, as well as low BER in textured frames.

The encoded bits are modulated as data frames and embed-

ded into pairs of complementary raw video frames. At the

receiver side, AIRCODE inputs camera images into the screen

detection process to obtain successive locations of the screen

in frames. Meanwhile, the associated audio signal is pro-
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cessed to get corresponding metadata. Then, camera images

are equalized with screen location information, and data is

finally demodulated and decoded with metadata.

6.1 Data Frame Design
Figure 9 shows AIRCODE’s data frame. AIRCODE follows

the basic design of ChromaCode, but removes the code pream-

ble blocks in ChromaCode that redundantly encode metadata

of data frames, thanks to the use of the audio channel. AIR-

CODE divides the whole image frame into 16 data blocks with

equal size. Similar to ChromaCode, each data block contains

several data cells and is surrounded with alternate black and

white cells as references. The encoded bits are interleaved

and filled into data blocks. Specifically, the i-th bit is assigned

to the 
 i
16�-th cell in the (i mod 16)-th block.

The metadata of a data frame, including the levels of RS

coding and Convolutional coding for encoding, and the data

cell size for modulation, are transmitted as control packets

over the reliable acoustic channel. Each control packet of

metadata contains 12 data bits, with 2 bits for the RS coding

level, 1 bit for the Convolutional coding level, 6 bits for the

data cell size, and the rest 3 bits for parity bits for these three

parameters. To save audio channel capacity, four successive

data frames (embedded in eight video frames) share the same

set of parameters in one control packet, as the video content

is unlikely to drastically change during such a short period.

To avoid floating time offsets between the audio control

channel and the video data channel, AIRCODE periodically

(e.g., 5 s) sends video frames with the highest coding level

and audio packets. These video frames and audio packets

contain the synchronization information. At the receiver, each

control audio packet will be aligned with 4 video data frames

according to the latest synchronizing frame.

6.2 Adaptive Error Correction
In practice, textures of carrier video can considerably impact

data transmission. In particular, the BER of the screen-camera

link is lower in plain frames consisting of pixels in similar

colors but significantly higher in textured frames. Therefore,

to ensure robust data transmission, an error correction scheme

with high correction ability should be used for textured frames.

In contrast, a scheme with high efficiency yet potentially low

correction ability will be preferred in plain frames to achieve

high throughput.

This observation leads to the adaptive error correction

scheme of AIRCODE, which adjusts the screen-camera chan-

nel parameters in metadata, i.e., RS coding level, Convolu-

tional coding level, and data cell size, according to the dy-

namic texture complexity of the carrier video. In detail, AIR-

CODE supports 40 levels of data cell size, 2 levels of Con-

volutional coding and 4 levels of RS coding, which result in

320 levels of error correction. Given a video, a subset of error

correction levels are selected and linearized by setting the

data cell size as the most significant factor and the RS coding

as the least significant factor. The video is segmented where

a segment can be as short as 8 frames (i.e., 1
15 s), correspond-

ing to 1 audio packet. For each video segment, AIRCODE

quantizes the texture complexity by calculating the average

contrast of pixels against their neighboring 9×9 pixels, and

maps the texture complexity to the error correction level.

7 Evaluation

7.1 Experimental Methodology
Experiment Setting and implementation.We use an AOC

AGON AG271QX monitor as the sender of encoded videos

and audios. It supports 120Hz refresh rate along with

1920×1080 resolution and has two audio speakers on its

back. One Nexus 6P smartphone without hardware modifica-

tion is used as the receiver. videos and audios are played by a

DELL XPS 8900-R17N8 desktop, which equips a GeForce

RTX 2070 GPU, and MPV player with VDPAU acceleration.

AIRCODE uses FFmpeg to extract and compress video frames

and audio tracks. OpenCV is used for the implementation

of the rule-based screen detection algorithm and the screen

tracking algorithm. AIRCODE exploits MediaCodeC inter-

face for efficient hardware video coding and Boost library for

implement of audio coding.

Video & Audio Selection. Table 1 shows the selected

videos and their audios. For the video with pure gray im-

ages, an empty audio track is used as its origin audio. The

bars indicate the levels of texture complexity, luminance and

quality of the selected video contents, which cover a variety

of combination. The more portion of a bar is filled with colors,

the higher level of the metric is achieved by the correspond-

ing video. E.g., the video Dynasties (D) has complex texture,

low luminance and high quality. The corresponding audio

contents include different types, e.g., human speaking, ani-

mal sound, an object moving and dropping, and background

music, indicated by the icons. In practice, the quality of a

streaming video frequently switches. However, frames be-

tween two adjacent switches still have the same quality. As

AIRCODE encodes data at the frame level, frequent switch-

ing of streaming videos has a minor impact on AIRCODE.

Evaluation Metrics. For screen-camera communication, we

compare AIRCODE with ChromaCode and InFrame++ [36]
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Table 1: Origin primary video & audio clips used in the experiments and their characteristics

Big Buck Bunny (B) Dynasties (D) Gray (G) Journey (J) Zootopia (Z)

Texture
Luminance

Quality
Audio

in terms of throughput, goodput and data BER. Throughput

is the amount of all received bits. Goodput is the effective

throughput of correctly decoded data bits. And BER is the

number of error bits divided by total received data amount.

ChromaCode uses the rule-based screen detection algorithm,

and InFrame++ uses visible markers and alignment patterns

at screen corners and borders. Since the speaker-microphone

link serves as control channel and does not convey much data,

we only evaluate its reliability in terms of BER and PER.

User Study. We invite 12 participants, including students

and staffs on campus, to score the watching experience of en-

coded videos and audios. The ages of these participants range

from 20 to 30. Nine participants are male, while the rest 3 are

female. In total 40 videos together with their audios are pre-

pared and tested. Videos and audios with or without data are

randomly shuffled and played. Participants, not knowing their

orders, are asked to give scores on the quality of them. Denote

the scores for encoded videos and audios as S_enc and that for

raw videos and audios as S_raw, the final scores for encoded

videos and audios are normalized as S_enc
S_raw . In some cases, the

normalized score is larger than 1, meaning that participants

cannot statistically differentiate encoded videos and audios

from their original counterparts. Moreover, to check whether

young children can perceive the embedded code, we inten-

tionally invite one 5-year-old child to watch the testing videos

and audios and give feedback. Considering that children at

such a young age may not have enough comprehension ability

as adults to understand the meaning of the experiment, we

neutrally ask him whether he can see or hear anything peculiar

in videos or audios. All experiments are approved by our IRB,

and do not raise any ethical issues.

7.2 Overall Performance
Performance of the communication processes. We first re-

port the overall performance of AIRCODE in terms of through-

put, goodput, and BER of the video channel, and BER and

PER of the audio channel.

Figure 10a-10c show the performance of screen-camera

communication in AIRCODE with different video contents.

Two state-of-the-art approaches, ChromaCode and InFrame++

are evaluated for comparison. As shown in Figure 10a,

AIRCODE achieves 1 Mbps throughput for all 5 videos, at-

tributed to robust transmission of metadata through speaker-

microphone channel. In contrast, though encoded with the

whole screen, ChromaCode has lower throughput, especially

with the videos ’D’ and ’Z’. InFrame++ has the lowest

throughput, due to its inefficiently CDMA-like coding scheme.

Figure 10b shows that except the video ’D’, the average BER

achieved by AIRCODE is about 5%, which is statistically

lower than its counterparts, owing to the accurate screen de-

tection process. Figure 10c further compares the goodput of

AIRCODE and ChromaCode. Due to the additive effect of

accurate screen detection and robust metadata transmission,

AIRCODE outperforms ChromaCode throughout all testing

videos. Another key observation from Figure 10b and 10c is

that the system performance is highly impacted by video con-

tent, where the video with more plain frames (i.e., ’G’) tends

to have lower BER and higher goodput. AIRCODE takes adap-

tive error correction, which further increases the reliability of

AIRCODE with different video contents.

Figure 10d shows the BER and PER of the speaker-

microphone link, whose reliable communication is of great

importance for the overall system. Across all types of audio

contents, the BER of the audio control channel consistently

remains below 1%. With the help of Golay code, over 99.9%

audio control packets can be successfully decoded, providing

robust metadata for the screen-camera link.

Performance of the screen tracking process. The screen

detection rate and tracking error of AIRCODE are evalu-

ated and compared with the rule-based algorithm of Chro-

maCode. Since labeling ground-truth of all video frames is

labor-intensive, we indirectly calculate screen detection rate

as the ratio rmethod
rbase

, where rmethod is the frame decoding rate

of the method, and rbase is the frame decoding rate when

the camera is fixed at some sampling locations. To calculate

screen tracking error, we randomly sample frames with 0.5s

intervals from all videos and mark the ground-truth screen in

them for comparison.

On average, AIRCODE takes 0.79 s to initialize. Figure 11a

shows that AIRCODE consistently detects the screen in over

97% frames across different types of videos. In contrast, the

rule-based algorithm suffers from confusing video contents,

and ChromaCode can detect the screen in over 90% frames in

videos ’B’, ’G’ and ’J’, but only about 70% frames in videos

’D’ and ’Z’. Figure 11b further shows the tracking error of the

two methods in terms of image pixels. AIRCODE achieves
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Figure 10: Performance of the screen-camera communication and the speaker-microphone communication.
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Figure 11: Performance of screen tracking.
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Figure 12: Impact of monitor-phone distance.

Table 2: Benefits of individual module.

(kbps)

Throughput

(%)

BER

(kbps)

Goodput

Detection

Screen Tracking 1086.4 6% 139.5

Rule 1073.8 8.3% 77.3

Channel

Control Audio 1084.3 4.4% 149.1

Video 893.7 4.6% 144.3

Correction

Error Adaptive 1086.3 5% 159.4

Fixed 1086.4 4.4% 149.4

consistently small tracking error for all videos, while the per-

formance of ChromaCode is highly related to video content.

Specifically, all tracking errors of AIRCODE are within 9 pix-

els. In contrast, 12.8% tracking errors of ChromaCode exceed

9 pixels, and the maximal error is even beyond 60 pixels. This

validates the effectiveness of screen tracking.

Benefits of individual module. We further evaluate the in-

dividual performance improvement from the screen detection,

control channel and error correction of AIRCODE. When one

module is evaluated, the other modules are disabled (error

correction) or assumed to be perfect (screen detection and con-

trol channel). Table 2 shows the average system performance.

First, the screen tracking method of AIRCODE has lower

BER and significantly higher goodput than the rule-based

method of ChromaCode, thanks to its consistently accurate

screen tracking. Second, comparing with sending metadata

via video, using the audio channel improves throughput and

goodput. On one hand, it saves the area where metadata has

to be duplicated for reliable detection in video frames. On the

other hand, the audio channel is more robust and overcomes

the occasion when even the duplicated metadata in video

frames cannot be correctly decoded. Third, by considering

the texture complexity of videos, although the adaptive error

correction of AIRCODE has a slightly higher BER than error

correction with fixed coding level, it achieves overall 10 kbps

more goodput, as more data bits are adaptively encoded.

7.3 Parameter Study
Distance. Figure 12 shows the impact of distance between the

monitor and the phone. For the video part, the data cell size is

fixed to 10×10. As shown in Figure 12a, the goodput of AIR-

CODE abruptly decreases when the distance becomes longer

than 90 cm. One main reason is that small data cells become

hard to recognize when the distance increases. It suggests that

larger data cells should be used at longer distances, however,

with the sacrifice of the throughput. The other reason for per-

formance deterioration is that the focal length of the receiving

camera will automatically change more frequently with larger

distances, leading to more blurry video records.

For audio part, as shown in Figure 12b, while the BER

gradually increases with the distance, due to decay of receiv-

ing signal strength, all errors can be corrected and the PER

remains 0 when the phone is within 150 cm from the monitor,

which fulfills the requirement of the video data channel.

Angle. We evaluate the impact of relative angles between

the phone and the monitor, as shown in Figure 13. For video,

Figure 13a shows that the goodput decreases while the BER

increases with a large angle. The main reason is that the pro-

jection distortion becomes severer as the camera deviates from

the front of the monitor, and in this case, video frames cannot

be easily decoded even with accurate screen estimation.

The same trend also appears in the speaker-microphone

link, where the BER increases with the angle between the

monitor and the phone, as shown in Figure 13b. It is mainly

due to the high directivity of the monitor loudspeaker. Even

though, AIRCODE still achieves ultra-low PER of about 1‰.

Signal strength. For the video part, the signal strength is

represented as the quantity of lightness modification of data

frames on raw video frames. As shown in Figure 14a, the BER

gradually decreases as the amplitude of lightness modification

increases, since data cells can be more easily recognized from

the raw video content, and thus correctly decoded.

For the audio part, the signal strength is represented as the
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Figure 13: Impact of monitor-phone angle.
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Figure 14: Impact of signal strength.
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Figure 15: Impact of surrounding interference.
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Figure 16: Impact of frame size.

portion of power allocated to the embedded signal. As shown

in Figure 14b, the BER declines as the signal strength of the

embedded signal increases, while the PER remains 0 even

when only 20% power is allocated.

Background interference. We further evaluate the robust-

ness under interferences from the environment. For the video

part, the major source of interference is ambient luminance.

Typical indoor ambient luminance ranging from 0 to 800 lux

is evaluated. Specifically, the ambient luminance less than

600 lux is generated by an unshielded lamp suspended over

the screen-camera link, while that between 600 and 800 lux is

generated by natural sunlight during the daytime. A photome-

ter is placed adjacent to the camera to measure the ambient

luminance. As shown in Figure 15a, while strong ambient lu-

minance reduces the contrast between complementary frames,

the system performance only slightly degrades. It is concluded

that ambient luminance has little impact on data transmission.

For the audio part, the major source of interference is envi-

ronmental noises. For evaluation, we set AIRCODE to work

normally at 1 m away from the monitor, and let a loudspeaker

be 3 m away from the phone and play various types of audios

as background interferences. The volume of the loudspeaker

is adjusted to create interferences varying from 20 dB (0%

volume) to 70 dB (100% volume) at the speaker. Figure 15b

shows that the variance of BER is small and the PER remains

0 no matter how loud the loudspeaker plays interferences,

demonstrating the robustness of the audio channel.

Frame size. For the video part, the frame size refers to data

cell size. Figure 16a shows the data rate and BER with differ-

ent data cell sizes. By gradually reducing data cell size, the

throughput boosts from 163 Kbps to 2855 Kbps. AIRCODE

achieves a high goodput of 182 Kbps with 8×8 data cell but

saturates when data cells are further scaled down to 6×6, due

to a higher chance of recognition failure and more bit errors.

In practice, given the requirement of the BER and communi-

cation distance of an application, AIRCODE can trade-off the
throughput by selecting appropriate data cell sizes.

For the audio part, the frame size refers to packet duration.

As shown in Figure 16b, both BER and PER decrease with

longer packets, as longer data symbols are less affected by

reverberation and have finer frequency resolution for demod-

ulation. By observing that the decline of BER is not obvious

when the packet duration exceeds the length of 8 video frames

(i.e., 1
15 s), AIRCODE adopts 1

15 s as the default packet dura-

tion for the audio control channel.

7.4 Perception Test
Video & audio content. Figure 17 shows the variation of

code insensibility with different video and audio content. It is

observed that all normalized scores for videos are higher than

0.6 and those for audios are higher than 0.8 for AIRCODE,

indicating relatively high insensibility of the system. Among

the results, some normalized scores are equal or even higher

than 1, meaning that the quality of the encoded videos and

audios is sufficiently high that participants cannot distinguish

encoded videos and audios from original ones. For different

video contents, higher scores are given to videos ’B’, ’D’ and

’J’, which have more textured frames. It means that larger

lightness modification can be applied to textured frames to

ensure low BER without much impacting raw videos.

Biases of audiences. Scores given by 12 participants

demonstrate different biases of their perception, as shown

in Figure 18. For example, the participant 2 gives the statisti-

cally highest scores for encoded videos. From the interview

after the experiment, he admits that it is difficult for him

to recognize embedded data hidden in videos, meaning that

the encoded videos have almost the same quality as the raw

videos for him. In contrast, the participant 10 gives the lowest

scores for encoded videos of all three approaches, meaning

that he is relatively sensitive to unnatural alternation in videos.

Among all 12 participants, only 2 (i.e., 6 and 7) of them give

the highest average score to InFrame++. Yet, considering the

scoring fluctuations of participants, there are no significant
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Figure 18: Audience Diversity.

quality differences among the three approaches.

Besides 12 adults, one 5-year-old child also participates in

the test. We first show him training videos with perceptible

visual codes and acoustic noises. Then, the testing videos

and audios are played intermittently and the child answers

whether there are such codes or noises. To avoid biased hints

to the child, we only give the instruction at the beginning and

remain silence during playing of all testing videos. The result

is that both encoded videos and audios do not discomfort the

child, and he cannot observe or hear any interferences that

do not belong to the origin videos and audios, demonstrating

high insensibility of AIRCODE even for children.

8 Related Work
Hidden screen-camera communication. Hidden communi-

cation with the screen-camera link conveys information with-

out interfering watching experience of audience [11, 15, 24,

30, 36, 37]. Along this direction, pioneer works, InFrame [37]

and InFrame++ [36], propose and implement the basic idea,

which is to switch barcodes with complementary lightness and

leverage the flicker fusion property of human eyes. However,

InFrame++ uses visible markers at corners of video frames for

block localization, which explicitly interferes audience and

consumes precious screen spaces. Extensive efforts are further

made to improve the audience’s experience. TextureCode [24]

adaptively embeds data only in textured regions, which how-

ever is limited in throughput. PixNet [26] designs 2D OFDM

symbols that can correct perspective distortions. However,

they are not guaranteed to be invisible after embedded into

video frames and the frequency property of OFDM symbols

is destructed by changing video contents. ChromaCode [41]

improves code invisibility by modifying lightness in uniform

color space and achieves full imperception. However, pur-

suing code invisibility increases the difficulty of detecting

code frames. In comparison, ensuring code invisibility, AIR-

CODE adopts visual odometry for accurate screen detection

and achieves lower BER and higher goodput.

Speaker-microphone communication. Communication

with off-the-shelf speaker-microphone links has been stud-

ied in [12, 14, 16, 22, 25, 38, 40]. Dhwani [22] adopts OFDM

with PSK modulation and realizes acoustic near field commu-

nication. However, it works in the audible 6− 7 kHz band,

which interferes hearing experience of the audience and can-

not be embedded in normal audio. Chirp signal is widely

used in hidden acoustic communication in [12, 14, 16], for

its fine correlation property. However, data rates achieved

with chirp-based communication are less than 100 bps. Dol-

phin [38] proposes dual-mode unobtrusive communication,

which still only achieves average data rates of up to 500 bps,

even with the usage of a much wider frequency band from 8

kHz to 20 kHz. Noting the limitation of throughput and the

advantage of the reliability of speaker-microphone communi-

cation with off-the-shelf devices, AIRCODE designs reliable

and agile acoustic communication as the control channel of

screen-camera link with high frame rate, boosting the overall

throughput of the whole communication system. The acous-

tic channel will congest when multiple screens supporting

AIRCODE coexist. In such a case, the screens should sense

the audio channel before accessing it. Besides, audio packets

should be modified to identify their belongings to the screens.

We leave the support of multiple screens as future work.

Visual Odometry. Monocular visual odometry has the

goal of estimating camera trajectory and reconstructing the

environment with monocular commercial cameras [1–7, 13,

21,39]. Pioneer works, e.g., MonoSLAM [2], applies filtering-

based approach. Later, optimization-based methods [13] grad-

ually substitutes the filtering-based ones for their tracking

accuracy and efficiency. ORB-SLAM [21] is the representa-

tive work that uses ORB features in tracking and mapping.

AIRCODE exploits the idea of visual odometry to accurately

detect screens in images, enabling robust and practical screen-

camera communication.

9 Conclusion
In this paper, we present the design and implementation of

AIRCODE, the first hidden screen-camera communication

system that achieves considerably high data rates of >1Mbps.

AIRCODE is also the first system of its kind that exploits an

invisible video and inaudible audio dual channel. With the

high data rates being supported, AIRCODE opens up new

opportunities and underpins various applications yet to be

imagined for hidden screen-camera communication.
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Abstract
We design and implement LRP, a device-based, standard-
compliant solution to latency reduction in mobile networks.
LRP takes a data-driven approach. It works with a variety of
latency-sensitive mobile applications without requiring root
privilege, and ensures the latency is no worse than the legacy
LTE design. Using traces from operational networks, we iden-
tify all elements in LTE uplink latency and quantify them.
LRP designates small dummy messages, which precede up-
link data transmissions, thus eliminating latency elements due
to power-saving, scheduling, etc. It imposes proper timing
control among dummy messages and data packets to handle
various conflicts. The evaluation shows that, LRP reduces the
median LTE uplink latency by a factor up to 7.4× (from 42ms
to 5ms) for four tested apps over five mobile carriers.

1 Introduction

Low latency is critical to the proper functioning of various
delay-sensitive mobile applications, such as mobile VR/AR,
mobile gaming, mobile sensing, mobile machine learning,
and emerging robot/drone-based image/speech recognition
[22, 29, 36, 40]. These applications typically run on 4G LTE
and 5G mobile networks, which offer ubiquitous access and
seamless service. In this work, we study how to reduce net-
work latency over LTE networks for such applications in the
connected state. This complements the work that reduces the
connection setup latency [33].

Many emergent latency-sensitive mobile apps differentiate
themselves for their heavier uplink data transfer (e.g., user
motion control, sensory data, and live camera streaming) from
the device to the infrastructure. Our experiments further reveal
that, uplink latency contributes to a large portion of overall
latency in tested apps over operational LTE (§3.1). Reducing
the uplink latency is thus as important as reducing the down-
link latency. While the downlink transfer has been extensively
optimized, the uplink data transfer is less studied.

Reducing the uplink LTE latency turns out to be more chal-
lenging than the downlink latency. The uplink data transfer

in LTE is more complex, since it involves the interaction
between the device and the network. It adopts the feedback-
based device power-saving, base station-controlled schedul-
ing for data transfer, on-demand radio resource allocation,
retransmissions, etc. This results in more network latency
sources with complex interactions. Traditional infrastructure-
based solutions fall short to optimize them due to the lack of
knowledge on device-side application usage patterns.

We design and implement LRP, a device-based, software-
only LTE latency reduction solution that is readily usable for
every commodity smartphone device. A salient feature of LRP
is that it does not require root/system privilege, firmware mod-
ification or hardware change. It is thus applicable to every off-
the-shelf commodity device, including Android and iOS. LRP
explores the application-driven network latency reduction at
the device, which complements those existing infrastructure-
centric solutions that are good at downlink latency reduction.
LRP focuses on reducing LTE uplink network latency, which
is the bottleneck based on our empirical analysis.

The overall design of LRP takes the data-driven approach.
Through analysis of operational LTE traces, we identify all
elements in LTE uplink latency, and quantify them via two
popular applications (§3.2). Based on the gained insights,
LRP designates small dummy messages, which precede those
uplink data packet transfers. It thus eliminates the latency
elements due to power-saving and scheduling (§5). To make
this conceptually simple idea work, LRP infers critical LTE
parameters at the application layer, and performs proper tim-
ing control among dummy messages and data packet streams.
To reduce the overall latency, LRP further resolves the conflict
that arises among dummy messages, and avoids the conflict
between data packets and dummy messages. All these solu-
tion components work at the application layer without root
privilege, thus available for every off-the-shelf commodity
mobile device. While LRP is mainly designed in 4G LTE, it
can be readily generalized to benefit the emergent 5G (§5.5).

We implement LRP on commodity Android phones (§6).
Our experiments confirm LRP’s effectiveness (§7). LRP re-
duces the median LTE uplink latency by up to 7.4× (from
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Figure 1: Network data transmission over LTE.

42ms to 5ms) for four tested applications over five mobile
carriers. In any case, LRP ensures that the network latency
for data transfer is no worse than the legacy LTE design. The
incurred energy and data volume overhead is negligible.

2 Latency-Sensitive Mobile Apps over LTE

The mobile networks, such as 4G LTE and 5G, offer the only
large-scale infrastructure that ensures universal coverage and
“anytime, anywhere” access. Its infrastructure consists of radio
base stations (BSes) and the core network (see Figure 1). A
mobile device transfers its data with a local BS (“cell”), which
covers a geographic area. The BS further relays the data to
the Internet via the LTE core. A mobile device has uplink
(device→BS) and downlink (BS→device) transmissions. In
4G LTE, data transfer uses scheduling-based mechanisms,
where a BS schedules radio resources for each device in the
cell for its uplink and downlink data transfer.

We next exemplify some representative latency-sensitive
applications over the mobile networks.
Mobile VR A mobile virtual reality (VR) app typically in-
volves 3D scenes and associated graphical engines [10, 15, 29,
31]. Standalone VR headsets such as Google Daydream [17]
render 3D scenes locally. However, due to limited computa-
tion resources and high power consumption on mobile devices,
high-quality VR applications typically need the edge/cloud
servers to offload the rendering task [44]. In this client-server
scheme, the mobile headsets or pads provide sensory/control
data, while the server renders the 3D scene in the form of
graphical frames. The server coordinates multiple devices,
renders the VR graphical frames based on the device’s input,
and constructs the appropriate 3D scene for each given device.
• Showcase VR prototype: Following the above paradigm, we
have built an example VR game with Unity 3D engine [42] on
Android phones to study LTE latency. It has three modules:
the controller at the device, the camera controller at the server,
and the streaming component. The Android controller app
acquires the device rotation data from the gyroscope sensor to
control the in-game camera rotation. The GPS location is fed
into the VR game so that the virtual character moves with the
player’s location updates. Upon receiving the player’s sensory
data, the camera controller at the server processes them and
makes corresponding position and rotation movements for
the virtual camera. We implement the streaming module with

open-sourced libraries Unity Render Streaming [46] and We-
bRTC for Unity [18]. With the streaming module, the camera
view is rendered and streamed back in 60FPS to the player
with WebRTC. Players open the camera stream with the Web
browser on the phone to get the real-time camera view.
Mobile sensing Smartphones today are equipped with mul-
tiple sensors: accelerometer, gyroscope, camera, to name a
few. Many mobile sensing apps collect sensory data and up-
load them at runtime to the cloud for processing. For example,
a localization app sends the GPS data to the cloud for realtime
navigation. All such sensing apps are latency sensitive.
Mobile gaming In multi-player mobile games, the device
acts as a controller that collects user motion, while the re-
mote server processes the game logic. The server further pro-
vides proper synchronization and coordination among players.
Moreover, pure cloud-based gaming (with rendering being
processed in the cloud) is also trendy [29]. It is a new gaming
paradigm being pushed by companies [40].
Cloud/edge-assisted machine learning Mobile apps with
machine learning features (e.g., image/object recognition or
speech understanding [14, 22]) also pose latency require-
ments. Network latency becomes a bottleneck for smart assis-
tants, such as Alexa [7] and Siri [45]. Users may tolerate at
most 200ms response time, while deep learning based local
transcriptions take only 10ms [13].
Networking usage patterns by these mobile apps All
the above representative mobile apps involve frequent and
regular uplink data transfer. The mobile VR, sensing, and
gaming [49, 50] applications collect data from device sensors
and upload them to the server for subsequent actions. These
sensors typically produce small data periodically. The user
can only configure the sampling periodicity through the API
provided by the mobile OS [21]. The machine learning based
apps also have predictable traffic. They typically perform
local computations with predictable latency before an uplink
data transfer. For example, face recognition apps process a
video frame locally using a fixed-sized neural network (NN).
A user can gauge the delay based on the NN size. Emerging
robotic or drone-based applications perform local tasks for a
certain duration (e.g., scanning the surrounding environment
for a few seconds [6]) before uploading the result. Such apps
also exhibit uplink traffic that can be accurately predicted.

3 Demystifying LTE Latency in Mobile Apps

In this section, we empirically analyze where the application-
perceived LTE latency stems from. We address two issues:

• How large can LTE uplink latency be over operational 4G
networks? We use measurements to quantify it in §3.1.

• Why is the uplink latency prohibitively high over LTE? We
break down this latency into multiple elements. We quantify
their impact, identify root causes, and share insights in §3.2.
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App Latency AT&T T-Mobile Verizon Sprint

PUBG
UL Net 10.7 9.9 10.0 17.7
DL Net 5.0 5.0 5.0 5.0

UL/Total 68.2% 66.4% 66.7% 78.0%

VR
UL Net N/A 1 18.4 23.8 N/A
DL Net N/A 8.5 10.6 N/A

UL/Total N/A 68.4% 69.2% N/A

Table 1: LTE latency (ms) for two mobile apps.

3.1 Measuring LTE Latency

We quantify the uplink latency over operational LTE networks
via measurements and trace analysis.

Methodology We analyze the traces from our showcase
VR game and another popular mobile application PUBG Mo-
bile [40]. Our VR application uploads user motion pack-
ets (∼60Bytes) and receives 60FPS, 5Mbps downlink video
stream. The downlink data packets are sent from the de-
ployed server to the device over LTE. PUBG is a mobile
game with frequent uplink data (∼40ms interval) and down-
link responses. Both uplink and downlink packets are small
(<100Bytes). The latency due to server processing is less than
1ms. The mobile devices (a Pixel 2 and a Pixel XL) run the
apps. We collect both app logs and LTE signaling traces via
MobileInsight [32]. We carry out our experiments over four
US mobile carriers from 12/2019 to 09/2020. The tests cover
static, low-mobility (∼1m/s), and high-mobility (∼30mph)
cases, with varying signal strength (-120∼-80dBm).

Results We first measure the LTE uplink latency. We mon-
itor the device buffer and compute the latency for each data
packet. This information is available in the MobileInsight
message “LTE MAC UL Buffer Status Internal”. Despite small
packet size, the uplink latency turns out to be non-negligible,
as shown in Table 1. For all four carriers, the uplink la-
tency (UL NET) ranges from 9.9-17.7ms for PUBG and
18.4-23.8ms for VR. These latency values might not meet
the requirements of a number of latency-sensitive apps [5].

Who is the latency bottleneck? We further discover that,
instead of downlink, the uplink latency poses as a major com-
ponent in overall latency. We compute the downlink latency
from logs of “MAC DL Transport Block” in MobileInsight. The
results (DL NET) are in Table 1. We see that, uplink latency
accounts for 66.4-78.0% in PUBG and 68.4-69.2% in VR.
Surprisingly, even for the downlink-heavy VR app, uplink la-
tency still contributes to a large portion of the overall latency.
Recent techniques (e.g., MIMO and carrier aggregation) and
5G further reduce the DL latency with faster PHY designs. In
contrast, as we will see later, the scheduling design employed
for the uplink will likely be retained in 5G. As a result, we
will focus on the uplink latency in this paper.

1VR cannot run on AT&T and Sprint, since their firewalls block the traffic.
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Figure 2: LTE uplink procedure & latency elements.
Latency (ms) AT&T T-Mobile Verizon Sprint

Tdrx_doze 29.7 31.9 28.3 29.2
Tsr_wait 4.4 4.4 4.6 9.0
Tsr_grant 8.2 8.5 8.0 10.1
Tbsr_grant 0.03 0.00 0.03 0.16

Tretx 0.17 0.14 0.32 0.72

Table 2: Measured latency elements for VR application.
Tdrx_doze is the average value when present.

3.2 Why Long Latency: Breakdown Analysis

We next analyze the root causes for long network latency in
4G LTE. We identify various latency elements for the LTE
uplink latency by analyzing the 3GPP standards [1, 2].

We breakdown the uplink latency as shown in Figure 2. The
average number of each latency element is shown in Table 2.
We can observe that, the major uplink latency bottlenecks are
Tdrx_doze, Tsr_grant , and Tsr_wait , while Tbsr_grant and Tretx are
one magnitude smaller compared to other elements. We will
see how each latency element acts and why it poses or does
not pose as the latency bottleneck to our applications.

3.2.1 DRX Doze Latency.

Power-Saving Mode through DRX The power-saving
mechanism DRX (Discontinuous Reception) in LTE may also
affect latency. In a nutshell, DRX is a technique for a device
to save power over LTE (see Figure 3). Instead of continu-
ously waking up for potential downlink delivery from the BS,
the device might sleep in the absence of data transfer, thus
reducing its energy consumption. In DRX, a device has three
states: Long DRX Cycle, Short DRX Cycle, and Continuous
Reception (CRX) [2]. In CRX, the device wakes up during
the ON period to monitor downlink channels. In long/short
DRX, the device only wakes up for a short period of time (set
by the onDuration Timer) at the start of each DRX cycle. It
dozes off during the OFF period for the remaining time.

The DRX state transition is shown in Figure 3. In the
Long/Short cycle state, if any downlink data is received dur-
ing the ON period, the device enters the CRX state and starts
the drx-InactivityTimer. Upon sending an uplink data, the
device initiates an SR request. It then switches to the CRX
state as well. If the device receives downlink data or initiates
another SR request, the timer restarts. The short DRX state
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Parameters AT&T T-Mobile Verizon Sprint

Tsr_grant

8ms 96.6% 96.5% 98.8% 0
10ms 0 0.2% 0.1% 98.1%
others 3.4% 3.3% 1.2% 1.9%

Tsr_periodicity

10ms 94.0% 98.1% 92.3% 11.9%
20ms 6.0% 1.9% 0 48.9%
40ms 0 0 7.7% 39.%

Tinactivity_timer
200ms 100.0% 99.5% 99.6% 84.5%
others 0 0.5% 0.4% 15.5%

Table 3: Critical LTE parameters for uplink latency.

Long	DRX Short	DRX

CRX

drxShortCycleTimer
Cycles	End

SR/DL	Data
Drx-Inac=vityTimer

Expires SR/DL	Data

Figure 3: State transition for LTE DRX power-saving.

is entered once the drx-InactivityTimer expires. In this state,
the device enters long DRX after the number of drxShortCy-
cleTimer short cycles. All such involved timer parameters are
negotiated between the device and the BS during connection
setup through RRC.

How downlink DRX incurs long uplink latency DRX
is designated for power saving over downlink transmissions.
It should not block any uplink transfer. In fact, the 3GPP
specification [2] stipulates that, upon the uplink sending an
SR, downlink DRX should enter the CRX state as if receiving
a downlink data packet. However, we found that this is not the
case in practice. A new data packet refuses to invoke an SR
if the device is in the doze mode. Instead, it continues to doze
for a while (the time is denoted as Tdrx_doze). It then waits for
an SR slot to initiate the SR, while migrating the device to the
CRX state. Table 2 shows that, Tdrx_doze is 28.3-31.9ms on
average in the four carriers. The maximum latency is 59ms
with the 90th percentile being 42ms.

Note that the DRX doze latency is different from the known
downlink packet delay due to waiting for DRX ON state.
3GPP [1, 2] does not mandate to prepare for SR at the DRX
state. Although this latency element is not standardized, it is
common for vendors as they use DRX doze to save energy.
The DRX-induced doze timer is hinted in Qualcomm patents
[52], where the device defers its SR during DRX OFF for
energy savings. We also indirectly validate this behavior
in a ZTE Z820 with Mediatek Chipset. For packets with an
interval of 1 second, the measured average RTT is 35ms longer
than that of packets with a small interval.
Insight: A packet keeps the device at the CRX state for
Tinactivity_timer. The idea is to reduce the DRX doze latency by
sending a dummy message in advance. This way, the device
is kept in the ON period before data arrival. The data packet
can thus be sent without deferring until the doze period ends.

3.2.2 Scheduling Latency.

Uplink/downlink scheduling in LTE: In LTE, the uplink
and downlink data transfers take different approaches:

• Uplink data transfer over LTE As shown in Figure 1, the
uplink data transmission is through PUSCH (Physical Uplink
Shared Channel). All data transmissions are regulated by
the BS, which allocates resource blocks (RBs) for the actual
transfer. An RB is the smallest unit allocated for a device.

In the scheduling-based LTE design, uplink data cannot be
immediately sent out before the device is granted resource.
This is done via the request and grant mechanism. Specifi-
cally, the device sends an SR (Scheduling Request) through
PUCCH (Physical Uplink Control Channel). SR is a signal-
ing message notifying new data arrival at the mobile device.
Moreover, an SR signal cannot be sent at any time instantly.
It can only be sent during certain subframes (called SR oc-
casions). The periodicity of SR occasions is notified by the
BS during connection setup. Upon receiving an SR, the BS
returns an uplink Grant (i.e., grant) to the device. A grant
specifies what RBs and modulation the device could use 4ms
later. The number of RBs in response to an SR depends on the
BS configuration, since SR is just a message stating “device
has data to send” without specifying the amount.

• Downlink data transfer over LTE LTE still uses the
scheduling-based operations for its downlink. However, BS
directly allocates RBs for each device upon data arrival, since
BS knows what data to transmit to which device.

How scheduling incurs long latency The device also suf-
fers from its uplink scheduling latency. It must wait for an SR
occasion before receiving a grant from the BS to upload its
data packet. The latency element, denoted as Tsr_wait , is thus
affected by the periodicity of an SR occasion Tsr_periodicity.
The device then waits for a grant, which the device could
use 4ms later. The latency from sending the SR to send-
ing the data packet is denoted as Tsr_grant . The two elements
of scheduling are shown in Figure 2. We measure them
in Table 2. The SR waiting latency Tsr_wait is 4.4ms for
AT&T, 4.4ms for T-Mobile, 4.6ms for Verizon, and 9.0ms
for Sprint. Sprint has the largest Tsr_wait because it has the
longest SR cycle. Tsr_grant is 8.2ms, 8.5ms, 8.0ms, and 10.1ms
for the four carriers. The accumulative latency is denoted as
Tscheduling = Tsr_wait +Tsr_grant .
Insight: This scheduling latency can be reduced. If a grant
is pending at the device, a new arriving data packet can use
it for transfer. Therefore, we may use a dummy message to
request for a grant in advance, so that the data packet can use
this grant for actual transfer without delay.

3.2.3 Other Latency Elements.

Buffer status report (BSR) SR is an indicator that in-
forms the BS of new pending data, without specifying how
much. When the packet that triggers SR is large, the initial
grant might be insufficient. The device then sends a BSR
(Buffer Status Report) together with the data packets in the
scheduled RBs. Unlike SR, a BSR includes the info on how
much data still remains in the device buffer. Upon receiving
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the BSR, the BS will process it and respond with sufficient
grants for the buffered uplink data.

We note BSR’s impact on uplink latency is negligible for
most applications in §2. The latency between a BSR and the
time to use the grant (denoted as Tbsr_grant) is illustrated in
Figure 2. Conceptually, it is the request processing time + 4ms,
similarly to Tsr_grant (≈ 10ms). However, it equals to 0 when
the initial grant is sufficient. The measurement results are in
Table 2. The BSR latency is less than 1ms on average for four
US carriers. This is because a base station usually provides a
large grant (>100B) sufficient for our apps in response to SR,
Retransmission in LTE An uplink data packet might be
corrupted during transfer. Upon receiving a corrupted packet,
the BS notifies the device by sending a NACK and a grant.
The device uses the grant to retransmit the corrupted data.
Similar to BSR latency, the retransmission has limited impact
on the uplink latency for apps in §2. The ReTx latency for up-
link data packet is fixed at 8ms if needed [1] and 0 otherwise.
We denote this latency as Tretx and the procedure is shown in
Figure 2. Among all data packets, 2.1% in AT&T, 1.7% in
T-Mobile, 4.0% in Verizon, and 9.1% in Sprint perceive ReTx
latency. Less than 1ms latency is incurred on average, shown
in Table 2. Unlike downlink with up to 10% retransmissions
[48], uplink packets are small and less prone to corruption.

4 LRP Overview

We devise LRP, an in-device software solution to latency re-
duction for mobile apps. Figure 4 shows LRP’s components. It
runs as a user-space daemon at the device, without requiring
system/root privilege, firmware modification, or hardware sup-
port. It is applicable to both Android and iOS. LRP masks the
LTE latency elements in §3.2 for applications by proactively
requesting the needed radio resources and high-speed transfer
mode, while still retaining low energy and data consumption
overhead. As an application-layer solution, LRP cannot di-
rectly control the low-level LTE mechanisms (that require root
privilege or firmware access). Instead, it indirectly regulates
the LTE uplink transfer with well-crafted dummy packets. LRP
complements solutions designed to reduce other non-network
latency elements [19, 51, 54]. While conceptually simple,
LRP must address three challenges:
• Accurate timing control for each latency element (§5.1–
5.2): Initializing the dummy packets at the right time is
crucial to both reducing latency and minimizing energy con-
sumption, signaling overhead, and radio resource usage (thus
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Figure 5: Component solution to DRX doze latency.

billing). The proper timing depends on the traffic pattern and
the unique characteristics of each latency element. To this
end, LRP customizes the timing control for critical latency
elements, including the DRX doze and scheduling (§3.2).
• Conflict handling for overall latency reduction (§5.3):
Simply reducing each latency element does not suffice to
reduce the overall latency. Due to the complex interactions
between LTE latency elements, reducing one latency element
may increase other latency elements. Moreover, the dummy
packets may compete radio resources with the legitimate data,
incurring additional data latency. To this end, LRP devises
resolution and avoidance schemes for both types of conflicts.
• Rootless inference of critical LTE parameters (§5.4):
To be readily usable by every device, we design LRP as a user-
space software daemon without requiring system/root privi-
lege. The challenge is that, LRP’s latency reduction requires
the fine-grained knowledge of low-level LTE parameters in-
side the hardware modem chipset. Existing solutions to di-
rectly access them (e.g., MobileInsight [32] and QXDM [41])
require root privilege or external hardware support. Accord-
ing to [28], only 7.5% of global mobile devices are rooted.
We propose a novel approach to infer these parameters with-
out any system privilege or firmware/hardware modification.

5 The LRP Design
We next elaborate on LRP’s design. We first propose compo-
nent designs to reduce each latency element (§5.1–§5.2), and
resolve potential conflicts among them (§5.3). To realize the
components without root privilege, we propose a novel infer-
ence method at the application layer (§5.4). We analyze LRP
and extend the discussion to irregular traffic and 5G (§5.5).

5.1 Energy-Efficient DRX Doze Elimination
To reduce the DRX doze latency in §3.2.1, LRP should en-
sure the device is in ON period when a data packet arrives
at the device buffer. As an application layer solution, LRP
cannot directly switch the device to the CRX state (that needs
firmware modification). Instead, it sends a dummy packet
(rouser) before the data packet’s arrival.

Despite being straightforward at the first glance, a rouser
is only effective if being sent at the right time. An imprudent
rouser can either incur unacceptable energy waste or cannot
help reduce latency. Therefore, timing control is crucial to
balancing latency and energy cost. We first discuss some naive
solutions with limitations, and then present our design.
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Naive timing control One naive solution is to keep DRX
at CRX state at all times by frequently sending rousers. As
shown in Figure 5(a), this can be achieved by sending a rouser
every Tinactivity_timer. Unfortunately, this results in unaccept-
able energy waste, as the device never enters the doze mode.

A better choice is to send a rouser with the time in advance,
denoted as tr, being set to tr = Tinactivity_timer (Figure 5(b)). On
one hand, as the packet keeps the ON period for Tinactivity_timer
after dozing, tr = Tinactivity_timer ensures that the data packet
enters the buffer during the ON period. On the other hand,
this saves power compared to the first naive choice, since the
extra ON period is capped at Tinactivity_timer for each packet
at most. However, extra energy consumption is still incurred.
Since Tinactivity_timer (∼200ms) is typically much larger than
Tdrx_doze (∼30ms) in reality, the ON period between wakeup
from the doze mode and the data packet is unnecessary.

LRP’s approach LRP prioritizes latency over marginal en-
ergy waste with proper timing control. Instead of frequent
rousers in naive solutions, LRP only sends a rouser for the
time Tdrx_doze in advance. We thus keep updating the maxi-
mum Tdrx_doze, denoted as Tdrx_doze_max. The timing to send
the rouser is tr = Tdrx_doze_max. If the device enters the ON
period during doze, i.e. tr > Tdrx_doze, the rouser finishes doz-
ing before the data packet arrives, thus eliminating the doze
latency for the data packet. It is also likely that Tdrx_doze for a
rouser exceeds tr. In this case, the packet enters the buffer and
endures the dozing latency together with the rouser. Although
the doze latency is not eliminated, the rouser reduces it by tr.

5.2 Resource-Efficient Proactive Scheduling

LRP next seeks to mask the round trips of the scheduling in
§3.2.2 for the mobile app. The idea is to send a scheduling
request (SR) before the arrival of the data, so that the data
does not need to wait for the radio grants. As an application-
layer solution, LRP cannot directly trigger the SR early (which
requires modifying the firmware). Instead, it requests a grant
from the BS in advance by sending a dummy message, named
prefetcher. This is feasible since the grant is not tied with the
packet that requests it. Moreover, since the BS responds to
each SR regardless of the pending data size, a small dummy
message can receive a grant that allows for much-larger-size
transmission than itself, thus sufficing to accommodate the
followup data packet transfer in a single transmission.

Similar to the DRX doze elimination in §5.1, an effective
prefetcher also needs accurate timing control. As shown in
Figure 6, imprudent timing can offset the latency reduction,
and/or waste radio resources. We next discuss both naive
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Figure 7: Corner case: a prefetcher increases latency.

solutions in Figure 6, and then show LRP’s approach.
Naive timing control A too early prefetcher might result
in both resource waste and prolonged latency as shown in
Figure 6(a). The prefetcher is sent too early so that the timing
to use the returned grant is already passed when the data
packet arrives. The resource is thus wasted, while the data
packet misses the opportunity to reduce its scheduling latency.

Similarly, a late prefetcher could also miss the opportunity
to reduce the scheduling latency for the data packet, as shown
in Figure 6(b). If the prefetcher is sent too late after a potential
SR that could reduce latency, the data packet might have to
wait for scheduling latency as if no prefetcher is issued. In
the worst case for both early and late prefetcher, it may result
in missed latency savings up to Tsr_periodicity +Tsr_grant .
LRP’s approach LRP aims at reducing the scheduling la-
tency at marginal radio resource cost. Let a prefetcher be sent
tp before the data packet. The parameter tp must meet two
requirements. First, we should ensure tp ≥ Tsr_grant . Note that,
an SR can only request a grant to be used at Tsr_grant after the
SR. Therefore, tp ≥ Tsr_grant guarantees that the SR is sent
only if it helps to reduce the scheduling latency for the data
packet. Second, we must ensure tp ≤ Tsr_grant . This is to let
the requested grant be used to transmit the data packet. No
resource waste or premature SR is incurred.

Consequently, our timing design is to set the time advance
as tp = Tsr_grant , which meets both requirements. Note that
Tsr_grant is typically constant for a BS, being the accumula-
tive latency of SR processing latency + 4ms, where 4ms is a
standardized parameter in [1]. In our experiment, more than
96.5% of Tsr_grant is identical under a BS regardless of the
carrier. If Tsr_grant changes after handover to a new BS, we
update Tsr_grant immediately. Even if Tsr_grant may vary, our
solution is no worse than the current practice.
Impact of the data packet size A prefetcher helps reduce
scheduling latency if the data packet size ≤ grant - prefetcher
size, which is common in reality as >99% of initial grants
in our experiments exceed 100B in all operators, while the
uplink sensory data is smaller than half of that. Therefore,
a prefetcher initiates an SR, and gets a returned grant that
suffices for the data packet to be sent with the prefetcher.

However, a corner case arises when the grant in response
to SR is enough for the data packet, but not for a prefetcher
+ the data packet. As shown in Figure 7(b), the device could
only send the prefetcher and a portion of the data packet. A
BSR further requests a grant for the remaining data. The data
packet thus suffers extra BSR latency compared to the case
without prefetcher (Figure 7(a)). In the worst-case scenario,
this latency increases by Tsr_grant (∼8ms). We discuss the
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probability of this case in Appendix B. However, even in this
corner case, the worst case happens only when the data and
the prefetcher arrive in the same SR period, with probability
Tsr_grant/Tsr_wait . For other conditions in the corner case, the
latency is the same as vanilla LTE.

5.3 Handling the Conflicts for Low Latency
LRP further resolves several conflicts for overall latency re-
duction. Figure 8 illustrates the workflow of LRP. Let Tinterval
be the time interval between the last and the next expected
packet. LRP thus reduces various latency elements. It handles
improper interplay between latency elements, and between
dummy and data packets.

5.3.1 Conflict Resolution Between Latency Elements

LRP issues two types of dummy packets for latency reduction:
rousers for DRX-induced doze latency, and prefetchers for
scheduling latency. Figure 9(a) illustrates their conflicts. A
rouser itself is a dummy message that needs to be sent before
a prefetcher. Once turning the device to DRX ON, it asks
for the grant, which could carry both rouser and prefetcher.
Therefore, the prefetcher is sent by the grant requested by the
rouser. The grant-induced scheduling latency is not reduced
at all. The latency penalty can be as large as Tsr_periodicity +
Tsr_grant compared to no-conflict case in Figure 9(b).

To resolve this conflict, we refine the timing control to
ensure both dummy packets’ effectiveness. Specifically, we
should make sure a rouser is sent when a prefetcher hits
the device buffer, so that the prefetcher can take effect
and reduce the scheduling latency. A rouser takes at most
Tsr_periodicity+Tsr_grant to be sent out as a dummy message and
a prefetcher needs to be sent Tsr_grant before the data packet.
Therefore, we adapt the timer from tp = Tdrx_doze_max to
Tdrx_doze_max +Tsr_periodicity +2Tsr_grant to ensure a rouser is
sent before a prefetcher. The rouser thus endures Tdrx_doze_max
that guarantees the doze is completed and then sent out.

5.3.2 Conflict Avoidance Between Dummy and Data

The next conflict arises between LRP’s dummy packets and the
last legitimate data packet. If a rouser conflicts with the last
packet, this does not pose an issue: the rouser can still help
the device to remain in the ON period for Tinactivity_timer. We
thus only discuss where a prefetcher intervenes with the last
packet. We show how LRP adapts this for latency reduction.

There are two instances when a prefetcher arrives in the
buffer before the last data packet being completely sent out,
shown in Figure 10. In case (a), the prefetcher does not pro-
vide any latency reduction. The grant for the last packet has
enough room to carry the prefetcher, which will be sent to-
gether. There is no prefetcher-requesting grant for the next
data packet. In case (b), a prefetcher may increase the latency.
The grant for the last data packet cannot accommodate the
piggy-backed transmission of the prefetcher. A BSR request is
thus triggered by the device to request for more grants. Since
BSR specifies the size for the dummy message prefetcher,
the returned grant does not suffice to transmit the data packet.
This subsequently invokes another round of BSR-grant opera-
tions. The data packet might suffer from extra BSR latency.

To avoid the conflicts, LRP adjusts the timing of a prefetcher.
It leaves enough time for the last packet to complete its trans-
mission before the prefetcher. Recall that the theoretical max-
imum uplink latency that the last packet would experience
after optimization is Tsr_grant . The dummy prefetcher is then
sent at least Tsr_grant after the application sent its last packet.
Specifically, if the time gap (between the last packet arrival
and the next packet arrival) is larger than 2Tsr_grant , we send a
prefetcher Tsr_grant before the next packet. This is the timing
we designed in §5.2; it will not break the above condition.
Otherwise, we send a prefetcher Tsr_grant after the last packet.
This choice will reduce less latency compared to the timing
in §5.2 without conflicts. However, we avoid the cases of
Figure 10, where a conflict negatively affects the latency.

5.4 Rootless Inference of Critical Parameters
As shown in §5.1–5.3, LRP relies on knowing certain LTE
parameters for latency reduction. Obtaining such parame-
ters through the root privilege can definitely work. However,
such an approach limits the applicability of LRP. To let LRP
work with every commodity device, we seek to infer these
parameters at the application layer. Note that existing tools
typically require system privilege (e.g., MobileInsight [32])
or additional hardware (e.g., QXDM [41]).

To infer these critical LTE timers, LRP exploits packet pairs
for probing. Figure 11 shows the general procedure. LRP sends
two adjacent probing requests and records their interval t1.
Upon receiving the responses to both packets, LRP compares
the responses’ intervals t2 with t1, and estimates the corre-
sponding timers. This approach is based on the premise that,
the difference between t1 and t2 mainly arises from the dif-
ferent uplink LTE latency experienced by two packets. This
premise largely holds in practice, because latency fluctuations
from the base station are much larger than those in the core
network or servers2. Compared with the conventional packet-
pair technique, LRP customizes probing packets with the LTE

2We have validated this premise in operational LTE. We send a pair of
DNS requests at t1 = 0. A UL grant suffices to send both requests; they arrive
at the BS simultaneously. t2 is solely affected by the core network and DL.
The results show that t2 < 1ms for >99% responses.
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domain knowledge for accurate inference.
Inferring DRX-related parameters To reduce DRX doze
latency, LRP should know Tdrx_doze_max (§5.1). Recall that the
DRX doze latency is only present when the packet interval
is large. The idea is to let t1 be large enough so that the first
response packet cannot keep the second request in DRX ON.
The second packet in the pair experiences UL DRX doze
latency, while the first does not as we immediately start next
pair after one is done. We can thus use the interval difference
t2− t1 to infer DRX doze latency. Consider that two requests
can also be different in terms of scheduling latency, we repeat
the pair for 10 times and take the interval difference average.
Figure 11(a) illustrates this procedure.

One caveat is that we need to know how large t1 is so
that the second request suffers from DRX doze latency. We
increase the interval t1 gradually until a certain spike appears
in measured RTT for the second request, caused by DRX
doze latency (≈30ms as shown in §3). The time interval
between the first response and the second request that triggers
such spike infers Tinactivity_timer. We can thus infer Tdrx_doze =
t2− t1. We take the max in multiple rounds as Tdrx_doze_max.
Inferring scheduling-related parameters LRP needs
Tsr_grant to reduce the scheduling latency (§5.2). Figure 11(b)
shows how LRP infers it. We let t1 as 0 by sending both re-
quests together. As we just showed, the grant is sufficient for
a single request packet. We increase the size of the second
request so that the grant will not be sufficient for both request
packets. According to the scheme, the first request experi-
ences only scheduling latency while the second experiences
the same scheduling latency plus Tbsr_grant , which equals to
Tsr_grant under a same BS. We thus can derive LRP optimiza-
tion parameter Tsr_grant from the measured t2 as Tsr_grant = t2.

5.5 Miscellaneous Issues

Energy Analysis LRP incurs extra energy overhead from
four sources. First, transmitting a rouser incurs a longer
ON period. The time to send a rouser can be as long as
Tsr_periodicity + Tsr_grant . It incurs Tsr_periodicity/2 + Tsr_grant

on average. Second, Tdrx_doze is not predictable so we se-
lect Tdrx_doze_max to prioritize latency over energy. The extra
ON period is δ = Tdrx_doze_max − Tdrx_doze for each rouser.
If the packet arrives during DRX OFF, Tdrx_doze_max equals
to Tdrx_doze and δ = 0. Otherwise, Tdrx_doze = 0 and δ =
Tdrx_doze_max. The expectation of δ is thus pon ·Tdrx_doze_max,
where pon is the probability of a packet arriving during
DRX ON period. If we ignore background traffic and as-
sume the packet arrives in the buffer at a random time,
pon = onDurationTimer / DRX cycle. Third, an early rouser
(due to inaccurate estimation) also causes a longer ON period.
Denote ε as the estimation error. When the rouser arrives dur-
ing DRX OFF, the extra ON period is ε. Otherwise, ε incurs
no extra ON period. Finally, sending extra small messages
incurs extra energy waste.

Impact on the spectrum efficiency For every
data packet, we define its spectrum efficiency SE =

sizeof (data packet)
sizeof (Total UL resource granted) . When a data packet suffers from
doze latency and LRP sends a rouser, it reduces SE by half:
the rouser and the prefetcher initiate two grants, while the
legacy LTE only requests for one. The extra grant occupies
≈2 RB in commercial networks. LRP trades-off SE for low
latency. When LRP sends a prefetcher only, two scenarios
arise. In the normal case, the grant from SR can carry both
the data packet and a prefetcher. Therefore, LRP requests
no extra grant and SE is the same as the legacy LTE. In
the corner case discussed in §5.2, the BS allocates at most
sizeof (prefetcher) extra grant. One extra RB is thus wasted,
since a single RB is sufficient to carry a prefetcher. SE is re-
duced by sizeof (prefetcher)

sizeof (prefetcher + grant from SR) . This value multiplying
the probability of the corner case (see Appendix B) yields the
expectation of SE reduction.

Impact of background traffic LRP still reduces latency in
the presence of background traffic. No matter whether the
background packet is sent before a rouser or between a rouser
and a data packet, the rouser will keep the data packet at the
DRX ON state, thus eliminating the DRX doze latency. On
scheduling latency, if the background traffic is sent after the
data packet, it does not affect the prefetcher. If the background
traffic is in between, the prefetcher reduces its latency, which
indirectly reduces latency for the real data packet. It still does
not increase the latency compared to legacy LTE without LRP.
When the background traffic is sent before a prefetcher, it will
be sent out through BSR before the data packet in the worst
case, equivalent to no optimization.

What if the uplink traffic is not strictly regular? While
mobile sensors produce regular data packets, the actual uplink
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data packets might not be strictly periodic. This can be caused
by mobile OS overhead, prediction inaccuracy, or sensor peri-
odicity variance. LRP still guarantees no worse latency than
legacy LTE, and saves LTE latency in most scenarios. We
show the following Theorem 5.1 and prove it in Appendix C.

Theorem 5.1. For the data packet that should have arrived
at Tinterval but actually arrives at T , LRP does not incur extra
latency compared with the legacy 4G LTE.

LRP for non-regular traffic For those ML/AI apps of §2
with irregular but predictable uplink traffic, LRP works equally
well. For others with irregular yet unpredictable uplink traffic,
we do not recommend LRP for such apps. If users intend to
use our APIs, latency reduction cannot be ensured.

Applicability to 5G In principle, LRP is applicable to 5G,
which has three usage cases. Enhanced Mobile Broadband
(eMBB) extends the current 4G technology. Massive Machine
Type Communication (mMTC) is for cellular IoT devices. Its
design is based on LTE-M and NB-IoT [8]. The scheduling
mechanisms of both modes largely remain unchanged [3, 4].
LRP is still applicable. Ultra Reliable Low Latency Commu-
nications (URLLC) targets low-latency communication. The
potential grant-free scheduling might partially achieve LRP’s
latency reduction, but LRP’s DRX doze latency reduction will
still help the URLLC applications.

Network impact LRP incurs little overhead on the network
side. The overhead stems from processing extra signaling,
which is marginal compared with normal operations. This
is because the BS monitors the control and data channels
continuously, regardless of whether it receives an SR.

Impact on other users If the devices under a BS all use
LRP, they will still benefit from LRP. The core idea of LRP
is to schedule a device’s allocated resources in advance if its
data arrival can be predicted. The procedure does not sacrifice
other users’ access in general. Moreover, if certain device
does not adopt LRP, its latency may be slightly prolonged.
This arises when the BS assigns the last available resource to
an LRP user who advances its scheduling, while this resource
could have been available to the non-LRP user. However, the
impact is minimal, as the BS will serve the user the next
subframe (in 1ms) and the throughput is not affected.

6 Implementation

We implement LRP as a standalone user-space daemon with
Android NDK. A similar implementation is also feasible for

iOS. Figure 12 shows its key components, including a latency
manager for latency reduction with conflict resolution in §5.1–
5.3, an inference engine that offers key parameters for LRP
based on the solutions in §5.4, and a set of APIs for latency-
sensitive applications. To use LRP, a latency-sensitive mobile
app requests LRP service using its APIs as detailed below. At
runtime, LRP first detects if the device connects to a new base
station by checking the change of serving cell ID. Upon cell
changes, LRP starts to infer the key LTE parameters for this
new cell. Once the key parameters are obtained, LRP initiates
its latency manager to reduce DRX doze latency in §5.1 and
scheduling latency in §5.2, and resolves the conflicts in §5.3.

APIs LRP provides easy-to-use application-layer APIs for
mobile application developers. Figure 12 showcases these
APIs with a mobile VR application. The app first calls start-
ParInf() so that LRP daemon starts and infers the LTE parame-
ters relevant to latency reduction components. The daemon
detects possible parameter changes (say, upon handover) and
re-runs the inference procedure whenever necessary. As our
VR application uploads periodic sensory data packets, it calls
setInterval(t) to inform LRP such periodicity. Whenever a data
packet is sent, the application calls reduceDozeAndSchedule()
for LRP to reduce latency for the next packet.

Latency manager It realizes the latency reduction in §5.1–
5.2 and conflict resolution in §5.3. A practical issue to realize
them is to optimize the dummy packet’s construction and
delivery for low cost. Both prefetcher and rouser messages in
LRP should be as small as possible so that extra data overhead
is minimized. In addition, a smaller prefetcher will decrease
the likelihood of the corner case discussed in §5.2. The small-
est packet we could generate in the Android device without
root is an ICMP ping packet with IP header only via system
command. Our implementation issues only one small ICMP
packet to the local gateway in LTE that serves the users.

LTE inference engine It infers the key LTE parameters
for LRP’s latency reduction based on the approaches in §5.4.
We use DNS requests/responses as probing packets, which
have low deployment cost (by using LTE’s readily-available
DNS servers) and higher accuracy (compared to other probing
packets delivered with low priority such as ICMP). For DNS
servers, LTE assigns its own in-network DNS server when the
device attaches to it, which provides fast and stable service.
We use such DNS servers for our experiment.

Moreover, we note that simply running the inference in
§5.4 may be inaccurate in practice, since it is sensitive to the
noises from background traffic, vendor-specific base station
behaviors, and server load. To this end, we optimize our imple-
mentation to mitigate these noises and improve the inference
accuracy. Specifically, we add a few filters to get rid of the
noises. For instance, when measuring the scheduling-related
parameters, we know that Trtt should be greater than 4ms in
reality, therefore, if the packet response pair is received within
4ms, we ignore this round of experiment.
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App AT&T Verizon T-Mobile Sprint China Mobile
Leg LRP η Leg. LRP η Leg. LRP η Leg. LRP η Leg. LRP η

Mobile VR Med. N/A N/A N/A 12.0 8.0 0.5× 11.0 6.0 0.8× N/A N/A N/A N/A N/A N/A
95% N/A N/A N/A 28.0 15.0 0.9× 40.0 14.0 1.9× N/A N/A N/A N/A N/A N/A

Gaming Med. 10.0 6.0 0.7× 9.0 7.0 0.3× 9.0 7.0 0.3× 17.0 11.0 0.5× 4.0 3.0 0.3×
95% 17.0 15.0 0.1× 15.0 15.0 0× 15.0 15.0 0× 27.0 21.0 0.3× 10.0 5.0 1.0×

Localization Med. 38.0 5.0 6.6× 50.0 14.0 2.6× 42.0 5.0 7.4× 30.5 14.0 1.2× 11.0 3.5 2.1×
95% 46.0 14.0 2.3× 59.0 23.0 1.6× 48.0 10.0 3.8× 61.7 25.8 1.4× 22.0 6.0 2.7×

Object Med. 23.0 7.0 2.3× 38.0 9.0 3.2× 33.0 5.0 5.6× 30.0 15.0 1.0× 14.0 6.0 1.3×
Detection 95% 47.8 16.0 2.0× 51.0 15.3 2.3× 45.0 10.0 3.5× 59.0 27.5 1.1× 22.0 17.0 0.3×

NOTE: Mobile VR is evaluated under Verizon and T-Mobile only. Other operators’ firewalls block the VR traffic. Leg: Legacy LTE. Med: Median.

Table 4: Uplink network latency (ms) reduction by LRP in evaluations with four apps. η=(Legacy-LRP)/LRP.

7 Evaluation

We assess how LRP improves the overall latencies and QoEs
for emergent mobile applications, evaluate the effectiveness
of solution components in LRP, and quantify LRP’s overhead.
Experimental setup We run LRP on Google Pixel, Pixel
2, Pixel XL, and Pixel 5. We quantify the latency reduction
in both US and China over AT&T, Verizon, T-Mobile, Sprint,
and China Mobile. The evaluation covers 375 unique cells.
We repeat the tests in static, walking (∼1m/s), and driving
(∼30mph) scenarios. We do experiments mostly in metropoli-
tan areas while driving tests cover rural areas as well. The
radio signal strength varies from -120 to -80dBm, covering
good (>-90dBm), fair ([-105, -90dBm]), and bad (<-105dBm)
conditions. To quantify LRP’s latency reduction, we use Mo-
bileInsight [32] to extract the ground truth of fine-grained
per-packet latency breakdown from the chipset.

To gauge LRP’s impact on the network side, we build a
USRP-based testbed. A server with Intel i7-9700k CPU and
32G RAM runs srsLTE [20] for the functions of core network
and BS processing. A USRP B210 connects to the server
and provides wireless access for the devices. We plug sys-
moUSIM [47] into the test phones, and register them.

7.1 Overall Benefits for the Applications
We showcase LRP’s latency reduction and QoE improvements
with four representative emergent mobile applications:
◦ Mobile VR. We use the showcase VR game as described
in §2. We measure the latency of the sensor data and control
data, and use it to gauge how our design reacts to VR games.
◦ Localization. We write an Android app that uploads the
periodic GPS location status to the cloud via the Android
API [21]. We encode each location update in 22 bytes and
send it to the cloud every second.
◦ Object recognition. We prototype an object recognition app
using MobileNetV2 [43], a phone-based deep learning model.
The app processes camera frames and uploads the recognition
result to the cloud. The typical inference time is 250ms.
◦Gaming. We evaluate its latency by replaying the traces from
PUBG Mobile [40], one of the most popular multi-player on-
line mobile games. Since PUBG traffic is not strictly regular,

we use it to demonstrate the effectiveness of LRP as discussed
in §5.5. We use the traffic emulator to send data packets based
on the trace.

Overall LTE latency reduction Table 4 and Figure 13
show LRP’s latency reduction for these apps in static settings
with fair-good signal strength; other scenarios have similar re-
sults as detailed in §7.2. On average, LRP achieves 4-5ms (0.5-
0.8×) latency reduction in mobile VR, 8-37ms (1.2-7.4×)
reduction in localization, 8-29ms (1.0-5.6×) reduction in ob-
ject detection, and 1-6ms (0.3-0.7×) reduction in gaming for
all 5 LTE carriers. Our breakdown analysis further shows
these apps suffer from different latency bottlenecks. For the
localization and object detection, the majority of data packets
suffer from both DRX doze and scheduling latency. For the
VR and gaming with more frequent packets, the scheduling
latency is the major latency bottleneck. LRP can reduce both
bottleneck latencies and thus benefit all these applications.

QoE improvement To showcase the impact of LRP on the
mobile VR, we conduct a user study with 10 participants to
evaluate the subjective experiences of using VR with/without
LRP. Figure 14 shows the average Mean Opinion Score (MOS)
on three aspects: graphical visual quality, responsiveness, and
overall experience. Participants rate 1 (Bad) to 5 (Excellent)
on these three aspects of the VR game with constant head
position changes. The results show that LRP can improve
the visual quality by 8% (3.1→4.0), responsiveness by 63%
(2.4→3.9), and overall experience by 46% (2.4→3.5).

5G latency reduction We evaluate how LRP reduces 5G
latency under AT&T 5G network. Since we do not have access
to its fine-grained data-plane traces, we measure RTT at the
application layer. LRP reduces RTT by 4.6ms for Gaming,
20.5ms for Localization, and 19.8ms for Object Detection.
The results are similar to the latency reduction in AT&T 4G.

7.2 Micro-Benchmarks
We next assess LRP’s solution components under various sig-
nal strengths and user mobility patterns.

DRX-induced latency reduction (§5.1) As shown in §5.1,
LRP helps reduce the DRX doze latency if the inter-packet
interval larger than Tinactivity_timer (otherwise the DRX doze
latency is always 0 with/without LRP). Figure 15 shows LRP’s
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Figure 15: LRP reduces DRX doze under different operators, signals, and mobility.

Scenario AT&T Verizon T-Mobile Sprint China Mobile
Leg. LRP η Leg. LRP η Leg. LRP η Leg. LRP η Leg. LRP η

Static-Poor Med. 12.0 5.0 1.4× 12.0 9.0 0.3× 11.0 7.0 0.6× 20.0 12.0 0.7× 16.0 5.0 2.2×
95% 17.0 11.0 0.5× 17.0 17.0 0× 17.0 16.0 0.1× 30.0 26.0 0.2× 26.0 23.0 0.1×

Static-Fair Med. 13.0 8.0 0.6× 11.0 8.0 0.4× 17.0 13.0 0.3× 18.0 14.0 0.3× 14.0 4.0 2.5×
95% 17.0 15.0 0.1× 17.0 13.0 0.3× 12.0 6.0 1.0× 32.0 29.0 0.1× 24.0 10.0 1.4×

Static-Good Med. 13.0 6.0 1.2× 10.0 5.0 1.0× 8.0 6.0 0.3× 13.0 7.0 0.9× 13.0 4.0 2.3×
95% 17.0 11.0 0.5× 17.0 16.0 0.1× 16.0 11.0 0.5× 27.0 18.0 0.5× 24.0 9.0 1.7×

Walking Med. 11.0 8.0 0.4× 13.0 6.0 1.2× 12.0 7.0 0.7× 19.0 13.0 0.5× 16.0 9.0 0.8×
95% 17.0 11.0 0.5× 16.0 16.0 0× 17.0 16.0 0.1× 30.0 26.0 0.2× 30.0 26.0 0.2×

Driving Med. 14.0 8.0 0.8× 14.0 8.0 0.8× 12.0 8.0 0.5× 17.0 13.0 0.3× 17.0 10.0 0.7×
95% 18.0 17.0 0.1× 17.0 11.0 0.5× 17.0 16.0 0.1× 29.0 27.0 0.1× 37.0 28.0 0.3×

Table 5: Scheduling latency (ms) in five mobile carriers. η=(Legacy-LRP)/LRP.

DRX latency reduction under various signal strengths and
mobility patterns. We run this test under the most popular set-
ting of Tinactivity_timer = 200ms (Table 3) when the inter-packet
interval is 1.5 ·Tinactivity_timer. We also test other intervals and
get similar results. In all scenarios, LRP reduces the DRX
doze latency to 0 for all LTE carriers. This results in 21–41ms
mean latency reduction and 40–57ms 95% latency reduction.

Scheduling latency reduction (§5.2) We next quantify the
reduction in uplink scheduling latency. The latency reduction
ratio, η, is defined as that of the reduced latency and the
LRP latency. Table 5 shows the results in different carriers,
signal strengths, and mobility patterns. In all these scenarios,
LRP reduces the median scheduling latency by 0.3-2.5×, and
reduces the 95th latency by up to 1.7×.

Conflict handling for latency reduction (§5.3) We con-
firm the effectiveness of LRP’s conflict resolution/avoidance.
We adapt LRP’s APIs to enable/disable the conflict handling in
§5.3. Table 6 compares the overall latency with/without LRP’s
conflict handling. We first illustrate LRP can resolve rouser
and prefetcher conflict. We use Localization as its traffic pat-
tern satisfies the condition (long interval) for potential conflict.
Compared with no conflict resolution, LRP reduces extra 8.82-
60.0% latency in all operators. We next evaluate how LRP
handles data and dummy packets conflicts. The heavy traffic
in the Gaming application potentially causes such conflict.
We run the Gaming application with LRP and the APIs with-
out conflict avoidance. Compared with no conflict avoidance,
LRP reduces up to 20% extra latency.

Accuracy of critical parameter inference (§5.4) We fi-
nally check how accurate our LTE parameter inference is.

Conflicts AT&T Ver. T-M. Spr. C. M.

rouser &
prefetcher

w/o Res. 28.0 30.0 34.0 10.0 13.0
LRP 33.0 36.0 37.0 16.0 16.0

Extra Red. 17.9% 20.0% 8.82% 60% 23.0%

Data &
dummy

w/o Res. 3.5 2.0 2.0 5.0 2.0
LRP 4.0 2.0 2.0 6.0 2.0

Extra Red. 14.3% 0.0% 0.0% 20% 0.0%
Table 6: Latency (ms) reduction with conflict handle.

AT&T Verizon T-Mobile Sprint C. Mobile
Infer Trtt 3.2% 1.5% 2.0% 3.0% 2.0%

Infer Tdrx_doze_max 3.0% 1.3% 3.0% 1.3% 2.5%

Table 7: Error rate of LRP parameter inference.

For each cell, we first collect ground truth by analyzing the
physical/link/RRC-layer signaling messages from MobileIn-
sight. We then use LRP component to infer the parameters
and compare them with the ground truth. We calculate the
average error rate in terms of inference. The results are shown
in Table 7. As we can see, the inference error rate is at most
3.2% for both parameters in all 5 operators. LRP inference is
accurate as argued in §5.4 and §6.

7.3 Overhead

Overhead of dummy messages The dummy messages
may incur additional data usage and thus billing. Table 8
shows that LRP incurs no more than 0.6KB data per second
under all carriers. The data overhead depends on the frequency
of calling LRP APIs. For heavy traffic applications (VR, Gam-
ing), the extra overhead is 0.33KB/s while the number for the
other two apps is 0.05KB/s. The overhead is acceptable in
typical data plans and the extra data is only incurred when
LRP APIs are called. As explained in §6, LRP has minimized
the use of dummy for efficient latency reduction.
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AT&T Verizon T-Mobile Sprint C. Mobile
Extra Data (KB/s) 0.20 0.15 0.41 0.23 0.60

Extra Sig. Msg 3.8% 3.7% 4.3% 3.3% 1.1%
Energy Overhead 1.7% 4.2% 5.8% 2.1% 4.7%

Table 8: Overhead of LRP.

Extra signaling message The dummy messages incur ex-
tra signaling between the device and the BS. We measure this
overhead as shown in Table 8. LRP incurs up to 4.3% mes-
sages, which are marginal compared with the total volume
of signaling messages. Reducing latency for apps with DRX
doze generates more messages. LRP incurs on average 1.6
extra signaling messages per second for Location and Object
Detection. While the other two apps with LRP generate 0.8
extra message every second on average.

Energy consumption While LRP exploits the DRX for
lower latency, it still respects the LTE’s energy saving with
accurate timing control and incurs marginal energy cost. We
first compare the percentage of the extra ON period with and
without LRP. We track the CDRX events with MobileInsight.
As shown in Table 8, for all carriers, at most 5.8% of extra
ON period is invoked. Furthermore, we fully charge the de-
vice and run Object Detection (with DRX doze) and VR (no
DRX doze) applications for one hour, and compare the energy
consumption with or without LRP. With LRP, two applications
incur 2.5% (16.12% to 16.52% of total battery) and 1.0%
(37.04% to 37.40% of total battery) extra battery consump-
tion, respectively. This overhead is marginal, as we adjust the
timing of rousers to reduce unnecessary energy waste.

Network impact We measure the network impact of LRP
in our SDR testbed. Even in the absence of data transfer, the
server spends 0.055ms on average to process the collected
signal in every subframe (1ms). In contrast, processing LRP’s
extra signaling costs 0.002ms, about 3.6% extra overhead.

Impact on other users We next examine whether LRP
affects those non-LRP users. We test a two-device scenario,
with both running the Gaming app. Device A never uses LRP,
whereas device B turns on/off LRP in the test. When B does
not run LRP, A’s average uplink network latency is 15.79ms,
and the 95th percentile is 24.0ms. When B activates LRP, A’s
average latency becomes 15.84ms and the 95th percentile is
24.0ms. Both numbers are not visibly affected. Therefore,
the latency of non-LRP device is not affected, regardless of
whether the other runs LRP or not.

8 Related Work

Many cross-layer techniques have been designed to improve
user experience and application performance in mobile net-
works (see [19] for a survey). They use lower-layer informa-
tion to improve video streaming [54], to optimize Web access
[12, 26, 34, 35, 51], to name a few. Most such solutions seek
to boost the application-perceived throughput. Other recent
proposals detect whether LTE is the bottleneck for applica-
tions [9], estimate the radio link speed [11], or examine how

LTE configurations affect applications [25]. In contrast, we
focus on devising LTE latency-oriented reduction solutions.

Early efforts are also made to reduce the LTE network
latency. They analyze the latency for Web access over LTE
[39, 53], devise application-specific solutions to LTE schedul-
ing latency with modified modem firmware [48], measure
the impact of DRX upon LTE from the energy perspective
[23], and adjust the RRC parameters to reduce data-plane la-
tency with infrastructure update [38]. Recent work [9, 30] also
makes device-based throughput prediction for performance
improvement. Our work differs from them since we work on
the latency elements that cannot be eliminated with higher
throughput. Authors from [16, 33] target reducing one-time
connection setup latency, while LRP reduces latency elements
for every data packet in the connected state. Other recent ef-
forts seek to refine the 4G/5G network infrastructure [24, 37].
In contrast, we propose an effective solution without root
privilege, device firmware change, or infrastructure upgrade.

9 Conclusion
Reducing latency is critical to many delay-sensitive applica-
tions, such as mobile AR/VR, mobile gaming, sensing, ma-
chine learning, and robot/drone-based image/speech recogni-
tion. In mobile networks like 4G LTE, reducing uplink latency
is more challenging than its downlink counterpart, since it
involves multiple latency elements stemming from power-
saving, scheduling, on-demand resource allocation, etc.

We have designed and implemented LRP, a device-based
solution to LTE latency reduction without any infrastructure
changes. LRP does not require root privilege at the device
and works with mobile apps directly. It ensures the network
latency is no worse than the legacy 4G LTE, and is applica-
ble to the upcoming 5G. By design, LRP uses small dummy
messages with proper timing control and conflict handling,
in order to eliminate unnecessary latency components from
scheduling and power-saving operations. Our experiments
have confirmed its effectiveness with a variety of mobile apps.

In the broader context, reducing latency poses a more chal-
lenging problem than improving throughput for the networked
system community. In the mobile network domain, various
tricks have been invented for boosting throughput (e.g., mas-
sive MIMO, more sophisticated modulation, mmWave, etc.).
This is not the case for latency. Both its fundamental theory
and effective practice are lacking. Moreover, exploring pure
device-based solution, which does not require root privilege
and has direct access to user application-level information,
offers a nice complement to the infrastructure-centric design,
which typically takes years to be deployed.
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APPENDIX

A Notations

Notation Explanation
Tdrx_doze The DRX Doze latency for an uplink

packet between it enters buffer during
DRX OFF and DRX enters ON state

Tdrx_doze_max The maximum doze latency Tdrx_doze
measured under a cell

Tsr_wait The latency of waiting for an uplink
scheduling request (SR)

Tsr_grant The time difference between an SR and
sending data using the requested grant

Tbsr_grant The time between the first segment of a
packet being sent and the last segment
being sent through grants via BSR

Tretx The latency of uplink packet retransmis-
sion

Tscheduling Tscheduling = Tsr_wait +Tsr_grant
Tinactivity_timer A new data transmission will restart this

timer and keep the device in DRX ON
state until this timer expires

Tsr_periodicity The periodicity of subframes where a
device can initiate an SR

Tinterval The time interval between the last and
the next expected packet

Table 9: Notation table.

B Discussion on the Corner Case

The corner case happens when the grant from an SR is suffi-
cient for the data packet, but insufficient for the data packet
and its prefetcher. In this section, we discuss the size of the
grant from an SR and the probability of this corner case.

Since the size of a data packet and a prefetcher is fixed, the
occurrence of the corner case depends on the grant from an
SR. The BS assigns a grant for the SR according to 3GPP stan-
dard [1]. However, it has the freedom to determine the size of
the grant. It can assign certain RBs to the user. The number
of the RBs is denoted as NPRB. The RB amount is not suffi-
cient to determine the grant size, which is also affected by the
modulation index, denoted as IMCS. A BS sends a grant with
IMCS, which is affected by channel condition, device power,
etc. NPRB can be selected from a subset of discrete values
from {1, ...,110}, depending on the channel bandwidth. IMCS
can be selected from a subset of discrete values {0, ...., 63},
depending on the modulation capability of the device. Mul-
tiple IMCS can map to the same modulation scheme. The UL
data that can be sent using this grant is a function of both NPRB
and IMCS. This discrete function, denoted as F(NPRB, IMCS),
is shown in a 110x44 table in 3GPP 36.213 [1].

F() is monotonically increasing with either NPRB or IMCS.
Suppose the selection of NPRB and IMCS are independent. Let

the probability of the BS selecting P(NPRB = j) = p j, where
j ∈ {1, ...,110} and ∑ p j = 1. Similarly, let P(IMCS = i) = qi,
where i ∈ {0, ...,63} and ∑qi = 1. Let the size of the data
packet be a and the size of a prefetcher be a′. ( j, i)∈ X1 if a≤
F( j, i) < a+ a′. Otherwise, ( j, i) ∈ X2 Therefore, pcorner =

∑( j,i)∈X1 p j ·qi.
From the operational traces, a BS tends to assign NPRB =

2 or 3 in response to an SR. When NPRB = 2, any IMCS≥ 3 can
guarantee F(NPRB, IMCS)> 100. When NPRB = 3, any IMCS ≥
2 can guarantee F(NPRB, IMCS) > 100. In our experiments,
>99% of initial grants exceed 100B in all operators. This is
sufficient for a small uplink sensory data packet and a small
prefetcher message.

C Proof for Theorem 5.1

Proof. LRP operates based on the value of Tinterval . When
Tinterval ≥ Tinactivity_timer, LRP sends a rouser to eliminate DRX
doze latency. When the next packet arrives later than expected
(T > Tinterval), LRP is still very likely to reduce DRX doze
latency as the rouser sent Tdrx_doze before the next packet
will keep the device in ON state for Tinactivity_timer. There-
fore, as long as T ≤ Tinterval−Tdrx_doze +Tinactivity_timer, LRP
still reduces DRX doze latency. If T > Tinterval−Tdrx_doze +
Tinactivity_timer, the device might have already turned to DRX
OFF when the next packet arrives. In this situation, the
DRX doze latency still exists but LRP does not add extra
latency source. Similarly, when the next packet arrives early
(T < Tinterval), LRP still reduces doze latency when the rouser
precedes the data packet, namely T ≥ Tinterval−Tdrx_doze. LRP
cannot eliminate the entire DRX doze latency as the optimal
solution, but can still reduce doze latency to T − (Tinterval−
Tdrx_doze). Otherwise, LRP does not send any rouser and the
latency is the same compared to no LRP. In summary, if the
next packet actually arrives in T where Tinterval−Tdrx_doze ≤
T ≤ Tinterval −Tdrx_doze +Tinactivity_timer, LRP still eliminates
or reduces the DRX doze latency. The margin allowed for
error (Tdrx_doze and Tinactivity_timer−Tdrx_doze) can be 30-80ms
in reality depending on common LTE parameters. Otherwise,
LRP does not increase the latency.

When Tinterval < Tinactivity_timer, LRP sends a prefetcher only
(Tsr_grant before the next packet) to reduce scheduling latency.
If data arrives later, the prefetcher is still possible to save
its latency if its requested grant can be used by the next
packet, which is T < Tinterval +Tsr_wait . Similarly, if data ar-
rives earlier, the prefetcher reduces scheduling latency if it is
sent before the real data packet, i.e., T > Tinterval−Tsr_grant .
When the next scheduled packet arrives in Tinterval where
Tinterval−Tsr_grant < T < Tinterval +Tsr_wait , LRP still reduces
the LTE uplink scheduling latency. This margin allowed for er-
ror (Tsr_grant and Tsr_wait ) is usually 8-20ms in reality depend-
ing on LTE parameters. Otherwise, the scheduling latency is
not reduced but LRP does not incur extra latency.
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Abstract
In-memory key-value stores are critical components that

help scale large internet services by providing low-latency
access to popular data. Memcached, one of the most pop-
ular key-value stores, suffers from performance limitations
inherent to the Linux networking stack and fails to achieve
high performance when using high-speed network interfaces.
While the Linux network stack can be bypassed using DPDK
based solutions, such approaches require a complete redesign
of the software stack and induce high CPU utilization even
when client load is low.

To overcome these limitations, we present BMC, an in-
kernel cache for Memcached that serves requests before the
execution of the standard network stack. Requests to the BMC
cache are treated as part of the NIC interrupts, which allows
performance to scale with the number of cores serving the
NIC queues. To ensure safety, BMC is implemented using
eBPF. Despite the safety constraints of eBPF, we show that it
is possible to implement a complex cache service. Because
BMC runs on commodity hardware and requires modification
of neither the Linux kernel nor the Memcached application, it
can be widely deployed on existing systems. BMC optimizes
the processing time of Facebook-like small-size requests. On
this target workload, our evaluations show that BMC improves
throughput by up to 18x compared to the vanilla Memcached
application and up to 6x compared to an optimized version
of Memcached that uses the SO_REUSEPORT socket flag.
In addition, our results also show that BMC has negligible
overhead and does not deteriorate throughput when treating
non-target workloads.

1 Introduction

Memcached [24] is a high-performance in-memory key-value
store used as a caching-service solution by cloud providers [1]
and large-scale web services [5, 40]. Memcached allows such
services to reduce web request latency and alleviate the load
on backend databases by using main memory to store and
serve popular data over the network.

Memcached, however, is prone to bottlenecks introduced
by the underlying operating system’s network stack, includ-
ing Linux’s [16, 36], since the main goal of general purpose
operating systems is to provide applications with flexible ab-
stractions and interfaces. To achieve high throughput and low
latency, user applications can give up using the standard ker-
nel interfaces by using kernel-bypass technologies such as
DPDK [6] which allow an application to program network
hardware and perform packet I/O from userspace. The ap-
plication that has control of the network hardware is then
responsible for implementing a network stack that fits its
specific needs [14, 28]. However, kernel-bypass comes with
drawbacks. First, it eliminates security policies enforced by
the kernel, such as memory isolation or firewalling. Specific
hardware extensions, i.e. an IOMMU and SR-IOV [15, 20],
or software-based isolation are then required to maintain stan-
dard security levels. Second, kernel-bypass relies on dedi-
cating CPU cores to poll incoming packets, trading off CPU
resources for low latency. This prevents the cores from being
shared with other applications even when the client load is low.
Third, kernel-bypass requires an extensive re-engineering of
the existing application in order to achieve high performance
with a dedicated network stack.

In this paper, we propose BPF Memcached Cache (BMC)
to address the kernel bottlenecks impacting Memcached.
BMC focuses on accelerating the processing of small GET
requests over UDP to achieve high throughput as previous
work from Facebook [13] has shown that these requests make
up a significant portion of Memcached traffic. Contrary to
hardware-specific accelerators, BMC runs on standard hard-
ware and thus can be deployed on infrastructure with het-
erogeneous hardware. BMC relies on a pre-stack processing
approach that consists in intercepting requests directly from
the network driver, before they are delivered to the standard
network stack, and processing them using an in-kernel cache.
This provides the ability to serve requests with low latency
and to fall back to the Memcached application when a request
cannot be treated by BMC. BMC can leverage modern net-
work card features such as multi-queues to process multiple
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requests in parallel (see Figure 1). In addition, BMC uses
a separate lock for each cache entry to introduce minimal
overhead and allow performance to scale with the number of
cores.

Running BMC at the kernel level raises safety issues as a
bug in its implementation could put the entire system at risk.
To address this issue, BMC is implemented using eBPF. The
Berkeley Packet Filter (BPF) [37], and its extended version,
eBPF, is a bytecode and a safe runtime environment offered
by the Linux kernel to provide userspace an approach to in-
ject code inside the kernel. The Linux kernel includes a static
analyzer to check that the injected code is safe before it can
be executed, which limits the expressiveness of the injected
code. We show how to circumvent this limitation by parti-
tioning complex functionality into small eBPF programs and
by bounding the data that BMC processes. Using eBPF also
allows BMC to be run without requiring any modification to
the Linux kernel or to the Memcached application, making
it easy to deploy on existing systems. The eBPF bytecode of
BMC is compiled from 513 lines of C code and is JIT com-
piled by the Linux kernel. This results in BMC introducing
very little overhead into the OS network stack.
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Figure 1: General architecture

The main results of this paper include:

• The identification of the bottlenecks of Memcached
when processing requests over UDP. We propose Mem-
cachedSR, a modified version of Memcached that uses
the SO_REUSEPORT socket option to scale with the
number of threads, improving throughput by 3x com-
pared to the vanilla Memcached.

• The evaluation of BMC under our target workload con-
sisting of small requests. In this setting, BMC im-
proves the throughput by up to 6x with respect to Mem-
cachedSR and by up to 18x with respect to vanilla Mem-
cached.

• The evaluation of BMC under a non-target workload
that consists of large requests not processed by BMC. In
this setting, BMC has negligible overhead and does not
deteriorate throughput with respect to MemcachedSR.

• The comparison of BMC with a dummy cache that shows
that BMC’s design is well suited for high throughput
performance as it does not introduce unnecessary com-
plexity.

• The comparison of Memcached running with BMC
against a Memcached implementation based on Seastar,
a networking stack for DPDK [6]. Our results show that
Memcached with BMC achieves similar throughput to
Seastar but uses 3x less CPU resources.

The rest of this paper is organized as follows. Section 2
provides background on Memcached and the OS network
stack bottlenecks it suffers from. Section 3 describes BMC
and its design. Section 4 discusses implementation details.
Section 5 presents the experimental results. Section 6 dis-
cusses the generalization of BMC and its memory allocation
challenges. Section 7 presents related work. Finally, Section 8
concludes the paper.

2 Background and motivation

This section describes the limitations of Memcached that
motivate our work, and describes the eBPF runtime used to
implement BMC.

2.1 Memcached
Memcached [10] is a mature in-memory key-value store tra-
ditionally used as a cache by web applications in a datacenter
environment to speed up request processing and reduce the
load on back-end databases. Because of its popularity, a lot
of work has been put into optimizing it [35, 44].

A Memcached server operates on items, which are objects
used to store a key and its associated value and metadata.
Clients send requests to a Memcached server using a basic
command-based protocol, of which GET and SET are the
most important commands. A GET key command retrieves
the value associated with the specified key if it is stored by
Memcached and a SET key value command stores the spec-
ified key-value pair. A GET command can also be used as
a multiget request when a client needs to retrieve multiple
values at once. Requests can be sent using either the TCP or
the UDP transport protocol.

The data management of Memcached has been well op-
timized and relies on slab allocation, a LRU algorithm and
a hash table to allocate, remove and retrieve items stored in
memory. Previous studies [16, 30] have shown that Mem-
cached performance and scalability are heavily impaired by
OS network stack bottlenecks, especially when receiving a
large number of small requests. Since Facebook’s production
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workloads show a 30:1 distribution between GET and SET
commands, Nishtala et al. [40] proposed using UDP instead of
TCP for GET commands to avoid the cost of TCP processing.

To gain additional insight into the performance of a Mem-
cached server using UDP to receive GET requests, we pro-
filed the CPU consumption while trying to achieve maximum
throughput (the experimental setup is described in Section 5).
As shown in Figure 2, more than 50% of Memcached’s run-
time is spent executing system calls. Moreover, the CPU
usage of both sys_recvfrom and sys_sendmsg increases as
more threads are allocated to Memcached. When eight threads
are used by Memcached, the total CPU usage of these three
system calls reaches 80%.
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Figure 2: CPU usage of the three most used system calls by
Memcached

Figure 3 shows the throughput of the vanilla Memcached
application when varying the number of threads (and cores).
The results show that vanilla Memcached does not scale
and that its performance even deteriorates when more than
four threads are used. Table 1 shows the top ten most time
consuming functions measured by the perf tool while run-
ning Memcached with eight threads, all of them are ker-
nel functions. The native_queued_spin_lock_slowpath and
__udp_enqueue_schedule_skb functions account for a total
of 28.63% of the processing time of our machine under test
and are used to push packets to the UDP socket queue. The
kernel’s socket queues are data structures shared between the
Memcached threads and the kernel threads responsible for
the execution of the network stack, and therefore require lock
protection. In the case of Memcached, a single UDP socket
is used and its queue is shared between the cores receiving
packets from the NIC and the cores running the application,
leading to lock contention. This lock contention is then re-
sponsible for the decrease in Memcached throughput.

To allow Memcached to scale with the number of threads,
we have modified the version 1.5.19 of Memcached to use
the SO_REUSEPORT socket option. The SO_REUSEPORT
option allows multiple UDP sockets to bind to the same port.
We refer to this modified Memcached as MemcachedSR in
the rest of the paper. We use this option to allocate a UDP
socket per Memcached thread and bind each socket to the
same port. Received packets are then equitably distributed
between each socket queue by the Linux kernel which reduces

lock contention. As shown in Figure 3, MemcachedSR scales
with the number of threads and achieves a throughput that is
up to 3 times higher than the vanilla version of Memcached.

Despite the scalability of MemcachedSR, there is still room
for improvement as Memcached requests still have to go
through the whole network stack before they can be processed
by the application.

Function % CPU utilization
native_queued_spin_lock_slowpath 17.68%
__udp_enqueue_schedule_skb 10.95%
clear_page_erms 5.04%
udp4_lib_lookup2 3.23%
_raw_spin_lock 3.04%
fib_table_lookup 2.90%
napi_gro_receive 2.27%
nfp_net_rx 1.97%
i40e_napi_poll 1.32%
udp_queue_rcv_one_skb 1.14%

Table 1: Top ten most CPU-consuming functions on a Mem-
cached server under network load
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Figure 3: Vanilla Memcached vs. MemcachedSR

2.2 eBPF
The Berkeley Packet Filter (BPF) [37] is an in-kernel inter-
preter originally designed to run packet filters from userspace
using a reduced instruction set. BPF has evolved into the ex-
tended BPF (eBPF), which introduces a new bytecode and
just-in-time compilation for improved performance. An eBPF
program can be loaded from userspace by the Linux kernel
and triggered by a specific kernel event. The eBPF program
is then run whenever the event is triggered.

eBPF programs can maintain and access persistent memory
thanks to kernel data structures called BPF maps. Maps are
designed to store arbitrary data structures whose size must be
specified by the user application at creation time. They can be
used for communicating between different eBPF programs or
between eBPF programs and user applications. Furthermore,
eBPF programs can call a restricted set of kernel functions,
called helpers, allowing eBPF programs to interact with the
system and access specific kernel data (e.g. map data, time

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    489



since boot up). Tail calls allow an eBPF program to call
another eBPF program in a continuation-like manner. The
eBPF bytecode backend is supported by the Clang/LLVM
compiler toolchain, which allows using the C language to
write eBPF programs in a high-level language.

Because running user-space code inside the kernel can
impact the system’s security and stability, the Linux kernel
calls the in-kernel eBPF verifier every time it loads an eBPF
program to check if the program can be safely attached and
executed. The goal of the verifier is to guarantee that the
program meets two properties: safety, i.e., the program neither
accesses unauthorized memory, nor leaks kernel information,
nor executes arbitrary code, and liveness, i.e., the execution
of the program will always terminate.

To analyze an eBPF program, the verifier creates an abstract
state of the eBPF virtual machine [9]. The verifier updates its
current state for each instruction in the eBPF program, check-
ing for possible out-of-bounds memory accesses or jumps.
All conditional branches are analyzed to explore all possible
execution paths of the program. A particular path is valid if
the verifier reaches a bpf exit instruction and the verifier’s
state contains a valid return value or if the verifier reaches a
state that is equivalent to one that is known to be valid. The
verifier then backtracks to an unexplored branch state and
continues this process until all paths are checked.

Because this verification process must be guaranteed to
terminate, a complexity limit is enforced by the kernel and an
eBPF program is rejected whenever the number of explored
instructions reaches this limit. Thus, the verifier incurs false
positives, i.e. it can reject eBPF programs that are safe. In
Linux 5.3, the kernel version used to implement BMC, this
limit is set to 1 million instructions. Other parameters, such
as the number of successive branch states, are also used to
limit path explosion and the amount of memory used by the
verifier. Since Linux 5.3, the verifier supports bounded loops
in eBPF programs by analyzing the state of every iteration of
a loop. Hence, the verifier must be able to check every loop
iteration before hitting the previously-mentioned instruction
complexity limit. This limits the number of loop iterations as
well as the complexity of the instructions in the loop body.
Moving data of variable lengths between legitimate memory
locations requires a bounded loop and conditional instructions
to provide memory bounds checking, which in turn increase
the complexity of an eBPF program. Finally, eBPF does not
support dynamic memory allocation, instead eBPF programs
have to rely on eBPF maps (array, hashmap) to hold a fixed
number of specific data structures.

Because of all these limitations, eBPF is currently mostly
used to monitor a running kernel or to process low-layer pro-
tocols of network packets (i.e. L2-L4). Processing application
protocols is more challenging but is required to allow the
implementation of more complex network functions [38].

3 Design

In this section, we present the design of BMC, a safe in-kernel
accelerator for Memcached. BMC allows the acceleration of a
Memcached server by caching recently accessed Memcached
data in the kernel and by relying on a pre-stack processing
principle to serve Memcached requests as soon as possible
after they have been received by the network driver. This
approach allows BMC to scale to multicore architectures by
leveraging modern NIC’s multi-queue support to run BMC on
each individual core for each received packet. The execution
of BMC is transparent to Memcached, and Memcached does
not need any modification to benefit from BMC. In the rest of
this section, we first present the pre-stack processing approach.
We then describe the BMC cache and how its coherence is
insured.

3.1 Pre-stack processing
BMC intercepts network packets at the network-driver level
to process Memcached requests as soon as possible after they
have been received by the NIC. BMC filters all network pack-
ets received by the network driver based on their destination
port to only process Memcached network traffic. It focuses
on processing GET requests using the UDP protocol and SET
requests using the TCP protocol. Figure 4 illustrates how pre-
stack processing allows BMC to leverage its in-kernel cache
to accelerate the processing of Memcached requests.

When processing a GET request (4a), BMC checks its in-
kernel cache and sends back the corresponding reply if it finds
the requested data. In that case, the network packet containing
the request is never processed by the standard network stack,
nor the application, freeing CPU time.

SET requests are processed by BMC to invalidate the cor-
responding cache entries and are then delivered to the ap-
plication (4b). After a cache entry has been invalidated, a
subsequent GET request targeting the same data will not be
served by BMC but rather by the Memcached application.
BMC always lets SET requests go through the standard net-
work stack for two reasons. First, it enables reusing the OS
TCP protocol implementation, including sending acknowledg-
ments and retransmitting segments. Second, it ensures SET
requests are always processed by the Memcached application
and that the application’s data stays up-to-date. We choose
not to update the in-kernel cache using the SET requests in-
tercepted by BMC because TCP’s congestion control might
reject new segments after its execution. Moreover, updating
the in-kernel cache with SET requests requires that both BMC
and Memcached process SET requests in the same order to
keep the BMC cache consistent, which is difficult to guarantee
without a overly costly synchronization mechanism.

When a miss occurs in the BMC cache, the GET request
is passed to the network stack. Then, if a hit occurs in Mem-
cached, BMC intercepts the outgoing GET reply to update its
cache (4c).
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Figure 4: BMC cache operations

Pre-stack processing offers the ability to run BMC on mul-
tiple cores concurrently. BMC can benefit from modern NIC
features such as multi-queue and RSS to distribute process-
ing among multiple CPU cores. The set of cores used to
run BMC can also be fine-tuned in order to share a precise
memory level (CPU caches, NUMA node, etc.). The perfor-
mance of BMC can efficiently scale by configuring NICs
to use multiple RX queues and mapping them to different
cores. Pre-stack processing also enables running specialized
code without having to modify existing software. Contrary to
kernel-bypass, this approach does not require a whole NIC
to be given to a userspace process and other applications can
share the network hardware through the kernel network stack
as usual.

3.2 BMC cache

The BMC cache is designed as a hash table indexed by Mem-
cached keys. It is a direct-mapped cache, meaning that each
bucket in the hash table can only store one entry at a time.
BMC uses the 32-bit FNV-1a [21] hash function to calculate
the hash value. Because this is a rolling hash function that
operates on a single byte at a time, it allows BMC to compute
the hash value of a key while parsing the Memcached request.
The hash value is reduced to an index into the cache table
by using the modulo operator. Each cache entry contains a
valid bit, a hash value, a spin lock, the actual stored data, and
the size of the data. This cache design offers constant-time
complexity for lookup, insertion, and removal operations. To
validate a cache hit, BMC checks that the valid bit of a cache
entry is set and that the stored key is the same as that of the
processed request.

The BMC cache is shared by all cores and does not require
a global locking scheme since its data structure is immutable.
However, each cache entry is protected from concurrent ac-
cess using a spin lock.

4 Implementation
This section explains how BMC deals with the eBPF limita-
tions to meet the required safety guarantees.

4.1 Bounding data
The verification of a loop contained in a single program may
hit the maximum number of eBPF instructions the verifier can
analyze. Loop complexity depends on the number of itera-
tions and the complexity of the body. To make the verification
of loops possible, BMC bounds the data it can process. It
first limits the length of Memcached keys and values. BMC
uses a loop to copy keys and values from a network packet
to its cache, and vice-versa. For every memory copy, BMC
must guarantee that it neither overflows the packet bounds nor
overflows the cache memory bounds using fixed data bounds.
Bounds checking then increases the loop complexity. To en-
sure the complexity of a single eBPF program does not exceed
the maximum number of instructions the verifier can analyze,
we empirically set the maximum key length BMC can process
to 250 bytes and the maximum value length to 1000 bytes.
Requests containing keys or values that exceed these limits
are transmitted to the Memcached application. We also limit
to 1500 the number of individual bytes BMC can read from
a packet’s payload in order to parse the Memcached data,
bounding the complexity of this process. According to Face-
book’s workload analysis [13], about 95% of the observed
values were less than 1000 bytes. Moreover, the Memcached
protocol sets the maximum length of keys to 250 bytes. Hence,
bounding the BMC data size does not have a big practical
impact.

4.2 Splitting complex functions
In order to avoid reaching the limits of the eBPF verifier,
BMC’s functional logic is separated into multiple small eBPF
programs, as each eBPF program is checked for safety in-
dependently. Each program then relies on tail calls to jump
to the next program and continue packet processing without
interruption. Linux limits the maximum number of successive
tail calls to 33, preventing infinite recursion. However BMC
uses at most three successive tail calls.

BMC is implemented using seven eBPF programs that
are written in C code and are compiled to eBPF bytecode
using Clang/LLVM version 9 and the default eBPF instruction
set. The processing logic of BMC is split into two chains:
one chain is used to process incoming Memcached requests
and the other is used to process outgoing replies. Figure 5
illustrates how BMC’s eBPF programs are divided. BMC’s
eBPF programs consist of a total of 513 lines of C code.

4.2.1 Incoming chain

The incoming chain is composed of five eBPF programs.
It is attached to the XDP [27] driver hook and is executed
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Program name # of eBPF instructions # of analyzed instructions analysis time (µs) # of CPU instructions

rx_filter 87 31 503 11 130 152
hash_keys 142 787 898 290 588 218

prepare_packet 178 181 47 212
write_reply 330 398 044 132 952 414

invalidate_cache 163 518 321 246 788 224
tx_filter 61 72 43 104

update_cache 125 345 332 95 615 188

Table 2: Complexity of BMC’s programs. Column 2 represents the number of eBPF bytecode instructions of the program
compiled from C code. Columns 3 and 4 respectively show the number of eBPF bytecode instructions processed by the Linux
verifier and the time spent for this analysis. Column 5 shows the number of CPU instructions after JIT compilation.

Network stack

Network Device Driver 

write_reply

prepare_packet tx_filter

Trafic Control hook

Memcached

BMC  Hit
hash_keys invalidate_cache

rx_filter

XDP hook

BMC
BMC   Miss

update_cache

Figure 5: Division of BMC into seven eBPF programs

whenever a new packet is processed by the network driver.
This hook is the earliest point in the network stack at which
an eBPF program can be attached and allows BMC to use pre-
stack processing to save the most CPU cycles by responding
to Memcached requests as soon as possible.

rx_filter. The goal of this first eBPF program is to filter
packets corresponding to the Memcached traffic using two
rules. The first rule matches UDP packets whose destina-
tion port corresponds to Memcached’s and whose payload
contains a GET request. The second rule matches TCP traf-
fic whose destination port also corresponds to Memcached’s.
The incoming chain branches based on which rule matches. If
neither rule matches, the packet is processed by the network
stack as usual.

hash_keys. This program computes hashes for every Mem-
cached GET key contained in the packet. It then checks the
corresponding cache entries for any cache hit or hash collision
and saves the key hashes that have been hit in a per-cpu array
used to store context data for the execution of the chain.

prepare_packet. This eBPF program increases the size
of the received packet and modifies its protocol headers to
prepare the response packet, swapping the source and des-
tination Ethernet addresses, IP addresses and UDP ports. It
then calls the last eBPF program of this branch of the chain.

The maximum number of bytes BMC can add to the packet is
limited by the network driver implementation. In our current
implementation of BMC, this value is set to 128 bytes based
on the different network drivers BMC attaches to, and it can
be increased to a higher value to match other network driver
implementations.

write_reply. This eBPF program retrieves a key hash saved
in the per-cpu array to copy the corresponding cache entry
to the packet’s payload. If the table contains multiple key
hashes, this eBPF program can call itself to copy as many
items as possible in the response packet. Finally, this branch
of the incoming chain ends by sending the packet back to the
network.

invalidate_cache. The second branch of the incoming
chain handles Memcached TCP traffic and contains a sin-
gle eBPF program. This program looks for a SET request
in the packet’s payload and computes the key hash when it
finds one to invalidate the corresponding cache entry. Packets
processed by this branch of the incoming chain are always
transmitted to the network stack so that Memcached can re-
ceive SET requests and update its own data accordingly.

4.2.2 Outgoing chain

The outgoing chain is composed of two eBPF programs to
process Memcached responses. It is attached to the Traffic
Control (TC) egress hook and is executed before a packet is
sent to the network.

tx_filter. The first eBPF program of this chain serves as a
packet filter and applies a single rule on outgoing packets. The
rule matches UDP packets whose source port corresponds to
Memcached’s. In this case the second eBPF program of the
chain is called, otherwise the packet is sent to the network as
usual.

update_cache. The second eBPF program checks if the
packet’s payload contains a Memcached GET response. If
positive, its key is used to index the BMC cache and the re-
sponse data is copied in the corresponding cache entry. The
network stack then carries on its execution and the Mem-
cached response is sent back to the network.
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Table 2 provides complexity metrics for each eBPF pro-
gram. For the most complex ones, the number of eBPF in-
structions the Linux verifier has to analyze to ensure their
safety is a thousand times higher than their actual number of
instructions. The table also shows that it is necessary to divide
BMC’s logic into multiple eBPF programs to avoid reaching
the limit of 1,000,000 instructions that can be analyzed by the
Linux verifier.

5 Evaluation

In this section, we evaluate the performance of MemcachedSR
running with BMC. We aim to evaluate the throughput gain
offered by BMC and how performance scales with the number
of cores when processing a target workload that consists of
small UDP requests. We also evaluate MemcachedSR with
BMC on a non-target workload to study the overhead and
impact of BMC on throughput when it intercepts Memcached
requests but does not cache them. We show that the increase
in throughput can be obtained without allocating additional
memory, and that the cache memory can be partitioned be-
tween the Memcached application and BMC. We compare
BMC with a dummy cache implementation and show that its
design is efficient for high performance. Finally, we compare
MemcachedSR running with BMC to Seastar, an optimized
networking stack based on DPDK. We study their perfor-
mance using our target workload and a workload that uses
both TCP and UDP requests. We also measure their CPU
resource consumption for an equivalent client load and show
that BMC allows saving CPU resources.

5.1 Methodology
Platform. Our testbed consists of three machines: one acting
as the Memcached server under test, and two as the clients.
The server machine is equipped with a dual socket mother-
board and two 8-core CPUs (Intel Xeon E5-2650 v2 @ 2.60
GHz) with HyperThreading disabled, 48 GB of total memory
and two NICs (one Intel XL710 2x40GbE and one Netronome
Agilio CX 2x40GbE). The other two machines are used as
clients to send traffic and are equipped with the same Intel
Xeon CPU and an Intel XL710 2x40GbE NIC. One client is
connected back to back to the server using its two network
ports while the other client is connected using a single port. In
total, the server machine uses three network ports to receive
traffic from the clients. In all experiments, the server machine
runs Linux 5.3.0.
Target workload and Method. Our target workload is the
following: the client applications generate skewed workloads
based on established Memcached traffic patterns [13]. Clients
use a non-uniform key popularity that follows a Zipf distri-
bution of skewness 0.99, which is the same used in Yahoo
Cloud Serving Benchmark (YCSB) [19]. MemC3 [23] is an
in-memory key-value store that brings carefully designed al-
gorithms and data structures to Memcached to improve both

its memory efficiency and scalability for read-mostly work-
loads. Similarly to the evaluations performed in the MemC3
paper, our workload consist of a population of 100 million
distinct 16-byte keys and 32-byte values. By default, we al-
locate 10 GB of memory for the Memcached cache and 2.5
GB for the BMC cache. With this amount of memory, the
Memcached cache can hold about 89 million items while the
BMC cache can hold 6.3 million. Hence, some items can be
missing from both the BMC and the Memcached cache. The
memory allocated to both Memcached and BMC is not only
used for keys and values but also stores metadata. For each
cache entry in BMC, 17 bytes are used as metadata. Before
each experiment, the clients populate Memcached’s cache by
sending a SET request for every key in the population. Note
that this does not populate BMC’s cache as it is only updated
when the application replies to GET requests.

The client applications send requests at the rate of 12 mil-
lion requests per second (Req/s) in an open-loop manner in
order to achieve the highest possible throughput and highlight
bottlenecks. A total of 340 clients are simulated to efficiently
distribute requests among multiple cores on the server by
leveraging the NICs’ multi-queue and RSS features. We fur-
ther refer to these cores as RX cores. We limit our evaluations
to a maximum of 8 RX cores on a single CPU to enforce
NUMA locality with the NICs.

Table 3 summarizes this target workload as well as other
default evaluation settings that are used in the following ex-
periments unless otherwise specified.

Key distribution Zipf (0.99)
Key size 16 bytes
Value size 32 bytes
Key population 100 million
BMC to Memcached cache size ratio 25%
Number of Memcached application threads 8
Number of RX cores 8

Table 3: MemC3-like evaluation settings

5.2 Throughput
Target workload. We evaluate the throughput of Memcached
under three configurations: vanilla Memcached alone, Mem-
cachedSR alone and MemcachedSR with BMC. We also eval-
uate how these three configurations scale with the number
of cores. We allocate the same CPU resources for all three
configurations. For all configurations, we vary the number
of threads the application uses to process requests simulta-
neously and dedicate cores to the application by pinning its
threads. For MemcachedSR with BMC, we also vary the num-
ber of queues configured on each of the server’s NICs and
use the same cores to handle interrupts. This allows BMC to
be executed by each core serving interrupts in parallel. For
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the vanilla Memcached application alone and MemcachedSR
alone, 8 cores are used to execute the network stack.

Figure 6 shows the throughput achieved by these three
configurations. As mentioned in Section 2.1, the vanilla Mem-
cached application does not scale due to the socket lock con-
tention; at best it achieves 393K requests per second using 4
cores. MemcachedSR offers better scalability and achieves
1.2M requests per second when using 8 cores. For Mem-
cachedSR with BMC, the overall system throughput is split
between requests answered using the BMC cache and re-
quests handled by the application. When running on a single
core, MemcachedSR with BMC achieves 1M requests per sec-
ond, which is 6x the throughput of both vanilla Memcached
and MemcachedSR. When BMC runs on 8 cores, the server
achieves a throughput of 7.2M requests per second, 6.3 mil-
lion being processed by BMC, the rest being processed by
Memcached. This is 18x better performance with respect to
vanilla Memcached and 6x with respect to MemcachedSR.
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Figure 6: Throughput of BMC

Worst-case workload. We now change our workload to
use 8KB Memcached values instead of 32 bytes. This is
BMC’s worst-case workload since the Memcached requests
are still analyzed by BMC but the values are too large to be
stored in its cache, thus the Memcached application is always
used to serve the requests. To study the impact of the addi-
tional processing of BMC, we compare the throughput of
the MemcachedSR application alone and that of the Mem-
cachedSR application running with BMC. Figure 7 shows
that BMC’s additional processing has negligible overhead and
does not significantly deteriorate the application throughput.
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Figure 7: Throughput under a worst-case workload

We now modify the workload so that part of it are requests

that BMC targets while the rest is for 8KB values. We then and
evaluate how varying the ratio of the target requests affects
throughput. As shown in Figure 8, BMC improves throughput
by 4x compared to MemcachedSR alone when the workload
consists of 25% of targeted requests even though it does not
speed up the majority of requests received. This shows that
BMC is valuable even when the workload contains few target
requests and that BMC further improves throughput as the
ratio of target requests increases.
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Figure 8: MemcachedSR vs. MemcachedSR with BMC
throughput for varying request size distributions.

5.3 Cache size
We then evaluate the impact of BMC’s cache size on through-
put. In this experiment, we use a total of 10 GB of memory
and split it between the Memcached cache and the BMC
cache, varying the distribution from 0.1% of memory allo-
cated to BMC to a maximum of 40%. The latter corresponds
to a size of 4 GB for the BMC cache, which is the maximum
size accepted by the Linux kernel for the allocation of a sin-
gle eBPF map [7]. The results are shown in Figure 9 where
the total system throughput is broken down into hits in the
BMC cache, and hits and misses in the application cache.
For all distribution schemes tested, there is an increase in
performance compared to running MemcachedSR alone. The
best throughput is achieved when BMC uses 25% of the total
memory. In this case, the BMC cache size is well-suited to
store the hottest items of the Zipf distribution. Throughput de-
creases from 25% to 40% because the Memcached cache hit
rate shrinks from 89% to 43% as its cache gets smaller. This
causes the BMC cache hit rate to diminish as well because
only responses from Memcached cache hits allow entries of
the BMC cache to be updated. When only 0.1% (10 MB) of
the memory is used by the BMC cache, throughput is mul-
tiplied by 2.3 compared to the best throughput achieved by
MemcachedSR alone, showing that BMC offers good perfor-
mance even with minimal memory resources.

5.4 BMC processing latency
We now evaluate the overhead induced by a BMC cache miss,
which characterizes the worst-case scenario since BMC pro-
cesses a request and executes additional code that does not
lead to any performance benefit. To characterize this overhead,
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Figure 9: System throughput under various memory partition
schemes

we use kprobes to measure the total time required to receive,
process and reply to a Memcached request. The nfp_net_rx
and nfp_net_tx driver functions are respectively instrumented
to record the time at which a request is received and the corre-
sponding reply is sent back to the network. In this experiment,
a single client machine is used to send requests to the server
and a single Memcached key is used to ensure that a cache
result is always either a hit or a miss. After sending a request,
the client always waits for the server’s reply to make sure the
server does not process more than one request at a time.

Figure 10 shows the time distribution of 100,000 measure-
ments for cache hits and misses separately. Figure 10a shows
the distributions of MemcachedSR running with BMC as well
as BMC hits. For Memcached hits, the valid bit of BMC’s
cache entries is never set to ensure BMC lookups result in a
cache miss and that the request is always processed by the
Memcached application. However, the BMC cache is still
updated to measure additional data copies. The median of the
distribution of BMC cache hits is 2.1 µs and that of Mem-
cached cache hits and misses are respectively 21.8 and 21.6 µs.
Hence, a BMC cache hit can reduce by 90% the time required
to process a single request. Running the same experiment on
MemcachedSR without BMC (Figure 10b) shows that the
processing time of both Memcached hits and misses is lower
by about 1 µs. This shows that BMC has a negligible pro-
cessing overhead compared to the total time required for the
execution of the Linux network stack and the Memcached ap-
plication. Moreover, this additional processing time is entirely
recovered by a single BMC cache hit.

Next we study the impact of the processing time of the ker-
nel cache on its throughput. To do so we have implemented
a dummy cache that always replies the same response and
whose processing time can be parameterized using a empty
loop. This dummy cache is implemented using a single eBPF
program and is attached to the XDP network-driver hook just
like BMC. Figure 11 shows the throughput of the dummy
cache while varying its processing time and compares it with
the actual BMC cache perfoming cache hits. This experiment
demonstrates that the cache throughput is highly dependent
on its processing time: increasing the processing time from
100 ns to 2000 ns decreases throughput by a factor of 4.5. The
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Figure 10: Time to receive, process and reply to a request.

average time to perform a cache hit in BMC is fairly close to
the time of the dummy cache with no additional processing
time; this shows that choosing simple and fast algorithms for
BMC’s cache design introduces little processing overhead
and contributes to its high throughput performance. Imple-
menting overly complex algorithms may lead to a sharp drop
in performance. Hence, adding new features to BMC, such
as an eviction algorithm, must be well thought out to result
in an improved hit rate that compensates for the additional
processing time.
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Figure 11: Execution time impact on throughput.

5.5 Impact on concurrent network applica-
tions.

As BMC intercepts every network packet before the OS net-
work stack, its execution may have a performance impact on
other networking applications running on the same host. To
study this impact, we use iperf to transfer 10GB of data over
TCP from one client machine to the server machine while
serving Memcached requests, and measure the time required
to complete this transfer. This experiment is conducted for
MemcachedSR alone and MemcachedSR with BMC, while
varying clients’ request throughput. Figure 12 shows the re-
sults. When there is no load, the baseline transfer time is 4.43
seconds. When the Memcached load rises, the time required
to complete the data transfers increases since the cores are
busy processing incoming Memcached traffic in addition to
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the iperf traffic, which leads to an increase in TCP retrans-
mission rate and UDP packet drops. When using BMC, the
transfer time is lowered when the server is under load as CPU
resources are saved when BMC processes Memcached re-
quests in place of the application. For a Memcached load of
5000K Req/s, BMC allows iperf to complete its transfer 83%
faster compared to the configuration in which Memcached
processes the requests alone and the OS network stack is
always executed.
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Figure 12: Time required to transfer 10GB of data using iperf
under client load.

5.6 Kernel-bypass comparison
We now compare MemcachedSR with BMC against the Mem-
cached implementation from Seastar [4] 20.05, a framework
for building event-driven applications that comes with its own
network stack built on top of DPDK.

Target workload. In this experiment, we evaluate the
throughput of Seastar and compare the results with Mem-
cachedSR running with BMC. We perform the experiment
using a single client to generate our target UDP workload as
Seastar does not support multiple network interfaces. This
single client alone generates 4.5 million requests per second.
Figure 13 shows the throughput of Seastar and MemcachedSR
with BMC when varying the number of cores. BMC is able to
process the workload generated by a single client machine us-
ing 4 cores. Using the same number of cores, Seastar achieves
443K requests per second. Seastar’s throughput increases to
946K requests per second when using 8 cores. We are not
sure why Seastar’s throughput drops when using 2 cores; our
investigations revealed that this only happens when Seastar
receives UDP packets and that Seastar performs best when it
processes Memcached requests over TCP.

Workload mixing UDP and TCP requests. As our pre-
liminary investigation shows that Seastar performs best on
TCP, we change our workload to send half of the Memcached
requests with TCP while the other half keeps using UDP. This
workload coincides with a Memcached deployment for which
the protocol used by clients cannot be anticipated. Figure 14
shows that the throughput of both configurations scales with
the number of cores. Seastar’s high-performance TCP stack
enables its Memcached implementation to process 2.3 million
requests per second when using 8 cores. Accelerating the pro-
cessing of UDP requests allows MemcachedSR with BMC
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Figure 13: Seastar vs. BMC throughput

to achieve similar throughput when using 3 cores. Increasing
the number of cores does not increase the throughput of Mem-
cachedSR with BMC as the client TCP workload generation
becomes the bottleneck.
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Figure 14: Seastar vs. BMC throughput when mixing TCP
and UDP requests

CPU usage. We then measure the CPU usage of both Mem-
cachedSR with BMC and Seastar for different client loads. In
both configurations we use a total of 8 CPU cores to process
the workload. For MemcachedSR with BMC, we use 6 RX
cores and pin the Memcached threads to the two remaining
cores. This configuration offers the best performance and
allows us to measure the CPU usage of the Memcached appli-
cation and the network stack (including BMC) separately. The
CPU usage is measured on each core for 10 seconds using
the mpstat tool. Figure 15 shows the average CPU core usage
per core type (Seastar, MemcachedSR and BMC). The results
show that Seastar always uses 100% of its CPU resources,
even when throughput is low. This is because DPDK uses
poll mode drivers to reduce the interrupt processing overhead
when packets are received by the NIC. The CPU usage of
MemcachedSR with BMC scales with the load thanks to the
interrupt-based model of the native Linux drivers BMC builds
upon. As shown in Figure 14, Seastar can process 2.3 million
requests per second when using 8 cores, Figure 15 shows that
MemcachedSR with BMC consumes 33% of the CPU (91%
of the two Memcached cores and 13% of the six RX cores)
to achieve similar throughput. Therefore, using Memcached
with BMC saves CPU resources that can be used by other
tasks running on the same system when the workload is low.
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Figure 15: CPU usage of BMC compared to Seastar

6 Discussion

Although the BMC cache is fairly generic and can store any
datatype, most of BMC is specialized to filtering and pro-
cessing Memcached requests. Applying in-kernel caching to
another key-value store like Redis [11] would then require
specific eBPF programs to process Redis’s RESP protocol.
Because Redis requests are only transmitted over TCP, adapt-
ing BMC to Redis requires the support of the TCP protocol.
This can be done by either sending acknowledgements from
an eBPF program or reusing the existing TCP kernel imple-
mentation by intercepting packets past the TCP stack. As
Redis is more focused on functionality and Memcached on
performance, an in-kernel cache for Redis will require more
eBPF programs to implement the minimal subset of Redis
commands required to ensure cache coherence with the appli-
cation. Just like BMC, some of the functionalities can be left
to the application to focus on accelerating the most frequent
request types. Redis usually performs worse than Memcached
when processing a large volume of requests because it is
single-threaded, hence we expect the throughput speed-up to
be even higher than for Memcached.

Although static memory allocation enables the verification
of BMC’s eBPF programs, it also wastes memory. BMC suf-
fers from internal fragmentation because each cache entry is
statically bounded by the maximum data size it can store and
inserting data smaller than this bound wastes kernel mem-
ory. The simplest approach to reduce memory fragmentation
would be to fine-tune the bound of the cache entries to min-
imize the amount of fragmented memory. A more flexible
approach would be to reuse fragmented memory to cache
additional data. Each cache entry would then be able to store
multiple data, making BMC a set-associative cache for which
the number of slots varies according to the size of the stored
data to reduce memory fragmentation. The fact that BMC is
a non-exclusive cache also leads to memory loss since some
data is duplicated between the BMC cache and Memcached.
This duplication occurs for the majority of data that is not
frequently accessed. On the other hand, frequently accessed
data are eventually discarded from the application by Mem-
cached’s LRU algorithm because the BMC cache is used

instead. Ideally, BMC should be able to directly access the
application’s cache memory to avoid any duplication, how-
ever, this requires browsing Memcached data structures which
could create security vulnerabilities.

The XDP driver hook leveraged by BMC requires support
in the NIC driver. With no XDP driver support, BMC can
still be used with the generic Linux kernel hook but its per-
formance will not be as high. However, this is not a critical
concern as most of the drivers for high-speed network inter-
faces support XDP.

7 Related Work

This section discusses the most relevant related work in the
field of optimization of the network stack and Memcached.

Programmable hardware switches. Recent advances in
programmable hardware switches with languages like P4 [41]
have raised significant interest on offloading network pro-
cessing operations into the network. NetCache [29] imple-
ments an in-network key-value cache on Barefoot Tofino
switches [12]. NetCache uses switch lookup tables to store,
update and retrieve values. To access the key-value store,
clients have to use a specific API to translate client requests
into NetCache queries. Switch KV [32] and FlairKV [43]
leverage programmable ASICs to implement a caching solu-
tion also acting as a load balancer. Switch KV uses an efficient
routing algorithm to forward client queries to the right server.
The OpenFlow protocol is used to install routes to cached ob-
jects and invalidate routes to recently modified ones. FlairKV
accelerates GET queries by intercepting every SET query and
the corresponding reply to detect unmodified objects. While
these approaches leverage ASIC optimizations to offer high
throughput and low latency, they consume switch memory,
TCAM and SRAM, which is an expensive resource primary
reserved for packet forwarding. Thus, using lookup table re-
sources to store key-value data exposes the entire network to
bottlenecks and failures.

FPGA and NIC offloading. Examples of key-value store
applications offloaded to FPGA include TSSP [34] which
implements part of the Memcached logic, i.e., the processing
of GET requests over UDP, on a Xilinx Zynq SoC FPGA. A
more complete FPGA Memcached implementation [17] sup-
ports processing of SET and GET requests over both TCP and
UDP protocols. Similar work [18] deployed and evaluated an
FPGA Memcached application within the public Amazon in-
frastructure. These approaches achieve high throughput with
up to 13.2 million RPS with 10GbE link but they are con-
strained by the FPGA programming model, which requires re-
placing the Memcached protocol by more FPGA-compatible
algorithms. KV-Direct [31] leverages Remote Direct Memory
Access (RDMA) technology on NICs to update data directly
on the host memory via PCIs. With this approach, KV-Direct
alleviates CPU bottlenecks at the expense of PCI resources.
NICA [22] introduces a new hardware-software co-designed
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framework to run application-level accelerators on FPGA
NICs. NICA enables accelerating Memcached by serving
GETs directly from hardware using a DRAM-resident cache
and achieves similar performance to BMC since it still re-
quires host processing to handle cache misses. NICached [42]
proposes to use Finite State Machines as an abstract program-
ming model to implement key-value store applications on
programmable NICs. With this abstraction, NICached can be
implemented with different languages and platforms: FPGA,
eBPF, P4 and NPU-based NICs. NICached is the closest work
to BMC but it targets NICs and does not propose an imple-
mentation of this model.

Compared to hardware approaches, BMC offers competi-
tive performance, does not make use of expensive hardware
resources such as SRAM and does not require hardware in-
vestment and software re-engineering.

Kernel-bypass. A kernel-bypass version of Memcached
has been built on top of StackMap [46], an optimized net-
work stack that achieves low latency and high throughput by
dedicating hardware NICs to userspace applications. Using
StackMap improves vanilla Memcached throughput by 2x
in the most favorable scenario. MICA [33] employs a full
kernel-bypass approach to process all key-value store queries
in user space. MICA avoids synchronization by partitioning
hash-maps among cores. MICA relies on a specific protocol
that requires client information to map queries to specific
cores and is not compatible with Memcached. To the best of
our knowledge, MICA is the fastest software key value store
application with a throughput of 77 million RPS on a dual-
socket server with Intel Xeon E5-2680 processors. MICA is
built with the DPDK library making MICA inherit most of
DPDK’s constraints: dedicated CPU cores to pull incoming
packets, reliance on the hardware for isolation and requiring
entirely re-engineering existing applications.

Compared to MICA, BMC achieves lower throughput but
keeps the standard networking stack, does not implement any
modification of clients and saves CPU resources.

Memcached optimizations Prior works [35, 44] have pro-
posed to change the locking scheme of a former Memcached
version to remove bottlenecks that impacted performance
when running a large number of threads. To scale Memcached
network I/O, MegaPipe [26] replaces socket I/O by a new
channel-based API. Hippos [45] uses the Netfilter hook with
a kernel module to serve Memcached requests from the Linux
kernel, but does not ensure the safety of its kernel module and
requires modifications to Memcached’s source code to update
its kernel cache.

eBPF verification. Gershuni et al. [25] have proposed a
new verifier based on abstract interpretation in order to scale
the verification of eBPF programs with loops. The authors
showed that they could verify programs with small bounded
loops and eliminate some false positives, however, their im-
plementation has a time complexity about 100 times higher
than the current Linux verifier, and uses from 100 to 1000

times more memory. Serval [39] introduces a general pur-
pose and reusable approach to scale symbolic evaluation by
using symbolic profiling and domain knowledge to provide
symbolic optimizations. However, Serval does not consider
domain specific symbolic evaluation. For example, the Linux
verifier is capable of inferring register types based on the at-
tach type of an eBPF program. Type inference then allows the
Linux verifier to check the type correctness of the parameters
passed to a helper function. Without this specific symbolic
evaluation, Serval cannot ensure a precise analysis of eBPF
programs and therefore cannot be used in place of the Linux
verifier.

eBPF usage. eBPF is extensively used in industry for fast
packet processing. Cilium [2] uses eBPF as a foundation to
provide networking and security to Linux containers. Cloud-
flare uses eBPF to replace their complex infrastructure filter-
ing rules by eBPF programs. As an example, Cloudflare’s
DDoS mitigation solution uses XDP in L4Drop, a module
that transparently translates iptable DDoS mitigation rules
into eBPF programs [8]. These eBPF programs are pushed
to the edge servers located in Cloudflare’s Points of Presence
(PoPs) for automatic packet filtering. Facebook developed
Katran [3], an XDP based L4 Load balancer. Katran consists
of a C++ library and an XDP program deployed in backend
servers in Facebook’s infrastructure PoPs.

8 Conclusion

We present BMC, an in-kernel cache designed to improve
performance of key-value store applications. BMC intercepts
application queries at the lowest point of the network stack
just as they come out of the NIC to offer high throughput
and low latency with negligible overhead. When compared to
user space alternatives, BMC shows comparable performance
while saving computing resources. Moreover, BMC retains
the Linux networking stack and works in concert with the user
space application for serving complex operations. We believe
that the BMC design can motivate the emergence of new
system designs that make it possible to maintain the standard
Linux networking stack while offering high performance.

BMC focuses on the optimization of Memcached because
it is a performance-oriented key-value store. As a future work,
we plan to apply the design of BMC to other popular key-
value store applications such as Redis.

BMC is publicly available at https://github.com/
Orange-OpenSource/bmc-cache.
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Abstract
Modern web applications heavily rely on in-memory key-
value caches to deliver low-latency, high-throughput services.
In-memory caches store small objects of size in the range of
10s to 1000s of bytes, and use TTLs widely for data fresh-
ness and implicit delete. Current solutions have relatively
large per-object metadata and cannot remove expired objects
promptly without incurring a high overhead. We present Seg-
cache, which uses a segment-structured design that stores data
in fixed-size segments with three key features: (1) it groups
objects with similar creation and expiration time into the seg-
ments for efficient expiration and eviction, (2) it approximates
some and lifts most per-object metadata into the shared seg-
ment header and shared information slot in the hash table for
object metadata reduction, and (3) it performs segment-level
bulk expiration and eviction with tiny critical sections for high
scalability. Evaluation using production traces shows that Seg-
cache uses 22-60% less memory than state-of-the-art designs
for a variety of workloads. Segcache simultaneously delivers
high throughput, up to 40% better than Memcached on a sin-
gle thread. It exhibits close-to-linear scalability, providing a
close to 8× speedup over Memcached with 24 threads.

1 Introduction
In-memory caches such as Memcached [54] and Redis [13]

are widely used in modern web services such as Twit-
ter [18, 46], Facebook [21, 55], Reddit [3] to reduce service
latency and improve system scalability. The economy of cache
lies within supporting data retrieval more cheaply, and usually
more quickly, compared to the alternatives. The usefulness of
in-memory caches is judged by their efficiency, throughput,
and scalability, given certain hardware resource constraints.
Memory efficiency determines the amount of memory a cache
needs to achieve a certain miss ratio. Throughput is typically
measured in queries per second (QPS) per CPU core. Scala-
bility reflects how well a cache can use multiple cores on a
host. There have been several efforts to reduce miss ratio via
better eviction algorithms [22, 26, 36, 37]. Many other works
focus on improving throughput [41, 51]. However, several
other aspects of in-memory caching also play import roles in
memory efficiency.

Web services tend to cache small key-value objects in mem-
ory, typically in the range of 10s to 1000s of bytes [21, 46].

Figure 1: How Segcache compares to state-of-the-art caches

However, most popular production caching systems store a
relatively large amount of metadata. For example, both Mem-
cached and Redis impose over 50 bytes of memory overhead
per object. Furthermore, research aimed at reducing miss ra-
tio typically ends up expanding object metadata even fur-
ther [22, 26, 28, 36, 60], as shown in Table 1.

Time-to-live (TTL) is widely used in caching to meet data
freshness and feature requirements, or comply with regula-
tions such as GDPR [42, 65–67]. Twitter mandates the use
of TTLs in cache, with values ranging from a few minutes
to a month. Existing caching systems either remove expired
objects lazily or incur high overhead [70] when they attempt
to expire more proactively. We summarize the techniques for
removing expired objects in Table. 2 and discuss them in §2.

Most production in-memory caches use an external mem-
ory allocator such as malloc or a slab-based memory allo-
cator. The former often subjects the cache to external frag-
mentation, and the latter to internal fragmentation [63]. In
addition, slab-based allocators often suffer from the so-called
slab calcification problem [18, 44], or introduce extra cache
misses due to slab migration [29, 34].

One way to reduce memory fragmentation is to adopt a
log-structured design. This approach has been widely used
for file systems [62] and durable key-value stores [14, 31,
33, 57, 58, 63] for their simplicity, high write throughput [51,
62], low fragmentation, and excellent space efficiency [63].
There have been several in-memory caches built with log-
structured design. MICA [51], a throughput-oriented system
based on one giant log per thread, limits its eviction algorithm
to FIFO or CLOCK, both of which are sub-optimal for many
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Table 1: Comparison of research systems (all comparisons are with corresponding baselines)

System
Memory
Allocator

Memory
fragmentation

Improve
TTL expiration

Object
metadata size

Throughput
Memory efficiency
improvement approach

MICA Log No No Decrease Higher Worse
Memshare Log No No Increase Lower Memory partitioning and sharing
pRedis Malloc External No Increase Lower Better eviction
Hyperbolic Malloc External No Increase Lower Better eviction
LHD Slab Internal No Increase Lower Better eviction
MemC3 Slab Internal No Decrease Higher Small metadata
Segcache Segment No Yes Minimal Higher Holistic redesign

workloads. Memshare [37], a multi-tenant caching system,
divides DRAM into small logs (called segments) and uses
segments to enforce memory partitioning between tenants.
However, its computation of miss ratio curve for each tenant
and object migration are relatively expensive, which result in
reduced throughput compared to Memcached.

As modern servers become denser with CPU cores over
time, thread-scalability becomes essential in modern cache
design. Several techniques have been proposed to improve
scalability in key-value caches and key-value stores, such
as static DRAM and data partitioning [50, 51], opportunistic
concurrency control with lock-free data structures [32, 41,
52], and epoch-based design [31]. However, each technique
comes with its own problems. Static partitioning uses memory
inefficiently. Opportunistic concurrency control works better
on read-heavy workloads, whereas some caching workloads
are write-heavy [46]. An epoch-based system requires a log-
structured design with a sub-optimal eviction algorithm.

Achieving high memory efficiency, high throughput, and
high scalability simultaneously in caching systems is chal-
lenging. Previous works tend to trade one for the other (Fig. 1
and Table 1). In this paper, we present Segcache, a cache de-
sign that achieves all the three desired properties. Segcache is
a TTL-indexed, dynamically-partitioned, segment-structured1

cache where objects of similar TTLs are stored in a small
fixed-size log called a segment. Segments are first grouped
by TTL and then naturally sorted by creation time. This de-
sign makes timely removal of expired objects both simple and
cheap. As a cache, Segcache performs eviction by merging
a few segments into one, retaining only the most important
objects, and freeing the rest. Managing the object life cycles
at the segment level allows most metadata to be shared within
a segment. It also allows metadata bookkeeping to be per-
formed with a limited number of tiny critical sections. These
decisions improve memory efficiency and scalability without
sacrificing throughput or features.

Below are some highlights of our contributions:
• To the best of our knowledge, Segcache is the first cache

design that can efficiently remove all objects immedi-
ately after expiration. This is achieved through TTL-
indexed, time-sorted segment chains.

1Since segments are small-sized logs, Segcache can be viewed as a log-
structured cache with special properties; see §6 for in-depth comparisons.

Table 2: Techniques for removing expired objects

Technique Remove all expired? Is removal cheap?

Deletion on access No Yes
Checking LRU tail No Yes
Transient item pool No Yes
Full cache scan Yes No
Random sampling No No

• We propose and demonstrate "object sharing economy",
a concept that reduces per-object metadata to just 5 bytes
per object, a 91% reduction compared to Memcached,
without compromising on features.

• Our single pass, merge-based eviction algorithm uses an
approximate and smoothed frequency counter to achieve
a balance between retaining high value objects and ef-
fectively reclaiming memory.

• We demonstrate that a "macro management strategy",
replacing per-request bookkeeping with batched opera-
tions on segments, improves throughput. It also delivers
close-to-linear CPU scalability.

• Segcache is designed for production on top of Pelikan,
and is open sourced (see §4).

• We evaluated Segcache using a wide variety of produc-
tion traces, and compared results with multiple state-of-
the-art designs. Segcache reduces memory footprint by
42-88% compared to Twitter’s production system, and
22-58% compared to the best of state-of-the-art designs.

2 Background and Motivation
As a critical component of the real-time serving infrastruc-

ture, caches prefer to store data, especially small objects, in
DRAM. DRAM is expensive and energy-hungry. However,
existing systems do not use the costly DRAM space efficiently.
This inefficiency mainly comes from three places. First, exist-
ing solutions are not able to quickly remove expired objects.
Second, metadata overhead is considerable compared to typi-
cal object sizes. Third, internal or external memory fragmen-
tation is common, leading to wasted space. While improve-
ments of admission [24, 25, 39, 40, 43], prefetching [73, 74],
and eviction algorithms [22, 23, 26, 30, 36, 37, 49, 68] have
been the main focus of existing works on improving memory
efficiency [22, 25, 26, 39], little attention has been paid to
addressing expiration and metadata reduction [41,63]. On the
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contrary, many systems add more per-object metadata to make
smarter decisions about what objects to keep [22, 36, 39, 73].

We summarize recent advancements of in-memory caching
systems in Table 1 and discuss them below.

2.1 TTL and expiration in caching
TTLs are extremely common in caching. As a result, object

expiration is an integral part of all existing solutions.

2.1.1 The prevalence of TTL
TTLs are used by users of Memcached and Redis [4, 8, 10,

12], Facebook [17], Reddit [3], Netflix [6]. In Twitter’s pro-
duction, all in-memory cache workloads use TTLs between
one minute and one month. A TTL is specified at write time
to determine how long an object should remain accessible in
the caching system. An expired object cannot be returned to
the client, and a cache miss is served instead.

Cache TTLs serve three purposes. First, clients use TTLs
to limit data inconsistency [4, 46]. Writing to the cache is
usually best-effort, so it is not uncommon for data in cache
and database to fall out of sync. Second, some services use
TTLs to prompt periodic re-computation. For example, a rec-
ommendation system may only want to reuse cached results
within a time window, and recompute periodically to incor-
porate new activities and content. Third, TTLs are used for
implicit deletion. A typical scenario is rate-limiting. Rate lim-
iters are counters associated with some identities. Services
often need to cap requests from a particular identify within a
predefined time window to prevent denial-of-service attacks.
Services store rate limiters in distributed caches with TTLs,
so that the counts can be shared among stateless services and
reset periodically. Another increasingly common scenario is
using TTLs to ensure data in caches comply with privacy
laws [42, 67].

2.1.2 Lazy expiration
Lazy expiration means expiration only happens when an

object is reaccessed. Deletion on access is the most straight-
forward approach adopted by many production caching sys-
tems. If a system uses lazy expiration only, an object that’s no
longer accessed can remain in memory long past expiration.

2.1.3 Proactive expiration
Proactive expiration is used to reclaim memory occupied

by expired objects more quickly. Although there has been no
academic research on this topic to the best of our knowledge,
we identified four approaches introduced into production sys-
tems over the years, as summarized in Table. 2.

Checking LRU tail is used by Memcached. Before eviction
is considered, the system checks a fixed number of objects at
the tail of the LRU queue and removes expired objects. Oper-
ations on object LRU queues reduce thread scalability due to
the extensive use of locking for concurrent accesses [22, 26].
Additionally, this approach is still opportunistic and there-
fore doesn’t guarantee the timely removal of expired objects.
Many production caches track billions of objects over a few

LRU queues, so the time for an object to percolate through
the LRU queue is very long.

Transient object pool was introduced by Facebook [55]. It
makes a special case for the timely removal of objects with
small TTLs. The main idea is to store such objects separately,
and only allow them to be removed via expiration. However,
choosing the TTL threshold is non-trivial and can have side
effects [46]. Although Memcached supports it, it is disabled
by default.

Full cache scan is a popular approach adopted by Mem-
cached and CacheLib [17]. As the name indicates, this so-
lution periodically scans all the cached objects to remove
expired ones. Full cache scan is very effective if the scan
is frequent, but it wastes resources on objects that are not
expired, which can be the vast majority.

Random sampling is adopted by Redis. The key idea is to
periodically sample a subset of objects and remove expired
ones. In Redis, if the percentage of the expired objects in the
sample is above a threshold, this process continues. While
sampling is cheaper per run, the blind nature of sampling
decides that it is both inefficient and not very effective. Users
have to accept that the sampling can only keep the percentage
of expired objects at a pre-configured threshold. Meanwhile,
the cost can be higher than full cache scan due to random
memory access. There have been some production incidents
where Redis could not remove enough expired objects and
caused unexpected evictions [70].

Despite the various flaws, proactive expiration is highly
regarded by developers of production systems. When asked
to replace LRU for a better eviction strategy in Memcached,
the maintainer states that “pulling expired items out actively
is better than almost any other algorithmic improvement (on
eviction) I could think of.” [10] Meanwhile, Redis’ author
mentioned that “Redis 6 expiration will no longer be based
on random sampling but will take keys sorted by expiration
time in a radix tree.” 2

In summary, efficiently and effectively removing expired
objects is an urgent problem that needs to be solved in current
caching systems.

2.2 Object metadata
We observe that the objects stored in in-memory caches

are small [46], and the mean object sizes (key+value) of Twit-
ter’s top four production clusters are 230, 55, 294, 72 bytes,
respectively. This observation aligns with the observations at
Facebook [21], and Reddit [3].

Existing systems are not efficient in storing small objects
because they store considerable amount of metadata per ob-
ject. For example, Memcached stores 56 bytes of metadata
with each object 3, which is a significant overhead compared

2As of Redis v6.0.6, this change is not implemented yet.
32 × 8 bytes LRU pointers, 8 bytes hash pointer, 4 bytes access time, 4

bytes expire time, 8 bytes object size, 8 bytes cas (compare-and-set, used
for atomic update).

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    505



Figure 2: Slab memory allocation (left) and object-chained hash
table (right) in Memcached.

to typical object size. All of the metadata fields are critical
for Memcached’s operations, and cannot be dropped without
first removing some functionalities or features.

There have been several attempts at Twitter to cut metadata
overhead. For example, Pelikan’s slab-based storage removes
object LRU queues and reuses one pointer for both hash chain
and free object chain. As a result, it reduces object metadata
to 38 bytes. However, this prevents Pelikan from applying
the LRU algorithm to object eviction, and results in higher
miss ratio compared to Memcached in our evaluation. Pelikan
also introduced Cuckoo hashing [59] as a storage module for
fixed-size objects, only storing 6 bytes (or 14 bytes with cas)
of metadata per key.

Several academia works have also looked at reducing meta-
data size. RAMCloud [63] and FASTER [31] use a log-
structured design to reduce object metadata. However, their
designs target key-value stores instead of key-value caches
(See discussion in §5). MemC3 [41] redesigns the hash ta-
ble with Cuckoo hashing and removes LRU chain pointers.
However, it does not consider some operations such as cas
for atomic updates, does not support TTL expiration or other
advanced eviction algorithms.

2.3 Memory fragmentation
Memory management is one of the fundamental design as-

pects of an in-memory caching system. Systems that directly
use external memory allocators (e.g., malloc) such as Redis
are vulnerable to external memory fragmentation and OOM.

To avoid this problem, other systems such as Memcached
use a slab-based memory allocator, allotting a fixed-size slab
at a time, which is then explicitly partitioned into smaller
chunks for storing objects, as shown in Fig. 2 (left). The chunk
size is decided by the class id of a slab and configured
during startup. A slab-based memory allocator is subjected to
internal memory fragmentation at the end of each chunk and
at the end of each slab.

Using a slab-based allocator also introduces the slab cal-
cification problem, a phenomenon where some slab classes
cannot obtain enough memory and exhibit higher miss ra-
tios. Slab calcification happens because slabs are assigned to
classes using the first-come-first-serve method. When popu-
larity among slab classes change over time, the newly popular
slab classes cannot secure more memory because all slabs
have been assigned. This has been studied in the previous
works [29, 44, 46]. Memcached automatically migrates slabs

between classes to solve this problem, however, it is not al-
ways effective [2, 5, 9, 15]. Re-balancing slabs may increase
the miss ratio because all objects on the outgoing slab are
evicted. Moreover, due to workload diversity and complexity
in slab migration, it is prone to errors and sometimes causes
crash in production [7, 16].

Overall, existing production systems have not yet entirely
solved the memory fragmentation problem. Among the re-
search systems, log-structured designs such as MICA [50,51],
memshare [37] and RAMCloud [63] do not have this problem.
However, they cannot perform proactive expiration and are
limited to using basic eviction algorithms (such as FIFO or
CLOCK) with low memory efficiency.

2.4 Throughput and scalability
In addition to memory efficiency, throughput and thread-

scalability are also critical for in-memory key-value caches.
Memcached’s scalability limitation is well documented in var-
ious industry benchmarks [11,55]. The root cause is generally
attributed to the extensive locking in the object LRU queues,
free object queues, and the hash table. Several systems have
been proposed to solve this problem. Some of them remove
locking by using simpler eviction algorithms and sacrificing
memory efficiency [41, 51]. Some introduces opportunistic
concurrency control [41], which does not work well with
write-heavy workloads. Some other works use random evic-
tion algorithms to avoid concurrent reads and writes [22, 26],
which do not address all the locking contention. Moreover,
they reduce throughput due to the large number of random
memory accesses.

3 Design principles and overview
The design of Segcache follows three principles.

Be proactive, don’t be lazy. Expired objects offer no value,
so Segcache eagerly removes them for memory efficiency.
Maximize metadata sharing for economy. To reduce the
metadata overhead without loss of functionality, Segcache
maximizes metadata sharing across objects.
Perform macro management. Segcache operates on seg-
ments to expire/evict objects in bulk with minimum locking.

At a high level, Segcache contains three components: a
hash table for object lookup, an object store comprised of
segments, and a TTL-indexed bucket array (Fig. 3).

3.1 TTL buckets
Indexing on TTL facilitates efficient removal of expired

objects. To achieve this, Segcache first breaks the spectrum of
possible TTLs into ranges. We define the time-width of a TTL
range t1 to t2 (t1 < t2) as t2− t1. All objects in range t1 to t2
are treated as having TTL t1, which is the approximate TTL of
this range. Rounding down guarantees an object can only be
expired early, and no object will be served beyond expiration.
Objects are grouped into small fix-sized groups called seg-
ments (see next section), and all the objects stored in the same
segment have the same approximate TTL. Second, Segcache
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Figure 3: Overview of Segcache. A read request starts from the hash table (right), a write request starts from the TTL buckets (left).

uses an array to index segments based on approximate TTL.
Each element in this array is called a TTL bucket. A segment
with a particular approximate TTL value is associated with
the corresponding TTL bucket. Within each bucket, segments
are chained and sorted by creation time.

To support a wide TTL range from a few second to at least
one month without introducing too many buckets or losing
resolution on the lower end, Segcache uses 1024 TTL buckets,
divided into four groups. From one group to the next, the time-
width grows by a factor of 16. In other words, Segcache uses
increasingly coarser buckets to efficiently cover a wide range
of TTLs without losing relative precision for typical TTL
buckets. The boundaries of the TTL buckets are chosen in
a way that finding the TTL bucket only requires a few bit-
wise operations. We show that this design allows Segcache to
efficiently and effectively remove expired objects in §3.5.

3.2 Object store: segments
Segcache uses segments as the basic building blocks for

storing objects. All segments are of a configurable size, de-
fault to 1 MB. Unlike slabs in Memcached, Segcache group
objects stored in the same segment by approximate TTL, not
by size. A segment in Segcache is similar to a small log in
log-structured systems. Objects are always appended to the
end of a segment, and once written, the objects cannot be
updated (except for incr/decr atomic operations). However,
unlike other log-structured systems [37, 51, 57, 58, 62, 63],
where available DRAM is either used as one continuous log
or as segments withou no relationship between each other,
segments in Segcache are sorted by creation time, linked into
chains, and indexed by approximate TTLs.

In Segcache, each non-empty TTL bucket stores pointers
to the head and tail of a time-sorted segment chain, with the
head segment being the oldest. A write in Segcache first
finds the right TTL bucket for the object, and then appends
to the segment at the tail of the segment chain. When the tail
segment is full, a new segment is allocated. If there is no free
segment available, eviction is triggered (§3.6).

3.3 Hash table
As shown in previous works [41], the object-chained hash

tables (Fig. 2 (right)) limits the throughput and scalability in
the existing production systems [54,71]. Segcache uses a bulk-
chaining hash table similar to MICA [51] and Faster [31].

An object-chained hash table uses object chaining to re-
solve hash collisions. The throughput of such a design is sen-
sitive to hash table load. Collision resolution requires walking
down the hash chain, incurring multiple random DRAM ac-
cesses and string comparisons. Moreover, object chaining
imposes a memory overhead of an 8-byte hash pointer per
object, which is expensive compared to the small object sizes.

Instead of having just one slot per hash bucket, Segcache
allocates 64 bytes of memory (one CPU cache line) as eight
slots in each hash bucket (Fig. 3). The first slot stores the
bucket information, the following six slots store object in-
formation. The last slot stores either object information or a
pointer to the next hash bucket (when more than seven ob-
jects hash to the same bucket). This chaining of hash buckets
is called bulk chaining. Bulk chaining removes the need to
store hash pointers in the object metadata and improves the
throughput of hash lookup by minimizing random accesses.

The bucket information slot stores an 8-bit spin lock, an
8-bit slot usage counter, a 16-bit last-access timestamp , and
a 32-bit cas value. Each item slot stores a 24-bit segment
id, a 20-bit offset in the segment, an 8-bit frequency counter
(described in §3.6.3), and a 12-bit tag. The tag of a key is a
hash used to reduce the number of string comparisons when
hash collisions happen.

3.4 Object metadata
Segcache achieves low metadata overhead by sharing meta-

data across objects. Segcache facilitates metadata sharing at
two places: the hash table bucket and the segment. Objects in
the same segment share creation time, TTL, reference counter,
while objects in the same hash bucket share last-access times-
tamp, spinlock, cas value, and hash pointer.

Because objects in the same segment have the same ap-
proximate TTL and are written around the same time, Seg-
cache computes the approximate expiration time of the whole
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segment based on the oldest object in the segment and ap-
proximate TTL of the TTL bucket. This approximation skews
the clock and incurs early expiration for objects later in the
segment. As we will show in our evaluation, early expiration
has negligible impact on miss ratio.

Segcache also omits object-level hash chain pointers and
LRU chain pointers. Bulk chaining renders hash chain pointer
unnecessary. The LRU chain pointers are not needed because
because both expiration and eviction are performed at the
segment level. Segcache further moves up metadata needed
for concurrent accesses (reference counter) into the segment
header. In addition, to support cas, Segcache maintains a 32-
bit cas value per hash bucket and shares it between all objects
in the hash bucket. While sharing this value may increase false
data race between different objects hashed to the same hash
bucket, in practice, the impact of this compromise is negligible
due to two reasons. First, cas traffic is usually orders of
magnitude lower than simple read or write, as observed in
production environment [46]. Second, one cas value is shared
only by a few keys, the chance of concurrent updates on
different keys in the same hash bucket is small. In the case of
a false data race, the client usually retries the request.

The final composition of object metadata in Segcache con-
tains one 8-bit key size, one 24-bit value size, and one 8-bit
flag. And Segcache stores only 5 bytes4 of metadata with each
object, which is a 91% reduction compared to Memcached.

3.5 Proactive expiration
In Segcache, all objects in one segment are written sequen-

tially and have the same approximate TTL, which makes it
feasible to remove expired objects in bulk. Proactive removal
of expired objects starts with scanning the TTL buckets. Be-
cause segments linked in each TTL bucket are ordered by
creation time and share the same approximate TTL, they are
also ordered by expiration time. Segcache uses a background
thread to scan the first segment’s header in each non-empty
TTL buckets. If the first segment is expired, the background
thread removes all the objects in the segment, then continues
down the chain until it runs into one segment that is not yet
expired, at which point it will move onto the next TTL bucket.

Segcache’s proactive expiration technique uses memory
bandwidth efficiently. Other than reading the expired objects,
each full scan only accesses a small amount of consecutive
metadata — the TTL bucket array. This technique also en-
sures that memory occupied by expired objects are promptly
and completely recycled, which improves memory efficiency.

As mentioned before, objects are subject to early expiration.
However, objects are usually less useful near the end of their
TTL. Our analysis of production traces at Twitter shows that
a small TTL reduction makes negligible difference (if any) in
the miss ratio.

4The 5-byte does not include the shared metadata, which is small per
object. And it also does not include the one-byte frequency counter, which is
stored as part of object pointer in the hash table.

3.6 Segment eviction
While expiration removes objects that cannot be used in

the future and is preferred over eviction, cache cannot rely on
expiration alone. All caching systems support eviction when
necessary to make room for new objects.

Eviction decisions can affect the effectiveness of cache
in terms of the miss ratio, thus have been the main focus of
many previous works [22, 26, 35, 49, 56, 69]. Segcache does
not update objects in-place. Instead, it appends new objects
and marks the old ones as deleted. Therefore, better eviction
becomes even more critical.

Unlike most existing systems performing evictions by ob-
ject, Segcache performs eviction by segments. Segment evic-
tion could evict popular objects, increasing the miss ratio. To
address this problem, Segcache uses a merge-based eviction
algorithm. The basic idea is that by combining multiple seg-
ments into one, Segcache selectively retains a relatively small
portion of the objects that are more likely to be accessed
again and discards the rest. This design brings out several
finer design decisions. First, we need to pick the segments to
be merged. Second, there needs to be an algorithm making
per-object decisions while going through these segments.

3.6.1 Segment selection
The segments merged during each eviction are always from

a single TTL bucket. Within this bucket, Segcache merges
the first N consecutive, un-expired, and un-merged (in current
iteration) segments (Fig. 4). The new segment created from
the eviction inherits the creation time of the oldest evicted
segment. This design has the following benefits. First, the
created segment can be inserted in the same position as the
evicted segments in the segment chain, and maintains the time-
sorted segment chain property. Second, objects in the created
segment still have relatively close creation/expiration time,
and the merge distorts their expiration schedules minimally.

While within one TTL bucket, the segment selection is
limited to consecutive ones, across TTL buckets, Segcache
uses round-robin to choose TTL bucket.

3.6.2 One-pass merge and segment homogeneity
When merging N consecutive segments into one, Segcache

uses a dynamic threshold for retaining objects to achieve
merge in a single pass. This threshold is updated after scan-
ning every 1

10 of a segment and aims to retain 1
N bytes from

each segment being evicted.
The rationale for retaining a similar number of bytes from

each segment is that objects and segments created at a similar
time are homogeneous with similar properties. Therefore, no
segment is more important than others. Fig. 5a shows the rel-
ative standard deviation (RSD, std

mean ) of the mean object size
in consecutive segments and across random segments, and
Fig. 5b compares the RSD of live bytes in consecutive and
random segments. Both figures demonstrate that consecutive
segments are more homogeneous (similar) than random seg-
ments. As a result, retaining a similar number of bytes from
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Figure 4: Merge-based segment eviction.

each is reasonable. However, we remark that the current seg-
ment selection and merge heuristics may not be the optimal
solution in some cases, and deserve more exploration.

3.6.3 Selecting objects
So far, one question remains unsolved: what objects should

be retained in an eviction? An eviction algorithm’s effec-
tiveness is determined by its ability to predict future access
based on past information. Under the independent reference
model (IRM), a popular model used for cache workloads,
an object with a higher frequency is more likely to be re-
accessed. Moreover, it has been shown in theory that under
IRM and for fix-sized objects, the least frequently used (LFU)
is k-competitive and the best policy [27, 39, 61, 64].

Similar to greedy dual size frequency [35], Segcache
uses the frequency-over-size ratio to rank objects. There-
fore it needs a frequency counter that is memory-efficient,
computationally-cheap, and scalable. Meanwhile, it should
allow Segcache to be burst-resistant and scan-resistant. More-
over, The counter needs to provide higher accuracy for less
popular objects (opposite of the counter-min sketch). This is
critical for cache eviction because the highly-popular objects
are always retained (cached), and the less popular objects de-
cide the miss ratio of a cache. Segcache uses a novel one-byte
counter (stored in hash table), which we call approximate and
smoothed frequency counter (ASFC), to track frequencies.
Approximate counter. ASFC has two stages. When fre-
quency is smaller than 16 (last four bits of the counter), it
always increases by one for every request. In the second stage,
it counts frequency similar to a Morris counter [1], which in-
creases with a probability that is the inverse of current value.
Smoothed counter. Segcache uses the last access times-
tamp, which is shared by objects in the same hash bucket, to
rate-limit updates to the frequency counters. The frequency
counter for each object is incremented at most once per sec-
ond. This technique is effective in absorbing sudden request
bursts.

Simple LFU is susceptible to cache pollution due to request
bursts and non-constant data access patterns. While several
approaches such as dynamic aging [20, 39, 61], and window-
based frequency [38, 47] have been proposed to address this
issue, they require additional parameters and/or extensive
tuning [19]. To avoid extra parameters, Segcache resets the
frequency of retained objects during evictions, which has a
similar effect as window-based frequency.

The linear increase at low frequency and probabilistic in-
crease at high frequency allow ASFC to achieve a higher
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Figure 5: a) Relative standard deviation of mean object size in
consecutive segments and random segments. b) Relative standard
deviation of live bytes in consecutive segments and random segments.

accuracy for less popular objects. Meanwhile, the approxi-
mate design allows ASFC to be memory efficient, using one
byte to count up to 28×28 requests. The smoothed design of
ASFC allows Segcache to be burst-resistant and scalable.

3.7 Thread model and scalability
Segcache is designed to scale linearly with the number of

threads by using a combination of techniques such as mini-
mal critical sections, optimistic concurrency control, atomic
operations, and thread-local variables. Most notably, because
object life cycle management is at the segment level, only
modifications to the segment chains require locking, which
avoids common contention spots related to object-level book-
keeping, such as maintaining free-object queues. This macro
management strategy reduces locking frequency by four or-
ders of magnitude in our default setting compared to what
would be needed in a Memcached-like system.

More specifically, no locking is needed on the read path
except to increment object frequency, which is at most once
every second. On the write path, because segments are append-
only, inserting objects can take advantage of atomic opera-
tions. However, we observe that relying on atomic operation
is insufficient to achieve near-linear scalability with more
than eight threads. To solve this, each thread in Segcache
maintains a local view of active segments (the last segment of
each segment chain), and the active segments in each thread
can be written only by that thread. Although the segments
are local to each thread for writes, the objects that have been
written are immediately available for reading by other threads.
During eviction, locking is required when segments are be-
ing removed from the segment chain. However, the critical
section of removing a segment from the chain is very tiny
compared to object removal, which is lock-free. Moreover,
evicting one segment means evicting thousands of objects, so
segment eviction is infrequent compared to object writes.

4 Implementation and Evaluation
In this section, we compare the memory efficiency, through-

put, and scalability of Segcache against several research and
production solutions, using traces from Twitter’s production.
Specifically, we are interested in the following questions,

• Is Segcache more memory efficient than alternatives?
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Table 3: Traces used in evaluation
Trace Workload type # requests TTLs (TTL: percentage) Write ratio Mean object size Production miss ratio
c content 4.2 billion 1d: 65%, 14d: 27%, 12h: 7% 7% 230 bytes 1-5%
u1 user 6.5 billion 5d:1.00 1% 290 bytes <1%
u2 user 4.5 billion 12h:1.00 3% 55 bytes <1%
n negative cache 1.6 billion 30d:1.00 2% 45 bytes ∼1%

mix
content + user + negative cache
+ transient item 11.88 billion

30d: 14%, 14d:11%, 24h: 23%,
12h: 38%, 2min:12% 7% 243 bytes NA

• Does Segcache provide comparable throughput to state-
of-the-art solutions? Does it scale well with more cores?

• Is Segcache sensitive to design parameters? Are they
easy to pick or tune?

4.1 Implementation
Segcache is implemented as a storage module in the open-

sourced Pelikan project. Pelikan is a cache framework de-
veloped at Twitter. The Segcache module can both work as
a library or be setup as a Memcached-like server. Our cur-
rent implementation supports multiple worker threads, with a
dedicated background thread performing proactive expiration.
For our evaluation, eviction is performed by worker threads
as-needed, but it is easy to use the same background thread
to facilitate background eviction. We provide configurable
options to change the number of segments to merge for evic-
tion and segment size. The source code can be accessed at
http://www.github.com/twitter/pelikan and archived
at http://www.github.com/thesys-lab/segcache.

4.2 Experiment setup
4.2.1 Traces
Single tenant traces. We used week-long unsampled traces
from production cache clusters at Twitter (Table. 3, the same
as in previous work [46])5. Trace c comes from a cache stor-
ing tweets and their metadata, which is the largest cache clus-
ter at Twitter. Trace u1 and u2 are both user related, but the
access patterns of the two workloads are different, so different
TTLs are used. Notably, they are separated into two caches in
production because effective and efficient proactive expiration
was not achievable prior to Segcache. Trace n is a negative
result cache, which stores the keys that do not exist in the
database, a common way of using cache to shield databases
from unnecessary high loads.
Multi tenant trace. Although Twitter’s production deploy-
ments are single-tenant, multi-tenant deployments are also
common because of better resource utilization [21]. To evalu-
ate the performance under multi-tenant workloads, we merged
workloads from four types of caches: user, content, negative
cache, and transient item cache.

4.2.2 Baselines
Memcached used in our evaluation is version 1.6.6 with

segmented LRUs. It supports lazy expiration and checks LRU

5The traces are available at http://www.github.com/twitter/
cache-trace.

tail for expiration. We ran Memcached in two modes, one
with cache scanning enabled (s-Memcached), which scans
the entire cache periodically to remove expired objects; the
other with scanning disabled (Memcached). Other expira-
tion techniques are enabled in both modes. Our evaluation
also includes pelikan_twemcache (PCache), Twitter’s Mem-
cached equivalent and successor to Twemcache [18]. Com-
pared to Memcached, PCache has a smaller object metadata
without LRU queues, and only performs slab eviction [75].
We implemented LHD [22] and Hyperbolic [26] on top of
PCache since original implementations are not publicly avail-
able. These systems do not consider object expiration. To
make the comparisons fairer, we add random sampling to re-
move expired objects in these two systems, which is also how
Redis performs expiration. In the following sections, r-LHD
and r-Hyperbolic refer to these enhanced versions. Note that
adding random sampling to remove expired objects does not
significantly impact the throughput, and we observe less than
a 10% difference.

Because we do not modify the networking stack, we focus
our evaluation on the storage subsystem. We performed all
evaluations by close-loop trace replay on dedicated hosts in
Twitter’s production fleet using the traces described in §4.2.1.
The hosts have dual-socket Intel Xeon Gold 6230R CPU, 384
GB DRAM with one 100 Gbps NIC.

4.2.3 Metrics
We use three metrics in our evaluation to measure the mem-

ory efficiency, throughput, and scalability of the systems.
Relative miss ratio. Miss ratio is the most common metric
in evaluating memory efficiency. Because workloads have
dramatically different miss ratios in production (from a few
percent to less than 0.1%) and compulsory miss ratios, directly
plotting miss ratio is less readable. Therefore, we use relative
miss ratio (defined as mr

mrbaseline
where mr stands for miss ratio

and the baseline is PCache) in the presentation.
Relative memory footprint. Although miss ratio is a com-
mon metric, a sometimes more useful metric is how much
memory footprint can be reduced at a certain miss ratio. There-
fore, in §4.3, we show this metric using PCache memory
footprint as the baseline.
Throughput and scalability. Throughput is measured in
million queries per second (MQPS) and used to quantify
a caching system’s performance. Scalability measures the
throughput running on a multi-core machine with the number
of hardware threads from 1 to 24 in our evaluations.
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Figure 6: Relative miss ratio of different systems (baseline Pelikan is 1), lower is better.
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Figure 7: Relative memory footprint to achieve a certain miss ratio, lower is better.

4.3 Memory efficiency
In this section, we compare the memory efficiency of all

systems. We present the relative miss ratio at two cache sizes6

in Fig.6. (1) The “large cache” is the cache size when the
miss ratio of Segcache reaches the plateau (<0.05% miss ratio
reduction when the cache size increases by 5%). Miss ratios
achieved at large cache sizes are similar to production miss
ratios. (2) we choose the “small cache” size as 50% of the
large cache size.

Compared to the best of the five alternative systems, Seg-
cache reduces miss ratios by up to 58%. Moreover, it performs
better on both the single-tenant and the multi-tenant work-
loads. This large improvement is the cumulative effect of
having timely proactive expiration, small object metadata, no
memory fragmentation, and a merge-based eviction strategy.

We observe that Memcached and PCache have comparable
miss ratios in most workloads (except workload mix because
PCache is not designed for multi-tenant workloads). While
comparing Memcached and s-Memcached, we observe that
adding full cache scanning capability significantly reduces
the miss ratio by up to 40%, which indicates the importance
of proactive expiration. However, as we show in §4.4.1, cache
scanning is expensive and reduces throughput by almost half
for some workloads. Moreover, we observe that workload n
and mix do not benefit from full cache scanning. Workload
n shows no benefit because it uses a single TTL of 30 days
and no objects expire in the evaluation. Although workload
mix has a mixture of short and long TTLs, it shows no ben-
efit because the objects of different TTLs are from different
workloads with different object sizes, and are stored in dif-
ferent slab classes with different LRU queues. As a result,
checking LRU tail for expiration is effective at removing ex-

6We experimented with twenty cache sizes, and the two set of results
presented here are representative.

pired objects and scanning provides little benefit. Overall,
we observe that proactively removing expired objects can
effectively reduce miss ratio and improve memory efficiency.

State-of-the-art research caching systems, r-LHD and r-
Hyperbolic use ranking to select eviction candidates and of-
ten reduce miss ratio compared to LRU. In our evaluation,
r-Hyperbolic shows lower miss ratio compared to Memcached
and PCache, while r-LHD is only better on workload c. r-LHD
is designed for workloads with a mixture of scan and LRU ac-
cess patterns (such as block access in storage systems), while
in-memory caching workloads rarely show scan requests. This
explains why it has higher miss ratios. We have also evaluated
r-LHD and r-Hyperbolic without sampling for expiration (not
shown), and as expected, they have higher miss ratios due to
the wasted cache space from expired objects.

An alternative way of looking at memory efficiency is to
determine the cache size required to achieve a certain miss
ratio. We show the relative memory footprints of different sys-
tems in Fig. 7, using PCache as the baseline. The figures show
that for both the production miss ratio and a higher miss ratio,
Segcache reduces memory footprint by up to 88% compared
to PCache, 60% compared to Memcached, 56% compared to
s-Memcached, and 64% compared to r-Hyperbolic.

4.3.1 Ablation study
In Fig. 6, we observe that s-Memcached reduces miss ratio

by up to 35% compared to Memcached, which demonstrates
the importance of proactive expiration, one of the key design
features of Segcache. Besides proactive expiration, another
advantage of Segcache over previous systems is smaller object
metadata. To understand its impact, we measure the relative
miss ratio of increasing object metadata in Segcache (Fig. 8).
It shows that reducing object metadata size can have a large
miss raito impact for workloads with small object sizes. Work-
load c has relatively large object sizes (230 bytes), and reduc-
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Figure 8: Impact of object metadata size on miss ratio. Workload n
has smaller object sizes as compared to workload c and hence enjoys
larger benefit from reduction from object metadata.

ing the metadata from 56 bytes to 8 bytes reduces the miss
ratio by 6-8%. While workload n has small object sizes (45
bytes) and reducing object metadata size provides a 20-38%
reduction in miss ratio. This result indicates reducing object
metadata size is very important, and it is a critical component
contributing to Segcache’s high memory efficiency.

4.4 Throughput and scalability
4.4.1 Single-thread throughput

Besides memory efficiency, the other important metric of
a cache is the throughput. Fig. 9 shows the throughput of
different systems. Compared to other systems, PCache and
Segcache achieve higher throughput, up to 2.5× faster than s-
Memcached, up to 3× faster than r-Hyperbolic, and up to 4×
faster than r-LHD. The reason is that PCache performs slab
eviction only, and Segcache performs merge-based segment
eviction. Both systems perform batched and sequential book-
keeping for evictions, which significantly reduces the number
of random memory accesses and makes good use of the CPU
cache. In addition, PCache and Segcache do not maintain an
object LRU chain, which leads to less bookkeeping and also
contributes to the high throughput.

Although r-LHD and r-Hyperbolic have lower miss ratios
than Memcached, their throughput is also lower. The reason
is that both systems use random sampling during evictions,
which causes a large number of random memory accesses.
One major bottleneck of a high-throughput cache is the poor
CPU cache hit ratio, and optimizing CPU cache utilization
has been one focus of improving the throughput [51, 52].
Although r-LHD proposes to segregate object metadata for
better locality [22], it requires adding more object metadata,
and hence would further decrease memory efficiency.

4.4.2 Thread scalability
We show the scalability results in Fig. 10a, where we com-

pare Segcache with Memcached and s-Memcached. Fig. 10a
shows that compared to Memcached, Segcache has a higher
throughput and close-to-linear scalability. With 24 threads,
Segcache achieves over 70 MQPS, a 19.9× boost compared
to using a single-thread, while Memcached only achieves
9 MQPS, 3.4× of its single-thread throughput. The reason
why Segcache can achieve close-to-linear scalability is the

effect of multiple factors as discussed in §3.7. While there
is not much throughput difference between Memcached and
s-Memcached, s-Memcached is deadlocked when running
with more than 8 threads.

Note that we do not present the result of PCache in this
figure because it does not support multi-threading. We also
do not show the result of r-LHD and r-Hyperbolic because
we could not find any simple way to implement a better
locking than the one in Memcached. Although r-LHD and
r-Hyperbolic removes the object LRU chain and lock, the slab
memory allocator still requires heavy locking.

4.5 Sensitivity

In this section, we study the effects of parameters in Seg-
cache using workload c (from Twitter’s largest cache cluster).
The most crucial parameter in Segcache is the number of
segments to merge for eviction, which balances between pro-
cessing overhead and memory efficiency. Fig. 10b shows how
the miss ratio is affected by the number of merged segments.
Compared to retaining no objects (the bar labeled eviction),
using merge-based eviction reduces the miss ratio by up to
20%, indicating the effectiveness of merge-based eviction.
Moreover, it shows that the point for the minimal miss ratio
is between 3 and 4. Merging two segments or more than four
segments increases the miss ratio, but not significantly.

There are two reasons why merging too few segments leads
to a high miss ratio. First, merging too few segments can
lead to unfilled segment space. For example, when merging
only two segments, 50% of the bytes are retained from each
segment in one pass. If the second segment does not have
enough live objects, the new segment will have space wasted.
Second, the fidelity of predicting future accesses on unpopular
objects is low. Merging fewer segments means retaining more
objects, so it requires distinguishing unpopular objects, and
the decision can be inaccurate. Meanwhile, merging fewer
segments means triggering eviction more frequently, giving
objects less time to accumulate hits.

On the other hand, merging too many segments increases
the miss ratio as well. Because merging more segments means
setting a higher bar for retained objects, some important ob-
jects can be evicted. In our evaluation, we observe three and
four are, in general, good options. However, merging more
or fewer segments does not adversely affect the miss ratio
significantly and still provides a lower miss ratio than current
production systems. Therefore, we consider this parameter a
stable one that does not require tuning per workload.

Besides the number of segments to merge, another parame-
ter in Segcache is the segment size. We use the default 1 MB
in our evaluation; Fig. 10c shows the impact of different seg-
ment sizes. It demonstrates that segment size has little impact
on the miss ratio, which is expected. Because the fraction of
objects retained from each segment does not depend on the
segment size, thus not affecting the miss ratio.
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Figure 9: Throughput of different systems, the higher the better.
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Figure 10: CPU scalability and sensitivity analysis.

5 Discussion
5.1 Alternative proactive expiration designs

Besides the TTL bucket design in Segcache, there are other
possible solutions for proactive expiration. For example, a
radix tree or a hierarchical timing wheel can track object
expiration time. However, neither is as memory efficient as
Segcache. In fact, any design that builds an expiration index
strictly at the object level requires two pointers per object, an
overhead with demonstrated impact for our target workloads.
The radix tree may also use an unbounded amount of memory
to store the large and uncertain number of expiration times-
tamps. In addition, performing object-level expiration and
eviction requires more random memory access and locking
than bulk operations, limiting throughput and scalability.

5.2 In-memory key-value cache vs store
In the literature, we observe several instances where there

is a mix-up of volatile key-value caches (such as Mem-
cached) and durable key-value stores (such as RAMCloud and
RocksDB). However, from our viewpoint, these two types of
systems are significantly different in terms of their usage, re-
quirements, and design. Indeed, one of the main contributions
is to identify the opportunity to approximate object metadata
and share them (time, pointers, reference counters, version/-
cas number) across objects. Time approximation in particular
is not as tolerated in a traditional key-value store. Below we
discuss the differences between caches and stores.
TTL. TTLs are far more ubiquitous in caching than in key-
value store [3, 6, 12, 17, 55, 70]. We described Twitter’s use of
TTLs in detail in [46]. In comparison, many datasets are kept
in key-value stores indefinitely.
Eviction. Eviction is unique to caching. In addition, eviction
is extremely common in caching. A production cache running
at 1M QPS with 10% writes, which can be new objects or on-
demand fill from cache misses, will evict 100K objects every

second. Re-purposing compaction and cleaning techniques
in log-structured storage may not be able to keep up with
the write rate needed in caching. On the other hand, caches
have considerable latitude in deciding what to store, and can
choose more efficient mechanisms.
Design requirements. In-memory caches are often used in
front of key-value stores to absorb most read requests, or to
store transient data with high write rates. Production users
expect caches to deliver much higher throughput and/or much
lower tail latencies. In contrast, key-value stores are often
considered sources of truth. As such they prioritize durability
(crash recovery) and consistency over latency and throughput.

The differences between cache and store allow us to make
some design choices in Segcache that are not feasible for
durable key-value stores (even if they are in-memory).

6 Related work
6.1 Memory efficiency and throughput

Approaches for improving memory efficiency fall broadly
in the two categories: improving eviction algorithms and
adding admission algorithms.
Eviction algorithm. A vast number of eviction algorithms
have been proposed in different areas starting from the early
90s [45, 53, 56, 61, 76]. However, most of them focus on the
cache replacement of databases or page cache, which are dif-
ferent from a distributed in-memory cache because cached
contents in databases and page cache are typically fix-sized
blocks with spatial locality. In recent years, several algorithms
have been proposed to improve the efficiency of in-memory
caching, such as LHD [22], Hyperbolic caching [26], pRe-
dis [60], and mPart [28]. However, all of them add more object
metadata and computation, which reduces usable cache size
and reduces throughput, which has significant repercussions
for caches with small objects.
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Segcache uses a merge-based eviction strategy that retains
high-frequency small-sized objects from evicted segments,
which is similar to a frequency-based eviction algorithms
such as LFU [20, 47] and GDSF [35]. However, unlike some
of these systems that require parameters tuning, Segcache
uses ASFC that avoids these problems. In addition to the
eviction algorithm, two major components that contribute to
Segcache’s low miss ratio is efficient, proactive expiration,
and object metadata sharing, which are unique to Segcache.
Admission control. Adding admission control to decide
which object should be inserted into the cache is a popular ap-
proach for improving efficiency. For example, Adaptsize [25],
W-TinyLFU [39], flashshield [40] are designed in the recent
years. Admission control is effective for CDN caches, which
usually have high one-hit-wonder ratios (up to 30%) with
a wide range of object sizes (100s of bytes to 10s of GB).
Segcache does not employ an admission algorithm because
most of the in-memory cache workloads have low one-hit-
wonder ratios (<5%) and relatively small object size ranges.
Moreover, adding admission control often add more metadata
and extra computation, hurting efficiency and throughput.
Other approaches. There are several other approaches in
improving efficiency, such as optimizing slab migration strat-
egy in Memcached [29, 44], compressing cached data [72],
and prefetching data [73]. Reducing object metadata size has
also been considered in previous works [41]. However, for
supporting the same set of functions (including expirations,
deletions, cas), these approaches need more than twice as
much object metadata as Segcache.
Throughput and scalability. A large fraction of works on
improving throughput and scalability focus on durable key-
value stores [31, 50, 52], which are different from key-value
caches as discussed in §5. Segcache is inspired by these works
and further improves throughput and scalability by macro
management using approximate and shared object metadata.

6.2 Log-structured designs
Segcache’s segment-structured design is inspired by sev-

eral existing works that employ log-structured design [31,
33, 51, 57, 58, 62, 63] in storage and caching systems. The
log-structured design has been widely adopted in storage
systems to reduce random access and improve throughput.
For example, log-structured file system [62] and LSM-tree
databases [14, 48] transform random disk writes to sequen-
tial writes. Recently log-structured designs have also been
adopted in in-memory key-value store [31, 33, 57, 58, 63] to
improve both throughput and scalability.

For in-memory caching, MICA [51] uses DRAM as one
big log to improve throughput, but it uses FIFO for eviction
and does not optimize for TTL expiration. Memshare [37]
also uses log-structured design and has the concept of seg-
ments. However, Memshare optimizes for multi-tenant cache
by moving cache space between tenants to minimize miss
ratio based on each tenant’s miss ratio curve. Memshare uses

a cleaning process to scan N segments, evict one segment,
and keep N−1 segments where the goal is to enforce memory
partitioning between tenants. In terms of performance, scan-
ning N (N = 100 in evaluation) segments and evicting one
incurs a high computation overhead and negatively affects the
throughout. Moreover, to compute the miss ratio of different
tenants, Memshare adds more metadata to the system, which
reduces memory efficiency.

Systems employing a log-structured design benefit from
reduced metadata size and memory fragmentation, and in-
creased write throughput, for example, several of the existing
works [14,41,63] and including Segcache. Compared to these
existing works, Segcache achieves a higher memory efficiency
by approximating and sharing object metadata, proactive TTL
expiration, and using ASFC to retain fewer bytes during evic-
tion while providing a low miss ratio (10% - 25% bytes from
each segment are retained in Segcache compared to 75% in
RAMCloud [63] and 99% in Memshare [37]).

In a broad view, Segcache can be described as a
dynamically-partitioned and approximate-TTL-indexed log-
structured cache. However, one of the key differences between
Segcache and log-structured design is that Segcache is cen-
tered around the indexed and sorted segment chain. Both
objects in a segment and segments in the chains are time-
sorted and indexed by approximate TTLs for metadata shar-
ing, macro management, and efficient TTL expiration.

7 Conclusion
Segcache stems out of our insights from production

workloads, in particular, the observation that object expiration
and metadata play an important role in improving memory
efficiency. We chose a TTL-indexed segment-structured
design to achieve both high throughput, high scalability and
memory efficiency. Our evaluation against state-of-the-art
designs from both research and production projects shows
that Segcache comes out ahead on our stated goals. Its
efficient use of memory bandwidth, near linear scalability,
and low-touch configuration poise it favorably as a practical
production caching solution suitable for contemporary and
future hardware.
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Abstract
A production-level cloud storage system must be high per-
forming and readily available. It should also meet a Service-
Level Agreement (SLA). The rapid advancement in storage
media has left networking lagging behind, resulting in a major
performance bottleneck for new cloud storage generations.
Remote Direct Memory Access (RDMA) running on lossless
fabrics can potentially overcome this bottleneck. In this paper,
we present our experience in introducing RDMA into the
storage networks of Pangu, a cloud storage system developed
by Alibaba. Since its introduction in 2009, it has proven to be
crucial for Alibaba’s core businesses. In addition to the perfor-
mance, availability, and SLA requirements, the deployment
planning of Pangu at the production scale should consider
storage volume and hardware costs. We present an RDMA-
enabled Pangu system that exhibits superior performance,
with the availability and SLA standards matching those of
traditional TCP-backed versions. RDMA-enabled Pangu has
been demonstrated to successfully serve numerous online
mission-critical services across four years, including several
important shopping festivals.

1 Introduction
Alibaba Group [12] is a China-based multinational technology
company specializing in e-commerce, e-finance, and cloud
computing. Numerous companies, including Alibaba, have
moved their core business systems onto clouds. As a funda-
mental part of information technology (IT) infrastructure, a
cloud storage provides a storage service to tenants both inside
and outside the cloud provider. In 2009, Alibaba introduced
Pangu [18], a cloud storage system that has subsequently
played a crucial role in many Alibaba core businesses. As of
2020, Pangu has been deployed in hundreds of clusters, and
it has been managing hundreds of thousands of storage nodes.
Furthermore, it supports the real-time access to exabyte-level
data in numerous production environments.

In order to ensure comparability to local physical storage
clusters, a cloud storage system must meet the following
requirements:

(i) High performance: Small latency and high throughput
provide competitive advantages across many scenarios.

(ii) High availability: System disruptions incur significant
financial/reputation loss for both tenants and their cloud
providers.

(iii) Service-Level Agreement (SLA): A cloud storage system
must be resilient, and thus its performance should
gracefully downgrade when various software/hardware
failures happen.

The rapid advancement in storage media has left net-
working lagging behind, resulting in a major performance
bottleneck for new cloud storage generations. Networking
is not a problem for traditional storage systems built with
Hard Disk Drives (HDDs). However, the access latency
of current Non-Volatile Memory Express (NVMe) disks
is at the microsecond level [50] and the total throughput
of a storage node can exceed 100Gbps. In contrast, the
latency of traditional network stacks (e.g., TCP/IP) can reach
milliseconds [13], while the bandwidth per kernel TCP thread
is only tens of Gbps at most [51].

Remote Direct Memory Access (RDMA) running on
lossless fabrics offers a promising solution to the network
bottleneck in cloud storage. By implementing its entire
protocol stack on host NICs, RDMA is able to provide
both microsecond level access latency and a per-connection
throughput of approximately 100Gbps with almost zero
CPU consumption [23]. The application of RDMA over
Commodity Ethernet (RoCE) in data centers relies on the
Priority Flow Control (PFC) mechanism to provide a lossless
fabric.

In this paper, we present our experience in introducing
RDMA into Pangu’s storage networks (i.e., the network
among storage nodes). Our objective is to provide an RDMA-
enabled Pangu system that exhibits superior performance,
with availability and SLA standards equal to that of traditional
TCP-backed versions. Our experience spans 4 years and
will continue with the development of RDMA. We faced
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a number of challenges specifically related to cloud storage,
with additional problems associated with RDMA. We have
developed a number of solutions to allow for RDMA to
function in a production-level cloud storage, several of which
are engineering-level work-arounds. However, overcoming
the aforementioned RDMA issues proves to be a complicated
task. Here, we expose the practical limitations of the pro-
duction systems in order to facilitate innovative research and
applications in this area.

In addition to the performance, availability, and SLA
requirements, the deployment planning of Pangu at the
production scale should consider storage volume and hard-
ware costs. Following the availability-first principal, RDMA
communication is enabled only inside each podset [13]. Such
a podset contains a group of leaf switches, and all Top-of-Rack
(ToR) switches connected to these leaf switches. The podsets
are connected via spine switches. This setting is currently the
optimal balance between application demands, performance,
and availability/SLA control. Storage node configurations
are carefully planned to match the disk throughput with the
network bandwidth. We adopt the hybrid deployment of
RDMA/TCP in Pangu to exploit TCP as the last resort for the
system (§3).

The performance optimization aims to minimize la-
tency while maximizing throughput. We leverage software-
hardware co-design to minimize performance overhead. We
build a software framework in Pangu that integrates RDMA
with Pangu’s private user-space storage platform designed
for new storage media. By eliminating data-copy operations,
the latency of a typical block service request is reduced
to tens of microseconds. We observed that the memory
bandwidth becomes a bottleneck when upgrading Pangu to
a 100Gbps network. By exploiting the RDMA features and
offloading critical computations, Pangu is able to saturate the
underlying networks. Furthermore, we leverage a new thread
communication mode in Pangu to reduce the performance
pitfall caused by a large number of Queue Pairs (QPs, RDMA
connection abstraction) per node (§4).

Previous studies have reported the risks of large-scale
RDMA deployment [13]. RDMA-enabled Pangu clusters do
encounter such problems, including PFC deadlocks [13], PFC
pause frame storms, and head-of-line blocking [27, 44]. We
determined several PFC storms to be attributed to a previously
unexplored source that consequently invalidates an earlier
solution [13]. In order to guarantee availability, we apply the
escape-as-fast-as-possible design principle to handle PFC
storms. We bring up a fine-grained switching mechanism
between RDMA/TCP traffic in Pangu and it handles PFC
storms regardless of their causes (§5).

In order to meet the SLA standards, we adopt the design
principal of exploiting storage semantics whenever useful
in Pangu. By taking advantage of its ability to control the
application layer, Pangu performs the real-time checking and
alarming for a large number of storage service and network
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Figure 1: Pangu block storage service framework.

metrics. With the help of the dual-home topology feature,
we optimize the fail-over performance of Pangu by reducing
the connection recovery time. We also fix network problems
by exploiting application controls, for example, blacklisting
problematically connected nodes (§6).

We share our experience in adopting the RDMA-enabled
Pangu system and discuss several potential research directions
(§7). This system has successfully served numerous online
mission-critical services under the scope of Alibaba over the
past four years, including several important shopping festivals
(e.g., Double-11 [8]). Sharing our experience in integrating
RDMA into Pangu can be helpful for other RDMA-enabled
systems.

2 Background
2.1 Pangu in Alibaba Cloud
Pangu Framework. Pangu is a distributed file system
developed by Alibaba Cloud. Released in 2009, it plays a
major role in the core Alibaba businesses (e.g., e-business and
online payment, cloud computing, enhanced solid state drive
backed cloud disk, elastic compute service, MapReduce-like
data processing, and distributed database). In this paper, we
focus on the network features of Pangu.

Pangu provides numerous storage services, including
elastic block service, object storage service, store service,
etc. We take the block service as an example to demonstrate
the system framework. Fig. 1 presents the I/O workflows
of Pangu. Virtual block devices contain continuous address
spaces that can be randomly accessed by applications. A
Pangu client in a computing node organizes data into fixed-
sized (e.g., 32 GB) segments, while the BlockServers and
ChunkServers run on storage nodes. Each segment is aligned
to a BlockServer for I/O processing. On the BlockServers,
a segment is divided into blocks and replicated to the
ChunkServers, which are in charge of the standalone back-end
storage of the blocks and device management.

The BlockMasters manage metadata such as the mapping
between a segment and its located BlockServer and the Block-
Server’s living states. The PanguMasters manage the states
of the ChunkServers. These master nodes are synchronized
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using consistent protocols, such as Raft [36].
All data communication in Pangu is in the form of Remote

Procedure Calls (RPCs). Each ChunkServer initiates the RPC
clients/servers, and storage operations are performed by issu-
ing pre-registered RPCs. An RPC client can simultaneously
use different RPC channels (i.e., connections via RDMA,
kernel TCP, user-space TCP, or shared memory)according to
the required RPCs.
Cloud Storage Requires RDMA. The principal perfor-
mance metrics for storage services are read/write throughput
and access latency. Low latency and high throughput prove to
be advantageous for numerous application scenarios. Many
customers expect similar performance of the cloud storage to
that of the local physical storage. For example, the Alibaba
e-commerce database requires extremely low latency in order
to ensure fast responses due to the potentially large peak
number of transactions per second (e.g., 544,000 orders per
second at peak hours [8]). Moreover, the enhanced SSD
service promises 1 million IOPS, 4GB/s throughput, and
200µs latency for 4KB random writes [17].

The latency of traditional network stack (e.g., TCP/IP)
is generally within hundreds of microseconds [13]. The
maximum achievable TCP bandwidth per kernel thread can
reach tens of Gbps [51]. In contrast, the access latency
of current NVMe SSDs is only at the microsecond level,
while the read/write bandwidth of a single device is at the
GB/s level [49]. The total throughput of each storage node
(generally with 8-16 NVMe disks) can exceed 100Gbps and
the incoming Storage Class Memory (SCM, e.g., Intel 3D-
XPoint) can even achieve nanosecond level latency [35]. Thus,
networking is currently the primary performance bottleneck
for cloud storage.

RDMA is an alternative networking choice for cloud stor-
age. By implementing its entire protocol stack on host NICs,
RDMA provides both microsecond level access latency and
a per-connection throughput close to 100Gbps with almost
no CPU consumption [23]. RDMA has successfully been
integrated into numerous network-bottlenecked systems, for
example, key-value stores [22,33], distributed transactions [6,
24, 48], and graph queries [40], demonstrating an improved
performance compared with non-RDMA predecessors.

2.2 Challenges
Besides performance, availability and SLA are also critical
for a successful cloud storage system.
Availability. System disruptions incur significant finan-
cial/reputation loss for both tenants and their cloud providers.
In 2018, Amazon S3 experienced a system disruption that
lasted for 4 hours [2], affecting Amazon Elastic Compute
Cloud , Amazon Elastic Block Store volumes, and AWS
Lambda [3]. This disruption also had an impact on tens
of thousands of websites built on the Amazon storage
service, including Netflix [34], Spotify [43], Pinterest [37],
and Buzzfeed [5]. Similar events have occurred with Google

Cloud and Microsoft Azure [4, 9].
Service-Level Agreement. Software and hardware failures
are extremely common in distributed systems. A cloud storage
system should exhibit graceful performance downgrade with
the occurrence of various failures. Distributed storage systems
include mature node monitoring and fail-over mechanisms.
A single storage node failure has a minimal impact on the
service quality. In our experience, the most challenging aspect
of ensuring a stable performance lies in the storage networks.
Network failures generally result in a larger affected range
compared to storage node failures.

In addition to its superior performance, customers of our
RDMA-enabled Pangu require the same levels of availability
and SLA standards to that of traditional TCP-backed versions.

2.3 State-of-the-art Work Do Not Fit
Unknown PFC Storm Sources. PFC runs under a hop-by-
hop mechanism, with the possibility of PFC storms, spreading
into the whole cluster. A PFC storm can seriously affect
cluster availability and is the most well-known issue of
RDMA. In 2016, Microsoft presented its experience in the
deployment of RDMA [13], where they revealed that a
bug in the receiving pipeline of an RDMA-capable NICs
(RNICs) causes PFC storms. The problem was fixed by
building watchdogs on the NICs and switches. However, we
identified an additional type of PFC storms that originates
from switches, implying the complexity of PFC storms with
multifarious sources. The Microsoft solution [13] fails to
solve this new problem (§5).
Practical Concerns that Limit Design Options. We are
not able to simply treat RDMA as a black-box and wait for
future research and technical advances to solve the current
problems. Despite the large number of recent studies [10, 22,
29, 33, 40, 48], a production-level comprehensive PFC-free
solution is still premature. The application of RDMA over
lossy Ethernet has been explored in previous work [7, 11, 15,
26], allowing for the bypass of the PFC mechanism. However,
such solutions rely on new hardware features.

The deployment of new hardware is a long process, with
several months or even years of testing, followed by the
subsequent introduction to business applications. For example,
the process of testing Pangu with CX-4 RNICs, a joint
collaboration with NIC providers, lasted for over two years.
There is a tension between the fast growth of new RDMA
demands and the long update cycles of new hardware. To date,
these PFC-free proposals are not mature enough for large-
scale business deployment, particularly for the availability
and SLA standard requirements of cloud storage systems.

Furthermore, large-scale industry deployment is generally
associated with multiple generations of legacy RDMA NICs.
For example, we have already deployed several Mellanox
NIC generations (e.g., CX-4, CX-5), with the number of
each reaching tens of thousands. It is operationally infeasible
and costly to replace all legacy NICs in the running nodes,
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Figure 2: Topology of Pangu.
Hardware 25Gbps 100Gbps

CPU Xeon 2.5GHz, 64 cores Xeon 2.5GHz, 96 cores
Memory DDR4-2400, 128GB DDR4-2666, 128GB ×3
Storage 1.92TB SSD×12 3.84TB SSD×14
Network CX-4 Lx Dual-port CX-5 Dual-port

PCIe PCIe Gen 3.0 PCIe Gen 3.0

Table 1: Example configurations of 25/100Gbps nodes.
while upgrading the firmware of tens of thousands of running
servers is both time-consuming and error-prone. Thus, the
need for new hardware features or firmware should be
minimized.
Domain Knowledge of Distributed Storage Should be
Exploited. Existing work largely ignores potential help
from the application layer. Storage service metrics, rather
than networking metrics, are a key concern for cloud service
applications. We take into account such storage semantics in
the design of Pangu when improving the engineering trade-
off and the decision making process for various networking
problems.

3 RDMA Deployment
3.1 Consideration in Deployment Planning
The deployment planning of storage clusters governs the
network topology, RDMA communication scope, storage
node configurations, etc. Multiple factors must be considered,
including matching the storage volume with demands, control-
ling hardware costs, optimizing performance, and minimizing
availability and SLA risks. The final outcome is a trade-off
among all these factors.

For example, Microsoft deploys RDMA at the scale of
an entire Clos network [13]. Thus, if not prevented, PFC
storms could spread across the whole network and bring down
an entire cluster. This amount of risk is unacceptable in a
production-level storage system.

3.2 Deployment Choices of Pangu
The key principle employed by our RDMA deployment is
availability-first.
Network and Node Configurations. Fig. 2 displays the
Clos-based network topology of Pangu. Consistent with the
common dual-home practice, we deploy Mellanox CX series
dual-port RNICs to connect a host with two distinct ToR
switches. In particular, two physical ports are bonded to a
single IP address. Network connections (e.g., QPs in RDMA)
are balanced over two ports following a round-robin fashion.

Total bandwidth TCP bandwidth ratio TX pauses
25Gbps 40% 0
30Gbps 45% 1Kpps
32Gbps 50% 8Kpps
35Gbps 46% 15Kpps

Table 2: TX pauses in hybrid RDMA/TCP traffic.

When one port is down, the connections on this port can be
migrated to another port.

Table 1 reports typical hardware configurations for 25Gbps
and 100Gbps RNIC storage nodes. The number of SSD per
node is determined by the total RNIC bandwidth versus the
throughput of a single SSD, allowing the I/O throughput to
match the network bandwidth. Note that the SSD types in the
25Gbps and 100Gbps configurations are distinct, resulting
in disproportional numbers. Computing and storage nodes
are deployed in different racks within a single podset. The
numbers of computing and storage nodes are then calculated
according to the computational demands.
RDMA Scope. In order to minimize the failure domain,
we only enable RDMA communication within each podset
and among storage nodes. The communication between
computing and storage nodes is performed via a private
user-space TCP protocol (Fig. 1). This is attributed to the
complex hardware configurations of computing nodes, which
update rapidly. Thus, TCP can be effectively applied as a
hardware-independent transport protocol. User-space TCP
is more convenient for upgrade and management compared
to kernel TCP, while kernel TCP is selected for cross-podset
communication due to its generality.

The production deployment is an additional concern
for podset-level RDMA. In many datacenters, podsets are
located in different buildings. For cross-building RDMA
links, the base link delay is much larger, while the PFC
mechanism requires much larger headroom buffer. In order to
enable RDMA, the PFC/ECN thresholds located on the spine
switches must be carefully adapted and tested. This is a tough
task and at present, does not result in sufficient gains.
RDMA/TCP Hybrid Service. To the best of our knowledge,
previous research on RDMA deployment does not explore
RDMA and TCP hybrid services. We keep TCP as the last re-
sort in Pangu following the availability-first principal. Despite
current progress, RDMA devices are far from flawless. Thus,
when either availability or SLA are threatened, switching
affected links from RDMA to TCP can maintain the available
bandwidth. This escape plan does not impact the unaffected
RDMA links.

However, during the hybrid deployment process, we deter-
mined that coexistent TCP traffic provoked a large number
of TX pauses (i.e., PFC pause frames sent by NICs), even
if RDMA/TCP traffic are isolated in two priority queues.
Table 2 reports the TX pause generation rate in Pangu under
different loads with approximately 50% TCP traffic. The tests
are performed on Mellanox CX-4 25Gbps dual-port RNICs.
Such a large number of TX pauses are detrimental to the
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Figure 3: RDMA/TCP hybrid deployment tests at different ratios (from 0% to 100% TCP).

performance and may result in PFC storms. We investigated
this problem together with Mellanox and determined that
the processing of TCP in the Linux kernel is highly I/O-
intensive. Kernel TCP initiates too many partial writes on
NICs’ PCIe bus. As the PCIe bandwidth is consumed, the
receiving pipeline of a NIC is slowed down. The buffer
overflows and the NIC subsequently begins to transmit PFC
pause frames.

In order to optimize the memory access of TCP, we make
several adjustments on the data access procedure. First,
disabling the Large Receive Offset (LRO) can reduce the
memory bandwidth usage. This is attributed to the access of
multiple cache lines when the LRO is enabled. Furthermore,
enabling NUMA also improves the efficiency of memory
accesses, which subsequently aids in relieving the pressure
of PCIe. We also allocate a larger buffer on the RNICs
for RDMA traffic to prevent TX pauses. Finally, making
application data cacheline-aligned is a common optimization
practice that improves memory efficiency [23].

3.3 Evaluation
We test several RDMA/TCP traffic ratios to investigate the
effects of RDMA/TCP hybrid deployment. Each computing
node runs FIO with 8 depths (inflight I/O requests), 8 jobs
(working threads), and 16 KB block size in order to write
virtual disks. Note that one write request on a BlockServer
generates three data replicas. We enable all optimizations
approaches detailed in §3.2 for the TCP kernel.

Fig. 3(a) depicts the BlockServer bandwidth with varying
RDMA/TCP ratios. The workload starts at 10 minutes with
100% RDMA traffic. Afterwards, in every 5 minutes, the
workload contains 10% more TCP traffic and 10% less
RDMA traffic. At 60, 65, 70 minutes we change the TCP
traffic ratio to 0%, 100%, and 0% respectively in order to
explore the performance of Pangu with quick traffic switching
between RDMA and TCP. The average BlockServer through-
put exhibits minimal reduction as the RDMA traffic ratio
decreases.

Fig. 3(b) presents the BlockServers’ average request
latency for the same workload as that in Fig. 3(a). The average

latency under 100% RDMA traffic is approximately half of the
latency under 100% TCP traffic, while the tail latency under
100% TCP is more than 10× larger compared to 100% RDMA
traffic. RDMA presents great latency advantages compared to
TCP. Fig. 3(c) demonstrates the average TX pause duration
per second for this workload. Only a limited number of TX
pauses are observed. When the TCP bandwidth ratio is around
50% at 30 minutes, the pause duration reaches a peak value.

Overall, these results demonstrate the stable performance
of our RDMA/TCP hybrid mechanism.

4 Performance Optimization
4.1 Performance Hurdles
The performance optimization of Pangu aims to minimize
latency while maximizing throughput.
RDMA-Storage Co-Design. Integrating the RDMA proto-
col stack with the storage backend is challenging. It must
cover key performance points such as thread modeling,
memory management, and data serialization. The thread
model directly affects latency due to communication costs
among threads. Well-designed memory management and
data serialization are key to achieving zero-copy during data
access. Here we present a brief introduction on the design of
these components for storage purposes.

The User Space Storage Operating System (USSOS) is
a unified user-space storage software platform that aims to
support new storage media such as NVMe SSD and persistent
memory. Its design principles (e.g., memory management,
shared memory mechanism, and user-space drivers) are based
on well-known user-space technologies (e.g., DPDK [19]
and SPDK [42]). Related tests reveal that enabling USSOS
in Pangu can improve CPU efficiency by more than 5× on
average.

As a central part of USSOS, the User Space Storage File
System (USSFS) is a high-performance local file system
designed for SSDs. By running in the user space, USSFS
is able to bypass the kernel to avoid user-/kernel-space-
crossing overhead. USSOS divides disks into “chunks” which
ChunkServer uses in its APIs (e.g., create, seal, and delete).
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Components Average Utilization Peak Utilization Maximum Physical Capacity
Physical CPU utilization ratio 66% 70% 100%
Memory read/write throughput 28GB/s / 29GB/s 33GB/s / 32GB/s 61GB/s in total (1:1 read/write)

SSD PCIe throughput (socket 0 + socket 1) 550MB/s + 550MB/s 1000MB/s + 1000MB/s 3.938GB/s + 3.938GB/s
Network PCIe RX throughput 10GB/s 11GB/s 15.754GB/s
Network PCIe TX throughput 8GB/s 9GB/s 15.754GB/s

Table 3: Measured resource utilization of Pangu in 100Gbps network with 1:1 read/write ratio.
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Figure 4: Potential triggering of data copying by CRC.

USSOS directly writes data and metadata to disks and uses
polling to perceive completion events. For different block
sizes, USSFS is able to improve IOPS by 4-10× compared to
the Ext4 file system.

A run-to-completion model is considered as the optimal
approach for the integration of the RDMA network stack with
the storage stack. This model has previously been explored
in studies discussing disaggregated storage (e.g., Reflex [25],
i10 [16]). However, these studies were published after the
introduction of RDMA to Pangu in 2017. Reflex and i10
focus on remote direct I/O while a ChunkServer in Pangu
is applied as a local storage engine for distributed storage.
Google’s Snap [31] leverages a separate network process
to unify network functionalities and reduce the number of
network connections.
Memory Bottleneck with 100Gbps networks. Deploying
100Gbps networks can achieve lower latency and higher
throughput. With faster network, now the memory throughput
becomes a bottleneck in our system.

In order to obtain the upper bounds of the memory
access throughput, we test the memory throughput using the
Intel Memory Latency Checker (MLC) tool [20]. Table 3
details the measured usage of the hardware resources. In
our test, the maximal achievable memory bandwidth is
61GB/s with a 1:1 read/write ratio. However, the aver-
age memory throughput with Pangu’s workload is already
29GB/s+28GB/s = 57GB/s. This indicates the memory to
be the bottleneck rather than the network.

By monitoring the memory usage in Pangu, we determined
that both the verification and data copy processes require
optimization. Data integrity is one of the most significant
features of distributed storage. We adopt Cyclic Redundancy
Check (CRC) for application-level data verification in Pangu.
As shown in Fig. 4, the received data is split into chunks
of 4KB, with a 4B CRC value and a 44B gap added to
each chunk. This operation is a memory- and computation-
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Figure 5: Integrated network/storage processing.

intensive operation as the calculations are applied to the entire
dataset. The data are also copied when they are written into
the disks in order to include CRC footers. Copying is not
performed in other components due to the remote-memory
access semantic of RDMA.

Large Number of QPs. We used to adopt the full-mesh link
mode among running threads in Pangu in order to maximize
throughput and minimize latency (Fig. 6(a)). Assume that
each ChunkServer has 14 threads, each BlockServer has
8 threads, and each node contains both ChunkServers and
BlockServers. For the full-mesh mode in a cluster of 100
storage nodes, there could be 14×8×2×99 = 2,2176 QPs
in each node. RNICs’ performance drop dramatically for
large numbers of QPs due to cache miss [21]. In particular,
the number of RX pauses (i.e., PFC pause frames received) is
very high.

Previous studies have demonstrated the same issue [10,
23, 47]. In order to solve this problem, FaSST [24] shares
QPs among threads, which subsequently lowers the CPU
efficiency and performance due to the lock contention of
QPs between threads. An alternative heuristic is the inclusion
of a dedicated proxy thread that manages all receive and send
requests [41]. However, switching to/from a dedicated proxy
thread increases latency. Furthermore, it is difficult to saturate
the full network bandwidth with a single thread. Moreover,
the proxy solution is not transparent to the underlying RDMA
libraries.
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4.2 Designs

The designs related to performance in Pangu are based on
the principle of software-hardware co-design to minimize
performance overhead.
Storage-RDMA Unified Run-to-Completion Stack. We
adopt a run-to-completion thread model for both storage and
network to achieve low latency. Fig. 5 demonstrates the
procedure used to process requests. When a write RPC is
received by a node, the RNIC posts it to the user space via
DMA. The RPC framework obtains the request using polling
and subsequently hands it over to a ChunkServer module for
processing. The ChunkServer then informs USSFS to allocate
a “chunk” resource to the request. Finally, a user-space driver
interacts with NVMe SSDs to store the data. These operations
are generally performed in a single server thread without
thread switching. This run-to-completion model minimizes
the latency. In order to reduce the blocking time caused by
large jobs, large I/O requests are split into smaller requests
when submitted by applications. This optimization ensures a
quick response to I/O signals. An additional optimization
strategy for large I/O requests involves the passing of
auxiliary work (e.g., formatting and CRC calculation) to non-
I/O threads, where they are subsequently processed. These
optimizations reduce the average latency of a typical storage
request (e.g., 4KB size) to less than 30µs.

The data formats are unified as I/O vectors. An I/O vector
is transmitted without copying via a single RDMA verb
using scatter-gather DMA (the transfer of discontinuous data
through a single interruption) in network. Serialization is not
necessary due to RDMA semantics.
Zero-Copy & CRC Offloading. As discussed in §4.1, in
Pangu, data has to be copied once on the I/O path as each 4KB
chunk is verified and attached with a CRC footer. Here, we
leverage the User-Mode Memory Registration (UMR) [32]
feature of RNICs to avoid such data copy. UMR can scatter
RDMA data on the remote side through the definition of
appropriate memory keys. Thus, data can be formatted and
organized according to storage application formats. We use
UMR to remap the continuous data from the sender into an I/O

buffer at the receiver, which contains 4KB data, a 4B footer,
and a 44B gap in each unit. Following the CRC calculation,
the filled I/O buffer can be directly applied for disk writing.
Besides, the CRC calculation is able to be offloaded to
capable RNICs (e.g., Mellanox CX-5), thus lowering CPU
and memory usage. The 4KB data are posted to the RNIC
and the 4B CRC checksum is then generated.
Shared Link. We adopt the shared link mode, an effective
solution for reducing the number of QPs in Pangu. The shared
link mode is implemented in the application layer and leaves
RDMA libraries untouched. A correspondent thread in the
destination node is assigned to each thread in the source node
(Fig. 6(b)). The thread’s requests to the node are sent to its
correspondent thread, which subsequently dispatches requests
to correct target threads.

Consider a daemon with N threads, each thread polls N
request/response queues to obtain the requests/responses.
Note that there is only a single producer/consumer for each
request/response queue. Thus we use lock-free queues for
each request/response queue to avoid contention. According
to our test, this design adds approximately 0.3 µs latency.

In the shared link mode, there is resource overhead at
the correspondent thread during request dispatching when
the source thread sends too many requests. Pangu supports
shared groups, where threads in a node can be divided into
several groups. A correspondent thread only relays requests
for its group members. Returning to the previous example,
the number of QPs in the All Shared mode is now reduced to
(8+8)×99 = 1,584. If the threads are divided into 2 shared
groups, the number of QPs will be (8× 2+ 8× 2)× 99 =
3,168.

4.3 Evaluation
Zero-Copy & CRC Offloading. We use FIO with 16 jobs
and 64 I/O depth to test a virtual I/O block device on a single
ChunkServer. Fig. 7(a) demonstrates the memory bandwidth
usage (including read/write tasks) when UMR zero copy and
CRC offloading are used. The memory bandwidth usage is
reduced by more than 30%, revealing that these measures are
able to relieve the pressure of memory usage. Fig. 7(b) depicts
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Figure 7: Performance of UMR zero copy + CRC offloading

the improvement in throughput following the optimization.
The throughput of a single ChunkServer thread is improved
by approximately 200% for a block size of 128KB.
Shared Link. We tested the shared link mode with several
shared QP groups in a cluster of 198 computing nodes and
93 storage nodes. The background workload compromises
4KB random writes with 8 threads and 8 I/O depths. Fig. 8(a)
presents the throughput in the All Shared, 2 Shared Groups,
and 4 Shared Groups modes, whereby a performance trade-off
can be observed. The All Shared mode exhibits slightly lower
throughput but generates the lowest number of PFC pauses.
Note that the reduction in bandwidth at 5 and 24 minutes in
the All Shared mode is attributed to the garbage collection
mechanism in Pangu. Fig. 8(b) presents the TX pause duration
with 1, 2, and 4 Shared Groups, respectively. The lower the
number of groups, the fewer the PFC pauses are generated
due to the reduction in QP number. We use the All Shared
Group mode in our scale and configuration framework.

5 Availability Guarantee
5.1 PFC Storms
A New Type of PFC Storm. The PFC storm previously
discussed in [13] originates from the NICs, with a bug in the
receiving pipeline acting as the root cause. Fig. 9(a) depicts
the phases of this PFC storm: (1) The bug slows down the NIC
receive processing, filling its buffer; (2) the NIC transmits
the PFC pauses to its ToR switch in order to prevent packet
drop; (3) the ToR switch pauses the transmission; (4) the ToR
switch’s buffer becomes full and starts to transmit the PFC
pauses; and (5) the victim ports are paused and are unable to
transmit.

We encountered a different type of PFC storm when
operating RDMA in Pangu. The root cause is a bug in the
switch hardware of a specific vendor. The bug reduces the
switching rate of the lossless priority queues to a very low
rate. Fig. 9 compares the two types of PFC storms. As an
example, we assume that the bug occurs in a down port of a
ToR switch: (1) due to the low transmitting rate, the switch’s
buffer becomes full; (2) the switch transmits the PFC pauses
to the connected ports; and (3) the additional switches and
NICs stop the transmissions. The leaf switches and NICs

connected to this ToR switch receive continuous pause frames
and thus the storm spreads.
State-of-the-Art Solutions. Guo et al. [13] built a NIC-
based watchdog to continuously monitor transmitted pause
frames, disabling the PFC mechanism if necessary. In
addition, watchdogs were also deployed on the switches
for disabling the PFC mechanism when switches receive
continuous pause frames and are unable to drain the queuing
packets. The switches can subsequently re-enable PFC in the
absence of pause frames over a specific period of time. Thus,
PFC storms can be controlled via these two watchdogs during
phase (2).

However, this solution is unable to completely solve the
PFC storms originating from switches. In particular, the TX
pause watchdogs on the NICs will not work since the NIC
only receives PFC storms from the switches. Furthermore,
current switch hardware does not support the monitoring of
pause frame transmissions. If a storm occurs on a ToR switch,
even though the watchdogs on other switches are able to
stop its spread, the ToR switch will continue to send pauses
to end-hosts in the rack. The RDMA traffic via this ToR is
consequently blocked.
Challenges. This new type of PFC storms invalidates
Guo et al.’s solution, which focuses on insulating the PFC
pause sources to prevent the storm from spreading. This
methodology fails when the source is a ToR switch as all the
hosts in the ToR are paused by the storm. Therefore, in order
to achieve high availability, a general solution is required in
Pangu to handle all PFC storm types, particularly those with
unknown causes.

Ensuring the service quality of Pangu while simultaneously
solving PFC storms is challenging. PFC storm detection must
be timely and accurate to rapidly protect network traffic. In
terms of availability, the overall convergence time of the PFC
storm should be controlled to at most the minute level.

5.2 Design
Our design principle of handling PFC storms is escaping as
fast as possible. Despite new PFC storm solutions [11, 21,
26], we still resort to engineering-level work-arounds due to
practical considerations (§2.3).

In Pangu, each NIC monitors the received PFC pause
frames. For continuous pause frames, the NIC determines
the presence of a PFC storm. Two work-around solutions are
available for administrators in the case of a PFC storm.
Workaround 1: Shutdown. This solution, denoted as the
“shutdown” solution, shuts down NIC ports affected by PFC
storms for several seconds. The dual-home topology provides
an emergency escape for PFC storms, whereby QPs will
disconnect and connect again via another port. This method
works together with the optimization to reduce the length
of the QP timeout. This optimization is discussed further
in §6.2. Although this solution is simple and effective, it is
sub-optimal due to the loss of half of the bandwidth.
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Figure 8: Throughput and pause for different types of thread groups.
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(b) The PFC storm originates in switches.
Figure 9: Different types of PFC storms.

Workaround 2: RDMA/TCP Switching. In this solution,
the affected RDMA links in a PFC storm are switched to TCP
links. It compromises a more complex procedure compared to
the shutdown solution, yet it is able to maintain the available
bandwidth. We adopt a method similar to PingMesh [14] to
detect the RDMA links affected in PFC storms. At each T ms,
every worker thread picks a server and separately pings all
its threads via the RDMA and TCP links. If the RDMA ping
fails and the TCP ping succeeds for more than F times, the
traffic on this RDMA link is switched to the TCP link. Once
the RDMA ping has succeeded more than S times, the traffic
on the switched TCP link is switched back to the RDMA
link. For T = 10 ms and F = 3, bad RDMA links can be
detected in approximately 10 seconds in a podset of 100
storage nodes. By switching the RDMA traffic to the TCP
connections, the throughput can recover to more than 90% in
less than 1 minute.

5.3 Evaluation
We simulate PFC storms by injecting the aforementioned bug
into a switch for several cases, including the uplink/downlink
ports on the ToR and Leaf switches. The RDMA/TCP
switching solution exhibits strong performance for all cases.
Fig. 10 displays the results for a PFC storm originating from

a ToR switch downlink port. Note that the nodes inside the
ToR behave differently from nodes outside the ToR. We
choose two nodes (inside and outside the ToR) in order to
demonstrate the difference. In such a case, the pause frames
are transmitted to NICs and leaf switches directly connected
to the given ToR switch.

The shutdown solution shuts down the NICs via the
watchdogs in the occurrence of a fault due to excessive RX
pauses. RDMA links subsequently reconnect through another
NIC port, thus recovering traffic. Note that the counters of
Congestion Notification Packet (CNP) and PFC frames gradu-
ally increase since the system load (at 0 minutes) is larger than
the available bandwidth of a single port (25Gbps). The system
then reaches a new balance in approximately 30 minutes.
However, the shutdown solution has several limitations. For
example, computing node requests may not respond within
1 minute (known as I/O hang sensed by applications). The
downlink breakdown of a leaf or ToR switch can result in tens
to hundreds of hang requests. Furthermore, the shutdown of
ports is itself an aggressive action. Hundreds of ports may
be shut down due to unexpected pauses. This risk may itself
influence the availability of a large number of nodes.

The RDMA/TCP switching solution switches the RDMA
traffic that passes through the broken-down switch to TCP.
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Figure 10: Performance of two different solutions for PFC storms.

The RDMA links are then disconnected due to timeout. The
QPs are separately distributed over the server’s two NIC
ports, thus the RDMA links may need several attempts to
reconnect successfully. Note that although the pause storm
in the ToR is not terminated, it will not spread further as the
neighboring switch ports are transformed into the lossy mode
via the RX pause watchdogs. The traffic throughput is not
impacted during the migration to the TCP, and I/O hangs are
not present.

6 SLA Maintenance
6.1 SLA in Pangu
It is commonly-known that network failures are hard to locate
and repair. Network failure causes include mis-configuration,
hardware/software bugs, and link errors. For example, the
mis-configuration of the switch Access Control List (ACL)
may only affect a specific flow while other flows behave
normally [28, 45]. As a comparison, malfunctions occurring
at storage devices or nodes can generally be easily located.

Sometimes network failures may not be explicit. Ideally,
when a node breaks down, the heartbeat mechanism should en-
sure that the unavailability of service daemons (BlockServers
and ChunkServers) on the node are informed to their masters
(BlockMasters and PanguMasters). However, real situations
can be more complicated, failing to be detected with just
heartbeats. Connections may suffer intermittent packet loss
or long latency rather than simple break downs. We also

identified an interesting failure type involving a small number
of links that flap between up and down states for a short period
of time (e.g., several seconds). This results in an extremely
high tail latency for I/O requests, denoted as slow I/O (e.g.,
over 1 second for storage clients). Hundreds of slow I/Os
are observed daily for numerous reasons. Root causes of
link flapping include optical ports covered with dust, loose
physical interfaces, aging hardware, etc.
Previous Research on Network Failures. The majority of
previous studies focus on determining the location of network
failures (e.g., Pingmesh [14] and 007 [1]). These solutions
focus on the system network and can achieve the timely
discovery of network errors. However, it may still take hours
for engineers to manually check, fix, and replace the failed
switches and links. Cloud storage calls for a methodology
that integrates the storage and network function modules to
ensure stable service quality in failed cases.

6.2 Design
Our SLA design principle aims to exploit storage semantics
whenever useful. Distributed storage is designed with a
redundancy mechanism and its performance is measured via
the storage semantics. These semantics, such as data replicas
and distributed placements, can be leveraged during a failure
to improve system performance.
Network-Integrated Monitoring Service. Monitoring is
a necessary component of distributed systems. A compre-
hensive monitoring system is key for the safe deployment
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of RDMA in production storage systems, as well as reliable
performance.

Both configurations and counters must be monitored. NIC
configurations include system environments, PFC/ECN/QoS
configurations, and several link configurations. Pangu au-
tomatically checks, collects, and reports suspicious terms.
Inspecting potential mis-configurations can reduce configura-
tion and environment errors. For example, accidental reboot
and software upgrades may reset the QoS, PFC, DCQCN [52]
configurations and affect system performance. Monitoring
can discover such cases and help fix them in advance.

Counters include storage system performance coun-
ters (e.g., IOPS/latency) and network counters (e.g., CNP
sent/handled, TX/RX pauses, and RDMA errors on NICs).
Congestion control counters that exceed thresholds can result
in monitor daemons sending alarms to engineers for diagnosis
and repair. Monitoring both storage and network indexes
is crucial for the diagnosis of errors and for predictable
performance. Storage indexes such as tail latency, slow I/O,
and queuing time can directly reflect the status of a system.
Moreover, monitoring system performance also help locate
errors. For example, network features are unable to quickly
reflect the flapping problem described in §6.1. However, this
problem can be easily located by monitoring slow I/Os on the
endpoints of storage applications.
Faster Timeout for Connection Failures. The basic
solution to network failures is to reconnect through an
alternative path. Since we use dual-home topology, each
single point failure of the network can be bypassed using
a different path. Thus, the timeout duration of the QPs
is crucial in improving the system performance during a
failure. In the NIC manual, the timeout duration of QPs is
calculated as 4µs× 2timeout × 2retry_cnt, where timeout and
retry_cnt denote the retransmission timeout value and the
retransmission retry times respectively. Initially, this value
was a constant (approximately 16 seconds) configured in the
hardware and cannot be changed. In a combined effort with
the NIC providers, we were able to fix this bug. By using a
smaller timeout value for QPs, the action time required for
reconnecting during network failures was reduced by 4×.

An alternative work-around involves altering the connec-
tion path by modifying the source ports of the QPs (rather than
a direct reconnection). This can accelerate the link recovery
during a fail-over. However, effectively changing the QP
source port requires a more recent NIC firmware (MLNX
OFED 4.7 or newer) than what is currently deployed in Pangu.
We leave this challenge to future work.
Blacklist. We adopt blacklist in Pangu to further improve
the service quality in fail-over cases. BlockMasters collect
information on I/O errors (including timeout) and slow
I/Os from clients. If a BlockServer has a large number
of slow/error I/Os from multiple clients, the masters adds
it to the blacklist for a short period of time. The number
of clients and slow/error I/Os that triggers the blacklist is

configured according to the scale of the cluster. In order to
ensure reliability, the maximum number of BlockServers in
the blacklist is usually small (e.g., 3 hosts). This blacklist
mechanism temporarily isolates the BlockServers that provide
a poor service. The system performance is not affected and
engineers have sufficient time to fix the problems.

6.3 Daily Operation Scheme of Pangu
The daily operations of Pangu rely on these modules to
work together. The monitoring system collects and reflects
the status of Pangu. If abnormal network indicators or I/O
metrics are observed, the monitoring system attempts to locate
and report them to the administrators. For accidental failures
such as link errors, the small QP timeout shortens the time
required for failure recovery. The blacklist mechanism is able
to determine and isolate nodes with poor service quality. By
following these design and operator framework specifications,
our RDMA-enabled Pangu system has not experienced any
major faults in the last two years.

7 Experiences and Future Work

Monitoring NACK in Lossless RDMA. The operation of
RDMA over a lossless fabric is difficult due to PFC risks.
However, the lossless fabric increases the effectiveness of
NACK events as indicators of the network error location since
NACK is usually rare in a lossless fabric.

In order to detect and locate network problems, we build
a subsystem based on packet loss in Pangu. In particular,
Out-Of-Sequence (OOS) counters on RNICs and packet drop
counters on switches are gathered. A packet loss is classified
as either explicit or implicit based on whether it is recorded
by switch counters. The former is easy to locate by checking
the switch counters. However, determining the location of
the latter is complex as RNIC counters do not distinguish
between flows. By monitoring NACK in the networks, we can
extract flows’ five tuples and locate the root of a problem.
Building a System-Level Benchmark. To evaluate the
system network performance and SLA, a representative
benchmark must be constructed. Building the benchmark
based on just the network metrics is simple. However, storage
features such as replica completion time, slow I/O, and failure
recovery should not be ignored. To measure the storage
system performance and the SLA, we build a benchmark at the
storage service level. The system evaluation indexes include
FIO latency, IOPS, SLA with network errors, etc. Each
upgrade in Pangu (for network and other components) is
evaluated with the benchmark, allowing us to measure the
overall system performance.
Congestion Control for Fail-Over Scenarios. In §3, we
introduced the dual-home topology adopted in Pangu. Dual-
home topology is also crucial to fail-over cases since it
provides a backup path on NICs. However, we encounter
a problem when deploying dual-home topology in practice.
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According to our test, when one ToR switch is down, the
RX pause duration can increase to 200ms per second. This
is due to the transfer of the traffic from the broken ToR
switch to the other switch. DCQCN handles the traffic burst
poorly under this asymmetric topology. We adapt several
DCQCN parameters as a temporary solution and leverage the
fluid models [53] to analyze the available choices, including
canceling the Fast Recovery stage and extending the rate
increase duration. When removing the Fast Recovery stage
in DCQCN, the pause can be eliminated yet the flow tail
latency increases due to the slow recovery of the flow rate. In
contrast, extending the duration of the rate-increase can result
in a sharp reduction in the pause but only slightly increases
the flow tail latency. In our experience, extending the rate-
increase duration in DCQCN is effective for storage traffic
patterns. The bandwidth drops slightly while the number of
RX pauses is dramatically reduced.

This problem of DCQCN in fail-over scenarios (e.g., asym-
metric topology and traffic burst) indicates their important
role when designing congestion control. We adopt parameter
tuning to fix this problem at the price of a slight performance
loss. The storage network still requires a flexible, robust
and well-implemented congestion control mechanism that
functions well in all scenarios. In 2019, Alibaba designed
HPCC [30], a novel congestion control algorithm for the
RDMA network. Adapting and integrating HPCC with the
storage networks is left for future work.
Slow Processing of RDMA Read. The majority of large
RPCs in Pangu are transferred via RDMA READ. We
observed that when a NIC receives too much RDMA requests
within a short period, it will send out many PFC frames. This
is due to the slowed receiving process that results from cache
misses. When a NIC is preparing for an RDMA READ, it
accesses the QP context in its cache. Processing many RDMA
READs consumes an excessive amount of cache resources.
For slow RX rates, the NIC sends out PFC pause frames
to prevent packet drops. We are currently working with the
RNIC provider to solve this problem.
Lossy RDMA in Storage. Lossy RDMA is supported by
Mellanox CX-5 and CX-6 RNICs. Note that CX-6 supports
Selective Repeat (SR) retransmission. SR might be the
ultimate step required to effectively eliminate PFC. The
construction of lossy RDMA is a focal point for all RDMA-
based systems. We tested lossy RDMA with Pangu over an
extensive period and will deploy it for new clusters.

However, enabling the lossy feature with early generation
RNICs (e.g., CX-4) that have limited hardware resources and
do not support SR is hard, and many production RDMA-based
systems still host early generations RNICs.
NVMe-Over-Fabric. The ChunkServer data flow in Pangu
is processed by CPUs. However, with NVMe-Over-Fabric,
NICs can directly write the received data into NVMe SSDs.
This CPU-bypass solution can save CPU costs and reduce
latency. We are currently building our specialized storage

protocol (and corresponding hardware) based on NVMe-
over-Fabrics. A customized storage protocol for Pangu with
hardware support can allow for more flexibility and control.

8 Related Work
PFC in RDMA PFC storm is the most well-known issue
of RDMA. Several studies [11, 30, 52] focus on controlling
network congestion to reduce the numbers of generated PFC
pauses. DCQCN [52] is integrated in Mellanox RNICs. In
Pangu, we tune several parameters in DCQCN to improve its
performance in fail-over scenarios. However, PFC storms
still occur due to hardware bugs [13]. In this paper, we
present a different hardware bug that originates from switches.
Existing solutions to remedy PFC storms include deadlock
elimination [38] and performance optimization [46]. These
solutions require switch modification. In Pangu, we combat
PFC storms by switching affected links from RDMA to TCP
without the need for any switch changes.
System & Network Co-Design. Recently, there have been
increasing amount of work that adopts system and network co-
design, including RPC systems [21, 47], distributed memory
systems [39], key-value stores [22], distributed databases and
transaction processing systems [6], and graph-processing
systems [40]. We co-design our storage system and RDMA
in Pangu. To our best knowledge, we are the first to share
the experience of employing RDMA networks in large-scale
distributed storage systems.

9 Conclusions
As a distributed storage system, Pangu has provided storage
services to tenants both inside and outside of Alibaba for
over a decade. In order to overcome the challenges of rising
high-speed storage media and growing business requirements,
we integrate RDMA into the storage network of Pangu,
providing a common solution to different types of PFC storms.
This allows for the safe deployment of RDMA. Pangu has
successfully moved to a 100Gbps network by solving several
new problems, such as the memory bandwidth bottleneck and
QP number explosion. Furthermore, we improve the system
performance of Pangu in fail-over cases.
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Abstract
Object storage systems, which store data in a flat name

space over multiple storage nodes, are essential components
for providing data-intensive services such as video streaming
or cloud backup. Their bottleneck is usually either the com-
pute or the network bandwidth of customer-facing frontend
machines, despite much more such capacity being available at
backend machines and in the network core. Prism addresses
this problem by combining the flexibility and security of tradi-
tional frontend proxy architectures with the performance and
resilience of modern key-value stores that optimize for small
I/O patterns and typically use custom, UDP-based protocols
inside a datacenter. Prism uses a novel connection hand-off
protocol that takes the advantages of a modern Linux kernel
feature and programmable switch, and supports both unen-
crypted TCP and TLS, and a corresponding API for easy
integration into applications. Prism can improve throughput
by a factor of up to 3.4 with TLS and by up to 3.7 with TCP,
when compared to a traditional frontend proxy architecture.

1 Introduction

A scale-out architecture for object storage systems is essential
not only for supporting large storage capacities but also to
incorporate sufficient compute and network bandwidth so
the system can offer a predictable high-throughput and low-
latency service to clients. Non-volatile memories (NVM) now
fill the performance gap between networking and storage [28]
with measured throughputs of 39.4Gb/s and access latencies
of 305 ns [34], emphasizing the importance of minimizing
storage stack overheads for use with NVM [33].
A common design pattern seen in object storage systems

[2, 3, 22, 35, 41, 65] uses a set of frontend machines to
mediate client requests and relay them to a set of backend
machines, as illustrated in the left diagram in Figure 1. The
frontend often acts as a cache and/or load balancer to sharded
or replicated backends. In this architecture, handling small
objects incurs severe network inefficiencies, and handling
large objects is limited by both network and compute resource
availability because of data movement and encryption [2].
However, such systems have been widely adopted because of
practical tractabilitywhen encryption andfiltering are required,
and because the performance characteristics of traditional
disk-based backends are so poor that the CPUs and network
typically are under-utilized, i.e., are not bottlenecks [67].

Switch Switch

Client

PrismFrontend proxy

Client

Flow steeringSwitch

Client

Content-based routing

Request
processing

Figure 1: Scale-out architecture variants.

Recent approaches such as SwitchKV [45], NetCache [37]
and Pegasus [44] use a content-based routing architecture,
where servers interact with programmable switches, as illus-
trated in the central diagram in Figure 1. These approaches
significantly improve throughput, latency and resilience to
skew that is prevalent in realistic workloads, because the
switches can redirect traffic that would otherwise be arriving
at congested backend nodes.

While this overall concept is promising, these systems can
only handle unencrypted single-packet-sized objects of up to
1.5 to 9KB (with jumbogram fabrics), because the switch
data path must understand the application logic. Also, clients
need to use custom UDP-based protocols and implement loss
recovery and congestion control functionality by themselves,
which is non-trivial especially when serving clients over
the Internet. Other content-routing approaches support large
objects [13, 40, 71], but do not fully support TCP and hence
cannot support industry-standard TLS security or popular
application-level protocols (e.g., HTTP and Amazon S3).
This paper presents Prism, a framework that enables the

new object storage architecture that combines the flexibility
of frontend proxies with the efficiencies and resilience of
content-routing approaches, as illustrated in the right diagram
in Figure 1. It transparently scales out to many clients and
supports arbitrarily-sized objects, TCP and TLS, allowing
applications to secure industry-standard protocols such as S3
over HTTPS.
A key concept of Prism is repeatable TCP connection

hand-off, which allows a TCP connection to be re-homed to
different machines over its lifetime. This enables the frontend
to examine (even encrypted) requests without requiring it to
then also relay object payloads (i.e., bulk data), addressing one
of the main drawbacks of traditional proxy architectures (Sec-
tion 2). At the expense of a fixed per-request cost, repeatable
connection hand-off smoothly distributes the I/O, compute
and network bandwidth usage across the backends, avoiding
bottlenecks in the data path.
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The novelty and viability of Prism are based on two other
recent innovations. Prism is novel because of its new TCP
hand-off protocol that conforms to the TCP state serializa-
tion feature available in modern Linux, which is also under
development in FreeBSD [66], and overcomes the limitation
of this feature (Section 4). Prism is now viable because of
the availability of scalable, fine-grained state management
techniques for programmable switches, such as SilkLoad [51]
and FlowBlaze [8, 58], which enable Prism to control a large
number of concurrent flows with fast switch rule management.
Prism has been implemented on Linux hosts and eBPF-

based software switches, and for this paper was instantiated as
an S3-compatible object store in order to demonstrate much
better throughput and latency when compared to a frontend
proxy architecture.

This paper makes three main contributions:
• Characterization of network and CPU utilization in the
current proxy-based architecture with TLS (Section 2.3).

• A robust TCP hand-off protocol for commodity pro-
grammable switches and network stack (Section 4.2).

• Improvement of resource utilization in the replicated or
sharded backend architecture (Section 5).

In the remainder of this paper, Section 2 reviews how object
storage systems work and characterizes their performance.
Section 3 describes our high level approach and design chal-
lenges. Section 4 details the design and implementation of
Prism, including its connection hand-off protocol and soft-
ware stack. Section 5 evaluates Prism, and Section 6 discusses
implications of our work. Section 7 describes related work.
The paper concludes with Section 8.

2 Background and Problem

The primary focus of this paper is commercial object storage
systems. This section describes the concepts behind such
systems, then characterizes their performance.

2.1 Motivation: Object Storage Systems
Object storage systems serve huge amounts of data, both when
instantiated as public cloud services, such as Amazon S3,
Azure Storage, Dropbox and others, or as private installations,
such as NetApp StorageGRID or Dell/EMC ECS. Cloud
storage systems are also being deployed in edge clouds [4, 43],
which are smaller but closer to clients, compared to hyperscalar
public clouds, but can still generate a terabit of data per
second [4]. Scale-out object storage systems are also used
in many other scenarios. For example, OpenStack, a popular
multi-tenant cloud platform, uses them as a primary data
repository [65], and optionally supports bandwidth isolation
and fine-grained filtering [22, 23]. IBM has deployed them
to build a scale-out Docker registry that maintains Docker
images and other data [3].

A common design pattern for such object storage systems
uses a set of client-facing frontend machines that arbitrate
access to a set of backend storage machines. The frontend
typically does not persistently store any data, but may in some
instantiations locally cache some objects. Clients that connect
to the storage system, over the wider Internet or from within an
enterprise or datacenter network, will be routed to one of the
frontend machines via DNS round-robin or L4 load-balancers.
The designated frontend machine then acts as a proxy for
the set of storage backends. The role of the proxy includes
application-level firewalling the internals of the storage system
from the outside, possibly TCP and/or TLS termination, client
and/or request authentication and authorization, in addition to
relaying requests and responses.

Once the TCP connection is established, the network traffic
consists mostly of bulk data transfer between client and the
backend servers, relayed by a frontend machine. Consequently,
a frontend machine spends the majority of their resources
relaying traffic between clients and backends. The protocols
used by clients are usually RESTful, reusing TCP connections
for many individual storage transactions that can be served by
the different backends. The frontends are responsible for con-
currently handling many clients, which can lead to congestion
at the client-facing links [2]. Modern storage devices, such as
NVMe SSD and persistent memory, further stress frontend
machines, because unlike slow spinning disks [6, 54] these
devices do not constrain the networking throughput.

2.2 System Model and Components
In summary, the frontend machine in scale-out object storage
systems:
1. terminates client TCP and/or TLS connections
2. receives requests that contain a target object identifier,

e.g., a key or URL
3. redirects the request to a suitably chosen backend
4. forwards request data from the client to the backend
5. forwards response data from the backend to the client
Subsequent requests over an already-established connection

can be directed to different backends. This re-homing of the
connection incurs a cost that is made up of several components,
which we will review here to better understand the measured
end-to-end performance in Section 2.3.

Data movement: A proxy relays data between two TCP
sockets issuing two system calls: read() on one socket and
write() on another, each copying data to and from the kernel.
The costs of these system calls increase with the number of
bytes read or written. When the data is very small (a few
hundreds of bytes or smaller), the fixed per-call costs, i.e., the
context switch overhead (several tens of ns) dominates the total
cost—the cost of moving the data is negligible. For large data
sizes, the total cost is dominated by the per-byte cost of moving
the data. Proposed optimizations include TCP Splice [48, 63]
and tproxy in recent Linux kernels, whichmove data between
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two TCP sockets within the kernel by swapping socket buffer
pointers, without actually copying any data. However, these
approaches struggle to support encryption and other more
complex application logic.

Data encryption: For confidentiality and authentication,
TLS has become the standard in today’s Internet and datacen-
ters. Therefore, offloading techniques for TLS have attracted
considerable attention. Some TLS libraries can take advantage
of hardware acceleration for various ciphers (e.g., AES-NI
CPU instructions). In-kernel TLS support was recently added
to Linux and FreeBSD to use cryptographic engines avail-
able on some NICs. Nevertheless, encrypting traffic comes
at significant per-byte processing costs, similar to the data
movement costs.

Application logic: Proxies typically perform application-
level processing when relaying data. For example, they look
up a key or URL embedded in the request data to select a
suitable backend for the target value or object, or theymay scan
data to filter out particular requests. Since such information is
typically included in the application-level protocol headers,
the costs of such application logic usually does not increase
with the size of transferred object. (Although it can if this
information is contained in the request payload.)

Network stack: Modern kernel TCP/IP stacks can send
and receive bulk data at the rate of tens of Gb/s by utilizing
NIC offload features (in particular, checksum, TCP segmen-
tation and large receive offloads). TCP and especially TLS
connection establishment is an expensive operation due to
needing multiple network round-trips, and the required up-
dates to shared resources in the kernel impair multi-core
parallelism [57]. However, modern application protocols are
usually already designed to maximize connection reuse to
amortize these costs. Hence, this paper does not concern itself
with application protocols that have high connection-open
rates; various improvements that are complementary to our
work have already been proposed for high-rate connection
openings [46, 57] and small data transfers [24, 36].

Network topology: In rack-scale storage in large datacen-
ters [44, 53] or edge clouds such as used for content delivery
networks (CDNs) [4], operators wire servers uniformly so that
they can assign the role of servers (e.g., frontend and backend)
flexibly depending on the node failure or service demands, as
it is very expensive to rewrite cables [73] or the physical space
is at a premium in the edge clouds [4]. Each rack consists of
one or more top-of-rack (ToR) switches equipped with high
bandwidth uplinks. These uplinks are a Clos [16] network
fabric in datacenters and Internet exchanges in CDNs, respec-
tively. In such a deployment, individual machines cannot be
“scaled up” to create additional proxying capacity.

2.3 End-to-End Performance
To characterize performance of the proxy-based systems, we
imitate the aforementioned network topology using a six
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Figure 2: Throughput and CPU usage of an nginx cluster.
One node acts as a proxy and the other five act as backends.
Every node connects to a switch with a 10Gb/s link. The
switch connects to a client machine with a 40Gb/s link (See
Figure 8 for illustration). CPU usage can be at most 1200%
due to six dual-core servers.

logical node cluster, each of which connects to a cluster switch
over a 10Gb/s link, and a client machine that is connected
to the cluster switch over a 40Gb/s link that serves as a high
bandwidth uplink (see Section 5.1 for hardware details). We
installnginx, a high-performance,popularweb server, to every
server cluster node; one acts as a frontend (also generally called
reverse proxy) and the other five act as backends. The client
node runs wrk HTTP benchmark tool to generate requests to
retrieve objects from the server cluster.

Figure 2 plots throughput measured by the client and CPU
utilization monitored at the servers. The requested object sizes
vary, from 64B to 4MB. Although the real object storage
systems handle a wider range of object sizes (e.g., hundreds
of KB to a few MB for photos, and tens or hundreds of MB
for videos, deep learning models and VM images), we select
the range that characterizes the performance of the system.

With unencrypted HTTP, the frontend (“Nginx-HTTP”) can
serve up to 9.2Gb/s, which is close to the 10Gb/s line rate,
taking into account protocol header and framing overheads.
At the same time, the frontend CPU resources (“Nginx-HTTP-
FE”) are also fully utilized. When we allocate one more CPU
core to the frontend (not plotted), the network bandwidth
becomes the bottleneck (i.e., it results in idle CPU cycles).

When using HTTPS, the frontend (“Nginx-HTTPS”) is able
to serve only up to 9.1Gb/s (“Nginx-HTTPS-FE”). Further, it
requires larger objects to achieve that throughput than HTTP
cases. This performance reduction is due to performing TLS
cryptographic operations at the frontend that acts as a proxy,
which fully utilizes its CPU resources.

These experiments confirm that either the fabric attachment
bandwidth or the CPU resources of the frontend proxy become
the bottleneck for this workload, depending on the hardware
setup and the use of TLS. Since the Internet-facing capacity of
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the switch and backend CPU resources are left underutilized
in these experiments, ideally the backends would circumvent
the proxy and the switch would forward data directly between
clients and backends. The Prism architecture enables this
design.

3 Approach and Challenges

These observations confirm the need for reducingCPUusage at
the frontend and increasing network utilization at the backends
and switch uplink. Is it possible to exclude the frontend from
the end-to-end data path for the majority of a transaction,
while allowing it to perform its necessary tasks? We will show
that it indeed is possible, but that doing so requires a different
request-redirection approach than traditionally used. In this
section we describe the high-level approach and highlight the
main challenges, then describe our resulting design of Prism
in Section 4.

3.1 Request-Granularity Redirection
The fundamental problem with a proxy architecture is that
all traffic is mediated by the frontend; it relays all traffic
between clients and backends. If the ToR switch itself could
be instructed to relay data between clients and backends, that
forwarding would happen at the faster core network speeds,
and—more importantly—eliminate the traditional frontend
participation in bulk data relaying. In otherwords, the frontend
could focus on the control-plane aspects of relaying, and the
fabric would focus on the data-plane aspects, which optimizes
their relative strengths. A frontend confined to the control plane
would have a great deal more network and CPU bandwidth
available to support more clients per machine, and would thus
reduce the overall number of frontend machines needed to
support a given client population, making the service more
cost effective.
Specialized examples if such a general architecture have

been realized in the narrow domain of small-object key-value
stores, such as SwitchKV [45],NetCache [37] andPegasus [44].
However, these systems handle only single-packet-sized trans-
actions and require clients to use custom, unencrypted proto-
cols. It should be noted that for large objects, it is not trivial to
implement congestion control and loss recovery that are able
to cope with various Internet conditions, such as tail loss [9],
incast [1] and phase effects [17].
General, commercially viable object storage systems of

course need to support objects larger than a single packet.
They also need to be able to secure their client communications
with industry standard protocols such as TLS. One example is
Amazon S3, the de facto industry standard for object storage,
which runs overHTTPS, i.e.,TCP andTLS. For such a protocol,
after the frontend has processed application-level connection
setup (e.g.,user authentication), it is hence necessary tomigrate
the entire TCP and TLS connection state to one of the storage

serialize
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Switch Backend Frontend BackendSwitch

serialize

Switch 
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Switch 
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Figure 3: Breakages with naive TCP hand-off designs.
Leaked packets trigger a connection reset (Section 3.2).

backends and have the fabric switches redirect traffic to it—
based on flow-level information rather than application-level
information.

3.2 TCP Hand-Off
Basic TCP hand-off provides a starting point for the request-
granularity TCP redirection of Prism. Although TCP hand-off
was already explored over twenty years ago [5, 55] based on a
custom TCP stack, it has not seen much real-world deployment
or open source availability. However, TCP connection serial-
ization, one of the essential features to enable TCP hand-off,
was added to the Linux kernel in 2012 [12]. The identical
feature is also under development in FreeBSD [66]. Therefore,
designing a new TCP hand-off protocol based on this feature
could ease the deployment of Prism approach.

When TCP connection state is serialized and then migrated
to another machine, it is essential to carefully coordinate the
updates to the necessary fabric switch rules, so that no packets
“leak” to machines that do not hold the required state—such
leakage would generate TCP RST (reset) messages, impacting
client operation. Figure 3 depicts two example scenarios where
such a connection reset occurs, because the hand-off protocol
is incorrectly designed. On the left, an already-migrated
connection receives a packet at the original machine, because
the switch does not yet to redirect packets to the new target
another server. On the right, the switch begins forwarding
packets to the new target before the connection has been
migrated there. These scenarios can happen with the hand-
off protocol designed in the past [5]. The Prism migration
protocol avoids any such problems, using the two-phase hand-
off protocol described in Section 4.2.
Also, a fabric-based connection hand-off raises concerns

about latency and scalability, because it requires manipulating
fabric switch rules on a per-request basis (or at least every
time the connection migrates). Previous studies imply that this
might pose a significant hurdle: In 2014, Liu et al. [47] report
that configuring a hardware switch can take hundreds of µs,
meaning that for short backend transactions, the hand-off cost
could significantly increase the overall request processing cost.
In 2011, Yu et al. [69] show maintaining fine-grained flow
state in hardware switches to be infeasible because of limited
on-chip memory.
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However, more recent work has addressed some of these
constraints. SilkLoad [51] and FlowBlaze [8, 58] store state
for millions of flows in hardware switches; the latter inserts
hardware switch rules in a few µs. The Prism hand-off protocol
incorporates these more recent observations.

4 Design

Based on the challenges above, the goals of Prism are to (1)
design an efficient connection hand-off protocol that works
for both TCP and TLS without breaking client sessions, and
(2) to build a software stack that implements the protocol
and provides a suitably abstract API to applications. We start
with describing what an end-to-end data TCP transfer looks
like, using the example of a read request that is received
by a frontend and served by a backend. We then detail our
connection hand-off protocol, which performs a two-phase
switch configuration, and our software stack, which ensures
correct kernel- and application-level operations.

4.1 Prism in Action
Figure 4 illustrates the Prism hand-off protocol in a packet
sequence diagram. Solid arrows indicate packets sent on the
TCP connection; dashed lines indicate Prism control messages
between the frontend, switch and backends.

Establish connection: As illustrated in Figure 4, a client
opens a TCP connection with a Prism frontend server, option-
ally followed by a TLS handshake.

Parse request: The client begins a transaction by sending
a request, which the frontend receives and parses. When the
frontend determines that it has received the entire request, it
consults the metadata it maintains about the backend servers
to select one to handle the request.

Hand-off request to backend: The frontend serializes the
TCP connection and TLS session state. TCP state includes
ports, sequence and ACK numbers and the TCP options
negotiated for both directions of the connection; the TLS
state includes the exchanged shared secrets. The frontend then
contacts the chosen backend and passes the serialized states,
the client IP address, and the client request, so that the backend
can take over the connection and serve the request.
The backend instructs the Prism switch to rewrite the

destination IP address of packets sent from the client to
that of the chosen backend server, and to rewrite the source
IP address of packets sent from that backend server to the
client to that of the frontend. The switch also rewrites the
destination or source MAC address, if the client resides in
the same broadcast domain. The consequence of this is that
any subsequent packets on this connection will be exchanged
directly between the client and the backend, with the switch
performing the required rewriting. Since the inserted rules
only affect a single TCP connection, other connections, either

Client Prism Switch Frontend Backend

Establish connection

(1)
TCP 3way handshake /

TLS handshake

Parse request

(2) Request

Hand-off request to backend

(3)
Add rewrite rule and block all traffic

{Five tuple, mac}

(4)
Serialize protocol state &

Hand-off

(5)
Modify rewrite rule &
Unblock all traffic &

Deserialize protocol state

Process request at backend

(A) Handle client request

(6) Response

Prepare for next request

(7) Next request

(8) Block all traffic

(9)
Serialize protocol state &

Hand-off

(10)
Choose next backend &

Hand-off

(11)
Modify rewrite rule &
Unblock all traffic &

Deserialize protocol state

Repeat (A) for next request, or continue

Tear connection down

(12) TLS / TCP close procedure

(13) Remove rewrite rule

Figure 4:End-to-end Prism operation. Solid arrows indicate
TCP packets, dashed ones control messages. Step (8)–(11)
indicates our two-phase hand-off protocol described in Sec-
tion 4.2.

to the same frontend or other destinations, remain unaffected.
We describe detailed procedures later in this section.

The backend then de-serializes the TCP and TLS state by
instantiating a TCP socket based on the information in the
serialized connection state and its local IP address (i.e., not
frontend’s). Because of the active switch rules, the client sees
the traffic coming from this backend as if it was coming from
the original frontend.

Process request at backend:The backend serves the client,
sending back the response over the migrated connection.

Prepare for next request: After a transaction has com-
pleted, the backend may return the connection to the frontend
and remove the corresponding switch rules, if it wishes subse-
quent requests on the same connection to be handled by the
original frontend. The backend may parse the next request by
itself and hand off the request to another backend.

Tear connection down: When the client or the backend
itself closes the connection, the backend withdraws the corre-
sponding switch rules.

4.2 Two-Phase Hand-Off Protocol
As shown in Figure 3, a deficient TCP hand-off protocol
design breaks client connections. We therefore develop a
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new connection hand-off protocol that works with the TCP
serialization feature available in Linux.
One “hack” would be to drop reset segments sent on a

connection under migration with host firewall rules. However,
this design requires maintaining flow steering state across
the switch fabric and the servers, which complicates failure
handling. We thus reject this design option.

Our solution instead employs a two-phase switch configura-
tion. First, the host instructs the fabric switch to drop all traffic
that belongs to the connection being migrated. This prevents
this connection from receiving any further packets that might
then lead to RSTs. It should be noted that this does not affect
performance, because what may be dropped are only unusual
packets, such as spurious retransmissions.
Then, a machine serializes a TCP connection and its TLS

session and hands this serialized state off to another machine.
The target machine then restores the TCP and TLS state.
Finally, the target machine sends three commands to the
switch atomically. The first one inserts a new rule that rewrites
the source IP address of outgoing packets sent from the target
machine. The second updates the existing switch rule to
redirect any inbound packets to the target machine (instead
of the original one). The third removes the drop rule. This
two-phase hand-off procedure is depicted over step (8)–(11)
in Figure 4.
Prism inserts or withdraws switch rules over a simple,

stateless UDP control protocol that triggers in-switch rule
manipulation without control-plane involvement. The switch
logic that enables the two-phase connection hand-off is il-
lustrated in Figure 5. This protocol implements a simple
timeout-based retransmission mechanism, because we assume
the communication over the shared links with client data traffic,
which can be congested.

4.3 Stack and API
The hand-off protocol described above dictates that many
individual commands and application I/O, which runs asyn-
chronously, be executed in coordination with each other. Thus,
we need a software stack that ensures the correct system state
transitions, rather than just API extensions. This stack adds a
loadable kernel module that allows applications to detect com-
pleted connection removal, an event-based execution engine
that drives both the hand-off protocol and application I/O, and
high-level APIs for applications to read and write data, and
open, close and redirect connections. Figure 6 illustrates the
Prism stack; the rest of this section details key components.

TCP state tracking. Before the withdrawal of a switch rule
that rewrites the source IP address, the in-kernel connection
state must have been freed completely to ensure the connection
does not transmit any further packets. Unfortunately, this
happens silently, long after an application closes a socket.
Since the kernel does not notify applications of such events,
we implemented a new kernel module to do so, using the
Linux eventfd framework and socket destructor (“Conn.
dtor” in Figure 6). This approach is suitable because the event
loop component in the stack, described later, can monitor
connection removal events together with any other events,
such as new data read from the kernel and requests issued by
the application. A similar method is possible also in FreeBSD.
TCP and TLS state serialization. Prism relies on the

Linux TCP_REPAIR feature [12] to serialize TCP connec-
tion state. Based on the option parameter, getsockopt()
serializes send and receive buffer data, sequence and ACK
numbers and negotiated TCP options, which are restored using
setsockopt() with the same option name. Prism uses the
tlse library for TLS handshake and serialization, but for the
data path, it uses the in-kernel TLS stack of recent Linux ker-
nels, in order to benefit from future hardware offload support.
We implemented a new getsockopt() option to retrieve the
in-kernel TLS state, and upstreamed it to the mainline Linux
kernel.

Switch communication. The stack is in charge of commu-
nication with the switch using the custom UDP-based packets
(Section 4.2). It schedules and sends switch rule update com-
mands to the switch when the application requests connection
hand-off or restoration, and waits for the response that includes
a status code.

Event loop. Because of the need to perform migration
operations for application sockets, Prism discourages appli-
cations from using their sockets directly. The stack needs
to coordinate and execute these operations for multiple file
descriptors in parallel. Therefore, Prism augments libuv, a
popular event-based I/O library that hides low-level system
calls, like epoll,kqueue,read and write, from applications.
An application associates its own callbacks with events, such
as new connection establishment or network or file descriptor
readiness for I/O. Prism extends libuv to allow applications
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to associate their callbacks on top of TLS connections, and
to coordinate the application requests and its hand-off proto-
col, including TCP state tracking and switch communication
described above.

API. The programming model of Prism is based on libuv
with two new methods to export or import migrating connec-
tions, and a TLS connection abstraction. Figure 7 implements
the frontend and backend roles of the example object store,
which statically partitions data across the servers by key, and
covers the vast majority of Prism APIs. The main() function
initiates the event loop with two TCP ports to monitor: one for
client requests and the other for hand-offs from other servers.
on_accept() runs upon establishment of a client TCP con-
nection and initiates the TLS handshake via uv_tls_init().
When new client data arrives, it is decrypted and on_read()
is executed. who_has_val() identifies whether the current
server hosts the requested content, based on its key. The
server either redirects the request to another server using
prsm_export(), or returns the content using uv_write(),
which schedules transmission in the event loop.

Although the use of these APIs ensures the correct hand-off
state transitions, we do not prevent applications from the use
of regular socket APIs. A regular application based on an
epoll event loop would monitor three additional types of file
discriptors: one for the terminated connection notification, an-
other for switch communication and the other for connections
to other servers. The application then needs to coordinate
the events of these descriptors, for example, to serialize and
hand-off a connection only after configuring the switch.

Switch. Many conventional frameworks, including eBPF
and P4, are suitable to implement the Prism switching logic
described in Figure 5. Although OpenFlow can also be used,
this option incurs higher connection hand-off latency due to
the access to remote control plane.

The Prism packet transformation logic can be implemented
on top of an existing L2 switching or L3 forwarding logic
without having to disrupt the existing network addressing, as
shown in Figure 6. This also allows the Prism switch to be
deployed alongside a non-programmable switch as a software
switch, as we will show in our experiments.

1 on_read(client, buf) { // buf contains a decrypted request
2 const uint64_t key = get_key(buf);
3 who = who_has_val(key);
4 if (who != me)
5 prsm_export(client, who); // prsm_* are Prism methods
6 else {
7 (char *obj, int objlen) = get_objp(key);
8 req = new uv_buf_t(.base = obj, .len = objlen);
9 uv_write(req, client, on_write);

10 }
11 }
13 on_write(req) {
14 free(req->base);
15 }
17 on_accept(server) {
18 client = new uv_tls_t;
19 loop = server->loop;
20 uv_tls_init(loop, client); // uv_* are libuv

objects/subclasses
21 prsm_accept(server, client);
22 uv_read_start(client, on_read);
23 }
25 main() {
26 uv_tls_t server, internal; // extend uv_tcp_t
27 loop = uv_default_loop();
28 uv_tls_init(loop, &server);
29 uv_tcp_bind(&server, "0.0.0.0:50000");
30 uv_tcp_bind(&internal, "0.0.0.0:60000");
31 uv_listen(&server, on_accept);
32 uv_listen(&internal, prsm_import);
33 uv_run(loop);
34 }

Figure 7: Prism application pseudo code. Prism extends
libuv. Server returns requested object (line 9) if present,
otherwise hands off request to actual custodian (line 5). The
code thus serve the role of both frontend and backend.

4.4 Limitations
Concurrent requests.When a frontend or backend receives
parallel requests being handled by different backends in the
same TCP connection, it must serialize these requests using
one of the following options. The first option is for a backend
to simply block any arriving subsequent requests. If these
requests need to be processed by different backends, the server
hands off the connection after processing its current request.
The second option is for the backend to send a TCP “zero
window” advertisement to the client. This method turns out
to be rather complex, because the backend must do so before
TCP acknowledges received data, which may already have
contained a subsequent request.

To maximize the performance, it is ideally the responsibility
of the application-level protocol to prevent the client from
issuing another request that might need to be handled by a
different backend before an ongoing transaction on the same
connection has completed. Traditional proxies can process
parallel requests faster than Prism, if the frontend has enough
attachment network bandwidth and spare CPU cycles to ag-
gregate the responses from multiple backends; we leave this
analysis as future work.

Small transfers. For a small-message transactional work-
load, i.e., where requests and responses fit into a few TCP
packets, Prism may not be a good solution. In such cases, the
overheads—switch configuration and connection hand-off—
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cannot be sufficiently amortized. We analyze this trade-off in
Section 5, which shows that 8KB (i.e., 6 packets) is sufficient
to amortize these overheads.

4.5 Implementation
The Prism server stack consists of 2193 Lines-of-Code (LoC):
612 LoC for TCP and TLS state serialization, 255 LoC for the
switch configuration protocol, 167 LoC for active connection
tracking, 130 LoC for the loadable kernel module to detect
TCP connection removal and 1029 LoC for integration of
these components. We modify a single line of libuv, and
port tlse for our TLS abstraction.
We also implement a high performance software switch

that makes up the Prism logic in Figure 5. To run the same
code in hardware in the future, and to prevent the system from
unexpected crash caused by software bug that affects many
servers, we implement an eBPF execution environment as a
switching logic module of mSwitch [29], a scalable, modular
software switch that runs in the kernel. eBPF is popular
these days and known that some switch vendors will support
hardware offloading of eBPF processing. This software switch
never becomes a bottleneck throughout the experiments in the
next section.

Our source code is publicly available at https://github.
com/YutaroHayakawa/Prism-HTTP.

5 Evaluation

This section evaluates Prism and reports the following main
results:

• Prism improves throughput by a factor of up to 3.7 (with
HTTP) and 3.4 (with HTTPS), utilizing the switch uplink
and backend CPU resources efficiently.

• Prism’s throughput increases with the number of back-
ends due to the very light remaining load at the frontend,
in terms of both network bandwidth and CPU usage.

• Prism improves object retrieval latency by up to 74%
and 96% in the 50th and 90th percentile, respectively.

• Prism’s connection hand-off latency is 232 µs, which is
a win when transferring at least 2KB with HTTP or
16KB with HTTPS.

• Prism can be used to build object storage systems with
partitioned or replicated backends.

5.1 Experiment Setup
Hardware and OS: Figure 8 depicts the testbed setup used
for the experiments. Each machine has a quad-core Xeon
E-1231v3 CPU clocked at 3.4GHz, 16GB of RAM and a
dual-port Intel X540-T2 10Gb/s NIC, running Linux kernel
4.18. We partition it into two logical servers, dedicating one
10Gb/s port and two CPU cores to each. The switch has a
ten-core Xeon E5-2690v4 CPU clocked at 2.6GHz, 64GB

Switch

C C C C C C C C C C C C

Client

10 Gbps

40 Gbps

6 logical dual-core servers (3 physical quad-core, dual-10GbE servers)

Figure 8: Experimental topology.

of RAM, three dual-port Intel 10Gb/s NICs where each port
connects to a logical server, and one Intel XL710 40Gb/s NIC
that connects to the client. We confirmed that this switch never
becomes a bottleneck during the experiments. The client has
two Xeon E5-2640v4 CPUs, 64GB of RAM and the same
40Gb/s NIC as the switch. Our network does not use jumbo
frames. The connection hand-off traffic shares the same links
with the data traffic.

Software: In the baseline experiment, all of the logical
servers run a single nginx process. One server acts as a
reverse proxy, the others as backends. In the Prism experiment,
each logical server runs our custom application implemented
on top of the Prism stack described in Section 4.3. Unlike
the pseudo code in Figure 7, we use a static frontend setup
where the same frontend always establishes incoming TCP
connections and examines every request. Therefore, a backend
that receives the next request always returns the connection to
the frontend.
The communication protocol is always S3, either over

HTTP or HTTPS (i.e., with or without TLS). The client
continuously generates read or write requests using the wrk
HTTP benchmark tool [21], instrumented to issue S3 requests
(using the Lua scripting support) over 100 parallel persistent
TCP connections per backend.

5.2 Link and CPU Utilization
Figure 9 plots the throughput and CPU utilization of Prism
and the nginx baseline. Both systems redirect requests to
the backends in round-robin fashion and each backend serves
static, in-memory content.

For HTTP, Prism saturates the 40Gb/s switch uplink (with
the protocol headers and framing overheads) for object trans-
fers of 256KB and above, whereas nginx throughput is
constrained by the 10Gb/s attachment link capacity. Further-
more, Prism reduces the CPU utilization of the frontend by
23 to 53% in comparison to nginx, which utilizes nearly the
entire CPU to relay data, and uses the same amount of backend
CPU resources as the Prism backends.
For HTTPS, Prism achieves a throughput of 31.4Gb/s

whereas the nginx baseline achieves only 9.2Gb/s. Prism
consequently leads to a much higher utilization of the backend
CPUs, whereas nginx leaves around 75% of backend CPU
resources idle. Since the Prism frontend offloads and load-
balances data encryption to the backends and avoids relaying
data, its CPU usage reaches at most 70%, which is spent on
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Figure 9: Throughput and CPU usage with Prism and nginx. FE and BE stand for frontend and backend, respectively. Prism
utilizes backend CPU and network resources while keeping the frontend load low.

request redirection. These results imply that Prismwould allow
operators to provision a fewer number of frontend machines
than traditional proxy architectures.
It may seem odd that overheads of the Prism frontend

appear low even for 1KB object sizes, but there is an obvious
explanation. With nginx, all requests and responses over all
500 parallel connections are relayed by the frontend. Prism’s
frontend hands off connections to the backends instead of
relaying requests, but it does not relay responses from the
backends. Our results indicate that the advantage of not relying
(nor encrypting) the responses at the frontend outweighs the
connection hand-off costs.

Figure 10 plots the throughput and CPU utilization of Prism
and baseline on a fewer number of backends for a subset of the
object sizes, which are 16 , 256 and 512KB. It confirms that
throughputs of Prism have increased almost proportionally
to the number of backends until they reach the limit of client
processing capacity, which is lower with HTTPS (34Gb/s
and 28Gb/s with HTTP and HTTPS, respectively) because of
decryption and framing overheads.

Overall, Prism improves throughput by a factor of up to 3.7
without TLS, and 3.4 with TLS. It improves CPU utilization
by factors of 2.4 and 2.6, respectively.

5.3 End-to-End Latency

Figure 11 plots the 50th and 90th percentile transaction laten-
cies to retrieve 16, 256 or 512KB objects (same experiments
as Figure 10). These latencies decrease when adding more
backends, except for the 90th percentile latencies with five
backends and 256 or 512KB objects, where the throughputs
reach the maximum and queues start building up (see Fig-
ure 10). With nginx, those latencies do not change much with
the number of backends, and are always higher than Prism,

except for those 90th percentile latencies with 256 or 512KB
object sizes and five backends.

5.4 Connection Hand-Off Latency

Operation Latency [µs] Std. dev. [µs]

Block all traffic 22 13.1
Serialize TCP 7 1.1
Serialize TLS 5 1.1
Serialize HTTP 2 0.6
Close TCP socket 9 5.0
Hand-off (to frontend) 21 14.4
Hand-off (to backend) 21 14.4
Deserialize HTTP 3 1.5
Deserialize TLS 109 64.3
Deserialize TCP 11 1.0
Modify rewrite rule 22 9.4

Total 232 -

Table 1: Connection hand-off latency breakdown. The se-
quence starts from a backend returning the current connection
to the frontend.

The largest concern about Prism is the connection hand-off
overheads. As described in Section 4.2, the hand-off protocol
takes two network round trips to the switch, in addition to the
connection state transfer between frontend and backends.
Table 1 reports a breakdown of the latencies of a single

connection hand-off cycle in which a backend returns a con-
nection to a frontend, which then hands off the connection
to another backend. The total is 232 µs. Each operation takes
21 to 22 µs if the network is involved, otherwise 2 to 11 µs,
except for TLS deserialization that takes 109 µs and whose
improvement is left as future work. The hand-off latency could
be improved if the backend examined the next request after
serving the current one, as in described in Figure 7, bypassing
the frontend and saving 21 µs. Nevertheless, since Prism out-
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performs the throughput of the traditional proxy architecture
with 2KB (HTTP) or 16KB (HTTPS) of objects (Figure 9),
we conclude that Prism outweighs the costs of the hand-off
latency in various workloads.

5.5 Use Case
We implement two variants of an object storage system. The
first partitions content across the backends, and the second
replicates content at all backends. Thus, the partition variant
writes a write request to one of the backends based on the
key, but the replication variant does it to all the backends,
before responding to the client. In contrast to the previous
microbenchmarks in which a backend always serves the same

in-memory content, these object storage variants use LevelDB
where keys identify objects that are organized into a log
structured merge tree. Thus, they include realistic storage
stack overheads. We use a RAM disk for the storage medium,
assuming faster-than-network NVM-style storage medium.
The client protocol is again S3.

5.5.1 Partitioned Object Storage Backends

Figure 12 shows throughputs over two YCSB workloads, read-
only and read-mostly that contains 5% writes. We vary object
sizes between 16 to 512KB and request key skewness, which
is 0.9 to 1.2 of Zipfian parameters, uniform distribution (least
skewed) and requests that always ask for the same key (most
“skewed”).

We observe throughputs stay almost the same up to Zipfian
1.0 of skewness, and a slight, up to by 17%, drop at Zipfian 1.2
that can be considered extremely skewed.We observe that even
for an extremely skewed workload (Zipfian 1.2), throughput
decays only by up to 17% in comparison to the uniform
distribution, demonstrating Prism’s robustness against skewed
workloads.

5.5.2 Replicated Object Storage Backends

Figure 13 shows throughputs with the same workloads but
for the replicated backends, assuming fault tolerance and load
balancing. We observe the same throughput regardless of
skewness, as the frontend redirects requests in a round-robin
fashion. Since every write is replicated to all the backends,
throughput decreases with higher write rates, more so in
comparison to the partitioned-backendcases. The loweroverall
rates compared to those cases can be attributed to larger active
data that stress OS buffer caches.

544    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



0

20

40
16KB

95% read
100% read

256KB
HTTP

512KB

Uniform

Zipf-0.9

Zipf-1.0

Zipf-1.2

No-dist

0

20

40

Th
ro

ug
hp

ut
 [G

bp
s]

Uniform

Zipf-0.9

Zipf-1.0

Zipf-1.2

No-dist

Uniform

Zipf-0.9

Zipf-1.0

Zipf-1.2

No-dist

HTTPS

Figure 12: Prism throughputs with partitioned backends.
Top and bottom rows plot results with HTTP and HTTPS,
respectively. Prism preserves high throughputs even under
skewed workloads.

Prism’s ability to handle a partitioned key space and to
balance loads across replicas indicates its feasibility for imple-
menting sophisticated data layouts and replication algorithms,
respectively.

6 Lessons Learned

Although TCP hand-off had been proposed multiple times at
least since 1998, it has never been widely used. We initially
attributed this to the lack of scalable flow-level programmable
switches, but increasingly realized many other reasons. The
mechanism to snapshot or instantiate TCP connections in any
state, an essential feature, has been enabled in Linux in a
rather inconvenient form, that is, packet transformations must
be performed elsewhere, such as with a host firewall or at a
switch. Moreover, the TCP stack needs to emit RST packets
during the hand-off process to conform to the invariants that
apply throughout the TCP implementation.
Alternative approaches that do not require programmable

switches have been proposed by Snoeren et al. in 2000 [61,
62]. However, deploying new TCP options has been increas-
ingly difficult over the last decade due to slow network stack
evolution [30] and middlebox interferences [32].
These constraints resulted in difficulties for TCP hand-off

overall, because it requires that many operations be performed
atomically. This requirement prevents the use of a host firewall
for source address rewriting, because otherwise manage flow
state needs to be managed at both hosts and switches, requiring
a complex coordination mechanism.
Building the end-system stack was also a great burden.

However, since the TCP connection serialization has become
available in the mainline kernel, systems like Prism can now
be realized without modifications to the kernel; in fact, we
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Figure 13: Prism throughputs with replicated backends.
Throughputs are unaffected by key skewness due to evenly
distributed requests.

still needed kernel modification, but the Linux community
accepted the necessary changes, which are to implement a
new API to access the in-kernel TLS state [26], to be included
in the mainline kernel. We were able to implement the other
kernel extension, which is the connection removal notification
(Section 4.3), as a loadable kernel module. Moreover, fewer
applications today call “low-level” socket APIs directly; many
use higher-level networking libraries such as libuv, which
we extend to enable the Prism stack (Section 4.3). These
phenomena support the deployability of Prism.

Another problem is frequent switch rule updates. This has
been problematic for older switches, because the rules must be
updated via the switch control plane that runs slow CPUs. In
fact, our initial prototype communicated with an RPC server
running in the control plane, and it consequently suffered from
high latencies of up to 828 µs, which requires 256KB of trans-
mitted data to amortize these hand-off costs. This led us to the
use of a custom switch manipulation mechanism that updates
the rules directly within the data plane. This becomes possible
with newer hardware and software switches, such as P4 and
eBPF, that have advanced programmability. Further, recent
improvements of flow scalability in hardware switches [8, 51,
58] also supports the feasibility of this approach.
Further, Prism does not complicate layer 4 firewalls in

the network or host, because Prism hosts never rely on host
firewalls, nor “spoof” packet addresses, as the packet transfor-
mation happens in the switch. This means that host firewall
rules can be configured based on not the address of the frontend
but that of the individual host. Local firewall policies apply
to the restored TCP connections, because Linux netfilter
creates connection states when it sees any egress packets [11].

Last but not least, we believe our approach is feasible even
in sharing switches, which has been a major concern in the
use of programmable switches in many existing systems [50].
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This is because we turn the feature of the content-based
routing approaches into flow-level operations that can be
easily isolated between tenants and machines; for example,
the operator can limit address-modification rules inserted to
the switch within the address range allocated to the tenant.

7 Related Work

Our previous short paper [27] introduced Prism’s overall ap-
proach with a minimalistic proof-of-concept implementation.
This paper significantly extends Prism by incorporating the
ability to handle TLS-encrypted communication, a robust
hand-off protocol, a much-improved software stack, a more
mature implementation and an extensive evaluation.

TCP connection migration. The closest related work is a
proposal byAron et al. in 2000 [5] that proposes content-aware
request distribution to the backend cluster, similar to Prism.
However, their hand-off protocol can break client connections
(Section 3.1) and does not support TLS (or SSL). TCPMigrate
Options [61, 62] achieve TCP connection migration using
TCP options instead of programmable switches, but have
deployment problems (Section 6).

Proxy enhancements and L7 load balancers. TCP Splice
(Section 2.2) has been improved by software [10, 59] or
hardware-assisted [52, 72] approaches. Yoda [19] improves
the fault tolerance of the proxy architecture. Squid [64],
HAProxy [25] and Proxygen [60] are open source proxy
implementations. Unlike Prism, these approaches do not elim-
inate the need of a frontend proxy to remain involved in bulk
data relaying.

Content based routing. SwitchKV [45], Pegasus [44] and
NetCache [37] as discussed in Section 3.1 eliminate frontends
that mediate traffic between the client and the backend, by
having programmable switches play the role of the frontend.
They only support data that fits into a single packet over un-
encrypted custom UDP-based protocol. NICE [40] supports
large data objects, but it relies on unencrypted UDP-based
requests and TCP connections initiated by the server for re-
ply. Therefore, it supports neither TLS nor industry-standard
protocols such as S3. Strata [13] is a scale-out storage system
with NFSv3. It breaks client connections and relies on recon-
nection to resume the NFS session after change of the storage
backend. NetKV [70] is an application-level load balancer for
memcached, but does not support TCP.

L4 load balancers. Maglev [14] and Ananta [56] are
software load-balancers implemented in commodity servers.
Duet [20], Rubik [18] and Faild [4] are similar, but partially
leverage standard hardware switches for improved perfor-
mance. Unlike Prism, none of these approaches support
request-granularity redirection. L4 load balancers are used to
distribute traffic between multiple frontends of the Prism or
proxy architecture.

Flexible packet processing. The Prism frontend might
resemble a packet forwarding system implemented as mid-

dleboxes, but it differs in that it does not forward packets but
hands off established TCP connections. Our software imple-
mentation on a programmable soft-switch uses mSwitch [29]
for performance and flexibility, and eBPF for protection, but
it can be other flexible packet processing frameworks. Re-
cent scalable hardware packet processing systems, such as
SilkRoad [51] and FlowBlaze [8, 58], enable Prism to scale
to a large number of flows and reduce the latency of switch
rule updates. Some vendors are implementing eBPF hardware
offloading [39], which accelerates our switch logic (Figure 5).
Caching, sharding and replication algorithms. Many

object placement algorithms for storage systems have been
proposed [7, 15, 40, 44]. Prism is a framework to implement
object storage systems with these algorithms without wor-
rying about communication with clients. In Section 5, we
experimentally demonstrated that Prism can be used to im-
plement replicated backends for load balancing and sharded
ones for capacity scaling. More sophisticated algorithms, such
as selective replication [44], will further improve the storage
utilization and performance.

High performance host storage stack with TCP/IP. This
class of work, such as Diskmap [49], ReFlex [42] and i10 [33]
for NVMe, and Decibel [53] and PASTE [31] for persistent
memory, could enhance Prism’s backends, and benefit from
Prism, because they encrypt or push data at higher rates than
traditional host storage stack.

8 Conclusion

As faster storage devices push data to CPUs and networks at
higher rates, it is important to scale-out these resources. We
built Prism, which combines the performance and resilience
of content-based routing approaches with the generality and
flexibility of a conventional proxy architecture. We demon-
strated that Prism can be used to build object storage systems
for the industry-standard S3 protocol over TCP and TLS, and
to implement partitioned and replicated backends for capacity
scaling and load balancing. Prism is based on a connection
hand-off technique that has been proposed in the past, but
we redesigned it to address practical problems with the pre-
vious systems, taking into account modern technology and
requirements across the network switches and today’s OS
kernels.
Future work will develop object storage systems with ad-

vanced data layout or load balancing algorithms, and further
reduce the overheads of the TCP/TLS connection migration.
Modern low-latency networking techniques based on efficient
stacks [68] or RPC designs [38] are a perfect fit in this space.
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Abstract
Middleboxes are becoming indispensable in modern networks.

However, programming the network stack of middleboxes

to support emerging transport protocols and flexible stack

hierarchy is still a daunting task. To this end, we propose

Rubik, a language that greatly facilitates the task of middle-

box stack programming. Different from existing hand-written

approaches, Rubik offers various high-level constructs for

relieving the operators from dealing with massive native code,

so that they can focus on specifying their processing intents.

We show that using Rubik one can program the middlebox

stack with minor effort, e.g., 250 lines of code for a complete

TCP/IP stack, which is a reduction of 2 orders of magni-

tude compared to the hand-written versions. To maintain a

high performance, we conduct extensive optimizations at the

middle- and back-end of the compiler. Experiments show

that the stacks generated by Rubik outperform the mature

hand-written stacks by at least 30% in throughput.

1 Introduction

Middleboxes are pervasively deployed in modern networks.

In the middlebox, a low-level network stack (e.g., TCP/IP) is

responsible for parsing raw packets, and a set of high-level

hooks (e.g., HTTP dissector) process the parsed data for vari-

ous purposes. There is a constant need for programming the

network stack of middleboxes in order to accommodate dif-

ferent networks (e.g., IEEE 802.11 [9] in WLAN), support

new protocols (e.g., QUIC [50]), realize customized func-

tions (e.g., P4 INT [5]), and capture new events (e.g., the IP

fragmentation [11]), etc.

By programming a middlebox stack, an operator Alice is

mainly concerned with the following tasks. (1) Writing new
parsers. It is common that a network needs to support a new

protocol. Then, Alice needs to write a new parser to parse

such traffic. (2) Customizing stack hierarchy. Another com-

mon need is to change the protocol layering, say to support

encapsulation methods like IP-in-IP [1]. Then, Alice needs

to re-organize the parsers. (3) Adding new functions. Finally,

new functions may be requested from the network stack to

meet diverse needs. For example, Alice may need to know

when IP fragmentation happens, and modify an existing net-

work stack to capture this event. In the following, we will

show the difficulty of the above programming tasks.

The difficulty of writing new parsers. Currently, protocol

parsers are written in low-level native code to ensure the

high efficiency, which leads to a large number of lines of

code (LOC) even for a single protocol, e.g., ∼7K C LOC

for TCP protocol parser in mOS [14]. Someone may argue

that the TCP/IP is the de facto narrow waist for middlebox

processing, so a general-purpose TCP/IP substrate is sufficient

for extended programmability. However, many networks have

their own customized transport layers (e.g., QUIC [50]), and

in those cases, Alice still needs to manually write new parsers.

The difficulty of building stack hierarchy. The data struc-

tures in current middlebox stacks are monolithic and closely

coupled with standard stacks, making it difficult to reuse the

existing protocol parsers for upgrading the stacks. For exam-

ple, libnids [11] can parse Ethernet, IP, UDP and TCP pro-

tocols, but due to its TCP-specific data structure, it can hardly

support the IP-in-IP stack, i.e., ETH→IP→GRE→IP→TCP,

although there is only one thin GRE parser need to be added.

As a result, we have to modify 1022 LOC of libnids in our

preliminary work to support the IP-in-IP stack, where most

effort (815 LOC) is devoted to stack refactoring.

The difficulty of adding new functions. Since the network

stack is closely coupled, adding a new function often needs a

deep understanding of a huge code base. For example, if one

wants to capture a low-level IP fragmentation event that is

not supported in Zeek [24], she has to first read all the native

code related to the IP protocol and the event callback module,

which involves ∼2K LOC. Another scenario would be the

feature pruning: e.g., for writing a stateful firewall without

the need to buffer the TCP segments, the operator has to go

through considerable code to ensure the code deletion in a

full-functional TCP stack will not produce other side effects.
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Table 1: Existing approaches to program middlebox stack and

their support of the three programming tasks.

Approaches
Protocol

Parser

Stack

Hierarchy

Stack

Functions

Packet Parser (e.g., P4 [18], VPP [23])

TCP-Specific Stacks (e.g., mOS [44])

NFV Frameworks (e.g., NetBricks [58])

: Can be fully programmed with high-level abstractions, i.e., minor LOC
: Partially supported or can be programmed with moderate LOC
: Not supported or can only be programmed with large amount of LOC

Apart from the mature and fixed TCP stack libraries like

mOS and libnids, many attempts have been made to fulfill

the above three tasks in order to make the middlebox stack

programmable. However, none of them can fully facilitate

those onerous tasks, as shown in Table 1: the packet parsers

like P4 [18] cannot efficiently buffer the packets; the NFV

frameworks like NetBricks [58] and ClickNF [37] often rely

on TCP-specific modules that are pre-implemented with many

native LOC. We discuss these related work in detail in §2.2.

In fact, there exists a dilemma between the abstraction

level and code performance when enabling programmability

on the performance-demanding middlebox stack. On the one

hand, many exceptions like out-of-order packets can arise in

L2-L4, so higher-level abstractions are desired to relieve the

developers from handling those corner cases. On the other

hand, optimizing a stack at wire speed also relies on tuning

underlying processing details, which becomes much more

challenging if those details are transparent to the developers.

As a result, previous works tend to trade off the programma-

bility for the performance, offering limited programmability

over specific stacks, e.g., TCP (see §2.3).

In this paper, we propose Rubik, a domain-specific lan-

guage (DSL) for addressing the above dilemma, which can

fully program the middlebox stack while assuring wire-speed
processing capability. For facilitating the stack writing, Rubik

offers a set of handy abstractions at the language level, e.g.,
packet sequence and virtual ordered packets, which handle

the exceptions in an elegant fashion. Using these declarative

abstractions, operators can compose a more robust middlebox

stack with much fewer lines of code, and retain the possibil-

ity of flexible extension for future customization needs. For

maintaining high performance, Rubik translates its program

into an intermediate representation (IR), and uses domain-

specific knowledge to automatically optimize its control flow,

i.e., eliminating the redundant operations. The optimized IR is

then translated into native C code as the performant runtime.

In sum, we make the following contributions in this paper.

• We propose Rubik, a Python-based DSL to program the

network stack with minor coding effort, e.g., 250 LOC

for a complete TCP/IP stack (§3 and §4).

• We design and implement a compiler for Rubik, where

a set of domain-specific optimizations are applied at the

IR layer, so that all stacks written in Rubik can benefit

from those common wisdom, without caring about how

to integrate them into the large code base (§5).

• We prototype Rubik, and build various real cases on it,

including 12 reusable protocol parsers, 5 network stacks,

and 2 open-source middleboxes (§6). Experiments show

that Rubik is at least 30% faster than state of the art (§7).

2 Motivation and Challenges

In this section, we demonstrate that programming middlebox

stack is a necessity in modern networks (§2.1), while no ex-

isting tool can really enable such programmability (§2.2). We

pose the challenges of designing a DSL for middlebox stack,

and summarize how our approach addresses them (§2.3).

2.1 Programming Middlebox Stack Matters
As presented in §1, programming a middlebox stack requires

huge human effort. However, some argue that it might not be

a problem: most middleboxes work with standard TCP/IP pro-

tocols, thus a well-written TCP/IP stack should be sufficient.

In contrast, we believe there are plenty of scenarios where a

deeply customized middlebox stack is desired.

First, the middlebox stacks need to be customized for serv-

ing diverse networks with different protocols [13,32,34,42,43,

63, 70]. Apart from the existing ones, we note that the emerg-

ing programmable data plane may cause an upsurge of new

protocols, each of which requires an upgrade of the middlebox

stack, or its traffic cannot traverse the network [16, 55].

Second, even for a fixed stack, the operators may still ma-

nipulate the packets in arbitrary ways, and the implementa-

tion of middlebox stacks varies to satisfy those user-specified

strategies. For example, if a TCP packet is lost in the mirrored

traffic [22], libnids will view this as a broken flow and di-

rectly drop it for higher performance [11], while mOS will

keep the flow and offer an interface to access the fragmented

sequence for maximumly collecting the data [44].

Third, middleboxes are constantly evolving for providing

value-added functions, e.g., adding a new layer [12, 35], mea-

suring performance [20], inspecting encrypted data [40,49,67]

and migrating/accelerating NFV [38, 47, 57, 68, 72]. These

extensions heavily rely on a highly customized stack.

The above facts prove that programming middlebox stack

is a necessity in modern networks, which however demands

massive human effort. In practice, such overhead has begun

to hinder the birth of new protocols: the middlebox vendors

tend to be negative to support new protocols, as the huge

code modification can cost large human labor and introduce

bugs or security vulnerabilities. For example, some middlebox

vendors suggest blocking the standard port of QUIC (UDP

443) to force it falling back to TCP, so that their products can

analyze such connections [10]. This heavily impacts the user

experience [4, 19], and will finally result in the ossification of

underlying networks [60].
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2.2 Related Work

Plenty of attempts have been made to facilitate the middlebox

development, as shown in Table 1. In the following, we show

why they are not sufficient to program the middlebox stack.

Programmable packet parsers like P4 [18] and VPP [23]

can dissect arbitrary-defined protocols in an amiable way.

However, since they target at implementing a switch/router,

they cannot efficiently buffer and/or reassemble the packets.

There are also DSLs, e.g., Binpac [59], Ultrapac [52],

FlowSifter [56] and COPY [51], that can automatically gen-

erate L7 protocol parsers. The parsers they generate focus

on the L7 protocols like HTTP, hence can only work on the

already reassembled segments. In other words, they can facil-

itate the development of high-level functions of a middlebox,

e.g., HTTP proxy, deep packet inspection, but have to cooper-

ate with a low-level stack, instead of serving as one.

TCP stack libraries include those for end-host stacks and

those for middlebox stacks. The end-host stack libraries, e.g.,
mTCP [45], Modnet [61], Seastar [27], F-Stack [25], only

maintain the unidirectional protocol state for a certain end

host, while middlebox stacks must track the bidirectional

behaviors of both sides. As a result, the middlebox developers

cannot build their applications on end-host stack libraries.

On the other hand, the major feature a middlebox stack

library provides is the bidirectional TCP flow management.

Previously, such libraries are closely embedded in IDS frame-

works like Snort [21] and Zeek [24], therefore cannot be

reused when developing new applications. libnids [11] de-

couples the TCP middlebox stack from the high-level func-

tions, making the stack reusable. Recent works like mOS [44]

and Microboxes [53] implement a more comprehensive TCP

stack with fast packet I/O, and more importantly, provide

the flexible user-defined event (UDE) programming schemes,

e.g., dynamic UDE registration, parallel UDE execution. Be-

sides, they provide limited programmability over TCP stack,

e.g., unidirectional buffer management. However, all above

approaches are hard-coded, hence cannot support non-TCP

stacks without massive native code understanding and writing.

NFV frameworks offer a packaged programming solution

from L2 to L7. However, none of them provide complete

middlebox stack programmability. MiddleClick [30] and

ClickNF [37] can manipulate the stack hierarchy using Click

model [48], but they rely on pre-implemented elements, e.g.,
ClickNF implements the TCP-related elements with 156

source files (12K LOC in C++) [7]. NetBricks [58] sup-

ports the customization of the header parser, the scheduled

events, etc, which is sufficient for programming a connection-

less protocol. However, the abstractions for programming a

connection-oriented protocol, e.g., transmission window, con-

nection handshake, are still TCP-specific. OpenBox [33] and

Metron [46] abstract and optimize a set of L2-L7 elements

for middlebox applications. However, the flow management

element still has to be pre-implemented using native code.

Header
Extraction

Instance
Mangament

Buffer
Management

Proto. State
Machine

Parse Tree
Traversal

Event
Callback

1 2

3 4

6

5

Current Stack Layer

The Next Stack Layer

The Previous Stack Layer
Protocol Data
Posed to User

Figure 1: The three key modules in a middlebox stack layer:

protocol parser (yellow boxes), event callback (green box),

and parse tree traversal (red box).

2.3 Challenges and Our Approach

A DSL that fully captures the L2-L4 abstractions can be

a cure to above problems. In the next, we revisit the high-

level pipeline of middlebox stack, and pose the challenges of

designing and implementing a DSL corresponding to it.

Middlebox stacks follow a layer-based processing pipeline,

which is largely the same with the end-host stacks, as shown

in Figure 1. Specifically, each stack layer starts by parsing
the protocol ( 1©– 4©), which extracts the header, manages

the instance, buffers the segments, updates the protocol state

machine (PSM), etc. Next, the event callback module ( 5©)

will raise the events with the protocol data fed to the users,

e.g., the reassembled or retransmitted data. Finally, the parse
tree ( 6©) will decide the next protocol to be parsed. However,

even the above pipeline is seemingly natural and generalized,

designing and implementing a DSL corresponding to it can

still be a challenging task. The reason is two-fold.

First, working at L2-L4, the middlebox stacks run more

complex logic than it appears in the pipeline. For example,

the out-of-order packets can mess around the PSM, e.g., an

early-arrived FIN packet may mislead the stack to tear down

the TCP connection. Each of these exceptions is handled with

native code in fixed stacks, and it is extremely difficult to pro-

vide a neat DSL that covers all such cases. Rubik addresses
this challenge by offering a set of high-level constructs to hide
such exceptions from programmers, e.g., “packet sequence”
that hides the retransmission exception and “virtual ordered
packet” that hides the out-of-order exception, which can max-
imumly correspond to the intuitive pipeline (§4).

Second, the middlebox stacks must realize wire-speed pro-

cessing to serve high-level functions. However, due to the

complexities presented above, the optimizations on the stack

can only be achieved by carefully tuning the native code. That

is, the program written in DSL that hides the processing de-

tails will likely produce low-performance native code. Rubik
addresses this challenge by employing an IR and a set of
domain-specific optimizations on it before producing the na-
tive code, which automatically optimize the DSL program to
avoid potential performance traps (§5).
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3 Rubik Overview

In this section, we use a walk-through example to overview

how Rubik can facilitate the middlebox stack writing. Our

example is an ETH→IP/ARP stack, where we raise a typical

event, IP fragmentation, for each IP fragment.

Figure 2 shows the real (and almost complete) Rubik code

of realizing our example. We start from declaring the IP layer

(Line 2), which initializes internal structures of a connection-

less protocol, including the header parser, the packet sequence,

PSM, etc. These components are specialized as follows.

Parsing the header fields (Line 5–18). One has to first de-

fine the header format before she references the headers. In

Rubik, a header format is a Python class that inherits layout,
and each header field is a member of this class, which specifies

its length measured by Bit(). The order of the members in-

dicates the layout of the fields. Line 5–15 show the IP header

structure, ip_hdr. We can then use this structure to compose

the header parser with one LOC in Line 18. After that, Ru-

bik can reference the fields by their names, e.g., ihl can be

referenced by ip.header.ihl.

Managing the instance table (Line 20). Having the headers,

the stack layer then finds the instance that the packet correlates

to, e.g., the TCP flow, and processes it by the previous state

and data of the same instance. The instances are stored in an

instance table, e.g., TCP flow table.

To achieve this, Rubik forms a key to index the instance ta-

ble, which consists of bi-directional protocol contexts. For IP

protocol, the instance key is a list that contains the source and

destination IP addresses (Line 20). Note that for connection-

oriented protocols, the instance key should contain two lists,

each of which indexes the packets of one direction.

Preprocessing the instance (Line 23–27). Before getting

into buffer and PSM processing, operators can update some

permanent contexts for each individual instance (perm), or use

some temporary variables for facilitating the programming

(temp). This part of logic will be executed each time after

the instance is found/created. Line 23–27 define a temporary

data structure that stores the fragmentation offset for each IP

packet, which can then be referenced as ip.temp.offset.

Managing the packet buffers (Line 30–31). Many proto-

cols buffer the packets to ensure the correct order of incoming

packets. Rubik offers a packet sequence abstraction to handle

this task. In our example, the IP protocol has to buffer the

fragmented packets according to their fragmentation offset.

Line 30–31 define a sequence block filled with the IP payload

and indexed by the fragmentation offset. This block will be

inserted into the packet sequence associated with the instance,

which is automatically sorted in ascending order by the meta.

A connection-oriented instance will maintain two se-

quences for two sides, respectively. The packets payload will

be automatically inserted into the corresponding sequence

according to the direction indicated by the instance key.

1 # Declare IP layer
2 ip = Connectionless()
3

4 # Define the header layout
5 class ip_hdr(layout):
6 version = Bit(4)
7 ihl = Bit(4)
8 ...
9 dont_frag = Bit(1)

10 more_frag = Bit(1)
11 f1 = Bit(5)
12 f2 = Bit(8)
13 ...
14 saddr = Bit(32)
15 daddr = Bit(32)
16

17 # Build header parser
18 ip.header = ip_hdr
19 # Specify instance key
20 ip.selector = [ip.header.src_addr, ip.header.dst_addr]
21

22 # Preprocess the instance using 'temp'
23 class ip_temp(layout):
24 offset = Bit(16)
25 ip.temp = ip_temp
26 ip.prep = Assign(ip.temp.offset,
27 ((ip.header.f1<<8)+ip.header.f2)<<3)
28

29 # Manage the packet sequence
30 ip.seq = Sequence(meta=ip.temp.offset,
31 data=ip.payload[:ip.payload_len])
32 # Define the PSM transitions shown in Figure 3
33 ip.psm.last = (FRAG >> DUMP) + Pred(~ip.header.more_frag)
34 ip.psm.frag = ...
35

36 # Buffering event
37 ip.event.asm = If(ip.psm.last | ip.psm.dump) >> Assemble()
38 # Callback each IP fragment using 'ipc'
39 class ipc(layout):
40 sip = Bit(32)
41 dip = Bit(32)
42 ip.event.ip_frag = If(~ip.psm.dump) >> \
43 Assign(ipc.sip, ip.header.saddr) + \
44 Assign(ipc.dip, ip.header.daddr) + \
45 Callback(ipc)

Figure 2: IP layer and fragmentation event written in Rubik.

Updating the PSM (Line 33–34). PSM tracks the protocol

states, which are useful in most connection-oriented proto-

cols (e.g., TCP handshake), and also in some connectionless

protocols that buffer the packets (e.g., IP fragmentation). Con-

sider the IP PSM shown in Figure 3. If an IP packet unsets

the dont_frag flag, the parser will take a transition from the

DUMP state to the FRAG state that waits for more fragments.

The instance will be destroyed if the PSM jumps into an ac-

cept state, e.g., DUMP in IP PSM. Line 33 defines the last
transition, i.e., FRAG→DUMP.
Assembling data and hooking IP fragments (Line 37–45).
Unlike the UDEs that are raised by the high-level functions,

e.g., HTTP request event, the built-in events (BIEs) reveal

the inherent behaviors in the stack, e.g., buffer assembling,

connection setup. Previous works only pose fixed and TCP-

specific BIEs [11, 44], while Rubik can program two types of

BIEs for arbitrary stacks.
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Figure 3: Simplified PSM for IP fragmentation.

The first is for the packet sequence operations, i.e., buffer

assembling. Rubik uses If() to specify the conditions of rais-

ing the events and Assemble() to assemble the continuous

sequence blocks. This function will form a service data unit

(SDU) for the next layer parsing. Line 37 defines the events

for assembling the fragments in IP layer.

The second type of action is for posing the user-required

data, which is achieved by a Callback() function that indi-

cates what content should be posed. Line 39–45 define an

event on the condition that fragmented packets arrive. The

back-end compiler will declare an empty function in the na-

tive C code, i.e., ip_frag(struct ipc*), and invoke it each

time the condition is satisfied.

Parse tree for ETH→IP/ARP. Each time after processing

a layer, the network stack decides the next layer to be pro-

ceeded, until it reaches the end of the stack. All such parsing

sequences form a parse tree [39].

The parse tree of our example consists of two layers, i.e.,
Ethernet, and IP/ARP. The stack executes from the root node,

which triggers the Ethernet protocol parser. This parser will

extract the headers of Ethernet, e.g., dmac, type. Next, the

parse tree checks the predicates carried by the two transitions,

and decides which one could be further parsed. In this case,

the type field is used to distinguish the IP and ARP protocol.

Rubik offers a simple syntax similar to PSM transition to

define the parse tree, as shown below.

st = Stack()
st.eth, st.ip, st.arp = ethernet, ip, arp
st += (st.eth>>st.ip) + Pred(st.eth.header.type==0x0800)
st += (st.eth>>st.arp) + Pred(st.eth.header.type==0x0806)

where ethernet, ip and arp are protocol parsers. We note

that the parsers can be reused in the stack. For example, we

can define another IP layer in this stack with st.other_ip
= ip. This will largely facilitate the customization of encap-

sulation stacks (see Appendix C.3 for a GTP example).

Summary. We omit the implementation of Ethernet layer

and ARP layer, which are quite simple compared to IP layer.

In sum, we use ∼50 LOC to define the IP protocol parser

(see Appendix C.1 for the complete code), 7 LOC to hook

the expected event, and 4 LOC to build the parse tree. As a

comparison, libnids consumes ∼1000 C LOC to implement

the similar stack [11].

4 Rubik Programming Abstractions

§3 shows the potential of reducing coding effort with Rubik.

However, as discussed in §2.3, there exists lots of complex

programming needs that call for more sophisticated program-

ming abstractions. In this section, we dive into the language

internals to present how Rubik conquers those complexities.

4.1 Context-Aware Header Parsing
We consider the following two context-aware header parsing

needs in middlebox stack, and address them using Rubik.

Conditional layout. The L2-L4 protocols can have condi-

tional header layout. For example, QUIC uses its first bit to

indicate the following format, i.e., long header or short header.

To this end, we can first parse the fixed layout, using which

to determine the next layout to be parsed, as shown below.

quic.header = quic_type
quic.header += If(quic.header.type == 0) >> long_header

Else() >> short_header

Type-length-value (TLV) parsing. Rubik extends its header

parsing component in two ways to express the TLV fields:

(1) the value of a field can be assigned before parsing,

which can be used to define a type field, e.g., type =
Bit(32,const=128) defines a 32-bit field that must be 128;

(2) the length of a field can refer to a pre-defined field with

arithmetic expressions, which can be used to define the length

of value field, e.g., value = Bit(length << 3).
Besides, TLV headers are often used in a sequence with

non-deterministic order, e.g., TCP options. Rubik offers a

syntax sugar for parsing those headers, as shown below.

tcp.header += AnyUntil((opt1, opt2, opt3), cond)

where opt1–opt3 are TLV header layouts, and AnyUntil()
will continuously parse the packet according to their first

fields, i.e., type, until cond turns to be false.

4.2 Flexible Buffer Management
The transport protocols can buffer the packets in flexible

ways other than simply concatenating them in order. Specif-

ically, we consider the following three exceptions in buffer

management, i.e., retransmission, conditional buffering and

out-of-window packets, and use the sequence abstraction in

Rubik to address them.

Each time a sequence block is inserted, Sequence() in Ru-

bik will compare its meta (e.g., sequence number in TCP) and

length with existing buffered blocks, in order to identify the

fully and partial retransmission. Operators can decide whether

the retransmitted parts should be overwritten by passing a

overwrite_rexmit flag to Sequence(). Once the retrans-

mission is detected, Rubik will automatically raise an event,

which can be referenced by event.rexmit.
In some cases operators would disable the sequence buffer-

ing. For example, a TCP stateful firewall relies on the meta

of sequence block to track the TCP states, but does not need

the content in the block. Operators can disable the content

buffering by simply writing tcp.buffer_data=False.
Transport protocols use window to control the transmitting

rate. Operators can pass a window=(wnd,wnd_size) param-

eter to Sequence(), which specifies the valid range of meta.

The out-of-window packets will not be inserted into the se-

quence, but raise an out_of_wnd event.
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(a) The end host stack PSM for TCP handshake.
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(b) The sender-side PSM for TCP handshake.

Figure 4: The middlebox stack PSM (b) only models the

sending behaviors of the end host stack PSM (a).

4.3 Virtual Ordered Packets
The sequence abstraction will sort the out-of-order packets,

which, however, still mess around the stack processing. Con-

sider the IP PSM shown in Figure 3. In the possible out-

of-order cases, the “last frag” packet can arrive earlier than

a “more frag” packet. With the transitions defined in Fig-

ure 2, such packet will trigger ip.psm.last and form an

incomplete SDU for the next layer. To avoid such mistake, the

transition has to track two states (instead of the fragmentation

flag only), i.e., whether the “last frag” packet has arrived and

whether the sequence is continuous. This counter-intuitive

expression makes Pred in PSM transitions quite complex.

Rubik addresses such problem by offering an abstraction

of virtual ordered packets, which gives an illusion to the oper-

ators that they are accessing the ordered packets. For example,

to handle the early-arrived “last frag” exception, the transition

ip.psm.last can be rewritten as follows.

ip.psm.last = (FRAG >> DUMP) + Pred(~ip.v.header.more_frag)

where ip.v indicates the virtual ordered packet. The compiler

of Rubik will take care of tracking the real arriving order and

ensuring the sequence continuity (see §5.4).

Note that the virtual ordered packets are for facilitating the

inconsistent condition checking, while no real packet will be

buffered and re-accessed. In other words, operators can only

use this abstraction in the conditions of If() or Pred().

4.4 Sender-Side PSM
Directly emulating the PSM of the end host stack in the mid-

dlebox is not a trivial task. Consider a simplified PSM for

TCP handshake, whose end host version is shown in Figure 4a.

Each transition in the PSM is triggered by two packets: the

received packet in the white frame and the sent packet in

the gray frame. For example, the passive host (i.e., server)

can jump into SYN_RCVD state only after it received the SYN

packet and sent the SYN+ACK packet. This transition is natu-

ral for the end hosts, since the receiving and sending behaviors

are synchronized.

However, the middlebox cannot capture those two be-

haviors at the same time. Instead, it has to use two states

to respectively capture them. For example, for the passive

side, the PSM of a middlebox will jump to a new state, say

SYN_HALF_RCVD, when processing an SYN packet sent from

the client, and will further jump to SYN_RCVD only after it sees

an SYN+ACK packet sent reversely. That is, the middlebox

stack has to maintain two PSMs for two sides, each of which

introduces many more states and transitions.

Rubik proposes a new PSM abstraction to reduce the num-

ber of states and transitions, i.e., the sender-side PSM, which

combines the two-side behaviors and is triggered by a single

packet. Figure 4b shows the sender-side PSM of TCP hand-

shake, which consists of only three transitions. The key of

this PSM is that it proceeds only by the sent packets (yellow

ones), but ignores whether they have been received (white

ones). The following defines the first transition in Figure 4b.
tcp.psm.syn = (CLOSED >> SYN_SENT) +

Pred(tcp.v.header.syn & tcp.to_passive)

where to_passive indicates the packet is being sent to the

passive side in a connection-oriented session.

Note that the sender-side PSM is not a unidirectional PSM.

Instead, it tracks all the bi-directional packets, but removes the

redundancy in the end-host PSMs. For example, in Figure 4a,

SYN is the same packet with SYN . In fact, the sender-

side PSM assumes the sent packets must be received. This

is reasonable, because the stack cannot detect the packets

lost downstream the middlebox. In practice, the middlebox

stack will eventually be in the correct state after seeing the

retransmitted packets, and before that, a retransmission event

will alert that the current state may be inconsistent.

4.5 Event Ordering
By default, all the events will be raised after proceeding PSM

and before parsing the next layer (see §5.2). However, opera-

tors have to further clarify two kinds of relationships between

the events to avoid the potential ambiguity.

First, operators may need to define the “happen-before” re-

lationships of two events, if they have the same or overlapped

raising conditions. Consider the aforementioned two events

in IP layer, ip.event.asm and ip.event.ip_frag, both of

which will be raised when ip.psm.last is triggered. As a

result, ip_frag might lose the last fragment if asm happens

first, since the reassemble operation will clear the sequence.

Second, operators may want to raise an event if the other

is happening, i.e., the “happen-with” relationship. For exam-

ple in TCP, an event rdata that poses the retransmitted data

should be raised only when the retransmission event occurs.

Rubik offers an event relationship abstraction to address

the above requirements. The following code indicates that

ip_frag should happen before asm, and rdata will be

checked and raised each time rexmit is happening.
ip.event_relation += ip.event.ip_frag, ip.event.asm
tcp.event_relation += tcp.event.rexmit >> tcp.event.rdata
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5 Compiling Rubik Programs

In this section, we introduce the compiler of Rubik, which

translates the Rubik program into native C code. We first

reveal the difficulties of handling the performance issues in

the middlebox stack (§5.1). To this end, we translate the Rubik

program into an intermediate representation (IR) to reveal the

factual control flow of the stack (§5.2). Then the middle-end

of the compiler performs domain-specific optimizations on

the IR to avoid the performance traps (§5.3), and finally the

back-end translates the IR into performant C code (§5.4).

5.1 Avoiding Performance Issues is Hard
As mentioned in §2.3, the generalized execution model can

cause severe performance issues. For example, the simple

pipeline will insert every IP packet into the sequence, while

this is redundant for the non-fragmented IP packets, as their

blocks will be assembled right after being inserted. And since

the normal IP packets dominate the traffic, this redundant

copy will heavily degrade the stack performance.

Previously in hand-written stacks, developers handle each

of those performance issues using native code. However, due

to the function diversity in the stack, identifying and avoid-

ing all such traps for all stacks is too harsh for the develop-

ers. Moreover, even the developers are aware of those traps,

sometimes they have to trade off performance for the code

modularity or generality, since the proper handling of those

issues will heavily increase the size of the codebase, making

the program more bug-prone.

As a DSL, Rubik has better chance to address those per-

formance issues, if it can capture and handle them through

its automatic compilation process. This task, however, is still

challenging. First, Rubik is designed as a declarative language,

which means although the developers can easily write a “cor-

rect” program without caring about the inner logic, they also

can do little for providing more hints for a “better” program.

Second, it is also an impossible mission for the native code

compiler due to the lack of domain-specific knowledge, e.g.,
the fact that the aligned IP packets can be directly passed

cannot be obtained from the view of the native compiler.

5.2 Intermediate Representation in Rubik
Rubik addresses above challenges by introducing an IR into

the compilation, which brings the following merits. First, the

IR code is much smaller, making it possible to do effective

optimizations that are unaffordable in native code (see §5.3).

Second, the IR code still holds the high-level intent to perform

the domain-specific optimizations. Third, the IR layer is a

common ground for all Rubik programs, which means the

optimizations applied on IR work for all stacks.

Specifically, we adopt the Control-Flow Graph (CFG) as

the IR, which can clearly reveal the control flow of the stack.

HdrParser(...)

IfElse(Contain(...))

CreateInst()

state ← DUMP

InsertSeq(meta, data, len)

IfElse(state == DUMP)

IfElse(ip.header.dont_frag)

state ← DUMP

trans ← dump

IfElse(trans == dump)

Assemble()

IfElse(trans == dump)

NextLayer(SDU)

IfElse(trans == dump)

DestroyInst()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 5: Partial CFG of the IP program. The yellow

boxes are the branching blocks. Only one PSM transi-

tion (ip.psm.dump) is shown. Most of the false branches

(dashed edge) are also omitted.

Note that each protocol layer works independently in the stack,

so we view a protocol parser along with the events defined in

its layer as an individual Rubik program.

Composing the control flow. The compiler composes the

real control flow of the stack with the next four parts.

First, the compiler constructs the CFG for the protocol

parser following the pipeline depicted in Figure 1, i.e., header

parsing, instance table, packet sequence and PSM transition,

and elaborates it with more information that is relevant to the

optimization, e.g., the operations on the instance table and the

sequence. The conditional statements, e.g., PSM transitions

and event callback, will be translated into the branching blocks

with their Pred/If as the branching conditions.

Second, the compiler decides when to raise the events. It is

possible to raise an event just after all its conditions have been

met, i.e., the triggering conditions are satisfied and the data

in the callback structures are ready. As such, an event that

only requires header information can be raised just after the

header parser. However, the high-level functions hooking this

event may modify the packets, which could impact the correct

execution of the PSM. Hence, the compiler puts all events

after proceeding the PSM, and decides their order by the

explicitly defined happen-before and happen-with relationship

in event_relation. The only exceptions are the built-in

sequence events, i.e., rexmit and out_of_wnd, which will be

triggered by sequence operations before proceeding the PSM,

as well as the events happening with them.

In the third and fourth parts, the compiler checks the condi-

tions for parsing the next layer and destroys the instance if it

jumps into the accepted PSM states.

Figure 5 shows a partial CFG for the IP program presented

in §3. The white boxes are the basic blocks, and the yellow

ones are branching blocks, where the solid/dashed edges in-

dicate the true/false branches. In these blocks, IR uses

instructions to reveal the operations on the real data structure.

For example, we use CreateInst() to create and insert an
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Figure 6: (a) First-round branch lifting, where 6 is bounded

by 2 and 4 . (b) Constant analysis, where 6 , 10 and 12 are

eliminated because they are always true guarded by 4 and

9 . (c) Second-round branch lifting, where 7 is further lifted

above 3 , due to the absence of 6 . (d) Peephole optimization,

where 3 - 5 , 11 and 15 are eliminated.

instance into the instance table, and InsertSeq() to insert

the payload into its sequence. Blocks 1 – 9 are for the IP

protocol parser (only one PSM transition, i.e., ip.psm.dump,
is shown); blocks 10 and 11 are for the sequence assemble

event; blocks 12 and 13 are for the next layer parsing, and

blocks 14 and 15 handle the accept PSM state.

Revealing the dependency. Given the real control flow with

CFG, the compiler can then reveal the dependency relation-

ships between each instruction. This is achieved by checking

the read/write operations in the instructions. For example, the

instructions below a branching block can only be executed

after reading the objects in that branching conditions. Hence,

these instructions all depend on those objects.

We note that some read/write relationships are not ex-

plicit in the CFG. For example, InsertSeq() writes the se-

quence in current instance, and Assemble() reads the same

sequence. Hence, Assemble() depends on InsertSeq().
We pre-define the implicit dependencies for all instructions.

5.3 Middle-End: Optimizing Control Flow
The middle-end first transforms the CFG to expose the com-

plete processing logic on a same set of packets. Then, it ap-

plies domain-specific optimizations targeting on the “heavy”

instructions to produce an optimal CFG. Specifically, the

middle-end iteratively takes the following three steps until the

CFG converges to a stable form.

Step 1: Lifting the branches. We lift all the branching blocks

to the top of the CFG, as long as they do not depend on an

upper block. Figure 6a shows the CFG with branching blocks

lifted. We take 6 as an example: it is lifted to top of the

true branch of 2 , because in this branch, it only depends on

the conditions in 2 ; in contrast, in the false branch it can

only be lifted below block 4 , because it reads the variable

state, which is written by block 4 . Through this process,

6 is duplicated, as both branches should traverse it. Note

that some false branches are omitted in Figure 6a, e.g., the

false branches of 6 and 7 that contain the duplicated 5 .

The branch lifting process merges the basic blocks, which

helps to expose a complete processing logic on an individual

set of packets. This process maps to the “code sinking” trans-

formation in conventional compilers, which however usually

is not performed, since the codes would explode due to the du-

plication. In contrast, Rubik’s IR code is small and with a neat

pipeline, making this expensive transformation affordable.

Step 2: Constant analysis. This step replaces or removes the

instructions if they are evaluated to be a constant. For exam-

ple, consider 6 in the false branch in Figure 6a. We can

easily assert that its condition (state==DUMP) is always true,
because 4 has just assigned state with DUMP. Similar anal-

ysis takes place in block 9 , 10 , 12 , where trans==dump
in the latter two must be true. Those always-true branch

blocks can be removed, as shown in Figure 6b. Note that this

elimination may create new opportunities to iteratively lift

the branch, i.e., Step 1. For example, 7 can be further lifted

above 3 , due to the absence of 6 , as shown in Figure 6c.

Step 3: Peephole optimizations. After the first two steps, the

complete processing logic on each packet set is revealed. For

example, 3 – 15 in Figure 6c illustrates the processing logic

on the first packet of an IP instance which is with dont_frag
flag. In this step, we engage a series of peephole optimiza-

tions [36] to identify and eliminate performance traps.

Considering 3 – 15 , we have the following easy optimiza-

tions. (1) For 3 , 5 , 11 , 13 , it is obvious that the first

and only inserted block is directly assembled. Hence, 5

and 11 can be eliminated, and 13 can be rewritten into

NextLayer(Payload). (2) 3 and 15 is another pair of re-

dundant operations, where the inserted instance is directly

removed from the instance table. These two blocks can also

be eliminated. Figure 6d shows the CFG that removes all

redundant operations, most of which are very expensive, e.g.,
instance creation and sequence insertion. We can therefore

expect a much higher performance with this optimized CFG.

We emphasize that the patterns of the optimizations are not

newly designed, but the common wisdoms borrowed from the

mature stack implementations. The key is that manually real-

izing those optimizations for each stack would mess around

the processing pipeline, and significantly increase the com-

plexity of the code. In contrast, Rubik’s middle-end are stack-

and implementation-oblivious, i.e., operators can focus on the

logic of the optimizations without caring about how to inte-

grate them with the stack logic. That is, the new patterns can

be easily extended in the future, and the developers can obtain

a fully optimized pipeline for all stacks. Appendix D shows

the peephole optimizations that are currently employed.

5.4 Back-End: Producing Efficient Code
The back-end of compiler translates and assembles the op-

timized CFGs into native C code, and ensures its efficiency

in two ways: (1) maximize the code efficiency without con-

sidering the code readability, e.g., composing a single large
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Figure 7: LOC breakdown of protocol parsers.

function for the whole stack to force the optimization in the C

compiler; (2) borrow the best practice from existing middle-

box stacks, e.g., a fast hashing library. Except for the above

general methods, we highlight two designs in the back-end.

Handling the header. The back-end translates the header

fields and their references using the following principles.

• Each layout will be translated into a C struct, and the

header parser is a struct pointer to the starting address

of the header, so that each field can be directly accessed

as a struct member. For the composite headers, e.g.,
ip.header=ip_hdr+ip_opt, the back-end will gener-

ate multiple pointers pointing to different locations.

• Conditions and predicates of virtual ordered packets, e.g.,
If(ip.v.header.more_frag), will be implemented as

tracking two states, i.e., if(seen_frag && no_hole),
where seen_frag will be set if “more_frag” packet has

arrived, and no_hole is assigned by checking the se-

quence each time a sequence block is inserted.

Threading model. We adopt the shared-nothing model with

the run-to-complete workflow when generating native code.

That is, each core runs an independent stack, which eliminates

the inter-core communication [46]. Specifically, the back-end

leverages the symmetric receive-side scaling (S-RSS) tech-

nique [71], so bi-directional packets from the same connection

can be correlated to the same thread. Since modern NICs sup-

port hardware-based S-RSS, this usually linearly boosts the

stack performance with the number of cores (see §7.1).

The back-end also takes care of other cases that require

considerable human effort, e.g., buffer outrun and timeout.

6 Rubik in Action
Rubik builds upon Python while offering domain-specific

syntaxes and functions. In total, our prototype amounts to 3K

Python LOC for Rubik internals, and 2K C LOC for hashing,

packet I/O and sequence operations. The source code of Rubik

is available at https://github.com/ants-xjtu/rubik.
In this section, we demonstrate the practicality of Rubik by

implementing numbers of mainstream L2-L4 protocols and

stacks (§6.1), and developing typical high-level middlebox

functions (§6.2).

6.1 Collected Protocols and Stacks
We collect and implement 12 L2-L4 protocol parsers using

Rubik. Here we focus on how many LOC used for the imple-

mentation, which reflects the complexity and robustness of

Table 2: Rubik and generated LOC for composing stacks.

Stack Parse Tree Addi. Total Gen.

TCP/IP ETH→IP→UDP/TCP 14 245 11061

GTP ETH→IP→UDP→GTP→IP→TCP 18 304 11384

PPTP
ETH→IP→TCP→PPTP

ETH→IP→GRE→PPP→IP→TCP
37 586 46546

QUIC loopback→IP→UDP→QUIC 23 361 14007

SCTP ETH→IP→SCTP 9 233 23863

Addi.: additional Rubik LOC apart from the individual protocol parsers
Total: total Rubik LOC Gen.: generated native LOC

the program. From the LOC breakdown shown in Figure 7,

we have the following observations.

First, Rubik can express the mainstream L2-L4 protocols

with minor LOC. Most connectionless protocols only take

tens of LOC. The connection-oriented ones take more, but

within hundreds of LOC. Second, most LOC are for defining

the header layout (46% in average), since one field takes one

LOC in Rubik. This task is quite straightforward if given

the protocol specification, so the factual effort of writing a

protocol parser is even less than it appears in the figure.

Reducing the effort of implementing above parsers is very

valuable. For example, the stream control transmission pro-

tocol (SCTP) [2] provides many useful transmission features

like message boundary preservation and multi-homing. How-

ever, this requires a significant change for middleboxes, e.g.,
4400 C LOC in Wireshark [3], making SCTP much less de-

ployed [41]. Using Rubik, it only takes 210 LOC for im-

plementing the SCTP layer. Another example is QUIC [6]:

although its multiplexing feature improves the transmission

efficiency, existing middleboxes cannot support it without a

fundamental upgrade. As a reference, Wireshark takes ∼3100

C LOC to realize the QUIC protocol parser [26]. Using Rubik,

merely 216 LOC is enough for prototyping a QUIC parser

(without the decryption feature, see §8).

We finally implement 5 typical stacks, as shown in Table 2.

We highlight that with the reusable protocol parsers, compos-

ing a middlebox stack requires minor additional Rubik LOC,

although the native LOC generated is massive.

6.2 Developing Applications with Rubik
Callback() in defining BIEs will generate empty callback

functions in the native code, which will be invoked each time

the BIEs are triggered. The programmers can then develop

their applications by implementing those functions.

The most typical example can be a DPI application that

inspects the L7 data. In this case, the developer can pose an

event happening with the assemble event (tcp.event.asm).

tcp.event.sdu = Assign(sdu_layout.sdu, tcp.sdu) + \
Callback(sdu_layout)

tcp.event_relation += tcp.event.asm >> tcp.event.sdu

Other examples include the detection of SYN-flood and fake-

reset, which can be implemented through the BIEs triggered

by the first SYN packet and the reset transitions, respectively.
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We present how we port Snort [21] as a more compre-

hensive example. Snort may scan the traffic multiple times

against the rules, e.g., on the fragmented IP packets or on the

reassembled L7 data. With Rubik, the programmers can im-

plement these scanning behaviors through the corresponding

BIEs posed in the stack. Specifically, we implement 25 rule

options, e.g., content, pcre, http_header, and translate the

rules into event-based callback functions. We replace Snort’s

stream and http-inspect modules with Rubik-generated

stacks and events, and reuse the high-level matching mod-

ules like Aho-Corasick algorithm for string matching and

HyperScan [69] for regular expression matching.

Note that, unlike mOS and Microboxes, Rubik currently

does not support programming UDEs. As a result, for HTTP-

related rules, we need to manually parse the L7 protocols

in the callback function (instead of using a set of inherited

UDEs), then the L7 rules can be matched against those parsed

HTTP headers. §8 discusses the UDE programming in detail.

7 Evaluation
In this section, we evaluate the performance of Rubik. Specifi-

cally, our experiments aim to answer the following questions:

(1) Do Rubik-generated stacks provide comparable or even

better performance than the hand-written stacks? (§7.1)

(2) Do Rubik-ported applications work correctly and effi-

ciently on various stacks? (§7.2)

(3) Do the middle-end optimizations help improve the per-

formance of Rubik? (§7.3)

7.1 Microbenchmarks
To measure Rubik’s performance under certain traffic load,

we build real end-host applications and set a bump-in-the-

wire testbed as the middlebox stack. Due to the lack of high-

performance non-TCP applications (e.g., QUIC, SCTP), the

microbenchmarks are mostly about the TCP/IP stack.

Experimental settings. We build the testbed on an x86 ma-

chine (20×Intel Xeon 2.2Ghz, 192GB memory) with three

dual-port 40G NICs (Intel XL710). We use another six ma-

chines (8×Intel Xeon 2.2Ghz, 16GB memory) to build three

server/client pairs. Each server/client has a single-port 40G

NIC, and is connected through one NIC in the testbed server.

The clients and servers generate 96K concurrent connec-

tions in total (32K from each pair). Each connection fetches a

file from the server (1KB by default), and will immediately

restart when it terminates. Note that the three pairs cannot

drain the 120Gbps link, so we indicate the upper bounds of

the throughput for each setting in the experiments, i.e., the

throughputs when directly wiring the clients up to the servers.

We synthesize three high-level functions to simulate differ-

ent workloads of the middlebox: (1) a flow tracker (FT) that

tracks the L4 states but ignores the payload, (2) a data assem-

bler (DA) that dumps bidirectional L7 data to /dev/null, and

Figure 8: The multi-core scal-

ability (DA, 1KB file).

Figure 9: The file size scala-

bility (DA, 8 cores).

(3) a string finder (SF) that matches 50 regular expressions

against L7 data. We run DA as the default function in the

experiments, as it reflects the intrinsic performance of a com-

plete middlebox stack, i.e., with bidirectional data reassembly

and without heavy operations on that data. When running FT,

we disable the data buffering for all involved approaches.

TCP stack. From the existing approaches shown in Table 1,

we choose to compare Rubik with the TCP-specific stack and

the NFV framework, since the packet parser cannot implement

a full-functional stack. Specifically, we involve mOS [14] and

MiddleClick [28] in our experiments. The former is the state-

of-the-art TCP middlebox stack, and the latter with Click

model is reported to be more efficient. All approaches have

the same packet I/O capability with DPDK [8] and S-RSS.

The clients and servers are implemented using mTCP [45].

Figure 8 shows the multi-core scalability of the involved ap-

proaches. Thanks to S-RSS, the performance of all approaches

can almost linearly scale with the number of CPU cores.

Note that Rubik’s TCP stack achieves 5.2Gbps, 20.9Gbps,

38.4Gbps when using 1, 4, 8 cores, respectively, and can reach

the upper bound (55.9Gbps) with 16 cores. Such throughput

outperforms other approaches by 30%–90%.

Figure 9 shows the scalability with different file sizes. With

8 cores, Rubik’s TCP stack can reach the upper bound with

the file larger than 8KB (82.1Gbps in 8KB, 101.4Gbps in

32KB). We also report that Rubik can reach the upper bound

for all file sizes if using 16 cores. Note that given the flow size

(which can be inferred from the file size) and the throughput,

we can estimate the connection arrival rates, i.e., how many

new connections can be handled per second. We report that

with 8 cores, the connection arrival rates of Rubik’s TCP stack

are 4.5M/s and 1.1M/s for 64B and 8KB files, respectively.

Figure 10 shows the throughput with different functions.

Rubik’s stack can realize 44.1Gbps and 25.5Gbps for FT and

SF with 8 cores, which maintain the lead to other approaches

(34% and 90% faster than MiddleClick and mOS). We also

report that Rubik’s stack adds reasonable transferring latency

(not shown in the figure), e.g., running DA for a single flow

adds 29μs and 97μs to the flow completion time when transfer-

ring 64B and 8KB files (62μs and 119μs without middlebox).

Why Rubik outperforms other approaches. First, the peep-

hole optimizations applied in the middle-end let Rubik han-

dles each packet class in the most efficient way, which guar-

antees a comparable performance to the mature hand-written

ones. Second, the hand-written stacks have to trade off perfor-
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Figure 10: Throughput vs.

functions (1KB file, 8 cores).

Figure 11: Performance of the

GTP stack (DA).

mance for the code maintainability. For example, for maintain-

ing the 8K C LOC of TCP stack, mOS spans more than 100

non-inline functions, dozens of which would be invoked for

processing each packet. In contrast, Rubik puts 11K C LOC in

a single function for composing the same stack, which incurs

much fewer function calls, hence the higher throughput. Third,

the one-big-function also forces the optimizations of native

C compiler. Specifically, we re-compile MiddleClick and Ru-

bik’s generated code with -O0 instead of -O3, and observe

that MiddleClick’s performance downgrades by 40%, while

Rubik suffers 50% degradation. This partially confirms that

deeper optimizations can be applied in the one-big-function.

We emphasize that both mOS and MiddleClick are with

high-quality code. Even though, the performance trade-offs

for maintainability are still inevitable when handling so many

LOC with human oracle. Such risk would only be higher

for more complex stacks. In contrast, Rubik avoids the per-

formance traps for all stacks by automatically applying the

domain-specific optimizations in its middle-end, while ensur-

ing the maintainability with its neat syntaxes in the front-end.

GTP stack. Besides the TCP stack, we also run the GTP stack

in end hosts for evaluation. Specifically, we modify mTCP

to encapsulate/strip IP, UDP, and GTP layers for each TCP

packet, where the new IP and UDP layers have the same IP

addresses and ports with the original TCP packet. Note that

this operation adds ∼50 bytes to each packet, which will lift

the throughput upper bound when transferring small files.

Figure 11 shows the performance of Rubik’s GTP stack

with different CPU cores and file sizes. With only one core,

Rubik’s GTP stack can realize 4.0Gbps and 14.2Gbps for 64B

and 8KB file, respectively, and can reach their performance

upper bounds (44.6Gbps and 88.0Gbps) with 16 cores. We

highlight that even the GTP stack has much more layers than

the TCP stack, Rubik can still catch up with the throughput, as

its back-end introduces minor overhead between each layer.

7.2 Performance on Various Stacks
We collect real and synthetic traces to evaluate the perfor-

mance of Rubik on various stacks with real applications.

Traces. We prepare traces for five stacks, as shown in Ta-

ble 3. The TCP trace is captured in a campus network. The

GTP trace is captured in an ISP’s base station. For PPTP

stack, we set a PPTP server with MPPE and PPP compres-

sion disabled, and capture the trace by accessing random

websites. For QUIC stack, we set a pair of client and server

Table 3: The collected traces.

Trace #Pkts. #Flows
Avg. Flow

Size
Avg. Pkt.
Length

L7 Data
Size

Total
Size

TCP 25.9M 558K 32KB 652.13B 8.4GB 16.8GB

GTP 18M 630K 14KB 484.03B 0.6GB 8.7GB

PPTP 6.7M 9K 665KB 892.98B 4.2GB 6.0GB

QUIC 12.7M 3K 637KB 643.25B 5.4GB 8.1GB

SCTP 7.6M 600K 5KB 374.35B 2.3GB 2.9GB

Table 4: The throughput (Gbps) on the traces (16 cores).

Snort Rubik+Snort nDPI Rubik+nDPI DA

TCP 20.41 26.86 25.94 25.26 117.76

GTP 15.36 22.79 18.87 18.37 113.42

PPTP 13.91 20.01 18.79 18.22 118.41

QUIC - - - - 116.29

SCTP - - - - 101.27

using ngtcp2 [17], and capture the trace by querying random

resources. Rubik currently does not support the online de-

cryption, so we replace the encrypted data in the trace with a

deciphered one using the local SSL key (see §8). For SCTP

stack, we set the server and client using usrsctp [29], and

capture the trace by fetching random files. We filter out the in-

complete connections (flows without handshake or teardown)

for all the traces, so we can properly replay them on a loop.

Applications. We port two well-known middlebox applica-

tions, Snort [21] and nDPIReader [15], to Rubik. For Snort,

we port it as presented in §6.2, and load 2800 TCP- or HTTP-

related rules from its community rule set. We note that nD-

PIReader does not implement a complete flow reassembly

feature. To this end, we pose the TCP and UDP assemble

events, and invoke the core detecting functions provided by

nDPI in the callback functions. The Rubik-ported version can

then detect protocols on reassembled data.

We equip the original Snort and nDPI with DPDK/S-RSS

and involve them into the comparison. Note that neither

of original and Rubik-ported versions can inspect QUIC or

SCTP trace, because the rules and detecting applications are

TCP-specific, i.e., they assume the transport layer must be

TCP/UDP. However, we argue that with the help of Rubik, it

would be quite simple to port such rules to new stacks, e.g.,
inspecting the HTTP content carried by an SCTP connection.

Performance. We split the traces into three pieces by their

IP addresses and use three machines to inject them into the

testbed (120Gbps line rate). The testbed runs on 16 cores.

Table 4 shows the throughput with different applications,

from which we have two observations. First, the Rubik-ported

Snort is faster than the original and the boost is more signif-

icant on the stacks with more layers (+31.6% for TCP vs.

+48.3% for GTP), because “heavy” stacks would amplify the

efficiency of Rubik’s generated one-big-function. Second, the

Rubik-ported nDPI is slightly slower than the original (−2.8%

in average), because the latter does not reassemble the data

at all. Specifically for TCP stack, the Rubik-ported versions

perform better than the mOS-ported versions (+31.6% vs.
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Table 5: Throughput boost (Gbps) and compilation slow down

(seconds) from the middle-end optimizations (1 core, DA).

Shadowed cells show the number with optimizations.

TCP GTP PPTP QUIC SCTP

Throughput 8.83 22.4 5.47 14.4 8.16 18.9 7.03 13.7 4.38 6.61

Rubik→C 0.06 0.28 0.07 0.31 0.10 1.19 0.07 0.42 0.06 1.22

C→Binary 3.32 3.47 3.47 5.46 3.73 13.1 3.47 4.02 3.27 6.86

+16.8% for Snort, −2.6% vs.−3.7% for nDPI) [44]. We fi-

nally highlight that when running DA, all Rubik’s stacks can

achieve more than 100Gbps throughput for their traces.

Correctness. We respectively select 100 flows from all traces.

By manually verifying the results of protocol parsers and

event callbacks, we confirm the correctness of Rubik.

7.3 Middle-End Optimizations
We inject the same traces used in §7.2 into the testbed and

measure the performance and overhead of corresponding

stacks, by enabling/disabling the middle-end optimizations.

Performance. The top part of Table 5 shows that all stacks

can significantly benefit from the optimizations, with a boost

rate of 51%–163%. The effect of the optimizations depends on

two factors. First, since each layer is independently optimized,

more layers lead to more improvements. Second, the major

optimization is the elimination of the sequence operations,

so more boosts can be gained when handling large flows.

For example, PPTP and QUIC traces have similar flow size,

but the PPTP stack with more layers gains more from the

optimizations; TCP and SCTP stacks have the same number

of layers, but the SCTP stack does not boost as much as TCP

due to the smaller flow size of the trace (5KB vs. 32KB).

Overhead. The branch lifting in the middle-end leads to

much larger CFG, which increases the time of compilation,

i.e., from Rubik program to C code, and from C code to binary.

The bottom part of Table 5 shows that such overhead is minor

in practice, i.e., all stacks are compiled within 15 seconds.

8 Limitations and Discussion
Semantics completeness. There are generally two types of

middleboxes: the flow-monitoring ones that parse the proto-

cols, check the reassembled data, and forward/drop the orig-

inal packets (e.g., IDS), and the flow-modifying ones that

intercept the connection and modify L7 content (e.g., HTTP

proxy). To the best of our knowledge, Rubik can well support

programming the former type. For the latter, Rubik should ex-

tend its sequence abstraction for inline-reordering, and event

abstraction for modifying the packet content. These exten-

sions are realizable and will be explored in our future work.

Encrypted layers. Rubik can cooperate with the encrypted

layers in the following two ways: (1) the stacks can directly

work on the raw packets, if the middleboxes are placed inside

the secure district, where the encrypted content has already

been resolved by the gateway; (2) the stacks can inspect the

encrypted content, given the proper decipher keys. We simu-

late the first scenario with QUIC protocol in our evaluation.

For the second, we can offer an extra decryption function to

modify SDU. We leave this feature to our future work.

UDE programming. Prior to Rubik, literatures focus on how

to facilitate the middlebox development by offering friendly

UDE interfaces. mOS [44] unifies the TCP stack and provides

a BSD-style socket interface, so the developers can dynami-

cally register/deregister their UDEs. Microboxes [53] further

optimizes the UDE model by parallelizing their executions,

making the performance scalable with the number of network

functions. Since the UDE programming is oblivious from the

stack programming, we believe providing such feature should

be an easy task for Rubik’s back-end, by borrowing the best

practice from mOS and Microboxes.

Boosting S-RSS. We discuss two possible techniques that can

further boost the packet dispatching. First, unlike S-RSS that

dispatches correlated packets to fixed CPU cores, RSS++ [31]

and eRSS [64] can collect the flow statistics and dynamically

dispatch packets to different cores, which can further balance

the CPU load. Second, the hardware-based S-RSS can only

classify fixed protocols. For example, for PPTP stack, it only

dispatches the packets by the lower-layer IP addresses, which

are almost fixed as a tunnel. The dispatching can be much

more balanced if higher-layer IP and TCP protocols can be

considered. A smart NIC [54] or a programmable switch asso-

ciated with the middlebox [46] that can dispatch the packets

by arbitrary headers could be a cure to this problem.

Middlebox deployments. While Rubik facilitates the devel-

opment of a single middlebox, there are literatures that deploy

middleboxes in a distributed way [62, 65] or as a cloud ser-

vice [66]. These works can be complementary to Rubik.

Ethics statement. The TCP and GTP traces used in the ex-

periments are anonymized before given to us. We claim that

our work does not raise any ethics issue.

9 Conclusion
This paper proposed Rubik, a language for programming the

middlebox stack, which offers a set of high-level constructs as

efficient building blocks, and an optimizing compiler to pro-

duce high-performance native code. We demonstrated the mi-

nor effort for implementing 12 protocol parsers and 5 popular

stacks using Rubik. We evaluated Rubik with real applications

and traces, and showed that the generated stacks outperform

existing approaches by at least 30% in throughput.
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Appendix A Rubik Built-in Abstractions

Abstractions Initialized Syntax and Parameters Functionality and Semantics

P
ac

k
et

D
at

a p.header
layout+layout

AnyUntil((layout), cond)
generate a header layout

p.temp, p.perm layout the permanent/temporary data bound to the instance

p.seq Sequence(meta,data,data_len) the sequence indexed by meta and filled with data
p.payload initialized by p.header the payload of layer p
p.sdu initialized by Assemble() the SDU passing to the upper layer

In
st

.

T
ab

le

p.selector
[inst_key]

([active_key],[passive_key])
maintain the instance table by the key

P
ro

to
.

S
ta

te

M
ac

h
in

e s PSMState(start, accept) define a PSM state s
p.psm PSM(state set) build the PSM with the state set
p.psm.t (s1 >> s2) + Pred(cond) define a transition t from s1 to s2 with condition cond

p.to_active/passive initialized by p sending to active/passive side (connection-oriented)

E
v
en

t

C
al

lb
ac

k p.event.e Assemble(), Callback(lay) an event e that assembles the sequence or poses lay

p.event_relation
(p.event.a, p.event.b)

p.event.c >> p.event.d
a happens before b, while d happens when c happens

P
ar

se

T
re

e

st Stack() define a stack st
st.lay p define layer lay with parser p
st (st.lay1 >> st.lay2) + Pred(pred) define lay2 as the next layer of lay1 with condition pred

G
lo

b
al

P
ar

am
et

er
s p.cursor initialized by p the current position (in byte) through the header parsing

p.cur_state initialized by p the current PSM state of the instance

p.timeout a float number the global keep-live threshold for the instance of p

p.psm.t.timeout a float number the keep-live threshold of the instance in transition t

Appendix B Instructions and Expressions in Rubik’s CFG

Instructions Read Write Description

Assign(reg, expr) expr reg modify reg with the result of expr
AssignSDU(expr) expr SEQUENCE modify sequence with the result of expr

CreateInst() - INSTTABLE create and insert the instance into instance table

DestroyInst() - INSTTABLE remove the instance from the instance table

InsertSeq(m,d,l) - SEQUENCE insert a sequence block (meta=m,data=d,len=l) into the sequence

Assemble() - SEQUENCE assemble the continuous blocks in the sequence and pop it

Call(expr) expr - invoke a callback function with the data expr
NextLayer() - - jump into the next layer according to the parse tree

Expressions Read Write Description

HeaderContain( f ) HEADER - check whether the parsed header contains field f
Payload() HEADER - the content besides the parsed header from the packet

SDU() SEQUENCE - the SDU assembled from the sequence

Contain(key) INSTTABLE - check whether the instance with key is in the instance table
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Appendix C Example Rubik Programs

C.1 IP Protocol Parser
The following code shows a complete IP protocol parser.

1 class ip_hdr(layout):
2 version = Bit(4)
3 ihl = Bit(4)
4 tos = Bit(8)
5 tot_len = UInt(16)
6 id = Bit(16)
7 blank = Bit(1)
8 dont_frag = Bit(1)
9 more_frag = Bit(1)

10 f1 = Bit(5)
11 f2 = Bit(8)
12 ttl = Bit(8)
13 protocol = Bit(8)
14 check = Bit(16)
15 saddr = Bit(32)
16 daddr = Bit(32)
17

18

19 class ip_temp(layout):
20 offset = Bit(16)
21 length = Bit(16)
22

23

24 def ip_parser():
25 ip = Connectionless()
26

27 ip.header = ip_hdr
28 ip.selector = [ip.header.saddr, ip.header.daddr]
29

30 ip.temp = ip_temp
31 ip.prep = Assign(
32 ip.temp.offset, ((ip.header.f1 << 8) + ip.header.f2) << 3
33 ) + Assign(ip.temp.length, ip.header.tot_len - (ip.header.ihl << 2))
34

35 ip.seq = Sequence(meta=ip.temp.offset, data=ip.payload[: ip.temp.length])
36

37 DUMP = PSMState(start=True, accept=True)
38 FRAG = PSMState()
39 ip.psm = PSM(DUMP, FRAG)
40 ip.psm.dump = (DUMP >> DUMP) + Pred(
41 ((ip.header.dont_frag == 1) & (ip.temp.offset == 0))
42 | ((ip.header.more_frag == 0) & (ip.temp.offset == 0))
43 )
44 ip.psm.frag = (DUMP >> FRAG) + Pred(
45 (ip.header.more_frag == 1) | (ip.temp.offset != 0)
46 )
47 ip.psm.more = (FRAG >> FRAG) + Pred(ip.header.more_frag == 1)
48 ip.psm.last = (FRAG >> DUMP) + Pred(ip.v.header.more_frag == 0)
49

50 ip.event.asm = If(ip.psm.dump | ip.psm.last) >> Assemble()
51

52 return ip

C.2 TCP Protocol Parser
The following shows the complete TCP protocol parser written in Rubik, including the header option parsing, the bi-directional buffering, the

out-of-window exception handling, etc. We note that the code is formatted according to PEP8, which largely increases the number of LOC.

Moreover, the definitions of header layout and auxiliary structures take about 40% of the LOC, which means the factual effort of writing this

parser is even less than the number of LOC shows.
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1 class tcp_hdr(layout):
2 sport = UInt(16)
3 dport = UInt(16)
4 seq_num = UInt(32)
5 ack_num = UInt(32)
6 hdr_len = Bit(4)
7 blank = Bit(4)
8 cwr = Bit(1)
9 ece = Bit(1)

10 urg = Bit(1)
11 ack = Bit(1)
12 psh = Bit(1)
13 rst = Bit(1)
14 syn = Bit(1)
15 fin = Bit(1)
16 window_size = UInt(16)
17 checksum = Bit(16)
18 urgent_pointer = Bit(16)
19

20

21 class tcp_nop(layout):
22 nop_type = Bit(8, const=1)
23

24 class tcp_mss(layout):
25 mss_type = Bit(8, const=2)
26 mss_len = Bit(8)
27 mss_value = Bit(16)
28

29

30 class tcp_ws(layout):
31 ws_type = Bit(8, const=3)
32 ws_len = Bit(8)
33 ws_value = Bit(8)
34

35

36 class tcp_SACK_permitted(layout):
37 SCAK_permitted_type = Bit(8, const=4)
38 SCAK_permitted_len = Bit(8)
39

40

41 class tcp_SACK(layout):
42 SACK_type = Bit(8, const=5)
43 SACK_len = Bit(8)
44 SACK_value = Bit((SACK_len - 2) << 3)
45

46

47 class tcp_TS(layout):
48 TS_type = Bit(8, const=8)
49 TS_len = Bit(8)
50 TS_value = Bit(32)
51 TS_echo_reply = Bit(32)
52

53

54 class tcp_cc_new(layout):
55 cc_new_type = Bit(8, const=12)
56 cc_new_len = Bit(8)
57 cc_new_value = Bit(32)
58

59

60 class tcp_eol(layout):
61 eol_type = Bit(8, const=0)
62

63

64 class tcp_blank(layout):
65 blank_type = Bit(8)
66 blank_len = Bit(8)
67 blank_value = Bit((blank_len - 2) << 3)
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68

69

70 class tcp_data(layout):
71 active_lwnd = Bit(32, init=0)
72 passive_lwnd = Bit(32, init=0)
73 active_wscale = Bit(32, init=0)
74 passive_wscale = Bit(32, init=0)
75 active_wsize = Bit(32, init=(1 << 32) - 1)
76 passive_wsize = Bit(32, init=(1 << 32) - 1)
77 fin_seq1 = Bit(32, init=0)
78 fin_seq2 = Bit(32, init=0)
79

80

81 class tcp_temp(layout):
82 wnd = Bit(32)
83 wnd_size = Bit(32)
84 data_len = Bit(32)
85

86

87 def tcp_parser(ip):
88 tcp = ConnectionOriented()
89

90 tcp.header = tcp_hdr
91 tcp.header += If(tcp.cursor < tcp.header.hdr_len << 2) >> AnyUntil(
92 [
93 tcp_eol,
94 tcp_nop,
95 tcp_mss,
96 tcp_ws,
97 tcp_SACK_permitted,
98 tcp_SACK,
99 tcp_TS,

100 tcp_cc_new,
101 tcp_blank,
102 ],
103 (tcp.cursor < tcp.header.hdr_len << 2) & (tcp.payload_len != 0),
104 )
105

106 tcp.selector = (
107 [ip.header.saddr, tcp.header.sport],
108 [ip.header.daddr, tcp.header.dport],
109 )
110

111 tcp.perm = tcp_data
112 tcp.temp = tcp_temp
113

114 CLOSED = PSMState(start=True)
115 SYN_SENT, SYN_RCV, EST, FIN_WAIT_1, CLOSE_WAIT, LAST_ACK = make_psm_state(6)
116 TERMINATE = PSMState(accept=True)
117

118 tcp.prep = Assign(tcp.temp.data_len, tcp.payload_len)
119 tcp.prep = (
120 If(tcp.header.syn == 1) >> Assign(tcp.temp.data_len, 1) >> Else() >> tcp.prep
121 )
122 tcp.prep = (
123 If(tcp.header.fin == 1)
124 >> Assign(tcp.temp.data_len, tcp.payload_len + 1)
125 + (
126 If(tcp.current_state == EST)
127 >> Assign(tcp.perm.fin_seq1, tcp.header.seq_num + tcp.payload_len)
128 >> Else()
129 >> Assign(tcp.perm.fin_seq2, tcp.header.seq_num)
130 )
131 >> Else()
132 >> tcp.prep
133 )
134

135

568    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



136 def update_wnd(oppo_lwnd, oppo_wscale, oppo_wsize, cur_lwnd, cur_wscale, cur_wsize):
137 x = If(tcp.header_contain(tcp_ws)) >> Assign(oppo_wscale, tcp.header.ws_value)
138 x += Assign(oppo_wsize, tcp.header.window_size)
139 x += Assign(oppo_lwnd, tcp.header.ack_num)
140 x += Assign(tcp.temp.wnd, cur_lwnd)
141 x += Assign(tcp.temp.wnd_size, cur_wsize << cur_wscale)
142 return x
143

144 tcp.prep += If(tcp.to_active == 1) >> update_wnd(
145 tcp.perm.passive_lwnd,
146 tcp.perm.passive_wscale,
147 tcp.perm.passive_wsize,
148 tcp.perm.active_lwnd,
149 tcp.perm.active_wscale,
150 tcp.perm.active_wsize,
151 )
152 tcp.prep += If(tcp.to_passive == 1) >> update_wnd(
153 tcp.perm.active_lwnd,
154 tcp.perm.active_wscale,
155 tcp.perm.active_wsize,
156 tcp.perm.passive_lwnd,
157 tcp.perm.passive_wscale,
158 tcp.perm.passive_wsize,
159 )
160

161 tcp.seq = Sequence(
162 meta=tcp.header.seq_num,
163 zero_based=False,
164 data=tcp.payload[: tcp.temp.data_len],
165 data_len=tcp.temp.data_len,
166 window=(tcp.temp.wnd, tcp.temp.wnd + tcp.temp.wnd_size),
167 )
168

169 tcp.psm = PSM(CLOSED, SYN_SENT, SYN_RCV, EST, FIN_WAIT_1, CLOSE_WAIT, LAST_ACK, TERMINATE)
170

171 tcp.psm.orphan = (CLOSED >> TERMINATE) + Pred(tcp.header.syn == 0)
172 tcp.psm.hs1 = (CLOSED >> SYN_SENT) + Pred(
173 (tcp.header.syn == 1) & (tcp.header.ack == 0)
174 )
175 tcp.psm.hs2 = (SYN_SENT >> SYN_RCV) + Pred(
176 (tcp.to_active == 1) & (tcp.header.syn == 1) & (tcp.header.ack == 1)
177 )
178 tcp.psm.hs3 = (SYN_RCV >> EST) + Pred(tcp.v.header.ack == 1)
179

180 tcp.psm.buffering = (EST >> EST) + Pred(
181 (tcp.header.fin == 0) & (tcp.header.rst == 0)
182 )
183

184 tcp.psm.wv1 = (EST >> FIN_WAIT_1) + Pred(tcp.v.header.fin == 1)
185 tcp.psm.wv2 = (FIN_WAIT_1 >> CLOSE_WAIT) + Pred(
186 (tcp.v.header.ack == 1) & (tcp.v.header.fin == 0)
187 & (tcp.perm.fin_seq1 + 1 == tcp.v.header.ack_num)
188 )
189 tcp.psm.wv2_fast = (FIN_WAIT_1 >> LAST_ACK) + Pred(
190 (tcp.v.header.ack == 1) & (tcp.v.header.fin == 1)
191 & (tcp.perm.fin_seq1 + 1 == tcp.v.header.ack_num)
192 )
193 tcp.psm.wv3 = (CLOSE_WAIT >> LAST_ACK) + Pred(tcp.v.header.fin == 1)
194 tcp.psm.wv4 = (LAST_ACK >> TERMINATE) + Pred(
195 (tcp.v.header.ack == 1) & (tcp.perm.fin_seq2 + 1 == tcp.v.header.ack_num)
196 )
197

198 for i, state in enumerate(tcp.psm.states()):
199 setattr(tcp.psm, f"rst{i}", (state >> TERMINATE) + Pred(tcp.header.rst == 1))
200

201 tcp.event.asm = If(tcp.psm.buffering) >> Assemble()
202 return tcp

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    569



C.3 GTP Stack
The following code builds a GTP stack (Eth→IP→UDP→GTP→IP→TCP) by composing the reusable parsers.

1 stack = Stack()
2 stack.eth = eth_parser()
3 stack.ip1 = ip_parser()
4 stack.udp = udp_parser()
5 stack.gtp = gtp_parser()
6 stack.ip2 = ip_parser()
7 stack.tcp = tcp_parser(stack.ip2)
8

9 stack += (stack.eth >> stack.ip1) + Pred(1)
10 stack += (stack.ip1 >> stack.udp) + Pred(
11 (stack.ip1.psm.dump | stack.ip1.psm.last) & (stack.ip1.header.protocol == 17)
12 )
13 stack += (stack.udp >> stack.gtp) + Pred(1)
14 stack += (stack.gtp >> stack.ip2) + Pred(stack.gtp.header.MT == 255)
15 stack += (stack.ip2 >> stack.tcp) + Pred(
16 (stack.ip2.psm.dump | stack.ip2.psm.last) & (stack.ip2.header.protocol == 6)
17 )

Appendix D Peephole Optimizations

D.1 Direct Fast Forward
Pattern: CreateInst→ InsertSeq→ Assemble
Analysis: CreateInst creates a new instance. As such, the sequence must be empty and InsertSeq will insert the first block, which will be

directly ejected by Assemble. To this end, the insertion is redundant and the assembled data is identical to the payload of this packet. To this

end, the insertion and assemble instructions can be removed, and all the reference to p.sdu in this code block can be replaced with p.payload.
Output: CreateInst , and references to p.sdu in this code block can be replaced with p.payload, e.g., NextLayer(SDU) should be modified

to NextLayer(Payload).

D.2 Fast Forward
Pattern: InsertSeq→ Assemble
Analysis: Fast Forward optimizes the assemble operations for existing instances. To be specific, we could make a fast peek to the sequence

before we insert the block: if the sequence is empty and the block’s meta is aligned with the sequence’s window, this block can be fast

forwarded, i.e., passing the payload instead of SDU; otherwise the code maintains the same.

Output: If(IsEmpty&IsAlign)→(replace SDU with payload) → Else→ InsertSeq→ Assemble

D.3 Fast Assemble
Pattern: InsertSeq→ Assemble and without any NextLayer and Callback

Analysis: The false branch of the Fast Forward optimization means the current sequence is not empty or the current block is not aligned

with the window. We can further optimize this branch, if it has no external function call, i.e., NextLayer and Callback . Specifically, if the

packet sequence is implemented using linked list like libnids, Assemble that collects the continuous blocks will invoke several times of data

copy. However, if there is no external function that needs the assembled data, such copy is useless and can be eliminated. On the other hand,

if the packet sequence is implemented using ring buffer like mOS, the data copy is still necessary when there are holes in the sequence and

memory compaction is performed. In such cases, Assemble instruction can be eliminated. Note that we cannot eliminate InsertSeq, because

this block may be useful for next packets’ assemble in other branches.

Output: Remove Assemble .

D.4 Fast Destroy
Pattern: CreateInst→ DestroyInst
Analysis: If an instance is created and destroyed by the same packet, it means that such instance will not impact any permanent data, and all

sequence and PSM operations are meaningless. As a result, we can eliminate such creation and deletion as well as most of the instructions

between them, except Callback and NextLayer.

Output: A mostly empty instruction block except Callback and NextLayer.
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Abstract
Today’s dataplane programming approach maps a whole P4
program to a single dataplane target, limiting a P4 program’s
performance and functionality to what a single target can of-
fer. Disaggregating a single P4 program into subprograms
that execute across different dataplanes can improve perfor-
mance, utilization and cost. But doing this manually is tedious,
error-prone and must be repeated as topologies or hardware
resources change.

We propose Flightplan: a target-agnostic, programming
toolchain that helps with splitting a P4 program into a set
of cooperating P4 programs and maps them to run as a dis-
tributed system formed of several, possibly heterogeneous,
dataplanes. Flightplan can exploit features offered by differ-
ent hardware targets and assists with configuring, testing, and
handing-over between dataplanes executing the distributed
dataplane program.

We evaluate Flightplan on a suite of in-network functions
and measure the effects of P4 program splitting in testbed
experiments involving programmable switches, FPGAs, and
x86 servers. We show that Flightplan can rapidly navigate
a complex space of splits and placements to optimize band-
width, energy consumption, device heterogeneity and latency
while preserving the P4 program’s behavior.

1 Introduction
Different kinds of hardware can be leveraged to make net-
works programmable, including CPU-based servers running
“software-ized” Network Functions (NFs), NPUs, FPGAs and
programmable ASICs. Although these hardware targets have
complementary strengths when it comes to performance, flex-
ibility, and power utilization, it is difficult to combine their
strengths. Many NFV frameworks are CPU-centric, and chain-
ing services across diverse hardware usually treat the hard-
ware’s capabilities as a black box. This is partly because
toolchains for NPUs, FPGAs, and ASICs are alien to most
software developers.

Code, documentation, tests and data can be downloaded from:
https://flightplan.cis.upenn.edu

Logical
Disaggregation

Dataplane program
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CB

D E

Network
controller

Linkage
1

Physical mapping2

3
A

A

B
D

C

E

E
B CServer

Switch

FPGA

Figure 1: In this illustration, a program is split into 5 logical
parts, A-E. À A program is annotated with logical delimiters,
manually or automatically. Flightplan splits the program into
complementary parts using these annotations and provides
coordination and linkage code between these parts, which the
Flightplan control program configures at runtime. Á Each part
of the original program is mapped to a physical device. In this
illustration, A is mapped to Top-of-Rack (ToR) switches, B, C
D, and E to network-attached FPGAs, and redundant instances
of B, C, and E are mapped to execute on server CPUs. Â The
Flightplan control program can alter the program’s linkage at
runtime, to use different hardware targets, mitigate faults, or
balance load.

While P4 is emerging as a common language for program-
ming dataplanes across programmable ASICs, NPUs, FPGAs,
and CPUs, P4 programs are limited to what can be run on a
single target because they are programmed in an approach that
maps a whole program to a single dataplane. This approach
limits a dataplane program to what can be computed using a
single target’s resources and capabilities.

Through testbed experiments we measured how splitting
a single P4 program into subprograms that execute across
different dataplanes can improve performance, utilization and
cost (§2, §7.2.3).

In principle, one could write a set of P4 programs that
execute jointly across different dataplanes, combining their
strengths. Further, P4 could be used as a convenient syntax for
both NF authoring and for NF composition across different
types of hardware. This set of P4 programs would be written
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to follow this pattern:
• If the dataplane program exceeds the resources provided

by a single hardware target, then part of the program
could be disaggregated to run on additional targets.

• If the dataplane program exceeds the capabilities pro-
vided by a class of targets, it could be disaggregated to
run on two or more heterogeneous targets (e.g., ASIC
and FPGA).

• Redundant spares can be provisioned for quick fail-over,
leveraging the best available hardware for a given data-
plane program.

However, writing distributed P4 programs manually is te-
dious and error prone. Current dataplane programming ap-
proaches lack abstractions for inter-program communication
and mechanisms such as RPC [5] across different in-network
functions. This complicates the implementation and com-
position of sophisticated in-network services because data-
plane programmers are burdened with having to write and
manage such coordination explicitly. It is also laborious to
re-distribute the P4 program when new equipment or NFs
become available.

We propose and evaluate Flightplan, a target-agnostic, P4-
based programming toolchain that disaggregates P4 dataplane
programs into a set of dataplane subprograms and runs them
as a distributed system formed of several, possibly heteroge-
neous, dataplanes. It uses hardware performance and resource
profiles to plan the allocation of subprograms onto dataplanes
in the network on which to execute. The composite behavior
of the resulting distributed dataplane program is the same as
the original program; coordination and synchronization code
is provided by the Flightplan runtime.

We reduce the P4 program, hardware performance profiles,
and network topology constraints to a common rule-based
formalism that Flightplan uses to map parts of the original
program to dataplanes in the network. Through evaluation
we show that it rapidly navigates a complex space of con-
figurations which are then ranked according to the sought
optimization criteria, and show that several disaggregated pro-
grams can be run simultaneously in the same network.

Figure 1 sketches our approach. It uses unmodified, com-
modity hardware and does not require changing the P4
language. A key enabler of this approach is that P4 en-
joys toolchain support to target diverse hardware: ASIC [3],
FPGA [23, 37, 38], NPU [24], and CPU [25]. These diverse
targets’ toolchains are based on P4’s reference compiler [26],
which we extend in our prototype. Unlike traditional NF ser-
vice chaining [28], Flightplan works over diverse hardware.

We summarize our key contributions as follows:
• Dataplane program disaggregation. (§2) We propose

the concept of dataplane program disaggregation and
provide a motivating use-case. We show how disaggre-
gation enables better utilization of existing resources.

FEC-
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Query/Update
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Lossy 
egress? FEC encode

FEC decode
Emit

Y

N

Y

N
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Compressed 
header? DecompressY

N Overloaded 
egress link? Compress headerY

N

N

Figure 2: Our example dataplane program, Crosspod.p4,
shown as a flowchart for compactness. The colored dashed
rectangles surround functions that one might need to offload
to other dataplanes in the network to free up resources on the
switch, or because they exceed the computational abilities of
the switch.

• Automation for disaggregation. (§3) We present a
novel approach that partly automates dataplane disaggre-
gation and does not require changes to the P4 language
or to hardware targets and their toolchains. We extend
the open-source P4 compiler to implement a program an-
alyzer (§4) that discovers resource-use and dependencies
that must be preserved once the program is split.

• Flightplan runtime support. (§5) We describe the re-
quirement of in-dataplane and out-of-dataplane runtime
support for disaggregated programs and how the runtime
influences the process through which programs are disag-
gregated. We explore the design space by implementing
3 runtimes for Flightplan, offering different trade-offs
between features and overhead.

• Flightplan planner. (§6) We implemented a prototype
tool that generates configuration plans for disaggregated
programs.

• Evaluation. (§7) We present a detailed evaluation of
different aspects of this work, including testbed ex-
periments involving heterogeneous hardware and mi-
crobenchmarks to measure resource transfer and disag-
gregation overhead.

2 Motivating Example: Crosspod
Crosspod.p4 is an 800-line P4 program, sketched in Fig. 2,
that will provide a running use-case. After describing how
Crosspod.p4 works, we describe the process of disaggre-
gating it into several subprograms to run on three different
classes of hardware.

We wrote Crosspod.p4 to improve network reliability and
performance using caching, compression, and forward-error
correction in a way that is transparent to applications and
users. Figure 3 shows its execution. Figure 4 shows two ex-
amples of disaggregation for this program.

572    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



GET

KV serverFEC decode +
KV cache

Header decompress
Header compress + 
monitor link health

GET

KV client KV cache +
FEC encode

1

2

3

4

5
6 7

Figure 3: À Key-Value (Memcached) client generates a GET
request (yellow packet) which it puts onto the network for
the KV server to respond to. Á A transparent, rack-level in-
network KV cache is consulted. Â In the event of a cache miss
then the request is relayed onwards. The switch compresses
its header, and upon detecting that the request shall cross a
lossy link, it activates link-layer FEC which is computed in
the network using reconfigurable hardware. Ã The KV packet
and FEC-related redundancy (pink packet) cross the channel
to the next switch. Ä Lost packets can be recovered during
FEC decoding. Å The packet’s header is decompressed. A
second inline KV can be consulted, to take pressure off the
host-based KV server. Æ If all the caches were missed, then
the request finally reaches the KV server, which sends its
response back to the requesting client.

In-network functions. Crosspod.p4 invokes a set of in-
network functions to achieve its goal. Some of these functions
are external to P4, and we implemented them to run on dif-
ferent types of hardware. In our example dataplane program,
reliability is improved by (1) using forward-error correction
(FEC) to mitigate faulty links; (2) application-specific caching
to lessen congestion; and (3) header compression to lessen
congestion. The performance of the network is improved
by (1) reducing link utilization (through caching and header
compression), (2) reducing latency (through caching closer to
clients), and (3) reducing server utilization (through caching).
In particular, caching is directed at Key-Value (KV) queries,
a staple service in modern datacenter systems [10, 18, 21, 35].

Why Dataplane Disaggregation. In this example dataplane
program, we combine in-network functions that cannot en-
tirely be carried out within a single type of hardware for the
following reasons: (1) resources: we cannot run the program
entirely on a programmable switch ASIC because some of the
functions (e.g., layer 2 FEC) exceed the computations that can
be carried out in state-of-the-art devices, which typically do
not include payload processing; (2) performance: we cannot
run it entirely on an FPGA because this would severely con-
strain the throughput of this program. ASICs often support
higher I/O bandwidth per chip and use less silicon for the
standard dataplane switching operations, resulting in fewer
or less expensive chips to handle the highest throughput data
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Figure 4: Two ways of splitting the program from Figure 2
between two devices: in Scenario 1 a single function is of-
floaded from the switch (Device A) to an FPGA board (Device
B) that immediately returns control back to the switch after
executing the function; in Scenario 2 a segment of the dat-
aplane program is offloaded from the switch to the FPGA,
which carries out several functions.

movement; (3) expense: even if we could place a program
entirely on a single hardware dataplane, we do not want to
use up resources unnecessarily and would prefer to move
less-traversed code to a less expensive dataplane (e.g., an end-
host). Conversely, if we have underutilized FPGAs, then we
might prefer to use them rather than an end-host to save on
power and cooling costs [14]. Last, (4) availability: we might
want to failover quickly and autonomously from centralized
monitoring and reconfiguration, by installing logic into the
dataplane for self-management.

Why Automate Dataplane Disaggregation? Disaggregat-
ing a program involves i) deciding how to split it, ii) adapting
the derivative subprograms to hand-over to one another, and
iii) placing the subprograms on targets in the network.

Table 1 shows different characteristics of different hard-
ware targets when executing the same function on the same
workload. Automation spares the network operator from hav-
ing to manually pick hardware combinations and track their
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Throughput (Gbit/s)
Power (W)

Compression FEC KV Cache
P.ASIC 9.07 - - 110.5
FPGA 8.35 7.95 7.73 27.3

CPU 0.10 0.04 - 140.6

Table 1: Maximum Throughput and Average Power of net-
work functions running on different hardware. Dashes indi-
cate that we do not have implementations for network function
to run on a particular target.

utilization.1 In addition to power and performance, Flightplan
can optimize for unit cost, utilization and latency.

The difficulty of this task is compounded by the likelihood
that the choice of programs, topologies and target devices will
change over time, requiring the whole process to be redone.
If several programs are being disaggregated, then it becomes
more challenging to optimize their placement jointly. Further,
placement constraints and objectives may change over time,
too: changing priorities over which links to protect with re-
dundancy for example, or which traffic to compress, might
require different function placements in the network.

This practical difficulty makes a strong case for automat-
ing dataplane disaggregation. But automation needs to be
done carefully to avoid incurring the theoretical complex-
ity of the automatic disaggregation problem. We estimate
this to be exponential in the number of targets available on
which to map subprograms and doubly exponential in the
number of subprograms.2 Flightplan uses heuristics to avoid
this blow-up and our prototype also emits coarsening advice
to opportunistically decrease the split granularity to better
utilize the available hardware.

Deployment practicalities. The design and evaluation of
Flightplan addresses the following practical considerations:
(i) Multiple disaggregated programs can be used in the same
network simultaneously: our evaluation in §7 describes how
we ran 10 P4 programs in the same network, 6 of which were
disaggregated, and of which 4 were different disaggregations
of the same program. (ii) Upgrades can be done in a phased
manner, as standard in deployment [34], by running the old
and new versions of software simultaneously in the same
network as described above. (iii) Debugging is done using
standard techniques—inspecting packet traces, counters, etc.—
complemented by using the Flightplan control program (§5)
to conveniently query Flightplan-specific state of the disag-
gregated program across all the dataplanes on which parts of
it are running. (iv) Failures can be detected and handled by
Flightplan runtime support inserted into the dataplane itself
or by remotely using the control program.

1More detailed information is provided in Table 3 in Appendix B.
2The full calculation is given in Appendix C.

3 Flightplan Overview

Flightplan produces a sequence of plans, consisting of a dis-
aggregation of a dataplane program into multiple programs,
and the allocation of these programs to dataplanes in the net-
work. A plan targets the Flightplan runtime which provides
the facilities to configure, start, and execute the disaggregated
program. The role and design of Flightplan’s runtime support
is detailed in §5.

In this section, we outline all the inputs and outputs of
Flightplan before going into more detail in the sections that
follow. Figure 5 illustrates our workflow. À We start with
a P4 program and segment it. Segments are sequences of
statements from the original program and provide the planner
with the smallest granularity of program parts that it can then
map to different targets. Figure 5 shows the program being
decomposed into five segments as an example, labeled A-E.
The then and else blocks of an if statement can go into
separate segments, as hinted in the drawing in Figure 5 where
segment A branches to B and C.

Programs are currently segmented manually, but this could
be automated in the future. Segmentation consists of insert-
ing additional lines in the program that are interpreted spe-
cially by our extension of the P4 compiler to delimit segment
boundaries (§4.1.1). Á Our P4 compiler extension analyzes
segments to generate a set of Prolog-like rules that expresses
an abstract program completely automatically (§4.1.2). The
abstract program consists of a DAG of segments, with P4 code
replaced by the abstracted resources it depends on. Abstracted
resources, such as tables and external functions, might not
be available on all hardware or might have different capacity,
power, throughput, and latency characteristics when invoked
on hardware.

Â The abstract resource semantics is an additional set of
rules used to check whether a dataplane satisfies a segment’s
resource needs. We use these rules to encode the performance
profile which was summarized in Table 1. The contents and
generation of rules is explained further in §4.

Ã The planner is provided with a description of the net-
work, including topology and device information, expressed
in the same formal language used for our abstract semantics,
and Ä objectives to optimize, consisting of variables changed
by the abstract resource rules—such as Rate in Rule 1. Å If
the constraints can be satisfied for the given topology, abstract
resource rules and segmented program, then the planner will
lazily and exhaustively generate all plans to optimize objec-
tives. A plan consists of three components. The allocation
model describes how the abstract state—such as packet size
and latency—is modelled to change as the program executes
across dataplanes. This is used to understand the allocation
that the planner has found. The annotated program consists
of the original program with possibly coarsened segments,
reflecting how the segments are going to be split into subpro-
grams. In this example, segments B and C are united into F
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Figure 5: Flightplan’s workflow, described in §3.

CPU Rate < 2×108

PacketSize > 1000
header_compress


Lat. 7→ Lat.+7.4×10−3

Rate 7→ Rate× 189.9
194.75

once Power 7→ Power+150W
once Cost 7→ Cost+5


Rule 1: This rule states that we can execute Header Compres-
sion (HC) on packets if we are running on a CPU, and the
throughput and packet size are within given bounds. We form
different rules to describe the same function operating under
different bounds—e.g., different Rate or PacketSize—and on
different hardware targets, such as our FPGA implementation.
If this rule can be used then the effect of executing HC in
this instance is shown in the [. . .]-enclosed finite function on
user-defined R-valued variables. In addition to adding latency
(Lat.), the function reduces Rate because of its compression
of network traffic. ‘once’ indicates that a function is only
executed once whenever using a specific target—in this case
using an x86 server raises power estimate by 150 W regard-
less of how many segments are allocated to that particular
target. ‘Cost’ is a normalized unit cost we use for different
types of devices on our network. The [. . .]-enclosed function
is allowed to mutate the planner’s representation of the pro-
gram’s state, modelling the effect of invoking the resource.

for mapping to the same dataplane. Finally, the control pro-
gram profile will be used by Flightplan’s control program to
configure the distributed program’s runtime, start it, and query
its state. The profile contains port, state information, and seg-
ment information, and is specific to a disaggregated dataplane
program. Æ The annotated program is split into subprograms.
This process involves augmenting each segment with a copy
of the Flightplan runtime to configure, test, and hand-over
between these programs. Some dataplane functions may be
external to the P4 program, such as the FEC from the previous
section. Flightplan treats such functions as black boxes, and
it does not generate non-P4 code for specific targets, such
as FPGAs or CPUs. Ç The program segments are compiled
using the target-specific toolchain provided by the target’s
vendor. È The control program configures the Flightplan run-
time of each target on which a segment is allocated by linking
the segments together: i.e., indicating on which port to hand-
over to its peer segments. Once the system’s configuration is
complete, the control program can start its execution.

Listing 1: Snippet from Crosspod.p4 (§2) showing an exam-
ple segmentation. Highlights show segmentation annotations
in orange and resource-related syntax in green.
1 bit <1> compressed_link = 0;
2 bit <1> run_fec_egress = 0;
3 ...
4 flyto(Compress);
5 // If heading out on a multiplexed link, then header compress.
6 egress_compression.apply(meta.egress_spec , compressed_link);
7 if (compressed_link == 1) {
8 header_compress(forward);
9 if (forward == 0) {

10 drop();
11 return;
12 }
13 }
14 flyto(FEC_Encode);
15 check_run_FEC_egress.apply();
16 // If heading out on a lossy link, then FEC encode.
17 if (run_fec_egress == 1) {
18 ...
19 classification.apply(hdr, proto_and_port); // Sets hdr.fec.isValid()
20 if (hdr.fec.isValid()) {
21 encoder_params.apply(hdr.fec.traffic_class , k, h);
22 update_fec_state(hdr.fec.traffic_class , k, h,
23 hdr.fec.block_index , hdr.fec.packet_index);
24 hdr.fec.orig_ethertype = hdr.eth.type;
25 FEC_ENCODE(hdr.fec, k, h);
26 ...

4 Rules in Flightplan

Rules of different kinds play a central role in Flightplan. These
rules are combined to describe the abstract semantics of a P4
program and how the resources it needs to use are satisfied
by hardware targets in a network.

Steps Á, Â and Ã in Figure 5 involve producing rules for
the planner to use. This section describes the content of these
rules and how they are generated.

An important design feature in Flightplan is that rules do
not have to be encoded literally by users. As explained in
this section, rules are either created automatically from P4
programs by the Flightplan analyzer, or are generated from
a table that describes the network and profiles of devices in
the network. This input is then automatically converted into
rules based on Definite Horn clauses [9] that rely on a simple
propositional language that is explained further in §I.

4.1 Abstract Program

Our P4 program analyzer turns a P4 program into an abstract
form consisting of a set of Prolog-like rules. To better describe
the generation of rules for step Á we first elaborate on step À.
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4.1.1 Program Segmentation

Step À involves adding demarcating statements to P4 code.
These statements consist of calls to the special function
‘flyto()’, passing it a unique name to be used for the new
segment. A segment extends until the next flyto() or the con-
trol block’s end, whichever is reached first. flyto() statements
have no effect in P4, they are interpreted by our P4 com-
piler extension which we refer to as the Flightplan analyzer.
These statements provide syntactic markers that define the
sub-program granularity for the rest of the planning process.
Enclosing the whole program in a single segment is a degen-
erate segmentation that will require the planner to place the
program entirely on a single dataplane for execution while
satisfying all other constraints.

The snippet in Listing 1 shows three segments beginning
at lines 4, 14, and implicitly at line 1. The first segment is
named FlightStart by default.

Segmentation is done manually by the programmer or auto-
matically by a tool. In our prototype the programmer manually
segments the code, and subsequently the planner will merge
contiguous segments if they are to be placed on the same
dataplane.

Once a segmentation has been made, the Flightplan ana-
lyzer discovers data-dependencies through static analysis of
P4 code and determines whether a segment break is allowed
for the intended runtime. Flightplan runtimes will be detailed
in a later section.

4.1.2 Program Abstraction

For a given segmentation we next generate rules in step Á.
We devised a framework for abstract semantics for P4 that
is focused on resource dependence. Each segment is reduced
to the resources it needs to execute, and everything else is
abstracted away. In Listing 1 such resource-related syntax is
highlighted in green.

The Flightplan analyzer is a P4 compiler extension that car-
ries out static analysis of P4 code to gather which resources
are relied upon by each segment. Resources include invoca-
tion of external functions and table lookups. The analyzer
then automatically generates a Prolog-like [36] set of rules
for that segment. We call the collection of segments’ rules
the abstract program (§4.1) derived from the original P4 pro-
gram. The abstract program is emitted into a JSON file that
the analyzer parses; users do not need to write, inspect, or
change the contents of this file.

One rule is generated for each segment and describes the
resources used along each path through that segment.

Rule 2 describes the third segment from Listing 1 (Lines 4-
13). In this case there are three paths through the segment:
lines (5-7,13), (5-9,12,13), (5-13), and Rule 2 is showing the
path whose requirements subsume those of other paths. The
analyzer emits the resource requirements of each path, and

egress_compression header_compress drop
Compress

[Id]

Rule 2: Program segments are abstracted into rules showing
resource dependence. This rule states that segment Compress
can be mapped if the target dataplane can provide implemen-
tations of egress_compression, header_compress and drop:
these are satisfied by means of other rules that are provided
at input. We saw a rule for header_compress in Rule 1. Id is
the identify function: using this rule does not mutate abstract
state.

CPU Rate < 8×107

PacketSize > 1050
fec_decode


Lat. 7→ Lat.+0.09×10−3

Rate 7→ Rate× 64.47
77.36

once Power 7→ Power+150W
once Cost 7→ Cost+5


Rule 3: Abstract resource rule for running fec_decode on a
CPU.

the planner (§6) checks these are satisfied before allocating
that segment to a prospective execution target.

4.2 Abstract Resource Semantics
In step Â we supply the semantics of each program-used
resource, such as calls to external functions, in terms of the
measurable costs incurred for a program to use that resource
on a specific hardware target. Such costs include latency,
throughput, power, and the cost of the hardware.

In our prototype, the user encodes this information as a
table of CSV entries, and can reuse this information across all
invocations of Flightplan. A script then turns this table into
a JSON encoding of the rules that are used by the planner.
The measurements in these entries are derived empirically
using the workflow described in §J. This involves carrying
out profiling experiments that measure the characteristics of
using resources on different hardware targets.

Rule 3 shows the characteristics of applying our FEC de-
coding function on a CPU. Rule 4 in §I shows a rule for
applying Header Compression on an FPGA. Compared with
Rule 1 it supports much higher throughput over smaller pack-
ets. Our table can be refined to include more details about
the specific CPU and FPGA parts that were used, and capture
other information about the target or the workload, without
changing our general approach.

4.3 Network Representation
In step Ã, the last set of rules states facts about the topology,
the devices it comprises, and their ports. For example, that
the proposition “CPU” holds on a specific network element,
or the bandwidth limit of a specific port.

For a given port π, we gather facts in a set called πProvides.
We also associate constraints with π that must be satisfied for
π to be crossed. We call this set πRequires. 3

3Examples of π properties are given in §I.
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In our prototype we use JSON to encode the network’s
topology and the capabilities of each device and port. We
reuse this information across all our invocations of Flightplan,
and it only need to be changed when the network hardware or
topology change.

5 Flightplan Runtime Support
A disaggregated program cannot function without runtime
support. At the very least, the runtime provides the gluing
code to link different parts of the disaggregated programs
together for the computation to flow through them as it would
in the original program.

The choice of runtime needs to be made first since it influ-
ences the rest of the process. This choice is communicated to
the analyzer and splitter (§6.4). In Flightplan, the following
information is in scope for the runtime to manage: (1) runtime
metadata, such as (1a) which part of the program needs to be
executed next, (1b) values of live variables to be preserved
across dataplane hand-overs, (1c) state related to in-dataplane
failure detection and handling, and (2) switch metadata—such
as ingress and egress ports, since these might be read or writ-
ten during the program’s execution, including table lookups
and actions.

There are different choices of runtime features and ways of
implementing them. Our different runtime implementations
show how the core idea in Flightplan—that of programmable-
dataplane disaggregation—spans a design space and not a
single implementation.

5.1 Runtime Design
Runtime support for Flightplan consists of two components,
the first running outside the dataplane and the second run-
ning inside it. The first is a control program that configures
the latter and queries its state. Configuration information is
stored in register values and table entries used by the sec-
ond component to support the execution of each segment
of the distributed P4 program. In our prototype, the control
program—called fpctl—emits dozens of commands to the
P4 controller, which in turn interacts with the dataplane. The
inputs to fpctl consist of the network topology, the con-
trol program profile, and a command (such as configure or
start) and its parameters.

The second component runs inside the dataplane and must
be written in P4. It is combined with each constituent of
a distributed P4 program. In Fig. 1, each constituent A-E
would be instantiating the same runtime, albeit in possibly
heterogeneous dataplanes.

5.2 Runtime Diversity
We developed three runtimes, each representing a different
point in a design space. The three are called ‘Full’ (§5.3),
‘Headerless (IPv4)’, and ‘Headerless’. We use fpctl to inter-
act with all of them. All our implementations use standard fea-

tures of P416 and target the simple_switch BMv2 target [25],
whose features intersect with most P4 devices.

The Full runtime uses a special Flightplan header, but the
other two do not. Our IPv4 headerless approach steals bits
from the IPv4 Fragment Offset header for Flightplan state.
However, we found that this was not always usable since not
all of our network traffic has IP headers—specifically the
FEC parity frames lack these. This spurred us to develop a
completely headerless approach, described in §5.4.

Recalling the example from Listing 1, the Full runtime
allows us to preserve the value of meta.egress_spec by se-
rializing it into the Flightplan header during hand-over. We
can alternatively use the Headerless runtime since, while pre-
serving switch metadata such as meta.egress_spec is gen-
erally not possible in our Headerless approach, we encode
this information in the wiring and table entries. This limits
the behavior of the original program, trading off flexibility
for less overhead, since the Headerless approach essentially
creates a circuit through dataplanes.

For a further example of how the Full runtime allows more
flexibility for segmentation, we could add a flyto() between
lines 6 and 7 in Listing 1. The Full runtime allows us to
hand-over the value of compressed_link from Compress to
the new segment, but the Headerless runtime would not be
able to support this segmentation.

5.3 Full Runtime
The Full runtime provides the most flexibility and resilience
among our runtimes. It uses a custom header to accommodate
all of the features (1a-c,2) listed earlier in §5. The header’s
definition is provided in §D.

The header consists of two kinds of fields: scratch space
in which metadata and program variables are serialized and
state fields for encoding status flags and values, such as which
segment from the original program is to be executed next.

Part of the distributed program might be unreachable be-
cause of network or node failures, thus compromising the
overall program’s execution. This runtime implements a feed-
back loop between connected dataplanes to push fault detec-
tion and handling into the dataplane. The details are in §E.1.
fpctl can be used to query the runtime’s state, for instance

to find out if it is close to meeting a fail-over threshold, or if
it has failed-over. It can also overwrite this state and force a
fail-over remotely.

5.4 Headerless Runtime
This approach does not encode any state about the ongoing
computation across dataplanes. Consequently this runtime
provides less flexibility than the ‘Full’ approach: metadata
is not preserved, it does not support in-dataplane failure de-
tection and handling, and values of live variables are not
preserved—thus segments must be coarser to avoid needing
to hand-over the variables’ values. This runtime is described
further in §E.2.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    577



X1 X3

F1 F3

H1 X2 X4

F2 F4Hn

J1

Jn

LS1 S2

(a) Shortest path from H1 to J1.

X1 X3

F1 F3

H1 X2 X4

F2 F4Hn

J1

Jn

LS1 S2

(b) A detour path from H1 to J1.

Figure 6: Abstract network used for running example in §6.

To compensate for the lack of header, we rely on the ingress
and egress port information. An interesting consequence of
the Headerless approach’s feature-paucity is that it can be
made to work with older SDN switches that are not P4 pro-
grammable. To enable this, fpctl generates flow-table con-
figurations from the control program profile. We report on the
use of non-P4 SDN switches in our testbed evaluation.

6 Flightplanner
Flightplan combines graph-based and formal methods to find
execution plans for disaggregated programs over dataplanes
in the network.

Execution of the disaggregated program occurs along paths
in the network, and therefore the planner needs to be told
about the network’s topology and hardware capabilities. Fig. 6
resembles our physical testbed and is used in this section
to help explain an execution plan. In this network, Si are
switches, Fi are network-connected FPGA boards, Xi are CPU-
based network elements that can run P4 programs, and Hi and
Ji are servers to which P4 programs cannot be offloaded.

Flightplan explores resources around switches to carry out
detours in the forwarding along dataplanes onto which some
of the computation can be offloaded as shown in Fig. 6b. In
this example S1 offloads computations to F1 and X3, and S2
offloads to F2.

6.1 Abstract Program State
The planner maintains a small amount of state as it explores
plans. This state consists of values for a special set of vari-
ables V that appear in rules, such as PacketSize and Rate.
Using these variables we form Bound expressions such as
PacketSize > 1000 from Rule 1.4

The abstract program state θ consists of a total map V →R
that encodes the value of each V at one instant during the
program’s execution. The values of V can be transformed by
rules in their [. . .]-function, while the values of propositions
can only be derived through proof, as will be explained shortly.
During the planner’s execution, all Bound expressions are
ground, making the evaluation process straightforward.

6.2 Proof-based Segment Allocation
Producing a plan involves two kinds of inference: (i) deciding
whether a given dataplane can execute a given segment in

4Further details of our modeling language are in §I.

R2
R5
θ,πProv. CPU

egress_compres. R1

θ,πProv.
CPU Rate < 2×108

PacketSize > 1000
header_compress R6

θ,πProv. CPU
drop

Compress

Proof 1: Flightplan may allocate segment Compress to π only
if a proof can be derived using θ, program+resource+network
rules and πProvides.

a way that satisfies all related constraints; and (ii) finding
a plan—a sequence of dataplanes over which all of a pro-
gram’s segments are executed. This section describes how
item (i) is done in Flightplan. The next section builds on this
to describe (ii).

For a given port π (§4.3), to decide whether a segment Seg
can be mapped to π’s dataplane, we need to do two things.
First, ensure that all of π’s constraints are satisfied. For exam-
ple, the current transmission rate must not exceed the ports
limit. Second, we use facts provided by π to ensure that Seg
is derivable from the rules we have available. For example,
all external functions called in Seg must have viable imple-
mentations once they cross that port.

This derivation involves building a Prolog-style formal
proof. For example, if πProvides = {CPU} then Compress is
derivable as shown in Proof 1 if θ satisfies the bound-related
constraints of the rules used in this derivation.

In addition to obtaining assurance that a target can execute
a segment, we use proofs to compute the transformations
of abstract program state. This involves composing the [. . .]-
enclosed functions by doing a post-order traversal of the proof
tree, then applying this function to the search state θ to obtain
the new search state. For Proof 1 the state transformation γ is
γ = γR2 ◦ γR6 ◦ γR1 ◦ γR5

6.3 Plan-finding
Given a DAG of abstract program segments (§4.1) we search
for a succession of dataplanes that packets can be made to
traverse such that all program segments can be executed over
those packets. Since devices in the same class are identical,
we factor the solution space by the different device classes
to avoid returning quasi-duplicate solutions. The user can
choose whether they want the best solution—by having the
tool explore all possibilities. Alternatively, they are given the
solution found using a simple greedy heuristic on optimization
objectives—for example, by choosing the next dataplane that
least increases latency.

The network operator needs to provide three additional
pieces of information: (i) an initial abstract program state
θ0 (§6.1), (ii) the switch on which the disaggregation pro-
gram’s execution will be centered (e.g., S1 in Fig. 6), and
(iii) the set of devices to which the switch may offload to (e.g.,
{F1,F3,X1,X3} in Fig. 6).

The planner carries out a breadth-first search while attempt-
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ing to allocate segments as described in the previous section.
At each hop it updates the abstract state using γ to compute
an approximation of resource-usage across the network. This
will be used to evaluate constraints in the rest of the potential
plan.

When a plan is found, it is converted into the three outputs
shown in Figure 5. First, contiguous segments that are to be
mapped to the same target are unified into larger, coarser-
grained segments. Second, the allocation model is produced
by emitting the trace of abstract program states and the map-
ping from segment names to targets in the network. Finally,
a profile is produced for use by fpctl—Flightplan’s control
program—to configure, start, and query the disaggregated P4
program. A profile consists of a mapping of generated P4
programs to a subset of the network. Flightplan uses the pro-
file to configure a dataplane target through the target-specific
control plane interface.

6.4 Program Splitting
Next we generate a separate, well-formed and self-contained
P4 file for each segment. The program splitting phase per-
forms three tasks: 1) extract the P4 code from each segment,
forming subprograms; 2) analyze the subprograms to gather
runtime-related context, such as variables whose values must
be included in the hand-over between dataplanes; 3) inject
runtime-dependent code for handing-over between subpro-
grams. These are described further in §K. The Flightplan ana-
lyzer prototype also emits split programs satisfying points 1
and 2. The interfacing to the runtime can be automated in the
future.

7 Evaluation
We evaluate Flightplan using virtual and physical networks to
answer various questions about its features and the implica-
tions of disaggregation choices.

7.1 Scale, Overhead and Disaggregation
We use a virtualized network (§7.1.1) to test logical qualities
of a Flightplan deployment, using P4 applications both that
we wrote and from third-party sources.

To add realism to our experiments, we implemented a gener-
ator for complete configurations of fat-tree networks [1] to run
on our setup, which is built on Mininet [19] and BMv2 [25].
We used k = 4 in this evaluation.

We implemented routing logic for this topology in a
P4 program called ALV.p4. It provides a baseline P4
program that implements minimal functionality in the
network—routing. We embedded it in four other P4 programs:
(i) Crosspod.p4 (§2), (ii) firewall.p4, (iii) qos.p4 and
(iv) basic_tunnel.p4. The latter three are third-party open-
source programs from the P4 tutorial repository [27].

Initially our virtual network had ALV.p4 executing on all
switches. We then installed the other P4 programs on some

p0e0

p0a0

p0e1

p0a1

c0

p1a0 p1a1

p1e1

c1

p1e0

Runtimes Functions/features
ALV.p4

firewall.p4

KV cache

Header compress/decompress

FEC encode/decode

p0h0 p1h0

Full

Headerless

Figure 7: Part of our fat-tree network showing core
routers (cN) and pods (pN[a,e,h]M) containing aggregation
and edge switches, and hosts. Configured as explained in §7.1.
Yellow arrows show which (sub)programs are installed on
each device. Links between devices are shown in grey, except
for links traversed by packets flowing between p0h0 and p1h0,
which are shown in black. Dotted lines show faulty links.

switches and disaggregated them in various ways and to use
different Flightplan runtimes, as described next. All disaggre-
gated P4 programs, including those of third-party programs,
were tested for behavioral correctness by checking that they
produced similar results as the original programs.

7.1.1 Flightplan deployment example

Fig. 7 shows part of our network and the variety
of P4 programs we ran simultaneously on different
switches in the same network. Switches p0a1 (ALV.p4),
p0e1 (firewall.p4), p0e0 and p1a0 (both Crosspod.p4)
run non-disaggregated P4 programs, while all other switches
run disaggregated programs. Of the latter, c0 and c1 use the
headerless Flightplan runtime, and the remainder use the Full
runtime.

Switches that run disaggregated programs are shown with
an adjacent box in Fig. 7 showing the supporting devices
on which parts of the original program were executed. For
example, p1a1 carries out some of its table lookups locally,
while others are offloaded to an associated device. Different
switches can have different numbers of associated devices
over which a dataplane program can be disaggregated—for
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example, c0 has 2 while c1 has 5. The presence and resourcing
of such devices is decided by the network operator. In this part
of the evaluation we treat all such devices as being identical,
but in the next section we distinguish between heterogeneous
devices based on their resources and capabilities.

We also disaggregated qos.p4 and basic_tunnel.p4 and
tested performance overhead in our Mininet-based setup. We
found that the lower-bound overhead to client-perceived RTT
was 8.2%. A more accurate measurement using a hardware-
based experiment, but on a simpler topology, is given in §L.1.

7.1.2 Network Scalability and Operation

The network from Fig. 7 helps demonstrate two features.
First, it shows how the use of Flightplan scales with net-
work size. Since we constrain Flightplan’s planning scope to
only resources adjacent to a switch—as illustrated in Fig. 1—
Flightplan’s scalability is independent of network size in this
network topology. Thus planning can scale to a network con-
taining a large number of switches.

Second, it shows that different Flightplan runtimes and dis-
aggregations can operate simultaneously in the same network,
and that these can be configured and started independently of
each other, to deliver the practical features described at the
end of §2.

7.1.3 Overheads

We compare program-level overheads of dataplane disaggre-
gations. These include overheads on: the network due to
header inclusion, port count, data memory (total register bits,
number of tables and their entries) and code memory (code
from the runtime, and extra branching because of splitting).
Device-level overheads—such as those on throughput and
power—are evaluated in §7.2 based on testbed experiments.

Table 2 shows overheads for two sets of disaggregations of
Crosspod.p4: one set using the Full runtime and the other
using Headerless. In our prototype, the in-network programs
do not respond to MTU path discovery, therefore to use the
Full approach in general we needed to lower the MTU size to
provide headroom for the Flightplan header. This uniformly
reduces network capacity by 2.4% to create enough head-
room.

Program-level overhead can be calculated before compila-
tion, independent of toolchain. The general analysis of both
runtimes’ overheads is provided in §F. If a P4 program is
split to run across several P4 devices, we can calculate the
overhead introduced onto the network and the devices inde-
pendently of the devices’ toolchains.

7.2 Testbed Evaluation
We use a physical testbed deployment to measure device-
level resource and performance impact of Flightplan-based
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Figure 8: Evaluation testbed

disaggregation. This evaluation is based on the Headerless ap-
proach, which gives us a lower-bound on overhead among our
runtime approaches. Using Crosspod.p4 (§2), we: (i) eval-
uate the Flightplan planner, and (ii) measure the end-to-end
performance and power consumption of a heterogeneous dat-
aplane running Flightplan-generated splits of Crosspod.p4.

7.2.1 Experimental setup.

Fig. 8 illustrates our testbed. It contains an EdgeCore Wedge
3.2-Tbps switch with a two-pipeline Barefoot Tofino P4 ASIC,
five 4×10-Gbps Xilinx ZCU102 FPGA boards each with one
Xilinx XCZU9EG FPGA, four traffic generation servers with
8-core Intel Xeon 2450 CPUs, and two network function
servers with 10-core Intel Xeon Silver 4114 CPUs. In our
configuration, the Tofino pipelines act as two independent
switches, S1 and S2, that service different ports and each
have their own dedicated resources (SRAM, TCAM, etc.). All
packets between S1 and S2 traverse a physical 10-GbE cable.
We also evaluate a legacy scenario, by swapping the Wedge
for an Arista 7050-QX32 with a Broadcom Trident II ASIC
and OpenFlow support.

Crosspod.p4 plans. Our benchmarks focus on three plans
output by Flightplan, designed for different objectives.
• “Maximum Performance” optimizes end-to-end per-

formance by placing each function on the fastest avail-
able platform, i.e., header compression on the Tofino and
all other functions on FPGAs.
• “Resource Saver” offloads compression from the

Tofino to the FPGA to save compute and memory re-
sources.
• “Legacy Extender” uses the Trident II in place of the

Tofino to achieve functional equivalence with an Open-
Flow switch.

Measurements. We benchmark four axes of performance:
throughput, packet loss, latency, and power consumption.
Throughput is measured at the application layer, using ei-
ther iperf3 or DPDK-pktgen. We measure packet loss us-
ing the Tofino’s port counters. For latency, we use a simple
telemetry function for the Tofino that timestamps (nanosecond
precision) each packet ingressing or egressing out of moni-
tored ports and clones a digest to a collection server. Finally,
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Feature Runtime=Full Runtime=Headerless
N

et
.

Header (b) 288 0
Ports [D] 1-2 [3] 1-5 [6] 2 [3] 5 [6]

Ex. in Fig. 7 p0a0 p1e0 c0 c1
Seg ID 0 1 2 0 1 2 3 4 5 0 1 2 0 1 2 3 4 5

D
at

ap
la

ne Tables 6 6 5 1 1 5 1
Entries (b) 179 89 89 445 89 154 22 22 230 22

Registers (b) 547 309 309 1261 309 4 4
Ctrl Struct 6 +2 +2 6 +2 2 +1 +1 2 +1

Externs 0 3 2 0 1 0 3 2 0 1

Table 2: Overheads incurred by different disaggregations of Crosspod.p4, organized into Network and Dataplane overheads.
The Externs row does not show overheads, but serves to show the distribution of extern function invocations across the splits. D
is the number of segments. Each segment is given a separate identifier in the Seg ID row to distinguish them in the rows below.
Ports is the number of switch ports that are required: the Full runtime’s use of a Flightplan header allows the use of a single port
(connecting to a single supporting device), while the Headerless runtime requires an exact number of ports. Entries gives the
total size of all Flightplan table entries, in bits. Ctrl Struct is a measure of code complexity of the transformed program, counting
the number of conditional statements introduced by the disaggregation in addition to the runtime’s code.

we measure power consumption of each device at the outlet,
polling at a 200ms interval.
End-to-end benchmarks. We use workloads that mix two
types of flows: 1) large TCP flows (iperf3) representing
traffic with high bandwidth demands and 2) UDP Memcached
request streams representing latency-sensitive traffic. This
workload models the bimodal distribution of packet sizes and
traffic patterns in datacenters [4, 32]. We measure throughput
using iperf3 and calculate latency as the difference between
the time at which a packet ingresses from its source host and
the time at which it egresses to its destination host.5

7.2.2 Flightplan Planner

We used the Flightplan planner to analyze the solution space
for Crosspod.p4. Our evaluation involves 239 rules, divided
as follows: 140 are profile rules including Rules 1, 3, and 4;
68 are network rules (including those in Fig. 17), and the rest
are program rules (including Rule 2).

The network is the one shown around c1 in Fig. 7. We used
this to explore program-segment mappings to the switch and
its supporting devices in such an arrangement. We ran dif-
ferent variants of the experiment to contrast the implications
of using different types of equipment, following the plans
described in §7.2.1.

Fig. 9 summarizes our results, and we evaluate the best-
performing plans on our physical testbed in the next section.
To avoid clutter we exclude “Resource Saver” because of its
hybrid nature between the other two categories, and instead
we show more extreme forms of “Legacy Extender” in the
“Server Offload” family. These rely on a single switch and a

5As well as the end-to-end experiments on Crosspod.p4, we also sepa-
rately evaluate its constituent in-network functions end-to-end in §A.

Figure 9: Best-rated plans found by Flightplan, described
in §7.2.2. In each dimension, less is better. Each dimension is
normalized by the maximum value from all plans. ‘RRate’ is
the inverse of the bandwidth of the distributed program. ‘Cost’
refers to hardware costs and excludes running costs, which are
captured by ‘Power’. ‘Area’ refers to FPGA-resource usage.

pool of CPU-based servers. The latency advantage of “Server
Offload (Tofino)” relative to “Server Offload (Arista)” seems
too optimistic, and we believe that might be because of a lack
of accuracy in the model we use.

7.2.3 Crosspod.p4 Benchmarks

The goal of Crosspod.p4 is to improve the performance of
applications bottlenecked by inter-rack links suffering from
congestion and partial failure [39]. We evaluate how Flight-
plan’s Crosspod.p4 plans achieve this goal in a network with
a 10 Gbps inter-rack link.

End-to-end performance. First, we evaluate the “Maxi-
mum Performance” Crosspod.p4 plan. Fig. 10 shows
application-level performance in a series of trials where the
network functions are activated one by one. The figure plots
the latency and success of GET and SET requests to the Mem-
cached KV store and the throughput of TCP iperf3 sessions,
on two client/server pairs, as illustrated in Fig. 8.
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Figure 10: Throughput, latency and power utilization of a
disaggregated Crosspod.p4. In the top and bottom panels,
lower values are better. In other panels, higher values are
better. Boxes show data quartiles and whiskers show 10th and
90th percentile, aggregated over 5 repetitions.

The leftmost panel in Fig. 10, labeled Baseline, shows
application performance with no network functions enabled.
Here, the problem is congestion, caused by the iperf3 data
transfers that saturate the inter-rack link. Because of the con-
gestion, application-level Memcached latency is high.

To reduce the impact of congestion, we enable header com-
pression of the iperf3 traffic. This reduces the load on the
bottleneck inter-rack link, allowing queues to drain and thus
reducing latency. As the +HC column of Fig. 10 shows, header
compression reduces Memcached request latency by 97%
without impacting iperf3 throughput. Since Flightplan maps
the compression and decompression functions to the switch
pipelines, no new network devices are required for this addi-
tion, and power consumption does not noticeably increase.

To study FEC, we first model partial link failure by en-
abling a dropping function in the switch that drops 5% of
packets at random on the inter-rack link. The middle panel of
Fig. 10, labeled +Drop, demonstrates application-level effect:
a reduction in throughput to 1.19 Gbps and a loss of 5% of
Memcached packets. The FEC encoder and decoder FPGAs
are then introduced to protect TCP traffic on the link. It re-
stores 57% of the lost TCP throughput, as the +FEC phase of
Fig. 10 shows. Power consumption increases by about 55 W,
reflecting the addition of the two FPGAs.

Finally, we introduce the Key-Value (Memcached) cache
network function FPGA on the client side of the inter-rack
link. The +KV column shows that the approximate 60% cache
hit rate causes median latency of GET packets to reduce to 7 µs
(while leaving the upper quartile above 40 µs) and restores
successful responses to about 60% of previously dropped
requests. SET latency and success are unaffected because the
cache is inline, so these packets must traverse the shared link.
Power consumption increases by another 25 W due to the
addition of one more FPGA.
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Figure 11: Application performance and network power con-
sumption for three different Crosspod.p4 plans. Bars mark
medians, whiskers 5th and 95th percentile.

Alternate plans. Next, we evaluate the viability of other
Flightplan-generated Crosspod.p4 plans. As Fig. 11 shows,
the Resource Saver and Legacy Extender provide almost
identical application-level benefits. All three plans improve
performance in the face of packet loss and congestion, in-
creasing TCP throughput from 1.19 Gbps to 6.25 Gbps and
decreasing median KV’s GET request latency to under 10 µs.

Although all three plans are viable from the application’s
perspective, they offer different benefits for network operators.
As Figure 11 shows, the power consumption of maximum
performance is 50 W lower than the alternatives because it
maps HC to the Tofino, thus requiring two fewer FPGAs.

On the other hand, by offloading HC to FPGAs, Resource
Saver frees compute and memory resources in the Tofino.
Most significantly, it reduces the number of pipeline stages
from 10 to 4, the utilization of stateful ALUs from 25% to
2%, the number of tables from 46 to 11, and the utilization of
SRAM by approximately 600KB per 1024 concurrent flows.

Finally, by targeting the Trident II, Legacy Extender
lets OpenFlow switches achieve similar functionality and
application-level performance as P4 switches. This provides
a path to deploying Crosspod.p4 in networks with limited
programmability [32] or at a lower budget.

8 Related Work
Compared to Active Networking [2,15,33] and related recent
work such as TPP [17], Flightplan leans towards performance
and safety at the expense of flexibility: computation allocated
to each dataplane is established at compile time, rather than
being packet-carried.

Automated approaches to software splitting [6, 13, 22, 30]
are usually done for vulnerability mitigation, whereas Flight-
plan is directed at improving performance and utilization.
Closer to Flightplan, Floem [29] focuses on CPU-NIC co-
processing of network applications, but Flightplan focuses on
packet processing across distributed dataplanes which do not
necessarily include CPUs.

As in network calculus [20] (NC) our reasoning technique
for plans is concerned with flows at steady-state. Flightplan al-
lows using arbitrary functions to describe the transformation γ

of each rule on the abstract state, not only NC’s operators. Fu-
ture work can improve the modeling precision of our approach
and generalize to better characterize workload-sensitive func-
tions such as the in-network cache.
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A Individual Function Evaluation
To validate their effectiveness, we measured the performance
of individual in-network elementary functions—such as FEC,
Memcached caching, and header compression—in our physi-
cal testbed. These functions are instances of protocol boost-
ers [11].

A.1 Function 1: Forward-Error Correction
We developed a forward-error correction (FEC) link-layer net-
work function [12] on FPGA to mitigate against corrupting
links [39]. It introduces parity packets which are used down-
stream to recover corrupted packets. Our implementation uses
a block code, supplementing every block of k (data) packets
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Figure 12: Performance metrics for Memcached with and without the KV-cache function. Markers show median values, while
shaded regions show 5th and 95th percentiles. Success is measured as the percentage of responses received for every 500 requests.
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with h parity packets. The parity allows the in-network func-
tion to reconstruct up to h packets per block. The parity pack-
ets are computed by an implementation of the Reed-Solomon
erasure code.

Forward-Error Correction reduces the need to retransmit
packets in TCP flows and helps TCP sustain larger congestion
windows across corrupting links. This is demonstrated by
Figure 13 for an experiment performed with iperf3 with
10 simultaneous TCP connections. Traffic was encoded with
k = 5 and h= 1. Each bar represents the median throughput of
10 experiments, each of which lasted 1 min. Error bars show
the minimum and maximum. For a packet drop rate of 5%,
we observe that FEC increases the throughput by almost 3×.
At 10% drop rate, throughput has all but vanished, but FEC
manages to recover 40% of the 10-Gbps link capacity.

A.2 Function 2: Key-Value cache

We implemented an inline Memcached cache on FPGA to
accelerate key-value queries. This improves the throughput,
success rate, and latency of a Memcached deployment. The
cache has the capacity to hold 1000 entries in its local hash
table.

It was benchmarked against a standard Memcached server
with default settings, including the use of four threads. Re-
quests consisted of 8-byte keys and 512-byte values. 90% of
requests sent were GET requests, while the remaining 10%

were SET requests. Keys were chosen randomly from 10,000
candidates according to a Zipf distribution with an exponent
of -1, consistent with measurements of document access fre-
quency on the Web [8]. This distribution of request keys
resulted in a cache hit-rate of around 50%.

Figure 12 shows the differential effects of the cache on
SET and GET requests. As SET requests must still reach the
Memcached server before they are acknowledged, the cache
has minimal effect on SET packets, resulting only from the
reduced load on the server. The inline cache keeps the median
latency of GET requests below 10 µs regardless of the request
rate. With the cache in place, approximately 50% less packets
are lost than without the cache, consistent with its 50% hit
rate.

A.3 Function 3: Header compression

We implemented an in-network function on the FPGA, Tofino
and CPU for lossless compression of packet headers between
neighboring switches. Our implementation is a simplified
version of Van Jacobson compression [16] and many fixed-
function implementations [7]. By compressing packets, bursts
occupy less buffer space. Fig. 14 shows this effect for a highly-
utilized (99%) network, as measured on the EdgeCore switch.
Lines show the median, and the shaded region the range, over
a rolling window of 100k samples.

B Single target micro-benchmarks

In addition to the end-to-end benchmarks of network func-
tions, each individual device was also evaluated with fixed-
rate packet replays using DPDK-pktgen.

Table 3 summarizes the maximum throughput and average
latency that each function achieves on the CPU and FPGA
targets.
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Target Function Throughput Latency
(Mbit/s) (µs)

CPU HC Compress 95.2 (0.038) 5800 (33.9)
CPU HC Decompress 198.75 (1.5) 5900 (20)
FPGA HC Compress 8350 (150) 5.24 (0.005)
FPGA HC Decompress 8890 (17) 4.47 (0.002)
CPU FEC Encode 35 (0.23) 300 (1400)
CPU FEC Decode 64.47 (0.007) 90 (5.7)
FPGA FEC Decode 7950 (27) 32.8 (1.4)
FPGA FEC Encode 8130 (18) 4.75 (0.004)
FPGA KV Inline cache 7730 (230) 15.9 (6.7)

Table 3: Throughput and latency values from per-function
and per-target micro-benchmarks. Values shown are mean
and standard deviation.

C Complexity Analysis of Dataplane Disag-
gregation

In this section we calculate the number of ways to
split a program and allocate its splits to execute on
nodes in the network subject to certain constraints.
Starting with the number of ways to split a program,
we abstract this as the number of contiguous subse-
quences {(1, . . . ,k1),(k1 +1, . . . ,k2), . . .(. . . ,n)} of a se-
quence 1, . . . ,n that represents the lines of the program. There
are (n−1) ways to bisect the sequence 1, . . . ,n. Bisecting it
again—to yield three subsequences—presents (n−2) choices.
In the general case, the number of k-ary dissections of an n-
sequence (where k < n) is:

(n−1)× (n−2)× . . .× (n− k) =(
k

∏
i=1

(n− i)

)
∈ O

(
nk
)

(1)

Thus the number of ways to split a program grows exponen-
tially in the number of splits sought.

Turning now to growth relative to the topology. Placement
of subprograms occurs along a path between two hosts on the
network. For simplicity assume that there is a single shortest
path between the two, call it p. Let A(p) be the set of vertices
connected to p through a single edge, we call this the set
of adjacent nodes. Subprograms can be placed along p or
offloaded onto adjacent nodes drawn from A(p). Since we
are deriving an upper-bound, assume that each subprogram
can be placed on any of the elements in A(p) or placed on p.
Let |p| bet the length of path p, and |A(p)| be the cardinality
of set A(p). The set of placement choices is 2|p|+|A(p)|− 1,
discounting the choice where no placement is made on any
node. For a k-split program the number of placement choices
is
(2|p|+|A(p)|−1

k

)
=

k

∏
i=1

(
2|p|+|A(p)|+1− i

i

)
∈ O

((
2|p|+|A(p)|

)k
)

Since in this theoretical model the choices of splitting and

Listing 2: Flightplan header definition
1 #define SEGMENT_DESC_SIZE 4
2 #define SEQ_WIDTH 32
3 #define STATE 8
4
5 header Flightplan_h {
6 // Includes Ethernet header to simplify parsing, and handling by black-box

external functions that aren’t aware of the Flightplan header.
7 bit<48> dst;
8 bit<48> src;
9 bit<16> type;

10
11 bit<SEGMENT_DESC_SIZE > from_segment;
12 bit<SEGMENT_DESC_SIZE > to_segment;
13 bit<STATE > state;
14 bit<BYTE > byte1;
15 bit<BYTE > byte2;
16 bit<BYTE > byte3;
17 bit<BYTE > byte4;
18 bit<QUAD > quad1;
19 bit<QUAD > quad2;
20 bit<QUAD > quad3;
21 bit<SEQ_WIDTH > seqno;
22 }

placement are independent then, modulo the simplifying as-
sumptions, the space of disaggregation choices grows expo-
nentially with the number of targets available on which to map
subprograms, and doubly with the number of subprograms:

O
(

nk
(

2|p|+|A(p)|
)k
)

. �

D Flightplan header
Listing 2 shows the P4 definition of the header which Flight-
plan uses when sending packets between connected data-
planes.

E Runtime Implementations
This section elaborates on the description provided in §5
of our implemented Flightplan runtimes and their resource
overheads.

E.1 Full Runtime
This section expands the description given in §5.3.

To detect network distortion such as drops, reordering, and
duplication, our scheme includes a sequence number in the
Flightplan header. A corresponding amount of state is kept at
the sending and receiving dataplanes to determine whether the
sequence of packets has been interrupted. Negative acknowl-
edgment [31] is used for a downstream dataplane to signal
loss of synchronization with the upstream dataplane. Positive
acknowledgments are used by the upstream dataplane to poll
liveness of the downstream dataplane.

This mechanism sets up a feedback loop between con-
nected dataplanes. Our scheme is illustrated in Figure 15.
Using this scheme we push fault detection into the dataplane,
to react to faults in the network by triggering a relink or esca-
lating a notification.

Among our runtimes, Full provides the most flexibility
when splitting a program: control-flow can be stopped any-
where in the program and resumed later on a different dat-
aplane using context that was serialized into the Flightplan
header. Flightplan has no visibility into dependencies on state
that is controlled from outside the dataplane, such as extern
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Figure 15: À Synchronization state is initialized at down-
stream dataplanes. Á Synchronization state is initialized at
upstream dataplanes. Â Synchronization information is in-
cluded in the Flightplan header (shown in grey) that is added
to packets (shown as the blue square). Ã Sequence number
is incremented. Ä Periodically upstream dataplane will poll
downstream dataplane for activity, by raising the ACK bit in
the Flightplan header, and the ECK (Expecting ACK) locally.
Å ECK is reset when an ACK packet is received. Æ Packets
may be lost in either direction, leading to loss of synchroniza-
tion. Ç Loss of synchronization is eventually detected and
action is taken. Negative acknowledgment (NAK) seeks to
update the upstream dataplane.

function state and tables; those need to be synchronized ex-
ternally.

The runtime keeps track of the following sets of informa-
tion: N (the next dataplanes that a dataplane might transfer to),
P (previous such dataplanes), SN (which fail-over alternative
to use for each next-dataplane), and NF and PF (metadata for
failure detection and handling, such as sequence numbers and
whether an acknowledgement has been demanded).

On each dataplane on which part of the disaggregated pro-
gram is run, fpctl configures dataplanes to fail-over to use
other downstream dataplanes in the event of reaching a thresh-
old of received NAKs or missed ACKs. Both thresholds are
absolute values (not ratios, for instance) that are configured
by fpctl, which can also periodically poll the state of each
runtime to determine if it has seen an increase in failures.
Various actions can be taken depending on such an obser-
vation, for example: i) the threshold could be raised—again,
using fpctl—to buy time to understand the source of the
loss, ii) rate limits could be applied to applications using the
link, iii) the state and configuration of the downstream data-
plane can be inspected or reset, iv) regardless of whether the
cause has been understood or not, the ACK and NAK counts
could be reset periodically if they are no longer seen to incre-
ment regularly. These actions are not directly implemented in
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Figure 16: Core logic of the Headerless runtime.

fpctl but they could be automated by the network operator
by using the functionality provided by fpctl.

If no further fail-overs are possible, then the dataplane shuts
down; in turn, upstream dataplanes will eventually fail-over
to use a different dataplane, if possible, when their threshold
is met.

E.2 Headerless Runtime

The Headerless approach works by building a circuit between
dataplanes. Compared to the Full approach, in which a pro-
gram can be split almost arbitrarily, Headerless provides less
flexibility.

A program is assumed to have three parts: the ingress
subprogram, the forwarding subprogram, and the egress sub-
program. The ingress or egress subprograms, or both, may be
empty. If non-empty, they are segmented for offloading into
supporting devices, which we call helper dataplanes.

Thus the HL runtime differentiates starkly between two
types of dataplanes: the switch, on which the forwarding sub-
program is kept, gets the HLS version of this runtime, while
the helpers get the much simpler HLH part. The HLH part of
the runtime receives offloads from HLS, performs a computa-
tion, and returns control back to HLH . Disaggregations using
HL have a single instance of HLS and potentially several of
HLH . The ingress and egress subprograms, if non-empty, are
executed on a dataplane running HLH .

Fig. 16 shows the core logic of this circuit, which takes
place on HLS. It reflects the three parts in which the pro-
gram is organized: first, one or more ingress subprogram seg-
ments (IN) are executed, after which a forwarding step is made
to determine whether to execute the egress segments (EN).
Upon arrival, if the ingress port is in I then transition 1 is
taken, else if the port is in IN then transition 2 is taken. Oth-
erwise a forwarding decision is made, and if the egress port
is in E then transition 4 is taken, or if the port is in EN then
transition 5 is taken; otherwise transition 6 is taken if the
program’s egress segment does not apply to the egress port.

A consequence of using the Headerless runtime is that
disaggregation must be coarser—only linear segments are
possible, not at DAG, and downstream live-variables must be
included in the same segment that updates the variables. As
a result, the complexity of segmenting is strictly lower than
the general case, as shown in §H. The suitability of using
Headerless runtime with a given segmentation is detected
statically using our P4 compiler extension.
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F Runtime Overhead
Table 4 accounts for the overheads of each approach. The
overheads are described as functions over runtime-specific
parameters described in §E.

The constants in each function were derived by counting the
state used in each runtime, such as the width of registers, and
the width of entries from a table’s P4 specification. Further,
we counted the number of table entries resulting from typical
configuration of each runtime.

For example, the function N ·13 for HL(IPv4)’s total size
of entries (in bits) is derived from the number of entries N—
the number of next dataplanes that a segment might forward
to—which is known at compile time, multiplied by 13 which
consists of 9 bits for the port number and 4 bits for the segment
number. The state used by register arrays is the product of the
array size and the register size. For example, the term (NF +
PF) ·228 contributing to Full’s register overhead consists of
register arrays whose register sizes total 228 bits, one of which
is of size NF and the other PF . The parameters are described
in the previous section and in the table’s caption.

These overheads are not program-specific, but rather they
are additional to the program’s overheads. Also, these over-
heads are per-dataplane, not per-program. So if a dataplane
program is disaggregated into more subprograms then it will
incur more cumulative overhead, but the overhead’s factor
will depend on the runtime involved.

So for example if an L-line P4 program used R register bits
and T tables, whose entries occupied |T | bits, were disaggre-
gated into N subprograms, then if it were to use the Headerless
runtime, each subprogram S would be of size LS +70, where
L
N ≈ LS ≤ L is the subprogram’s line count. HLS would have
R+4 register bits, T +5 tables. Assuming that I = E = 1, and
that half of the N subprograms relates to the ingress segment
(and therefore the other half relates to the egress segment),
we have that IN = EN = N

2 , and therefore the memory needed
for table entries is

|T |+
(
22+ N·22

2 +22+ N·22
2 +10

)
= |T |+N ·22+54

bits. The overhead of HLH can be calculated similarly.

G Complexity Analysis of Headerless Disag-
gregation

Below we define the complexity function C of headerless
disaggregation, in terms of the number of possible choices that
can be made during this process. The asymptotic complexity
of disaggregating a program to use the Headerless runtime is

6In addition to the resources quantified in Table 4, the Full approach
also uses mirroring sessions to provide feedback. One session is used for
each upstream dataplane to which it needs to provide feedback. These are
configured automatically by fpctl.

7The header can be enlarged to afford more scratch space if further head-
room is made available from the interfaces’ MTU.

8We repurpose the Fragment Offset field instead of adding a header.

max(C(SI),C(SE)), where SI is the sequence of lines in the
ingress segment, and SE the sequence of lines in the egress
segment.

Let S be a sequence of lines of code, n = |S| be the number
of lines in S, and 1≤ B≤ n the arithmetical average, in lines
of code, of blocks in S. Top-level lines of code that do not
form part of a block are counted as blocks of length 1. The
number of blocks in S is 1≤ n

B ≤ n.
At the limit, each block will be mapped to a different seg-

ment. But there might be constraints that force us to merge
segments or objectives that are benefitted by such merges.
Let M ∈ N,0≤M ≤

( n
B −1

)
be the merge opportunity: i.e.,

the number of merges of (adjacent) segments we can carry
out to the maximally segmented program. Increasing M has
the effect of making segmentation coarser by merging more
blocks together. Blocks are merged to eliminate data-flow
dependencies between blocks since the Headerless runtime
does not allow context serialisation and transfer between data-
planes. Blocks are also merged to make better use of physical
resources; in our setup this merge decision is made by the
planner.

The value of C consists of the sum of merge choices for
each value of M, which by the binomial theorem simplifies to
an exponential function:

C(S) =

n
B−1

∑
M=0

( n
B −1

M

)
= 2

n
B−1 ∈ O

(
2

n
B

)
(2)

�

H Comparative complexity
In this section we show that for programs having more than
2 lines, our Headerless disaggregation (§G) presents fewer
choices than general disaggregation (§C).

We start by clarifying the number of choices presented
by general disaggregation. From Equation 1 in §C, the com-
plexity of general disaggregation is O

(
nk
)
. Recall that k < n.

Expanding for all possible values of k, which represents the
number of splits we may choose, we obtain:

O
(
n1 + · · ·+nn−1)⊆ O

(
nn−1)

From Equation 2, the complexity of Headerless disaggre-
gation is O

(
2

n
B

)
.

Assuming n > 2, our goal is to show O
(

2
n
B

)
⊂ O

(
nn−1

)
.

Recall that 1 ≤ B ≤ n, and note therefore that O
(

2
n
B

)
⊆

O (2n).
Without changing our assumption regarding n, we use the

transitivity of⊆ to reformulate our goal as O (2n)⊂O
(
nn−1

)
.

Take 2n and nn−1 as the bounding functions of the two classes
respectively. We show that 2n < nn−1 first through application
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Runtime #LOC #Tables Entries(#bits) Registers(#bits) Header(#bits)

Full6 400 6 N ·SN ·17 + 2N ·36 + 2NF ·36 + 2PF ·40 71+(NF +PF ) ·228+N ·10 2887

HL(IPv4) 75 1 N ·13 11 08

HL
{

HLS
HLH

70 5 I ·22 + IN ·22 + E ·22 + EN ·22 + 10 4 0
70 1 22 4 0

Table 4: Dataplane and network overheads for each runtime. In HL we differentiate between HLS and HLH : the switch dataplane
and the helper dataplanes. These overheads were calculated by counting the resources used by each runtime’s P4 implementation,
and they are inherited by every dataplane involved in running a disaggregated program that uses that particular runtime. N is the
number of next dataplanes that a dataplane might transfer to, P is the number of previous such dataplanes. SN ≥ 1 is the number
of fail-over states: if SN = 1 then there is no fail-over. NF ≤ N and PF ≤ P is the number of next and previous dataplanes for
which a feedback loop is configured. I and E are the number of ingress and egress ports for which a program is running, and
IN ≥ 0 and EN ≥ 0 are the number of intermediate hand-overs during the ingress and egress stages of the program.

of identities:

2n < nn−1

⇔ log2 (2
n)< log2 (n

n−1)
⇔ n log2 2 < (n−1) log2 n
⇔ n < (n−1) log2 n
⇔ 0 < (n−1) log2 n−n

Then by induction on n, using n = 3 for the base case, veri-
fying that 0 < 2 ·1.58−3, and then assuming the induction
hypothesis 0 < (n−1) log2 n−n to show 0 < n log2 (n+1)−
(n+1). We start with application of identities:

0 < n log2 (n+1)− (n+1)
⇔ 0 < n(log2 n+ log2

( n+1
n

)
)− (n+1)

⇔ 0 < n log2 n+n log2
( n+1

n

)
−n−1

⇔ 0 < log2 n+(n−1) log2 n+n log2
( n+1

n

)
−n−1

⇔ 1 < ((n−1) log2 n−n)+ log2 n+n log2
( n+1

n

)
Using the induction hypothesis we conclude that
((n−1) log2 n−n) > 0, and using the assumption that
n > 2 it follows that log2 n > 1 from the definition of log2,
and log2

( n+1
n

)
> 0 from the definition of log2 and since

n+1
n > 1. �

I Modelling Language
We use a simple formal language to describe relations be-
tween segments, computational resources and network re-
sources. The relations rely on symbols used to represent those
entities, such as “Compress”, “PacketSize”, and “FPGA”. We
require the user to declare these symbols by specifying a sig-
nature. A Flightplan signature consists of two finite sets:
propositions Prop and variables V .

Signatures can be reused, at least partly, by different pro-
grams on the same network, or by the same program being
deployed to different networks. Our P4 compiler extension
generates an initial signature together with the abstract pro-
grams and the initial resource rules. The user can then extend
and maintain this as needed.

FPGA Rate < 9.5×109

PacketSize > 100
header_compress



Lat. 7→ Lat.+6.44×10−6

Rate 7→ Rate× 9.15
9.3

〈LUTs〉 7→ LUTs+24.4%
〈BRAMs〉 7→ BRAMs+54.4%
〈FF〉 7→ FF+15.8%
once Power 7→ Power+30W
once Cost 7→ Cost+2


Rule 4: Running Header Compression on an FPGA. Angled
brackets indicate that the variables they reference depend on
the device—e.g., instead of updating the flip-flop (FF) count
for all FPGAs, we increment those of the FPGA to which HC
is mapped using this rule.

CPU
egress_compression

[Id]

Rule 5: Flightplan’s static analysis identifies
egress_compression as a resource, and specifically as
a table. We add a rule that allows this resource to be used on
a CPU-based target.

Resource-related syntax is mapped to distinct propositions
from Prop. We encountered the proposition header_compress

in Rule 1. That rule had another proposition, “CPU”, that is
external to the program but is used to qualify the semantic to
a specific hardware.

The variables in V are used to construct a second syntactic
category in our specification language called Bound. For each
v∈V and r∈R, the following are valid bounds: vopr for op∈
{=,<,>,≤,≥}. Rules 1 and 4 show examples of bounds
usage from our formalization.

Propositions and bounds are also used to express con-
straints of network hardware. The planner (§6) uses these
rules to explore implications of using those devices in plans.
Fig. 17 shows a subset of the rules used for the evalua-
tion described in §7.2.2, which model the network described
in §7.2.1.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    589



CPU
drop

[Id]

Rule 6: Flightplan’s static analysis identifies drop as an ex-
ternal function. We add a rule that allows this to be called on
a CPU-based target.

edgecore-2 :
πRequires =

{
Rate≤ 1011

}
,

πProvides = {PSwitch}
arista-1 :

πRequires =
{

Rate≤ 4×1010
}
,

πProvides = {Switch}
ZCU102-5 :

πRequires =
{

Rate≤ 1010
}
,

πProvides = {FPGA}
Xeon2450-1 :

πRequires =
{

Rate≤ 1010
}
,

πProvides = {CPU}

Figure 17: A subset of the network-description rules used
for the evaluation described in §7.2.2. Unlike other rules we
have seen, these rules describe the constraints on using each
device and the features enabled by each device. The planner
uses this information when exploring the space of solutions.

J Generating rules from empirical profiles
Table 3 provided a summary of our profiling experiments.
This section describes how the profiling experiments were
done, and how their results were used to generate the profile-
related rules such as Rules 1, 3 and 4. Other types of rules are
derived from the program or from the network’s description
and are generated differently as described in §4.

J.1 Methodology
For each external function involved in a program, we mea-
sure its peformance characteristics on different classes of
devices and use this information to estimate the performance
of program segments in which those functions occur.

The performance profile is made by installing the function
on a member of each class on which it can run and running
a workload to sample the function’s performance. This is
used to create an entry in a table consisting of the following
columns:

(Function,PacketSize,Target,TimeArrive,TimeLeave,
RateArrive,RateLeave)

The first three columns consist of the function’s name, the
packet size used in the workload, the name of the hardware
target class. The next two columns consist of the timestamps
of when a frame is received by the function, and the processed
frame is sent by the device.9 Similarly, the last two columns

9Both timestamps were generated by the EdgeCore Wedge switch and

consist of the arrival rate to the function and the sending
rate. This captures the effect of the function on the link’s
capacity: for example FEC uses more of the downstream
capacity compared to upstream, while header compression
uses less.

Further, we also make two measurements that are less
function- and workload-dependent: Power consumed by the
target when executing the function on that workload, and the
Cost of the hardware target. Instead of literal equipment costs
we used relative quantities: {FPGA = 1,Switch = 2,CPU =
5,PSwitch = 10}.
Limitations on precision. This approach will not accurately
account for differences between devices in the same class—
e.g., different FPGA devices—or different configurations of
the same device—e.g., kernel bypass on CPU targets—but it
will give us good-enough characterization for our purposes,
and a starting point for more accurate characterizations. Like
all profiling, it is also sensitive to the workload used. Despite
this, our approach is amenable to refinement in the following
way: devices classes can be refined into subclasses, different
kinds of workloads can be distinguished by adding a vari-
able to each rule, and additional variables can be sampled by
measurements and added to the generated rules. For example,
the 〈· · · 〉 in Rule 4 involves an extension we made to more
accurately characterize the usage of FPGA resources. Since
the utilization of FPGA resources is a simple additive approx-
imation we do not constrain the planner by their values—for
instance to ensure that an FPGA’s LUTs are not exceeded—
but instead we do a post-hoc check.

Limitations on scale. To scale with the size of the network,
we avoid creating a profile for every target in the network.
Further, to scale with program and disaggregation diversity,
we avoid creating a profile for every segment. Instead we
focus on external functions, and measure their performance
characteristics on different classes of devices as described
above. In future work some of this characterization work can
be automated further, to improve both its scalability and its
precision.

J.2 Compiling the table
For each Function and Target we run a series of experiments
in which we gradually increase PacketSize and RateArrive. As
long as we do not notice any drops—which would indicate
that the function is not coping with the arrival rate for that
packet size—we create a table entry for the information de-
scribed above.

We then process the raw table to create a second table
consisting of the following columns, some of which overlap
with the first table we described:

(Function,PacketSize,Target,∆Latency,RateArrive,∆Rate,
Power,Cost)

were mirrored to a collection server on the side.
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Function Rate <
(

RateArrive +TR

)
PacketSize >

(
PacketSize −TPS

)
Target


Latency 7→ Latency+ ∆Latency

Rate 7→ Rate× ∆Rate
once Power 7→ Power+ Power
once Cost 7→ Cost+ Cost



Rule 7: Template for performance-related rules. TR and TPS
are tolerance offsets for rate and packet-size respectively. We
set these to small values to retain fidelity while using the
inequality operators.

where

∆Latency = TimeLeave−TimeArrive

∆Rate = RateLeave
RateArrive

All the records from the first table are automatically pro-
cessed to create the second table. This is an example record
from which we will show how to generate Rule 1:

(header_compress,1000B,CPU,7.4×10−3s,2×108Gbps,
189.9

194.75 ,150W,5)

J.3 Converting table into rules
Finally, the table of measurements described above is con-
verted into rules. This is done automatically as follows: for
each row in the second table we instantiate the template shown
in Rule 7 by replacing the black-background fields in the rule
with the corresponding fields in the row. The meaning of these
rules is explained in the caption of Rule 1 in §3, and in §I.

That is how we generated the performance-related rules
used by our tools, including the following rules shown in this
paper: Rules 1, 3 and 4.

K Program Annotation & Splitting
After finding a mapping from segments to dataplanes as part
of a plan, contiguous segments that are mapped to the same
dataplane are grouped into a single segment. This is done by
deleting intermediate flyto() statements. At this point the
program is said to be annotated for splitting.

Next we need to generate a physical, well-formed and self-
contained P4 file for each segment. The program splitting
phase performs three tasks: 1) extract the P4 code from each
segment, forming subprograms; 2) analyze the subprograms
to gather runtime-related context, such as variables whose
values must be included in the hand-over between dataplanes;
3) inject runtime-dependent code for handing-over between
subprograms.

These tasks involve simple but laborious analysis and mod-
ification of data structures in the compiler, which we outline
in this section.
Subprogram generation Our implementation reuses the P4
compiler’s data structures as much as possible, adding a thin
layer to facilitate the analysis and transformation needed for

splitting. We follow these steps: 1) Analyze the program’s
abstract-syntax tree (AST) to identify all occurrences of calls
to flyto. 2) Generate a virtual AST (vAST) for each flyto.
A vAST is an overlay of the AST for each split. Thus we ob-
tain a single data structure using which we can simultaneously
reason about the original program and all derived programs.
3) Generate the segment-level topology: a graph where nodes
consist of segments and where an edge denotes a code-path
leading to the hand-over between adjacent segments.

Context gathering The synthesis of code between segments
to pass data across dataplanes involves computing the tran-
sitive closure of required state, to ensure that downstream
dataplanes shall have all the information they need to com-
pute on. Writing such interfacing code by hand is tedious
and error-prone. We continue the steps taken in the com-
piler extension: 4) Traverse each vAST to compute its set of
free variables (variables that are used, but not defined, in that
vAST); 5) Traverse the segment-level topology to compute
the extended scope of variables: that is, variables defined in
one vAST will need to be propagated to downstream vASTs
in which they are used.

Code injection, Flightplan header This task uses the infor-
mation gathered during the previous stage to ensure that the
hand-over will happen correctly between all connected sub-
programs: 6) If supported by the runtime, then generate stubs
to propagate two kinds of information across logical data-
planes: a) the values of extended-scope variables and b) addi-
tional Flightplan metadata for instrumented programs or fault
detection (§5). This is added to a special Flightplan header
that encapsulates the original packet, piggy-backing logisti-
cal metadata.10 7) Embed the vAST in the original program,
replacing the main control block. The downstream compiler
will purge unnecessary declarations and definitions. For each
vAST, we update the deparsing stage to use the stub for the
downstream logical dataplane. We also update the parser
block to opportunistically parse the Flightplan header, and,
if successful, then the control block branches to process the
continuation of Flightplan code.

L Disaggregation microbenchmarks

L.1 Latency Microbenchmarks
In this section, we measure the amount of latency added by
splitting a dataplane and benchmark the responsiveness of
Flightplan’s failover mechanisms.

End-to-end latency. We benchmark application layer end-
to-end latency by measuring round-trip time (RTT) between
two servers connected to switch S1 in the topology described
in §7.2.1. A concurrent ping and 10 iperf3 streams went
from the iperf3 client to the Memcached client, with the
forwarding table initially stored on S1 and offloaded to S2.
Fig. 18 shows the change in ping RTT distribution. Latency

10 The Flightplan header is described in Appendix D.
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Figure 21: Thresholding (T)
of packet loss.

was higher because packets had to traverse two additional
queues in each direction. These queues were congested due
to iperf3, which adds latency as discussed in Sec. 7.2.3. In
this experiment we measured an 18.7% increase in average
RTT and 22.3% increase in maximum RTT in our setup, but
this increase will be smaller when the communicating servers
are separated by more hops, for example if they are not both
connected to S1.
Handover latency. To understand overhead at a finer scale,
we measure handover time, the time between the invocation of
the function containing the offloaded table and the beginning
of its execution. Fig. 19 shows the distribution of handover
time as link utilization varies. At a utilization level of 30%,
reflecting high load in a data center scenario [4], handover
time was under 1 µs for over 80% of the traffic. At higher rates,
handover time increases due to added congestion in the queues
between S1 and S2. As Fig. 20 shows, larger packet bursts
also have an effect, but only stretch the tail of the handover
time distribution. In a 50% load scenario, the handover time
remained under 1µs for over 60% of packets.

L.2 Failover Microbenchmarks
We evaluate two kinds of fail-over mechanisms. The first
involves controller-based failure-detection and effecting of
fail-over. The second involves in-dataplane failure-handling.
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Figure 22: Packet loss during failover, as measured by iperf3.
At time 15 s, the FEC encoder fails and is automatically re-
placed by another FPGA. Polling for detection of the failed
link at tighter intervals results in less loss during the failover
procedure.

A deployment can involve both simultaneously, with the in-
dataplane mechanism reacting more quickly in most cases,
and the controller-based approach handling cases where the
in-dataplane mechanism is incapacitated because of device
failure.

Controller-directed failover. In the case of total failure of
a link or device, the loss of connection can be directly de-
tected by the controller, allowing it to automatically initiate
the failover procedure without further intervention.

Fig. 22 shows the packet loss rate of a UDP iperf3 ses-
sion running at 1 Gbit/s through a dataplane employing FEC
during the failure of the FEC encoder FPGA. At time 15 s, the
link to the FPGA is disabled. The controller, which polls for
the presence of the link at regular intervals, redirects traffic to
a failover FPGA once the down link is detected.

With a polling interval of 1 ms, at most 3% of packets are
lost in the 100 ms interval immediately following the dis-
abling of the link.

Dataplane NAK Failover. We benchmark the NAK mech-
anism described in §5.3 with a simple program on S1 that
offloads a no-op function F. There are two instances of F (F.1
and F.2) that both run on switch S2, but service different
links connected to S1. We measure the number of packets lost
in a scenario where failover from F.1 to F.2 occurs due to
congestion on the link to F.1.

Fig. 21 shows how the number of packets lost varies with
the rate of congestion-inducing background traffic. The Flight-
plan failover mechanism bounds packet loss to a low (< 10)
integer factor of the NAK threshold (T ). After the T th NAK is
received, only in-flight packets already queued to F.1 are lost
because every subsequent packet is routed to the failover in-
stance. Without the NAK mechanism, the number of packets
lost is unbounded.
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Abstract
Today’s datacenter applications couple scale and time:
applications that harness large numbers of servers also
execute for long periods of time (seconds or more). This
paper explores the possibility of flash bursts: applications
that use a large number of servers but for very short time
intervals (as little as one millisecond). In order to learn
more about the feasibility of flash bursts, we developed two
new benchmarks, MilliSort and MilliQuery. MilliSort is a
sorting application and MilliQuery implements three SQL
queries. The goal for both applications was to process as
many records as possible in one millisecond, given unlimited
resources in a datacenter. The short time scale required a
new distributed sorting algorithm for MilliSort that uses a
hierarchical form of partitioning. Both applications depended
on fast group communication primitives such as shuffle and
all-gather. Our implementation of MilliSort can sort 0.84
million items in one millisecond using 120 servers on an HPC
cluster; MilliQuery can process .03–48 million items in one
millisecond using 60-280 servers, depending on the query.
The number of items that each application can process grows
quadratically with the time budget. The primary obstacle to
scalability is per-message costs, which appear in the form of
inefficient shuffles and coordination overhead.

1 Introduction
One of the benefits of datacenter computing is the ability
to run large-scale applications that harness hundreds or
thousands of machines working together on a common task.
Using frameworks such as MapReduce [11] and Spark [67],
developers can easily create applications in a variety of areas
such as large-scale data analytics.

Until recently, large-scale applications have executed for
relatively long periods of time: seconds or minutes. This was
necessary in order to amortize the high cost of allocating and
coordinating a collection of servers. Similarly, frameworks
such as MapReduce and Spark have traditionally operated on
very large blocks of data, in order to amortize high network
latencies. As a result, they cannot be applied to real-time
tasks. Instead, real-time queries must return precomputed
results, such as those produced in overnight batch runs. This
means that the queries must be carefully planned in advance;
ad-hoc queries cannot easily be supported.

Streaming frameworks such as Flink [15] or Spark Stream-
ing [66] operate on incoming data in real time, but they do this
by incorporating new data into queries or transformations that

∗Co-first authors, listed alphabetically.

are planned long in advance. To support real-time queries, the
scale of computation triggered by each event is quite limited.

In recent years, new serverless platforms such as AWS
Lambda [5], Azure Cloud Functions [45], and Google Cloud
Functions [20] have made it possible to run short-lived tasks
(as small as a few hundred milliseconds) in datacenters.
However, the unit of execution in these environments is an
individual function call. It is difficult to harness multiple
machines in a single serverless computation; for example,
direct communication between lambdas is not officially
supported, and existing workarounds [17, 3] have high
latency and low bandwidth.

This paper explores the possibility of extending serverless
computing in two ways: first, by further reducing the
timescale; and second, by reintroducing scale, so that large
numbers of servers can work together. We use the term flash
burst to describe a computation that has a short lifetime yet
harnesses large numbers of servers. Flash bursts offer the
potential of analyzing large amounts of data in real time. This
could enable the creation of new applications that execute
customized queries on large datasets in real time, without the
need to predict queries hours or days ahead of time.

Rather than making incremental improvements on existing
systems, our goal is to push the notion of flash bursts to the
extreme, in order to understand the limits of this style of
computation. In particular, we set out to answer the following
questions:
• What is the smallest possible timescale at which

meaningful flash bursts can operate?
• What is the largest number of servers that can be

harnessed at such a timescale?
• What aspects of current systems limit the duration and

scale of flash bursts?
We hypothesized that timescales as small as 1 ms might be
possible, so we set that as our initial goal.

Making flash bursts practical will require advances in
many different areas. This paper focuses on one aspect of
the problem: whether the core algorithms likely to be used in
flash bursts can operate efficiently at very small timescales.
We do not address issues such as the time required to load
applications and data, or how to achieve high resource
utilization in the face of short-lived computations; we leave
these for future work.

We implemented two focused applications that capture
patterns of computation and communication we expect to
be common in flash bursts. The first application is Mil-
liSort: given unlimited resources in a datacenter, what is
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• Sort 40,000 10-byte keys using 8 cores [7].
• Copy 5 Mbytes of data from memory to memory sequentially.
• Send or receive 5 Mbytes of data with a 40 Gbps NIC.
• Invoke 300 back-to-back remote procedure calls on one core,

using kernel bypass [50, 52, 32].
• Send or receive 2–5k small messages on one core [50, 32, 48].
• Take 10,000 back-to-back L3 cache misses on one core.

Figure 1: Examples of tasks that can be completed in one
millisecond on modern hardware.

the largest number of small records that can be sorted in
one millisecond? The second application is MilliQuery,
which consists of three representative SQL queries from
the tutorials for Google BigQuery. The queries range from
a simple scan-filter-aggregate query to a distributed join
requiring multiple shuffles. As with MilliSort, our goal was
to understand how much data can be analyzed, and how many
servers can be harnessed, in timescales around 1 ms.

The process of developing and measuring these applica-
tions has yielded interesting results in three categories:
• Measurements: MilliSort and MilliQuery demonstrate

that large-scale data analytics can operate efficiently even
at timescales of 1–10 ms. MilliSort can sort 0.84 million
small records in one millisecond using 120 servers
running on 30 machines. The MilliQuery benchmarks
process .03–48 million records in one millisecond using
60–280 servers, depending on the query.

• Observations: the development of MilliSort and Milli-
Query yielded several interesting insights about flash
bursts, which are summarized in Section 7. For example,
we found that the amount of data that a flash burst can
handle grows quadratically with the time budget (both the
amount of data per server and the number of servers grow
at least linearly with the time budget). Some of the most
important and common limits to scalability are shuffle
cost and coordination overhead (both can be attributed to
per-message overheads).

• Algorithms: while implementing MilliSort we developed
a new low-latency algorithm for partitioning the keys,
which uses a hierarchical series of distributed sorts. We
also developed a novel splitter selection algorithm that
improves the balance among data partitions. Overall,
MilliSort runs with efficiency comparable to other
systems that operate at much larger timescales.

2 Background
One millisecond is not very long. Figure 1 lists a few things
that can be done in one millisecond on today’s machines;
these create fundamental limitations for flash bursts.

2.1 Limited data per server
One of the most important limitations evident from Figure 1
is that each server can only manipulate a small amount of
data (on the order of a few Mbytes). For example, a single
server core can only access a few megabytes of data in

one millisecond, and network bandwidth allows only a few
megabytes to be transmitted in one millisecond.

Given the large number of servers and small data per server,
data must stay evenly distributed throughout a flash burst. If
even a small fraction of data accumulates on a single server,
the network link into that server will become a bottleneck.

2.2 Coordination cost
Given that each server can only access a small amount of data,
the overall scale of a flash burst will be limited by the number
of servers that can be harnessed. But, the small time scale
makes it difficult to coordinate very many servers; at some
scale one millisecond isn’t even enough time to notify all the
servers to start working. Thus, coordination overheads play
a fundamental role in flash bursts, since they limit the scale.
“Coordination” includes such activities as engaging all of the
servers, determining work assignments for each server, and
sequencing the phases of the algorithm. Existing large-scale
applications such as Spark store much larger amounts of
data per server and also run for longer time periods; this
combination makes coordination overheads less important.

2.3 Multiple communication costs
For many existing large-scale applications, the only com-
munication cost that matters is network bandwidth. Systems
such as MapReduce [11] and Spark [67] are explicitly
designed to exploit bandwidth and hide communication
latency. However, for flash bursts three different costs may
become important. In addition to bandwidth, which matters
when sending large blocks of data, and latency, which matters
when sending small chunks of data, a third cost plays an
important role in flash bursts: per-message overhead (the
CPU time required to send and receive short messages).
Per-message overhead comes into play when a server has a
collection of small requests that can be sent to other servers
concurrently; it limits how quickly a series of messages can
be issued. Per-message overheads are particularly important
in flash bursts because they dominate the cost of group
communication primitives (discussed below), which in turn
dominate the cost of coordination.

2.4 Group communication
If a collection of servers is to cooperate closely, the servers
will probably need to exchange data frequently and in small
chunks. However, in a flash burst, where there are hundreds or
thousands of servers operating on a very small time scale, it is
not practical for each server to communicate directly with all
of the other servers. For example, if a server broadcasts data
to 1000 other servers by sending a separate small message
to each of them, the broadcast will consume a substantial
fraction of a millisecond, due to per-message overheads.

Thus, group communication plays an important role in flash
bursts. In group communication, many or all of the servers in
a cluster transmit data concurrently to carry out a cluster-wide
goal. The HPC community has identified and implemented a

594    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



variety of useful group communication mechanisms [60], of
which four play a role in MilliSort and MilliQuery:
Broadcast: data that is initially present on a single server
must be distributed to every server in the group.
Gather: the reverse of broadcast. A single server must
collect distinct data from each of the servers in the group.
All-gather: initially each server in the group stores a distinct
data item; the all-gather operation must arrange for every
server in the group to receive a copy of all the items.
Shuffle: each server initially stores a separate data item for
every other server in the group; the shuffle must transmit all
the items to their intended targets.

Group communication provides two benefits. First, it
harnesses multiple servers operating concurrently to speed
up the communication; for example, several servers can be
used to complete a broadcast more quickly by distributing
messages via a tree structure. Second, it can sometimes
replace many small messages with a few larger messages; this
reduces the impact of per-message overheads. For example,
a hypercube implementation [62] of all-gather requires only
MlogM messages for M servers, vs. M2 messages if each
server communicates independently with every other server.

3 Applications
One of the challenges in exploring flash bursts is that there
are no flash burst applications available today (unsurprising,
given that there is no infrastructure capable of supporting
them). Fortunately, there appears to be a small set of patterns
of computation and communication that are used commonly
across a variety of large-scale applications and account for
much of their performance [4, 19, 33]. These are referred to as
dwarfs by Asanovic et al. [4] and others. For example, matrix
operations, sorting, and statistics computations are dwarfs
for big-data and AI workloads. Rather than guessing at full
applications, we have implemented two small applications
that capture several dwarfs. Although the behavior of these
dwarfs will not be a perfect predictor of any real application,
this approach has two advantages. First, lessons learned
from the dwarfs are likely to apply to many real applications.
Second, it is easier to understand the properties of the dwarfs
if we study them in isolation, rather than as part of a full
application with many interacting parts.

Our first application is a sorting benchmark called Mil-
liSort. Sorting has been used to evaluate system performance
for many decades, originating with a challenge proposed by
Jim Gray and others in 1985 [2]. Sorting plays an important
role in many distributed computations. For example, sorting
can be used as a data preprocessing step to support efficient
range queries, to improve data locality for graph partition-
ing [44], and to perform load balancing [44, 11, 23]. Sorting
is also very challenging because it requires intensive and
unpredictable communication (any record can potentially
end up on any server). We expected this to create challenges
both for the algorithm and the underlying infrastructure.

/* MilliQuery Q1: count article views on Wikipedia by language */

SELECT language, SUM(views)

FROM `bigquery-samples.wikipedia benchmark.Wiki1B`

GROUP BY language

/* MilliQuery Q2: top 10 IPs by the number of edits to Wikipedia */

SELECT contributor_ip AS ip, COUNT(*) AS count

FROM `publicdata.samples.wikipedia`

GROUP BY ip ORDER BY count DESC LIMIT 10

/* MilliQuery Q3: complex data analytics on GitHub data */

WITH

repo_authors AS ( -- Build the intermediate author table

SELECT repo_name, author.name AS author

FROM `bigquery-public-data.github repos.commits`,

UNNEST(repo_name) AS repo_name

GROUP BY repo_name, author),

repo_languages AS ( -- Build the intermediate language table

SELECT lang.name AS lang, lang.bytes AS lang_bytes, repo_name

FROM `bigquery-public-data.github repos.languages`,

UNNEST(language) AS lang)

SELECT lang, author, SUM(lang_bytes) AS total_bytes

FROM (repo_languages JOIN repo_authors USING repo_name)

GROUP BY lang, author ORDER BY total_bytes DESC LIMIT 100

Listing 1: The three SQL queries used in the MilliQuery
benchmark

For MilliSort, the goal is to sort as many small records
as possible in intervals around one millisecond, using any
number of servers in a datacenter. Each record contains 100
bytes, consisting of a 10-byte key and a 90-byte value. Before
starting the benchmark, the MilliSort application is pre-
loaded and the unsorted records are distributed evenly among
the available machines in DRAM. The data on each server is
structured with all of the keys in a single block of memory and
all the values in another block, in corresponding order. Upon
completion, the data must be redistributed across the same
servers, sorted such that one server contains the records with
the smallest keys, and so on. At the end of the sort, the data
on each server is structured in two blocks of memory, one
containing the keys in sorted order and another containing
the values in the same order as their keys. The challenge does
not require that the result data be distributed evenly across the
servers, but this turns out to be essential for good performance.

Our second “application” is a collection of three SQL
queries from Google’s BigQuery documentation[63, 38]; we
refer to these queries collectively as MilliQuery. We expect
that many flash burst applications will perform data analytics
to provide real-time results from ad hoc queries; the goal for
MilliQuery is to capture dwarfs that will be common in these
applications.

We chose three queries with different levels of complexity,
in order to span a range of SQL behaviors (see Listing 1).

Q1: counts the number of article views on Wikipedia by lan-
guage (there are at most a few hundred different languages).

Q2: finds the top 10 IP addresses by the number of edits they
made to Wikipedia articles.
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Coordination Shuffle(s) Dwarf(s)
MilliSort Heavy ≥2 Sort
MilliQuery Q1 None 0 Aggregate
MilliQuery Q2 Light 1 Repartition,Aggregate
MilliQuery Q3 Light 3 Repartition,Join
Table 1: A comparison of the applications used for studying
flash bursts.

Q3: for each combination of author and programming lan-
guage, sum all of the bytes in that language in any repository
for which the author was a contributor; returns the top 100
author-language pairs.

In each case, the goal is to process as much data as possible
within 1 ms using unlimited datacenter resources, assum-
ing that the application is pre-loaded and data is initially
distributed uniformly across the nodes.

Table 1 compares these applications in terms of the
complexity of coordination (how difficult it is to divide the
work among the participating nodes and coordinate their
behaviors), the number of shuffle steps required, and the
dwarfs captured. Together, MilliSort and MilliQuery cover a
significant range of interesting behaviors.

Our goal for MilliSort and MilliQuery was to push the
idea of flash bursts to the extreme. We don’t know what
burst sizes will prove useful to applications, so we set out to
characterize the range that is practical: what is the smallest
time interval and what is the largest number of servers that
can be harnessed efficiently? We also hoped to learn what
are the technical factors that limit flash bursts. We chose a
one millisecond time limit because it seemed like an extreme
goal: at the outset, we were unsure whether it would be
possible to do anything useful in such a short interval.

4 The MilliSort algorithm
Although distributed sorting is not new, designing a sorting
algorithm to operate at a timescale of one millisecond intro-
duces new challenges due to the high cost of coordination.
This section describes MilliSort’s algorithm in detail and
presents a novel hierarchical approach to data partitioning that
enables efficient coordination even at very small timescales.

Most distributed sorting algorithms use a partitioning
approach, and MilliSort follows this tradition. First, the
data is partitioned by deciding which key ranges should end
up on each server; then the records are shuffled between
servers to implement the chosen partitions. This approach
optimizes the use of network bandwidth by transmitting each
record only once, during the shuffle phase. The partitioning
approach makes sense because it optimizes the use of
network bandwidth, which has traditionally been the scarcest
resource in distributed sorting. Alternative approaches, such
as those that use multi-stage merge sorts, require data to be
transmitted over the network multiple times, so they have
proven slower than the partitioning approach.

More precisely, MilliSort implements a variant of dis-
tributed bucket sort, with one bucket for each server. It
consists of four phases:

1. Local sort: each server sorts its initial data.
2. Partition bucket boundaries: the servers collectively

determine the key ranges that will end up on each server
after sorting.

3. Shuffle: each server transmits its keys and values to the
appropriate targets.

4. Local rearrangement: the data arriving on each server
during the shuffle phase must be rearranged into two
totally sorted arrays, one for keys and one for values.

The sections below discuss each of these phases in more
detail. We start with the partitioning phase, since it is the
most complex phase and also the most interesting phase from
an algorithmic standpoint.

4.1 Histogram sort
One of the most widely used partition-based sorting algo-
rithms is histogram sort, which computes the final key ranges
by iteratively refining an existing partition until the keys
are evenly distributed on the servers. A typical workflow
of histogram sort is as follows. In the beginning, a central
server picks M−1 splitters, which divide the key space into
M buckets, and broadcasts them to the other servers. Then,
each server computes a local histogram of its keys in the
buckets and sends it back to the central server. Finally, the
central server computes a global histogram by summing up
the local histograms and adjusts the splitters to reduce the
imbalance. The process of histogramming and refinement is
repeated until an even partition is achieved. In addition to the
one mentioned above, there are other variations of histogram
sort which use more splitters for histogramming or increase
the number of splitters as they progress.

However, histogram sort is undesirable for MilliSort since
it requires many iterations to converge, and each iteration
incurs significant message delays. To avoid overloading the
central server, histogram sort often uses group communica-
tion to broadcast splitters and reduce local histograms in a tree
structure. As a result, each iteration incurs 2log(M) back-to-
back message delays. In our environment, the combined cost
of broadcast and gather is at least 50 µs for 100 servers. With
just 10 iterations, message delays alone will take away half of
our 1 ms time budget. Finally, the actual cost of partitioning
will be even higher due to other overheads; the reported parti-
tioning times of some recent histogram sort implementations
easily exceed 50 ms for 512 HPC nodes [35, 21].

4.2 Sample sort partitioning
MilliSort takes a different approach to partitioning, selecting
a larger number of initial keys so that it can estimate the distri-
bution in a single iteration. MilliSort’s partitioning algorithm
is based on sample sort with regular sampling [58, 40]; the
basic idea is to select many keys from the starting data, use
these to estimate the distribution of keys, and pick partition
boundaries based on the estimated distribution. Figure 2
shows the basic idea. After sorting its local data, each server
samples its keys at equally-spaced intervals within the sorted
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Figure 2: A basic sample sort partition mechanism; n1 – nM are
the MilliSort nodes.

records; we refer to these samples as pivots. The pivots
of all servers are collected and sorted (more details on this
below). Finally splitter values are chosen from the sorted
pivots. If there are M machines participating in the sort,
M−1 splitters are chosen, which divide the sorted pivots into
M equal-size groups. The splitters determine how records
are divided between servers during the shuffle phase: server
i will eventually hold all records with keys greater than or
equal to the ith splitter and less than the i+1th splitter.

Because of the sampling used by this approach, there is
no guarantee that each server will end up with exactly the
same number of records at the end of the sort. If there are N
total records divided among M machines and each machine
chooses sM pivots, then, in the worst case, a server may end
up with as many as (1+1/s)(N/M) records (N/M is the ideal
number in a perfect partition) [58, 40]. For MilliSort, we use
s = 1 (each machine chooses M pivots), so the final partition
sizes are guaranteed to be within a factor of 2 of the ideal size.
In practice the distribution of records is considerably more
uniform than suggested by the worst-case formula above.

With this approach, the total number of pivots to sort is
sM2. This means that as the number of machines increases,
partitioning will take more and more time, even if all of the
machines share the work. Given a limited amount of time for
the sort, partitioning cost will limit the number of machines
that can be harnessed.

4.3 Recursive partitioning
One way to perform the partitioning is to gather all of the
pivots on a single coordinator server, sort them locally on that
server, then broadcast the splitters back to all of the servers.
However, this approach is too inefficient for MilliSort. If 300
machines participate in the sort, there will be 90,000 pivots; as
shown in Figure 1, a single server can only sort about 40,000
keys in one millisecond, so the sorting alone would take more
than 2 ms. The overhead of receiving all the pivots on a single
server is also problematic. Thus, millisecond-scale sorting
requires partitioning to be performed in a distributed fashion.

MilliSort uses a recursive approach to partitioning: the piv-

ots are sorted in a distributed fashion using a smaller instance
of MilliSort, as shown in Figure 3. A subset of the machines,
called pivot sorters, sort the pivots and select splitters; each
of the other servers is assigned to one of the pivot sorters. To
begin the sort, each pivot sorter gathers the pivots from its as-
signees. The pivots arriving from each source machine are
already sorted, so the pivot sorter can use merge sort on the ar-
riving data to produce a sorted list of all the pivots for which it
has responsibility. Then each pivot sorter samples its pivots to
choose a smaller number of level 2 pivots; the level 2 pivots are
passed to a coordinator, which sorts them and produces a set of
level 2 splitters. The coordinator broadcasts the level 2 split-
ters back to the pivot sorters, which then perform a shuffle to
redistribute the pivots among the pivot sorters in sorted order.

At this point the pivots have been sorted and splitters must
be chosen (i.e., we must select every sMth pivot across all
of the pivot sorters). We would like for each pivot sorter to
independently select splitters from its pivots, but in order to
do this, the pivot sorter must know its rank (i.e., how many
pivots stored on other servers are smaller than the pivots that
it stores). The rank is not immediately obvious because pivots
are not distributed uniformly across the pivot sorters. The
solution is to distribute rank information during the shuffle
phase of the pivot sort. When a pivot sorter sends a group of
pivots to another pivot sorter during the shuffle, it includes the
local rank of that group (i.e., the number of pre-shuffle pivots
from that pivot sorter that are smaller than those in the group).
Each pivot sorter can determine its rank by summing the local
ranks in all of the shuffle messages it receives. Once a pivot
sorter knows its rank, it can identify the splitters that it stores.

Finally, once the splitters have been determined, they
must be disseminated to all of the machines participating
in the sort. One approach would be for each of the pivot
sorters to broadcast its splitters to all of the M machines;
however, this would have a high cost because of the large
number of messages that would result. Instead, MilliSort
uses a two-step approach to distribute the splitters. In the first
step, an all-gather operation is used to exchange the splitters
among the pivot sorters, so that each pivot sorter has all M−1
splitters. Then each pivot sorter broadcasts the complete set
of pivots to all of the machines assigned to it.

If the number of servers is very large, the 2-level approach
described above will still take too long. If that is the case, addi-
tional levels may be used in the partition. For example, in a 3-
level approach the level 2 pivots will not be sorted on a single
coordinator; instead, they will be collected by a smaller num-
ber of second-level pivot sorters, which will then select a set of
level 3 pivots. The level 3 pivots will be collected and sorted
on a single coordinator, resulting in level 3 splitters, which
are used to shuffle the level 2 pivots. The approach can be
extended to an arbitrary number of levels, though our experi-
ments suggest that 2 or 3 levels is appropriate for MilliSort.

We use r to refer to the reduction factor at each level of
recursive sorting. For M total machines, there will be M/r
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Figure 3: A two-level partitioning example with M = 100,
s=1, r=10.

pivot sorters, M/r2 second-level pivot sorters, and so on. For
the MilliSort implementation we used a reduction factor of 10.
4.4 Improved splitter selection
The algorithm described above for choosing splitters from the
sorted pivots results in uneven key distribution, where the first
server is likely to be assigned 50% more keys than the aver-
age, and the last server is likely to be assigned 50% fewer keys
than the average. We developed an improved splitter selection
algorithm that eliminates this imbalance; because of space
limitations, we describe that algorithm in Appendix A.1.
4.5 Local sort
Now that the partitioning mechanism has been described, the
next few subsections discuss the remaining phases of Mil-
liSort. These phases are more straightforward than the parti-
tioning phase, though their performance is still important.

MilliSort relies on prior work for the local sort. The
problem of sorting on a single compute server is well-studied,
with many solutions that can take advantage of multiple cores.
In our experiments we use the In-place Parallel Super Scalar
Samplesort (IPS4o) algorithm [7] as a reasonable representa-
tion of a multi-core comparison-based sorting algorithm.

Once the keys have been sorted, the values must be rear-
ranged to match the order of the keys. This can be overlapped
with the partitioning phase and the key shuffle; the rearranged
values are not needed until the value shuffle.
4.6 Shuffle
Once the splitters have been selected and distributed to all of
the machines, MilliSort uses an all-to-all shuffle to transmit

each key and value to the appropriate server. The keys and
values on each server were already sorted during the local sort
phase. Each server uses the splitters to determine the range of
keys to send to each other server. It then sends a message to
that server containing the appropriate range of keys, followed
by the data associated with those keys.

4.7 Local rearrangement
Within each message that a server receives during the shuffle
phase, the keys and values are in sorted order. The server
must then combine these chunks into two sorted arrays, one
containing all the keys and other containing all the values. To
do this, each server first performs a merge sort on the arrays
of keys; then it rearranges the values to match the order of
the keys. Each key contains its index in the incoming shuffle
message (which is the same as the index of the value in the
message). Once the keys have been sorted, a sequential scan
is made over the key array; the index stored with each key
is used to find the corresponding value and the value is then
stored at the next sequential location in the result array. This
two-step approach is faster than a one-step approach that
merges both keys and values together, because it copies the
(larger) values only once.

5 Implementation
5.1 Group communication
We created a C++ library that implements the group commu-
nication primitives described in Section 2.4; both MilliSort
and MilliQuery make extensive use of this library. The
group communication primitives are implemented using
the network transport infrastructure from RAMCloud [50].
RAMCloud’s transports use kernel bypass with either
DPDK [10] or the Infiniband verbs interface to provide low
latency (5 µs round-trips) and high throughput (up to 25
Gbps). However, RAMCloud requires all network commu-
nication to pass through a single dispatcher thread, which
limits message throughput to about 1.6 million messages per
second. The group communication primitives contain 1500
lines of C++ code, not counting code in RAMCloud.

Broadcast, gather, and all-gather were implemented using
well-known approaches [62, 65]. For broadcast, MilliSort
uses a k-nomial tree, with the topology optimized based on
precise knowledge of message latency and per-message cost.
For gather, MilliSort uses a k-nomial tree with k=6, in order
to utilize as much network bandwidth as possible at each step.
For all-gather, MilliSort uses a hypercube approach, extended
to handle group sizes that are not even powers of two [56].

Shuffle is the most important of the group communication
primitives: it accounts for half or more of the end-to-end
time in the highest performing MilliSort configurations
and it is also used in two of the three MilliQuery queries.
However, achieving high-performance for shuffle is chal-
lenging. Ideally, shuffles should utilize the full bandwidth
of the network, with each host simultaneously sending and
receiving at the speed of its uplink. However, achieving this
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goal is difficult. One problem is small messages, which are
more likely to occur in flash bursts than other applications
(see below). Another problem is that shuffle requires full
bisection bandwidth in the underlying network. Fortunately,
our test cluster has full bisection bandwidth. Unfortunately,
we were unable to harness all of the available bandwidth.

Achieving full bisection bandwidth requires a near-perfect
bipartite matching, where at any given time each source
transmits at full bandwidth to a different target. This is
difficult to achieve, for two reasons. First, two servers might
attempt to transmit simultaneously to the same target. When
this occurs, bandwidth is wasted on the senders, since the
target can only receive from one of them at a time; in addition,
some other server will not be receiving anything at all, which
wastes its incoming bandwidth. Second, achieving full
bisection bandwidth requires perfect load-balancing across
the network fabric. Unfortunately, our test cluster does not
support packet-level load-balancing. Instead, it uses flow-
consistent hashing, where all packets from a particular source
to a particular destination are routed over a single (randomly
chosen) path through the fabric. Even if two sources send
to different targets, their routes might traverse a common
intermediate link, resulting in bandwidth underutilization.
With large clusters, routing conflicts are virtually guaranteed.

After implementing shuffles in the most obvious way
and observing poor performance, we attempted a lock-step
approach to ensure a bipartite matching. In the lock-
step approach, in step i each server n transmits to server
(n+ i) mod M, and the start of step i+1 is delayed until step
i has completed. This mostly eliminated the problem where
two senders transmit to the same target, but it works best
when all messages are large and the same size. If messages
are small, or if messages have different sizes, the act of main-
taining lock-step wastes most of the network bandwidth (e.g.
each step must wait for the longest message in the preceding
step to complete). Furthermore, lock-step is still vulnerable
to conflicts in network routes. We were unable to achieve a
satisfactory level of performance with this approach.

We then switched to a nearly-opposite approach, imple-
menting shuffles in a “high-entropy” fashion that is granular,
concurrent, and random. The first step is to ensure that
messages sent during shuffles are relatively short (at most
40 KB in the current implementation). In many cases, the
messages are inherently short; if the data from one server to
another exceeds a threshold size, it is divided into multiple
short chunks, which are sent as separate messages. Each host
sends multiple messages concurrently; the targets are chosen
randomly, but a given source will have at most one message
outstanding to a given target at a time. With this approach
there will still be conflicts but they will not stall senders;
conflicts simply result in packet queueing in the network.
Since each sender has multiple outstanding messages, it is
likely that there will be incoming data for each server at
all times. Since messages are short, buffer overflows in the

network are unlikely and a sender doesn’t waste much time
on a busy receiver before directing its bandwidth elsewhere.
Stalls will occur only at the end of the shuffle, when a
sender is waiting for its last few messages to complete. The
high-entropy approach resulted in much better performance
than the alternatives we tried before it.

Shuffles are more challenging in a flash burst than in more
traditional environments that operate at large timescales. A
flash burst scales by increasing the number of servers, with
less data on each server, in order to complete more quickly.
Less data on each server means the size of each shuffle
message will drop; more servers means that each server’s
data is split among more shuffle messages, which also results
in less data per message. The result is a rapid drop in shuffle
message size as a flash burst scales. This leads to low network
bandwidth utilization and high per-message overheads.

One possible solution is to use a two-level shuffle to reduce
the number of messages sent and received by each server from
M−1 to 2 ·(

√
M−1). Two-level shuffle arranges all servers

into a virtual mesh and proceeds in two rounds: each server
first exchanges data with other servers in the same row, and
then in the same column. However, this approach doubles the
network bandwidth consumed, since most data must be trans-
mitted twice. For our experiments the increased bandwidth
usage of a two-level shuffle was more problematic then per-
message overheads for a single-layer shuffle; we did not find
any situations where multi-level shuffles are advantageous.

5.2 MilliSort
The MilliSort implementation is fully decentralized: each
server operates independently in an event-driven style, with
no central coordinator (central coordination is intolerable
for flash bursts, both because of the latency it adds and also
because central coordination often involves lock-step opera-
tion at the end of each stage, which suffers from stragglers).
While the order of stages executed in a server is well defined,
the timing is affected by remote procedure calls (RPCs) from
other servers. At various points, the progress of the server
will stall until certain pieces of data have arrived. As one
example, a pivot sorter cannot select level 2 pivots until it has
received pivots from all of the servers in its group.

Different servers must have different behaviors during the
sort. For example, only a subset of the servers will act as
pivot sorters. Each server has an identifier ranging from 0
to M − 1, which determines the various roles it will serve
during the sort. For example, servers with identifiers that are
0 mod r serve as pivot sorters and they receive pivots from
servers with the following r−1 identifiers. At the start of the
sort each server knows its identifier, the value of M, and the
addresses of the other servers.

Achieving the highest overall performance for MilliSort re-
quires careful optimization of both communication and com-
putation. Section 5.1 has already discussed the challenges
associated with shuffles. Using cores efficiently is another
challenge, because the number of threads changes rapidly
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over the life of the sort. Thus, MilliSort uses Arachne [54]
for efficient user-level thread and core management. For
example, Arachne allowed us to quickly spawn a group of
threads to parallelize a task, such as local sort, and place them
precisely on all available cores. In addition, MilliSort creates
a new thread for each incoming RPC and leaves it to Arachne
to schedule those threads on cores that are less busy.

5.3 MilliQuery
We created a special-purpose implementation of each of the
three MilliQuery queries, largely based on the query plans
generated by BigQuery. These queries were much easier to
implement than MilliSort, particularly given the availability
of the group communication library. The total implementa-
tion time was only a few days, and the three queries contain
250, 300, and 800 lines of C++ code, respectively.

The implementation of Q1 follows a simple scan-aggregate
pattern: each server scans its data independently to count the
views by language, then the local results are gathered back to
one server, using a k-nomial tree and combining the statistics
at each node. Since the number of distinct languages is only
a few hundreds, all messages in the gather phase are small.

Similar to Q1, Q2 can also be implemented as local scan
followed by a gather. But, the number of distinct IP addresses
is quite large, so the gather phase would consume too much
network bandwidth with this naive approach. Thus, before the
gather phase, a shuffle is used to collect all the counts for each
address in one place, using a hash partition. Then each node
in the gather tree collects local results from all its children, but
only needs to send the top ten IP addresses to its parent.

Q3 is considerably more complex and requires a total of
three shuffles. First, two shuffles are used to materialize two
intermediate tables, distributing the records for each table
using a hash partition with the repo_name field. Then, the
two tables are joined locally using the same key, and a third
shuffle redistributes the joined records by hash partitioning on
(lang, author). Finally, top-100 statistics are computed
locally and aggregated as in Q2.

For simplicity, we didn’t implement additional mecha-
nisms to handle hot keys in hash partitioning for Q2 or Q3;
however, it’s possible to use MilliSort’s recursive partitioning
scheme to create a more balanced range partitioning, at the
expense of higher partitioning cost.

5.4 Communication infrastructure
We chose to build our MilliSort and MilliQuery prototypes
atop RAMCloud [50] mainly to reuse its flexible network
infrastructure. However, this choice comes with the cost of
limited message throughput for two reasons:
• The single dispatch thread in RAMCloud has relatively

high per-message costs (all messages must pass through
the dispatch thread, which results in expensive cross-
core communication) and presents a central bottleneck
which prevents us from achieving higher throughput by
adding more cores.

CPU Xeon Gold 6148 (2 sockets× 20 cores @ 2.40GHz)
RAM 384 GB DDR4-2666

Networking 100Gbps Intel Omni-Path Interconnect

Table 2: The hardware configuration used for benchmarks.
All machines ran CentOS 7.3.1611 (Core) with hyperthreading
disabled. The network fabric used a two-level fat-tree topology
to provide full bisection bandwidth at 100 Gbps per machine.

Total records processed (# servers used)
Time budget MilliSort Q1 Q2 Q3

1 ms 0.84 M (120) 47.6 M (280) 6.72 M (140) 0.034 M (60)
10 ms 26 M (280) 980 M (280) 224 M (280) 2.24 M (280)

Scaling 31.0x (2.3x) 20.6x (1x) 33.3x (2x) 67.9x (4.7x)

Table 3: Overall performance of MilliSort and MilliQuery.

• The underlying Omni-Path PSM2 library [26] we use
to send and receive packets is actually not a packet I/O
driver but a reliable message-passing transport with its
own congestion/flow control, which adds considerable
overhead; in addition, the Omni-Path host fabric inter-
face (HFI) does not have a lightweight mechanism for
transfering small chunks of data via DMA, so we have to
send/receive packet data using programmed I/O, which
leads to higher CPU overhead and, even worse, cache
pollution.

As a result, a single server cannot fully utilize its network
bandwidth when the messages are relatively small. In our
experiments, we decided to place multiple servers on each
machine, each with its own dispatch thread, to increase the
network utilization. This approach can scale the overall
message throughput of each machine linearly, but it also
incurs higher coordination overhead due to the increased
number of servers. Future implementations that are based
on a more efficient networking stack such as [32, 18] could
eliminate the need to run multiple servers per machine.

6 Performance measurements
Our goal in evaluating MilliSort and MilliQuery was to
answer the following questions:
• How much data can be processed in one millisecond

(or ten milliseconds), and how many servers can be
harnessed efficiently in each interval?

• How does application behavior change if the time budget
is increased or decreased?

• What factors limit the applications’ performance and
scalability, and what stresses do these applications create
for underlying infrastructure?

• How effective is MilliSort’s new partitioning mechanism?
• How efficient is MilliSort compared to purely local sort

or other distributed sorts?
We used the hardware configuration shown in Table 2 to

evaluate MilliSort and MilliQuery. To better utilize the net-
work bandwidth (discussed in Section 5.4), we ran four inde-
pendent servers on each machine, two on each socket. We had
access to 70 machines in the cluster, which allowed up to 280
servers; and there were no competing tasks running on the ma-
chines. All MilliSort experiments used 2-level partitioning.
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Figure 4: Scaling properties of MilliSort and MilliQuery as a function of time budget: (a) size of dataset processed (normalized to a value
of 1.0 for a 1 ms time budget for each benchmark); (b) cluster size that yields the largest dataset processed; (c) records per sever at largest
dataset processed (also normalized to a value of 1.0 for a 1 ms time budget).

120 servers (0.84M records) 240 servers (1.68M records)
Phase Mean Max % Max/Min Mean Max % Max/Min
Local Sort 147.0 216.3 22.2% 1.83 137.8 202.3 12.7% 1.77
Partitioning 200.5 214.4 22.0% 1.16 410.4 428.6 26.9% 1.11

Pivot Shuffle 83.2 87.9 9.0% 1.13 219.3 240.1 15.1% 1.27
Shuffle 377.2 402.8 41.3% 1.16 738.9 789.0 49.6% 1.14
Rearrangement 128.1 142.7 14.6% 1.18 146.9 173.3 10.9% 1.26
Total 942.3 976.0 100% 1.09 1523.8 1591.1 100% 1.08

Table 4: Time breakdown of each MilliSort phase with two
different cluster sizes, where per-node dataset sizes are fixed
at 7000 records. All times are in µs and reflect the median
over 200 runs. “%” is the time spent by the slowest server
for that phase, as a fraction of total time. “Max/Min” is the
ratio of times for the slowest and fastest servers for that phase.
“Partitioning” includes the time spent on “Pivot Shuffle”.

6.1 Overall performance
We varied the amount of data per server and the size of the
cluster to find the largest amount of data that can be processed
by each of the applications in either 1 ms or 10 ms; Table 3
shows the results, along with the best configurations for each
interval. With a 10 ms time budget all of the applications
can harness all 280 available servers and they can process
2.2–224M records, depending on the application. A 1 ms
time budget is more challenging for most of the applications.
Only MilliQuery Q1 can use all of the servers; the other
applications ranged from 60–140 servers. The amount
of data processed in 1 ms varied dramatically among the
applications, from a low of 34K records in MilliQuery Q3 to
a high of 48M records in Q1.

6.2 Quadratic scaling
The total number of records that can be processed in an in-
terval varies quadratically with the size of the interval. If the
time budget increases by a factor of X , we observe that both
the data handled by each server and the number of servers
increase by at least X , for a total increase in throughput of
at least X2. This effect can be seen in Figure 4. Figure 4(a)
shows that all of the benchmarks except Q1 exhibit quadratic
or better scaling as the time budget increases from 1 ms to
2 ms. Q1 would scale exponentially if more servers were
available, but it already used all of the available servers at
1 ms, so it can only scale linearly by increasing the amount
of data per server. Figure 4(b) shows optimal cluster size
as a function of time budget. All except Q1 exhibit almost

linear scaling. Figure 4(c) shows the scaling of the per-server
dataset size as the time budget increases. All except Q3
scale at least linearly, after a fixed initial overhead. Q3 scales
per-server records slightly less than linearly.

The quadratic behavior can also be seen for Q3 in Table 3:
its throughput scales by 68x as the time budget increases
from 1–10 ms. Scaling for the other applications becomes
limited by the available servers long before reaching the 10
ms time budget; Figure 4(b) shows that MilliSort, Q1, and
Q2 have consumed almost all the available servers with a 2
ms time budget. Linear scaling of servers suggests that these
applications could harness at least 1200 servers with a 10 ms
budget (5x the number at 2 ms).

6.3 Scaling below 1 ms
Quadratic scaling also means that throughput drops rapidly
with time budgets less than 1 ms. This is visible in Figure 4(a).
With a time budget of 0.5 ms, throughput has dropped by more
than 4x for all of the applications, and none of the applications
has appreciable throughput for budgets less than 0.5 ms. For
these applications, the lower bound on useful timescale is
around 0.5–1.0 ms with our current per-message overheads.

6.4 Limiting factors for scalability
There are two primary factors that limit the ability of the
applications to scale up in servers or down in time: coor-
dination and shuffles. The costs of both activities increase
with the cluster size; when the amount of data per server
is zero, these are essentially the basic costs of harnessing
servers. Table 4 illustrates the effect of these two factors by
showing the cost of each MilliSort phase for two different
cluster sizes with the records per server held constant. In the
120-server configuration, partitioning and shuffles take 63%
of the total running time. If the cluster size is doubled, the
time taken by these two activities is also doubled (1218 µs
vs. 617 µs), even though each server still processes roughly
the same amount of data. The fraction of total running time
consumed by coordination and shuffles increases from 63%
to 77%. At the same time, the combined cost of other phases
remains almost constant in both configurations. In general,
when the time budget is held constant, larger clusters result
in larger basic costs, so less time is left for actual work such
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as local computation and data transfer. As a result, this limits
our ability to harness more servers within the time budget or
perform meaningful flash bursts in smaller timescales.

Figure 5 and 7 provide more details of the two limiting
factors for MilliSort and MilliQuery by showing how the total
processing time changes with the cluster size and amount of
data per server. In most graphs of Figure 5 and 7, the lines for
different cluster sizes are roughly parallel, indicating that the
marginal cost of handling additional data is about the same
for all sizes (the marginal cost starts higher when the amount
of data per server is smaller, but plateaus out quickly once the
benefit of batching diminishes). However, larger cluster sizes
have larger fixed overheads (y-intercepts of the lines), which
consist of the partitioning cost plus the per-message costs of
the shuffles (a shuffle must send one message to each peer,
even if it only contains a single record). These figures also
show the diminishing returns at timescales less than 1 ms:
even as the number of records per server approaches zero, run-
ning times remain 0.3–1.2 ms and 0.15–0.84 ms for MilliSort

and MilliQuery Q2 respectively, depending on cluster size.
MilliQuery Q3 difers from the other applications in that

its total processing time increases more than linearly with the
input records per server, and the rate of increase is higher for
larger clusters (the gaps between the lines in the right graphs
of Figure 7 become wider for larger numbers of input records).
This is because Q3 uses join operations where the number of
output records tends to increase quadratically with the num-
ber of input records, so the number of input records doesn’t
reflect the actual number of records each server has to process.

Different applications have very different fixed overheads
of harnessing servers. Q1 has the smallest fixed overheads and
they are about the same for all cluster sizes. This is because
Q1 requires very little coordination and doesn’t use shuffle;
the only communication primitives used by Q1 are broadcast
and gather, whose overheads increase only in log scale with
the cluster size. MilliSort and Q2 are very similar: their fixed
overheads increase almost linearly with the cluster size since
both applications require a big shuffle at the end. However,
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for the same cluster size, the fixed overhead of MilliSort is
higher due to the additional partitioning cost (with 2-level
partitioning, this cost also increases almost linearly with the
cluster size; this will be discussed in Section 6.6). For the
same reason, the lines of Q2 in the graphs are closer than the
lines of MilliSort. Finally, the fixed overheads of Q3 are about
3x higher than Q2 for all cluster sizes (unfortunately, it’s hard
to see in the graphs), as Q3 requires a total of three shuffles.

Figure 5 and 7 also show that efficiency improves with
increasing records per server. For MilliSort, once the number
of records per server reaches about 25000, the coordination
costs become small compared to other factors and the shuffle
efficiency improves, so there is little difference in overhead
between different cluster sizes (the 40-server cluster remains
significantly more efficient than the other cluster sizes
because it avoids contention in the network core; this will be
discussed in Section 6.5). The closeness of the lines in these
10 ms graphs indicates that all applications except Q3 could
easily harness many more than 280 servers efficiently with a
10 ms time budget.

The next subsections discuss shuffle and partitioning costs
in more detail.

6.5 Shuffle efficiency
Shuffles present the most significant challenge to scalability
in our experiments, especially at 1 ms time scales. This is
reflected in Table 3: Q1, which has no shuffles, can harness
far more servers and process far more data than the other
benchmarks, while Q3, which has three shuffles, is the least
scalable. MilliSort and Q2, which each use one shuffle, fall
in between. In Table 4, when the number of servers doubles
while fixing the number of records per server, 85% of the
time increase comes from additional shuffle costs; shuffle
costs affect not only the main shuffle phase, but also the
partitioning phase.

To get a better understanding of shuffle costs, we ran a
stand-alone shuffle benchmark in which each of a group
of servers sends a fixed-size message to each other server.
Figure 8 graphs shuffle performance in terms of throughput
per server. We ran four servers per machine, so the ideal
throughput per server would be 25 Gbps.

We observed two different potential reasons that contribute
to the higher shuffle time with more servers. First, as the mes-
sage size decreases, efficiency drops because of per-message
overheads. With 120 servers and 0.96M total records, the
average message size for shuffle is about 6.7KB, which still
provides a good throughput. However, with 240 servers and
1.92M total records, the average shuffle message size drops
to about 3.3KB, resulting in less than 10 Gbps throughput
per server. This also justifies the quadratic scaling property
discussed in Section 6.2; when the number of servers and
number of records per server are scaled simultaneously, we
have a better chance of maintaining shuffle efficiency since
the average message size for shuffle is fixed.

Second, even with large messages, throughput per server
drops as the cluster size increases. It drops from 22 Gbps
per server (with 40 servers) to less than 15 Gbps per server
with 240 or more servers. This is because the cluster network
uses flow-consistent load balancing, rather than packet-level
load balancing. With large numbers of active transmissions,
paths conflict in their link usage, resulting in congestion on
those links and under-usage of other links. As the cluster
size increases, shuffles consume a larger fraction of the
core bandwidth, which makes congestion more likely, and
our high-entropy approach to shuffles cannot completely
compensate. As a result, shuffles cannot harness the full bi-
section bandwidth offered by the network. We speculate that
more granular in-network load-balancing techniques such as
[47, 64] may help remove this bottleneck in the future.
6.6 Partitioning cost
Figure 6 shows the results of a stand-alone experiment that
measures partitioning time as a function of the number of
servers. The multi-level partitioning algorithm we developed
for MilliSort provides a significant peformance benefit: by the
time the number of servers reaches 200, the 2-level approach
is more than 5x as fast as the 1-level approach. As the number
of servers increases, the partitioning time increases super-
linearly for both 1-level and 2-level partitioning schemes.
However, for 2-level partitioning, the increase in time is
almost linear up to 280 servers (each additional server adds
about 2µs in our current implementation). A 1-level approach
is too slow to harness 100 or more servers in a 1 ms budget, but
a 2-level approach can easily coordinate 120 servers within 1
ms and 280 servers within 10 ms. In the best configurations
for 1 ms and 10 ms time budgets, the partitioning cost only
accounts for about 20% and 5% of the total time, respectively.
Unfortunately, even with 2-level partitioning, the coordina-
tion cost for 280 servers is already more than half a millisec-
ond; this prevents us from harnessing hundreds of servers in
1 ms for MilliSort. We didn’t implement 3-level partitioning
and beyond, but we expect that increasing the number of lev-
els will further reduce the coordination cost for large clusters.
6.7 MilliSort efficiency
It might seem that flash bursts must sacrifice throughput
(or efficiency) in order to operate at millisecond timescales.
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Throughput (efficiency)
120 servers

(0.84M records)
280 servers

(26M records)
MilliSort 7172 (19.6%) 10378 (33.1%)

Ideal Distr. Sort 11272 (30.8%) 13600 (43.3%)
Local Sort 36656 ( 100%) 31398 ( 100%)

Table 5: MilliSort efficiency of the best configurations for 1 ms
and 10 ms time budgets, compared to local sort and ideal dis-
tributed sort. Throughput numbers are in “records/ms/server”.
Efficiency is the relative throughput compared to local sort.

CPU SMT BW/core Throughput
MilliSort Xeon Gold 6148 @ 2.4GHz 1 3.1 1297 (1.00x)

TencentSort IBM POWER8 @ 2.9GHz 8 5.0 1977 (1.52x)
CloudRAMSort Xeon X5680 @ 2.9GHz 2 2.7 707 (0.55x)

Table 6: Per-core throughput comparison of MilliSort, Tencent
Sort [28], and CloudRAMSort [34]. “SMT” (i.e., simultaneous
multithreading) is the number of hardware threads per core.
“BW/core” is the average network bandwidth per core, in Gbps.
“Throughput” numbers are in “records/ms/core”. MilliSort’s
per-core throughput is computed from the 10 ms configuration
in Table 5, while Tencent Sort and CloudRAMSort’s numbers
are computed from their published results [28, 34]. Tencent
Sort’s reported throughput is for sorting from disk to disk; we
estimate that less than half of the time is spent on disk I/O, so
we double its reported throughput for a fair comparison.

However, our results suggest that this need not be true.
Table 5 shows the overall efficiency of MilliSort compared
to purely local sort and ideal distributed sort. The ideal
distributed sort represents an imaginary situation where the
partitioning cost is zero and data are shuffled at full network
bandwidth; this provides an upper bound on the throughput
of any distributed sort. Despite operating at a 1 ms timescale,
MilliSort is relatively efficient (e.g., the maximum possible
throughput for distributed sorts is only about 50% higher);
MilliSort is even more efficient at a 10 ms timescale.

MilliSort’s throughput is also on par with state-of-the-art
sorting systems [34, 28] that have much longer running times.
Table 6 summarizes the hardware differences and presents the
throughput numbers in “records/ms/core” for comparison. In
particular, Tencent Sort [28] is the current record holder for
the GraySort benchmark [61], and its total running time is
about 100 seconds. MilliSort’s throughput per core at 10 ms
is only 33% lower than Tencent Sort, even though Tencent
Sort’s POWER8 cores have 8x the hardware threads and 1.6x
the average network bandwidth of MilliSort cores.

Table 5 also provides insight into why distributing data at
very fine granularity makes sense. Network communication
is the largest source of overhead for distributed computation
(the throughput of local sort is 3–5x higher than MilliSort
in Table 5). However, most of this cost is paid immediately
when scaling beyond a single machine. For example,
performing a distributed sort with just two machines requires
half of the data to be sent over the network. There is not much
additional loss in efficiency when scaling out further. This
suggests that if you can afford to distribute at all, you can
afford to distribute a lot.

7 Observations
This section summarizes the key observations that emerged
from our MilliSort and MilliQuery experiments:
Granular data distribution. Distributing data in fine
granularity allows one to harness more CPU cores and
aggregated network bandwidth for faster computation and
communication. Our experiment also confirms that, at least
for some dwarfs, it is possible to scale out quite efficiently
even at millisecond timescale. Thus, we predict that future
distributed data-parallel systems will need to be optimized
for large scale-out architectures with smaller data per server.
This will likely present interesting challenges to the design
of future systems since they will be required to scale down
gracefully (i.e., operate efficiently even on smaller data).
Efficient group communication is essential. Even simple
dwarfs have complex communication patterns internally; all
of the benchmarks except MilliQuery Q1 depend heavily
on group communication. Even when carefully optimized,
they account for 50%–60%, 35%–40%, and 50%–65% of the
overall running time in the best configurations of MilliSort,
MilliQuery Q2, and MilliQuery Q3, respectively.
Per-message overhead is critical. Network bandwidth and
latency are well known to be important for the performance
of large-scale systems, and they remain important for flash
bursts. Flash bursts differ from traditional large-scale
systems in that per-message costs are at least as important as
the traditional metrics. This is because group communication
primitives tend to generate many small messages when
operating at small time scales with large cluster sizes.
Coordination must be structured hierarchically. It is well
known in the HPC community that communication must be
structured hierarchically to handle large cluster sizes. Thus,
group communication primitives are commonly implemented
in a tree or hypercube topology [62], so that each machine
only communicates with a small number of its peers. This
helps to mitigate per-message overheads and harness more
aggregated network bandwidth. This principle also applies
to coordination. As an example, MilliSort’s partition phase is
structured as a hierarchical series of distributed sorts, so that
the computation doesn’t become a central bottleneck.
Low-latency shuffle is challenging. Of all the group com-
munication primitives, shuffle is the most challenging in flash
bursts. There are several reasons for this. First, per-message
overheads become critical since shuffles require each server
to send many small messages. Unlike other primitives, a
hierarchical approach to shuffles generally isn’t practical be-
cause it doubles the network bandwidth utilization. Second,
shuffles need to use the full network bandwidth of each server
for best performance, but many networks do not provide full
bisection bandwidth, especially at large scale. Even where
full bisection bandwidth is available, transient congestion
can occur due to imperfect bipartite matching, either in the
network itself (because of routing) or in the application.
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Finally, hash partitioning often results in non-trivial data
imbalance (e.g., in MilliQuery Q2, the most unlucky server
typically has to process 1.5x much data as the average).

Quadratic scaling. As the time budget increases, the number
of machines that can be harnessed effectively increases at
least linearly. The amount of data each server can process
also grows at least linearly with the time budget, so the
overall dataset size grows at least quadratically with time
budget. For some workloads, such as MilliQuery Q1, where
the only coordination overhead is a final aggregation, the
number of machines can grow exponentially with the time
budget, so the dataset size grows faster than quadratically.
The flip side of this is that reducing the time budget results
in superlinear reductions in the number of servers and overall
dataset size, which creates a lower limit on the timescale at
which the system can operate efficiently. In our experiments,
1 ms appears to be tractable for all of the workloads except
MilliQuery Q3. Future systems that are built on top of better
networking infrastructure will likely enable these workloads
to run efficiently at an even smaller timescale.

Ultimate limits of strong scaling. If we increase the number
of machines while fixing the dataset size, efficiency inevitably
decreases; this eventually prevents us from harnessing more
machines to speed up the job. While it is well known that the
theoretical speedup of a parallel program is ultimately limited
by its serial portion (Amdahl’s Law), this is not the limiting
factor in our experiments. Instead, two other factors result
in the drop in efficiency. First and foremost, coordination
cost rises. This is mostly due to per-message overheads (e.g.,
manifested as higher shuffle costs). Coordination algorithms
also take longer to run (e.g., MilliSort’s partitioning time
increases linearly with the number of servers, even with the
recursive scheme). Second, straggler effects are more sig-
nificant when there are more servers and less data per server
(e.g., even in MilliQuery Q1, the overall efficiency drops
about 50% when scaling from 40 servers to 280 servers).

8 Applicability of results
We conducted our experiments with limitations and assump-
tions that may not apply to today’s computing systems. In
this section we discuss some of these factors and argue that
our results will be relevant for future systems.

Is 1–10 ms the right target? 1–10 ms is not the timescale
at which most people think of large-scale distributed compu-
tation today. For example, response times for users of a few
hundred milliseconds are considered adequate, and it can take
100 ms just to communicate between browser and datacenter.
However, applications such as AR/VR require response times
of 10 ms or better, and new edge computing offerings such as
AWS Local Zones and WaveLength [6] can already provide
single-digit millisecond latency between the end-user and an
edge cloud. Furthermore, there are increasing numbers of
applications that make real-time decisions without humans

in the loop. Examples include controllers for autonomous
vehicles [42] and IoT devices [24], which make decisions
on the order of 10 ms, and financial applications [22, 51],
for which there appears to be no lower bound on desirable
latency. Flash bursts can enable these applications to run
data-intensive algorithms at millisecond timescale.
Idealized experiment setup. Our experiments are conducted
on a bare-metal HPC cluster with no interference from com-
peting workloads. A dedicated cluster is not economically
feasible in practice; however, we believe that recent work
on colocating latency-critical and batch jobs [48, 18] can be
applied to achieve high CPU efficiency without hurting the
performance of flash bursts. In addition, we assume input data
are resident in memory when the experiments start. This may
not be a realistic assumption today, where data is stored on
flash or disk. However, future datacenter systems are likely
to store data in nonvolatile memories (NVMs) with access
times not far above today’s DRAM [27]. Ideally, future
applications will run directly on NVM-based storage servers;
in the worst case an initial shuffle step will be needed to
extract data from the storage servers to computational nodes.
Missing pieces. Given the tight time budget, a flash burst
requires every component involved in its lifetime to support
low latency. There are several elements that our work did
not address, such as application loading, but there are many
other projects attacking these pieces, such as storage sys-
tems [49, 12, 41, 36, 25], cluster schedulers [31], networking
infrastructure [46, 32, 43, 37, 14], fast threading and dis-
patching [8, 52, 30, 48, 54], and lightweight virtualization [1].
Many interesting problems have yet to be solved [39] in order
to create a unified flash burst infrastructure.

9 Related work
There are several efforts underway to support shorter task
durations in a cloud setting. For example, major serverless
platforms [5, 45, 20] can support tasks, also called serverless
functions, as small as 100 ms. Although serverless functions
were initially intended for simple microservices, many
projects have successfully used them to parallelize jobs over
thousands of cores in the cloud. To overcome the relatively
high overheads of the serverless platform, these projects typ-
ically targeted compute-intensive workloads and large time
budgets such as 1 min. ExCamera [17] harnessed 3600 cores
for 2 mins for video encoding; gg [16] harnessed 384 cores
for 1.5 mins for software compilation; PyWren [29] sorted
1TB of data in 204 seconds with 1000 workers; Sprocket [3]
harnessed 1000 cores for less than 1 min for video processing.
Finally, these projects have mainly focused on exploiting
large parallelisms in applications and reducing monetary
cost, as opposed to revealing or addressing the new problems
that emerged by coordinating many nodes at small timescales.

In addition to serverless computing, HPC is another
area that greatly inspires the development of flash bursts.
Scalability is of utmost importance to HPC applications, and
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highly-optimized HPC applications can scale beyond ten
thousand compute nodes in a supercomputer. Furthermore,
unlike many data analytic workloads, traditional HPC
workloads such as scientific simulation typically require
frequent communication between compute nodes (e.g., at the
end of each simulation timestep). Flash bursts share the goal
of running communication-intensive workloads in a scalable
way, and we borrow techniques that are well explored in the
HPC community (e.g., efficient group communication prim-
itives) to achieve this goal. However, flash bursts differ from
HPC in two important aspects. First, HPC workloads usually
run for much longer time (hours or more), so they don’t
expose the interesting problems of operating at millisecond
timescales. Second, HPC workloads usually run in a cleaner
environment which has less interference from other jobs, so
system-level challenges such as performance isolation and
resource utilization are less of a concern to HPC.

Shuffle is known to be one of the most expensive operations
in distributed data analytics. Many projects have focused on
optimizing its performance. Riffle [68] and Magnet [57] are
two recent shuffle services designed to optimize disk-to-disk
shuffle performance in Spark. Locus [53] implemented shuf-
fle in a serverless setting by mixing different cloud storage
services to balance shuffle performance and storage cost.
Dataflow Shuffle [9] is an in-memory shuffle tier used by
Google BigQuery. These systems focused on shuffling large
data and did not address the challenges in low-latency shuffle.

Distributed sorting has been studied extensively for many
decades, with a variety of well-established benchmarks [61].
Most prior work has focused on sorting on-disk data at large
scale (e.g., TritonSort [55]). One exception is CloudRAM-
Sort [34], which is designed to sort in-memory data to speed
up database operations. It can sort 1 TB data in 4.6 seconds
using 256 servers. As a comparison, the per-core throughput
of MilliSort at 10 ms is almost 2x higher than CloudRAMSort
despite operating at 1000x smaller timescales.

Another approach to speed up data-intensive computation
is to exploit shared-memory parallelism on more powerful
servers (i.e., scale-up). The major benefit of scale-up systems
is efficiency because they can avoid the expensive network
communication and overhead induced by fault tolerance. As
shown in [13, 59], scale-up systems can be orders of magni-
tude faster than traditional systems like Spark [67]. However,
there is a practical limit on the number of CPU cores available
on a single server (a few hundred). Also, scale-up systems
are much less flexible when the application requires fast data
movement: if the input data need to be loaded over the net-
work, the bandwidth of a single server will become a signifi-
cant bottleneck. As a result, we expect both scale-up systems
and flash burst to be valuable depending on the application.

10 Conclusion
MilliSort and MilliQuery demonstrate that several core
patterns in data analytics can run efficiently at millisecond

timescales. With a budget of 1 ms, most of the patterns can
harness at least 100 servers; with a budget of 10 ms, our
results suggest that most of the patterns can harness at least
1000 servers. Furthermore, our results indicate that there
is only a small efficiency penalty for running at millisecond
timescales. We identified two related problems that currently
limit scalability: per-message costs and shuffle overheads. If
future systems can improve on our implementation in these
areas, it should be possible to execute large-scale computa-
tions even more efficiently, and at timescales even less than
one millisecond. We do not yet know whether applications
can take advantage of these small timescales, but we hope
our results will encourage application developers to explore
the potential benefits of running large-scale computations at
millisecond granularity.
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Figure 9: A comparison of the splitter selection algorithms
on an example scenario. The keys of each server’s data are
uniformly distributed in a range indicated by a horizontal
line, where dots are pivots (starting and ending pivots are not
considered by the original algorithm). The splitters selected
by the original algorithm are indicated with solid blue vertical
lines. The splitters selected by the weighted algorithm are
indicated with dashed vertical lines. The numbers on pivots are
the cumulative pivot weights used by the weighted algorithm.
The numbers on arrows above and below the diagram indicate
the relative sizes of the buckets for the original and weighted
algorithms, respectively.

A Appendix

A.1 Improved splitter selection

The splitter selection algorithm described in Section 4.2
tends to produce unbalanced partitions where the first server
contains considerably more records than the last server. This
imbalance can be explained by considering the groups of keys
delimited by the pivots from each server; all of the groups
contain about the same number of records. If we choose
the Mth smallest pivot as the first splitter (assuming s = 1),
then the first server will contain M full groups of records.
In addition, it will contain some records from up to M − 1
additional groups, whose contents are divided between the
first two servers (see Figure 9). Thus, the first server is likely
to contain about 1.5M groups worth of records. In contrast,
the last server will contain records from at most M groups,
of which all but one are partial (some of their records have
keys smaller than the last splitter). Thus, the last server will
probably hold only about 0.5M groups of data.

To mitigate the data imbalance, we developed a new
weighted approach to selecting splitters. The original
approach behaved as if all of the keys in each group had the
same value as the pivot at the end of the group. The new
approach changes the weighting, so that half of the keys in
each group are attributed to the beginning of the group and
half to the end. Specifically, in the new approach, each server
also includes its smallest and largest keys as pivots, and each
pivot is annotated with a weight. The first and last pivots
have a weight of 0.5 (half a group), and middle keys have

120 servers (7000 records per server)
Uniform Gaussian

Naive Improved Naive Improved
Pivots P50 P90 P50 P90 P50 P90 P50 P90

120 33.6% 45.5% 6.9% 8.6% 37.6% 47.7% 6.9% 8.6%
240 23.5% 25.4% 4.4% 5.4% 23.4% 25.4% 4.4% 5.5%
360 15.9% 16.9% 3.1% 3.8% 15.9% 17.0% 3.2% 3.9%
480 11.5% 12.3% 2.5% 3.0% 11.6% 12.4% 2.5% 3.0%
600 9.6% 10.3% 2.0% 2.4% 9.7% 10.4% 2.0% 2.5%
Table 7: Excess records in the largest partition, relative to the
average partition size, when using the improved splitter selec-
tion algorithm, vs. the naive algorithm. Input keys were drawn
from two random distributions, and rows corresopnd to different
numbers of pivots per server. “P50” and “P90” represent the
median and 90th percentile over 1000 runs, respectively.

a weight of 1.0 (half of the preceding group and half of the
following group). The annotated pivots from all servers are
collected and sorted as usual. Then the pivots are scanned
from smallest to largest, adding up the pivot weights; when a
given pivot is reached, the cumulative weight is an estimate of
how many groups worth of data have keys less than or equal
to the pivot. The ith splitter will be the first pivot encountered
where the cumulative weight is at least i×sM.

We evaluated the improved mechanism for splitter selec-
tion by running stand-alone simulations with keys drawn
from random distributions. Table 7 shows that the improved
mechanism ensures that the largest partition is within 10% of
the ideal size. Without the improvement, the largest partition
will be 30-50% larger than ideal if the number of pivots
per server equals the number of servers. Said another way,
using the new splitter selection mechanism provides a greater
benefit than increasing the pivots per server by 5x.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    611





EPaxos Revisited
Sarah Tollman

Stanford University
Seo Jin Park
MIT CSAIL

John Ousterhout
Stanford University

Abstract
This paper re-evaluates the performance of the EPaxos con-

sensus protocol for geo-replication and proposes an enhance-
ment that uses synchronized clocks to reduce operation latency.
The benchmarking approach used for the original EPaxos eval-
uation does not trigger or measure the full impact of conflict
behavior on system performance. Our re-evaluation confirms
the original claim that EPaxos provides optimal median com-
mit latency in a WAN, but it shows much worse tail latency than
previously reported (more than 4x worse than Multi-Paxos).
Furthermore, performance is highly sensitive to application
workloads, particularly at the tail.

In addition, we show how synchronized clocks can be used
to reduce conflicts in geo-replication. By imposing intentional
delays on message processing, we can achieve roughly in-order
deliveries to multiple replicas. When applied to EPaxos, this
technique reduced conflicts by at least 50% without introducing
additional overhead, decreasing mean latency by up to 7.5%.

1 Introduction
Consensus-based replication protocols such as Raft [23] and
Multi-Paxos [15] play an important role in large-scale datacen-
ter applications. These protocols have traditionally required
two round-trip times (RTTs) between machines in order to
ensure durability and consistency before returning results to
clients. The latency impact of these RTTs is particularly se-
vere in geo-replicated applications, which have replicas in
geographically distributed datacenters with inter-datacenter
RTTs of 100ms or more.

In recent years there have been numerous proposals for new
consensus protocols built around a fast path that can complete
many operations with a single RTT [16, 21, 24, 30]. Opera-
tions that meet certain conditions, such as being commutative
with other pending operations, can proceed along the fast path,
while operations not meeting the conditions require at least
two RTTs.

Unfortunately, most of these proposals, particularly those
that exploit commutativity, work best within a datacenter,
where RTTs are low [16, 24, 30]. High network delays in
a wide-area network (WAN) make it more difficult to exploit
commutativity because they increase the window of time dur-
ing which operations can conflict. As conflicts increase, fewer
operations can complete in 1 RTT, which reduces the latency
benefit of the protocol.

Egalitarian Paxos (EPaxos) [21] is a commutativity-based
consensus protocol that claims to have low latency in a WAN.
As with other fast-path protocols, the performance of EPaxos
is heavily dependent on workload, as the workload determines
the proportion of operations that are able to benefit from the fast

path. The original EPaxos evaluation included multiple scenar-
ios for command interference, which plausibly measured best
and worse case performance.

However, while replicating the EPaxos paper results, we
discovered that the original benchmarking methodology did
not trigger, and the metrics chosen did not capture, the full
impact of conflicts on EPaxos performance. We reproduced
the original EPaxos results, then broadened the evaluation to
cover a wider range of potential conflict behavior. We also
collected different metrics, which we believe more holistically
reflect protocol performance.

Our re-evaluation draws different conclusions about EPaxos
than the original evaluation. The original evaluation concluded
that EPaxos has optimal commit latency in a WAN, where “op-
timal” is defined as 1 RTT to a simple majority of replicas. We
agree that many operations can achieve this optimal latency,
but we show that the percentage of operations completing in
1 RTT varies greatly depending on the workload. In one of
our experiments, this percentage was as low as 65%. We also
demonstrate that the latency increase for conflicting operations
is substantial; even with a safe upper bound on execution la-
tency many conflicting operations experience latency that is
more than 4x worse than that of Multi-Paxos.

In the process of evaluating EPaxos more deeply, we discov-
ered two opportunities for improving EPaxos’ performance.
When EPaxos runs on highly skewed workloads, dependency
chains can grow without bound, resulting in tail latencies above
5 seconds or even livelock. We found a simple modification
to EPaxos that prevents unbounded dependency growth and
ensures a tight upper bound on latency. Second, we improved
EPaxos performance using synchronized clocks. We noticed
that conflicts occur primarily because different replicas pro-
cess operations at different times. We modified EPaxos to use
synchronized clocks to ensure that all quorum replicas process
a given operation at the same time. This reduces conflict rates
by at least 50% without introducing any additional latency.

This paper makes the following contributions:
• We show how that the original EPaxos evaluation does

not fully capture the impact of conflicts on system perfor-
mance. The EPaxos benchmarking framework has been
used by subsequent papers such as Bipartisan Paxos [30],
so we think it is important to publicize these limitations to
prevent them from propagating further.

• We re-evaluate EPaxos with an improved benchmarking
framework that captures a wider range of possible con-
flict behaviors. Our evaluation shows that the benefits of
EPaxos are narrower and the bad behaviors significantly
worse than previously reported. It is not safe to conclude
that EPaxos will improve performance for a given applica-
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tion without knowing details of the application’s behavior
and whether tail latency matters.

• We show how synchronized clocks can be used to reduce
EPaxos conflict rate and increase its feasibility for a wider
range of workloads.

The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview of the EPaxos protocol. Section 3
describes how we were able to provide an upper bound on
EPaxos execution latency. Section 4 describes how we im-
proved EPaxos by taking advantage of synchronized clocks.
Section 5 details the differences between our EPaxos evalua-
tion methodology and the original. Section 6 evaluates EPaxos
and our improvements. Section 7 discusses related work, and
Section 8 concludes.

2 Egalitarian Paxos Overview
EPaxos claims three benefits: low latency for geo-replication,
high throughput, and graceful performance degradation in the
face of failures. In this paper we focus on the latency benefit:
EPaxos can complete most operations in a single wide-area
RTT. Consensus protocols typically require two RTTs to com-
plete an operation: one for the client to communicate with one
of the replicas, and another to communicate information among
the replicas. Most consensus protocols, such as Paxos [15] and
Raft [23], have a single leader through which all operations
must pass, so for most clients both of the RTTs for an operation
will require wide-area communication. In contrast, EPaxos
uses a leaderless approach, so clients can communicate with
the nearest replica, typically in the same data center. As a result,
only the second RTT requires wide-area communication. The
cost of the RTT from the client to the local replica is negligible
in terms of overall operation latency.

The challenge for leaderless protocols such as EPaxos is to
establish a consistent ordering between operations submitted
to different replicas. When interfering operations (those that
are not commutative) arrive concurrently at different replicas,
the replicas must somehow agree on an ordering, so that all
replicas execute the operations in the same order. In the worst
case, reaching agreement will require at least two WAN RTTs
among the replicas. However, in many cases a single WAN
RTT provides enough information to allow safe execution. For
example, one RTT is sufficient to determine whether concur-
rent operations are commutative; if they are, then the order of
execution does not matter. The performance benefit of leader-
less approaches depends on how many operations can take the
one-RTT fast path as opposed to the two-RTT slow path.

EPaxos uses dependencies to implement its fast path. When
an originating replica receives an operation from a client, it
issues a WAN RTT to collect dependency information from
other replicas. The dependencies describe operations that inter-
fere with the new one. If a quorum of replicas returns the same
dependencies, then the operation will take the fast path: the
originator will be able to analyze the dependencies, determine
the ordering, and execute the operation without initiating any

more RPCs (in the absence of crashes). If different replicas
return different dependencies, then a second WAN RTT is
required to propagate the union of the dependencies to the quo-
rum. After the second RTT, the quorum is now in agreement,
so the operation is durable.

In EPaxos, durability is defined in terms of dependencies:
once a quorum of nodes has persisted an operation and its de-
pendencies, the operation is guaranteed to execute eventually,
even in the face of crashes. EPaxos uses the term commit-
ted to refer to an operation that is durable in this way. At the
time an EPaxos operation commits, it has not been executed
and its execution order may not even be known. Nonetheless,
enough information has been persisted so that the operation
can eventually be ordered and executed.

In the remainder of this section we will separately describe
the EPaxos commit and execution protocols.

2.1 Commit Protocol
When a replica receives an operation from a client, it assigns
that operation to an instance. Instances typically contain a
single operation, but a replica may choose to batch multiple
operations into a single instance. When batching occurs, the
dependencies for the instance include all the dependencies for
its constituent operations.

Each instance is assigned a globally unique instance number
consisting of a unique identifier for the originating replica and a
sequence number within that replica. Instance numbers provide
an ordering among all the instances from a given originator.

In addition to assigning an instance number to each instance,
the originating replica also proposes a dependency set and se-
quence number for the instance. The dependency set consists
of the highest conflicting instance number from each replica (in
addition, all preceding instances for the replica are also treated
as dependencies). The initial sequence number is chosen as one
greater than the largest sequence number in the dependency
set. As will be seen below, the sequence number is used to
order operations that are mutually dependent. The originating
replica derives the dependency set and sequence number for
a new instance from all other instances it has knowledge of.
The durable storage for each object in the system must include
the highest instance number (and sequence number) for each
replica that has modified the object.

The first WAN RTT for an instance, called the PreAccept
phase, begins with these suggestions from the originator. The
originator sends the instance, along with its dependencies and
sequence number, to a quorum of other replicas. Each replica
confers with its state to provide its own suggestion for de-
pendency set and sequence number for the instance, based
on all of the instances it knows about. If the peer disagrees
on the dependency set or sequence number for the instance,
it will merge its determinations with those of the originator.
The peer will reply with a dependency set that is the union
of the one it received and the one it determined from its state,
and a sequence number that is the maximum of the two. The
peer persists this information locally and will consider it when
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Figure 1: EPaxos commit protocol examples. A, B, C, D, and E are replicas in a key-value store. PreAccept boxes contain the instance
number, operation, sequence number, and dependency set for the instance. Subsequent inter-replica messages contain only the sequence
number and dependencies. For simplicity, we only show PreAccept and Accept messages to the necessary quorum, and commit messages
are indicated by dotted arrows. This figure is adapted from the EPaxos SOSP presentation [18].

processing future PreAccept requests; in replying, the replica
promises to reserve that sequence number and dependency set
for that instance, until it hears otherwise from the originator.

If the originator receives identical responses from a quorum
of peers, it can commit on the fast path. When this happens, it
considers the instance committed; it sends Commit messages
asynchronously to all other replicas and proceeds to the ex-
ecution phase discussed in Section 2.2 below. For example,
in Figure 1, a quorum of replicas A, B, and C agree on the
sequence number and dependencies for instance A.0, so A.0
can commit on the fast path.

If the originator receives conflicting responses, it must issue
a second round of RPCs for the instance, called the Accept
phase. In the Accept phase, the originator merges the sequence
numbers and dependency sets from the fast-path quorum’s
PreAccept replies and sends those to other peers. Because
sequence numbers and dependency sets are strictly increasing,
the Accept phase will always succeed; each of the recipients of
an Accept request has already reserved a lower sequence num-
ber and smaller dependency set for the instance, corresponding
to an earlier execution order, so it can surely accept higher
ones, corresponding to a later execution order. In Figure 1, the
PreAccept replies from C and D for E.0 differ, so E merges
the responses and commits E.0 after the dependencies and
sequence numbers have been replicated to the quorum.

An instance can still commit on the fast path if its originator
disagrees with the PreAccept replies, so long as the replies
agree with one another. Because sequence numbers and depen-
dencies can only increase, the originator can increase its values
for those properties to match the responses, achieving quorum
agreement without further communication with other replicas.
In Figure 1, instance A.1 can commit on the fast path because

Figure 2: EPaxos execution algorithm example. Each node
represents an instance, annotated with its instance number,
sequence number, and dependency set. There are directed edges
from each node to its dependencies. The nodes are colored by
strongly connected component. Traversing the graph yields the
execution order A.0, B.0, C.0, A.1.

B and C agree on its sequence number and dependencies. Al-
though A did not initially agree with B and C, A increases its
sequence number and dependencies to those agreed on by B
and C in order to commit on the fast path.

EPaxos’ fast-path quorum size is optimal for common 3- and
5-node cluster sizes. The EPaxos fast-path quorum size is F+
bF+1

2 c replicas, where F is the number of tolerated failures and
there are N=2F+1 total replicas. For common 3 and 5 node
cluster sizes, EPaxos’ fast-path quorum is a simple majority.
This is an improvement over the fast-path quorum of prior
fast-path consensus protocols, such as Generalized Paxos [16],
which has a fast-path quorum size that is always one node
larger than that of EPaxos. The EPaxos slow-path quorum size
is always a simple majority. EPaxos’ quorum sizes are made
possible by its crash recovery mechanism. The EPaxos crash
recovery protocol is not relevant to the performance-oriented
discussions in this paper, and is detailed in the EPaxos paper.

2.2 Execution Protocol
An instance’s execution order is determined by creating and
traversing a graph of its dependencies. This implies that an in-
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Figure 3: Example of EPaxos infinite dependency chains.
Replicas A and B originate instances on the same hot key. In
this example, there are three replicas in the system, but A and
B are closer together and use each other as their quorum. The
arrows indicate PreAccept messages and their timing. Each box
contains the instance number, final sequence number, and final
dependency set for the instance.

stance must wait for all of its transitive dependencies to commit
before executing. In the dependency graph, nodes are instances
and directed edges point from instances to their dependencies.
As discussed in Section 2.1, if an instance is dependent on
R.n, it is implicitly dependent on R.0 through R.(n-1), and
R.0 through R.(n-1) would be added as nodes in the graph.
The graph can be pruned to contain only those instances that
have not executed and whose operations actually interfere with
those of the current instance. The graph contains not just an
instance’s direct dependencies, but also the transitive closure
of dependencies. In order to create this graph, and before it can
be traversed, all transitive dependencies must have committed
so that their sequence numbers and dependency sets are final.

Once an instance’s dependency graph is final, it can be tra-
versed to determine execution order. First, the graph is sepa-
rated into strongly connected components – groups of nodes
within which there is a path from each node to every other node.
The strongly connected components are executed in reverse
topological order. Within a component, instances are executed
in order of increasing sequence number, with ties broken in
a deterministic manner (e.g. by replica id). Figure 2 provides
an example of the execution algorithm. In the example, A.0
forms its own strongly connected component, since it does
not have any dependencies. Instances A.1, B.0, and C.0 form
another strongly connected component. By reverse topological
order, the strongly connected component containing A.0 will be
executed first. Within the remaining strongly connected com-
ponent, the nodes are executed in order of increasing sequence
number, breaking the tie between B.0 and C.0 by replica id.

3 Bounding Dependency Chains
Execution latency is unbounded in the original EPaxos pro-
tocol because dependencies may chain recursively and an
instance cannot execute until all of its transitive dependencies
have committed. The EPaxos paper discussed this problem,
but the problem did not occur with the workloads used for the
original evaluation.

An instance’s transitive dependency set can continually
grow if new interfering instances are originated before all repli-
cas become aware of prior instances. If this happens, the in-
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Figure 4: EPaxos PreAccept phase example, with and without
TOQ. Replicas A and E originate interfering instances A.0 and
E.0 concurrently. Without TOQ, the responses from B and C dif-
fer for A.0. With TOQ, replica C delays processing the PreAccept
for A.0 until the time that C processes it, avoiding conflict.

stance will wait on more and more recently added transitive de-
pendencies to commit, and will be unable to execute. Figure 3
provides an example of this. In the example, a pair of replicas,
each of which is in the other’s quorum, continually originates
new instances on some hot key. Although A.0 is originated first,
B originates B.0 before B becomes aware of A.0. For this rea-
son,A.0 becomes dependent on B.0. Similarly,B.0 becomes de-
pendent on A.1, A.1 becomes dependent on B.1, B.1 becomes
dependent on A.2, and A.2 becomes dependent on B.2. A.0
is now transitively dependent on B.2. With this behavior, this
pattern could continue infinitely, causing execution livelock in
the worst case. In practice, this problem causes high execution
latency for skewed workloads, as demonstrated in Section 6.4.

We are able to bound execution latency by pruning those
transitive dependencies that will necessarily be executed after
the current instance. Given two instances A and B, the EPaxos
execution algorithm states that if B has A as a dependency
and B has a higher sequence number than A, then B is serial-
ized after A. The proof of Theorem 5 in the EPaxos proof of
correctness [19] proves that, given this serialization, B will nec-
essarily execute after A. Therefore, B can be pruned from A’s
execution graph. Any new interfering transitive dependency
C of B will also necessarily execute after A, because C has a
higher sequence number than A and has A in its dependency
set, so it can be pruned as well. For example, in Figure 3, B.0
has a higher sequence number than A.0 and has A.0 as a de-
pendency, so B.0 and its yet unknown transitive dependencies
(A.1, and A.1’s transitive dependencies) can be pruned from
A.0’s execution graph. With our modification, execution delay
is bounded by approximately 3 WAN RTTs. Appendix A.1
describes the bound in more detail.

4 Using Synchronized Clocks to Reduce Con-
flict Rate

In this section we present a novel approach that reduces con-
flicts in EPaxos by taking advantage of synchronized clocks.
We call this approach Timestamp-Ordered Queueing, or TOQ.
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The benefits of EPaxos, and any commutativity-exploiting con-
sensus protocol, depend on minimizing interference between
non-commutative operations. By synchronizing the physical
clocks of all replicas in the cluster, we are able to order in-
stances so that all replicas process them in the same order,
which can eliminate interference even for non-commutative
operations. Our approach to ordering is an enhancement; out
of order messages or poorly synchronized clocks may result
in less conflict mitigation, but do not hinder correctness. We
implemented our approach on EPaxos, but we believe it can
be generally applied to any fast-path consensus protocol. (We
leave this for future work.)

Conflicts occur when replicas learn about instances in differ-
ent orders. In EPaxos, replicas first learn about an instance they
did not originate through its PreAccept message. When the
order in which a fast-path quorum processes interfering PreAc-
cept messages differs, the quorum disagrees on the dependency
information for those instances, causing them to take the slow
path. Figure 4a illustrates an example of this. In the figure,
replica A sends a PreAccept message for A.0 at the same time
as replica E sends a PreAccept message for E.0. In the example,
the fast-path quorum for instances originated from A consists
of B and C. Replica B processes the PreAccept messages in the
order (A.0, E.0), while replica C processes them in the order
(E.0, A.0). Because of this difference in ordering, B and C
respond to A’s PreAccept with different sequence numbers and
dependency sets, causing A.0 to take the slow path.

In the original EPaxos protocol, the order in which a replica
learns about instances is determined by the one-way delay
between the replica and the originators of the instances. In Fig-
ure 4a, the delay between A and B is shorter than that between
E and B, and the delay between E and C is shorter than that be-
tween A and C. The difference in the one-way delays from the
originator to each replica in the fast-path quorum determines
whether an instance is ordered before or after instances that
interfere with it. By the time a PreAccept message is processed
by the furthest replica from its originator, the responses from
the closer replicas are stale.

To reduce conflict rate, closer replicas can delay the time
at which they process a PreAccept message until the time at
which the furthest replica would process it. In Figure 4a, by
the time C processes A.0, B and C have both processed E.0.
If B were to respond at the same time as C, B and C would
respond with the same dependency information. In Figure 4b,
replicas delay processing PreAccepts until the time at which
the furthest replica processes them. If B delays processing A.0
until the time that C processes it, both B and C have seen E.0
before A.0, and A.0 can commit on the fast path.

4.1 Design
Because replicas cannot intuit the time at which the furthest
replica from the originator will process a PreAccept message,
each PreAccept message includes a ProcessAt timestamp.
Each replica will estimate the one-way delay from itself to all
other replicas. The ProcessAt time will be the sum of the time

at which the PreAccept is sent and the one-way delay from the
originator to the furthest replica from the originator.

Each replica sorts PreAccepts in a priority queue based
on the ProcessAt time of the PreAccept. Highest priority is
given to lower ProcessAt times. An element is dequeued and
processed once its ProcessAt time has passed. Because each
replica receives the same ProcessAt time for a given instance,
if PreAccepts are processed in order of their ProcessAt times
then conflicts should not occur.

In order for instances to be totally ordered, a replica must
also delay assigning dependency information to instances that
it originates. To illustrate why this is necessary, we will look
at an example of how conflict can occur when replicas do not
delay their own instances. Hypothetically, if replicas A and
B originate interfering instances A.0 and B.0 concurrently.
A would process the instances in the order (A.0, B.0), and B
would process the instances in the order (B.0, A.0). Instances
will be processed out of order if a replica does not delay those
instances it originates.

To delay the time at which a replica assigns dependency in-
formation to its own instances,we leverage the fact that the orig-
inator of an instance need not agree with the replies to its PreAc-
cept messages, so long as the replies are unanimous. With TOQ,
all PreAccept messages are sent out with sequence number 0
and empty dependencies. The originator adds its own PreAc-
cept messages to its PreAccept priority queue and processes
them at their ProcessAt time, consistent with the time they
should be processed by the other replicas in the cluster. This
means that an originator will not add its instances as dependen-
cies of other instances until other replicas would do the same.

To maintain correctness, we needed to slightly modify the
commit protocol for EPaxos. In unmodified EPaxos, an in-
stance can commit on the fast path if the PreAccept replies
are unanimous, even if the originator disagrees. With TOQ,
since the originator modifies the dependency information for
its own instances after it sends the PreAccept messages for
them, it is possible that the originator would assign a greater
sequence number or dependencies than would its quorum, even
if the quorum agrees with one another. Instead of allowing the
originator to disagree with the rest of the quorum no matter
what, the replica can now disagree with the quorum only if
the dependency information of the quorum is greater than that
of the originator. Lemma 1 of the EPaxos proof of correct-
ness [19], “EPaxos replicas commit only safe tuples,” depends
on a fast-path quorum recording the same tuple for any instance
that commits in the PreAccept phase. With this modification,
we ensure that this holds true.

4.2 Sync Groups
In practice, there is a tradeoff between reducing conflict rate
and increasing the minimum latency for each instance. So far,
we have described TOQ with the approach of synchronizing all
PreAccept messages to all replicas in the cluster. To do this, the
ProcessAt time for each PreAccept is the estimated time the
PreAccept would be processed at the furthest replica. However,
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Figure 5: Round-trip times (in ms) between replicas in
different locations in our test topology, as measured by the ping
application. Replicas are located in Virginia (VA), California
(CA), Oregon (OR), Japan (JP), and London (EU).

this increases the minimum possible latency for an instance.
To illustrate this, we can use back-of-the-envelope calculations
based on the RTTs from our test cluster, shown in Figure 5. The
figure contains RTTs, and we estimate one-way delay to be half
of RTT. Without PreAccept ordering, the minimum latency for
an instance that originated in Japan would be 98ms, which is
the RTT to the furthest replica in its quorum, California. With
PreAccept ordering to the whole cluster, California would de-
lay processing a PreAccept from Japan by the difference in the
one-way delay between Japan and California and Japan and
London, which is 61.5ms. This increases the minimum latency
for an instance originated in Japan by more than 50%.

Another option would be to synchronize message ordering
to the furthest replica in each originator’s quorum. This ap-
proach has the same minimum latency as does unmodified
EPaxos. However, syncing to just the quorum is less effective
when it comes to reducing conflict rate. Each originator’s quo-
rum handles all of the originator’s messages in the same order,
but may handle messages originating from other replicas in
different orders, leading to discrepencies in the dependency
information in PreAccept replies.

A hybrid approach is to synchronize message ordering
among a quorum union. This quorum union contains all repli-
cas included in another node’s fast-path quorum. With this
sync group, conflicts should occur only when the originator
assigned greater dependency information to an instance than
did the remainder of its quorum. The benefits of this approach
differ greatly depending on the topology; for some topologies,
the quorum union might contain the entire cluster.

5 Capturing the Impact of Conflicts
The evaluation approach in the EPaxos paper used workloads
that did not trigger the full range of conflict behaviors, and
it chose metrics that did not measure the full impact of con-
flicts. As a result, its conclusions about performance are over-
optimistic. In this section we discuss the implications of the
original EPaxos evaluation and introduce the changes we made
in our evaluation.

5.1 Commit vs. Execution
The EPaxos paper measures latency in terms of commit time,
not execution time. Specifically, latency is measured as the
time from initiation of an operation on a client until receipt of a
commit acknowledgment from the local replica. This approach
was chosen because a commit guarantees that an operation

is durable and will eventually execute; thus clients need not
wait for execution. However, this argument applies only to
operations that return no results or errors, such as blind writes
(blind writes are the only operation implemented in the EPaxos
benchmarks). Commit latency is not globally sufficient; if a
client depends on information returned by an operation, then it
must wait for execution. For example, the write operations in
both Zookeeper [1] and Redis [2] return results. Furthermore,
if an operation can result in an error (such as attempting a bank
account withdrawal without sufficient funds, or attempting to
set a value in a table that has been dropped) then the client
must wait for execution to complete. Furthermore, all reads
must wait for preceding conflicting writes to execute. Thus,
we think it is likely that most operations will require clients to
wait for execution, and we argue that EPaxos latency should
be measured with execution time, not commit time.
5.2 Access Patterns
One of the challenges in evaluating a protocol like EPaxos
is that its performance depends on the application workload.
The EPaxos benchmarks use a key-value store with an access
pattern based on a single hot key. Each reference is made either
to the hot key, or to a unique key that is never referenced by any
other operation. Conflict rates are controlled by adjusting the
fraction of references to the hot key (either 0%, 2%, or 100% in
the EPaxos paper latency evaluation). This approach has two
limitations. First, having all interference on a single key un-
derstates the impact of conflicts, since there can never be more
than a single strongly-connected component in the dependency
graph. Second, the EPaxos evaluation conflated the fraction of
references to the hot key with the rate of conflicts in the EPaxos
commit protocol; because conflict rate is a product of many
additional factors, such as system load, the actual conflict rate
is considerably less than the fraction of references to the hot
key. For example, the workload labeled ‘100% interference’,
which was claimed to be worst case, produced actual conflict
rates as low as 0%.

For our evaluation we used a Zipfian distribution [11], which
is generally accepted as an approximation of real workloads.
For example, both Memcached [6] and Facebook’s social graph
database [4] experience highly skewed workloads that approx-
imate Zipfian. No single value of the Zipfian skew parameter
is representative of all applications, so we made measurements
with multiple values ranging from lightly skewed (.6) to highly
skewed (.99). This covers the ranges used by other benchmarks
such as Linkbench [3] and YCSB [12] and allows us to observe
how application characteristics affect EPaxos performance.

We also used a mix of read and write operations in our
evaluation, whereas the EPaxos paper used only writes. Read
operations have different behavior from writes: they do not
interfere with other reads, but they do interfere with writes.
Thus the mix of reads and writes affects the conflict rate.
5.3 Load
The approach to load generation in the EPaxos paper minimizes
opportunities for command interference, which results in over-
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optimistic conclusions about latency. First, the paper measures
latency only at low system load; higher loads will result in more
conflicts, which will increase latency. Furthermore, load is gen-
erated with a collection of closed-loop clients, each of which
issues a continuous stream of back-to-back operations, with ex-
actly one operation outstanding at all times. Load is controlled
by varying the number of clients. We found that this produced a
caravan effect,where large groups of operations passed through
a replica at once, followed by gaps with no operations. This be-
havior is unlikely to occur in real applications, and results in an
unvarying system load, while real systems are likely to experi-
ence bursts. Even systems that use server proxies for admission
control still experience variation in load when they are not at
maximum capacity. Finally, back-to-back operations result in
uneven loading across clients: clients that are more centrally
located have higher throughput than those further away, since
throughput is inversely proportional to RTT with this approach.

For our measurements we used higher loads (typically 80%
of the maximum sustainable load) and we used a Poisson
process to schedule new operations, which results in uneven
loading that better approximates real workloads. A Poisson
arrival process is open loop, which means that care must be
taken to choose an arrival rate that does not exceed the system’s
capacity. If a Poisson arrival process results in system overload,
queues will grow without bound, the system does not reach
a steady state, and performance measurements are unlikely
to be meaningful. We monitored queue lengths in all of our
experiments and chose arrival rates for which queue lengths
remained bounded. In addition, we added a cap on the total
number of outstanding operations for each client (the cap was
never reached in our experiments).

5.4 Throughput
There are several confounding factors in the EPaxos throughput
measurements, which make it difficult to determine whether
the results reflect fundamental properties of the protocols or
artifacts of the experimental setup:
• The throughput experiments were run in a LAN,not a WAN.

WAN configurations are likely to have higher conflict rates
because longer network delays increase the window for
conflicts, leading to lower throughput.

• There were different approaches to generating load for dif-
ferent experiments, which led to inconsistent results. With
one method, EPaxos ‘100%’ has 12% higher throughput
than Multi-Paxos, and with the other it has 27% higher
throughput.

• The evaluation of batching (many operations per instance)
does not consider the impact of batching on WAN latency.

• The evaluation only considers perfectly even load balanc-
ing across clients. Throughput would likely decrease if
clients in different locations issued operations at different
rates. Correcting for this with load balancing amongst the
replicas would negate the latency benefits of EPaxos.

• Optimizations to Multi-Paxos were not considered. For
example, the Multi-Paxos leader can hold a read lease for

all objects.

5.5 Summary
Evaluation of EPaxos in Section 6 differs from the original
EPaxos evaluation in the following respects:
• We measure execution latency, instead of commit latency.
• We use a Zipfian distribution for choosing keys to access,

instead of a single hot key.
• We use a mixture of read and write operations, instead of

all writes.
• We measure latency at about 80% of maximum throughput,

instead of a lightly-loaded system.
• We use Poisson arrival rates, instead of back-to-back op-

erations.
• We measure throughput in the same configuration used for

latency measurements, instead of using a LAN configura-
tion with batching.

• We measure a large number of different configurations
with different write rates and Zipfian skew factors, instead
of 3 hot fractions.

6 Evaluation
We had two goals in our EPaxos evaluation. First, we wanted
to see whether our changes to the EPaxos evaluation would
change the conclusions about EPaxos performance relative
to Multi-Paxos. Our new evaluation confirms the original
conclusion that many operations can achieve optimal latency.
However, only operations that experience no interference can
achieve optimal latency, and we demonstrate that conflict rate
varies greatly by application (in our experiments, we mea-
sured conflict rates as high as 35%). Additionally, we show
that conflicting operations experience significantly higher than
optimal latency (more than 4x that of Multi-Paxos, even with
our improvements).

Our second goal was to evaluate the effectiveness of TOQ.
We found that TOQ is effective at reducing conflict rate, reduc-
ing EPaxos latency.

6.1 Experimental Setup
When evaluating EPaxos, we aimed to use an experimental
setup as similar to that of the authors as possible. Our analysis
is a fork of the EPaxos paper evaluation [20] and is available on
GitHub [28]. We used Google Cloud servers in Virginia (VA),
California (CA), Oregon (OR), Japan (JP), and London (EU).
We used the n1-standard-8 machine type with the Ubuntu
18.04.5 LTS operating system.

Unless otherwise specified, all experiments mitigate depen-
dency chaining using the approach described in Section 3.
EPaxos and Multi-Paxos replicate all operations, including
reads. Workload does not impact Multi-Paxos, so we used a
workload with a Zipfian skew factor of .9, 50% writes, and 1
million unique keys. Since any reference point is sufficient to
see how conclusions change, we compare EPaxos against only
Multi-Paxos.
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We initially ran our experiments for both 3 and 5 replicas,
but decided to only include measurements for 5 replicas be-
cause performance degraded similarly for both cluster sizes
as we modified the experimental methodology. TOQ does not
provide a benefit for 3 replicas because conflicts do not occur
with a quorum size of 2 (the originator can simply agree with
the first replica to respond).

We do not enable thrifty – a mode of operation in which
PreAccept and Accept messages are only sent to the necessary
quorum. We chose to disable thrifty because we wanted our
results to be as favorable to EPaxos as possible. As detailed in
Appendix A.2, thrifty increases EPaxos conflict rates, which
makes latency worse. Thrifty provides the same throughput
benefit for EPaxos and Multi-Paxos (about 15%), so enabling
thrifty does not impact conclusions about throughput. Further-
more, TOQ is not compatible with thrifty. While decreases
in conflict rate due to TOQ are much larger than those from
disabling thrifty, we wanted it to be clear in our comparison
that any decrease in conflict rate could be attributed to TOQ
rather than from disabling thrifty.

6.2 Execution Latency
Our first experiment reproduces the basic commit latency re-
sults from the EPaxos paper (see Figure 6); we used the con-
figuration from the EPaxos paper, without any of the changes
described in Section 5. We report mean latency instead of me-
dian for reasons that will be discussed below. The results are
very similar to those in Figure 4 of the EPaxos paper, except that
we measured a lower 99th percentile latency for the ‘2%’ work-
load. This difference does not impact any of our conclusions.

Figure 6 has three additional measurements not present in
the EPaxos paper. First, it includes execution latency as well
as commit latency. When conflict rates are low, execution la-
tency is indistinguishable from commit latency. However, with
high conflict rates, the execution latency can be more than 2x
the commit latency. For the pathological ‘100%’ workload,
EPaxos execution latency is considerably worse than Multi-
Paxos at every site, both at the mean and the 99th percentile.
Second, we also measured a Zipfian access pattern; even at
low load (about 4% of maximum possible throughput for this
experiment), 99th percentile latencies for the Zipfian workload
are significantly higher than for the ‘2%’ workload. 99th per-
centile execution latency under the Zipfian workload is worse
than Multi-Paxos at every site. Third, we measured conflict
rate on the servers. Primarily due to low load, conflict rates for
the ‘2%’ workload were as low as 0.1% and conflict rates for
the ‘100%’ workload were as low as 0%.

For the remaining experiments, we applied the evaluation
changes discussed in Section 5. One of the challenges in bench-
marking EPaxos is that performance varies drastically depend-
ing on the workload. It is not difficult to find arguably realistic
workloads indicating that EPaxos is either very good or very
bad. Thus, we don’t believe it is possible to evaluate EPaxos
fairly with a few discrete workloads. Instead, we ran each of the
remaining experiments over a large range of workloads, typi-
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Figure 8: Complementary CDF of execution and commit
latency. A point (x,y) indicates that a fraction y of instances
had latency greater than x. The data was measured on clients at
Oregon on a workload with 50% writes, Zipfian skew 0.9, and a
load of 11,000 operations/sec. ‘A’ indicates the area of instances
that experience execution delays despite taking the fast path.

cally a full grid with 9 choices of Zipfian skew and 10 choices of
read-write ratio. We then plot the data to show how certain sys-
tem properties vary across the workloads. A potential EPaxos
user can use these plots to determine whether EPaxos would
provide performance benefits for their particular application.
We tried to vary the workload enough to cover the full range
of conflict behaviors likely to be experienced by real applica-
tions. The experiments were all run at 80% of the maximum
throughput of the workload with the lowest maximum through-
put. A consequence of keeping throughput consistent for all
experiments is that the system is underloaded for many of the
workloads. Appendix A.3 contains measurements showing that
conflict rate and latency both increase as throughput increases.

Figure 7 compares the execution latency of EPaxos and
Multi-Paxos across the grid of workloads. EPaxos has better
mean latency for almost all of the workloads (except for clients
in California, which can reach the Multi-Paxos leader with-
out a WAN RTT). On the other hand, EPaxos has worse 99th
percentile latency for almost all workloads. EPaxos cannot
offer lower latency than Multi-Paxos if there is a conflict in the
PreAccept phase, since this results in a second WAN RTT. For
EPaxos P99 latency to be better than Multi-Paxos, less than
1% of operations must encounter conflicts; the bottom graphs
in Figure 7 show that few workloads have this behavior. In
addition to extra RTTs caused by conflicts, EPaxos can also
incur execution delays while waiting for dependent operations
to commit; Muilti-Paxos does not incur these delays.

Figure 8 exposes several interesting aspects of commit and
execution latency:
• Most instances finish execution in one WAN RTT.
• The median latency for both commit and execution will be

one RTT unless conflicts approach 50%, which never hap-
pened in our experiments. Thus, median latency reflects
only network topology, not protocol response to workload.

• Instances that take more than one RTT for execution trend
rapidly towards the worst-case delay for dependencies to
commit. (‘Bound’ in the figure.)

• Execution latency is rarely in the vicinity of two RTTs:
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if there is a conflict, there will probably be a significant
dependency delay.

• A significant fraction of instances that take the fast path
experience dependency delay. (This is indicated by the
area between the lines at point ‘A’ in the figure.)

• The worst case performance penalty from EPaxos is greater
than the best case performance gain; EPaxos fast path la-
tency is 30% better than Multi-Paxos latency, while the
slow path ranges from 40% to 240% worse.

Conclusions about EPaxos latency are almost entirely de-
termined by the choice of metric. The original evaluation used
median commit latency as the primary metric. This is the most
favorable choice for EPaxos: median latency for EPaxos is
independent of application behavior, identical for commit and
execution, and uniformly better than Multi-Paxos. Tail latency
is often used as a metric in both industry and academia; 99th
percentile tail latency is also almost independent of application
behavior for EPaxos, and it is significantly worse than Multi-
Paxos, especially for execution. Workload differences tend to
manifest themselves primarily in the range between the 50th
and 99th percentiles, where most metrics will overlook them.
We chose to use mean latency instead of median in our graphs,
since it reflects some of these workload differences.

6.3 Benefits of TOQ
In order to evaluate TOQ we installed the Huygens [10] clock
synchronization software to synchronize the clocks of all repli-
cas in the cluster. This resulted in server clock offsets between
20µs and 1ms. The original Huygens evaluation measured
clock offsets within 10µs; we believe that we experienced
higher clock offsets because of differences in our environments
(WAN vs. LAN and virtual machines vs. bare metal).

Figure 9 shows the benefits of TOQ. Quorum sync reduces
conflict rates by at least 50% across locations. This reduces
mean latencies, which improves the benefits of EPaxos relative
to Multi-Paxos. Quorum sync has the advantage of not impact-
ing minimum latency (latency is already limited by the most
distant peer in the quorum; quorum sync delays the other peers
in the quorum so they process PreAccept messages at the same
time as the most distant peer).

Quorum union sync introduces a performance tradeoff. It
reduces conflicts by at least 85%, which improves worst-case
latency. However, it increases minimum latency. For example,
quorum union sync delays Japan’s PreAccept messages until
they would reach Virginia, which adds about 25ms to the min-
imum latency for operations issued by clients in Japan. This
does not impact the minimum latency for Oregon in Figure 9b,
but the impact on Japan can be seen in Figure 20 in the Ap-
pendix. Syncing to all replicas completely eliminates conflict,
but increases minimum latencies so much that it makes this
option unattractive.

6.4 Unbounded Dependency Chains
Our focus on execution latency, combined with Poisson ar-
rivals, exposed the problem of unbounded dependency chains
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Figure 9: Conflict rate and execution latency for EPaxos with
and without TOQ. Figure (a) compares conflict rates for different
TOQ sync groups. Figure (b) compares Mean and P99 execution
latency for the circled workload (Zipfian skew of .99 and 100%
writes). ‘Minimum’ indicates the minimum possible latency
for an operation given the protocol and sync group. Other than
TOQ, the experiments for this graph were run with the same
methodology as Figure 7. Error bars and conflict rates are shown
as in Figure 6. The quorum union consists of Virginia, California,
and Oregon. For measurements of sites other than OR, as well
as the latency graph for a workload with Zipfian Skew .8 and
50% writes, see Appendix A.4.

discussed in Section 3. Figure 10 shows that EPaxos execution
latency can be much higher than Multi-Paxos when it does
not protect against infinite dependency chains. Before we im-
plemented our optimization, we observed execution latencies
as high as 5 seconds under high-skew workloads. Livelock
occurred with the pathological ‘100% conflict’ workload when
we removed the cap on outstanding operations from our Pois-
son scheduler (the cap eventually prevents new operations from
entering the system, so the existing operations can complete).

Figure 10c shows that our fix reduces tail latency signifi-
cantly. The benefits are most noticeable for write-heavy work-
loads that are highly skewed. However, workloads that gen-
erally experience low conflict can still experience bursts of
chained dependencies, leading to latency spikes that are sur-
prising and difficult to diagnose. Section 6.6 below shows
that that dependency chain optimization also has a significant
impact on throughput.

6.5 Latency Cost of Batching
The EPaxos paper demonstrated that batching operations into
instances increases the throughput of EPaxos 9x and Multi-
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Paxos 5x, but EPaxos batching significantly increases latency
because it causes nearly all operations to take the slow path.
This is because, with batching, an operation conflicts if any
operation in its batch has a conflict.

The EPaxos paper measurements did not capture the draw-
back of batching, as they measured batching only with the ‘0%’
and ‘100%’ loads, and batching has no effect on conflict rate
for either of those workloads. Figure 11a shows that the mean
latency for EPaxos is worse than Multi-Paxos for most of our
workloads when batching is enabled (compare with Figure 7,
where EPaxos mean latency is almost always lower than Multi-
Paxos). Figure 11b shows more detail for a particular workload.
With batching, the conflict rates are 6-16x higher than without
batching. As a consequence of high conflict rates, batching
causes EPaxos mean latency to be more than double that of
both Multi-Paxos and EPaxos without batching.

6.6 Wide-Area Throughput

EPaxos throughput, like latency, is heavily impacted by oper-
ation interference. Figure 12 shows the maximum throughput
EPaxos can sustain for each workload point, both with and
without the optimization to bound dependency chains. Even
with bounded dependency chains, throughput varies by more
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Figure 12: EPaxos throughput for a variety of workloads, both
with and without bounded dependency chains. Throughput was
determined by varying the Poisson rate parameter until latency
increased without an increase in throughput. Multi-Paxos
maximum throughput is 15,000 operations per second. For the
improved version of EPaxos, Multi-Paxos throughput is equal
to that of EPaxos with a Zipfian skew of .99 and 100% writes,
which is why there is no ‘MPaxos’ line on Figure (a).

than a factor of two across the range of workloads. Without the
optimization it varies by a factor of 10. Throughput for the im-
proved version of EPaxos is at least as good as Multi-Paxos for
all workloads, and more than double Multi-Paxos when there
is little interference. Throughput for the unimproved version
of EPaxos can be as much as 3x lower than Multi-Paxos.
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Although our results show significantly worse throughput
for EPaxos than the original evaluation, we are not confident
that our throughput measurements (or those in the EPaxos pa-
per) are a pure reflection of protocol differences rather than of
confounding factors. When investigating the factors that limit
server throughput, we observed several anomalies as servers
neared saturation. Seemingly innocuous changes could have a
large impact on throughput. For example, increasing the num-
ber of available cores caused throughput to drop. We believe
that some of the issues may come from unexpected behavior
of Go’s thread scheduler. For example, for maximum through-
put it is important that the thread implementing the EPaxos
or Multi-Paxos protocol have exclusive access to a core. We
suspect that Go occasionally deschedules that thread in order
to run less-critical threads that listen for incoming messages.

Further, there are particular implementation details that
may artificially limit throughput for both EPaxos and Multi-
Paxos. For example, EPaxos has a thread that cycles through
unexecuted instances, checking if they can be executed, which
becomes increasingly expensive as the number of unexecuted
instances increase, and could likely be optimized. In addition,
we measured that Multi-Paxos disproportionately suffers from
imbalance in the program’s threading structure.

We experimented with wildly modified versions of the code
that eliminated many of these compounding factors, but con-
cluded that measuring the best possible throughput that is
achievable with either protocol was tangential to the goal of
our work. This would have required effectively rewriting the
code, and we wanted to keep constant with the original EPaxos
evaluation as many factors as possible.

Nonetheless, we felt that it was important to disclose our
findings, as our results differ from those of the original EPaxos
evaluation, and the compounding factors that we encountered
apply to the original EPaxos evaluation as well as ours.

7 Related Work
A number of existing protocols exploit commutativity to pro-
vide fast replication. Other commutativity-based protocols
may suffer from similar performance degradation to EPaxos in
a WAN, but the EPaxos slow path can incur higher latency than
that of most other protocols. We leave analysis of other proto-
cols to future work. Generalized Paxos [16] allows clients to
complete commutative operations in 1 WAN RTT. Generalized
Paxos has a 3 RTT slow path because it reverts to a stable leader
when operations interfere, and it also has a larger quorum size
than EPaxos. CURP [24] completes commutative operations
in 1 RTT by separating durability from ordering. CURP uses a
stable leader, but has clients also issue their operations to ‘wit-
nesses’, which keep track of a set of operations that have been
seen but not yet ordered by the leader. If a client issues an oper-
ation that interferes with another that is unordered, witnesses
reject that operation and it must take the slow path. Unlike
EPaxos, CURP commutativity does not use ordering; even if
all witnesses process an interfering operation in the same order,

it will still conflict based on the presence of interference.
Bipartisan Paxos [30] (BPaxos) uses modularity to address

scaling issues of optimized consensus protocols. BPaxos al-
lows bottleneck modules to be scaled independently from the
rest of the system, increasing throughput. The BPaxos evalu-
ation has similar limitations to that of EPaxos; a fixed ‘conflict
percentage’ is chosen instead of using a representative distri-
bution, and they increase throughput by adding client threads.
The protocol is evaluated in a local-area network (LAN), and
the authors list poor performance in a WAN as a limitation.

TAPIR [31], Janus [22], and MDCC [14] combine con-
currency control and consensus to commit commutative dis-
tributed transactions in 1 WAN RTT. Previously, replication
and transaction protocols would each separately, and redun-
dantly, ensure consistency. By only ensuring consistency once,
these protocols decrease latency by 1 WAN RTT.

Speculative Paxos [25] and Network-Ordered Paxos [17] are
consensus protocols that use ordering to complete operations in
1 RTT. Both use specialized networking hardware to serialize
instances within the network, which is infeasible in a WAN.

Speculative PBFT [29] and and Eve [13] are replication
protocols that optimistically execute operations before their
ordering is confirmed, rolling back those that conflict. Spec-
ulative PBFT allows clients to speculatively execute based on
a prelimary result while the leader replicates the command.
However, the result cannot be externally visible before the
client learns that it is committed. Eve allows for concurrent
execution within a multi-core system.

PLATO [7] orders multi-cast messages in a LAN. A replica
detects out-of-order packets by observing packet inter-arrival
times. PLATO tags each message with a timestamp before
which it should not be processed. This allows the packet to be
revoked if another arrives that PLATO believes should have an
earlier ordering. In addition to being insuitable for a leaderless
protocol, PLATO’s approach is speculative on the receiver,
while our timestamps are determined by the sender and will be
the same for each receiver.

CAESAR [5] and Clock-RSM [9] are consensus protocols
that use synchronized clocks. CAESAR is a leaderless protocol
that is similar to EPaxos, and uses synchronized clocks to allow
instances to take the fast path even if the quorum disagrees on
an instance’s dependencies. In order to do this, CAESAR in-
creases the quorum size by one node, which increases the mini-
mum latency of operations. Clock-RSM uses timestamps from
synchronized clocks to order instances. Instances are sorted by
timestamp, and can complete when no unknown instance could
have had an earlier timestamp. Because of this, a given instance
depends on all other replicas communicating that they have
no prior instances before it can complete. Much of the latency
benefit of Clock-RSM is due to replicas broadcasting replies
to all other replicas, which would also be possible for EPaxos.

Spanner [8], Google’s globally distributed database, uses
synchronized clocks to linearize transactions. This is at a higher
level than the consensus layer, which uses Multi-Paxos.
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On the correctness of Egalitarian Paxos [26] identifies an
error in the EPaxos recovery procedure that breaks correctness.
A potential fix for this issue is implemented in [27]. Our eval-
uation is concerned with the performance of normal operation.

8 Conclusion
In this paper we have shown how conclusions about a system
can be biased by elements of the experimental methodology
such as workload and metrics. Although we agree with the orig-
inal evaluation that EPaxos reduces median latency compared
to Multi-Paxos, we show that the percentage of operations that
acheives this low latency varies greatly by application. Addi-
tionally, there is high variance in operation latency; for many
workloads, a roughly 30% reduction in median latency can be
at the expense of a more than 4x increase in 99th percentile la-
tency. By covering a larger range of workloads, we also encoun-
tered issues that did not manifest in the original EPaxos paper,
such as unbounded dependency chains, the cost of dependency
delays (which can affect even the fast path), the latency penalty
from batching, and the impact of conflicts on throughput.

We also presented TOQ, a novel technique that uses syn-
chronized clocks to improve the performance of consensus
protocols for geo-replication. We evaluated TOQ on EPaxos
and demonstrated that it can reduce the conflict rate and mean
latency of EPaxos without introducing additional latency.
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A Appendix
A.1 Upper Bound on Execution Latency
With the improvement to EPaxos described in Section 3, execu-
tion latency is bounded at roughly 3 WAN RTTs. Let’s say that
replica A originates instance A.i and has transitive dependency
B.i from replica B. In order for B.i to have an equal or lower
sequence number than A.i, or not have A.i as a dependency,
some other replica C in B’s fast-path quorum must learn about
B.i before A.i.

In the worst case, C will learn about B.i an instant before C
learns about A.i, B.i will take the slow path, and B.i’s commit
must propagate to A. Thus, the latency bound is the sum of:
• 1 message delay: the one-way delay from A to C, which

is A.i’s PreAccept message.
• <2 message delays: the remainder of the one-way delay

from B to the other replicas in its quorum + the one-way
delay for their responses. (This will be 1 message delay
if C is the furthest replica in B’s quorum, and always less
than 2 message delays. For our topology, this is always 1
message delay.)

• 2 message delays: an RTT between B and its quorum, for
the Accept phase.

• 1 message delay: the one-way delay from B to A, for B.i’s
commit to propagate to A.

As an example, we can compute the upper bound on execu-
tion latency for Japan in our test topology. Figure 5 contains the
RTTs between replicas in the topology, and we estimate that
the one-way delay is half of RTT. The worst case for Japan (JP)
is that an instance from London (EU) arrives at Oregon (OR)
an instant before Japan’s instance and takes the slow path. The
maxmimum execution latency for the instance from Japan will
be 45.5ms (one-way delay from JP to OR, for JP’s PreAccept) +
64.5ms (one-way delay from OR to EU for OR’s PreAccept re-
ply) + 129ms (RTT between EU and OR, for the Accept phase)
+ 110.5ms (EU’s commit propagation to JP) = 349.5ms. This is
consistent with the maximum execution latency we measured
for clients in Japan in our experiments, which was 349.9ms.

A.2 Impact of Thrifty on Conflict Rate
The original EPaxos evaluation used an optimization called
thrifty, in which an originator only sends PreAccept and Ac-
cept messages to the necessary quorum. Although Enabling
thrifty increases throughput for both EPaxos and Multi-Paxos
by about 15%, enabling thrifty increases EPaxos conflict rates.
With the thrifty optimization, some nodes do not become aware
of an instance until it has committed. When some nodes know
about an instance but others don’t, there is increased potential
for discrepancies in PreAcceptReplies, leading to increased
conflicts.

Figure 13 provides an example of this. In the figure, replica
E sends a PreAccept message for instance E.0 before replica A
sends a PreAccept message for A.0. With thrifty enabled, only
one of the two replicas in A’s fast-path quorum receives the
PreAccept for E.0 before the PreAccept for A.0. This causes

 

(a) Thrifty Enabled

 

(b) Thrifty Disabled
Figure 13: EPaxos PreAccept phase example, with and without
thrifty. Replicas A and E originate interfering instances A.0 and
E.0 concurrently. A’s fast-path quorum consists of replicas B
and C, and E’s fast-path quorum consists of replicas C and D.
With thrifty enabled, the responses from B and C differ for A.0.
With thrifty disabled, replica B receives the PreAccept for E.0
before A.0, avoiding conflict.

A.0 to take the slow path. With thrifty disabled, both replicas
in A’s fast-path quorum receive the PreAccept for E.0 before
that for A.0, so A.0 can commit on the fast path.

In Figure 14, we demonstrate experimentally that thrifty
increases EPaxos conflict rates. Conflict rates are higher with
thrifty enabled for all three workloads in the figure, which
generally leads to higher latency.

A.3 Impact of Throughput and Workload Size on Con-
flict Rate

When comparing EPaxos to a variety of skews and write ratios
in Section 6, we held throughput and the number of unique keys
in the workload constant. However, both of these variables also
impact operation interference.

Figure 15 shows that EPaxos conflict rate, mean latency,
and 99th percentile latency increase as throughput increases.
Higher throughput corresponds to having a higher number of
concurrent operations, creating more opportunities for inter-
ference. EPaxos 99th percentile latency plateaus once more
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Figure 14: Comparing EPaxos Mean and 99th percentile
execution latency with and without thrifty enabled for three
different workloads. The experiments for this graph where run
with the same methodology as Figure 7. Error bars and conflict
rates are shown as in Figure 6.

than 1% of operations hit the upper bound on execution latency
described in Appendix A.1.

Figure 16 shows that EPaxos conflict rate, mean latency,

and 99th percentile latency decrease as the number of unique
keys in the workload increases. Although our latency analyses
showcase a variety of skew factors, our analyses only display
measurements for a single number of unique keys. The trends
would be the same with a different number of unique keys, but
the measurements for each data point would be different.
A.4 Additional TOQ Graphs

In Section 6.3 and with Figure 9, we demonstrated that TOQ
reduced conflict rate and, consequently, latency for clients in
Oregon (OR). Figure 17 shows that TOQ reduces conflict rate
for clients in all locations. Figure 18 shows that TOQ reduces
Mean latency for all client locations, except for clients in Japan
with quorum union sync. Figure 19 shows that TOQ reduces
99th percentile latency for all client locations. Mean latency
increases for Japan with quorum union sync because the quo-
rum union contains VA, which is significantly further from JP
than its quorum, adding about 24ms to the minimum operation
latency for clients in Japan. Although Mean latency increases
for clients in Japan with quorum union sync, 99th percentile
latency still decreases, due to decreased conflict rate.

Figure 20 demonstrates the benefits and tradeoffs of TOQ
for two specific workloads. For both workloads, TOQ with a
sync group of all replicas completely eliminates conflict. How-
ever, the mean latency for the ‘all’ sync group is higher than
without TOQ because its minimum latency is higher. The quo-
rum union sync group decreases conflict rate for all locations,
and latency for most locations, but latency for JP is higher be-
cause the minimum latency is higher. The quorum sync group
does not decrease conflict rate to the same extent as the ‘all’
or quorum union sync groups, but it purely decreases latency
because its minimum latency is the same as without TOQ.

For the top workload in Figure 20, TOQ primarly decreases
99th percentile latency. Without TOQ, more than 1% of oper-
ations are at the latency bound described in Section A.1. TOQ
reduces command interference enough that fewer than 1% of
operations are at the bound. Because conflict rates without
TOQ are fairly low, the impact of TOQ on mean latency for the
top workload is minimal.

For the bottom workload in Figure 20, conflict rates are high
enough that TOQ primarly decreases mean latency. There is a
minimal impact on 99th percentile latency for all sync groups
other than the ‘all’ sync group because, even with the quorum
union sync group, more than 1% of operations are at the latency
bound.
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Figure 15: Conflict rate, mean latency, and 99th percentile latency as a function of throughput. To increase throughput, we varied the Poisson
rate parameter. Maximum throughput for this the graph is the maximum that produces reasonable behavior for all protocols and experiments.
50% of client operations are writes, and the Zipfian distribution has 1 million unique keys.
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Figure 17: Comparing conflict rate for EPaxos without TOQ, EPaxos with TOQ to a quorum sync group, and EPaxos with TOQ to a quorum
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run with the same methodology as Figure 7.
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Figure 19: Comparing 99th percentile latency for EPaxos without TOQ, EPaxos with TOQ to a quorum sync group, and EPaxos with TOQ
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graph where run with the same methodology as Figure 7.
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Abstract
How cloud applications should interact with their data re-

mains an active area of research. Over the last decade, many
have suggested relying on a key-value (KV) interface to inter-
act with data stored in remote storage servers, while others
have vouched for the benefits of using remote procedure call
(RPC). Instead of choosing one over the other, in this paper,
we observe that an ideal solution must adaptively combine
both of them in order to maximize throughput while meeting
application latency requirements. To this end, we propose
a new system called Kayak that proactively adjusts the rate
of requests and the fraction of requests to be executed using
RPC or KV, all in a fully decentralized and self-regulated man-
ner. We theoretically prove that Kayak can quickly converge
to the optimal parameters. We implement a system proto-
type of Kayak. Our evaluations show that Kayak achieves
sub-second convergence and improves overall throughput
by 32.5%-63.4% for compute-intensive workloads and up
to 12.2% for non-compute-intensive and transactional work-
loads over the state-of-the-art.

1 Introduction
Two trends stand out amid the rapid changes in the landscape
of cloud infrastructure in recent years:

• First, with cloud networks moving from 1Gbps and a
few hundred µs to 100Gbps and single-digit µs [11, 20,
25], disaggregated storage has become the norm [4, 17,
21, 28, 31, 40, 44]. It decouples compute from storage,
enabling flexible provisioning, elastic scaling, and higher
utilization. As a result, increasingly more applications
now access their storage servers over the network using a
key-value (KV) interface.

• Second, the steady increase in compute granularity, from
virtual machines, to containers, to microservices and
serverless functions, is popularizing storage-side com-
putation using remote procedure calls (RPCs) [23]. Many
databases allow stored procedures and user-defined func-
tions [5–8, 26, 41, 42], and some KV stores allow just-in-
time or pre-compiled runtime extensions [9, 18, 29, 39].

The confluence of these two contradicting trends – the former
moves data to compute, while the latter does the opposite –
highlights a long-standing challenge in distributed systems:
should we ship compute to data, or ship data to compute?

int traverse_sum(Node* n){
int s = n->value;
while (n->next != NULL) {

n = get(n->next);
s += do_compute(n->value);

}
return s;

}

Application Server

App Logic

Storage Server

…

(a) Ship data to compute.

int rpc_traverse_sum(Node* n){
int s = n->value;
while (n->next != NULL) {

n = get(n->next);
s += do_compute(n->value);

}
return s;

}

RPC Endpoint int s = rpc_traverse_sum(head);

Application Server

Storage Server

(b) Ship compute to data.
Figure 1: Graph traversal implemented with (a) disaggregated
storage and (b) storage-side compute. The latter (1b) results in
less network round-trips but exert more load on the storage server.

The answer, in broad strokes, boils down to the ratio of
computation and communication. The benefits of storage
disaggregation, i.e., shipping data to compute, typically holds
when most of the time of a function invocation (hereafter
referred to as a request) is spent in computation. However,
when a single request triggers multiple dependent accesses to
the disaggregated storage, time spent in network traversals and
data (un)marshalling starts to dominate [10]. Figure 1a shows
an example of a simple graph traversal algorithm implemented
on top of disaggregated storage, where “pointer chasing” can
make network traversals the bottleneck.

In contrast, storage-side computation enables applications
to offload part of their application logic to storage servers. The
storage layer is customized to support application-specific
RPC-style APIs [10, 12, 29], which shave off network round-
trips. Figure 1b shows the previous example implemented
with storage-side computing, where only one network round-
trip is sufficient. However, this is not universally viable either;
for compute-intensive workloads, the compute capacity of the
storage servers can become the bottleneck when too much
computation is offloaded to the storage.

In short, there is no one-size-fits-all solution. Existing
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Workload-agnosticWorkload-aware

Design Space

Ship compute
Performs poorly 
for compute-heavy 
workload

Ship data
Performs poorly for 
communication-
heavy workload

Adaptive

Static
One-shot profiling;
Cannot adapt to 
dynamic workload

Proactive
Application latency SLO-driven;
Proactively balance load;

Reactive
Storage-driven;
Reacts but cannot prevent exerted load;
Extra RTT + Queueing delay

Figure 2: Design space of Kayak.

works have explored different points in the design space (Fig-
ure 2). Arbitrarily forcing a disaggregated storage (i.e., ship
data) or a storage-side computation architecture (i.e., ship
compute) in a workload-agnostic manner leads to poor uti-
lization and low throughput. Our measurements show that
workload-agnostic solution leads to up to 58% lower through-
put and 37% lower utilization when compared to the optimal.
For workload-aware alternatives, one choice is taking a one-
shot static approach, whereby a workload is profiled once
at the beginning. However, statically choosing either KV- or
RPC-based approach falls short even for a single tenant (§2.2).

The alternative, therefore, is taking an adaptive approach
that can dynamically choose between shipping data and ship-
ping compute. Existing adaptive solutions such as ASFP [12]
take a reactive approach: all requests are forwarded using
RPC to the storage server, which can then react by push-
ing some of them back. While this provides a centralized
point of control, each request experiences non-zero server-
side queueing delay, and more importantly, requests that are
pushed back suffer from one extra round-trip time (RTT),
which is detrimental to low-latency applications with strict
latency SLOs. Moreover, throughput-driven designs cannot
proactively throttle exerted load on the storage server w.r.t.
tail latency service-level objectives (SLOs).

We observe that an ideal solution fundamentally calls for a
balanced architecture that can effectively utilize the available
resources and increase overall throughput while satisfying tail
latency SLOs. In this paper, we present Kayak that takes a
proactive adaptive approach to achieve these goals (§3). In
order to maximize throughput without SLO violations, Kayak
proactively decides between shipping compute and shipping
data when executing incoming requests, and it throttles re-
quest rate in order to meet SLO requirements. Specifically,
Kayak takes a latency-driven approach to optimize two pa-
rameters simultaneously: (1) the request rate, and (2) the
RPC fraction, which denotes the proportion of the incoming
requests to be executed using RPC.

Unfortunately, the optimal RPC fraction varies for different
workloads and their SLO requirements. There is no closed-
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Figure 3: Throughput and overall request-level CPU utilization
across both application and storage servers for three different
workloads under different execution schemes, with 200µs SLO.

form expression to precisely capture the relationship between
RPC fraction, request rate, and tail latency either. Finally, we
show that the order in which we optimize request rate and
RPC fraction affects convergence of the optimization algo-
rithm. We address these challenges by designing a dynamic
optimization method using a dual loop control (§4). Kayak
employs a faster control loop to optimize request rate and
a slower one to optimize RPC fraction. Combined together,
Kayak iteratively searches for the optimal parameters, with
a provable convergence guarantee. In addition to increasing
throughput in the single-tenant scenario, Kayak must also
ensure fairness and work conservation of shared server re-
sources in multi-tenant settings. Kayak pins tenants to CPU
cores in a fair manner and employs work stealing to achieve
work conservation.

Our evaluation on a prototype of Kayak shows that: (1)
Kayak achieves sub-second convergence to optimal through-
put and RPC fraction regardless of workloads; (2) Kayak
improves overall throughput by 32.5%-63.4% for compute-
intensive workloads and up to 12.2% for non-compute-
intensive and transactional workloads; and (3) in a multi-
tenant setup, Kayak approximates max-min fair sharing and
scales without sacrificing fairness.

2 Motivation
2.1 Limitations of Existing Designs

Existing solutions either fail to efficiently utilize the available
CPU cores for a large variety of workloads or introduce ad-
ditional overhead to reactively adapt to workload variations,
both of which lead to lower throughput.

Workload-agnostic approaches either use KV-only design
or RPC-only design. The former results in excessive network
round-trips of storage access during execution, while the latter
overloads the storage server CPU and leaves the CPU on the
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Figure 4: Throughput w.r.t. SLO (99%-tile latency) for 3 different workloads under different execution schemes.
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Figure 5: Optimal RPC fraction w.r.t. SLO (99%-tile latency) for
3 different workloads.

application server underutilized. In either case, the overall
CPU utilization is low which hinders the performance.

ASFP [12] presents an alternative to workload-agnostic
solutions by taking a workload-aware approach with runtime
adaptation. In that design, the requests are executed using
RPC by default, and if the storage server gets overloaded
by the exerted computation, a pushback mechanism is trig-
gered to push the exerted computation back to the application
server side. However, the excessive queueing on the storage
server still cannot be prevented, although it can be allevi-
ated by the pushback mechanism. Furthermore, the execution
of pushed-back requests needs to restart on the application
server, wasting CPU cycles on both servers.

To illustrate these issues, we perform an experiment with
the graph traversal application shown in Figure 1. We config-
ure the workload so that the each request triggers two storage
accesses (i.e., two network round-trips) when executed using
the KV scheme. We vary the computation after each access
and refer to them as Light (100ns computation time per ac-
cess), Medium (1µs per access) and Heavy (10µs per access).
For reference, adding one network round-trip incurs 9.2µs
more latency for each request in our testing environment. We
measure the maximum achievable throughput and the CPU
utilization (defined as CPU cycles spent only in executing
the requests). As shown in Figure 3, using only KV or RPC
leads to lower overall CPU utilization and lower through-

put. Although the reactive adaptive design utilizes a higher
amount of CPU on both application and storage servers, its
overheads add up quickly, and its CPU usage for request-level
computation does not increase significantly.

To summarize, existing designs do not efficiently utilize
the CPU resource on both application and storage servers,
which limits their performance. There exists an optimal RPC
fraction that maximizes the throughput (calculated by a com-
prehensive sweep as explained below).

2.2 Need for Dynamically Finding the Optimal Fraction

A key challenge here is that this optimal fraction varies for
different workloads. To highlight this, we perform another
experiment with the same graph traversal workload as before.
We configure the application server to handle a fraction of the
requests using RPC and the rest using the KV approach. We
vary the RPC fraction from 0 to 1 and measure the overall
throughput and end-to-end latency of all requests. In doing
so, we obtain the throughput-latency measurements for all
possible execution configurations, as shown in Figure 4 and
Figure 5. The upper bound in Figure 4 is defined by selecting
the best RPC fraction for each latency SLO to maximize the
throughput, and the selected fraction is plotted in Figure 5.
ASFP is configured as using RPC by default with pushback
enabled.

As shown in Figure 4, workload with less computation
favors RPC over KV, and vice versa. For Medium and Heavy
workloads, the highest throughput is achieved by combining
RPC and KV together. Moreover, we observe that, (1) for
different workloads, the highest throughput is achieved with
different RPC fraction; and (2) for different SLO constraints,
the optimal fraction for highest throughput is also different.
This calls for a proactive design to search for the optimal RPC
fraction. Note that we repeated the same parameter sweep
with the number of storage accesses per request set to 4 and
8, and observe similar trends (please refer to Appendix A).

3 Kayak Overview
Kayak proactively decides between shipping compute and
shipping data in a workload-adaptive manner. It arbitrates
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incoming requests and proactively decides the optimal RPC
fraction (i.e., what fraction of the compute to ship to storage
servers) of executing the requests while meeting end-to-end
tail latency SLO constraints.

3.1 Design Goals

Kayak aims to meet the following design goals.
• Maximize throughput without SLO violations: Applica-

tions have stringent tail latency SLO constraints to ensure
low user-perceived latency. Kayak should maximize the
throughput while not violating these SLO constraints.

• High CPU utilization across all servers: Kayak should
balance the computation imposed by application logic
across the application and storage servers.

• Fair sharing of storage server resources: In a multi-tenant
cloud, multiple applications may be sending requests to
the same storage server, which should be fairly shared.

• Ease of deployment: Applications should be able to use
Kayak with minimal code modification.

3.2 Architectural Overview

At a high level, Kayak adaptively runs application logic on
both the application and storage servers (Figure 6). However,
even though it ships some computation to the storage server,
Kayak’s core control logic runs only on the application server
and the storage server acts as an extended executor. Unlike
existing reactive solutions, Kayak proactively decides the
amount of computation to ship to the storage side.

Key ideas. Essentially, Kayak finds the optimal RPC frac-
tion and maximizes throughput at runtime while meeting tail
latency SLO constraints. The main design challenge is that
the optimal fraction varies in accordance with different work-
loads and their SLO requirements (Figure 5), as well as the
amount of load exerted on the storage server. In a multi-tenant
cloud, all of these change dynamically. In order to keep up
with the changing environment, Kayak proactively adjust the
RPC fraction and the request rate according to realtime tail
latency measurements.

However, the relationship between the request rate, RPC
fraction and latency cannot be easily captured with a closed-
form expression. Thus Kayak adopts a numerical optimiza-
tion method based on a dual loop control algorithm (§4.3) to
search for the optimal parameters iteratively. We notice that
latency measurements in real systems exhibit large variance,
which detrimentally impacts the performance of such iterative
optimization algorithms. Kayak’s algorithm accounts for such
variance and has a provable convergence guarantee.

From an implementation perspective, Kayak faces another
challenge as it has to make adjustments very quickly due to
the high-throughput, low-latency nature of the environment.
Kayak cannot afford to gather global information and make
centralized decisions. Hence, the algorithm for Kayak is fully
decentralized and runs only on the application servers.

Rate Limiter

Request Arbiter

Executor

RPC
Endpoint

Request Handler

App Logic

Tenant
Application Server

Shared Storage Server

2a 2b

3a 3b 

①

④

Latency

KV Store

Per-Tenant Queues

Request Handler

App Logic

…

Figure 6: Kayak architecture. Tenant application servers interact
with shared storage servers using Kayak, which proactively de-
cides which requests to run on the application server using KV
operations and which ones to ship to the storage server via RPC.

Application server. The application server consists of three
main components (Figure 6): (i) the Rate Limiter limits the
rate of incoming requests from the tenant to satisfy SLO
constraints; (ii) the Request Arbiter determines the optimal
RPC fraction; and (iii) the Executor handles the requests
according to the scheme decided by the Request Arbiter.

The Rate Limiter interacts with the tenants and 1 receives
incoming requests. It continuously monitors real-time tail
latency of end-to-end request execution, and pushes back to
signal the tenant to slow down. When the servers are over-
loaded and the SLO cannot be met, it drops overflowing re-
quests. We assume that tenants implement mechanism to
handle overflowing, such as resubmit dropped requests, and
increase provisioning so that in the worst case scenario all
requests can still be executed on all application servers within
the SLO.

The Request Arbiter proactively determines the optimal
RPC fraction. It selects the execution scheme for each request
based on that fraction. For each request, the choice of execu-
tion scheme is determined by a Bernoulli distribution B(1,X)
where X is the proportion of requests processed using RPC.

The Executor handles the request in its entirety and reports
the end-to-end completion time back to the Rate Limiter upon
completion. It consists of two parts: (i) the Request Handler
and (ii) the RPC Endpoint. If the request is to be executed
using 2a the KV scheme, the Request Handler is triggered.
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The Request Handler executes the application logic locally
on the application server and keeps track of the states of the
request. Whenever it needs to access data stored in the storage
server, 3a the KV API of the storage server is subsequently
called. In contrast, if the request is to be executed on the
storage side using the RPC scheme, then the request is simply
forwarded to 2b the RPC Endpoint on the application server.
The RPC Endpoint issues an RPC request 3b to the storage
server for processing the request.

Storage server. The storage server includes an additional
Request Handler to handle RPC requests in addition to a
KV interface. Similar to allocating CPU cores in the appli-
cation server to run application code, in Kayak, computation
resources in the storage server are also allocated to specific
tenants at the CPU core granularity.

Each tenant has a dedicated request queue, from which its
core(s) polls KV and RPC requests. Handling an incoming
KV request in Kayak is the same as what happens in a tradi-
tional KV store: the request is simply forwarded to the KV
store. Upon receiving an RPC request, the Request Handler
is triggered and executes the application logic on the storage
server. The Request Handler calls 4 the local KV API when-
ever data access is needed, interacting with the stored data
without crossing the network.

This static pin-request-to-core allocation scheme of Kayak
makes it easier to enforce fair computation resource sharing
between tenants. However, static allocation of CPU cores
cannot guarantee work conservation of the CPU cores on the
storage server. Kayak uses work stealing to mitigate this issue:
whenever a tenant’s dedicated queue is empty, the correspond-
ing CPU core steals requests from other queues.

4 Kayak Design
Our primary objective is to maximize the total through-
put without violating the tail latency SLO. However, higher
throughput inevitably leads to higher latency in a finite sys-
tem [27], and there exists a fundamental tradeoff between
throughput and latency. Unfortunately, the precise relation-
ship between latency and throughput of a real system, how-
ever, is notoriously difficult to be captured by a closed-form
expression. In this paper, we use an analytical model to high-
light our insights and take a tail latency measurement-driven
approach to design a pragmatic solution.

At the same time, as illustrated in Section 2, a reactive
approach to achieve this can lead to CPU wastage. Hence,
Kayak proactively decides what fraction of the requests to
offload vs. which ones to run in the application server, while
maximizing the total throughput within the SLO constraint.
The need for optimizing both raises a natural question: which
one to optimize first? In this section, we analyze both op-
timization orders and design a dual loop control algorithm
with provable convergence guarantees. Detailed proofs can
be found in the appendix.

Sym. Description
R Total request rate
X Proportion of requests processed using RPC
τ Random variable of request latency
to Latency SLO target
T (X ,R) Latency SLO as a function of X , R
R(X) Function implicitly defined by T (X ,R(X)) = t0
k Index of iterations

Table 1: Key notations in problem formulation.

4.1 Problem Formulation

We denote the proportion of requests to be executed using
RPC by X , the total incoming request rate by R, and we define
τ as the random variable of request latency, thus we have:

τ∼ P(R,X),

where R and X are the parameters of distribution P. Table 1
includes the key notations used in this paper.

We denote T (X ,R) as our SLO statistics metric, which
takes a specific statistical interpretation for the particular SLO
metric. For instance, if the SLO is defined as the 99%-tile
latency then T is the 99%-tile for τ. We denote t0 as the SLO
target under the same statistic metric. Thus the problem can
be formulated as:

max
X

R (1)

s. t. T (X ,R)≤ t0 (2)
R > 0, (3)
X ∈ [0,1]. (4)

Here constraint (2) captures the latency SLO constraint, and
constraints (3) and (4) represents the boundary of R and X ,
respectively.

We make the following observation when solving this opti-
mization problem:

Observation 1. Fixing X, FX (R) := T (X ,R) is monotonic
increasing.

Observation 1 captures the relationship of throughput and
latency from queueing theory [27] for finite systems like
Kayak.

4.2 Strawman: X-R Dual Loop Control

Optimization (1) cannot be directly solved with a closed-form
solution of R and X due to the intractability of the function
T (X ,R). Therefore, we use a numeric optimization method
and try to optimize R and X independently and iteratively. To
put it into our context, we need to design an iterative algorithm
such that in each iteration, we first optimize either R or X ,
and then optimize the other. We also have to prove that this
algorithm would actually converge to ensure optimality and
stability of the system.

Now we are facing a question: which one to optimize first?
In our problem, there is an asymmetry for X and R: X is the
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Figure 7: Instability of throughput and RPC fraction w.r.t time,
with X-R Dual Loop Control.

parameter in Optimization (1) where as R is the objective. A
straightforward solution is to optimize X first, which leads to
the following algorithm.

Algorithm I (X-R Dual Loop Control) For k = 1, . . . ,K,
we alternatively update Xk and Rk by

1. Fix Rk, and find the RPC fraction Xk that minimizes
latency, i.e., Xk = argminX T (X ,Rk);

2. Update Rk according to gradient descent so that T ≈ t0,
i.e.,

Rk+1 = Rk +η(t0−T (Xk,Rk)) ,

where η > 0 is the stepsize.

In this algorithm, the first step is to solve a convex optimiza-
tion problem. Because our assumptions guarantee that Xk is
unique and finite, this iteration is well defined for at least the
first step (and we will show it is also good for the second step).
Moreover, because TRk(X) := T (X ,Rk) is µ-strongly convex
and L-smooth, Xk can be solved very quickly (or mathemati-
cally, in a linear rate) by iterative algorithms such as gradient
descent. We have the following theorem that characterizes the
convergence of this algorithm. The rigorous statements and
proofs are deferred to Appendix B.2.

Theorem 1. Fixing R, FR(X) := T (X ,R) is strongly convex
and smooth. Suppose for all X, 0 < α ≤ ∂T (X ,R)

∂R ≤ β. Let
0 < η < 1

β
, then under mild additional assumptions1,

|RK−R∗| ≤ (1−ηα)K · |R0−R∗| .

Here R∗ denotes the optimal request throughput, and R0
denotes the initialization. This result shows the iteration of
X-R Dual Loop Control converges to the optimal requests
exponentially fast, i.e., after at most O(log 1

ε
) iterations, the

algorithm outputs a solution that is ε-close to the optimal.

Instability of X-R dual loop control. However, while Al-
gorithm I is theoretically sound, it is not practical to be imple-
mented in a real system. The key obstacle is that the latency
SLO metric cannot be directly obtained in practice. Instead,

1For the sake of presentation, we omit the technical assumptions. For a
complete description on the theorem, please refer to Appendix B.2

we can only measure a set of samples of latency τ, and then
gather statistics to derive the SLO metric. Hence the derived
SLO metric – be it average or 99%-tile – is only an estimate
T̂ based on sampling. While sampling might not be a prob-
lem for many systems by using a high sampling rate, it is
indeed a problem for Kayak. In particular, because of the
microsecond-scale workload and the real-time requirement
of Kayak, the sample size for each estimate is limited. This
leads to large variance in the estimated T̂ , which results in
degraded convergence speed and quality.

To quantify the impact of this variance and show the gap
between theory and practice, we conduct a verification exper-
iment. We run Algorithm I with the Heavy workload from
Section 2 under an SLO constraint of 200µs 99%-tile latency.
Our experiment confirms the aforementioned issue of vari-
ance in SLO estimates. Figure 7 shows poor convergence
quality of both the throughput and the RPC fraction.

4.3 Our Solution: R-X Dual Loop Control

A naive mitigation to counter the SLO variance is to simply
use a metric that is more robust, such as average latency. But
this limits the operators to only one viable SLO metric and
compromises the generality of the system.

In order to solve the challenge of unstable SLO estimates,
we must design an algorithm that is not sensitive to the vari-
ance of T̂ . Compared with the RPC fraction X , the request
rate R has a more intuitive and better-studied interaction with
latency T from extensive study in queueing theory. Specifi-
cally, we take inspiration from recent works [19, 30] showing
that even with variance in latency measurements, one can still
achieve rate control (i.e., optimization of the throughput) in
a stable manner. From the starting point of latency-driven
rate control, we design a dual loop control algorithm that first
optimizes R and then optimizes X to numerically solve the
optimization problem. The algorithm is shown as follows.
The first part is latency-driven rate control, and the second is
gradient ascent.

Algorithm II (R-X Dual Loop Control) For k = 1, . . . ,K,
we respectively update Xk and Rk by

1. Apply rate control so that the latency approximates SLO,
i.e., Rk be such that T (Xk,Rk)≈ t0;

2. Use gradient ascent to search for the optimal Xk, i.e.,
Xk+1 = Xk +η

dRk
dX , where T (X ,Rk) = t0, and η is a posi-

tive stepsize.

R loop: rate control. In order to satisfy the SLO require-
ment (T ≤ t0), we need to carefully control the request rate
R. Intuitively, too high an R leads to excessive queueing on
the server side, causing SLO violations; at the same time, too
low an R leads to low overall throughput and low resource
utilization.
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Input: Current throughput R, latency t, SLO target t0
Output: Updated throughput R

/* Initialize global variables. */
1 T← 0; R← 0 . Last involved latency and throughput.

/* Update R for each round. */
2 Procedure UpdateR()

/* Calculate ∆R according to Newton’s method. */

3 ∆R← (R−R)(t0−T )
T−T

/* Bounds checking, throughput should be positive. */
4 if R+∆R < 0 then . Unlikely. Violates (3).

5 R← R
M . Discard ∆R and divide R by half.

6 else
7 R← ∆R +R

Pseudocode. 1: Dynamic search of optimal R.

Let R(X) be a function implicitly determined by the bound-
ary constraint Eq. (2), i.e.,

T (X ,R(X)) = t0.

The implicit function R(X) is indeed well defined, since for
any X , T (X ,R) is monotonically increasing,2 implying there
exists an unique request throughput R(X) that satisfies the
boundary constraint, i.e., the maximum throughput is achieved
when the latency is equal to the SLO target.

Essentially, we have to design a dynamic algorithm that
actuates R(X) in real-time (via Rk(X) in step 1). This problem
can be solved with a root-finding algorithm such as the classic
Newton’s method. However, if we apply this method directly,
we may encounter situations where the updated throughput
R is negative, which violates constraint (3). This happens
when the throughput is too high and needs to be significantly
reduced. In this case, we divide R by M instead of updating
it using Newton’s method. This ensures that (i) the updated
throughput is positive; and (ii) the updated throughput is
still significantly lower than before. We note that this out-of-
bound scenario does not happen frequently. For simplicity,
we choose M = 2. Our algorithm of searching for the optimal
R is shown in Pseudocode 1.

X loop: RPC fraction control. For any given RPC fraction,
the rate control of Kayak essentially maximizes throughput
within the allowance of SLO requirement. With rate control,
we effectively get the throughput as a function of the given
RPC fraction (R(X)). In this part, we focus on the comple-
mentary and optimize the RPC fraction to maximize R(X).
We use a gradient ascent algorithm to achieve that. When the
updated RPC fraction falls out of the range of [0,1], we apply

2We assume that T (X ,R) is continuous, and for any X , there exist R1 and
R2 such that T (X ,R1)≤ t0 ≤ T (X ,R2). This assumption pluses monotonicity
yields the existence and uniqueness of the implicit function R(X).

Input: Current throughput R, RPC propotion X ,
Output: Updated RPC propotion X

/* Initialize global variables. */
1 R← 0; X← 0 . Last involved throughput and RPC fraction.

/* Update X for each round. */
2 Procedure UpdateX()

/* Calculate ∆X according to Gradient Ascent. */
3 ∆X ←−η

R−R
X−X

/* Bounds checking, X should be within constraints. */
4 if X +∆X /∈ [0,1] then . Unlikely. Violates (4).
5 X ←max{min{X +∆X ,1},0}
6 else
7 X ← ∆X +X

Pseudocode. 2: Dynamic search of optimal X .

( , )

+= 0 −
+= −

0

Latency Feedback

Fast loop Slow loop

Figure 8: Nested control loops of Kayak.

rounding to ensure it is within the boundary. Our algorithm
of searching the RPC fraction is shown in Pseudocode 2.

Putting them together. Combing the rate control and the
RPC fraction control, our algorithm (Algorithm II) naturally
forms a bi-level (nested) control loops [15], with two actuators
X and R and only one feedback signal t. We adopt a single
control loop (the inner/fast loop), called R loop, to implement
the rate control, i.e., finding the maximum throughput R while
not violating the SLO t0. The input of this control loop is the
measured latency SLO metric T̂ and the output is request rate
R which is the input for our request arbiter. We then adopt
another control loop (the outer/slow loop), called X loop, to
implement our request arbiter, i.e., choosing the best X that
maximizes R0.

Although this dual loop control design decouples the two
actuators X and R, the resulting two feedback loops may be
coupled. The coupling between two feedback loops may cause
oscillation, which can be mitigated by choosing different sam-
pling frequencies [15]. The exact two values can be tuned
by the operator according to different workloads and system
configurations. However, because the functioning of the sec-
ond loop is dependent on the output of the first loop (R) to
have converged to a stable point, it is best practice to choose a
lower frequency for the second loop. Theoretically, we show
that this dual loop control algorithm is guaranteed to converge
in Section 4.4. Empirically, in our experiments, we let the
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sampling rates of the first and second loops to be 200Hz and
20Hz respectively, and we show that the system converges
fast to near optimal throughput in Section 6. We evaluate the
impact of frequency selection in detail in Section 6.5.

4.4 Perfomance Guarantee

From the R loop, we obtain an estimation Rk(x) at each itera-
tion k, which approximately satisfies T (X ,Rk(X))≈ t0. In the
X loop, we optimize X for our request arbiter such that R0 is
maximized. This is done by stochastic gradient ascent (SGA,
or online gradient ascent) on X . There is a rich literature in
online learning theory for SGA when Rk(x) is concave, e.g.,
see [36]. Applying related theoretical results to our problem,
we have the following performance guarantee for our system.
The proof of Theorem 2 is deferred to Appendix B.3.

Theorem 2. Suppose for all k = 1, . . . ,K, Rk(X) is concave,
and ‖∇Rk(X)‖2 ≤ L. Consider the iterates of SGA, i.e.,

Xk+1 = Xk +η∇Rk(Xk).

Then we have the following regret bound

K

∑
k=1

(Rk(X∗)−Rk(Xk))≤C ·
√

K, (5)

where C := L‖X1−X∗‖2 is a constant depends on initializa-
tion and gradient bound, and X∗ can be any fixed number.
Note that the regret bound holds even Rk(X) is chosen adver-
sarially based on the algorithm history.

Inteperation of Theorem 2. The sublinear regret bound
implies SAG behaviors nearly optimal on average: we see
this by setting X∗ = argmaxX ∑

K
k=1 Rk(X), and noticing that

1
K

K

∑
k=1

Rk(X∗)−
1
K

K

∑
k=1

Rk(Xk)≤ O
(

1√
K

)
→ 0.

More concisely, in our algorithm, {Rk(X)}K
k=1 corresponds

to a sequence of inaccurate estimations to the true implicit
function R(X) — even so the theorem guarantees a sublin-
ear regret bound, which implies that our algorithm behaviors
nearly as good as one can ever expect under the estimations,
no matter how inaccurate they could be.

Furthermore, if for each k, Rk(X) is an unbiased estima-
tor to the true concave function R(X), i.e., ERk(X) = R(X),
then X̄ = 1

K ∑
K
k=1 Xk converges to the maximal of R(X) in ex-

pectation: we see this by choosing X∗ = argminX R(X) and
noticing that

E [R(X∗)−R(X̄)]≤ 1
K

K

∑
k=1
E [R(X∗)−R(Xk)]

=
1
K

K

∑
k=1
E [Rk(X∗)−Rk(Xk)]

≤C · 1√
K
→ 0.

The above convergence result does not require any assump-
tions on the randomness of Rk, as long as Rk(X) is an unbi-
ased estimator of R(X). This means our algorithm can tolerate
variance in the measured latency which causes variance in
estimated Rk. The convergence is empirically validated by
our experiments in Section 6.1.

4.5 Scalability and Fault Tolerance

Scalability. Kayak is fully decentralized, and its control
logic (e.g., rate and RPC fraction determination) is decoupled
from the request execution in the dataplane. Throughput of a
tenant is limited by its total available resources in application
and storage servers; one can increase throughput by adding
more application servers or by ensuring more resource share
in the storage servers.

Fault tolerance. Kayak does not introduce additional sys-
tems components beyond what traditional KV- or RPC-based
or hybrid systems do. As such, it does not introduce novel
fault tolerance challenges. The consistency and fault tolerance
of the KV store is orthogonal to our problem and out of the
scope of this paper.

5 Implementation
We build a prototype of Kayak with about 1500 lines of code
and integrate it with the in-memory kernel-bypassing key-
value store Splinter [29]. The code is available at: https:
//github.com/SymbioticLab/Kayak

Kayak interface. Users of Kayak provide their custom de-
fined storage functions (App Logic in Figure 6), which are
compiled with Kayak and deployed onto both the application
server and storage server. At runtime, users connect to Kayak
and set the desired SLO target. Users then submit request in
the format of storage function invocations to Kayak.

Application server. The core control logic of Kayak is im-
plemented in the application server. One challenge we face
during implementation is to optimize the code to reduce
overhead, which is especially important because of the high
throughput low latency requirement. For instance, the inner
control loop constantly measures request latency and calcu-
late the 99%-tile. One naive way is to measure the quantile is
using selection algorithm to calculate the k-th order statistics
of n samples, with has at least O(n) complexity. Instead, we
apply DDSketch [32] to estimate the quantile in real time
with bounded error.

Storage server. The main challenge of implementing the
storage server is supporting multi-tenancy and ensuring fair-
ness and work conservation. We pin requests from different
tenants to different CPU cores to ensure fairness. And we
adopt work stealing to ensure work conservation: CPU cores
with no requests to process steal requests from the queues of
other cores. Specifically, similar to ZygOS [38], each CPU
core of Kayak steals from all other CPU cores, which is dif-
ferent from Splinter’s work stealing from only neighboring
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CPU Intel E5-2640v4 2.4 GHz
RAM 64GB ECC Memory DDR4 2400MHz
NIC Mellanox ConnectX-4 25 GB NIC
OS Ubuntu 16.04, Linux 4.4.0-142

Table 2: Server configurations for our testbed in CloudLab.

cores. This further improves overall CPU utilization.

6 Evaluation
In this section we empirically evaluate Kayak with a focus on:
(i) verification of convergence; (ii) performance improvement
against state of the art [12]; and (iii) fairness and scalability
with multiple tenants. Our key results are as follows.

• Kayak achieves sub-second convergence to optimal
throughput and RPC fraction regardless of workloads.
It can proactively adjust to dynamic workload change as
well (§6.1).

• Kayak improves overall throughput by 32.5%-63.4% for
compute-intensive workloads and up to 12.2% for non-
compute-intensive and transactional workloads (§6.2).

• In a multi-tenant setup, Kayak approximates max-min fair
sharing, with a Jain’s Fairness Index [22] of 0.9996 (§6.3)
and scales without sacrificing fairness (§6.4).

• We also evaluate Kayak’s sensitivity to its different pa-
rameters (§6.5).

Methodology. We run our experiments on CloudLab [3]
HPE ProLiant XL170r machines (Table 2). Unless specified
otherwise, we configure Kayak to use 8 CPU cores across all
servers. The fast control loop algorithm is configured to run
every 5ms and the slow control loop runs every 50ms. The
initial RPC fraction is set at 100%, and we define SLO as the
99%-tile latency.

Workloads. We use the workload described in Section 2.
Unless otherwise specified, we configure the workload with
a traversal depth of two so that each request issues two data
accesses to the storage. We vary the amount of computation
that takes place after each access and refer to them as Light
(100ns computation time per access), Medium (1µs per ac-
cess) and Heavy (10µs per access). This workload emulates a
variety of workloads with different computational load in a
non-transactional environment.

We extend this workload and create a Bimodal workload.
We denote by Bimodal(1us, 100ns, 50%, 5s), a work-
load that consists of 50% Medium (1µs/RTT) and 50% Light
(100ns/RTT) with an interval of 5 seconds.

We also run YCSB-T [14] as a transactional workload. This
workload is not computationally intensive.

Unless otherwise specified, for all workloads, we set our
latency SLO target as: 99%-tile request latency lower than or
equal to 200µs.

Baseline. Our primary baseline is ASFP [12], which is
available at https://github.com/utah-scs/splinter/
releases/tag/ATC’20 and also built on top of Splinter [29].

6.1 Convergence

In this section, we validate that Kayak’s fast loop can converge
to a stable throughput R while satisfying SLO constraint and
when running together with fast loop, the slow loop can also
converge to the optimal RPC fraction.

Fast loop only. We first disable the slow loop and run
Kayak with a fixed RPC fraction (100%), to show that the fast
loop (rate control) can converge to optimal throughput with
different workloads.

We run Light, Medium and Heavy workloads with one
application server and one storage server, and measure how
the throughput and 99%-tile latency changes with time. As
shown in Figure 9, Kayak ramps up the throughput quickly
when the measured 99%-tile request latency is below the SLO
threshold of 200µs. Along with the increase of throughput, the
latency also increases, as observed from the rise of red line.
The entire converging process happens within 0.2 seconds.

After approaching the SLO limit, both the throughput and
latency remains stable with minor fluctuations, confirming
the convergence of our fast loop. We note that the converged
throughput are the same as the measurements of the RPC-
only configuration in Figure 4. This means that our fast loop
indeed converges to the optimal throughput.

Dual loop control. Now we move on to verifying the con-
vergence of both loops combined. We repeat the previous
experiments, but with both control loops enabled. Figure 10
shows the dynamics of throughput and RPC fraction and how
they change with time. We highlight three observations.

• Similar to Figure 9, throughput increases rapidly within
the first 0.2 seconds; this is due to the fast loop.

• With the Medium and Heavy workloads, the throughput in-
crease slows down after 0.2 seconds. This increase comes
from the slow loop, as we can see a change in RPC frac-
tion. Note that the Light workload does not show this
trend, because in this setup the initial RPC fraction (100%)
is already the optimal for it.

• After 1 second since the start, the throughput converges
to a stable value with only minor fluctuations.

Comparing the RPC fraction in Figure 10 against Figure 5,
we observe that our algorithm converges to the optimal RPC
fraction. Comparing the throughput in Figure 10 against the
Optimal configuration in Figure 4, we observe that the con-
verged throughput is the optimal throughput.

Convergence under dynamic workloads. One advantage
of Kayak is that it can proactively adjust to changing work-
load. To verify this, we run Kayak with the Bimodal(1us,
100ns, 50%, 5s) workload. Figure 11 shows the dynamics
of throughput and RPC fraction. As we can see, Kayak adapts
to the changing workload, and adjusts both the throughput
and RPC fraction accordingly in a timely fashion.
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Figure 9: Throughput and 99%-tile latency w.r.t time, with only the fast loop of Kayak and fixed RPC fraction of 100%.
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Figure 10: Dynamics of throughput and RPC fraction w.r.t time, with nested control loops of Kayak.

SLO YCSB-T Light Medium Heavy Bimodal
Kayak ASFP Kayak ASFP Kayak ASFP Kayak ASFP Kayak ASFP

50µs 2.63 2.58 3.05 3.05 1.71 1.06 N/A N/A 2.13 1.43
100µs 3.12 2.78 3.36 3.36 2.37 1.45 0.37 N/A 2.74 2.16
200µs 3.35 3.01 3.59 3.52 2.54 1.64 0.48 0.33 2.98 2.37
400µs 3.35 3.02 3.70 3.61 2.61 1.68 0.57 0.40 3.03 2.48

Table 3: Throughput (MOps) of Kayak and ASFP under different workloads and SLO targets. “N/A” means the SLO target is infeasible.
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Figure 11: Dynamics of throughput and RPC fraction w.r.t time
under Bimodal workload.

6.2 Performance

Performance improvement. We compare the performance
of Kayak against the state of the art ASFP [12]. We use all the
workloads: (i) Light/Medium/Heavy computational workload;
(ii) Bimodal workload; and (iii) YCSB-T workload. We use
one application server and one storage server, and vary the
SLO target from 50µs to 400µs. The results are shown in
Table 3, which we summarize as follows.

• For non-compute-intensive workloads (Light and YCSB-
T), Kayak achieves up to 12.2% throughput improvement.
In this case, most of the requests are handled via RPC and
Kayak’s opportunity for improvement is lower.

• For compute-intensive workloads, Kayak achieves 32.5%-
63.4% throughput improvement. In this case, the RPC

Workload YCSB-T Light Medium Heavy Bimodal
Gap 5.4% 11.8% 6.7% 3.5% 10.6%

Table 4: Kayak’s performance gap from the upper bound for dif-
ferent workloads.

fraction decreases, and ASFP’s pushback mechanism
kicks in; the overhead of pushing requests back in com-
parison to Kayak’s proactive placement increases the gap.

Overall, Kayak outperforms ASFP because its proactive
design is more efficient in using both application- and storage-
side CPUs.

Gap between Kayak and upper bound. We set the SLO
target to be 200µs and compare the achieved throughput be-
tween using Kayak and the upper bound obtained by the
parameter sweep method (§2.2). We define the gap between
Kayak and the upper bound as follows:

Gap =
T hroughputmax

T hroughputmax,Kayak
−1

Intuitively, the lower the gap is, the closer Kayak is to the opti-
mal. As shown in Table 4, Kayak has a slowdown of 11.8% for
computationally light workload and 3.5% for computationally
heavy workload.

6.3 Fairness

In this section, we show that Kayak can enforce max-min
fairness when multiple tenants contend for server resources.
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(b) Tenant B
Figure 12: Dynamics of throughput and RPC fraction w.r.t time
of tenant A and B in the multi-tenant experiment.

We run two tenants with the same setup and configure each
to use four CPU cores instead of eight, while the server is
still configured with eight CPU cores. Tenant A is started first,
and after 20 seconds, tenant B is started. Figure 12a shows
the dynamics of tenant A. During the first 20 seconds, tenant
A quickly converges to the optimal throughput of around
1.82MOps. After 20 seconds when tenant B is started, the
throughput achieved by tenant A drops to around 1.21MOps.
Note that in this process, the optimal RPC fraction also shifts
from 60% to 40%. This is because after tenant B joins, the
server has less CPU resource to process tenant A’s requests.
After 40 seconds, tenant A stops sending requests.

Figure 12b shows the dynamics of tenant B, and we can see
that when the two tenants are running together the achieved
throughput is 1.21MOps and 1.24MOps, respectively. The
gap between the two tenants is only 2.4%, which indicates that
the server resources are fairly shared. After 40 seconds, the
throughput and RPC fraction of tenant B increases because
the storage server has more available CPU resources after
tenant A stops.

Then we increase to four tenants and start the tenants one
after one, with ten seconds in between. Each tenant is con-
figured with one CPU core, and runs a different workload.
Tenant {1, 2, 3, 4} runs {Light,Medium,Heavy,Bimodal}, re-
spectively. We plot the occupied CPU cycles on the storage
server for each tenant in Figure 13. When the 4 tenants are
running together, we measure the Jain’s Fairness Index [22]
to be 0.9996.
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Figure 13: Fair-sharing of throughput for 4 applications sharing
one storage server.
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Figure 14: Throughput and RPC Fraction of Kayak with different
server configurations.

6.4 Scalability

In this section, we verify that the Kayak control loops are de-
coupled from data plane and do not limit Kayak’s scalability.
To do so, we run experiments with Heavy workload, and vary
the number of application and storage servers. For simplicity,
we make sure a single request does not access data from more
than one storage servers. We measure the total throughput
and the converged average RPC fraction. As shown in Fig-
ure 14a, throughput increases with both adding a storage and
an application server. This is because adding either essen-
tially adds more CPU cores to the system. Note that the RPC
fraction increases with the increment of the storage servers
but decreases with the increment of the application servers
(Figure 14b). This is because Kayak can judiciously arbitrate
the requests and balance the load between the application and
storage servers, by choosing the optimal RPC fraction.

6.5 Sensitivity Analysis

Initial state. First we evaluate whether Kayak is sensitive
to its initial state. We run four experiments using the Heavy
workload, and vary the starting value for RPC fraction X
from {0, 0.25, 0.75, 0.100}. As shown in Figure 15, Kayak
converges to the optimal request throughput and RPC fraction
regardless of the initial RPC fraction in all four scenarios.

Choice of loop frequencies. In Section 4 we argue that in
order for the dual loop control to work, we need to choose
appropriate sampling frequencies for both loops. Here we an-
alyze how different sampling frequencies affect the dynamics
of our system.

We run two experiments using the Medium workload, and
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(d) Initial X = 1
Figure 15: Throughput and RPC fraction during the converging
process, with different starting RPC fraction.

plot our results in Figure 16. In the first experiment we set the
interval for both loop to be 200Hz; in the second experiment
we invert the loop frequency so that the inner control loop
runs slower than outer control loop. As shown in Figure 16a
and 16b, the convergence quality degrades significantly in
both cases. Hence, it is important to choose proper sampling
frequencies to ensure that the inner control loop runs faster
than the outer.

7 Discussion and Future Work
Rate Limiting. In Kayak, we consider rate limiting and ad-
mission control because simply moving up the latency curve
cannot push the servers beyond their physical capacity, and
we consider that if a tenant specifies a strict SLO target, re-
quests that miss this target are essentially failed requests. As
such, we assume that the tenants will implement a mechanism
such as resubmitting requests which are dropped due to rate
limiting, after adapting to a slower rate. At a slower timescale,
tenants should also increase provisioning to avoid having to
slow down, so that in the worst case scenario all requests can
still be executed on all application servers within the SLO
target.

Storage Function Differentiation. Kayak does not inspect
individual storage functions, which reduces overhead and
aligns with our design goal to be non-intrusive to applications.
Therefore, Kayak can not distinguish between individual stor-
age functions. We would like to explore how to differentiate
individual storage functions without changing application
code, which would allow us to implement more fine-grained
control policy.

Developing Storage Functions. Currently, developers us-
ing Kayak and Splinter [29] have to code the same application
logic again in the storage function which run inside the stor-
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(b) Inverse loop frequency
Figure 16: Dynamics of throughput and RPC fraction w.r.t time,
with different loop frequencies: (a) both loops run at 200Hz; (b)
inner loop at 20Hz, outer loop at 200Hz.

age server. This duplication complicates the development
process and increases the chance of human errors and bugs.
Automatically generating server-side storage functions from
code written using traditional KV API can alleviate this prob-
lem. This would be an interesting avenue for future work.

8 Related Work
Key-Value Stores. A recent line of research on key-value
store has been focusing on utilizing RDMA to boost key-
value store performance. Stuedi et al. [43] have achieved a
20% reduction in GET CPU load for Memcached using soft-
iWARP without Infiniband hardware. Pilaf [33] uses only
one-sided RDMA read to reduce CPU overhead of key-value
store. In addition, it uses a verifiable data structure to detect
read-write races. FaRM [16] proposes a new main memory
key-value store built on top of RDMA. FaRM comes with
transaction support but still support lock-free RDMA reads.
HERD [24] further improves the performance of RDMA-
based key-value store by focusing on reducing network round
trips while using efficient RDMA primitives. FaSST [25]
generalizes HERD and used two-sided RPC to reduce the
number of QPs used in symmetric settings such as distributed
transaction processing, improving scalability.

While there have been many research works focusing on im-
proving raw performance of key-value stores, few investigates
real performance implications on the application. TAO [13]
is an application-aware key-value store by Facebook that op-
timizes for social graph processing. Kayak builds on top of
this concept and focuses on application-level objectives such
as SLO constraint.

Storage-side computation. Storage-side computation (i.e.
shipping compute to data) has made its way from latency-
insensitive big data systems such as MapReduce [1, 37, 45]
and SQL databases [5–8, 26, 41, 42] into latency-critical KV
stores [9, 18, 29, 39]. Comet [18] supports sandboxed Lua
extensions to allow user-defined extensions to customize the
storage by enabling application-specific operations. Malacol-
ogy [39] utilizes Lua extensions contributed by users of the
Ceph storage system [2], allowing installing and updating new
object interfaces at runtime. Splinter [29] pushes bare-metal
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extension to storage server to allow RPC-like operations in ad-
dition to traditional key-value operations. These works breaks
the assumption of dissagregated storage and necessitates the
need for proactive arbitration provided by Kayak.

Adaptive compute placement. An emerging line of re-
search aims at adaptively balancing between client-side pro-
cessing and server-side processing. ASFP [12] extends Splin-
ter by reactively pushing back requests to the client side if
the server gets overloaded, but at the cost of wasting CPU
and network resource.Instead, Kayak proactively balances the
load exerted on both application and storage server. Cell [34]
implements a B-tree store on RDMA supporting both client-
side (RDMA-based) and server-side (RPC-based) search. Cell
determines between these two schemes by tracking RDMA
operation latency. This requires instrumentation into the ap-
plication, which Kayak avoids by measuring end-to-end re-
quest latency instead. A recent work called Storm [35] uses a
reactive-adaptive approach similar to that of ASFP [12] but
with a different policy, where for each request it will try the
traditional KV API first, and switch to RPC API if it detects
that the application is trying to chase the pointers.

9 Conclusion
In this paper, we show that by proactively and adaptively com-
bining RPC and KV together, overall throughput and CPU
utilization can be improved. We propose an algorithm that
dynamically adjusts the rate of requests and the RPC fraction
to improve overall request throughput while meeting latency
SLO requirements. We then prove that our algorithm can
converge to the optimal parameters. We design and imple-
ment a system called Kayak. Our system implementation en-
sures work conservation and fairness across multiple tenants.
Our evaluations show that Kayak achieves sub-second con-
vergence and improves overall throughput by 32.5%-63.4%
for compute-intensive workloads and up to 12.2% for non-
compute-intensive and transactional workloads.
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A Supplemental Measurements for Graph
Traversal Workload
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Figure 17: Throughput w.r.t. SLO (99%-tile latency) for graph
traversal with four storage accesses per request.
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Figure 18: Optimal RPC fraction w.r.t. SLO (99%-tile latency) for
graph traversal with four storage accesses per request.

We repeat the same parameter sweep as in §2.2 but with the
number of storage accesses per request set to 4 and 8. We vary
the RPC fraction from 0 to 1 and measure the overall through-
put and end-to-end latency of all requests. In doing so, we
obtain the throughput-latency measurements for all possible
execution configurations, as shown in Figure 17 and Figure 19.
The optimal RPC fraction during these sweeps are shown in
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Figure 19: Throughput w.r.t. SLO (99%-tile latency) for graph
traversal with eight storage accesses per request.
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Figure 20: Optimal RPC fraction w.r.t. SLO (99%-tile latency) for
for graph traversal with eight storage accesses per request.

Figure 18 and Figure 20. We note that the observation we
make in §2.2 still holds in these measurements.
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B Analysis of Algorithms
B.1 Problem Formulation

We aim to solve the following optimization problem

max
X

R

s. t. T (X ,R)≤ t0
(P)

where we assume:

Assumption 1. Fix X, FX (R) := T (X ,R) is monotonic in-
creasing and twice differentiable.

Assumption 2. For any X, there exist R1 and R2 such that
minX T (X ,R1)≤ t0 ≤minX T (X ,R2).

B.2 Algorithm I: X-R Dual Loop Control

We adopt the following iterative algorithm to solve the prob-
lem:

Algorithm I (X-R Dual Loop Control) For k = 1, . . . ,K,
we alternatively update Xk and Rk by

• Xk = argminX T (X ,Rk);

• Rk+1 = Rk +η(t0−T (Xk,Rk)).

We have the following theorem to characterize the conver-
gence of the above algorithm.

Theorem 1. Suppose in addition we have,

1. T (X ,R) is twice differentiable and lower bounded.

2. Fix R, FR(X) := T (X ,R) is µ-strongly convex3, L-
smooth4 and coercive.5

3. For all X, we have 0 < α≤ ∂T (X ,R)
∂R ≤ β.

If we set 0 < η < 1
β

, then

|RK−R∗| ≤ (1−ηα)K · |R0−R∗| .

In the following we elaborate the proof for Theorem 1. We
begin with introducing a series of lemmas. Let us denote

H(R) = min
X

T (X ,R).

Lemma 1. For all R 6= S,

0 < α≤ H(R)−H(S)
R−S

≤ β.

Moreover, the above inequality implies H(R) is monotonic
increasing and continuous.

3 f (x) is µ-strongly convex, if for all x and y, it holds that f (x)≥ f (y)+
〈∇ f (y),x− y〉+ µ

2 ‖y− x‖2
2.

4 f (x) is L-smooth, if for all x and y, it holds that f (x) ≤ f (y) +
〈∇ f (y),x− y〉+ L

2 ‖y− x‖2
2. In general, if f (x) is twice-differentiable and x

is restricted in a bounded domain, then f (x) is L-smooth in that domain, for
some finite L.

5 f (x) is coercive if f (x)→ +∞ as ‖x‖ → +∞. A strongly convex and
coercive function admits an unique and finite minimum point.

Proof. Without loss of generality let R > S. Let X =
argminX T (X ,R) and Y = argminX T (X ,S). Then

H(R)−H(S)
R−S

=
T (X ,R)−T (Y,S)

R−S{
≤ T (Y,R)−T (Y,S)

R−S = ∂T (Y,P)
∂R ≤ β,

≥ T (X ,R)−T (X ,S)
R−S = ∂T (X ,Q)

∂R ≥ α > 0.

Here P,Q ∈ (S,R) are given by mean-value theorem.

Lemma 2. There exists an unique R∗ such that H(R∗) = t0.
Moreover, this R∗ gives the maximum of the original optimiza-
tion problem.

Proof. We have already shown that H(R) is monotonic and
continuous. Recall that there exists R1 and R2 such that
H(R1) ≤ t0 ≤ H(R2), thus there exists an unique R∗ such
that H(R∗) = t0.

For any R so that R > R∗, we have H(R)> H(R∗) = t0 by
monotonicity, thus R does not meet the constraint. Therefore
R∗ is the maximum of the optimization problem.

Proof of Theorem 1. With H(R) := minX T (X ,R), we can
rephrase Algorithm I as

Rk+1 = Rk +η(H(R∗)−H(Rk)) .

Let R0 be the initialization. We next show the convergence of
this iteration.

Case I: R0 < R∗. If Rk < R∗, then

R∗−Rk+1 = R∗−Rk−η(H(R∗)−H(Rk)){
≤ R∗−Rk−ηα(R∗−Rk) = (1−ηα)(R∗−Rk)

≥ R∗−Rk−ηβ(R∗−Rk) = (1−ηβ)(R∗−Rk)

that is 0≤ (1−ηβ)(R∗−Rk)≤ R∗−Rk+1 ≤ (1−ηα)(R∗−
Rk). Using this recursion, if R0 < R∗, we have

0≤ (1−ηβ)K (R∗−R0)≤ R∗−RK ≤ (1−ηα)K (R∗−R0).

Case II: R0 > R∗. If Rk > R∗, then

Rk+1−R∗
= Rk +η(H(R∗)−H(Rk))−R∗
= Rk−R∗−η(H(Rk)−H(R∗)){
≤ Rk−R∗−ηα(Rk−R∗) = (1−ηα)(Rk−R∗)
≥ Rk−R∗−ηβ(Rk−R∗) = (1−ηβ)(Rk−R∗)

that is 0≤ (1−ηβ)(Rk−R∗)≤ Rk+1−R∗ ≤ (1−ηα)(Rk−
R∗). Using this recursion, if R0 > R∗, we have

0≤ (1−ηβ)K (R0−R∗)≤ RK−R∗ ≤ (1−ηα)K (R0−R∗).

To sum up, when η < 1
β

(hence smaller than 1
α

), we have

|RK−R∗| ≤ O
(
(1−ηα)K) .
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B.3 Algorithm II: R-X Dual Loop Control

Let us take a closer look at the optimization problem (P)
under Assumption 1 and Assumption 2. First we observe the
maximal must be attended at the boundary

T (X ,R) = t0. (6)

Second the boundary constraint Eq. (6) implicitly defines a
function R(X), where

T (X ,R(X)) = t0.

We highlight that R(X) is indeed well defined, since under
Assumption 1 and Assumption 2, for any X , there exists an
unique R(X) that satisfies the boundary constraint.

With the above observations, we may rephrase the opti-
mization problem (P) as

max
X

R(X) (P’)

where R(X) is implicitly defined by the boundary constraint.
In the following we discussion algorithms that solve prob-
lem (P’).

Our challenge it that we do not have direct access to R(X);
instead at each fast loop step, we have an estimation to R(X),
denoted as Rk(x), which approximately satisfies

T (X ,Rk(X))≈ t0.

In this set up we can perform stochastic gradient ascent (SGA,
or online gradient ascent) for Rk(X). We summarize the algo-
rithm in the following.

Algorithm II (R-X Dual Loop Control) For k = 1, . . . ,K,
we respectively update Xk and Rk by

1. Apply rate control so that the latency approximates SLO,
i.e.,
Rk be such that T (Xk,Rk)≈ t0;

2. Use gradient ascent to search for the optimal Xk, i.e.,
Xk+1 = Xk +η

dRk
dX , where T (X ,Rk) = t0, and η is a posi-

tive stepsize.

There is a rich literature for the theory of online learning
when Rk(X) is concave, e.g., see [36]. For completeness, we
introduce the following theorem to characterize the behavior
of the above algorithm.

Theorem 2. Suppose Rk(X) is concave. Consider the iterates
of SGA, i.e.,

Xk+1 = Xk +η∇Rk(Xk).

Then we have the following bound for the regret

K

∑
k=1

(Rk(X∗)−Rk(Xk))≤
‖X1−X∗‖2

2
2η

+
η

2

K

∑
k=1
‖∇Rk(Xk)‖2

2 .

If in addition we assume ‖∇Rk(X)‖2 ≤ L, and set

η =
‖X1−X∗‖2

L
√

K
,

then
K

∑
k=1

(Rk(X∗)−Rk(Xk))≤C ·
√

K, (7)

where C := L‖X1−X∗‖2 is a constant depends on initializa-
tion and gradient bound.

Remark. The sublinear regret bound implies SAG behav-
iors nearly optimal on average: we see this by setting X∗ =
argmaxX ∑

K
k=1 Rk(X), and noticing that

1
K

K

∑
k=1

Rk(X∗)−
1
K

K

∑
k=1

Rk(Xk)≤ O
(

1√
K

)
→ 0.

More concisely, in our algorithm, {Rk(X)}K
k=1 corresponds

to a sequence of inaccurate estimations to the true implicit
function R(X) — even so the theorem guarantees a sublin-
ear regret bound, which implies that our algorithm behaviors
nearly as good as one can ever expect under the estimations,
no matter how inaccurate they could be.

Furthermore, if for each k, Rk(X) is an unbiased estima-
tor to the true concave function R(X), i.e., ERk(X) = R(X),
then X̄ = 1

K ∑
K
k=1 Xk converges to the maximal of R(X) in ex-

pectation: we see this by choosing X∗ = argminX R(X) and
noticing that

E [R(X∗)−R(X̄)]≤ 1
K

K

∑
k=1
E [R(X∗)−R(Xk)]

=
1
K

K

∑
k=1
E [Rk(X∗)−Rk(Xk)]

≤C · 1√
K
→ 0.

Proof of Theorem 2. We first notice the following ascent
lemma

‖Xk+1−X∗‖2
2

= ‖Xk +η∇Rk(Xk)−X∗‖2
2

= ‖Xk−X∗‖2
2 +η

2 ‖∇Rk(Xk)‖2
2 +2η〈∇Rk(Xk),Xk−X∗〉

≤ ‖Xk−X∗‖2
2 +η

2 ‖∇Rk(Xk)‖2
2 +2η(Rk(Xk)−Rk(X∗)) ,

where the last inequality is due to the assumption that Rk(X)
is concave. Next we re-arrange the terms and take telescope
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summation,

K

∑
k=1

(Rk(X∗)−Rk(Xk))

≤
K

∑
k=1

1
2η

(
‖Xk−X∗‖2

2−‖Xk+1−X∗‖2
2

)
+

K

∑
k=1

η

2
‖∇Rk(Xk)‖2

2

=
1

2η

(
‖X1−X∗‖2

2−‖XK+1−X∗‖2
2

)
+

T

∑
t=1

η

2
‖∇Rk(Xk)‖2

2

≤ 1
2η
‖X1−X∗‖2

2 +
K

∑
k=1

η

2
‖∇Rk(Xk)‖2

2 ,

which gives the first regret bound.

If further we have ‖∇Rk(X)‖2 ≤ L, then

K

∑
k=1

(Rk(X∗)−Rk(Xk))≤
1

2η
‖X1−X∗‖2

2 +
η

2
L2K,

by setting η =
‖X1−X∗‖2

L
√

K
we obtain

K

∑
k=1

(Rk(X∗)−Rk(Xk))≤
1

2η
‖X1−X∗‖2

2 +
η

2
L2K

≤ L‖X1−X∗‖2 ·
√

K.
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Abstract
Serverless platforms facilitate transparent resource elasticity
and fine-grained billing, making them an attractive choice
for data analytics. We find that while server-centric analytics
frameworks typically optimize for job completion time (JCT),
resource utilization and isolation via inter-job scheduling poli-
cies, serverless analytics requires optimizing for JCT and cost
of execution instead, introducing a new scheduling problem.
We present Caerus, a task scheduler for serverless analytics
frameworks that employs a fine-grained NIMBLE scheduling
algorithm to solve this problem. NIMBLE efficiently pipelines
task executions within a job, minimizing execution cost while
being Pareto-optimal between cost and JCT for arbitrary an-
alytics jobs. To this end, NIMBLE models a wide range of
execution parameters — pipelineable and non-piplineable data
dependencies, data generation, consumption and processing
rates, etc. — to determine the ideal task launch times. Our eval-
uation results show that in practice, Caerus is able to achieve
both optimal cost and JCT for queries across a wide range of
analytics workloads.

1 Introduction
Serverless platforms [1–3] fulfill the promise of transparent
resource elasticity in the cloud [4–6]. Under the Function
as a Service (FaaS) serverless model, users decompose their
applications into short-lived stateless functions that read and
write data from an external storage service. The sub-second
startup latencies and virtually unlimited parallelism in FaaS
platforms permit fine-grained compute elasticity, while sub-
second billing granularities afford cost-efficiency.

These benefits have driven many recent efforts to port data
analytics applications to serverless platforms [7–18]. Ana-
lytics jobs typically comprise multiple stages of execution
organized as directed acyclic graphs (DAGs) based on their
data dependencies, with each stage comprising several par-
allel tasks. While traditional server-centric deployments use
clusters provisioned with a fixed pool of storage and compute
resources to execute these jobs, serverless deployments imple-
ment tasks as serverless functions [7–13] that exchange state
via external storage [14, 15]. Since analytics workloads typ-
ically have widely varying resource needs over time, both
across and during job lifetimes [12, 14], server-centric de-
ployments can frequently suffer from resource under- or over-
provisioning [12, 14, 19, 20], leading to resource wastage or
performance degradation, respectively. In contrast, serverless
compute [1–3] and storage [15, 21–24] platforms facilitate
fine-grained scaling of resources to match application needs,
making them an attractive choice for data analytics [7–18].

We find that the shift from server-centric to serverless an-
alytics results in a shift in goals for schedulers in analytics
frameworks. Since the FaaS platforms manage allocation of
compute resources across jobs, schedulers need no longer be
concerned with the conventional goals of maximizing clus-
ter resource-utilization and enforcing fairness across jobs via
inter-job scheduling policies [25–28]. Instead, under the FaaS
billing model, schedulers must now consider the cost of each
job’s execution, which is proportional to the aggregated run-
times across its component tasks. This highlights the need for
inter-task scheduling policies for serverless analytics jobs to
minimize both execution cost and job completion time (JCT).

Unfortunately, task-level scheduling policies employed by
server-centric analytics today expose a hard-tradeoff between
cost and JCT in serverless platforms. Figure 1 shows a sim-
ple map-reduce job where reduce tasks consume and aggre-
gate data generated by map tasks. Traditional analytics frame-
works [29–32] typically employ one of the two following
extremes: (1) a lazy approach that launches a reduce task only
when all the map tasks have finished (Figure 1 (a)), and (2)
an eager approach that launches a reduce task as soon as any
map task produces data for it to consume (Figure 1 (b)).

Intuitively, the lazy approach is cost-efficient: since reduce
tasks waste no time waiting for upstream map tasks to gen-
erate data, individual task durations (which governs cost in
serverless settings) is always minimized. However, its JCT can
be far from optimal since there is no pipelining of map and
reduce task executions. The eager approach, on the other hand,
is JCT-efficient since it maximally pipelines the execution of
map and reduce tasks. However, its can introduce a much
higher cost: reduce tasks can waste a lot of time waiting for
upstream map tasks to generate data, which increases reduce
task durations and, consequently, execution cost. We discuss
this example further in §2, but note for now that this trade-off
between execution cost and JCT is even more extreme for
multi-stage jobs seen in production workloads [27, 28].

Note that in an ideal solution (Figure 1 (c)), a task would be
launched late enough to minimize task durations (and there-
fore, execution cost), but early enough to minimize JCT. In
this work, we propose a NIMBLE scheduling algorithm that
builds on this intuition: at its core, NIMBLE scheduling com-
bines the cost-efficiency of lazy and JCT-efficiency of eager ap-
proaches and breaks the tradeoff between them (Figure 1 (d)),
by scheduling tasks to run at just the right time.

Designing such an optimal scheduling strategy, however,
is non-trivial. First, a precise description of the pipelinablity
across different job stages is crucial to determine the optimal
schedule — task-level DAGs typically used for representing
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Figure 1: (a, b) Lazy and eager approaches expose a hard trade-off between JCT and cost; numbers within bars correspond to task runtimes. (c,
d) Fine-grained scheduling in serverless infrastructures provide opportunities to break this tradeoff with optimal scheduling strategies. The JCT
is simply the finish time of the last reduce task, while its cost is calculated as the aggregated durations of all its component tasks.

job executions in existing job schedulers are insufficient. Even
for the simple map-reduce example in Figure 1, while parts of
reduce task execution can be pipelined with map tasks (orange
bars), some parts can only start after map stage finishes (black
bars), e.g., when map output must be aggregated at the reduce
task before further processing. To this end, we develop a fine-
grained step dependency model that captures data dependency
and pipelinablity information at sub-task granularity (§3).

Second, in contrast to the map-reduce example above, tasks
in general analytics jobs can have significantly more com-
plex pipeline dependencies. Specifically, a task can consume
data from multiple upstream tasks, and tasks across the job’s
execution DAG may have cascading dependencies. Coupled
with time-varying data generation and consumption rates, this
makes identifying task launch times for JCT- and cost-efficient
job execution challenging. In fact, our analysis shows that
even with perfect models for all of the above constraints, it is
impossible for a task scheduling algorithm to always be able
to optimize both execution cost and JCT for arbitrary analytics
jobs. Fortunately, we show it is possible for a scheduling algo-
rithm to be cost optimal, while being Pareto-optimal between
execution cost and JCT. We realize this in NIMBLE, a schedul-
ing algorithm that carefully models data produce and consume
rates across stages, computes launch times for tasks across
them based on both inter- and intra-task data dependencies,
and schedules tasks greedily across dependent stages (§4).

Finally, we incorporate the NIMBLE algorithm into Caerus,
a new fine-grained task-level scheduler for serverless analytics
frameworks (§5). Caerus translates the theory developed for
NIMBLE to practice, by extracting step dependencies from
user queries via a step annotation API, and estimating NIMBLE
algorithm inputs using a combination of job execution histories
and information profiled at runtime. Caerus easily integrates
with existing serverless analytics frameworks [11, 12, 14] —
we implement Caerus in a prototype serverless SQL engine
built atop Locus [14], and evaluate its performance on AWS
Lambda for a wide range of analytics workloads including
TeraSort, TPC-DS and Big-Data Benchmark (§6). Our results
show that in practice, Caerus optimizes both cost and JCT,
outperforming the lazy approach by 1.08–2.2× in JCT, and
eager approach by 1.21–1.57× in cost across these workloads.

In summary, we make three main contributions:

• Formulation of a new task-level scheduling problem for

serverless analytics to minimize execution cost and JCT.
We show that schedulers used in server-centric frameworks
expose a hard tradeoff between cost and JCT (§2).

• Design of a new NIMBLE scheduling algorithm, that
launches each task in a job at just the right time to optimize
both cost and JCT. NIMBLE employs a new step model to
capture sub-task level pipelinablity and data dependencies,
and guarantees cost optimality while being Pareto-optimal
between cost and JCT for any analytics job (§4).

• Design, implementation and evaluation of Caerus, a fine-
grained task-level scheduler for serverless analytics frame-
works that enables NIMBLE scheduling in practice (§5, §6).

2 Motivation
In this section, we provide a brief background on server-centric
and serverless analytics (§2.1). We then describe how server-
less analytics introduces a new task scheduling problem (§2.2)
and new opportunities to address it (§2.3).

2.1 Background
Server-centric Analytics. Traditional server-centric deploy-
ments for data analytics [30, 31, 33–35] operate atop a fixed
pool of compute and storage resources, e.g., clusters of pro-
visioned servers or pools of provisioned virtual machines
(VMs)1. Consequently, such deployments employ a cluster-
wide job scheduler to efficiently share the fixed resource-pool
among multiple jobs with three key goals: minimizing job run-
time, maximizing resource utilization and ensuring resource
isolation (or fairness) across jobs. Given the resource demands
of each job, the scheduler achieves all or a subset of goals via
inter-job (i.e., job-granularity) scheduling policies [25–28].

Within a job, the execution is broken down into a DAG
of stages, each comprising multiple parallel tasks (see Fig-
ure 1 for an example). A task scheduler launches tasks across
the compute resources allocated to the job. Tasks in a stage
read their initial input from and write their final output to
persistent storage (e.g., HDFS [37]), while data exchange be-
tween consecutive stages occurs over the network (e.g., shuffle,
broadcast, etc.). Existing frameworks typically apply one of
two popular approaches to decide when to launch tasks: (i)
lazy (e.g., Spark [30]), which launches a task only when all

1One can add/remove VMs to scale VM clouds, but at coarse time granu-
larities, e.g., resizing an AWS EMR cluster takes ∼ 6−45 minutes [36].
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tasks in upstream stages have completed, and (ii) eager (e.g.,
MapReduce Online [29]), which launches a task as soon as
any output from its upstream stages is ready.

Serverless Analytics. In serverless platforms, users no longer
provision or manage resources: this is the cloud provider’s
responsibility. Users simply pay for resources they use. Server-
less compute platforms [1–3] allocate and charge for compute
resources at function invocation granularity: invoking more
functions permits scaling up at a higher cost, and vice versa.

Existing approaches to serverless analytics deploy tasks
within a stage as serverless function invocations. Since cloud
providers disallow direct communications between serverless
functions [7, 11, 14], data is exchanged between functions via
external storage [8, 14, 15]. A job is charged for both func-
tion execution and external storage, with the former typically
dominating the cost2. With sub-second granularity billing for
serverless functions, the job execution cost is proportional to
the cumulative runtimes across all tasks of the job.

2.2 Serverless Scheduling: A New Problem
Since the cloud provider is responsible for resource manage-
ment in serverless platforms, user goals in serverless analytics
are different from server-centric deployments. In particular,
while minimizing JCT is still a primary goal, metrics like re-
source utilization and isolation are now the onus of the cloud
provider. Instead, the user must now optimize the cost of each
job’s execution, which is proportional to the cumulative task
runtime as outlined in §2.1. This shift in goals exposes a new
task-level scheduling problem for serverless analytics:

Problem Statement: Given the execution plan for an an-
alytics job comprising tasks with arbitrary dependencies,
can we find a task-level schedule that optimizes for both job
execution cost and JCT on a serverless platform?

Limitations of existing approaches. As we saw in §1, the ex-
isting server-centric lazy and eager task scheduling approaches,
when applied for serverless analytics, expose a hard tradeoff
between cost and JCT. Recall the job execution example in
Figure 1, which comprises a map and a reduce stage, each with
three tasks — each bar represents the execution of one task
over time (numbers in bars show task runtimes).

The lazy approach (Figure 1 (a)) is cost-optimal in the
serverless model, with a cost of 64 units3 — starting reduce
tasks any later would not affect their runtime (and therefore,
cost), while starting them sooner can cause them to stall for
more data to be generated by upstream map tasks, increasing
cost. However, the lazy approach also leads to high JCT (31
units), since it does not pipeline the execution of map and
reduce tasks at all. Similarly, eager scheduling (Figure 1 (b)) is
JCT-optimal (19 units) since the first part of reduce execution

2Cost of AWS Lambda execution is ∼$0.20/hour [38], while Amazon S3
storage is ∼$0.02/GB/month [39], with no data transfer cost between them.

3The cost is computed as the cumulative sum of the runtimes of the tasks
in the job, and assuming unit cost per unit runtime.

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5
DAG: 

(A JOIN B) JOIN C)Optimal Schedule

Stage 1 (map)
Generate Table A

Stage 2 (map)
Generate Table B

Stage 3 (join)
A JOIN B

Stage 4 (map)
Generate Table C

Stage 5 (join)
(A JOIN B) JOIN C

Figure 2: Optimal schedule (left) and execution DAG (right) for
a multi-stage job. See §2.3 for details.

(orange bar) can be completely pipelined with the map stage.
However, its cost is significantly higher (94 units), since reduce
tasks often wait for data to be generated by upstream map tasks,
increasing their runtime, and therefore, cost.

This tradeoff can be much more severe for multi-stage jobs.
Production traces from Microsoft [27, 28] show that jobs in
their workloads have 13 and 121 stages at 50th and 95th per-
centiles, making it likely for them to have far more opportu-
nities for pipelining tasks across stages. Ignoring these op-
portunities (e.g., following the lazy approach) would lead to
JCTs that are significantly longer than optimal. On the other
hand, jobs can also have heavy skew in task runtimes [40–42]
— 10% of tasks take more than 10× the median task dura-
tion in Microsoft’s workloads [40]. Starting tasks across all
stages early to maximize pipelining (e.g., following the eager
approach) would force most downstream tasks to stall due to
slower upstream tasks, significantly increasing execution cost.

2.3 Opportunities & Challenges
New opportunities in serverless scheduling. Serverless
frameworks provide new opportunities to break the hard trade-
off between cost and JCT exposed by lazy and eager solutions
— on-demand invocation of functions at fine-grained timescales
permits the design of fine-grained task-level schedulers. Fig-
ure 1 (c) shows the optimal schedule for the job in Figure 1 —
with fine-grained scheduling, it is possible to achieve such a
schedule by launching each task at just the right time, mini-
mizing both cost (64 units) and JCT (19 units) (Figure 1 (d)).

Moreover, these gains are likely to be even more significant
in production workloads comprising multi-stage jobs with
complex stage dependencies. For example, Figure 2 shows a
multi-stage SQL job which performs join across three tables
(A, B and C) using shuffle hash join (SHJ) algorithm [43]. The
figure shows the job’s execution plan as a DAG of stages on the
right, and the corresponding optimal task schedule on the left.
The optimal schedule can efficiently pipeline all the five stages
in this multi-stage join example, resulting in much higher gains
in JCT and cost than for simple two stages map-reduce jobs.

Challenges. Figure 2 also indicates that calculating the opti-
mal launch time for each task is non-trivial due to a number of
reasons. First, a task may include multiple parts, where each
part may or may not be pipelineable with some part of one of
its upstream stages. In Figure 2 (left), Stage 3 is composed of
two parts. The first part, which reads Table B from Stage 2
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and uses it to build a hash table, can be pipelined with Stage 2
execution. The second part, which reads Table A from Stage
1 and performs online join with the hash table constructed in
the first part, can pipelined with Stage 1 execution. Second,
the runtime of one task depends on the processing rate of all
tasks in its previous stage, and these dependencies cascade to
upstream stages. In Figure 2, the execution of Stage 5 depends
on Stage 3 and Stage 4, and Stage 4 is further determined
by Stage 1 and Stage 2. As such, the first challenge lies in
identifying parts of the execution that can be pipelined, and
the dependencies between such pipelinable components — we
address this in §3. The second challenge lies in using this
information to determine ideal launch times for tasks in jobs
with complex DAGs, which we address in §4.

Why serverless? Intuitively, the fine-grained task-level
scheduling shown in Figures 1 (c) and 2 can also be extended
to server-centric settings to optimize average JCT. Moreover,
the reduction in per-job resource usage (i.e., cost in server-
less settings) enabled by this approach may improve resource
utilization via bin-packing more jobs onto the same number
of servers. However, while cost improvements in serverless
analytics are obvious, achieving improvements in resource
utilizations with theoretical guarantees in server-centric de-
ployments is not straightforward, since it is unclear how the
resources saved by delaying task launch times can be utilized
by other jobs. Specifically, the optimal in Figures 1 (c) and 2
is likely to create staggered task launch times across stages to
optimize each individual job, and they may not be optimal for
bin-packing across jobs. Thus, while the clear decoupling from
inter-job resource allocation ensures cost and JCT-optimality,
extending it to server-centric settings for optimal JCT and re-
source utilization requires a careful co-design of inter- and
intra-job scheduling. We leave this study to future work.

3 Step Dependency Model
As discussed above, a key challenge in identifying ideal task
launch times for a job is modeling pipelineable and non-
pipelineable dependencies across tasks. In this section, we
discuss how we model such dependencies and the flow of data
across them, using a new step dependency model. We employ
this model to design our NIMBLE scheduling algorithm in §4.

Stage dependencies in traditional analytics. As outlined in
§2.1, job execution in traditional analytics frameworks [27,28,
30, 34] is represented as a DAG, where nodes are execution
stages (comprised of multiple parallel tasks) and edges denote
data dependencies between them. Figure 3 (a, left) shows
the DAG for the map-reduce example from Figure 1, while
Figure 3 (b, left) shows a SQL query that performs shuffle
hash join (SHJ) on tables generated by two map stages.

Unfortunately, the stage model is not fine-grained enough
to capture the information required to determine the ideal
launch times for tasks in serverless analytics jobs. To see why,

Pipelineable dependencyNon-pipelineable dependency

A two-stage map-reduce job

SQL query A JOIN B (SHJ)

map

reduce r.s1 r.s2

m.s1

reduce

m1.s1 m2.s1

j.s1 j.s2 join

map1 map2

join

Stage model: Step model:

Pipeline-breaker

Figure 3: Stage vs. step dependency model for (a) map-reduce job,
and (b) SQL query that joins two tables A and B after applying a
map function on each. In the step model, red arrows show depen-
dencies across steps that can be pipelined, while black arrows show
dependencies that prevent pipelining. See §3 for details.

consider the map-reduce example from Figure 3 (a, right)4,
where the reduce stage (and therefore, all tasks in the stage)
has two distinct parts, shown as orange and black boxes. While
the first part (r.s1), where reduce tasks read map data, can be
pipelined with map execution (m.s1), the second part (r.s2),
where the reduce tasks aggregate and output data, cannot —
since final aggregation can only occur after all map data has
been read. Clearly, stage dependencies, shown in Figure 3 (a,
left), cannot capture such fine-grained information regarding
pipelineable and non-pipelineable components of task, nor
capture the data dependencies between them. This information
is crucial in determining the optimal start time for reduce tasks
— early enough to maximally overlap r.s1 with m.s1, but not
too early, since pipelining r.s2 with m.s1 is impossible.

Modeling pipeline dependencies using steps. To precisely
model how stages can be pipelined, we refine the stage model
into a fine-grained step model to precisely describe how job ex-
ecution can be pipelined across stages. In our model, the stages
are decomposed into one or more steps, which are separated
by pipeline breakers within the stage — operators that pro-
duce their first output only after all input have been processed.
Pipeline breakers create barriers in execution, demarcating
stretches of execution that cannot be pipelined with each other.
As such, steps within a stage must be executed sequentially,
since pipeline breakers prevent subsequent steps from starting
before its upstream step finishes. Across stages, however, steps
with data dependencies between them can be pipelined. As a
concrete example, consider the step model for the map-reduce
job in Figure 3 (a, right) — m.s1 corresponds to the single
step in map stage, while r.s1 and r.s2 correspond to two
steps in the reduce stage, with a pipeline breaker separating
them. The step r.s1 which consumes data can be pipelined
with the upstream step m.s1 in the map stage that generates
the data. We refer to such cross-stage pipelineable step pairs
(e.g., (m.s1, r.s1)) as parent-child step pairs. Note that the
while above description focuses on the decomposition of a
stage into steps, each task within the stage shares the same

4This is the same example as the one depicted in Figure 1.
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step-level decomposition — we will use the term step to refer
to parts of a stage or its tasks interchangeably and clarify the
distinction whenever needed.

Figure 3 (b) contrasts the step and stage DAGs for a simple
join query. Each of the two map stages comprise a single step,
while the hash join stage is divided into two steps. The step
j.s1 reads the left table (Table A generated by m1.s1) to
create a hash table of unique entries, while step j.s2 reads
the right table (Table B generated by m2.s1), joins it with
the hash table and writes the output. Each of the two steps
can be pipelined with their parent steps (the two map stages),
but these two steps have to be executed sequentially within
the join stage, since the hash table must be created before the
second join step can proceed (pipeline-breaker).

We discuss the details of how the step dependencies can be
extracted from user code in §5, but note for now that this model
is expressive enough to capture the pipeline dependencies
across a wide range of evaluated analytics applications (§6).

Modeling flow of data across steps. We now describe param-
eters that are used to model the flow of data across steps in the
step dependency model. While we discuss how these are esti-
mated in §5, we note for now that these parameters are used as
inputs to the NIMBLE algorithm. Consider a stage comprising
n steps, s1-sn, some of which may have a parent step, while
some may not. If step si receives data from a parent step, then
(1) parent produce rate (rp) is the aggregated data output rate
across all tasks of its parent step (referred to as produce rate
for brevity); and (2) full consume rate (rc) is the rate at which
data can be read and processed by step si when there is suffi-
cient data for it to consume. If step si does not have a parent
step, then its execution duration dsi is independent of when
the task is launched, allowing us to model dsi as a constant.

Since the produce rate is determined by the aggregate data
output rate across all upstream tasks, each with potentially dif-
ferent start and end times, we model rp as an arbitrary function
of time t. Note that the cumulative area under the rp(t) curve
corresponds to the total input data for the step under consider-
ation; we denote this as P. The full consume rate, on the other
hand, is tied to how fast the step can read and process data,
and we found it to be stable throughout a the step’s execution
in our evaluation (§6), allowing us to model rc as a constant.
Note that the parent step may not always produce data as fast
as it can be consumed, i.e., the actual consume rate (rac) for
the step may be lower than rc.

4 NIMBLE Scheduling
Armed with the step dependency model, we are now ready to
describe our NIMBLE scheduling algorithm. NIMBLE builds
on the intuition outlined in §2.3, and combines the cost-
optimality of lazy and JCT-optimality of eager approaches
to schedule tasks in an analytics job to run at just the right
time. We first describe NIMBLE scheduling for a simple two-
stage map-reduce job (§4.1), and then extend it to general
analytics jobs with arbitrary execution DAGs (§4.2).
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Figure 4: Optimal launch time for a two-stage map-reduce job.
(a) The total volume of data to be consumed by the reduce step r.s1
(P = 6) is the area under the produce rate (rp(t)) curve. The lazy
approach allows us to compute the optimal task runtime (d∗s1) as
P/rc = 2. (b) The optimal task finish time (t∗e,s1 = 3) is obtained by
emulating the eager approach, where the finish time is the maximum
of P/rc (= 2) and the map finish time tm (= 3). (c) The optimal
launch time (T ∗s = 1) is computed as the difference of the optimal
finish time and optimal duration. See §4.1 for details.

4.1 NIMBLE for Two-stage Map-Reduce
Consider the step model for the simple two-stage map-reduce
job in Figure 3 (a). Note that the JCT of the job is the same as
the finish time of the last reducer, and the total cost of the job is
proportional to the aggregated duration of all map and reduce
tasks. As such, optimizing for the finish time and execution
duration of individual tasks also ensures optimality for JCT.

Since map tasks do not have any upstream dependencies,
their execution duration is independent of their launch times,
and only depends on how fast they can read data from per-
sistent storage and process it. Meanwhile, optimal finish time
for map tasks can be achieved by launching them as early
as possible (at t = 0). On the other hand, due to the parent-
child step dependency between the map and reduce tasks (Fig-
ure 3 (top)), the data consumption in r.s1 step of reduce tasks
can be pipelined with the data generation in step m.s1 of map
tasks for minimizing reduce task finish times and execution
durations. In particular, a reduce task should be launched early
enough to ensure r.s1 overlaps with m.s1 as much as possi-
ble to minimize finish time, but late enough to ensure that it
can always consume data at full rate throughout its execution
without stalling, to optimize cost. Our NIMBLE scheduling
approach can always find such a “perfect” launch time using
the following three steps (Figure 4):

Step 1: Calculate optimal task duration D∗. Since step
r.s2 can only start after r.s1 finishes, the optimal duration
D∗ of a reduce task is d∗s1+ d∗s2, where d∗s1 and d∗s2 are the
optimal durations of steps r.s1 and r.s2 respectively. Note
that since r.s2 does not have a parent step, its duration is
independent of when the reduce task is scheduled. As such,
the optimal duration D∗ depends only on step r.s1.

Recall from §2.2 that the lazy approach always ensures
optimal duration for reduce tasks — since the entire input is
available before the reducer starts, r.s1 can always consume
the input data at consume rate rc without ever stalling. As such,
d∗s1 is simply P/rc, where P is the total amount of input data
for r.s1. In Figure 4 (a), P = 6 is the area under the curve
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rp(t), which gives d∗s1 = 3.

Step 2: Calculate optimal finish time T ∗e . The optimal finish
time T ∗e for a reduce task is simply t∗e,s1+ d∗s2 where t∗e,s1 is
the optimal finish time of r.s1. Again, since duration d∗s2 is
independent of when the task is launched, T ∗e depends only on
when step r.s1 finishes.

We leverage the eager strategy of starting the reduce task at
t = 0 to compute the optimal step finish time t∗e,s1 — intuitively,
starting the task any sooner cannot reduce the step finish time
any further. Note that since all the map tasks are started at t = 0,
the produce rate rp is non-increasing in time. Consequently,
if the full consume rate rc of the reduce task is lower than the
average produce rate, then the finish time of the step will be
bottlenecked by rc, i.e., t∗e,s1 = P/rc. On the other hand, if rc
is higher than the average produce rate, the bottleneck shifts
to rp, and the reduce task can only finish when the map tasks
finish generating data at time tm. Figure 4 (b) shows the latter
scenario, where rc = 3 is higher than the average produce rate
(= 2), and therefore t∗e,s1 = tm = 3.

Step 3: Calculate optimal launch time T ∗s . We find that
launching the reduce task at T ∗s = T ∗e −D∗, where D∗ and
T ∗e are computed via the lazy (Step 1) and eager (Step 2)
approaches, respectively, ensure that the task is optimal in
both execution duration and finish time. This is shown in Fig-
ure 4 (c), where starting the reduce task at T ∗s = 3−2 = 1 en-
sures optimal duration (D∗= 2), as well as finish time (T ∗e = 3).
At first glance, this may seem obvious, since D∗ and T ∗e al-
ready correspond to optimal task duration and finish time,
respectively. But we note that since D∗ and T ∗e were computed
for two separate approaches, it is not obvious if an approach
that starts the task at T ∗s = T ∗e −D∗ will always ensure the
task takes exactly D∗ time to finish. Fortunately, for two-stage
map-reduce jobs, we have the following theorem:
Theorem 4.1 For a reduce task, we can always achieve both
optimal execution duration and finish time by launching it at
time T ∗s = T ∗e −D∗, where T ∗e is the optimal finish time and D∗

is the optimal duration computed using Steps 1 and 2 above.

Proof Since the duration of step r.s2 is independent of when
the reduce task is scheduled, we only need to prove the opti-
mality of finish time and duration for step r.s1.

We first show that we can always achieve optimal finish
time t∗e,s1 if we launch the reduce task at time T ∗s = T ∗e −D∗.
We prove this by contradiction: assume that a reduce task that
is started at T ∗s does not finish executing its first step r.s1 at
t∗e,s1. This must be because at some time point ∈ [T ∗s , t

∗
e,s1], the

task was unable to consume data at full consume rate rc. We
denote the last time instant where this was true as t ′. Note that
the data produced until time t ′ (say, Pt≤t ′) must be less than
the data that can be consumed by time t ′ at full consume rate
rc, i.e., Pt≤t ′ < (t ′−T ∗s )× rc. Since the total amount of data
produced is P = d∗s1× rc, the data produced after t ′ must be
Pt>t ′ = P−Pt≤t ′ > (t∗e,s1− t ′)× rc, and the reduce task will
take more time than (t∗e,s1− t ′) to consume it (since it can

consume data at a rate no faster than rc).
Note that the data produced after t ′, Pt>t ′ , is independent of

the reduce task’s launch time. This implies that regardless of
how early the task is launched, no solution could have achieved
optimal finish time t∗e,s1 for the step r.s1. However, this con-
tradicts with the fact that the eager solution can achieve the
optimal finish time by launching the task at t = 0. Therefore,
our initial assumption must have been false: a reduce task that
is started at T ∗s does finish executing its first step r.s1 at t∗e,s1.

Proving T ∗s = T ∗e −D∗ results in optimal task duration is
then trivial: since step r.s1 finishes at t∗e,s1 with start time T ∗s ,
the corresponding duration T ∗s − t∗e,s1 will always be d∗s1. �

Note that the T ∗s for different reduce tasks may be different,
since the produce rate rp to different reduce tasks may vary
(e.g., due to data skew). Recall that the finish time of the job is
the same as the finish time of the last reduce task, and the total
cost of the job is proportional to the aggregated duration of all
tasks. As such, Theorem 4.1 shows that we can simultaneously
achieve both optimal cost and finish time for the entire job, as
long as each reduce task is optimal in duration and finish time,
i.e., is launched at T ∗s .

4.2 NIMBLE for General Analytics
We now extend our analysis to general analytics jobs. We first
outline the steps in computing the optimal launch time for
tasks in jobs with arbitrary execution DAGs, and then describe
how NIMBLE scheduling can be generalized to such DAGs.

4.2.1 Optimal launch time for individual tasks
General analytics jobs with arbitrary execution DAGs intro-
duce two main challenges in determining the optimal task
launch time as defined in §4.1. First, unlike two-stage map-
reduce jobs, the start times of a step’s parent steps need not
start at t = 0 and can be staggered in time, as shown in Fig-
ure 5 (a). This breaks our assumption of a nonincreasing rp(t)
from §4.1, and necessitates a more nuanced treatment of the
eager approach to compute the optimal task finish time.

Second, unlike two-stage map-reduce jobs, general analytics
jobs, a stage may contain multiple parent-child step pairs, e.g.,
the join stage in Figure 3 has two steps, and each step has a
parent step from a different map stage. For such dependencies,
we find that optimally overlapping each parent-child step pair
is insufficient to ensure optimal task duration and finish time.
Specifically, the optimal task launch time depends not only on
the inter-stage dependency between parent-child step pairs, but
also on the intra-stage dependency between steps in the same
stage. Figure 5 (b, left) shows a join example where the optimal
launch for each step in the task is computed independently.
Although each child step is optimally pipelined with its parent,
the gap between their execution corresponds to time where
no useful work is done, resulting in sub-optimal task duration
and, therefore, cost of execution. Figure 5 (b, right) shows how
this can be avoided by deferring the start time of the first step.

We exploit the above insights to extend NIMBLE scheduling
approach from §4.1 to general analytics jobs. We consider the
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pipelineable dependencies, which requires careful handling to ensure optimal task duration. See §4.2.1 for details.

general case where a task comprises n steps, s1-sn, and make
two assumptions to simplify our analysis: (i) each step in a
task has at most one parent step, and (ii) steps within a task are
executed sequentially in a fixed order. Both assumptions hold
for a wide range of analytics jobs, including the join example
above, and all of our evaluated workloads (§6). Similar to two-
stage map-reduce (§4.1), the optimal launch time T ∗s for a task
in the execution DAG is calculated in three steps:

Step 1: Calculate optimal task duration D∗. The optimal
task duration D∗ is simply the sum of individual optimal step
durations d∗si, 1 ≤ i ≤ n. As in §4.1, the duration for steps
without a parent is independent of task launch time, while the
optimal duration for steps with a parent is computed using
the lazy approach, i.e., P/rc for the corresponding step. In
Figure 5 (a), P = 8 and rc = 2, so d∗si = 4.

Step 2: Calculate optimal finish time T ∗e . Since T ∗e is bound
by the finish time of the last step sn, we first compute the opti-
mal finish time of a step as computed by the eager approach,
similar to §4.1. As noted earlier, however, unlike two-stage
map-reduce where the parent step across all the map tasks start
at time t = 0, the parent step across different tasks in a general
DAG may start and end at arbitrary times. This is depicted in
Figure 5 (a) where the parent step across two upstream tasks
start at time t = 2, while the third starts at t = 0. Consequently,
the produce rate is no longer non-increasing. As such, the
optimal step finish time (based on the eager approach) can
only be determined by tracking the actual consume rate rac
over time. In the example, rac is bound by rp (= 1) between
t = 0−2, lower than rp (= 3) and bound by rc (= 2) between
t = 2−4, and equals to rc (= 2) between t = 4−5 to clear the
surplus data generated between t = 2−4. As such, the finish
time yielded by the eager approach is 5.

In order to generalize the above example, we discretize time
into slots t1, t2, ..., tm, such that the produce rate is constant
within a time slot. We introduce a new function S(ti) to identify
time slots where the step accumulates surplus data, i.e., S(ti) =
0 if all the input data produced until ti has been consumed by
time ti, and 1 otherwise. It is easy to see that when there is
no surplus data (S(ti) = 0), the actual consume rate rac(ti)
is upper-bounded by the produce rate rp(ti). When there is
surplus data (S(ti) = 1), the actual consume rate increases to
the full consume rate (rac = rc) to clear the surplus. Formally,

rac(ti) =

{
min(rp(ti),rc) if S(ti) = 0
rc if S(ti) = 1

(1)

For each ti, we can calculate S(ti) based on S(ti−1), rac(ti−1)
and rp(ti−1), and rac(ti) based on Equation 1. The time slot tn
where the cumulative data consumed so far equals P, the total
input data for the step, corresponds to the optimal finish time;
we formally prove optimality in Appendix A.

Unlike the two-stage map-reduce job in §4.1, we have to
consider one more constraint — step si can only start after step
si-1 has finished, i.e., the finish time of step i is no less than
t∗e,si-1 +d∗si. Let the optimal step finish time for si as computed
above (which only considers its parent step) be t ′e,si, then the
actual optimal finish time of step i is:

t∗e,si =

{
max(t ′e,si, t

∗
e,si-1 +d∗si) if si has a parent

t∗e,si-1 +d∗si otherwise
(2)

We compute the optimal task finish time by iteratively calculat-
ing the optimal finish time for each step s1−sn. Figure 5 (b)
shows an example for this computation: the task finish time
equals the t ′e,s2 (= 5), since t∗e,s1+d∗s2 (= 1+2) is smaller.

Step 3: Calculate optimal launch time T ∗s . As in §4.1, the
optimal launch time is computed as T ∗s = T ∗e −D∗. Consider
the example in Figure 5 (b); the optimal launch time is calcu-
lated as T ∗s = T ∗e −D∗ (= 5−3) for the two steps. Compared
to Figure 5 (b, left), doing so automatically delays the first step
and removes the gap (Figure 5 (b, right)).

Indeed, Theorem 4.1 extends to general analytics jobs:
Theorem 4.2 For a task in an analytics job with an arbitrary
execution DAG, given the execution (produce rate) of all its
parent steps, we can always achieve both optimal execution
duration and finish time by launching it at T ∗s = T ∗e −D∗,
where T ∗e is the optimal finish time and D∗ is the optimal
duration computed using Steps 1 and 2 above.
We defer the formal proof to Appendix A, but note here that
it employs induction on the number of steps: we assume the
statement holds for a task with n−1 steps, and use Theorem 4.1
to show that it still holds on adding one more step.
4.2.2 Optimal schedule for the entire job
Algorithm 1 shows NIMBLE scheduling for the entire job
based on Theorem 4.2. Stages in the job are scheduled itera-
tively based on their dependencies: a stage is scheduled when
all of its parent stages in the execution DAG have been sched-
uled. For each task within a scheduled stage, we first calculate
the produce rate from its parent stages, and then calculate its
optimal launch time as described above.

Algorithm 1 ensures that each task achieves optimal dura-
tion and finish time given its parent execution (due to Theo-
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Algorithm 1 NIMBLE scheduling for a job

Launch all stages with no parent stages.
U← Set of unscheduled stages
while U 6= /0 do

for each stage S ∈ U, whose parent stages are scheduled do
for each task in stage S do

Calculate rp for each using parent stage schedules
Calculate T ∗e and D∗ based on rp and rc of each step
Calculate T ∗s = T ∗e −D∗

1 2 3 4 50 1 2 3 4 50

Stage1: 

Stage2: 

Stage3:

(a) Schedule 1: NIMBLE (b) Schedule 2: optimize JCT

Stage1: 

Stage2: 

Stage3:

Figure 6: Example of a job that cannot achieve both (a) optimal
cost and (b) finish time simultaneously. Each stage comprises a
single task/step. Stage 2 has a produce rate of 1 and consume rate of
3. Stage 3 has a produce rate of 3 and consume rate of 1.

rem 4.2). However, it still leaves the question: does the algo-
rithm also ensure optimal finish time and cost for the entire
job? We find that the answer is in the affirmative for jobs with
DAGs of depth two, including the map-reduce and SQL jobs
in Fig 3. Intuitively, since the stages in the first level of the
DAG do not have parent steps, their optimal start time is t = 0.
As such, given the execution of the stages in the first level,
Theorem 4.2 ensures optimal duration and finish time for the
stages in the second level of the DAG.

Unfortunately, for general analytics jobs with arbitrary
DAGs, the answer is in the negative. In fact, we find that
for some jobs, it is impossible to find a schedule that achieves
both cost and JCT optimality. The key insight behind this
observation is that the launch time of a task affects not only
itself, but also its downstream tasks — the optimal launch time
for one task (Theorem 4.2) may negatively affect tasks in its
downstream. We illustrate this with the example in Figure 6,
that shows a job with three stages, each with only one step and
one task. Stage 2 has a produce rate of 1 and consume rate
of 3. Stage 3 has a produce rate of 3 and consume rate of 1.
The arrows denote parent-child step pairs. Figure 6 (a) shows
NIMBLE approach, which greedily optimizes the duration and
finish time from Stage 1-3 based on the produce rate of each
stage’s parent steps; the end-to-end execution time of the entire
job is 5, while its cost is 7. Figure 6 (b) shows an alternative
strategy, that launches tasks across all three stages (Stage 1-3)
at t = 0. This increases the duration of Stage 2 from 1 to 3,
and consequently, the cost of execution of the job from 7 to 9.
However, doing so also reduces the produce rate for Stage 3
to 1, allowing Stage 3 be completely pipelined with Stage 2.
As such, the finish time of the entire job reduces from 5 to 3.
Note that no schedule can achieve both a JCT of 3 and a cost
of 7, since optimal JCT can only be achieved if Stage 2 and 3
are started at t = 0, which ensures a sub-optimal cost.

Cost optimality & cost-JCT Pareto-optimality. Despite the

negative result above, NIMBLE scheduling efficiently navi-
gates the cost-JCT tradeoff for jobs with arbitrary DAGs:
Theorem 4.3 For a job with arbitrary DAG, NIMBLE schedul-
ing in Algorithm 1 is (1) optimal in cost; and (2) Pareto-
optimal between cost and JCT.
Proof We first consider cost-optimality: since Algorithm 1
ensures optimal execution duration for each task in a job (The-
orem 4.2), the aggregated duration across all tasks in the job,
and therefore, the job execution cost, is also optimal.

Since the cost is always optimal, for Pareto-optimality we
only need to show that no solution can further reduce job finish
time without also increasing its cost. Our proof builds on the
intuition developed for the example in Figure 6. First, we note
that delaying the start time beyond T ∗s for any task cannot
reduce its completion time; the only possibility to reduce JCT
is to pick a start time earlier than T ∗s . As per Theorem 4.2,
starting a task any sooner than T ∗s must increase its duration.
Moreover, doing so will not reduce the duration of any other
task, since they are already optimal. Thus, even if starting
the task before T ∗s did improve JCT, it would only do so by
increasing the aggregate duration across all tasks in the job,
and therefore, its cost. �

As an interesting aside, we note that for the example in
Figure 6, we face this hard tradeoff between JCT and cost
optimality because Stage 3 has a larger duration compared to
Stage 2. Instead, if Stage 3 had a duration of 0.5, starting Stage
2 any sooner than t = 2 (at higher cost) would not have made
stage 3 finish any faster. In practice, downstream stages often
have a shorter duration compared to the upstream stages, since
frequently used operators such as reduce, filter and join often
significantly reduce the output data volume to downstream
stages. In such cases, NIMBLE can achieve both optimal cost
and JCT simultaneously — evaluation results on a wide range
of analytics jobs in §6 validate this argument.

5 Design Details
In this section, we describe how we incorporate NIMBLE
scheduling into Caerus, a new fine-grained task-level scheduler
for serverless analytics frameworks. We first describe Caerus
design components and application workflow (§5.1), and then
describe its implementation details (§5.2).

5.1 Caerus System
We now describe Caerus system components and how they
fit together (Figure 7). Before describing these components,
we first briefly summarize the design employed by existing
serverless analytics frameworks.

Primer on serverless analytics frameworks. Recent propos-
als on serverless analytics frameworks [8, 12, 14] share similar
designs. Figure 7 depicts this design (adapted from [12]). The
framework takes as input a job execution plan (DAG) that
captures dependencies between stages and the number of tasks
within each stage. It uses this to generate code for the individ-
ual tasks, compiles it and packages it with necessary dependen-
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Figure 7: Caerus system components & workflow (§5.1).

cies. To execute a job, a scheduler launches tasks as serverless
functions and monitors their progress. Pywren [8, 14] is simi-
lar, but omits the code-generation and compilation steps and
directly takes task code and execution plan as input.

Caerus integrates with these analytics frameworks by simply
replacing their task-level scheduler, and taking over the task
launching and monitoring responsibilities. We next describe
the major components of Caerus scheduler (Figure 7) in detail.

The step model builder is responsible for extracting the
fine-grained step dependency model that NIMBLE schedul-
ing expects, either from the job’s execution plan or the user
code. If the input is user code (e.g., a Python function in Py-
Wren [8,14]), Caerus provides a step annotation API that users
can employ to specify the step information Caerus expects:

s = createStep() # Create a step object
s.start() # Notify system about step start
s.end() # Notify system about step end
s.addParent(stageID, stepID) # Specify parent step

If the query code is generated by a CodeGenerator based on
the execution plan (as in Starling [12]), the step dependencies
can be extracted during code generation. Most popular query
execution engines (e.g., SparkSQL) generate code based on
the Volcano [44] iterator or WholeStageCodegen [45] model,
which fuses operators as much as possible to maximize pipelin-
ing. As such, the generated code in such models is already
composed of blocks separated by pipeline breakers, where
each block corresponds exactly to a step in our step model.
Caerus augments the CodeGenerator to additionally generate
step-annotations at the start and end of blocks, along with step
dependencies, using the step annotation API outlined above.

Input estimator & runtime profiler. Recall from §3 that
NIMBLE scheduling relies on estimates of step produce rate
(rp) and consume rate (rc) for steps with parents, and duration
(d∗si) for steps without parents, to make scheduling decisions.
To facilitate accurate estimates, we leverage the observation
that task and job-level statistics can be accurately estimated by
tracking profiled information from prior job runs, since such
analytics jobs in production workloads tend to be recurring
in nature [26–28, 46, 47]. In particular, the input estimator
in Caerus is responsible for collecting information for prior
executions for each job (i.e., the job history) and maintaining
estimates for various rp, rc and d∗si values.

For higher accuracy, the input estimator continuously refines
its rp, rc and d∗si estimates based on realtime task progress. To
facilitate this, a runtime profiler (similar to [27, 40]) periodi-

cally profiles and reports such metadata to the input estimator.
Our runtime profiler is incorporated into the function runtime
in serverless frameworks [8] that is shared across all tasks.

Caerus workflow. For each job, the step-model builder first
extracts the step model from code generator or directly from
the annotated function code. The input estimator maintains
estimates of algorithm inputs (rp, rc and d∗si values) for each
step based on prior job runs. The NIMBLE scheduling module
then calculates launch time based on both the algorithm inputs
and step model, and launches each task at the calculated time.
Launched tasks periodically report their progress to the input
estimator via the runtime profiler, which is leveraged to refine
the input estimates for future runs.

Caerus scalability. Caerus’s scheduling performance scales
well with the number of available CPU cores due to two main
reasons. First, tasks within a stage have independent launch
times, which permits parallel calculation and launching. Sec-
ond, while the number of online update messages from run-
time profiler grows linearly with the number of tasks, it can be
served in parallel by partitioning input estimates for different
tasks across different CPU cores.

Fault-tolerance. Caerus handles task failures by restarting
them. For controller fault-tolerance, Caerus relies on tradi-
tional primary-backup mechanisms [30,48]. The backup main-
tains consistent copies of the job’s step model, launched and
queued tasks, and runtime profiled information from prior job
runs. During recovery, Caerus fetches this metadata from the
backup and resumes scheduling queued tasks using NIMBLE.

5.2 Caerus Implementation
Our Caerus prototype is implemented atop Pywren [8], a
serverless data analytics engine that runs on AWS Lambda [1].
We use Amazon S3 [21] for persistent data storage and
Jiffy [24] for intermediate data storage.

SQL analytics with Caerus. We implement a SQL query
execution framework atop Locus to highlight the benefit for
Caerus scheduling for SQL analytics workloads. We employ
Apache Spark’s query planner to generate the query plan from
the original SQL query, and then use Pandas to implement the
SQL operators. Pandas’ current implementation for SQL op-
erators (like JOIN and GROUPBY) employs the lazy approach,
e.g., for the join example in Figure 3 (bottom), Pandas would
only start the JOIN operation after all the data in both input
tables are ready. We therefore modify the operator implemen-
tations in Pandas to conform to the step dependency model
required by NIMBLE scheduling.

As a concrete example consider the implementation of the
SQL job in Figure 3 (bottom) in Caerus. For the first two
map stages, each task keeps reading input data from S3. After
reading each small chunk of input data, it performs the map
function, and partitions the output data into chunks based on
key hashes. To implement shuffle, we maintain a FIFO queue
for each join task in the intermediate storage. Once an output
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chunk is ready, the map task pushes it to the corresponding
join task’s queue. Note that a join task receives data from two
shuffles (i.e., from map1 and map2). As such, each join task
has two receiver queues: queue A (for data from m1.s1) and
queue B (or data from m2.s1). After being launched, each
join task fetches data from queue A and builds the hash table
incrementally in step j.s1. Once the hash-table is built, the
step j.s2 fetches data from queue B, performs a join of the
fetched data with the data in the hash-table, and writes the
output to persistent storage.

Identifying pipeline-breakers. In Caerus, we implement all
commonly used SQL operators (e.g., FILTER, JOIN, SORT,
GROUP BY, aggregates, etc.), employ the widely-used Volcano
iterator model [44] to identify pipeline-breakers, and specify
them using the step annotation API. As such, Caerus can run
all TPC-DS and Big-data benchmark queries — we evaluate a
representative subset in §6.

Accurate parameter estimations. NIMBLE scheduling re-
lies on accurate estimation of various parameters (rp, rc, d∗si),
which can be complicated due unpredictable variations stem-
ming from a range of sources. Fortunately, we found a ma-
jority of these sources had little to no variation across AWS
Lambda executions, including (1) processing time for vari-
ous operators; (2) function launch times5; and (3) function
ingress/egress bandwidth to intermediate storage.

However, we did observe unpredictable performance varia-
tions for Amazon S3 reads and writes, particularly with larger
number of parallel tasks (≥ 100). To minimize parameter esti-
mation errors caused by these variations, we adopt a straggler
mitigation technique for S3 reads and writes similar to [12] —
Caerus tasks proactively establishes a new connection to S3
when a transfer takes longer than expected, and uses the re-
sponse from whichever connection performs the read or write
first. Moreover, we found larger S3 reads/writes to have un-
predictable durations, so we break them into multiple smaller
chunks. We show in §6 how these modifications ensure negligi-
ble estimations errors for a wide range of evaluated workloads.

6 Evaluation
We now evaluate Caerus implementation (§5.2) using three an-
alytics workloads: TeraSort benchmark (§6.1), TPC-DS Bench-
mark (§6.2) and BigData Benchmark (§6.3). All of our experi-
ments use Lambda instances with 3GB memory and deploy
Jiffy on 6 m4.16xlarge EC2 instances.

Compared approaches. We compare Caerus with the eager
and lazy scheduling approaches, implemented as a part of
Caerus scheduler. These scheduling approaches correspond
to the two extremes typically used in server-centric analytics
frameworks for task level scheduling — lazy in Spark [30]
and MapReduce [48], and eager in Dryad [32] and MapRe-
duce Online [29]). Note that since our main contribution is a

5We ensure function invocations are warm to avoid cold-start delays.

Lazy Eager NIMBLE
JCT(s) 124 105 107
Cost(s) 10776 15756 11169

Table 1: Comparison of NIMBLE against lazy and eager ap-
proaches for TeraSort on a 100GB dataset (§6.1).

new scheduler for serverless analytics, our evaluation focuses
on comparing scheduling approaches on a common analyt-
ics framework as opposed to comparing different analytics
frameworks. As noted in §5, Caerus can integrate with any
of existing serverless analytics frameworks [8, 11, 12, 14] and
inherit their specific performance optimizations.

Performance metrics. We focus on two main metrics: JCT
and cost of job execution. The former is measured as the time
between job’s first task’s launch time to the last task’s finish
time. For the latter, we measure the aggregated duration across
all tasks in the job as a proxy for cost. We avoid reporting
precise dollar values, since these depend on the cloud provider
and can change with market economics.

6.1 TeraSort
We port the TeraSort algorithm [49] implementation from
Locus [14] to our framework for sorting large datasets. The
algorithm operates in two stages: a partition stage that range
partitions input data to intermediate storage, and a merge stage
that reads these partitions, merges, sorts and writes them out as
output. The sort job in our experiments uses 100 lambdas for
both the map and reduce stage to sort 100GB of data generated
using the Sort benchmark tool [50].

Table 1 compares the results of eager, lazy and NIMBLE
scheduling approaches for the sort job. We observe little data
skew for the TeraSort benchmark during both the partition
and merge stages, and the ideal launch time for merge tasks
identified by NIMBLE scheduling is roughly in the middle of
the execution for partition stage. As such, NIMBLE achieves
1.16× lower job completion time compared to the lazy scheme,
1.41× lower cost than the eager approach. The results validate
our analysis in §4, that NIMBLE scheduling can achieve near-
optimal JCT and cost simultaneously for two stage map-reduce
jobs in practice (< 4% in Table 1). NIMBLE’s slight departure
from optimal is due to delays in launch times introduced by
the analytics framework (i.e., PyWren).

Impact of estimation errors. Caerus’s JCT and cost-
efficiency is gated on being able to estimate parameters like
produce rate (rp) and consume rate (rp) accurately. Since
Caerus’s estimation errors are quite small in practice (< 4%),
we study their impact by introducing errors artificially.

To inject errors in produce rate estimation, we randomly
select map tasks in our TeraSort job with probability pe, and
for each of them, incorrectly estimate the data output rate by
Caerus’s offline estimation as k× the actual value. We de-
note pe as error probability and k as the error ratio. Since the
produce rate rp is the aggregated data output rate across all
map tasks, our stochastic approach effectively injects errors
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Figure 8: Impact of produce rate estimation errors (§6.1). The re-
sults are normalized against the performance with no injected errors.
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Figure 9: Impact of consume rate estimation errors (§6.1). The re-
sults are normalized against the performance with no injected errors.

to the rp estimate as well. Figure 8 shows the impact of the
injected estimation errors on NIMBLE’s performance, i.e., JCT
and execution cost, with the corresponding metrics normalized
against a run with no injected errors. We observe that NIM-
BLE’s performance is minimally affected — across various
combinations of error probability and error ratio, the JCT and
execution cost is always within ∼ 4% of the run with no in-
jected errors. We attribute this to the runtime profiler, which
tracks the real-time progress of each map task and refines the
produce rate estimation by continuously re-estimating the task
output rates. As such, the runtime profiler is able to correct
the offline estimations in produce rate before launching the
reducers, minimizing the impact of errors.

To study the impact of consume rate estimation errors, we
employ a similar error rate and error ratio driven approach for
reduce tasks. Note that runtime profiler is unable to correct
for estimation errors in this case, since it can re-estimate the
consume rate only during reduce task executions, which is
after the reduce tasks have already been launched. Figure 8
shows the impact of injected errors on NIMBLE performance.
For error ratio > 1 (i.e., estimated rate > actual rate), NIMBLE
incorrectly estimates that the reduce task would finish faster
than it actually does, while for error ratio < 1, it assumes the
opposite. As expected, for the former case, Caerus launches
reduce tasks later than it should, resulting in a longer JCT,
while for the latter scenario, it launches them sooner than
necessary, resulting in increased cost. Figure 9(a) shows that
the normalized JCT increases from 1.07× to 1.12× as error
ratio is increased from 2 to 4, while Figure 9(b) shows that the
cost increases from 1.08× to 1.18× as error ratio increases
from 1/2 to 1/4. Moreover, at higher error probability, the cost
increase is greater since more reducers are launched earlier
than necessary; while the JCT increase is largely unaffected
since it only depends on the slowest task. Note that even with
extreme estimation errors ( 1

4× and 4×), the increase in cost
or JCT is only 12–18%.
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Figure 10: NIMBLE performance for TPC-DS queries (§6.2). Its
JCT is comparable to eager and 1.08–2.2× lower than lazy, while its
cost is comparable to lazy and 1.33–1.57× lower than eager.

6.2 TPC-DS Benchmark
The TPC-DS benchmark [51] has a set of standard decision
support queries based on those used by retail product suppli-
ers. The queries vary widely in terms of compute, storage and
network I/O load variations. We evaluate Caerus on TPC-DS
with scale factor of 1000, which results in a total input size of
1TB across various tables. Similar to Locus [14], we evaluate
four representative queries (in terms of performance character-
istics) from the TPC-DS Benchmark, specifically, queries Q1,
Q16, Q94 and Q95. All selected queries have complex DAGs
comprising six to eight stages, with each query operating over
a subset of the 1TB input — varying from 33GB to 312GB.
Note that some late stages in the selected queries process
much less data compare to early stages (after several join and
groupby operations) — we adjust the degree of parallelism
for these stages based on the amount of data they process.

Figure 10 compares the performance for NIMBLE with the
lazy and eager approaches. The results indicate that Caerus
can efficiently navigate the JCT-cost trade-off for all evaluated
queries. Specifically, NIMBLE achieves JCT comparable to
eager for all the queries, while outperforming lazy by 1.08–
2.2×. For cost, NIMBLE matches the lazy approach while
outperforming eager by 1.33–1.57×.

6.2.1 Diving deeper into NIMBLE benefits
In order to better understand the gains enabled by NIMBLE
scheduling, we zoom in on the performance for Query Q1 of
the TPC-DS benchmark. Figure 11 shows the step-level de-
pendencies for Q1, while Figure 12 shows the breakdown of
execution time across different stages. Note that compute and
network I/O take up most of the execution time, highlighting
potential gains from pipelining. Figure 14 shows the job exe-
cution breakdowns with lazy, eager and NIMBLE scheduling.

Optimal pipelining across stages. We now walk through Q1’s
execution with Caerus (Figure 14(c)). Caerus identifies 7 step
dependencies (i.e., parent-child step pairs) as pipelineable,
shown as red arrows in Figure 11.

While all map stages are launched at time t = 0, (since they
do not have upstream dependencies), Caerus launches tasks
across subsequent stages in a manner that ensures child steps in
the above parent-child step pairs are optimally pipelined with
the parent step, which corresponds to a large portion of the
query execution. This is highlighted in Figure 14(c): when con-
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Figure 14: Diving deeper into NIMBLE benefits for TPC-DS query Q1 (§6.2.1). (a, b, c) show Q1 execution breakdown for lazy, eager, and
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parameters as measured by Caerus runtime profiler (solid lines) and as estimated by input estimator (dashed lines) for part of Stage 3 (yellow).

trasted with the lazy approach in Figure 14(a), Caerus enables
a JCT that is 2.2× lower than the lazy approach. Meanwhile,
Caerus also ensures that the tasks are not launched too soon in
order to minimize time spent waiting for input from the parent
step to become available, and therefore, the end-to-end job ex-
ecution cost. As a concrete example, since step groupby1.s1
is much shorter than step join1.s2 and cannot finish before
join1.s2, tasks in the groupby stage are started after tasks in
join1 stage are started, but before they finish execution. Com-
pared with Figure 14(b), this allows name to Caerus achieve a
cost that is 1.56× lower than the lazy approach.

Decreasing duration across stages. Another interesting take-
away from Q1’s execution is that downstream stages in general
process smaller amounts of data than upstream stages (since
operators such as filter and join significantly reduce the data to
downstream stages), and consequently have shorter durations.
As noted in §4.2, NIMBLE scheduling enables both optimal
cost and JCT simultaneously for such DAGs, which is reflected
in Figure 14. Moreover, this observation holds across all of our
evaluated TPC-DS queries, ensuring cost and JCT optimality
with Caerus for all of them.

Accurate profiling & estimation for NIMBLE inputs. Fig-
ure 14(d) shows the normalized produce rate and consume
rate of of step join1.s2 in Stage 3, as profiled by Caerus
runtime profiler and as estimated by Caerus input estimator.
We make two observations: (1) the consume rate is stable as
a function of time, as modeled in §3, and (2) the estimated
values are a close approximation of the actual produce and
consume rates. We find these observations extend to all stages
across query Q1, as well as to all other queries we evaluate
in this section — Figure 13 shows that the average error in

parameter estimations for rp, rc and d∗si is within 4% across
all queries. As we already saw in §6.1, NIMBLE scheduling is
also robust to higher estimation errors.

Data skew. We note that Stage 3 (yellow) experiences data
skew across tasks (Figure 14(a)-14(c)) — our profiling indi-
cates that some tasks process > 1.6× more data than others.
Caerus captures the effect of such data skew in its NIMBLE
scheduling algorithm, and launches tasks in Stage 3 at a time
that still ensures JCT and cost optimality for the job execution.

Fast scheduling decisions. The query Q1 has over 250 tasks
across 8 stages — Caerus schedules and launches each task in
about 400µs (on average). In contrast, when the task launch
request is issued to AWS Lambda, it typically takes an ad-
ditional ∼ 25− 320ms to start the task’s execution [52]. As
such, despite making much more fine-grained (i.e., task-level)
decisions than traditional job schedulers, Caerus is fast enough
to not be the bottleneck in the analytics execution pipeline.

6.3 BigData Benchmark
The Big Data Benchmark [53] is a query suite derived from
production databases. We consider Query 3 (Q3), which is a
join query with four stages, with a step dependency model
similar to the first four stages of TPC-DS benchmark’s Q1
(Figure 11). Our implementation uses shuffle hash join (SHJ),
and efficiently pipelines the join stage with the map stages. Q3
reads in 123GB of input, and can perform joins with three dif-
ferent sizes: 485,312 rows in Q3A; 53,332,015 rows for Q3B;
and 533,287,121 rows for Q3C. This allows us to understand
the effect of join size on NIMBLE scheduling.

Figure 15 compares NIMBLE approach with both the lazy
and eager approaches with different join data sizes (Q3A-Q3C).
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Figure 15: NIMBLE performance for BigData Benchmark (§6.3).
NIMBLE’s JCT improvement over lazy increases as join size increases
(Q3A→Q3C), while its cost improvement over eager increases as join
size decreases (Q3C→Q3A).
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Figure 16: Q3A execution breakdown for (a) eager and (b) NIMBLE.

Interestingly, we observe that NIMBLE’s relative JCT improve-
ment compared to lazy increases from 1.29× to 1.99×, as
join size increases from Q3A to Q3C. Meanwhile, NIMBLE’s
relative cost improvement compared to eager increases from
1.23× to 1.67×, as join size decreases from Q3C to Q3A.

To better understand the differences in cost and JCT im-
provements due join sizes, Figure 16 shows the execution
breakdown for Q3A. As Q3A’s join input data size is small,
the join (yellow) and subsequent groupby (green) stages
are much shorter than the initial map stage (orange). As such,
pipelining these shorter stages with the map stage does not
improve the JCT by much (1.29×) compared to the lazy ap-
proach. However, the eager solution significantly increases
the cost by starting these short tasks very early (Figure 16(a)).
Caerus, on the other hand, improves cost relative to eager by
1.67× by launching them at just the right time (Figure 16(b)).

Figure 17 compares the execution of lazy and Caerus for
Q3C: as the input data size for join is now much larger, the
duration of the join stage and groupby stage is comparable to
the map stage (orange). As such, the eager approach does not
lose as much in terms of cost by launching these tasks early.
However, the lazy solution increases the JCT significantly
by running these relatively longer stages one after the other
(Figure 17(a)). In contrast, Caerus improves JCT by 1.99×
relative to lazy by efficiently pipelining the join and groupby
stage with the map stages (Figure 17(b)).

7 Related Work
We already discussed related work on server-centric and server-
less analytics frameworks in §2.1 and §5.1. We now discuss
prior work related to Caerus in other areas.

Some databases [45, 54–56] and data processing frame-
works [31, 57] support pipelined execution via an iterator
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Figure 17: Q3C execution breakdown for (a) lazy and (b) NIMBLE.

model [44]. These approaches focus on maximally pipelin-
ing operators to minimize query completion time. Similar
to these works, we leverages pipelined execution to achieve
JCT-optimality for analytic jobs. In fact, our step dependency
model draws inspiration from iterator models to identify re-
gions of execution that can or cannot be overlapped with other
regions. Unlike prior work, however, our approach also con-
siders cost-optimality, a key concern in serverless analytics.

Caerus’s scheduling problem is also related to the parallel
query scheduling [58–60] in databases. Many of the proposed
algorithms assign CPU and memory resources across operators
considering both pipelinable and non-pipelinable dependen-
cies across them. Unlike Caerus, however, these algorithms
are designed for server-centric deployments and optimize for
the query completion time under limited resource constraints.

Another related problem is Multi-Objective Query Opti-
mization (MOQO), which searches for an query execution
plan with an optimal trade-off between multiple conflicting
cost metrics in databases [61–67]. While MOQO optimizes a
query execution plan to determine its component set of opera-
tions and their orderings, Caerus takes the execution plan as
input and specifically optimizes the task launch times for JCT
and cost, i.e., Caerus approach is complementary to MOQO.

8 Conclusion
We have presented Caerus, a task scheduler for serverless ana-
lytics that uses a new NIMBLE scheduling algorithm. NIMBLE
efficiently pipelines task executions across various stages in
serverless analytics jobs, to ensure cost-optimality and Pareto-
optimality between cost and JCT. We show that for a wide
range of analytics workloads, NIMBLE is often optimal in
both dimensions. This allows Caerus to outperform existing
lazy scheduling approaches by 1.08–2.2× in JCT, and eager
approaches by 1.21–1.57× in cost for these workloads.
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A Theoretical Proofs
Lemma A.1 The eager approach always optimizes the finish
time for a reduce task.
Proof Figure 18 shows an example of the actual consume rate
rac(t) for r.s1 under two approaches: the eager solution E

and an alternate approach F with a later launch time. We see
that before E finishes, there may exist some time t such that
rac(t) of F is greater than rac(t) of E. Based on Equation 1,
we know that this is because E has processed all its inputs by t
(S(t) = 0 for E), but F has not (S(t) = 1 for F) as it is launched
later. Denote the last such time point before E finishes as t ′,
we have: (1) by time t ′, E has processed all data generated
before t ′; (2) after time t ′, rac(t) of E is no less than F until
it finishes. The combination of these two observations shows
that E always has an earlier finish time for r.s1 than F. Since
T ∗e = t∗e,s1+d∗s2, E also ensures optimal task finish time. �

Proof of Theorem 4.2 :
Theorem 4.2 For a task in an analytics job with an arbitrary
execution DAG, given the execution (produce rate) of all its
parent steps, we can always achieve both optimal execution
duration and finish time by launching it at T ∗s = T ∗e −D∗,
where T ∗e is the optimal finish time and D∗ is the optimal
duration computed using Steps 1 and 2 described in §4.2.1.
Proof We prove Theorem 4.2 by mathematical induction on
the number of steps of the task.
Base case: We first show that Theorem 4.2 holds for a task
with only one step. In this case, the problem reduces to the
single parent-child step case for two-stage map-reduce jobs as
in Theorem 4.1, which we have already shown to hold.
Inductive step: We now show that for any n > 1, if Theo-
rem 4.2 holds for tasks with n steps, it also holds for tasks
with n+1 steps. Consider a task with n+1 steps. For the first
n steps, we denote the optimal finish time as T ∗e (n), and cost
as D∗(n). Since Theorem 4.2 holds for any task with n steps,
T ∗e (n) and D∗(n) can be achieved simultaneously by launch-
ing the (n+1)-step task at T ∗s (n) = T ∗e (n)−D∗(n). Based on
Equation 2 and the definition of the optimal task duration (Step
1 in §4.2.1), we have:

T ∗e (n+1) = max(t ′e,sn+1,T
∗

s (n)+d∗sn+1)

D∗(n+1) = D∗(n)+d∗sn+1
(3)

Based on Equation 3, the launch time calculated from Theorem
4.2 for the (n+1)-step task is

T ∗s (n+1) = T ∗e (n+1)−D∗(n+1)
≥ (T ∗s (n)+d∗sn+1)− (D∗(n)+d∗sn+1)

= T ∗e (n)−D∗(n)

= T ∗s (n)

(4)

Note that if a step j starts at time t1 and executes at full load
(i.e., it will never stall for data to become available), then it
must also be able to execute at full load if it starts at any time
t2 ≥ t1. Since we have T ∗s (n+1)≥ T ∗s (n) from Equation 4, if
we launch the task at T ∗s (n+ 1), we can always execute the
first n steps at full load (i.e., with optimal duration D∗(n)). As
such, with launch time T ∗s (n+ 1), the corresponding finish
time of the first n steps is T ∗s (n+1)+D∗(n), which is also the
start time of the last step sn+1. Based on Equation 3 we have:

Start time of step sn+1 = T ∗s (n+1)+D∗(n)

= (T ∗e (n+1)−D∗(n+1))+D∗(n)

= T ∗e (n+1)−d∗sn+1

= max(t ′e,sn+1,T
∗

s (n)+d∗sn+1)−d∗sn+1

≥ t ′e,sn+1−d∗sn+1
(5)

Equation 5 indicates that if we launch the task at T ∗s (n+1), the
start time of the step sn+1 is no less than t ′e,sn+1−d∗sn+1. Note
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that t ′e,sn+1 is the optimal finish time of step sn+1 calculated
only based on its parent. Just as in the proof of Theorem 4.1,
which covers the single parent-child step pair case, we can
then show that the step sn+1 must execute at full rate if it is
launched at t ′e,sn+1−d∗sn+1.

Taken together, if we launch the task at T ∗s (n+1), all n+1
steps can execute at full load, which indicates it achieves the

optimal duration D∗(n+1). Moreover, recall that T ∗s (n+1) =
T ∗e (n+ 1)−D∗(n+ 1). This means that if the task starts at
T ∗s (n+ 1) and has a duration of D∗(n+ 1), it must finish at
T ∗e (n+1). As such, we can achieve both T ∗e (n+1) and D∗(n+
1) by launching the task at T ∗s (n+1).
Conclusion: Since both the base case and the inductive step
hold, Theorem 4.2 holds by mathematical induction. �
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Abstract
The distributed futures interface is an increasingly popular

choice for building distributed applications that manipulate
large amounts of data. Distributed futures are an extension
of RPC that combines futures and distributed memory: a
distributed future is a reference whose eventual value may
be stored on a remote node. An application can then express
distributed computation without having to specify when or
where execution should occur and data should be moved.

Recent distributed futures applications require the ability
to execute fine-grained computations, i.e., tasks that run on
the order of milliseconds. Compared to coarse-grained tasks,
fine-grained tasks are difficult to execute with acceptable sys-
tem overheads. In this paper, we present a distributed futures
system for fine-grained tasks that provides fault tolerance
without sacrificing performance. Our solution is based on a
novel concept called ownership, which assigns each object a
leader for system operations. We show that this decentralized
architecture can achieve horizontal scaling, 1ms latency per
task, and fast failure handling.

1 Introduction

RPC is a standard for building distributed applications be-
cause of its generality and because its simple semantics yield
high-performance implementations. The original proposal
uses synchronous calls that copy return values back to the
caller (Figure 2a). Several recent systems [4, 34, 37, 45] have
extended RPC so that, in addition to distributed communica-
tion, the system may also manage data movement and paral-
lelism on behalf of the application.
Data movement. Pass-by-value semantics require all RPC
arguments to be sent to the executor by copying them directly
into the request body. Thus, performance degrades with large
data. Data copying is both expensive and unnecessary in cases
like Figure 2a, where a process executes an RPC over data
that it previously returned to the same caller.

To reduce data copies, some RPC systems use distributed
memory [16,27,37,40,41]. This allows large arguments to be
passed by reference (Figure 2b), while small arguments can
still be passed by value. In the best case, arguments passed
by reference to an RPC do not need to be copied if they are
already on the same node as the executor (Figure 2b). Note
that, like traditional RPC, we make all values immutable to
simplify the consistency model and implementation.
Parallelism. RPCs are traditionally blocking, so control is
only returned to the caller once the reply is received (Fig-

a_future = compute()
b_future = compute()
c_future = add(a_future, b_future)
c = system.get(c_future)

Figure 1: A distributed futures program. compute and add are state-
less. a_future, b_future, and c_future are distributed futures.
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Figure 2: Example executions of the program from Figure 1. (a) With
RPC. (b) With RPC and distributed memory, allowing the system to
reduce data copies. (c) With RPC and futures, allowing the system
to manage parallel execution. (d) With distributed futures.

ure 2a). Futures are a popular method for extending RPC
with asynchrony [8, 29], allowing the system to execute func-
tions in parallel with each other and the caller. With composi-
tion [29, 37], i.e., passing a future as an argument to another
RPC, the application can also express the parallelism and
dependencies of future RPCs. For example, in Figure 2c, add
is invoked at the beginning of the program but only executed
by the system once a and b are computed.
Distributed futures are an extension of RPC that combines
futures with distributed memory: a distributed future is a
reference whose eventual value may be stored on a remote
node (Figure 2d). An application can then express distributed
computation without having to specify when or where exe-
cution should occur and data should be moved. This is an
increasingly popular interface for developing distributed ap-
plications that manipulate large amounts of data [4,34,37,45].

As with traditional RPC, a key goal is generality. To achieve
this, the system must minimize the overhead of each function
call [13]. For example, the widely used gRPC provides hori-
zontal scalability and sub-millisecond RPC latency, making

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    671



it practical to execute millions of fine-grained functions, i.e.
millisecond-level “tasks”, per second [2].

Similarly, there are emerging examples of large-scale, fine-
grained applications of distributed futures, including rein-
forcement learning [34], video processing [22,43], and model
serving [49]. These applications must optimize parallelism
and data movement for performance [39, 43, 49], making dis-
tributed futures apt. Unfortunately, existing systems for dis-
tributed futures are limited to coarse-grained tasks [37].

In this paper, we present a distributed futures system for
fine-grained tasks. While others [34,37,45] have implemented
distributed futures before, our contribution is in identifying
and addressing the challenges of providing fault tolerance for
fine-grained tasks without sacrificing performance.

The primary challenge is that distributed futures introduce
shared state between processes. In particular, an object and
its metadata are shared by its reference holder(s), the RPC ex-
ecutor that creates the object, and its physical location(s). To
ensure that each reference holder can dereference the value,
the processes must coordinate, a difficult problem in the pres-
ence of failures. In contrast, traditional RPC has no shared
state, since data is passed by value, and naturally avoids coor-
dination, which is critical to scalability and low latency.

For example, in Figure 2a, once worker 1 copies a to the
driver, it does not need to be involved in the execution of
the downstream add task. In contrast, worker 1 stores a in
Figure 2d, so the two workers must coordinate to ensure that a
is available long enough for worker 2 to read. Also, worker 1
must garbage-collect a once worker 2 executes add and there
are no other references. Finally, the processes must coordinate
to detect and recover from the failure of another process.

The common solution in previous systems is to use a cen-
tralized master to store system state and coordinate these
operations [34, 37]. A simple way to ensure fault tolerance is
to record and replicate metadata at the master synchronously
with the associated operation. For example, in Figure 2d, the
master would record that add is scheduled to worker 2 before
dispatching the task. Then, it can correctly detect c’s failure
if worker 2 fails. However, this adds significant overhead for
applications with a high volume of fine-grained tasks [].

Thus, decentralizing the system state is necessary for scal-
ability. The question is how to do so without complicating co-
ordination. The key insight in our work is to exploit the appli-
cation structure: a distributed future may be shared by passing
by reference, but most distributed futures are shared within
the scope of the caller. For example, in Figure 1, a_future
is created then passed to add in the same scope.

We thus propose ownership, a method of decentralizing
system state across the RPC executors. In particular, the caller
of a task is the owner of the returned future and all related
metadata. In Figure 2d, the driver owns a, b, and c.

This solution has three advantages. First, for horizontal
scalability, the application can use nested tasks to “shard”
system state across the workers. Second, since a future’s

owner is the task’s caller, task latency is low because the
required metadata writes, though synchronous, are local. This
is in contrast to an application-agnostic method of sharding,
such as consistent hashing. Third, each worker becomes in
effect a centralized master for the distributed futures that it
owns, simplifying failure handling.

The system guarantees that if the owner of a future is alive,
any task that holds a reference to that future can eventually
dereference the value. This is because the owner will co-
ordinate system operations such as reference counting, for
memory safety, and lineage reconstruction, for recovery. Of
course, this is not sufficient if the owner fails.

Here, we rely on lineage reconstruction and a second key
insight into the application structure: in many cases, the ref-
erences to a distributed future are held by tasks that are a de-
scendant of the failed owner. The failed task can be recreated
through lineage reconstruction by its owner, and the descen-
dant tasks will also be recreated in the process. Therefore, it
is safe to fate-share any tasks that have a reference to a dis-
tributed future with the future’s owner. As we expect failures
to be relatively rare, we argue that this reduction in system
overheads and complexity outweighs the cost of additional
re-execution upon a failure.

In summary, our contributions are:

• A decentralized system for distributed futures with trans-
parent recovery and automatic memory management.

• A lightweight technique for transparent recovery based
on lineage reconstruction and fate sharing.

• An implementation in the Ray system [34] that provides
high throughput, low latency, and fast recovery.

2 Distributed Futures

2.1 API

The key benefit of distributed futures is that the system can
transparently manage parallelism and data movement on be-
half of the application. Here, we describe the API (Table 1).

To spawn a task, the caller invokes a remote function that
immediately returns a DFut (Table 1). The spawned task com-
prises the function and its arguments, resource requirements,
etc. The returned DFut refers to the object whose value will
be returned by the function. The caller can dereference the
DFut through get, a blocking call that returns a copy of the
object. The caller can delete the DFut, removing it from scope
and allowing the system to reclaim the value. Like other sys-
tems [34, 37, 45], all objects are immutable.

After the creation of a DFut through task invocation, the
caller can create other references in two ways. First, the caller
can pass the DFut as an argument to another task. DFut task
arguments are implicitly dereferenced by the system. Thus,
the task will only begin once all upstream tasks have finished,
and the executor sees only the DFut values.
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Operation Semantics
f(DFut x) →
DFut

Invoke the remote procedure f, and pass x by reference.
The system implicitly dereferences x to its Value be-
fore execution. Creates and returns a distributed future,
whose value is returned by f.

get(DFut x) →
Value

Dereference a distributed future. Blocks until the value
is computed and local.

del(DFut x) Delete a reference to a distributed future from the
caller’s scope. Must be called by the program.

Actor.f(DFut x)
→ DFut

Invoke a stateful remote procedure. f must execute on
the actor referred to by Actor.

shared(DFut x)
→ SharedDFut

Returns a SharedDFut that can be used to pass x to
another worker, without dereferencing the value.

f(SharedDFut x)
→ DFut

Passes x as a first-class DFut: The system dereferences
x to the corresponding DFut instead of the Value.

Table 1: Distributed futures API. The full API also includes an actor
creation call. A task may also return a DFut to its caller (nested
DFuts are automatically flattened).
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(b) Video processing
Figure 3: Distributed futures applications.

Second, the DFut can be passed or returned as a first-class
value [21], i.e. passed to another task without dereferencing.
Table 1 shows how to cast a DFut to a SharedDFut, so the
system can differentiate when to dereference arguments. We
call the process that receives the DFut a borrower, to differ-
entiate it from the original caller. Like the original caller, a
borrower may create other references by passing the DFut or
casting again to a SharedDFut (creating further borrowers).

Like recent systems [4, 34, 45], we support stateful com-
putation with actors. The caller creates an actor by invoking
a remote constructor function. This immediately returns a
reference to the actor (an ARef) and asynchronously executes
the constructor on a remote process. The ARef can be used
to spawn tasks bound to the same process. Similar to DFuts,
ARefs are first-class, i.e. the caller may return or pass the
ARef to another task, and the system automatically collects
the actor process once all ARefs have gone out of scope.

2.2 Applications

Typical applications of distributed futures are those for whom
performance requires the flexibility of RPC, as well as op-
timization of data movement and parallelism. We describe
some examples here and evaluate them in Section 5.2.

Distributed futures have previously been explored for data-
intensive applications that cannot be expressed or executed

efficiently as data-parallel programs [34, 37]. Ciel identified
the key ability to dynamically specify tasks during execu-
tion, e.g., based on previous results, rather than specify the
entire graph upfront [37]. This enabled new workloads such
as dynamic programming, which is recursive by nature [54].

Our goal is to expand the application scope to include those
with fine-grained tasks that run in the milliseconds. We also
explore the use of actors and first-class distributed futures.
Model serving. The goal is to reduce request latency
while maximizing throughput, often by using model repli-
cas. Depending on the model, a latency target might be 10-
100ms [20]. Typically, an application-level scheduling policy
is required, e.g., for staged rollout of new models [46].

Figure 3a shows an example of a GPU-based image clas-
sification pipeline. Each client passes its input image to a
Preprocess task, e.g., for resizing, then shares the returned
DFut with a Router actor. Router implements the schedul-
ing policy and passes the DFut by reference to the chosen
Model actor. Router then returns the results to the clients.

Actors improve performance in two ways: (1) each Model
keeps weights warm in its local GPU memory, and (2) Router
buffers the preprocessed DFuts until it has a batch of requests
to pass to a Model, to leverage GPU parallelism for through-
put. With dynamic tasks, the Router can also choose to flush
its buffer on a timeout, to reduce latency from batching.

First-class distributed futures are important to reduce rout-
ing overhead. They allows the Router to pass the references
of the preprocessed images to the Model actors, instead of
copying these images. This avoids creating a bottleneck at
the Router, which we evaluate in Figure 15a. While the ap-
plication could use an intermediate storage system for pre-
processed images, it would then have to manage additional
concerns such as garbage collection and failures.
Online video processing. Video processing algorithms often
have complex data dependencies that are not well supported
by data-parallel systems such as Apache Spark [22, 43]. For
example, video stabilization (Figure 3b) works by tracking
objects between frames (Flow), taking a cumulative sum of
these trajectories (CumSum), then applying a moving average
(Smooth). Frame-to-frame dependencies are common, such
as the video decoding state stored in an actor in Figure 3b.
Each stage runs in 1-10s of milliseconds per frame.

Safe and timely garbage collection in this setting can be
challenging because a single object (e.g., a video frame) may
be referenced by multiple tasks. Live video processing is also
latency-sensitive: output must be produced at the same frame
rate as the input. Low latency relies on pipelined parallelism
between frames, as the application cannot afford to wait for
multiple input frames to appear before beginning execution.

With distributed futures, the application can specify the
logical task graph dynamically, as input frames appear.
Meanwhile, the system manages the physical execution, i.e.
pipelined parallelism and garbage collection, according to
the specified graph. Concurrent video streams can easily be
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supported using nested tasks, one “driver” per stream. The
system can then manage inter-video parallelism.

3 Overview

3.1 Requirements
The system guarantees that each DFut can be dereferenced to
its value. This involves three problems: automatic memory
management, failure detection, and failure recovery.
Automatic memory management is a system for dynamic
memory allocation and reclamation of objects. The system
must decide at run time whether an object is currently refer-
enced by a live process, e.g., through reference counting [42].
Failure detection is the minimum functionality needed to
ensure progress in the presence of failures. The system detects
when a DFut cannot be dereferenced due to worker failure.

With distributed memory but no futures, this is straightfor-
ward because the location of the value is known by the time
the reference is created. In Figure 4a, for example, the driver
learns that a is stored on worker 1 and could then attach the
location when passing a to worker 2. Then, when worker 2
receives add, it can detect a’s failure.

The addition of futures complicates failure detection be-
cause references can be created before the value. Even the
future location of the value may not be known at reference
creation time. Of course, the system could wait until a task
has been scheduled before returning the reference to the caller.
However, this would defeat the purpose of futures as an asyn-
chronous construct. It is also impractical because a realistic
scheduler must be able to update its decision at run time, e.g.,

according to changes in the environment such as resource
availability and worker failures.

Thus, it is possible that there are no locations for a when
worker 2 receives the add RPC in Figure 4b. Then, worker 2
must decide whether f is still executing, or if it has failed. If
it is the former, then worker 2 should wait. But if there is a
failure, then the system must recover a. To solve this problem,
the system must record the locations of all tasks, i.e. pending
objects, in addition to created objects.
Failure recovery. The system must also provide a method
of recovering from a failed DFut. The minimum requirement
is to throw an error to the application if it tries to dereference
a failed DFut. We further provide an option for transparent
recovery, i.e. the system will recover a failed DFut’s value.

With futures but no distributed memory, if a process fails,
then we will lose the reply of any pending task on that process.
Assuming idempotence, this can be recovered through retries,
a common approach for pass-by-value RPC. For example,
in Figure 5a, the driver recovers by resubmitting add(a,b).
Failure recovery is simple because all data is passed by value.

With distributed memory, however, tasks can also contain
arguments passed by reference. Therefore, a node failure can
cause the loss of an object value that is still referenced, as
b is in Figure 4b. A common approach to this problem is to
record each object’s lineage, or the subgraph that produced
the object, during runtime [17,30,56]. The system then walks
a lost object’s lineage and recursively reconstructs the object
and its dependencies through task re-execution. This approach
reduces the runtime overhead of logging, since the data itself
is not recorded, and the work that must be redone after a partial
failure, since objects cached in distributed memory do not
need to be recomputed. Still, achieving low run-time overhead
is difficult because the lineage itself must be recorded and
collected at run time and it must survive failures.

Note that we focus specifically on object recovery and, like
previous systems [34, 37, 56], assume idempotence for cor-
rectness. Thus, our techniques are directly applicable to idem-
potent functions and actors with read-only, checkpointable, or
transient state, as we evaluate in Figure 15c. Although it is not
our focus, these techniques may also be used in conjunction
with known recovery techniques for actor state [17, 34] such
as recovery for nondeterministic execution [52].
Metadata requirements. In summary, during normal opera-
tion, the system must at minimum record (1) the location(s)
of each object’s value, so that reference holders can retrieve it,
and (2) whether the object is still referenced, for safe garbage
collection. For failure detection and recovery, the system must
further record, respectively, (3) the location of each pending
object, i.e. the task location, and (4) the object lineage.

The key question is where and when to record this system
metadata such that it is consistent1 and fault-tolerant. By
consistent, we mean that the system metadata matches the

1Unrelated to the more standard definition of replica consistency [50].
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current physical state of the cluster. By fault-tolerant, we mean
that the metadata should survive individual node failures.

In some cases, it is safe for metadata to be asynchronously
updated, i.e. there is a transient mismatch between the system
metadata and the system state. For example, the system may
transiently believe that an object x is still on node A even
though it has been removed. This is safe because a reference
holder can resolve the inconsistency by asking A if it has x.

On the other hand, metadata needed for failure handling
should ideally be synchronously updated. For example, the
metadata should never say that a task T is on node A when
it is really on node B. In particular, if node A then fails, the
system would incorrectly conclude that T has failed. As we
will see next, synchrony simplifies fault tolerance but can add
significant runtime overhead if done naively.

3.2 Existing solutions

Centralized master. Failure handling is simple with a syn-
chronously updated centralized master, but this design can
also add significant runtime overhead. For example, failure
detection requires that the master record a task’s scheduled
location before dispatch (Figure 6b). Similarly, the master
must record every new reference before it can be used. This
makes the master a bottleneck for scalability and latency.

The master can be sharded for scalability, but this can com-
plicate operations that coordinate multiple objects, such as
garbage collection and lineage reconstruction. Also, the la-
tency overhead is fundamental. Each task invocation must
first contact the master, adding at minimum one round-trip
to the critical path of execution, even without replicating the
metadata for fault tolerance. This overhead can be detrimental
when the task itself is milliseconds long, and especially so if
the return value is small enough to be passed by value. Small
values may be stored in the master directly as an optimization,
but still require 1 RTT for retrieval [38].
Distributed leases. Decentralization can remove such bot-
tlenecks, but often leads to complex coordination schemes.
One approach is to use distributed leases [19]. This is similar
to a centralized master that is updated asynchronously.

As an example, consider asynchronous task location up-

dates (Figure 6c). To account for a possibly stale master, the
worker nodes must coordinate to detect task failures, in this
case using leases. Each worker node acquires a lease for each
locally queued task and repeatedly renews the lease until the
task has finished. For example, in Figure 6c, worker 3 can
detect a failure of B by waiting for worker 2’s lease to expire.

This design is horizontally scalable through sharding and
reduces task latency, since metadata is written asynchronously.
However, the reliance on timing to reconcile system state
can slow recovery (Figure 14). Furthermore, this method
of decentralization introduces a new problem: the workers
must also coordinate on who should recover an object, i.e.
re-execute the creating task. This is trivial in the centralized
scheme, since the master coordinates all recovery operations.

3.3 Our solution: Ownership
The key insight in our work is to “shard” the centralized mas-
ter, for scalability, but to do so based on the application struc-
ture, for low run-time overhead and simple failure handling.
In ownership, the worker that calls a task stores the meta-
data related to the returned DFut. Like a centralized master, it
coordinates operations such as task scheduling, to ensure it
knows the task location, and garbage collection. For example,
in Figure 6d, worker 1 owns X and Y.

The reason for choosing the task’s caller as the owner is that
in general, it is the worker that accesses the metadata most
frequently. The caller is involved in the initial creation of
the DFut, via task invocation, as well as the creation of other
references, by passing the DFut to other RPCs. Thus, task
invocation latency is minimal because the scheduled location
is written locally. Similarly, if the DFut stays in the owner’s
scope, the overhead of garbage collection is low because the
DFut’s reference count can be updated locally when the owner
passes the DFut to another RPC. These overheads can be
further reduced for small objects, which can be passed by
value as if without distributed memory (see Section 4.2).

Of course, if all tasks are submitted by a single driver,
as in BSP programs, ownership will not scale beyond the
driver’s throughput. Nor indeed will any system for dynamic
tasks. However, with ownership, the application can scale
horizontally by distributing its control logic across multiple
nested tasks, as opposed to an application-agnostic method
such as consistent hashing (Figure 12e). Furthermore, the
worker processes hold much of the system metadata. This
is in contrast to previous solutions that push all metadata
into the system’s centralized or per-node processes, limiting
the vertical scalability of a single node with many worker
processes (Figure 12).

However, there are problems that are simpler to solve with
a fully centralized design, assuming sufficient performance:
First-class futures. First-class futures (Section 2) allow non-
owning processes to reference a DFut. While many applica-
tions can be written without first-class futures (Figure 3b),
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they are sometimes essential for performance. For example,
the model serving application in Figure 3a uses first-class
futures to delegate task invocation to a nested task, without
having to dereference and copy the arguments.

A first-class DFut may leave the owner’s scope, so we must
account for this during garbage collection. We avoid centraliz-
ing the reference count at the owner, as this would defeat the
purpose of delegation. Instead, we use a distributed hierarchi-
cal reference counting protocol (Section 4.2). Each borrower
stores a local reference count for the DFut on behalf of the
owner (Table 2) and notifies the owner when the local refer-
ence count reaches zero. The owner decides when the object
is safe to reclaim. We use a reference counting approach as
opposed to tracing [42] to avoid global pauses.
Owner recovery. If a worker fails, then we will also lose its
owned metadata. For transparent recovery, the system must
recover the worker’s state on a new process and reassociate
state related to the previously owned DFuts, including any
copies of the value, reference holders, and pending tasks.

We choose a minimal approach that guarantees progress, at
the potential cost of additional re-execution on a failure: we
fate share the object and any reference holders with the owner,
then use lineage reconstruction to recover the object and any
of the owner’s fate-shared children tasks (Section 4.3). This
method adds minimal run-time overhead and is correct, i.e.
the application will recover to a previous state and the system
guarantees against resource leakage. A future extension is to
persist the owner’s state to minimize recovery time at the cost
of additional recovery complexity and run-time overhead.

4 Ownership Design

Each node in the cluster hosts one to many workers (usually
one per core), one scheduler, and one object store (Figure 7).
These processes implement future resolution, resource man-
agement, and distributed memory, respectively. Each node
and worker process is assigned a unique ID.

Workers are responsible for the resolution, reference count-
ing, and failure handling of distributed futures. Each worker
executes one task at a time and can invoke other tasks. The
root task is executed by the “driver”.

Each task has a unique TaskID that is a hash of the parent
task’s ID and the number of tasks invoked by the parent task so
far. The root TaskID is assigned randomly. Each task may re-
turn multiple objects, each of which is assigned an ObjectID
that concatenates the TaskID and the object’s index. A DFut
is a tuple of the ObjectID and the owner’s address (Owner).

The worker stores one record per future that it has in scope
in its local ownership table (Table 2). A DFut borrower
records a subset of these fields (* in Table 2). When a DFut is
passed as an argument to a task, the system implicitly resolves
the future’s value, and the executing worker stores only the
ID, Owner, and Value for the task duration. The worker also
caches the owner’s stored Locations.

Field Value
*ID The ObjectID. Also used as a distributed memory key.
*Owner Address of the owner (IP address, port, WorkerID).
*Value (1) Empty if not yet computed, (2) Pointer if in distributed

memory, or (3) Inlined value, for small objects (Section 4.2).
*References A list of reference holders: Number of dependent tasks and a

list of borrower addresses (Section 4.2 and appendix A).
Task Specification for the creating task. Includes the ObjectIDs

and Owners of any DFuts passed as arguments.
Locations If Value is empty, the location of the task. If Value is a

pointer to distributed memory, then the locations of the object.

Table 2: Ownership table. The owner stores all fields. A bor-
rower (Section 3.2) only stores fields indicated by the *.
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Figure 7: Architecture and protocol overview. (a) Task execution.
(b) Local task scheduling. (c) Remote task scheduling. (d) Object
transfer. (e) Task output storage and input retrieval. Ownership layer
manages distributed memory garbage collection and recovery. (f)
Scheduler fetches objects in distributed memory to fulfill task de-
pendencies.

An actor is a stateful task that can be invoked multiple times.
Like objects, an actor is created through task invocation and
owned by the caller. The ownership table is also used to locate
and manage actors: the Location is the actor’s address. Like
a DFut, an ARef (an actor reference) is a tuple of the ID and
Owner and can be passed as a first-class value to other tasks.

A worker requests resources from the scheduling layer to
determine task placement (Section 4.1). We assume a de-
centralized scheduler for scalability: each scheduler manages
local resources, can serve requests from remote workers, and
can redirect a worker to a remote scheduler.

The distributed memory layer (Section 4.2) consists of
an immutable distributed object store (Figure 7d) with
Locations stored at the owner. The Locations are updated
asynchronously. The object store uses shared memory to re-
duce copies between reference holders on the same node.

Workers store, retrieve, reclaim, and recover large objects
in distributed memory (Figure 7f). The scheduling layer sends
requests to distributed memory to fetch objects between nodes
according to worker requests (Figure 7g).

4.1 Task scheduling
We describe how the owner coordinates task scheduling. At
a high level, the owner dispatches each task to a location
chosen by the distributed scheduler. This ensures that the task
location in the ownership table is updated synchronously with
dispatch. We assume an abstract scheduling policy that takes
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Figure 8: Task scheduling and the method of recording a task’s location for the program in Figure 6a. (a) Centralized master. (b) Distributed
leases. (c) Scheduling with ownership. (1-2) Local scheduler redirects owner to node 2. (3) Update task location. (4-5) Remote scheduler grants
worker lease. (6) Task dispatch. (d) Direct scheduling by the owner, using the worker and resources leased from node 2 in (c). (e) Length of
critical path of local (L) and remote (R) task execution, in terms of local (L) and remote (R) RTTs.

in resource requests and returns the ID of a node where the
resources should be allocated. The policy may also update its
decision, e.g., due to changes in resource availability.

Figure 8c shows the protocol to dispatch a task. Upon task
invocation, the caller, i.e. the owner of the returned DFut, first
requests resources from its local scheduler2. The request is
a tuple of the task’s required resources (e.g., {"CPU": 1})
and arguments in distributed memory. If the policy chooses
the local node, the scheduler accepts the request: it fetches
the arguments, allocates the resources, then leases a local
worker to the owner. Else, the scheduler rejects the request
and redirects the owner to the node chosen by the policy.

In both cases, the scheduler responds to the owner with the
new location: either the ID of the leased worker or the ID of
another node. The owner stores this new location in its local
ownership table before dispatching the task to that location.
If the request was granted, the owner sends the task directly
to the leased worker for execution; otherwise, it repeats the
protocol at the next scheduler.

Thus, the owner always dispatches the task to its next lo-
cation, ensuring that the task’s pending Location (Table 2)
is synchronously updated. This also allows the owner to by-
pass the scheduler by dispatching a task directly to an already
leased worker, if the task’s resource requirements are met. For
example, in Figure 8d, worker 1 reuses the resources leased
from node 2 in Figure 8c to execute C. The owner returns the
lease after a configurable expiration time, or when it has no
more tasks to dispatch. We currently do not reuse resources for
tasks with different distributed memory dependencies, since
these are fetched by the scheduler. We leave other policies for
lease revocation and worker reuse for future work.

The worst-case number of RTTs before a task executes is
higher than in previous solutions because each policy decision
is returned to the owner (Figure 8e). However, the throughput
of previous solutions is limited (Figure 12) because they can-
not support direct worker-to-worker scheduling (Figure 8d).
This is because workers do not store system state, and thus all
tasks must be routed through the master or per-node scheduler
to update the task location (Figures 8a and 8b).
Actor scheduling. The system schedules actor constructor
tasks much like normal tasks. After completion, however, the

2The owner can also choose a remote scheduler, e.g., for data locality.

owner holds the worker’s lease until the actor is no longer
referenced (Section 4.2) and the worker can only execute
actor tasks submitted through a corresponding ARef.

A caller requests the actor’s location from the owner us-
ing the ARef’s Owner field. The location can be cached and
requested again if the actor restarts (Section 4.3). The caller
can then dispatch tasks directly to the actor, as in Figure 8d,
since the resources are leased for the actor’s lifetime. For a
given caller, the actor executes tasks in the order submitted.

4.2 Memory management

Allocation. The distributed memory layer consists of a set
of object store nodes, with locations stored at the owner (Fig-
ures 9b to 9d). It exposes a key-value interface (Figure 9a).
The object store may replicate objects for efficiency but is not
required to handle recovery: if there are no copies of an object,
a Get call will block until a client (i.e. a worker) Creates the
object.

Small objects may be faster to copy than to pass through
distributed memory, which requires updating the object di-
rectory, fetching the object from a remote node, etc. Thus, at
object creation time, the system transparently chooses based
on size whether to pass by value or by reference.

Objects over a configurable threshold are stored in the
distributed object store (step 1, Figure 9b) and returned by
reference to the owner (step 2). This reduces the total number
of copies, at the cost of requiring at least one IPC to the
distributed object store for Get (steps 4-5, Figure 9c). Small
objects are returned by value to the owner (step 6, Figure 9c),
and each reference holder is given its own copy. This produces
more copies in return for faster dereferencing.

The initial copy of a large object is known as the primary.
This copy is pinned (step 1, Figure 9b) until the owner releases
the object (step 8, Figure 9d) or fails. This allows the object
store to treat additional capacity as an LRU cache without
having to consult the owners about which objects are safe
to evict. For example, the secondary copy of X created on
node 3 in Figure 9c is cached to reduce Get and recovery
time (Section 4.3) but can be evicted under memory pressure.
Dereferencing. The system dereferences a task’s DFut argu-
ments before execution. The task’s caller first waits for the
Value field in its local ownership table to be populated (Fig-
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Create(ObjID Store an object.
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Figure 9: (a) Distributed memory store API, and (b-d) Memory management for the program in Figure 6a. (1-2) B returns a large object X in
distributed memory. The primary copy is pinned until all references have been deleted. (3) Worker 1 dispatches C once X is available. (4-5) Get
the value from distributed memory (location lookup not shown). (6) C returns a small object Y directly to the owner. (7-8) Object reclamation.

ure 9b), then copies the Value into the dispatched task descrip-
tion. The executing worker then copies the received Value
into its local table (Figure 9c). For large objects, the sent value
is a pointer to distributed memory, so the worker must also
call Get to retrieve the actual value (step 4, Figure 9c).

If the task’s caller is also the owner of its DFut arguments,
the above protocol is sufficient. If the task’s caller is bor-
rowing an argument, then it must populate the Value field
through a protocol with the owner. Upon receiving a DFut, the
borrower sends the associated Owner a request for the Value.
The owner replies with the Value (either the inlined value or
a pointer) once populated. The borrower populates its local
Value field by copying the reply.
Reclamation. The owner reclaims the object memory once
there are no more reference holders (Figure 9d) by deleting its
local Value field (step 7) and, if necessary, calling Release
on the distributed object store (step 8). An object’s reference
holders are tracked with a distributed reference count main-
tained by the owner and borrowers.

Each process with a DFut instance keeps a local count of
submitted tasks (References, Table 2). The task count is
incremented each time the process invokes a dependent task
and decremented when the task completes. Each process also
keeps a local set of the worker IDs of any borrowers that
it created, by passing the DFut as a first-class value. This
forms a tree of borrowers with the owner at the root (see
Appendix A). The owner releases the object once there are no
more submitted tasks or borrowers anywhere in the cluster.
Actors. Actors are reference-counted with the same protocol
used to track borrowers of a DFut. Once the set of reference
holders is empty, the owner of the actor reclaims the actor
resources by returning the worker lease (Section 4.1).

4.3 Failure recovery
The system guarantees that any reference holder will eventu-
ally be able to resolve the value in the presence of failures.
Failure detection. Failure notifications containing a worker
or node ID are published to all workers. Workers do not
exchange heartbeats; a worker failure is published by its local
scheduler. Node failure is detected by exchanging heartbeats
between nodes, and all workers fate-share with their node.

Upon receiving a node or worker failure notification, each
worker scans its local ownership table to detect a DFut failure.
A DFut is considered failed in two cases: 1) loss of an owned
object (Figure 10a), by comparing the Location field, or
2) loss of an owner (Figure 11a), by comparing the Owner
field. We discuss the handling for these two cases next, using
lineage reconstruction and fate sharing, respectively.

Note that a non-owner does not need to detect the loss of
an object. For example, in Figure 10a, node 2 fails just as
worker 3 receives C. When worker 3 looks up X at the owner,
it may not find any locations. From worker 3’s perspective,
this means that either node 2’s write to the directory was
delayed, or node 2 failed. Worker 3 does not need to decide
which it is; it simply waits for X’s owner to handle the failure.
Object recovery. The owner recovers a lost value through
lineage reconstruction. During execution, the owner records
the object’s lineage by storing each invoked Task in its own-
ership table (Table 2). Then, upon detecting a DFut failure,
the owner resubmits the corresponding task (Figure 10b). The
task’s arguments are recursively reconstructed, if needed.

Like previous systems [34, 37, 56], we can avoid lineage
reconstruction if other copies of a required object still exist.
Thus, when reconstructing an object, the owner will first try
to locate and designate a secondary copy as the new primary.
To increase the odds of finding a secondary copy, object recla-
mation (Section 4.2) is done lazily: the owner releases the
primary copy once there are no more reference holders, but
the copy is not evicted until there is memory pressure.

Often, the owner of an object will also own the objects in
its lineage (Section 5.2). Thus, upon failure, the owner can
locally determine the set of tasks to resubmit, with a recursive
lookup of the Task fields. In some cases, an object’s lineage
may also contain borrowed references. Then, the borrower
requests reconstruction from the owner.

The owner can delete the Task field once the task has
finished and all objects returned by reference will never be
reconstructed again. When a worker returns an object by
value, the owner can immediately delete the corresponding
Task field. This is safe because objects passed by value do
not require reconstruction (Section 3.1).

For an object passed by reference, the owner keeps a lineage
reference count to determine when to collect the Task. The
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count is incremented each time the DFut is passed to another
task and decremented when that Task is itself collected. The
owner collects a record after collecting both the Task and
Value (Section 4.2) fields. We also plan to support object
checkpointing to allow the lineage to be collected early.
Owner recovery. An owner failure can result in a “dangling
pointer”: a DFut that cannot be dereferenced. This can happen
if the object is simultaneously lost from distributed memory.
For example, C in Figure 11a will hang if node 2 also fails.

We use fate sharing to ensure that the system can make
progress upon an owner’s failure. First, all resources held by
the owner and any reference holders are reclaimed. Specifi-
cally, upon notification of the owner’s failure, either the dis-
tributed object store frees the object (if it exists) or the schedul-
ing layer reclaims the worker lease (if the object is pending),
shown in Figure 11b. All reference holders, i.e. borrowers
and dependent tasks, also fate-share with the owner.

Then, to recover the fate-shared state, we rely on lineage
reconstruction. In particular, the task or actor that was exe-
cuting on the failed owner must itself have been owned by
another process. That process will eventually resubmit the
failed task. As the new owner re-executes, it will recreate its
previous state, with no system intervention needed. For ex-
ample, the owner of A in Figure 11a will eventually resubmit
A (Figure 11b), which will again submit B and C.

For correctness, we show that all previous reference holders
are recreated, with the address of the new owner. Consider task
T that computes the value of a DFut x. T initially executes
on worker W and re-executes on W ′ during recovery. The
API (Section 2) gives three ways to create another reference
to x: (1) pass x as a task argument, (2) cast x to a SharedDFut
then pass as a task argument, and (3) return x from T .

In the two former cases, the new reference holder must be
a child task of T . In case (2), when x is passed as a first-class
value, the child task can create additional reference holders
by passing x again. All such reference holders are therefore
descendants of T . Then, when T re-executes on W ′, W ′ will
recreate T ’s descendants.

T can also return x, which can be useful for returning a
child task’s result without dereferencing with get. Suppose T
returns x to its parent task P. Then, P’s worker becomes a bor-
rower and will fate-share with W . In this case, P is recovered
by its owner, and again submits T and receives x.

Thus, because any borrower of x must be a child or ancestor
of T , fate-sharing and re-execution guarantees that the bor-

rower will be recreated with W ′ as the new owner. Note that
for actors, this requires that an actor not store borrowed DFuts
in its local state. Of course, this is only required for transparent
recovery; the application may also choose to handle failures
manually and rely on the system for failure detection only.

While fate-sharing and lineage reconstruction add minimal
run-time overhead, it is not suitable for all applications. In
particular, the application will fate-share with the driver. In
fact, this is the same failure model offered by some BSP
systems [3], which can be written as a distributed futures
program in which the driver submits all tasks. As shown by
these systems, this approach can be extended to reduce the re-
execution needed during recovery. We leave such extensions,
including application-level checkpointing (Section 5.2), and
persistence of the ownership table, for future work.
Actor recovery. Actor recovery is handled through the same
protocols. If an actor fails, its owner restarts the actor through
lineage reconstruction, i.e. resubmitting the constructor task.
If the owner fails, the actor and any ARef holders fate-share.

Unlike functions, actors have local state that may require
recovery. This is out of scope for this work, but is an interest-
ing future direction. Ownership provides the infrastructure to
manage and restart actors, while other methods can be layered
on top for transparent recovery of local state [17, 34, 52].

5 Evaluation

We study the following questions:
1. Under what scenarios is distributed futures beneficial

compared to pass-by-value RPC?
2. How does the ownership architecture compare against

existing solutions for distributed futures, in terms of
throughput, latency, and recovery time?

3. What benefits does ownership provide for applications
with dynamic, fine-grained parallelism?

We compare against three baselines: (1) a pass-by-value
model with futures but no distributed memory, similar to Fig-
ure 2c, (2) a decentralized lease-based system for distributed
futures (Ray v0.7), and (3) a centralized master for distributed
futures (Ray v0.7 modified to write to a centralized master
before task execution). All distributed futures systems use
sharded, unreplicated Redis for the global metadata store,
with asynchronous requests. All systems use the Ray dis-
tributed scheduler and (where applicable) distributed object
store. Ownership and pass-by-value use gRPC [2] for worker-
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Figure 12: Throughput and scalability. (a-d) Task submission is divided across multiple intermediate drivers, either colocated on the m5.8xlarge
head node or spread with one m5.8xlarge node per driver. 1 intermediate driver is added per 5 worker nodes. Each task returns either a small
(short binary string) or large (1MB blob) object. (e) Scaling task submission using nested tasks and first-class distributed futures.

to-worker communication. All benchmarks schedule tasks to
predetermined nodes to reduce scheduling variation.

All experiments are run on AWS EC2. Global system meta-
data, such as an object directory, is hosted on the same node
as the driver, where applicable. Unless stated otherwise, this
“head node” is an m5.16xlarge instance. Other node configu-
ration is listed inline. All benchmark code is available at [53].

5.1 Microbenchmarks

Throughput and scalability. The driver submits one nested
task for every 5 worker nodes (m5.8xlarge). Each interme-
diate “driver” submits no-op tasks to its 5 worker nodes.
We report the total throughput of the leaf tasks, which re-
turn either a short string (Figures 12a and 12b) or a 1MB
blob (Figures 12c and 12d). The drivers are either colo-
cated (Figures 12a and 12c) on the same m5.8xlarge node
as the root driver, or spread (Figures 12b and 12d), each on
its own m5.8xlarge node. We could not produce stable re-
sults for pass-by-value with large objects due to the lack of
backpressure in our implementation.

At <60 nodes, the centralized and lease-based architectures
achieve about the same throughput because the centralized
master is not yet a bottleneck. In general, ownership achieves
better throughput than either because it distributes some sys-
tem operations to the workers. In contrast, the baselines han-
dle all system operations in the global or per-node processes.

The gap between ownership and the baselines is more sig-
nificant with small return values (Figures 12a and 12b). For
these, ownership matches pass-by-value because small ob-
jects are returned directly to their owner. The baseline sys-
tems could implement a similar optimization, e.g., by inlining
small objects in the object directory (Section 4.2), but this
would still require at minimum one RPC per read.

When the drivers are spread (Figures 12b and 12d), owner-
ship and leases both scale linearly. Ownership scales better
than leases in Figure 12b because more work is offloaded
onto the worker processes. Ownership and leases achieve sim-
ilar throughput in Figure 12d, but the ownership system also
includes memory safety (Section 4.2). The centralized design
(2 shards) scales linearly to ∼60 nodes. Adding more shards
would raise this threshold, but only by a constant amount.

When the drivers are colocated (Figures 12a and 12c), both

baselines flatline because of a centralized bottleneck: the
scheduler on the drivers’ node. Ownership also shows this,
but there is less scheduler load overall because the drivers
reuse resources for multiple tasks (Section 4.1). A comparable
optimization for the baselines would require each driver to
batch task submission, at the cost of latency. Throughput for
ownership is lower in Figure 12c than in Figure 12a due to
the overhead of garbage collection.

Thus, because ownership decentralizes system state among
the workers, it can achieve vertical (Figures 12a and 12c) and
horizontal (Figures 12b and 12d) scalability. Also, it matches
the performance of pass-by-value RPC while enabling new
workloads through distributed memory (Section 2.2).
Scaling through borrowing. We show how first-class fu-
tures enable delegation. Figure 12e shows the task throughput
for an application that submits 100K no-op tasks that each
depend on the same 1MB object created by the driver. The
tasks are submitted either by the driver (x=0) or by a number
of nested tasks that each borrow a reference to the driver’s
object. All workers are colocated on an m5.16xlarge node.

For all systems, the throughput with a single borrower (x=1)
is about the same as when the driver submits all tasks directly
(x=0). Distributing task submission across multiple borrowers
results in a 2× improvement for ownership and negligible
improvement for the baselines. Thus, with ownership, an ap-
plication can scale past the task dispatch throughput of a
single worker by delegating to nested tasks. This is due to (1)
support for first-class distributed futures, and (2) the hierarchi-
cal distributed reference counting protocol, which distributes
an object’s reference count among its borrowers instead of
centralizing it at the owner (Section 4.2). In contrast, the
baselines would require additional nodes to scale.
Latency. Figure 13 measures task latency with a single
worker, hosted either on the same node as the driver (“lo-
cal”), or on a separate m5.16xlarge node (“remote”). The
driver submits 3k tasks that each take the same 1MB object as
an argument and that immediately returns a short string. We
report the average duration before each task starts execution.

First, distributed memory achieves better latency than pass-
by-value in all cases because these systems avoid unnecessary
copies of the task argument from the driver to the worker.

Second, compared to centralized and leases, ownership
achieves on average 1.6× lower latency. This is due to (1)
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Figure 14: Total run time (log-scale), relative to ownership without
failures. The application is a chain of dependent tasks that execute
on one node. Each task sleeps for the duration on the x-axis (total
10s) and returns either (a) a short binary string, or (b) a 10MB blob.

the ability to write metadata locally at the owner instead of a
remote process, and (2) the ability to reuse leased resources,
in many cases bypassing the scheduling layer (Section 4.1).
Recovery. This benchmark submits a chain of tasks that
execute on a remote m5.xlarge node. Each task depends on
the previous, sleeps for the time on the x-axis (total duration
10s), and returns either a short binary string (Figure 14a) or a
10MB blob (Figure 14b). We report the run time relative to
ownership without failures. To test recovery, the worker node
is killed and restarted 5s into the job (1s heartbeat timeout).
We do not include centralized due to implementation effort.

Normal run time for leases is up to 1.18× faster than own-
ership, but recovery time is more than double, worse than
restarting the application. This is because a task’s lease must
expire before it can be re-executed, adding delay for short
tasks. The recovery delay for longer tasks is also high because
the implementation (Ray v0.7) repeatedly doubles a lease’s
expiration time to reduce renewal overhead. A shorter lease
interval would reduce recovery delay but can be unstable.

Ownership recovers within 2× the normal run time. Re-
covery time is the same as pass-by-value for small objects
because only in-flight tasks are re-executed (Figure 14a). For
large objects (Figure 14b), ownership achieves better normal
run time than pass-by-value because arguments are passed by
reference; the gap decreases as task execution dominates.

Thus, ownership can achieve the same or better normal
run-time performance as leases and pass-by-value, while also
guaranteeing timely recovery through lineage reconstruction.

5.2 End-to-end applications

Model serving. We implement Figure 3a. Figure 15a shows
the latency on 4 p3.16xlarge nodes, each with 1 Router and 8
ResNet-50 [23] Models. We use a GPU batch size of 16 and

generate 2300 requests/s. Ownership and centralized achieve
the same median latency (54ms), but the tail latency for cen-
tralized is 9× higher (1s vs. 108ms). We also show the utility
of first-class distributed futures: in “-borrow”, the Router re-
ceives the image values and must copy these to the Model. As
expected, the Router is a bottleneck (p50=80ms, p100=3.2s).
Online video processing. We implement Figure 3b with 60
concurrent videos. The tasks for each stream are executed on
an m5.xlarge “worker” node (1 per stream) and submitted by a
driver task on a separate m5.xlarge “owner” node. Each owner
node hosts 4 drivers. Each video source uses an actor to hold
frame-to-frame decoder state. However, tasks are idempotent:
a previous frame may be reread with some latency penalty.
We use a YouTube video with a frame rate of 29 frames/s and
a radius of 1s for the moving average.

Figure 15b shows latency without failures. All systems
achieve similar median latency (∼65ms), but leases and cen-
tralized have a long tail (1208ms and 1923ms, respectively).
Figure 15c shows latency during an injected failure, 5s after
the start, of the Decoder actor (Figure 3b). Lease-based re-
covery is slow because the decoder actor must replay all tasks,
and each task accumulates overhead from lease expiration.
Checkpointing the actor was infeasible because the leases
implementation does not safely garbage-collect lineage.

Figure 15c also shows different failure scenarios for own-
ership, with a failure after 10s. The owner uses lineage re-
construction to recover quickly from a worker failure (1.9s in
O;WF). Owner recovery is slower because the failed owner
must re-execute from the beginning (8.8s in O;OF). To bound
re-execution, we use application-level checkpoints (O+CP,
checkpoints to a remote Redis instance once per second).
Each checkpoint includes all intermediate state needed to
transform the given frame, such as the cumulative sum so
far (Figure 3b). When the sink receives the transformed frame,
it “commits” the checkpoint by writing the frame’s index to
Redis. This results in negligible overhead (O vs. O+CP) and
faster recovery (1.1s in O+CP;OF).

6 Related Work

Distributed futures. Several systems [4, 34, 37, 45, 48, 52]
have implemented a distributed futures model. Most [37, 45]
use a centralized master (Section 3.2). In contrast, ownership
is a decentralized design that stores system state directly in the
workers that invoke the tasks. Ray [34] shards the centralized
state, but must still write to the centralized store before task
execution and does not support automatic memory manage-
ment. Lineage stash [52] is a complementary technique for
recovering nondeterministic execution; ownership provides
infrastructure for failure detection and memory management.
Other dataflow systems. Distributed data-parallel systems
provide high-throughput batch computation and transparent
data recovery [15,25,54,56]. Many of our techniques build on
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Figure 15: End-to-end benchmarks. (a) Image classification latency (right is p95-p100). (b) Online video stabilization latency. (c) Online video
stabilization latency with failures (starting at p90). L=leases; O=ownership; CP=checkpointing; WF=worker failure; OF=owner failure.

these systems, in particular the use of distributed memory [25,
56] and lineage re-execution [15, 25, 54, 56]. Indeed, a data-
parallel program is equivalent to a distributed futures program
with no nested functions.

Most distributed data-parallel systems [15, 25, 54, 56] em-
ploy some form of centralized master, a bottleneck for appli-
cations with fine-grained tasks [32,44,51]. Naiad [35,36] and
Canary [44] support fine-grained tasks but, like other data-
parallel systems, implement a static task graph, i.e. all tasks
must be specified upfront. In contrast, distributed futures are
an extension of RPC, which allows tasks to be dynamically in-
voked. Nimbus [32] supports both fine-grained and dynamic
tasks with a centralized controller by leveraging execution
templates for iterative computations. In contrast, ownership
distributes the control plane and schedules tasks one at a time.
These approaches are complementary; an interesting future
direction is to apply execution templates to distributed futures.
Actor systems. Distributed futures are compatible with the
actor model [7, 24]. Other actor frameworks [1, 12] already
use futures for asynchrony, but with pass-by-value semantics,
making it expensive to process large data. Actors can be
extended with distributed memory to enable pass-by-reference
semantics. Since distributed memory is immutable, it does
not violate the condition of no shared state.

Our fault tolerance model is inspired by supervision in
actor systems [7]. In this model, a supervisor actor delegates
work to its children actors and is responsible for handling
any failures among its children. By default, an actor also fate-
shares with its supervisor. Our contribution is in extending
the supervision model to objects and object recovery.
Parallel programming systems. MPI [18] exposes a low-
level pass-by-value interface. In contrast, distributed futures
supports pass-by-reference and heterogenerous processes.

Distributed futures are more similar in interface to other
parallel programming runtimes [10, 14, 21, 31, 47]: the user
annotates a sequential program to designate procedures that
can be executed in parallel. Out of these systems, ownership
is perhaps most similar to Legion [10], in that the developer
specifies a task hierarchy that dictates system behavior. Our
contribution is in identifying and addressing the challenges
of failure detection and recovery for distributed futures.
Distributed memory. Distributed shared memory [40] pro-
vides the illusion of a single globally shared and mutable
address space across a physically distributed system. Trans-
parency has historically been difficult to achieve without
adding exorbitant runtime overhead. Mutability makes con-

sistency a major problem [11, 26, 28, 40], and fault tolerance
has never been satisfactorily addressed [40].

More recent distributed memory systems [6, 9, 16, 27, 41]
implement a higher-level key-value store interface. Most tar-
get a combination of performance, consistency, and durabil-
ity. Similar to our use of distributed memory (Section 4.2),
in-memory data replicas are used to improve durability and
recovery time. Indeed, many of these systems could likely be
used in place of our distributed memory subsystem.

However, the requirements of our distributed memory sub-
system are minimal compared to previous work, e.g., dura-
bility is only an optimization. This is because we target an
even higher-level interface that integrates directly with the
programming language: unlike a key, a DFut can be used to
express rich application semantics to the system, such as an
RPC’s data dependencies. Also, like previous data processing
systems [15, 37, 56], data is immutable. Thus, fine-grained
mutations are expensive, but consistency is not a problem.

7 Discussion

Ownership is the basis of the Ray architecture in v1.0+ [5], im-
plemented in∼14k C++ LoC. Previously, Ray used a sharded
global metadata store [34]. There were two problems with
this approach: (1) latency, and (2) worker nodes still had to
coordinate for operations such as failure detection. Ray v0.7
introduced leases (Section 3.2), which solved the latency prob-
lem but not coordination. It became impractical to introduce
distributed protocols involving multiple objects, such as for
garbage collection. We designed ownership for this purpose.

While transparent recovery is an explicit goal of this paper,
it is not the only benefit of ownership. Anecdotally, the two
main benefits of ownership for Ray users are performance and
reliability. In particular, reliability includes correct and timely
failure detection and garbage collection. Notably, ownership-
based transparent recovery is not yet widely used.

We believe that this is due to: (1) applications having cus-
tom recovery requirements that cannot be met with lineage
reconstruction alone, and (2) the cost of transparent recovery.
Thus, one design goal was to ensure that only applications
that needed transparent recovery would have to pay the cost.
Ownership is a first step towards this: it provides reliability to
all applications and transparent object recovery as an option.

In the future, we hope to extend this work to support a
spectrum of application recovery requirements. For example,
we could extend ownership with options to recover actor state.
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A Distributed Reference Counting

Type Description

Local refer-
ence

A flag indicating whether the DFut has gone out of
the process’s scope.

Submitted
task count

Number of tasks that depend on the object that were
submitted by this process and that have not yet com-
pleted execution.

Borrowers The set of worker IDs of the borrowers created by this
process, by passing the DFut as a first-class value.

Nested DFuts The set of DFuts that are in scope and whose values
contain this DFut.

Lineage count Number of Tasks that depend on this DFut that may
get re-executed. This count only determines when the
lineage (the Task field) should be released; the value
can be released even when this count is nonzero.

Table 3: Full description of the References field in Table 2. Every
process with an instance of the DFut (either the owner or a borrower)
maintains these fields.

If a DFut never leaves the scope of its owner, it does not
require a distributed reference count. This is because the
owner always has full information about which pending tasks
require the object. However, since our API allows passing
DFuts to other tasks as first-class values, we use a distributed
reference count to decide when the object is out of scope.

Our reference counting protocol is similar to existing so-
lutions [33, 42]. As explained in Section 4.2, the reference
count is maintained with a tree of processes. Each process
keeps a local set of borrower worker IDs, i.e. its children
nodes in the tree. Most of the messages needed to maintain
the tree are piggy-backed on existing protocols, such as for
task scheduling.

A borrower is created when a task returns a SharedDFut to
its parent task, or passes a SharedDFut to a child task. In both
cases, the process executing the task adds the ID of the worker
that executes the parent or child task to its local borrower set.

In many cases, a child task will finish borrowing the DFut
by the time it has finished execution. Concretely, this means
that the worker executing the child task will no longer have a
local reference to the DFut, nor will it have any pending de-
pendent tasks. Thus, when the worker returns the task’s result
to its owner, the owner can remove the worker from its local
set of borrowers, with no additional messages needed. This
optimization is important for distributing load imposed by ref-
erence counting among the borrowers, rather than requiring
all reference holders to be tracked by the owner.

However, in some cases, the worker may borrow the DFut
past the duration of the child task. There are two cases: (1) the
worker passed the DFut as an argument to a task that is still
pending execution, or (2) the worker is an actor and stored
the DFut in its local state. In these cases, the worker notifies
the owner that it is still borrowing the DFut when replying

with the task’s return value.
Eventually, the owner must collect all of the borrowers in

its local set. It does this by sending a request to each borrower
to reply once the borrower’s reference count has gone to
zero. Borrowers themselves never delete from their local set
of borrowers. Once a borrower no longer has a reference or
any pending dependent tasks, it replies to the owner with its
accumulated local borrower set. The owner then removes the
borrower, merges the received borrowers into its local set
and repeats the same process with any new borrowers. If a
borrower dies before it can be removed, the owner removes it
upon being notified of the borrower’s death.

When a DFut is returned by a task, it results in a nested
DFut. Nested DFuts can be automatically flattened, e.g., when
submitting a dependent task, but we must still account for
nesting during reference counting. We do this by keeping a
set of DFuts whose values contain the DFut in question in the
ownership table (Table 2). The DFut’s value is pinned if its
nested set is non-empty.

B Formal Specification

We developed a formal specification for the ownership-based
system architecture [53]. It models the system state transitions
of the ownership table for task scheduling, garbage collection,
and worker failures. The goal is to check the correctness
of the system design, which is manifested in the following
properties:

• Safety: A future’s lineage information is preserved as
long as a task exists that depends on the value of the
future. This is defined recursively: at any time, either the
value of a future is stored inline (thus cannot be lost),
or all futures that this future depends on for computing
its value must be safe. Formally, it means the following
invariant holds at any given time: ∀x,

LineageInScope(x),
∨ x = INLINE_VALUE

∨∀arg ∈ x.args : LineageInScope(arg)

• Liveness: The system will eventually execute all tasks
and resolve all future values, even in case of failures, i.e.,
all Get calls eventually return.

• No Resource Leakage: The system will eventually clean
up all task states and future values, after the all references
to futures become out-of-scope.

We checked the model using the TLA+Model Checker [55]
for up to 3 levels of recursive remote function calls, where
each function creates up to 3 futures, and verified that the
safety and liveness properties hold in more than 44 million
distinct states. Currently, the model does not include first-class
futures or actors; we plan to include these and open-source
the full TLA+specification in the future.
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Abstract
In this paper, we present the design and implementation of
strongly consistent replication in MongoDB. MongoDB pro-
vides linearizability and tolerates any minority of failures
through a novel consensus protocol that derives from Raft. A
major difference between our protocol and vanilla Raft is that
MongoDB deploys a unique pull-based data synchronization
model: a replica pulls new data from another replica. This
pull-based data synchronization inMongoDB can be initiated
by any replica and can happen between any two replicas, as
opposed to vanilla Raft, where new data can only be pushed
from the primary to other replicas. This flexible data trans-
mission topology enabled by the pull-based model is strongly
desired by our users since it has an edge on performance and
monetary cost. This paper describes how this consensus pro-
tocol works, how MongoDB integrates it with the rest of the
replication system, and the extensions of the replication pro-
tocol that support our rich feature set. Our evaluation shows
that MongoDB effectively achieved the design goals and can
replicate data efficiently and reliably.

1 Introduction
MongoDB is a general purpose, document-based, distributed
database. In the last few years, we have been focusing on
improving its support for replication, as there has been an
increasing demand for stronger fault tolerance. In previous
papers we discussed how MongoDB supports tunable con-
sistency [29] and how causal consistency works [34]. In
this paper we present the details of how MongoDB provides
linearizable [12] replication with fault tolerance.

A common approach to fault-tolerant linearizable replica-
tion is through consensus protocols [24, 4]. After studying
the popular consensus protocols including Paxos [17] and
Raft [26], we concluded that no existing consensus protocols
directly fit our needs without heavy modifications. The key
reason is that these existing protocols are push-based: there
is usually a primary server and the primarywill push new data
to all replicas. Yet in MongoDB we aim for a pull-based syn-
chronization model: a replica fetches new data proactively
from another replica, and not necessarily from the primary.

There are a few reasons for why we target the pull-based
synchronization model. First, allowing data synchronization

to happen between any two replicas enables a more flexi-
ble data transmission topology, that could utilize networks in
more optimal ways. Many of our users prefer being able to
configure how their network is utilized, especially for those
who deploy their systems across different datacenters. Sec-
ond, using a pull-based data synchronization model gives us
backward-compatibility as we have previously implemented
a preliminary version of a pull-based primary-backup repli-
cation scheme that is not backed by any consensus protocols,
and thus has limited fault tolerance.

As there is no direct fit, we developed a new replication
(consensus) scheme based on the Raft protocol. We chose
Raft as the base because it is more accepted for industry use,
easy to understand, and similar to our previous replication
protocol, but we believe other bases such as Paxos should
work too. The principle of our approach is to decouple
data synchronization inRaft (mostly theAppendEntriesRPC)
into two parts: replicas pulling new data from the peers,
and replicas reporting their latest replication status so that a
request can commit after it reaches a majority of replicas.

The development of the new replication scheme is, how-
ever, easier said than done. The main challenge is in the
subtlety of the Raft (and any other) consensus protocol. Dur-
ing our development we found that any unthoughtful changes
to the protocol would easily introduce new corner cases that
would break the correctness of the system. To verify that our
design and implementation are correct, we have done exten-
sive verification and testing on the protocol including model
checking using TLA+, unit testing, integration testing, fuzz
testing [11] and fault-injection testing.

Our developed protocol achieves the goal of allowing data
pulling between any two replicas. Unlike Raft which can
only push data from the primary to other replicas (broad-
cast), our system supports arbitrary data synchronization
paths: from linear chaining to broadcast. This gives Mon-
goDB several advantages over using vanilla Raft, including
both performance-wise (e.g., saving leader bandwidth) and
management-wise (e.g., controlling data transmission paths).

The main contributions of this paper include:

• We design a new consensus protocol based on Raft.
Our protocol better meets the needs of MongoDB. It
enables more flexible and customizable data synchro-
nization paths during replication.

• Wedescribe the design choices in howMongoDBadopts
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this consensus protocol. MongoDB offers a unique fea-
ture set, which brings extra challenges in designing and
implementing its replication. For example, we provide
speculative execution to be compatiblewithMongoDB’s
weak consistency features, but also guarantee lineariz-
able log replication with rollbacks.

• We report the evaluation results of MongoDB for differ-
ent replication parameters. Our evaluation shows that
MongoDB replication is reliable and efficient.

We will organize the rest of paper as follows. Section 2
gives an overview of the background. Section 3 describes the
main body of the consensus protocol. Section 4 gives a few
important extensions to our design. Section 5 discusses the
evaluation results. Section 6 discusses related works before
we conclude.

2 Background
MongoDB interfaces and architecture. MongoDB is a
database that stores data as documents and supports general
CRUD operations on one or many documents with a rich
query language. Each document is a binary JSON-like (called
BSON) object. Documents are identified by unique ids and
grouped in collections, which are similar to tables in a SQL
database.

To provide high availability, MongoDBprovides the ability
to run a database as a replica set, which is a set of MongoDB
nodes that act as a consensus group, where each node main-
tains a logical copy of the database state. MongoDB also
supports sharding for horizontal scaling, which distributes all
data in a collection onto different shards in a share-nothing
manner. Each shard is deployed as a replica set. In this paper
we focus on a single replica set, as sharding is orthogonal.

Consistency and fault tolerance. Previous papers have de-
scribed how MongoDB can achieve weaker consistency lev-
els, including causal consistency [34, 29]. In this paper, we
focus on the strongest consistency level—linearizability [12].
We assume a (partially) asynchronous environment where
messages can be arbitrarily delayed and there are no perfect
failure detectors. For each replica set, at most a minority of
servers can fail in order to maintain availability. The problem
of fault-tolerant linearizable replication is commonly solved
by consensus protocols. Examples include Viewstamped
Replication [24], Paxos [17], Zab [13], and Raft [26]. Our
solution started with adopting the recent and popular Raft,
but ended up basically inventing a new protocol with many
heavy modifications.

Evolution of MongoDB’s pull-based replication. Start-
ing fromMongoDBversion 1.0 over a decade ago,MongoDB
supported replication with a primary-backup scheme. Un-
like conventional primary-backup replication schemes where
updates are usually pushed from where they are firstly

received—the primary—to the secondaries (backups), we
chose a design in which a secondary server can constantly
pull updates from other servers, and not necessarily from the
primary.

Amajor benefit of the pull-based approach is that it enables
a more flexible control of how data is transmitted over the
network. Depending on users’ needs, the data transmission
can be in a star topology, a chaining topology, or a hybrid one.
The ability of controlling data transmission paths is a strong
customer need, mostly for reasons related to performance and
monetary cost. For example, when deployed in clouds like
Amazon EC2, data transmission inside a datacenter is free
and fast, but is expensive and subject to limited bandwidth
across datacenters.

The pull-based approach has led our designs while we
continually evolved our replication protocols in the last few
releases. In earlier releases several years ago, we assumed
a semi-synchronous network: either there is manual control
of failover (the user needs to appoint a node as the new pri-
mary when the old one fails), or all messages are bounded
to arrive within 30 seconds for failure detection. Starting
from 2015, we remodeled our replication scheme based on
the Raft protocol. This new protocol guarantees safety in
an asynchronous network (i.e., messages can be arbitrarily
delayed or lost) and supports fully autonomous failure recov-
ery with a smaller failover time. Same as before, this new
protocol is still pull-based. We will describe how it works in
the next section.

3 Design
This section describes how replication in MongoDB works,
including the overall architecture and data structures (§3.1),
the main body of the replication protocol (§3.2), a discussion
of correctness, (§3.3), and how the system chooses data trans-
mission paths (§3.4). Attached to this paper is an appendix
that summarizes the difference between the Raft protocol and
MongoDB’s consensus protocol.

3.1 Preliminaries
In MongoDB, the object for replication is called the oplog.
An oplog is a sequence of log entries; each log entry con-
tains a database operation. Figure 1 shows an example of
oplog entry. The oplog is stored in the oplog collection,
which behaves in almost all regards as an ordinary collection
of documents. The oplog collection automatically deletes
its oldest documents when they are no longer needed and
appends new entries at the other end.

An oplog entry needs to be replicated to at least a majority
of servers to commit: a committed entry persists through any
minority failures. The system will wait for the oplog entry
to commit before it acknowledges the client. MongoDB also
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{
// The oplog entry timestamp
"ts": Timestamp(1597904287, 12),
// The term of this entry
"t": NumberLong(40),
// The operation type, "i" for insert
"op": "i",
// The collection name
"ns": "test.collection",
// A unique collection identifier
"ui": UUID("947b54f...852f62")),
// The document to insert
"o":{

"_id": ObjectId("5f3e...b950"),
"x": 1

}
}

Figure 1: Example of key oplog entry fields for an “insert"
operation

supports operations with weaker consistency, in which case
the system can acknowledge clients before the oplog entry
commits [29, 34]. After replication, all servers of the same
replica set will have identical oplogs. Oplog entries will be
applied in the same order on all servers.

A server can act as either a primary or a secondary. 1 Only
a primary can process write requests. A server has a third role
as a candidate when it is transitioning from a secondary to
a primary through elections. MongoDB’s election rules are
the same as Raft’s. When a node decides to start an election,
for example, because it has not seen a primary for an election
timeout, the node transitions to a candidate role, increases its
term, and sends vote requests to others. A voter can grant
its vote to only one candidate in a given term and only if
the candidate has the same or a more up-to-date log than the
voter. The candidate wins the election if it is able to collect
votes from a majority of nodes including the candidate itself;
it then becomes a primary.

After the election, the new primary will have a unique,
monotonically increasing term number. When the primary
generates a new oplog entry, it will append this entry into
its own oplog, and replicate the entries through the data
replication protocol described in Section 3.2. It could happen
that more than one server is acting as a primary, but the data
replication and the election protocols collectively guarantee
that at most one primary can successfully commit log entries
at a particular index.

In MongoDB, each oplog entry is assigned a timestamp
and annotated with the term of the primary. The timestamp
is a monotonically increasing logical clock that exists in the
system before this work. It is used to index the oplog entries,
similar to the log index in Raft. A pair of term and timestamp,
referred to as anOpTime, can identify an oplog entry uniquely

1Our choice of terminology is for historical reasons. They are the same
as a leader and a follower used in Raft.

in a replica set and give a total order of all oplog entries among
all replicas. OpTimes are compared lexicographically, i.e.,
an OpTime is greater than another if its term is higher or the
terms are the same but its timestamp is higher.

3.2 Data Replication
As mentioned in previous sections, MongoDB uses a pull-
based replication scheme. Unlike Raft and other common
consensus protocols that would initiate RPCs from the pri-
mary to secondaries when the primary tries to replicate new
log entries (for example, in Raft, this is the AppendEntries
RPC), in MongoDB, the primary waits for the secondaries to
pull the new entries that are to be replicated.

After appending an entry to the oplog, the primary can
process two types of RPCs from secondaries: PullEntries
and UpdatePosition. A secondary will use PullEntries to
fetch new logs, and use UpdatePosition to report its status
so that the primary can determine which oplog entries have
been safely replicated to a majority of servers and commit
them. Similar to Raft, once an entry is committed, all prior
entries are committed indirectly.

3.2.1 PullEntries

Note that a key design choice is that a secondary does not
have to send PullEntries only to the primary. Instead, the sec-
ondary can pull new entries from any (nearby) servers. This
secondary is called the syncing server, while the upstream
server that receives the PullEntries RPC is called the sync
source.

A secondary continuously sends PullEntries to the selected
sync source (see more details about the sync source selec-
tion in §3.4) to retrieve new log entries when they become
available. The PullEntries RPC includes the latest oplog
timestamp (prevLogTimestamp) of the syncing server as an
argument. When receiving PullEntries, a server will reply
with its oplog entries after and including that timestamp if it
has a longer or the same log, or the server could reply with an
empty array if its log sequence is shorter. Before returning a
response when the log is the same, PullEntries waits for new
data for a given timeout (5 seconds by default) to avoid busy
looping.

When the syncing server receives the reply of PullEntries,
it will try to merge the log entries in the reply into its own
oplog. Before merging, it checks if the incoming log entries
concatenate with the local oplog. In particular, it checks
if the first received entry has the same OpTime as the last
local oplog entry. Only if so, the syncing server continues
to merge by appending the received entries to the oplog. If
the received oplog entries don’t overlap with the local ones
and the received entries are "newer" by comparing their last
OpTimes, the syncing server will traverse the oplog on its
sync source in order to find their last common entry, then
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discard any diverged oplog entries since then. Afterwards,
the syncing server should be able to pull new data and append
it to the local oplog. Discarding diverged logs will require
more work than ordinary Raft implementations because of
our optimizations on speculative execution (see details in
§4.1).

3.2.2 UpdatePosition

After retrieving new entries into its local oplog with Pul-
lEntries, the secondary will send UpdatePosition to its sync
source, reporting the latest log entry’sOpTime. When receiv-
ing the UpdatePosition, the server will forward the message
to its sync source, and so forth, until the UpdatePosition
reaches the primary. The primary keeps a non-persistent
map in memory that records the latest known log entry’s
OpTime on every replica, including its own, as their log po-
sitions. When receiving a new UpdatePosition, the primary
will compare the received OpTime with its local record. If
the received one is newer, the primary will replace its local
record with the received one. Afterwards, the primary will
do a count on the log positions of all replicas: if a major-
ity of replicas have the same term and the same or greater
timestamp, the primary will update its lastCommitted to that
OpTime and notify secondaries of the new lastCommitted by
piggybacking onto other messages, such as heartbeats and
the responses to PullEntries. lastCommitted is also referred
to as the commit point.

3.2.3 Implementation

In MongoDB, instead of initiating continuous RPC’s on the
syncing node, the PullEntries RPC is implemented as a query
on the oplog collection with a "greater than or equal to" filter
on the timestamp field. The query can be optimized easily
since the oplog is naturally ordered by timestamp. Using
database cursors allows the syncing node to fetch oplog en-
tries in batches and also allows the RPC to work in a stream-
ing manner, so that a sync source can send new data without
waiting for a new request, reducing the latency of replication.

To avoid a flood of forwarded UpdatePosition messages,
a server passively batches the received UpdatePosition re-
quests between two rounds of forwarding and consolidates
the requests by only keeping the highest log position for each
server. A server only maintains at most one in-progress Up-
datePosition request to its sync source, so it waits to send the
next request until the previous one returns.

We also introduced Heartbeats RPC, which decoupled
the heartbeat responsibility from Raft’s AppendEntries RPC.
Heartbeats are sent among all replicas, used for liveness
monitoring, commit point propagation and sync source se-
lection (§3.4).
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Figure 2: A corner case
Each box represents an oplog entry with its term (shown in different
colors) in the box. (a) start state with both A and E being primaries
(thick border); (b) Raft only allows replicating (red arrows) from A
to B; (c) MongoDB can replicate from A to B/C/D; (d) C/D report
log positions (orange arrows) with term 3, forcing A to step down.
(e) data replicated in (c) may be rolled back.

3.3 Correctness
Careful readers may have noticed that our data replication
protocol (how PullEntries are processed) only checks the Op-
Times in the logs; it does not check if the sync source has a
higher or equal term than the syncing server. This is differ-
ent from what Raft would do in data replication. The data
replication in Raft is done via AppendEntries RPC, which
contains the term of the primary. AppendEntries can only
succeed if the primary has a term that is not lower than the
secondary’s.

This crucial protocol change means that log replication in
MongoDB will behave differently from Raft. In Raft, if a
server has voted for a higher term in an election, the server
cannot take new log entries sent from an old primary with a
lower term. But in our system, because the PullEntries RPC
does not check the term of the sync source, even if the sync
source is a stale primary, it is possible that after a server has
voted for a higher term, the server could still fetch new log
entries generated by the stale primary.

Figure 2 shows an example of this disparity occurring on
secondaries. Initially, all five servers acknowledged entries
in term 1. Server A first wins the election in term 2 with
votes from Server A/B/C and writes down one entry locally.
Server E then wins the election in term 3 with votes from
Server C/D/E and writes a different entry locally. In Raft, if
Server A broadcasts its AppendEntries, only Server B will
accept the new entry from Server A; Server C/D/E will all
reject.

In MongoDB, however, Server B/C/D could all take the
new log from Server A even after Server C/D have voted for
the new primary in term 3. If A is the sync source of Server
B/C/D, then B/C/D will still accept the new entry with term
2 because the entry is newer than their local ones. Now that
the entry in term 2 has been replicated to the majority of
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servers, it would be considered by Server A as committed
if we did not make further changes to Raft’s rule that a log
entry is committed once the leader that created the entry has
replicated it on a majority of the servers [26]. Later, Server
E’s new entry with term 3 could propagate to all servers and
overwrite the committed entry. Without more changes from
Raft, this would violate safety. 2

To prevent cases like this from happening, we added a new
argument in the UpdatePosition RPC: the term of the syncing
server. The recipient of UpdatePosition will update its local
term if the received term is higher. If the recipient is the
stale primary, seeing a higher term will make the primary
step down before committing anything, thus avoiding any
safety issue. In the above example, when server A receives
UpdatePosition from Server C/D, it will see term 3 and step
down immediately without updating its lastCommitted. Even
though the entry with term 2 is in a majority of servers’ logs,
it is not committed.

Until now, we have assumed it is a secondary that fetches
oplog entries from a stale primary after voting for a new
primary. In fact, this syncing server could be the new primary
itself. Even if a primary (or candidate) has voted for itself
in a higher term, it could still fetch data generated in lower
terms from other replicas, as long as it has not generated new
oplog entries with the new term and appended the entries to
its own oplog. This important difference between MongoDB
and Raft allows MongoDB to preserve uncommitted data as
much as possible during failovers (see more in §4.3).

More formally, the revisions we made to UpdatePosition
are tomaintain a key invariant in Raft—Leader Completeness
Property. This property refers to the fact that “if a log entry is
committed in a given term, then that entry will be present in
the logs of the leaders for all higher-numbered terms.” (See
Figure 3 in the Raft paper.) In MongoDB, in order to commit
an entry in term T, the primary in term T has to receive
UpdatePosition RPCs with term T from a majority of nodes.
A later new primary in term U > T must collect votes from a
majority of nodes too. The two majorities must overlap on at
least one voter. This voter is the key to guarantee the safety.
Either the voter sent UpdatePosition in term T to commit
the entry before voting, thus implying the new primary had
the committed entry due to the Log Matching Property; or
the voter voted first and sent UpdatePosition with a term
higher than T, thus leading the primary in term T to step
down without committing the entry. Either way, the Leader
Completeness Property is guaranteed.

In addition to this property, other invariants of Raft still
hold so that one can prove the correctness of our protocol

2Another angle to look at this problem is that, allowing UpdatePosition
from a server with a higher term is actually “counting replicas” rather than
“counting replies”. Raft has explained well why counting replicas is in-
correct in its paper. Indeed, Raft’s TLA+ spec in [25] specifies a stronger
definition of “commit” than its paper. The definition in TLA+ is similar to
our modification: an entry 〈index, term〉 is immediately committed if it is
acknowledged by a quorum (including the leader) during term.

following the proof of Raft. Further, to mechanically verify
the correctness of our system, we have written a formal speci-
fication of the protocol in TLA+ and applied model checking
to it [33].

3.4 Sync Source Selection
Servers learn about the status of other servers, including their
log positions, via Heartbeat RPC. A server chooses its sync
source only if the sync source has newer oplog entries than
itself by comparing their log positions. This condition is
double-checked on receiving PullEntries RPC’s responses in
case rollback (§4.1) occurs on the sync source. As a result, it’s
guaranteed that the replicas can never form a cycle of sync
sources. Once a server starts to pull entries from its sync
source, it keeps fetching from the source until the source is
not available or a better source shows up. Thus a server should
not change its sync source frequently in a stable environment.

4 Extensions
In this section we introduce a few key features of MongoDB
that extend the elementary design.

4.1 Speculative Execution and Rollback
The standard approach of applying log entries in Raft-based
systems is that a replica waits until the log entries are com-
mitted and then applies the log entries in timestamp order.
MongoDB introduces an optimization that speculatively ap-
plies an oplog entry when it is added to the oplog. If a failover
happens, speculatively applied oplog entries could be deleted
(§3.2.1). In this case, the system needs to roll back the opera-
tions in these entries. The common approach for rollbacks in
databases is through undo or redo logs. The way MongoDB
achieves this is through a consolidated design of the storage
engine (named WiredTiger) and the replication protocol.

The WiredTiger storage engine is a multi-version trans-
actional storage engine that can use oplog timestamps as
versions of data updates. There are three key functions im-
plemented in the storage engine that enable this consolida-
tion. First, the storage engine supports speculative updates,
so multiple versions are visible to clients depending on their
requested consistency levels even if not all of them are com-
mitted. Second, the storage engine provides fast rollback to
a timestamp and discards all updates after that timestamp.
Third, when oplog entries are committed, the storage engine
can be notified to merge all data updates with lower times-
tamps in the on-disk checkpoint and garbage collect those
versions.

When a node needs to roll back, it will determine the
newest oplog entry it has in common with its sync source.
The timestamp of this oplog entry is referred to as Ccommon.
The node needs to truncate all oplog entries with a timestamp
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after Ccommon. In addition to oplog truncation, it must undo the
speculative effects of the operations deleted from the oplog.

Since MongoDB version 4.0, the WiredTiger storage en-
gine has provided the ability to revert the replicated data to
the version at a given timestamp. MongoDB periodically in-
forms the storage engine of a stable timestamp (Cstable), which
is the timestamp of the commit point known by this node and
must be less than or equal to Ccommon when the node starts
rollback.

To undo the effects of truncated oplog entries, the rolling
back node reverts its replicated data to the version at Cstable,
then applies the oplog entries forward from Cstable up to and
including Ccommon.

4.2 Initial Sync
MongoDB discards stale oplog entries once the storage space
used to store the entries reaches a configurable threshold, by
default 5% of free disk space at startup. In most consensus
systems, such as Chubby and the vanilla Raft, a snapshot of
the database is obtained before discarding stale log entries.
The snapshot will be used by a new server to catch up when
joining the system. However, MongoDB does not rely on a
snapshot mechanism for this initial synchronization, referred
to as initial sync.
The major reason for MongoDB not using snapshots for

initial sync is that MongoDB has a pluggable storage API
that does not require the storage engine to support snapshots.
For example, the initial storage engine before WiredTiger
at its core used mmap 3, which does not support snapshots.
This mmap-based storage engine needs to be supported due
to backward-compatibility.

The initial sync inMongoDBworks as follows. First, when
a new server is joining, it chooses a sync source and uses this
sync source for the whole duration of initial sync. Once
the initial sync starts, the syncing node records the current
applied oplog timestamp on the sync source as the initial sync
start point. Then, the new server starts to clone the database
of the sync source by scanning the database. The database
scan gets a cursor at the beginning of each collection and
iterates over the cursor to the end. Note that this clone may
be inconsistent when there are concurrent updates happening
in the system—some cloned values are up-to-date, some may
be obsolete, and some may be missing. The final step is
to fix this inconsistency. The new server will retrieve all
oplog entries on the sync source starting from the initial
sync starting point, and apply the oplog entries locally on the
database. After the database clone, the new server records the
current applied oplog timestamp on the sync source again as
the initial sync end point. Once the new server applies oplog
entries beyond this point, the data becomes consistent and the

3When using this deprecatedmmap engine, features including speculative
execution and rollback are implemented in different approaches and are
omitted due to space limitation.

initial sync is complete. If the sync source fails during the
initial sync, the new server chooses a different sync source
and restart the process.

Note that some oplog entries may be applied twice in the
database on the new server. If an operation gets applied on
the sync source after the initial sync begins, the operation’s
effect may be included in the database that the new server
cloned gradually. Later this oplog entry will be applied again
on the new server. To avoid any data inconsistency caused by
this effect, MongoDB requires any sequences of operations
in the oplog entries to be idempotent: applying the same
sequence of operations multiple times will lead to the same
system state.

For operations that change the database states (inserts, up-
dates, deletes, etc.), we changed their semantics during initial
sync to make them idempotent. Inserts in MongoDB will be
ignored if the document id already exists; updates and deletes
will be ignored if the modified document’s id does not exist.
MongoDB supports rich update operations, such as incre-
menting a field’s value in a document. These operations will
be converted to unconditional field assignments by the pri-
mary. For example, for an increment request, the primarywill
read the current value from its local database and compute the
result of the increment, and replicate an oplog entry setting
the field to the computed result. As a result, the consistency
between the new server and its sync source is guaranteed.

4.3 Preserving Uncommitted Oplog Entries

After a failover, the uncommitted oplog entries on the previ-
ous primary are likely lost. This would be fine for a different
system because the clients could retry uncommitted updates.
This is, however, an issue for MongoDB because MongoDB
supports fast but weak consistency levels that acknowledge
writes as soon as they are applied on the primary or just
replicated to a fewer number of nodes than a majority. Thus,
a failover could cause a large loss of uncommitted writes.
Though the clients are not promised durability with weak
consistency levels, we still prefer to preserve their uncom-
mitted writes as much as possible.

For this purpose, we introduced an extra phase for a newly
elected primary—the primary catchup phase. The new pri-
mary will not accept new writes immediately after winning
an election. Instead, it will keep retrieving oplog entries
from its sync source until it does not see any newer entries,
or a timeout occurs. This timeout is configurable in case
users prefer faster failovers to preserving uncommitted oplog
entries.

As explained in §3.3, the primary catchup design is only
possible because a primary is allowed to keep syncing oplog
entries generated by the old primary after voting for a higher
term as long as it hasn’t written any entry with its new term.

692    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



4.4 Additional Replica Roles
4.4.1 Arbiters

MongoDB supports a special replica role called arbiter. An
arbiter is like a secondary with respect to voting but does
not store any data to save the cost of storage and replication
while being a tie-breaker in elections. For example, in a
Primary-Secondary-Arbiter deployment, when the primary
crashes, the secondary can take over with the vote from the
arbiter to serve reads and writes. The writes will be applied
speculatively but cannot be committed. 4 If a new node
needs to be added to the replica set to replace the crashed one
through initial sync, the arbiter allows a safe reconfiguration
to change the membership.

4.4.2 Non-Voting Members

In addition to fault tolerance requirements, users often deploy
replica sets to offload reads from the primary or to access a
local data copy with lower latency. For example, users may
maintain some replicas for a heavy analytical workload using
MongoDB’s expressive aggregation framework. These repli-
cas are not deployed for fault tolerance andmay have unstable
write performance due to the heavy analytical workload. As
another example, a geo-distributed application may prefer to
read from a nearby datacenter for lower latency, thus need to
deploy dozens of replicas globally. Assuming it’s extremely
rare for more than a few servers to fail at the same time, it
would be unnecessary to count all replicas towards a quorum
for fault tolerance and undesired to wait for a majority of such
many servers to replicate in order to commit writes.

MongoDB introduced Non-Voting Members particularly
for this purpose. Non-voting members replicate data as nor-
mal secondaries, but they do not participate in elections or
count towards a quorum for committing oplog entries, as
opposite to Voting Members. MongoDB supports up to 50
replicas but only up to 7 voting members. Therefore, writes
with strong consistency levels can return faster, as long as
they are committed after replicating to a quorum of voting
members rather than a quorum of all replicas.

Non-voting members work well with the pull-based data
replication model since it’s possible to minimize their perfor-
mance impact on the primary and votingmembers by offload-
ing their significant oplog read workload to other non-voting
members as much as possible.

4.5 Election Optimizations
4.5.1 Election Handoff

On failovers, secondaries wait for an election timeout (10
seconds by default) to run for election in order to detect that

4This speculative execution can benefit reads with weaker consistency
levels described in [29].

the primary is no longer available. However, on planned
failovers, it is known that the old primary has already stepped
down. MongoDB introduced Election Handoff to shorten
the planned failover time by avoiding the next candidate’s
waiting.

When a primary server steps down on administrator com-
mands, it will pause new writes and wait for any eligible
secondary to catch up its oplog within a user specified time-
out. The primary then chooses this caught-up secondary to
immediately run for election on a best-effort basis. In com-
mon cases, the chosen secondary will win the election and
become the new primary. This election handoff mechanism
will likely shorten the failover time as it does not need the the
election timeout to elapse. This is similar to the leadership
transfer extension in Raft.

The election handoff is leveraged by the planned mainte-
nance on MongoDB Atlas[21], MongoDB’s hosted database
as a service. Atlas uses a rolling upgrade strategy for ex-
ecuting maintenance or infrastructure operations, such as
applying security patches, scaling up an Atlas cluster, and
upgrading to the latest MongoDB minor versions. As part
of the rolling upgrade, the primary will be stepped down and
shut down for upgrade. The election handoff minimizes the
unavailability window on planned failovers. In fact, the vast
majority of failovers (89.03%) onAtlas are caused by planned
maintenance (§5.2) and can benefit from the election handoff.

4.5.2 Member Priority

It is common that users have a preference for which server
should act as primary, especially in a multi-datacenter setup
where users prefer to deploy the primary in the datacenters
closest to the applications (clients) for lower latency. Mon-
goDB supports setting election priority among servers in the
replica set configuration. If a secondary realizes it has a
higher priority than the current primary, it will start an elec-
tion after a timeout based on its relative priority. The higher
the priority it has, the smaller the timeout value will be. In
this way, the server with the highest priority is likely to win
the election first. If the election fails due to competition but
the server still has a higher priority than the new primary, it
will continue calling for elections until it becomes primary
or the new primary has a higher priority. Setting a server’s
priority to zero prevents it from running for election.

One potential problem is that when the election caused by
a high-priority server fails, it will propagate its larger term
number to the rest of the replica set and force the current
primary to step down. This disruption is particularly serious
when this high-priority server is lagged due to shutdown and
rejoins the replica set after a restart. Until this high-priority
server is caught up on its oplog, it keeps running elections
periodically and causing disruptions. Although other servers
will elect a new primary after each disruption, the system
will be unavailable for at least an election timeout on every
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disruption. To prevent disruptions when a server rejoins the
replica set, Raft describes a pre-vote algorithm in Section
§9.6 in [25], where a candidate only increments its term and
runs the real election if it learns from a majority of nodes
that they would grant their votes. MongoDB implements this
algorithm with an election dry-run. When a stale candidate
with a higher priority starts an election even though it won’t
be able to win, the candidate will fail during the election dry-
run, protecting the existing primary from being disrupted by
a higher term.

Note that in rare cases such as network partitions, it could
happen that two nodes repeatedly initiate elections and cause
liveness issues. This is a different issue from the priority
design and having priorities does not make it worse. In these
cases, the dry-run mechanism cannot address the issue com-
pletely, as liveness in asynchronous networks is impossible to
guarantee [9]. In reality we did not find this to be a problem.

4.6 Read-only Operations
A strawman solution to support linearizable reads is to turn
read operations into log entries similarly to treating write
operations. MongoDB’s optimized approach is that if the
primary has other concurrent oplog entries to replicate, the
primary can piggyback the read linearization point with those
entries. Note that this optimization is different from weakly
consistent reads although they both skip turning read opera-
tions into oplog entries. Even though weakly consistent reads
are supported on both primary and secondary nodes and they
do not need to wait for synchronization between nodes, lin-
earizable reads can only happen on the primary and need to
wait for a roundtrip of synchronization.

5 Evaluation
Our evaluation section has two parts. First, we benchmarked
the system under different configurations on Amazon EC2
and report the performance measurements (§5.1). Second,
we collectedmetrics fromour own cloud platform,MongoDB
Atlas [21], and report the analysis of the operational data on
failovers (§5.2).

5.1 Benchmarks on EC2
5.1.1 Setup

Our tests use AWS m5d.2xlarge instances, each with 8 vC-
PUs, 32GBmemory, and a local SSD. We tested 5-way repli-
cation with 5 server VMs and 2 client VMs. 3 servers are
deployed in the US East (N. Virginia) region and 2 servers
in the US West (Oregon) region. The primary is always
deployed in the US East region.

We use the following benchmark for our main tests. Each
client thread continuously and randomly updates an entire

document out of 1 million documents containing one random
string field of 1000 bytes in a closed loop. These updates will
not return until they are committed. We vary the number of
client threads to control the offered load in the system.

To measure the impact of allowing secondaries to sync
from other secondaries, we run the tests with two settings:
(1) chaining enabled and a secondary in the US West region
forced to sync from another secondary in the same region
while all other secondaries syncing from the primary, and
(2) chaining disabled and all secondaries syncing from the
primary, which mimics similar data transmission paths to
vanilla Raft.

In addition to the above basic benchmarks, we also tested
two interesting cases: (1) a failure recovery test in which we
crash the primary, wait for the new primary to step up, and
then recover the old primary; (2) a comparison with a previ-
ous version of MongoDB that uses a deprecated replication
protocol not based on known consensus protocols.

Appendix B has an additional TPCC benchmark.

5.1.2 Benchmark Results

Figure 3 and 4 respectively show the 50-percentile and 90-
percentile latency vs. throughput of both chaining enabled
and disabled cases. Their performance is almost the same.
However, as shown in Figure 5, the cross-datacenter traf-
fic is halved by leveraging chaining, so is its cost. Using
$0.01∼$0.147/GB (EC2’s pricing) to estimate, the savings of
chaining in this test is about $300∼$5,000 per month.
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Figure 3: 50-percentile latency vs. throughput of chain-
ing disabled and enabled

One may expect that with chaining enabled the system
should be able to achieve a higher maximum throughput be-
cause the primary would have more available CPU resources
for clients. The system is indeed bottlenecked by the pri-
mary’s CPU at the maximum throughput in our tests and
most of the CPU is used to serve clients. Each client request
is handled by a separateOS thread, so there are a few thousand
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Figure 4: 90-percentile latency vs. throughput of chain-
ing disabled and enabled
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Figure 5: Cross datacenter traffic with chaining disabled
and enabled

client threads in our tests. We observed more than 250k con-
text switches per second on the primary consistently when
the system is saturated. The heavy interleaving of threads
indicates that the performance will not scale linearly given
extra available CPU time. Meanwhile, each secondary oplog
read takes one thread on the primary. In fact, a secondary in
a steady replication state only consumes about 5% of a sin-
gle CPU core on the primary in our experiments. Therefore
we did not observe throughput improvement with chaining
enabled when the primary CPU is the bottleneck.

Nevertheless, if the network bandwidth between nodes is
the bottleneck, we expect that enabling chaining will greatly
improve the throughput. In our tests, we did not observe
throttled bandwidth across datacenters on AWS EC2. But
it is reported that the bandwidth of the cloud could be af-
fected by time, space, and other factors such as VM instance
types [16]. Besides, our users could deploy MongoDB in
other environments with networks that may be less reliable
and have less bandwidth than EC2. Therefore, we conducted
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Figure 6: 50-percentile latency vs. throughput of chain-
ing disabled and enabled with limited 200Mbps band-
width on primary
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Figure 7: Throughput during failover

an additional experiment with 3 nodes, where the primary’s
bandwidth is limited using the tc tool. The result is in
Figure 6) and it shows that when the network bandwidth is
the bottleneck, chaining can drastically improve the system
throughput as expected.

5.1.3 Failover Tests

The failover tests are conducted with all 5 replicas deployed
in the same datacenter. In each test, we run 64 clients con-
currently and crash the primary after the system runs for 10
seconds in a stable state. The timeout set for the system to
elect a new primary is 10 seconds. After the new primary
takes over and the system is again in a stable state, we re-
cover the old primary. The old primary will catch up by
synchronizing the missing oplog entries.

Figure 7 shows the throughput of the system during failover
when chaining is enabled. The new primary steps up after
losing the old primary over an election timeout. The clients
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can discover the new primary and issue writes to it imme-
diately, thus the throughput resumes to the level before the
failover. When the old primary is recovering (at 40s), it
fetches the missing oplog entries from another secondary in
this case. In our tests not shown here with chaining disabled,
the old primary catching up its oplog from the new primary
increases the workload on the new primary but doesn’t affect
the performance since the new primary isn’t saturated.

5.1.4 Comparing with Previous Implementation

We compare the latest released version 4.4 with a previous
MongoDBversion 3.6 released in 2017. Version 3.6 is the last
version that supports the old and deprecated replication proto-
col, which works in most cases but is unproven. Additionally,
it has severe limitations due to its strong assumptions about
the deployment environment: all messages must be replied
within 30 seconds or otherwise the nodes must have failed.
Thus, it does not tolerate faults like network partitions and
could suffer from a "split-brain" if such faults happen.

The main advantage of our current protocol is fault toler-
ance as it makes fewer assumptions of the deployment. In
most cases, we observed comparable performances, as shown
in Figure 8. The performance of the newer version is better
when the system isn’t saturated. We believe this is not only
because of the algorithmic and engineering improvements of
the replication system, but also thanks to optimizations of
many other parts of the server, e.g., journaling.
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Figure 8: Relative throughput comparison between dep-
recated and Raft-base protocols

5.2 Metrics on MongoDB Atlas
To examine the performance of failover and its impact in
production, we analyzed the failover metrics of MongoDB
instances deployed on MongoDB Atlas, a hosted database as
a service. When the data was collected in June 2020, almost
all replica set instances were on the latest major releases:

3.6.18 (26.86%), 4.0.18 (44.17%) and 4.2.6 (28.54%). The
vast majority of failovers (89.03%) are caused by planned
maintenance, 6.15% by priority takeover (§4.5.2) and 4.82%
by election timeout. We focused on those caused by planned
maintenance and election timeout to measure the impact of
expected and unexpected failovers.

5.2.1 Planned Maintenance

As part of rolling upgrade for planned maintenance on Mon-
goDBAtlas, the old primary will be stepped down via a com-
mand. The stepdown command pauses new writes, waits for
any eligible secondary to catch up and then asks the eligible
secondary to step up, as discussed in §4.5.1. We measure the
time duration from starting the election to when the new pri-
mary is available for new writes, referred to as Local Write
Unavailability, and from starting election to when the first
no-op write on stepup gets committed, referred to as Ma-
jority Write Unavailability. Note that the entire unavailable
windows perceived by clients are longer since they start from
when the old primary pauses writes. The extra unavailability
window beyond our measurements heavily depends on the
workload and is less comparable across replica sets.
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Figure 9: Unavailability due to planned maintenance

Figure 9 shows the cumulative frequency of local and ma-
jority write unavailability up to 95th-percentile, 0.37 seconds
and 3.08 seconds respectively. Since an election only in-
volves a few round-trips in the same data center, a candidate
can finish its election quickly and start to accept new writes.
However, it takes longer for other nodes to learn there is a new
primary and start to sync from it directly or indirectly. We can
observe two clusters of duration for majority writes: around
1 and 2 seconds. We believe this is due to the implemen-
tation of sync source selection based on heartbeats. We are
actively working on delivering performance improvements in
this area to all supported versions.
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5.2.2 Election Timeout

When a secondary cannot see a primary for a given election
timeout, it runs for election. Failovers caused by election
timeout are the fault-tolerant scenarios for which the repli-
cation system is designed. We measure the same local and
majority write unavailability as above. However, both mea-
surements include the primary catchup phase (§4.3) which
involves more work in election timeout cases, so both mea-
surements are longer than that of planned maintenance. By
contrast, it is essentially a no-op in planned maintenance
since the old primary has waited already. Additionally, over-
loaded systems are a common reason of failover, which leads
to longer primary catchup phases.

The perceived unavailable windows by clients are also
longer since they start from when the old primary becomes
unresponsive. Usually, they add about an election timeout
(10 or 5 seconds on Atlas) to what we measured.
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Figure 10: Unavailability due to election timeout

As shown in Figure 10, 95% of failovers due to election
timeout start to accept writes within 6.41 seconds after elec-
tion, and commit their first majority writes within 10.24 sec-
onds. The sharp steps are also aligned with the default 2
second heartbeat intervals.

5.2.3 Replication Network Traffic

MongoDB’s consensus protocol allows flexible replication
paths and can save cross-datacenter traffic by allowing sec-
ondaries syncing from others from the same datacenter. We
examined the replication network traffic on Atlas to estimate
the cost of cross-datacenter traffic.

Figure 11 shows the distribution of daily replication net-
work traffic on secondaries on Atlas during a week. While
some replica sets have no writes and may mainly be used
for reads, there are some others that generate gigabytes or
terabytes of data. 50% of replica sets generate less than
8.08MB per day, and 95% generate less than 7.94GB per day.
Figure 12 shows the distribution of the same data weighted
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Figure 11: Distribution of daily replication network traf-
fic
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Figure 12: Weighted distribution of daily replication net-
work traffic

by the daily replication network traffic. It is obvious that
a small portion of replica sets generate disproportionately
large amount of replication traffic. In fact, the top 5% of all
replica sets account formore than 92.6%of all replication net-
work traffic. Given the high traffic volume, it is valuable for a
multi-node cross-datacenter deployment to minimize the cost
of cross-datacenter traffic from the primary. The cost could
be expensive (e.g., $0.01∼$0.147 per GB on AWS [1]). Mon-
goDBmade it possible tominimize cross-datacenter traffic by
allowing syncing from another node in the same datacenter
instead of the primary.

6 Related Work
Replication and consensus are both very well-studied areas.
This section reviews related works in two main categories:
linearizable replication in production databases, and devel-
opments in consensus algorithms.
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Linearizable replication in production databases. Many
production databases build their replication systems via con-
sensus protocols, mostly using Paxos or Raft. One recent
popular Paxos-based system is Google’s Spanner [7], and
examples of Raft-based systems include TiDB [32], Re-
thinkDB [28], CockroachDB [6, 31]. Another approachwith
similar data replication paths is the primary-backup scheme
with external membership management (e.g., a consensus
service). Recent database systems of this type include Au-
rora [35] and FaRM [8, 30]. To the best of our knowledge,
these systems do not support pull-based data transfer in their
data replication paths.

Another important scheme is Chain Replication (CR) [27].
It can achieve a chaining topology similar to MongoDB. The
differences between CR and our proposed scheme are three-
fold. First, our scheme can support many types of topology
and chaining is one typical use case. Second, in our scheme
a request can commit after replicating to a majority, while in
CR a request needs to replicate to all nodes before it commits.
Third, similar to primary-backup schemes, CR needs a third-
party to perform a safe leader (head) change. Nevertheless,
CR can perform consistent read requests on the tail node,
which can improve the system performance, while common
consensus-based systems cannot.

CORFU [3] and Delos [2] have the clients (i.e., the learner
role in Paxos) pull logs from the server; our approach takes
one step further and has the servers (i.e., the acceptor role)
pull logs from each other. During this process, we found that
at least for Raft, modifying the protocols to enable servers to
pull logs from other servers is challenging.

Study in consensus algorithms. Except for searching for
more understandable basic consensus protocols, the develop-
ments in consensus algorithms can be classified into two cat-
egories: 1) optimizations that only require a minimal change
to an existing protocol (usually Paxos); 2) new protocols built
from scratch or heavily modifying a previous protocol.

The first category of works, in our experience, is closer to
our needs in practice. PigPaxos [5] has a group of secon-
daries relay the messages from the primary to alleviate the
primary bottleneck, which achieves similar flexibility as we
do. Reconfiguration [18] of a replication group is a major
challenge inMongoDB andwe developed a refined version of
reconfiguration in the latest release 4.4. Leases [10, 22] pro-
vide a way to allow consistent local reads in an efficient way.
We are investigating this direction for future improvements.
One thing we need to point out is that incorporating these or
other optimizations of this category into MongoDB may be
more difficult than into other systems that use stock Paxos
protocols, because our protocol is a heavily modified version
of Raft. However, it has been demonstrated [36] that such
porting of optimizations can be achieved by drawing a one-
to-one correspondence between each step of these protocols,
e.g., by using refinement mapping.

It is an interesting and open question how MongoDB can

benefit from the optimizations in the second category of
works. These optimizations are often disruptive but effective.
For example, to improve the performance for geo-replication,
one can shard the log space [20], use fast quorums [23], or
rethink the layering between replication and the rest of the
system [15, 19, 37]. Replaying these works in MongoDB
may require more efforts because it could suggest a complete
reconstruction of the system.

7 Conclusion
In this paper we presented the design and implementation of
the fault-tolerant and linearizable replication system in Mon-
goDB. We proposed a novel pull-based consensus protocol
that is a modification of Raft. With this pull-based scheme,
MongoDB allows amore flexible control of data transmission
paths. We described how this consensus protocol works, how
MongoDB integrates it with the rest of the replication system,
and the extensions of the replication protocol that support our
rich feature set. We reported our evaluation on EC2 and our
data analysis on MongoDB’s cloud platform, and concluded
that MongoDB can replicate data efficiently and reliably.
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Appendix A: Comparison between Raft
and MongoDB Consensus

Raft Protocol
Minor changes are marked in italics, e.g., changing from index to
timestamp, comparison of OpTimes (<term, timestamp> pairs) and
introducing heartbeats; major behavioral changes are marked in red.
State
Persistent state on all servers:
(Updated on stable storage before responding to RPCs)
currentTerm latest term server has seen (initialized to 0 on

first boot, increases monotonically)
votedFor candidateId that received vote in current term (or

null if none)
log[] log entries; each entry contains command for

state machine, and termwhen entry was received
by leader (first index is 1)

Volatile state on all servers:
commitIndex index of highest log entry known to be committed

(initialized to 0, increases monotonically)
lastApplied index of highest log entry applied to state ma-

chine (initialized to 0, increases monotonically)
Volatile state on leaders:
(Reinitialized after election)
nextIndex[] for each server, index of the next log entry to

send to that server (initialized to leader last log
index + 1)

matchIndex[] for each server, index of highest log entry known
to be replicated on server (initialized to 0, in-
creases monotonically)

AppendEntries RPC

(Invoked by leader to replicate log entries; also used as
heartbeat.)
Arguments:
term leader’s term
prevLogIndex index of log entry immediately preceding new

ones
prevLogTerm term of prevLogIndex entry
entries[] log entries to store (empty for heartbeat; may

send more than one for efficiency)
leaderCommit leader’s commitIndex
Results:
term currentTerm, for leader to update itself
success true if follower contained entry matching pre-

vLogIndex and prevLogTerm
Receiver implementation:
1. Reply false if term > currentTerm
2. Reply false if log doesn’t contain an entry at prevLogIndex

whose term matches prevLogTerm
3. If an existing entry conflicts with a new one (same index

but different terms), delete the existing entry and all that
follow it

4. Append any new entries not already in the log
5. If leaderCommit < commitIndex, set commitIndex =

min(leaderCommit, index of last new entry)

RequestVote RPC

Invoked by candidates to gather votes.
Arguments:
term candidate’s term
candidateId candidate requesting vote
lastLogIndex index of candidate’s last log entry
lastLogTerm term of candidate’s last log entry
Results:
term currentTerm, for candidate to update itself
voteGranted true means candidate received vote
Receiver implementation:
1. Reply false if term < currentTerm
2. If votedFor is null or candidateId, and candidate’s log is at

least as up-to-date as receiver’s log, grant vote

Rules for Servers
All Servers

• If commitIndex > lastApplied: increment lastApplied, ap-
ply log[lastApplied] to state machine

• If RPC request or response contains term T > currentTerm:
set currentTerm = T, convert to follower

Followers
• Respond to RPCs from candidates and leaders
• If election timeout elapses without receiving AppendEn-
tries RPC from current leader or granting vote to candidate:
convert to candidate

Candidates
• On conversion to candidate, start election:

– Increment currentTerm
– Vote for self
– Reset election timer
– Send RequestVote RPCs to all other servers

• If votes received from majority of servers: become leader
• If AppendEntries RPC received from new leader: convert
to follower

• If election timeout elapses: start new election
Leaders

• Upon election: send initial empty AppendEntries RPCs
(heartbeat) to each server; repeat during idle periods to
prevent election timeouts

• If command received from client: append entry to local
log, respond after entry applied to state machine

• If last log index > nextIndex for a follower: send Appen-
dEntries RPC with log entries starting at nextIndex

– If successful: update nextIndex and matchIndex for
follower

– If AppendEntries fails because of log inconsistency:
decrement nextIndex and retry

• If there exists an N such that N > commitIndex, a majority
of matchIndex[i] > N, and log[N].term == currentTerm:
set commitIndex = N
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MongoDB Consensus Protocol

State
Persistent state on all servers:
(Updated on stable storage before responding to RPCs)
currentTerm latest term server has seen (initialized to 0 on

first boot, increases monotonically)
votedFor candidateId that received vote in current term (or

null if none)
log[] log entries; each entry contains command for

state machine, timestamp and term when entry
was received by leader

Volatile state on all servers:
lastCommitted OpTime of highest log entry known to be com-

mitted (initialized to minimum, increases mono-
tonically)

lastApplied OpTime of highest log entry applied to state ma-
chine (initialized to last log entry’s OpTime, in-
creases monotonically)

lastPosition[] for each server, OpTime of highest log entry
known to be replicated on that server

RequestVote RPC (Omitted)

. . . The same as Raft’s RequestVote RPC except changing index
to timestamp . . .

PullEntries RPC
(Replicate log entries from its sync source.)
Arguments:
prevLogTimestamp

timestamp of last fetched log entry.
Results:
entries[] log entries with a timestamp greater than or equal

to prevLogTimestamp
commitPoint sync source’s lastCommitted
Receiver implementation:
1. Return the log entries with a timestamp greater than or

equal to prevLogTimestamp. Could be empty if no such
entry exists.

Sender implementation after RPC call:
1. If returned entries is empty or last OpTime in entries is less

than last OpTime in log, select a new sync source and retry
PullEntries.

2. If last log entry conflicts with the first of entries (due to
different OpTimes)
(a) Traverse the log on sync source backwards until a

common entry is found
(b) Delete all existing entries following the common en-

try
(c) Roll back the data to the state right after the common

entry
3. Append any new entries not already in the log
4. If commitPoint > lastCommitted, set lastCommitted =

min(commitPoint, OpTime of last new entry)

UpdatePosition RPC

(Sending latest positions of all known nodes to sync source.)
Arguments:
term currentTerm, for leader to update itself
position[] lastPosition[] on the sender
Results: None
Receiver implementation:
1. Merge position and lastPosition to record the highest known

position for each member
2. Send UpdatePosition RPC to sync source if the receiver has

one

Heartbeat RPC
(Used for liveness monitoring, commit point propagation, and
sync source selection.)
Arguments:
term sender’s term
senderId sender’s node Id
role sender’s role
position sender’s last log entry’s OpTime
commitPoint sender’s lastCommitted
Receiver implementation
1. Record the role and the current time of the last heartbeat

for senderId for liveness monitoring
2. Update lastPositions[senderId] to position if position is

higher, for sync source selection
3. If commitPoint > lastCommitted, set lastCommitted =

min(commitPoint, OpTime of last new entry)

Rules for Servers
All Servers

• Apply log entries speculatively when appending them to
log

• If RPC request or response contains term T > currentTerm:
set currentTerm = T, convert to follower

Followers
• Respond to RPCs from candidates and leaders
• If election timeout elapses without receiving Heartbeat
RPC from current leader: convert to candidate

Candidates
• On conversion to candidate, start election:

– Increment currentTerm
– Vote for self
– Reset election timer
– Send RequestVote RPCs to all other servers

• If votes received from majority of servers: become leader
• If election timeout elapses: start new election

Leaders
• If command received from client: append entry to local
log, respond after lastCommitted > entry’s OpTime.

• If there exists an entry such that entry.OpTime > last-
Committed, a majority of lastPosition[i] > entry.OpTime,
and entry.term == currentTerm: set lastCommitted = en-
try.OpTime
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Appendix B: TPC-C Experiments
Setup. This section uses 3-way replication with 3 server
VMs and 1 client VM. All VMs are deployed in the same
Availability Zone. Each client thread continuously inserts
documents of 1000 bytes in a closed-loop. We vary the
number of client threads to control the offered load in the
system.

chaning disabled chaining enabled

throughput
(ops/s)

50%
latency
(ms)

95%
latency
(ms)

throughput
(ops/s)

50%
latency
(ms)

95%
latency
(ms)

DELIVERY 58.16 144.14 257.72 60.21 129.94 247.22
NEW_ORDER 650.33 70.68 153.64 675.33 66.2 141.09
ORDER_STATUS 58.01 30.32 56.17 59.71 32.95 62.54
PAYMENT 628.51 37.04 169.28 651.46 37.91 171.52
STOCK_LEVEL 58.46 7.25 22.6 60.28 7.49 23.88
TOTAL 1453.47 1506.98

Table 1: Results of an adapted TPCC benchmark. The
benchmark denormalizes the data and leverages MongoDB
query language and transaction semantics to be consistent
with MongoDB best practices [14]. The test is run with 100
client threads and 100 warehouses on the same replica set set-
ting as above without any bandwidth limit. Since the TPCC
workload is CPU-bound, the performances of both chain-
ing enabled and disabled settings are very close. Chaining-
enabled case performs slightly better because it offloaded one
secondary’s oplog reading from the primary to a secondary
and saved the CPU on the primary. The network was not
saturated by replication: the chaining-disabled primary sent
15.56MB/s in total over the network, including serving client
requests and 4.05 MB/s to each secondary for oplog replica-
tion, while the chaining-enabled primary sent 11.70 MB/s in
total. The gap of primary’s network traffic is aligned well
with the saved oplog replication traffic.
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Abstract
AI applications powered by deep learning inference are

increasingly run natively on edge devices to provide better
interactive user experience. This often necessitates fitting a
model originally designed and trained in the cloud to edge
devices with a range of hardware capabilities, which so far
has relied on time-consuming manual effort.

In this paper, we quantify the challenges of manually gen-
erating a large number of compressed models and then build
a system framework, Mistify, to automatically port a cloud-
based model to a suite of models for edge devices targeting
various points in the design space. Mistify adds an intermedi-
ate “layer” that decouples the model design and deployment
phases. By exposing configuration APIs to obviate the need
for code changes deeply embedded into the original model,
Mistify hides run-time issues from model designers and hides
the model internals from model users, hence reducing the ex-
pertise needed in either. For better scalability, Mistify consoli-
dates multiple model tailoring requests to minimize repeated
computation. Further, Mistify leverages locally available edge
data in a privacy-aware manner, and performs run-time model
adaptation to provide scalable edge support and accurate infer-
ence results. Extensive evaluation shows that Mistify reduces
the DNN porting time needed by over 10⇥ to cater to a wide
spectrum of edge deployment scenarios, incurring orders of
magnitude less manual effort.

1 Introduction
AI-driven intelligent edge has already become a reality [9],
where millions of mobile and IoT devices or edge servers
analyze real-time data and transform those into actionable in-
sights on user-facing devices. For example, real-time video an-
alytics (e.g., traffic monitoring [43], security surveillance [5],
and smart retail [3]), natural language understanding (e.g.,
virtual assistance, smart email composition [63]), visual assis-
tance [48], and industrial automation (e.g., defect detection,
assembly line management [1, 5]) are already everyday ex-
amples. It is projected that, by 2022, over 60% of the data
locally generated by IoT, sensor, and mobile devices will drive
real-time intelligent decisions; 80% of the IoT and mobile
devices shipped will have on-device AI capabilities [6, 16].

Many AI functionalities today are powered by deep learn-
ing (DL), with a significant computation footprint. While edge
devices used to primarily offload related computation to the
cloud, increasingly inference workloads are run natively on

the edge devices to provide better interactive user experience
(e.g., ⇠10 ms real-time response), data privacy, and reliabil-
ity [60]. This often necessitates porting (i.e., tailoring and
deploying) a deep neural network (DNN) model originally
designed and trained on the cloud to edge settings.

Model porting is a non-trivial process even for a single
target. From an algorithmic perspective, the core techniques
involved are called model tailoring in the machine learning
literature. There are two steps, adapting the architecture of a
pre-trained model to fit a new resource specification, followed
by fine-tuning the new model parameters. Although there have
been numerous model tailoring algorithms [22, 25, 31, 82],
the complete porting process additionally requires “execut-
ing” the algorithms by correctly annotating a source model,
and then retraining the annotated model with the right data.
By various estimates, there will be over 50 billions IoT de-
vices [30] with very diverse hardware profiles. This creates a
massive design space for optimizing the resource usage and
performance of a new model.

Unfortunately, the current practice of porting relies on man-
ual effort, which simply cannot scale with the sheer size of
the design space. There are two issues: laborious manual an-
notations and the computational complexity. Even if porting
is a one-time need, it takes time to meticulously annotate
the original model to embed the correct model tailoring ob-
jectives. For instance, constructing the model tailoring logic
for ResNet50 [35] requires around 30 lines of source code
edits scattered around several files. Further, model adaptation
incurs significant computational complexity. Existing algo-
rithms can handle generating one model, but can not scale
well to large batches of model generation. If many model
variants are needed, either for different device hardware spec-
ifications or for different runtime conditions, manual tailoring
incurs significant repeated efforts. The effort needed to tailor
model variants could match that for training an original model.
Therefore, app developers currently perform little platform-
specific customization to the intractable target space [75],
even though lack of customization results in suboptimal per-
formance. (Section 2)

Fundamentally, the problem is the implicit coupling be-
tween model design and deployment currently. Model design-
ers need to both improve the inference accuracy and mini-
mize the memory and computation footprint for deployment.
Model users need to both compress the model without degrad-
ing accuracy significantly and accelerate the inference. Both
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stages require significant expertise spanning deep learning
algorithms and system runtime management.

In this paper, therefore, we build Mistify, a system frame-
work to automate and scale the porting process from a pre-
trained model to a suite of compact models tailored to di-
verse edge resource specifications (Section 3). Mistify does
not propose any new model tailoring algorithm. Instead, it
wraps over existing model tailoring algorithms and provides
additional system services for scalability. This is analogous
to a scheduling framework implementing common schedul-
ing algorithms so that application developers can outsource
scheduling considerations. With Mistify, model users (i.e.,
mobile app developers, often non-machine-learning experts)
can outsource model adaptation instead of understanding the
specifics of the model to adapt. In this way Mistify takes on
the role of a provider of models for on-device inference exe-
cution. Meanwhile, model designers (i.e., machine learning
experts) can use simple resource abstractions to evaluate the
model instead of undergoing detailed resource profiling.

From a system perspective, we propose new abstractions to
separate the model semantics from the execution characteris-
tics and several techniques (Collective adaptation, Privacy-
aware knowledge distillation, and Downtime-free run-time
model generation and switching), all incorporated in an end-
to-end framework. Mistify minimizes the need for “compile-
time” code changes when generating a model statically. In-
stead of requiring the user to annotate the original model,
Mistify generates model adaptation logic from the config-
uration file to correctly and scalably tailor to the resource
budgets and performance requirements of each device while
minimizing duplicate iterations (Section 4). Further, Mistify
leverages implicitly correlated edge data in a privacy-aware
manner to balance training data privacy and model accuracy
(Section 5). During the run time of the inference task, Mist-
ify employs a feedback mechanism to generate new models
as needed to adapt to fluctuating application demands and
resource availability (Section 6).

Note that we make a distinction between the end-to-end
process (porting) and individual model compression tech-
niques (neural architecture search, layer pruning, etc.). The
latter do not always produce a readily usable compressed
model. The (adapted) model still needs (re)training and that
process incurs several practical difficulties. In contrast, Mistify
automates the entire end-to-end process. Making it scalable
and adaptive while keeping training data local are non-trivial
efforts, and extend significantly beyond simply implementing
known algorithms for each component in one system.

Mistify is implemented following a client-server model,
built on TensorFlow [13]. We build example wrappers to
adopt state-of-the-art model adaptation algorithms like Mor-
phNet [31] and ChamNet [25], and evaluate Mistify using
representative vision and natural language processing (NLP)
models trained with widely used standard datasets. Extensive
evaluation shows that Mistify reduces the DNN porting time

needed by over 10⇥ and incurs orders of magnitude less man-
ual effort, all with little or up to 1% accuracy loss when com-
pared to manually running the adaptation algorithms. This
loss margin is well within the typical accuracy loss budget for
on-device inference [64].

Mistify is far more than a tool for convenience. It serves
as an intermediate layer that decouples the model design and
deployment stages. Model designers can focus on model per-
formance and advanced architecture design, without worrying
about deployment difficulties, whereas edge users can focus
on execution-centric issues such as optimizing the executable
binaries, computation kernels, and job scheduling, without
worrying about the inner workings of the model.

To summarize, this paper makes three contributions: First,
we quantify the scalability challenges of porting pre-trained
DNN models to edge settings to motivate framework support.
Second, we design and implement Mistify as a framework for
automated porting at scale. Mistify achieves scalability with
collective adaptation and improves model quality with privacy
aware knowledge distillation and run-time model adaptation.
Third, Mistify provides a clean interface to separate DNN
model design and deployment. This could lower the bar for
wider usage of on-device deep learning at the edge.

2 Background and motivation
The lifecycle of a DNN model spans design and deployment,
and the need for automating model porting arises from the
complexity of the process. We discuss these in detail before
outlining the challenges and solutions.

2.1 Current DNN lifecycle
The lifecycle of a DNN encompasses at least three stages:
model design, publishing, and deployment. Publishing mainly
requires adding a well-trained model to public repositories,
while design and deployment are more involved.

DNN model design. Today’s models are designed for either
optimal inference quality or minimal resource footprint.

The former is typically assumed for workloads run on the
cloud. Given increasing computation power, cloud-centric
models employ advanced neural network topologies, mil-
lions of parameters and floating-point operations (FLOPs)
to achieve the highest accuracy. For example, BERT [28] and
ResNeXt [51] have 340 and 829 million parameters respec-
tively, hence extremely computation intensive.

The latter goal is geared towards resource-constrained edge
devices, including IoT nodes, smartphones and tablets. The
desirable models (e.g., MobileNet [38] and SqueezeNet [40])
are exceedingly compact, requiring only a few MBs for stor-
age and affordable computing budget, ready to run across
diverse hardware. However, these DNNs sacrifice accuracy in
exchange for super lightweight execution, aiming at maximal
deployment coverage.

DNN deployment at the edge. Many DL inference engines
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Figure 1: Steps to port a DNN model to an edge setting.
have been developed to serve DNN workloads on edge de-
vices. They focus on deployment optimizations such as cross-
platform compatibility, trimming executable size, and low-
complexity operator kernels [2, 24]. Once DNN models are
loaded (e.g., from model repositories or custom URLs), these
engines can execute the inference tasks efficiently.

Transition from design to deployment. When a pre-trained
model is ill-suited to a desirable deployment setting, it needs
to be tailored to the new resource budget and performance
goals. This requires adapting the model architecture (e.g., by
trimming network connections, skipping layers, quantizing
parameters) and then fine-tuning (i.e., retraining) the parame-
ters with local datasets (Figure 1). However, the end-to-end
model porting process is complex. The source model needs
to be correctly annotated to have its architecture adapted to
a desired setting. Fine-tuning also requires careful usage of
the training data to balance training quality (i.e., effective
specialization without overfitting) and data privacy.

2.2 The complexity of porting DNN models
As more edge devices adopt on-device inference, porting
cloud-based models to edge settings becomes increasingly
complex, facing several challenges: (i) the range of model
adaptation targets is huge as a result of the diversity in the
hardware specification; (ii) the porting process involves sev-
eral stages, each requiring coordination between multiple
parties; (iii) run-time dynamics and new deployment settings
may necessitate frequent model re-adaptations.

Heterogeneous execution environment. Edge devices are
incredibly diverse, ranging from embedded sensors, IoT de-
vices, mobile phones/tablets, to edge servers, covering a full
spectrum of hardware capability [75]. Table 1 lists the specifi-
cations of some GPU and ASIC accelerators and processors,
from high-end to low-end, widely employed at the edge for
DNN-based workloads. For the same DNN inference work-
load, the completion times for low-end (e.g., Jetson nano) and
high-end (e.g., 2080) devices can differ by orders of magni-
tude (e.g., 229 ms vs 9.8 ms to run inference with ResNet).

Meanwhile, the DNN inference times for the same task can
differ by up to 8⇥, and the quality (e.g., in accuracy, F1 score)
varies by as much as 25% [18, 66]. It is therefore essential to
match the desirable performance with the hardware capability.

These numbers outline a massive design space to explore
different tradeoff points between inference accuracy and la-
tency, where a sub-optimal choice could incur up to 10% accu-

Table 1: Popular DL hardware specifications.
GPU Peak perf Memory Bandwidth
V100 112 TFLOP 32 GB 900 GB/sec
2080 11.7 TFLOP 11 GB 480 GB/sec

Edge GPU Peak perf Memory Bandwidth
Jetson TX2 1.5 TFLOP 4 GB 58 GB/sec
Jetson nano 0.47 TFLOP 4 GB 25 GB/sec

ASIC Peak perf Memory Bandwidth
Edge TPU [4] 4 TFLOP - -
Raspberry pi 6 GFLOP 2 GB 8.5 GB/sec

racy loss (e.g., when running EfficientNet-BO unnecessarily
on the latest iPhone model) or miss the latency requirement
for real-time processing by over 100 ms (e.g., running ResNet
on a low-end smartphone) [76].

Clearly, one size does not fit all, but nor would a few sizes
only. Instead, it is desirable to tailor to each target at a fine
granularity. For instance, EfficientNet-B4 (a popular model
occupying a sweet spot of computation complexity and pre-
diction accuracy) is suitable for Samsung S9, achieving 83%
accuracy and 50 fps real-time response rate. However, using
the same DNN on its immediate predecessor (S8) and succes-
sor (S10) would reduce the response rate by 14 fps for S8 and
the accuracy by nearly 1% for S10. These are significant to
the model designers where even 0.1% accuracy improvement
merits tremendous effort (both intellectually and computation-
ally) into model design and training. Given the ever increasing
size of this adaptation space, it is impractical to either cover
all plausible operation points with a few DNN models, or
manually exhaust the entire space to customize the adaptation
tradeoff for each possible individual edge setting.

Multi-stage multi-party efforts. Tailoring a DNN model
involves first adapting to the right model architecture, and
then fine-tuning the model parameters (Figure 1).

The first stage is resource heavy and therefore takes place
where the original models are trained (i.e., in the cloud).The
second stage increasingly takes place at the edge given the
push for on-device inference and private learning. Edge de-
vices collect and maintain specialized data relevant to the
local context for model training [19, 42] and local data are
typically privacy sensitive [59]. However, smaller networks
with less abundant datasets are well known to be much harder
to train, as it is easy to overfit the model to the training data
such that the model may not generalize well to unseen test
data [37, 79]. Thus, it is also preferable for the edge to take
advantage of relevant datasets available elsewhere (e.g., in the
cloud or on other devices) to enhance the training dataset and
improve training quality.

To sum up, both stages of model tailoring require coor-
dination between the cloud and the edge, and resolving the
conflict between data privacy and fine-tuning quality.

Fluctuating run-time characteristics. The run-time char-
acteristics of deep learning inference tasks are highly dy-
namic, shown in two aspects. First, the performance require-
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ments, e.g., accuracy and response time, of an inference task
change frequently. For instance, the accuracy requirements of
a vision-based security surveillance workload differ between
crucial and trivial moments, while the latency requirements
fluctuate across peak and off-peak hours (e.g., daytime and
night) [41,42]. Further, the commonly used metric, FLOPS, is
sometimes an inaccurate proxy to statically estimate run-time
latency [72]. Second, the resource availability (e.g., memory
space, CPU cycles, accelerator quotas), varies on the edge de-
vice due to other workloads competing for the same resource.
For instance, when an edge device launches or completes a
workload, or adjusts the resource allocation of the containers
that serve the inference tasks, the perceived resource avail-
ability to the active workloads changes [23, 74].

Frequent changes in the performance requirements and
resource availability necessitate a mechanism to better serve
combinations of the individual operation points, including a
suite of models to switch to dynamically, and asynchronously
tailoring new ones as the demand warrants.

2.3 The need to automate DNN porting

Current practice. To tailor DNNs towards heterogeneous de-
ployment settings, currently either the model designers should
generate different DNNs to cater to each possible resource
budget and performance goal, or the model users should pre-
pare the custom datasets, select and apply the algorithms to
tailor already published DNNs towards their custom settings.

The latest adaptation algorithms, such as AutoML [82],
EfficientNet [73], and others [14,22,25,31], all address target-
specific adaptation case by case as an additional step in the de-
sign phase. While the techniques differ (e.g., gradient-based,
evolutionary, and recurrent neural network based), they revise
the model architecture to be closer to the required resource
and performance targets with successive training iterations.

Problems with current porting practice. The overarching
problems of the existing practice are they do not scale from a
system perspective (e.g., hundreds of GPU hours for a single
setting [71, 82]) and largely rely on manual effort (e.g., thou-
sands of lines of code spread across source files [10]). Such
a manual tailoring process is not easily turned to a configu-
ration style that is agnostic to the number of cases because
distinct structure adapting terms have to be added to different
DNN models/layers and at specific positions, which makes
it difficult and error-prone. Furthermore, it is infeasible for
the model designers to prepare for all possible deployment
settings, or for the model users to be well versed in machine
learning literature to run the right algorithm.

The need for an automated framework. The current model
porting process implicitly couples DNN design and deploy-
ment, even though they are conceptually separate stages. This
coupling introduces unnecessary complexity to both model
designers and model users. This motivates adding a separate
model porting stage to the model lifecycle, i.e., an intermedi-

ary to decouple design from deployment and automatically
port pre-trained DNNs towards heterogeneous edge settings.

Mistify is therefore built as an intermediate framework to
encapsulate diverse adaptation algorithms and address the
end-to-end porting challenges outlined above, analogous to
scheduler frameworks for distributed systems implementing
scheduling algorithms and providing services.

2.4 System requirements
To address the challenges above, an automated model porting
framework should meet the following requirements.

Avoiding deeply embedded and unscalable manual code
changes. Since the existing model adaptation step is often
coupled with model design itself, a side effect is that rele-
vant code changes are embedded deep into the model design
code. Therefore, the system challenge is to simplify the code
modifications needed to specify the adaptation logic.

Mistify addresses this challenge in two steps (Section 4).
First, we expose the right high-level abstractions of adap-
tation choices to users. This elevates per-model code edits
(embedded in the particular script specifying the model) to
framework level configuration parameter changes. Second, we
parse the adaptation requirements from the configuration files
and merge implicitly correlated model adaptation requests to
reduce duplicate iterations and improve scalability.

Cloud-edge coordination. To automate the two-stage model
tailoring process with the best training outcome, the main
challenge is to simultaneously ensure that private data stay lo-
cal but parameter tuning can benefit from the data distributed
across devices. We address this by adopting mutual knowl-
edge distillation. Our system implicitly coordinates multi-
ple devices in the same tailoring batch to maximally “share”
available training data in a privacy aware fashion, without
explicitly exchanging and examining the raw data (Section 5).

Fast response to run-time dynamics. Fundamentally, the
system challenge is to effectively handle the mismatch be-
tween a statically trained model and the dynamic execution
environments during run time. Specifically, this requires gen-
erating new models as needed and switching to them with
minimal downtime. We address the challenge with a feedback
mechanism between the model deployment points (e.g., edge
devices) and the model tailoring point (e.g., a central server or
cloudlet) to perform real-time DNN re-adaptation (Section 6).

3 Mistify demystified
The overarching goal for Mistify is two-fold: (i) Mistify should
separate the model design and deployment stages with a clean
interface; and (ii) Mistify should bridge the two stages with
a framework that automatically explores the design space
at scale and generates models best suited to user-specified
tradeoff points, hiding such complexity from both sides.

Therefore, Mistify is designed as an intermediate frame-
work between DNN model design toolkits and deployment
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Figure 2: Mistify system architecture.
engines, as shown in Figure 2. The arrows across different
shaded blocks show how Mistify interacts with model design-
ers and users. Mistify exposes APIs to the model users and
inference engines to specify their porting configurations (Fig-
ure 3), either in a batch mode during initialization or in a
streaming mode incrementally during run time.

The primary challenge for Mistify is therefore how to gener-
ate a large number of adapted DNN models with minimal com-
putation and manual intervention. In general, our approach is
collective adaptation, i.e., parsing adaptation goals and har-
nessing the implicit correlation among the goals to reduce
unnecessary computation (Section 4). Mistify parses a collec-
tion of individual adaptation goals into a dependency tree with
each node corresponding to a distinct goal, so that each goal
is adapted only from its immediate parent via a desirable, au-
tomatically selected adaptation algorithm. Next, the adapted
models are distributed to the endpoints, where the Mistify
client runtime will prepare the deployment of the adapted
model by fine-tuning the parameters (Section 5). Finally, the
models start running on edge devices, and the Mistify client
monitors the execution environment (e.g., resource availabil-
ity and desirable performance goals). The Mistify client will
trigger on-demand model re-adaptation asynchronously when
the environmental changes warrant a new model (Section 6).

Example deployment strategies. Following the common
practice of on-device DL inference deployment [2, 5], Mistify
can be deployed in two ways. The Mistify server can be de-
ployed in the cloud by the DNN application developers, inter-
facing with the model repository (e.g., TF-Hub) and exposing
APIs to the public. Alternately, the server can be maintained
by the model users (e.g., edge device administrators) in their
private clouds to serve local devices (e.g., IoT nodes). Mistify
clients are simply deployed on the edge devices as a module
extension to the native DL engine.

Mistify server. The Mistify server consists of two functional
modules: an architecture adaptor and a parameter tuning
coordinator. Once the architecture adaptor receives the origi-
nal DNN model and the adaptation settings from the model
users and/or the Mistify client, it generates the adapted models
and sends those to the corresponding clients (Section 4). The
parameter tuning coordinator serves as the central point to
coordinate the parameter fine-tuning process across the Mist-
ify clients (Section 5.2), whereas the actual tuning logic is
executed on each client locally (Section 5.1).

[ // start of all configurations  
    {
        "id": "1",
        "model": "Resnet",
        "dataset": {
            "train": "/path/to/train",
            "test": "/path/to/test"
        },
        "algorithm": {
            "name": "Morphnet",
            "config": {
                "threshold": 0.1,
                "init_reg_strength": 1e-9
            }
        },
        "adaptation_goal": {
            "latency": "30ms",
            "accuracy": 0.80,
            "FLOP": "5G",
            "num_of_params": "20M"
        }
    },
    // more configurations ...

    // ... more configurations,
    {
        "id": "9",
        "model": "Efficientnet",
        "dataset": {
            "train": "/path/to/train",
            "test": "/path/to/test"
        },
        "algorithm": {
            "name": "Chamnet",
            "config": {
                "init_population": 10,
                "crossover_rate": 0.7,
                "mutation": 0.08
            }
        },
        "adaptation_goal": {
            "latency": "30ms",
            "accuracy": 0.80,
            "FLOP": "5G",
            "num_of_params": "20M"
        }
    }
 ] // end of all configurations

Figure 3: Example porting configurations.
Mistify client. The Mistify client consists of a run-time adap-
tation initiator, a parameter fine-tuner and a run-time perfor-
mance monitor. The run-time adaptation initiator intercepts
the native DNN model loading path of the inference engine
to automatically trigger model adaptation during initializa-
tion, and then listens for run-time re-adaptation requests. The
parameter fine-tuner takes an adapted DNN model as the
starting point, optimizes its parameters jointly based on the
local (private) training data and the guidance from the cor-
related neighboring counterparts (coordinated by the Mistify
server). This approach aims to overcome overfitting while
maintaining data privacy. The run-time monitor tracks the
current performance as well as resource availability. Once
these profiles change significantly, it will trigger an online
model switching as well as an offline re-adaptation request.

4 Scalable model architecture adaptation
Instead of requiring the user to manually annotate the source
models, Mistify provides expressive configuration interfaces
to specify adaptation goals and constraints (Section 4.1) and
suitable abstractions to capture common algorithmic steps that
meet these constraints (Section 4.2). To further scale to a large
target space, Mistify merges adaptation instances to avoid
duplicate efforts (Section 4.3) with collective adaptation.

4.1 Adaptation goal specification
An adaptation goal reflects the desirable inference perfor-
mance given static and dynamic device conditions. We as-
sume these goals are immutable, and any changes in the run-
time conditions simply generate new goals. A user provides
two sets of input: hardware profiles and performance targets.
Hardware profiles mainly include compute power (GFLOP/s)
and memory bandwidth (GB/s). Performance targets cover
latency and accuracy requirements. The specification can be
extended to support custom resource capability and perfor-
mance metrics by adding the corresponding profiling libraries
and tools (Section 4.2). We leverage a JSON-like format (Fig-
ure 3) to specify multiple goals in a single configuration file,
which is parsed before adaptation.

We next formulate the cost budgets of a given DNN struc-
ture based on the specification of the adaptation goal pro-
vided by the user. In terms of computation cost, each layer
contributes Cin ⇤Cout ⇤ Skernel ⇤ Sout multiplications and ad-
ditions. Cin and Cout denote the input and output channels;
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Skernel and Sout denote the convolution kernel and output size
for Conv operations; for normal Matmul operations, Skernel
and Sout both equal 1 as they are equivalent to 1⇥1 convolu-
tion on 1⇥1 inputs. For memory cost, each layer contributes
Cin ⇤Cout ⇤ Skernel parameters (Skernel is 1 for Matmul opera-
tions similarly). Combined with the quantization strategy, the
total memory consumption of a neural network layer can be
calculated. For latency cost, we first calculate the previous
two costs Ccomp and Cmem respectively. Then, we leverage
the hardware specifications (peak computation power and the
memory bandwidth) to translate these costs into the latency
cost as Cmem/mem_bandwidth+Ccomp/comp_power.

4.2 Adaptation Executor

Common DNN adaptation workflows. State-of-the-art
DNN adaptation algorithms follow a similar process. They
take a source DNN model and adaptation goals, and search
for variants of the base model architecture that fits each sce-
nario. The search explores a high-dimensional vector space,
where each hyperparameter of the DNN (e.g., #layers, #filters,
kernel size, and quantization) corresponds to a specific dimen-
sion. The search process runs iteratively until the costs of the
current model optimally match the adaptation goal. Typical
search strategies include evolutionary search [25,77], gradient
descent [14, 31], and RNN-based search [72, 73].

Adaptation executor. In light of this common process, we
design an abstraction, an Adaptation Executor, that col-
lects all adaptation settings as a closure, and exposes three
function APIs (Init(), Measure(), and Adjust()). Init()
loads the adaptation settings, the model, and the constraints,
and then instantiates the executor that runs the chosen adap-
tation algorithm (default or user specified). Measure() is
called after each adaptation iteration to determine the costs
of the current model (e.g., model size or accuracy). Custom
metrics and profiling mechanisms can be incorporated by im-
plementing the Measure() API. Adjust() will then tune the
control knobs of the algorithms (e.g., dimension-wise step
size, threshold, or learning rate) to steer the cost refinements
towards the adaptation goals in an optimal direction. These
APIs abstract away the inner workings of heterogeneous adap-
tation algorithms in a universal approach, obviating the need
to directly annotate the models to embed the adaptation logic.
A new adaptation algorithm can interface with Mistify by
implementing the above APIs, and the user can specify the
preferred algorithm in the configuration.

Case study: Running MorphNet via an adaptation execu-
tor. The vanilla DNN training starts with defining an accuracy
loss function (Lout put) based on the difference between the
model outputs and the ground-truth labels. The loss is back-
propagated to each layer i (with parameter qi) as Li(qi). Each
layer calculates the gradient of the loss, and optimizes the
parameters (qi) iteratively by minimizing the loss via gradient
descent. Namely, qnew

i = qold
i �h ·—qi Li(qi).

MorphNet (a recent gradient based search algorithm [31])
converts the resource costs of DNNs as additional penalty
terms of the loss function. This way, the DNN architecture
is iteratively optimized via gradient descent along with the
vanilla DNN training. For instance, the “useless” weight pa-
rameters will be suppressed to zero and trimmed during train-
ing when minimizing the overall loss, as they do not contribute
to reducing the accuracy loss but increase the architectural
loss. The adaptation process completes when each structure-
related cost (e.g., number of FLOPs) satisfies the correspond-
ing constraint, or when the pre-defined maximal running time
is reached for the non-converged cases.

Manually adapting a model using MorphNet requires sev-
eral steps: (i) selecting the penalty term for each opera-
tor appearing in the DNN (e.g., the Gamma regularizer for
BatchNorm), (ii) specifying the input and output operators of
the model, (iii) instantiating the penalty terms with the right
arguments such as the trimming threshold and the learning
rate, and adding them to the overall training loss, and (iv)
adding the cost monitoring operators and the termination con-
ditions. All these steps are needed for each adaptation target,
and require modifying the source code of the DNN definition
and training scripts. In contrast, Mistify only requires users
to specify the high-level configurations (e.g., the adaptation
algorithm, the trimming threshold) and adaptation goals (e.g.,
memory usage, number of FLOPs) in a single JSON file.

To encapsulate the MorphNet algorithm in a Mistify adapta-
tion executor, we implement the APIs as follows. For Init(),
we additionally implement the operations of deriving the po-
sitions (e.g., Conv layers) to add architectural loss terms, es-
sentially by first finding the input layers, and then traversing
the whole DNN graph topologically along the dependencies
to insert the loss terms into the corresponding layers until
the outputs. Measure() simply calculates the resource and
performance costs of a given DNN independent of the adap-
tation algorithms. For Adjust(), we implement the logic of
setting the learning rate of the loss term corresponding to each
resource and/or performance constraint. The implementation
of these APIs is lightweight (Section 7).

4.3 Collective adaptation
Multiple adaptation goals often share similar initial steps or
training iterations. Handling each adaptation goal indepen-
dently is very inefficient when deploying the same model to
a range of devices. Therefore, Mistify provides a mechanism
to “merge” adaptation goals to avoid duplicating the same
steps. We parse the adaptation goals into an n-ary tree struc-
ture following certain rules. Goals along a branch are fulfilled
one by one serially in a single pass. We also design a tree
traversal mechanism to meet the constraints (e.g., time and
space usage) of all goals simultaneously.

Adaptation goals compilation. As mentioned above, each
single goal consists of several resource and performance
constraints, and can be abstracted as a multi-dimensional
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Figure 4: Example adaptation goals parsed into a tree.

vector. Combining the hardware specifications and perfor-
mance constraints, we generate a partial order of all adap-
tation goal vectors, from the least demanding to the most.
Figure 4 shows an example of 7 goals (C1 to C7), each with
two constraints (memory usage mem and computation com-
plexity comp). Goals Ci and Cj follow a strict order, Ci <Cj,
only when Ci.mem <Cj.mem and Ci.comp <Cj.comp.

Following the partial order between goals, we further gen-
erate a tree structure, with each node representing a goal, and
each edge leading to one of its immediate more demanding
goals. Hence, each branch of the tree corresponds to an inde-
pendent adaptation path (marked with a red arrow in Figure 4).
Along each path, every two goals are consistently ordered
on all constraints. This ensures that they can be collectively
adapted in one pass without conflicts. Note that the accuracy
does not strictly increase over the path. When Mistify starts
to traverse a path from one point to the next, the accuracy
will first drop to a certain level, and then climb back while
the training continues. Meanwhile, the resource profiles will
move to the most desirable positions.

Given the tree structure, we first uniformly expand the
architecture of the original DNN so that, for each constraint
dimension, its actual cost value is larger than that of the root
node (the least demanding goal). Then, starting from the root,
we run the encapsulated adaptation algorithm to trim the DNN
architecture iteratively along each adaptation path. Every time
a goal is satisfied, the corresponding version of DNN is stored
as a checkpoint for future use.

Note that even though the mapping between partially or-
dered goals to a tree structure is usually not unique, we find
that there is only marginal difference in the overall adapta-
tion time between different mappings. Hence, it is not worth
optimizing the mapping given it is NP-hard.

Structure loss scheduling. When executing the adaptation
along a path, an essential question is how to control the adapta-
tion towards the optimal direction (via Adjust()), i.e., how to
meet multiple desirable constraints simultaneously. Although
this can be achieved by forking a new adaptation schedule
for each change of the adaptation “direction” [69], constant
forking does not scale to a large number of adaptation goals
and can not achieve fine-grained continuous control.

Instead, we adjust the control knobs based on the weighted
combination of the corresponding architecture losses. The
overall DNN loss function is the sum of the normal loss (L)
and architecture losses corresponding to a set of constraints
{Gi}. For each Gi, their control knob (e.g., learning rate for
gradient-based algorithms) can be viewed as a weight param-

eter wi. Hence, the overall loss Lall = L +Âi wi ·Gi. To adjust
the adaptation “direction” towards a specific constraint fi, we
only need to increase the weight wi of the loss Gi.

Initially, all the weights wi are equal and sum to 1. Suppose
for the loss of constraint fi we have the initial value G (0)

i and
the target value G (+)

i . Then, for every k training iterations (em-
pirically set to 200), we reschedule the weights once. The n-
th iteration weight w(n)

i is calculated as Share(n)i /Âi Share(n)i ,

where Share(n)i =
G (+)

i �G (n�1)
i

G (+)
i �G (0)

i
. In essence, we proportionally

assign the next value of the weight w(n)
i according to how far

the corresponding loss value G (n�1)
i deviates from the target,

and finally normalize these weights.

5 Privacy-aware fine-tuning at the edge
After adjusting the model architecture with respect to the
resource and performance constraints, the weight parameters
need to be fine-tuned before actual deployment. If all training
data are collected and stored in the cloud, parameter tuning
simply follows the standard training process for the adapted
DNN. The challenge arises when specializing the DNNs only
using the local contexts of edge devices.

Recall (Section 2.2) that DNNs are hard to train with a
small dataset, usually the case for individual edge device,
and can easily overfit. On the other hand, the data local to
each device is often more relevant but private, making it diffi-
cult or infeasible to aggregate the data from different devices
into a larger dataset for centralized training. Therefore we
need to balance protecting edge data privacy and ensuring
training quality (in terms of how well individual models gen-
eralize). While many works (e.g., federated learning [19]
and others [20, 52, 70]) address decentralized private DNN
training, they assume different endpoints train the same DNN
structure with different local datasets. The situation is differ-
ent for Mistify, where the models on different devices have
different architectures to meet specific adaptation goals.

Knowledge distillation (KD). To tackle the aforementioned
dilemma, we need a mechanism for DNN “knowledge” shar-
ing between distinct peer models and without explicitly ex-
changing private data between devices. Fortunately, mutual
knowledge distillation [15, 81] comes to the rescue. When
training a DNN model (M1, the student model) from scratch,
leveraging additional help from another similar but indepen-
dently trained model (M2, the peer teacher model) can signif-
icantly improve the validation accuracy of M1.

Specifically, the optimization of parameter qi follows:
qi = qi � h—qi{f(y,M1(x)) + j(M2(x),M1(x))}, where —q
denotes taking derivatives with respect to the variable q, f and
j denote the loss functions (e.g., cross-entropy) respectively
defined for the ground-truth labels and the teacher model
M2’s outputs, and h denotes the learning rate as usual. The
corresponding parameter values in M2 are incorporated as
added constraints. This way, the student model receives extra
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supervision from the teacher model during training, beyond
optimizing for conventional learning objectives like the cross-
entropy loss subject to the ground-truth training labels.

5.1 Client: KD-enhanced parameter tuning
Observe that a DNN trained locally on an edge device encap-
sulates the “knowledge” extracted from the private local data.
Therefore, to take full advantage of the edge data distributed
across devices without exchanging the private data, our algo-
rithm instead shares the DNN models trained independently
on each device. The ensemble of DNNs from other devices
serves as the “teacher” to guide the current device’s model
just like in standard mutual knowledge distillation.

Our algorithm proceeds as follows.
(i) Each participating endpoint device (Ei) first tunes their

adapted version of DNN model (Mi) with locally available
training data until convergence.

(ii) Each endpoint sends its current model along with its
loss and accuracy statistics to the central coordinator and waits
for a response, namely a set of models (M1 to Mn) trained
on the other devices. An operator is added over the n outputs
of these models (M1 to Mn), taking their average as the final
output of the model ensemble.

(iii) KD-enhanced tuning is then invoked to optimize the
parameters qi of model Mi: qi = qi � h—qi{f(y,Mi(x)) +
j( 1

n�1 Â j 6=i M j(x),Mi(x))}. Namely, the outputs of each local
model Mi are compared with both the ground-truth labels y
and the outputs of the assembled teacher model to calculate
loss. We follow similar hyperparameter settings as in [37],
using cross-entropy loss for f and Kullback-Leibler (KL)
divergence [45] for j to measure the distance between the
teacher and local models, and a default value 0.001 for h.

(iv) Now loop over steps (i) to (iii) until the model finally
converges. Noticeably, to improve generalization and avoid
being skewed by some poor performing models, we randomly
skip max(n/10,1) of the models used for each round of KD-
enhanced tuning in step (iii).

Privacy-aware tuning. Although less privacy-sensitive than
the training data, DNN models can still leak information from
the private training data. To overcome this privacy leak, we
can add noise to the fine-tuning process to achieve differential
privacy [39, 56]. The noise can be added to either the training
data, or the model parameters sent to the Mistify server. How-
ever, the latter provides less privacy protection, is easier to
“denoise”, and does not provide fine-grained control easily.

Therefore, we augment the algorithm above with an op-
tional step after (i). Specifically, we add Laplacian noise to
the local training data, and train the model (Mi) for additional
epochs until convergence. Then, this noisy model (M0

i) is sent
to the central coordinator in step (ii). This provides differen-
tial privacy to the model parameters and reduces information
leakage from the private data. The level of noise added is
chosen empirically according to existing privacy-preserving
machine learning practice (e.g., PATE [56] and Myelin [39])

with the same level of privacy loss preference (e.g., e < 5).
Mistify is amenable to this differentially private approach

by design. As Mistify aims to scale to a large batch of end
devices (hundreds or more), potentially there is a large number
of peer models to draw from during the intermediate steps.
Even if the individual noisy intermediate model (M0

i) is less
accurate than its noiseless counterpart, the accuracy loss is
compensated for by the ensemble of other peer models [55].

5.2 Server: Client model coordination
One particular concern of our aforementioned algorithm is
whether the models used for KD-enhanced tuning indeed add
knowledge rather than noise. Fortunately, our approach is
supported by the evidence of correlation between training
data and the models. First, datasets from nearby edge devices
exhibit spatio-temporal correlation [32,33,78]. Second, given
training datasets sufficiently similar in their semantic contexts
(e.g., types of objects, hidden feature occurrence frequencies),
the models thus trained perform semantically equivalent func-
tionality and can provably generalize to achieving the same
capability [53, 67, 80].

In practice, we use common spatio-temporal hints (e.g.,
location, time, view angle) sent by each client along with their
models as a coarse-grained mechanism to estimate data corre-
lation. There are myriad alternative lightweight approaches
to measure dataset similarity without piece-wise comparison
of the actual raw data (e.g., by calculating dataset feature
summaries [46, 57]). They are easily pluggable into Mistify
with the corresponding API implementations. Regardless of
the exact metrics used to measure correlation, they are repre-
sented as multi-dimensional vectors. The central coordinator
on the Mistify server maintains a Locality-Sensitive Hash-
ing (LSH [26]) structure to index the vectors for large-scale
nearest neighbor lookup at a sublinear complexity [21].

6 Run-time model adaptation
Existing algorithms and libraries only port DNN models stat-
ically in a batch mode. Instead, Mistify further provides a
streaming mode, where the client actively monitors runtime
changes of the resource and performance constraints and re-
quests new model generation in response to such dynamics.

Constructing a multi-branch model. To support on-the-fly
adaptation to fluctuating resource constraints, each DNN
model is further constructed in a multi-branch form (Fig-
ure 5) during the architecture adaptation process. First, the
aforementioned adaptation algorithm is triggered as usual
until the constraints specified in the configuration are satis-
fied. Now, besides continuing to adapt to other configurations,
a new adaptation thread is spawned. This thread separately
adapts the current DNN into a k-branch DNN. For instance,
a 5-branch DNN is built by freezing the first few layers and
adapting the remaining layers towards 5 different configura-
tions, whose resource budgets range from 1

3 of to 3 times that
of the original DNN model. The branches share the same base,
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Figure 5: Multi-branch model construction.
achieve the same inference task, but satisfy different resource
budgets and performance goals. In practice, k is set based on
the extent of fluctuation typically observed in the resource
availability and performance targets. After fine-tuning the pa-
rameters of the multi-branch DNN, we add a case conditional
operator (e.g., tf.case for Tensorflow) between the base and
different branches.

Foreground path: downtime free branch switching. The
foreground path is tightly coupled with the user-facing infer-
ence serving logic, performing real-time adjustments of the
current DNN model based on the dynamic constraints. To
achieve this, Mistify picks a branch from the multi-branch
DNN with the closest resource and performance profiles. The
branch switching is done on the fly by setting the correspond-
ing value of the conditional variable (the red arrow in Figure 5)
of the case operator in the DNN, avoiding additional overhead
such as memory allocation and runtime resource instantiation.

Background path. Meanwhile, in the background, the Mist-
ify client will send the new adaptation configuration to the
Mistify server. The server compares the new configuration
with existing ones in terms of their resource constraints, based
on the partial ordering explained in Section 4, in order to re-
trieve the immediate predecessor configuration of this new
incoming one. Then, the new DNN model is incrementally
adapted from the corresponding “predecessor” DNN, until
the constraints of the new configuration are met.

7 Implementation
We implement Mistify on TensorFlow (TF) 1.13 [13] (Fig-
ure 2), consisting of around 8.5K lines of Python code for
both the server and client modules. The source code will be
available later at [8].

Interfacing with the native environment. Recall that Mist-
ify can be activated at two stages (Section 3), when initializing
inference serving or during the run time. For the former, the
function tfhub.load() is intercepted to trigger the model
porting process (when fed the special argument). For the lat-
ter case, the Mistify runtime monitor is by default registered
with the live Session of the TensorFlow engine to collect
runtime statistics (tf.RunMetadata), and invoke the Mistify
client to initiate the re-adaptation process on demand. The
foreground branch switching is implemented by assigning a
suitable value to the predicate variable of the tf.case op.

Encapsulating adaptation algorithms. Mistify implements
wrappers over two representative, state-of-the-art adaptation

algorithms, MorphNet [31] (using sparsifying regularizers)
and ChamNet [25] (using evolutionary algorithms). Adding
new adaptation algorithms to Mistify is fairly easy, following
the process outlined in the MorphNet case study in Section 4.2.
Each wrapper implementation around these algorithms for
Mistify requires around 100 lines of code (LoC), which is
fairly modest compared to the thousands of LoC in the origi-
nal codebases of these algorithms.

8 Evaluation

Hardware setup. Following Figure 2, a Linux server with
8-core 2.1 GHz Intel Xeon CPU, and NVIDIA 2070 GPU acts
as the server side of Mistify. For the client-side operations of
Mistify, we use a server with a low-end NVIDIA P600 GPU,
a Google Edge TPU [4], and a Samsung S9 smartphone, to
represent diverse types of edge hardware.

Application benchmarks. Computer Vision (CV) and Natu-
ral Language Processing (NLP) tasks almost dominate deep
learning use scenarios. We select one workload each, Object
Recognition and Question & Answering corresponding to the
two application categories, as the representative benchmarks.
While there are numerous other CV and NLP applications, for
example, scene segmentation for CV and machine translation
for NLP, these are based on DNN models derived from the
same base structures as those used for our benchmarks (e.g.,
ResNet blocks for object recognition and detection, Trans-
former blocks for Q&A and named entity recognition). There-
fore, the results obtained for our benchmarks are representa-
tive of a wide range of scenarios.

Specifically, we select three carefully designed, state-
of-the-art DNNs, MobileNet [38], ResNet50 [35], and
ResNeXt101 [51], with increasing computation complexity
(0.5 to 16 GFLOPs), parameter size (16 to 320 MB), and
accuracy (68% to 79%) for object recognition. MobileNet
is originally designed for mobile devices, whereas the other
two mostly run in the cloud. For Q&A, the input is a ques-
tion along with a context paragraph containing the answer
to the question. The “accuracy” metric for this is the Exact
Match (EM) score, i.e., whether the output answer exactly
matches the question. We prepare two DNNs, BiDAF [68],
and BERT [28]. The former is lightweight but task-specific
(customized for Q&A) (10⇥ MB), whereas BERT is much
larger, generically supporting various downstream tasks.

Datasets. We use domain specific standard datasets to adapt
network architectures, fine-tune their parameters, and val-
idate their performance. Specifically, ImageNet [27] and
Cifar100 [44] are used for object recognition, whereas
SQuADv1.1 [61] is used for Q&A.

8.1 Collective architecture adaptation

Collective adaptation time. We generate 128 different
adaptation configurations based on four DNNs (MobileNet,
ResNet50, ResNeXt101, and BERT). Among these, the least
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Table 2: Accuracy - collectively adapted models (Mistify)
vs individually adapted models (Per-case)

DNN Per-case (%) Mistify (%) Relative diff (%)

MobileNet 55.8 54.7 -2.0%
69.4 69.5 +0.1%

ResNet50 68.2 68.0 -0.3%
72.9 72.5 -0.6%

ResNeXt101 74.0 74.3 +0.4%
77.6 77.9 +0.3%

BERT 71.4 70.6 -1.2%
79.1 78.8 -0.4%

and most demanding configurations respectively constrain
the adapted DNNs to 2⇥ and 0.5⇥ the default DNN memory
usage and computation complexity. Then, we select different
subsets of these 128 configurations, adapt all of them with and
without Mistify, and compare their overall time consumption
to evaluate our collective adaptation approach (Section 4.3).
Figure 6(a) shows the relative time needed without Mistify
over with Mistify. Mistify accelerates the overall adaptation
time almost linearly with the number of configurations when
it is less than 10, consistently achieving around 10x accelera-
tion even for DNNs as small as MobileNet. For large DNNs,
such as BERT, that are structurally more amenable to adap-
tation (i.e., easier to prune a subset of the network without
affecting validation accuracy), the acceleration scales well
with over 100 configurations.

Adaptation quality. Next, we examine the quality of the
DNNs collectively adapted by Mistify versus those adapted
individually. Table 2 shows two rows for each network, cor-
responding to compression and expansion by a factor 4 with
respect to the complexity and memory consumption of the
original DNN. This spans the range from low- to high-end
hardware [75]. For instance, the inference times of the com-
pressed and expanded ResNet50, running on a Google Nexus
5 (low-end, 2013 model) and a Samsung Galaxy 10 (high-end,
2019 model), are both around 30 ms, low enough for practi-
cal usage. “Accuracy” corresponds to the EM score (exactly
matching the ground-truth answer) for NLP. To avoid being
affected by the parameter tuning quality, all adapted DNNs
are trained with the whole datasets, and without considering
any device-specific constraints. Mistify’s collective adaptation
achieves almost the same accuracy compared to the case-by-
case strategy, with less than 0.5% accuracy loss for most cases
and only 1% for the worst scenario (e.g., when adaptation con-
figurations are incompatible with total ordering, causing the
overall adaptation path to detour substantially). These are
within the typical range of accuracy loss in exchange for
resource efficiency [64].

8.2 Parameter tuning
We use a more specialized dataset Cifar100 to evaluate pa-
rameter tuning on the edge. The whole dataset is partitioned
into subsets, mimicking the local data of each edge device.
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Figure 6: Speed and performance improvements for ar-
chitecture adaptation and parameter tuning with Mistify.
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Figure 7: The ratio of communication time over training
time, reflecting the scalability of fine-tuning in Mistify.

Convergence speed and quality. We compare the conver-
gence speed and test accuracy for three different networks
(MobileNet, ResNet50, and ResNeXt101), with and with-
out Mistify’s support for parameter tuning (Section 5.1).
Figure 6(b) shows that, even without additional data, KD-
enhanced parameter tuning (solid lines) already achieves over
3⇥ faster convergence as well as better accuracy.

Scalability. We assess the scalability of the parameter tuning
algorithm (Section 5.1) in terms of the ratio of the commu-
nication time over the training time given different network
bandwidths. We consider two model extremes, MobileNet
(very compact) and BERT (very sophisticated). In Figure 7,
each line corresponds to a specific network bandwidth in
MB/s. When the network bandwidth exceeds 5 MB/s, our al-
gorithm is consistently scalable, with communication merely
taking less than 15% of the time relative to training. Fur-
ther, the lines almost flatten when more than three neighbors’
DNNs are used, so using more peer DNNs for our tuning does
not impact scalability.

Accuracy of parameter tuning. We randomly partition Ci-
far100 and SQuAD each into 5 subsets, each used by an edge
device for local training. Then, we compare the fine-tuning ac-
curacy using different approaches. Table 3 shows that knowl-
edge distillation (KD) improves parameter tuning accuracy
by 40% over local training alone. Compared to the ideal distil-
lation case where an exceptionally accurate teacher network
is available (a pre-trained, cloud version), the ensemble of 4
peer DNNs achieves within 10% of the optimal KD, despite
using half the training data and adding differential privacy to
the model parameters.

8.3 Run-time model re-adaptation overhead

The foreground path. Switching DNNs in response to the
run-time dynamics (Section 6) incurs two types of overhead:
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Table 3: The accuracy of parameter tuning with Mistify.

Scenario DNNs (%)
MobileNet ResNet50 BERT

Local training 39.7 43.9 22.5
KD 66.4 75.3 78.8

1-peer tuning 53.8 61.5 51.9
2-peer tuning 58.1 67.2 65.6
4-peer tuning 59.8 69.0 71.8

Table 4: Additional number of parameters and DNN
switching time overhead.

DNN Addi. / orig. params (M) Time (s)
MobileNet-b3 2.67 / 3.43 2.11MobileNet-b5 4.57 / 3.43
ResNet50-b3 18.2 / 23.9 3.34ResNet50-b5 31.7 / 23.9

BERT-b3 92.4 / 110 21.84BERT-b5 171 / 110

i) additional memory to store alternate DNNs; and/or ii) down-
time for loading the new DNN and on-demand preparation
of the resource runtime. The model size corresponds to the
in-memory size, not the on-disk size of the serialized form.
Table 4 illustrates the trends of additional memory or time
consumption for different DNNs. The suffix “-bk” means
adding k branches to the adapted DNN. Holding 75% to 1.5⇥
more parameters in memory is an affordable cost for modern
hardware, but can save us 2 to 20 seconds by avoiding loading
new DNNs on the critical path of inference serving.

Latency of modifying the configuration tree. We also mea-
sure the latency of generating a configuration tree (Sec-
tion 4.3) given various numbers of configurations. Using 1000
configurations, each consisting of 4 constraints, the whole tree
is built in 37 ms, and inserting into an existing configuration
tree only takes microseconds.

8.4 End-to-end performance
Based on the device specifications in Table 1 and typical
latency requirements for vision and NLP tasks [1, 63], we
generate different combinations of memory, complexity, and
latency constraints as the execution settings, and evaluate
the quality of the DNN models tailored by Mistify. We fur-
ther compare the manual overhead involved in Mistify with
running MorphNet [31] and ChamNet [25] directly.

Balancing performance and resource usage. We set the
memory budget to range from 0.1 GB to 10 GB, covering
embedded IoT devices to edge servers. The computation com-
plexity constraints for running inference on a DNN vary be-
tween 0.1 to 100⇥ GFLOPs, roughly equivalent to achiev-
ing 10s of microseconds of inference latency for resource-
constrained devices and powerful edge servers alike.

Figure 8 shows the three-way trade-offs between accuracy,
latency, and resource consumption. The top three plots corre-
spond to recognition, the lower three to Q&A. Mistify reduces

the compute requirements by over 20⇥ with less than 5%
accuracy loss for the CV workloads, and could achieve 50⇥
reduction of complexity in exchange for 12% relative quality-
of-result degradation. Note that the accuracy loss is due to
the adaptation algorithms, not Mistify itself. Similarly, Mistify
consistently achieves a near-optimal and practically usable
accuracy (comparable to existing hand-tuned on-device mod-
els in production [25, 49]) with between 0.5 to 10 GB of
run-time memory usage, hence significantly decreasing the
deployment complexity for state-of-the-art DNN models on
the edge. Mapping resource consumption to inference time,
Mistify consistently achieves near-optimal accuracy perfor-
mance even when the latency requirements vary by 8 to 10⇥,
corresponding to using accelerator hardware ranging from
advanced, datacenter grade to low-power, lightweight devices.

Reducing manual overhead. We further assess the end-to-
end manual effort and time overhead needed to port a pre-
designed DNN to different edge devices. The manual over-
head is quantified with two metrics: lines of code (LoC)
needed for code addition or modification, and number of files
(NoF) touched. The former depicts the overall overhead, and
the latter one captures the scatteredness of the modifications,
which correlates with the probability of making mistakes. For
NoF, we follow a typical file organization [12], i.e., model
definition, training, evaluation, and other stages are separated
into different files or folders.

Table 5 demonstrates that Mistify reduces the overall modi-
fication needed in LoC by 7 to 10⇥. More importantly, Mistify
exposes high-level configuration files to users, obviating the
need for source script modifications. Mistify only requires edit-
ing one file. Thus, it can reduce the number of files users need
to access by orders of magnitude (over 100⇥). Finally, Mist-
ify can batch-adapt to 100 execution settings using less than
3% of the time needed for the other approaches, highlighting
the enormous potential of harnessing the correlation among
configurations to optimize the overall porting efficiency.

9 Related work
We are not aware of any prior work that aims at providing an
automatic porting service bridging DNN design and seamless
edge deployment. The most related work revolves around
model adaptation and knowledge distillation algorithms.

Model adaptation. Production DNN models hand-tuned
by experts can run fast and accurately on mobile de-
vices [38, 40, 49, 62]. The essential techniques include quan-
tization, sparsification, and neural block optimization. Re-
cently, Distiller [11], AMC [36], MorphNet [31], OFA [22],
ChamNet [25], and many neural architecture search (NAS)
works [17, 50, 65, 83, 84] systematically explore the search
space for the optimal neural network structure, obviating the
hand-tuning by experienced experts. However, none of them
is directly usable like Mistify, because all are still algorithms,
requiring manually annotating source code to construct the
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Figure 8: The dynamic tradeoff between latency, accuracy, and resource consumption with Mistify.
Table 5: Comparison of overhead for porting DNN to edge with/without Mistify.

Metrics 2 configurations 10 configurations 100 configurations
Manual Mor. Chm. Mistify Manual Mor. Chm. Mistify Manual Mor. Chm. Mistify

Lines of Code >0.2k 55 97 6 >1k 138 159 14 >10k 782 511 104
Num of Files 6 4 5 1 30 12 32 1 300 102 302 1
Total time (%) 100 54.2 100 12.5 100 2.86

adaptation logic, hence not scalable to edge scenarios with
multiple adaptation instances. None supports on-device fine-
tuning or considers run-time adjustments. Mistify is orthogo-
nal as an automated system framework and can incorporate
them as pluggable algorithmic modules.

While frameworks like TF-Lite [2], PyTorch [58], and
MCDNN [34] provide some model compression and switch-
ing support, Mistify differs in the techniques supported and
the level of manual efforts needed. To generate a good model,
careful model architecture design is essential, which nor-
mally requires significant expertise. Mistify abstracts away the
model architecture searching process with the configurable
APIs to make it accessible to non-experts, automating the end-
to-end process and optimizing for batch model generation.

Knowledge distillation. Initially proposed as an optimization
for model training, knowledge distillation transfers "knowl-
edge" (i.e., parameter values) from a teacher network to a
student network [37]. The idea is then extended to mutual
distillation among peer models [15, 47, 81]. Mistify adopts
and revises the general idea in a selective distillation manner
to improve edge training accuracy while enhancing privacy.

Edge-centric deep learning inference engines. Emerging
frameworks such as TF-Lite [2] and more [7, 29, 54] are op-
timized for inference serving on mobile and IoT devices,
aiming to hide the deployment complexity from developers
and device users. However, the interface exposed by exist-
ing engines only permits model download from the cloud (or

the central server), without tailoring to edge runtime require-
ments and constraints, proactively or reactively. In contrast,
Mistify provides an interface for two-way state exchange and
a feedback loop between the cloud and the edge, facilitating
targeted model design and efficient execution on the edge.

10 Conclusion
Deep learning models today are typically trained in the cloud
and then ported to edge devices manually. Not only is manual
porting unscalable, it indicates a lack of separation between
model design (optimized for accuracy) and deployment (opti-
mized for resource efficiency).

In this paper, we design and implement Mistify, a frame-
work to automate this porting process, which reduces the
DNN porting time needed to cater to a wide spectrum of edge
deployment scenarios by over 10⇥, incurring orders of mag-
nitude less manual effort. Mistify not only provides a useful
service to complete the transition from DL workload design
to deployment on the edge, but cleanly separates these two
stages. We believe the system will further facilitate advanced
model design and seamless model deployment.
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Abstract
Resource allocation and scheduling strategies for deep

learning training (DLT) jobs have a critical impact on their av-

erage job completion time (JCT). Unfortunately, traditional

algorithms such as Shortest-Remaining-Time-First (SRTF)

often perform poorly for DLT jobs. This is because blindly

prioritizing only the short jobs is suboptimal and job-level

resource preemption is too coarse-grained for effective miti-

gation of head-of-line blocking.

We investigate the algorithms that accelerate DLT jobs.

Our analysis finds that (1) resource efficiency often matters

more than short job prioritization and (2) applying greedy

algorithms to existing jobs inflates average JCT due to overly

optimistic views toward future resource availability. Inspired

by these findings, we propose Apathetic Future Share (AFS)

that balances resource efficiency and short job prioritization

while curbing unrealistic optimism in resource allocation.

To bring the algorithmic benefits into practice, we also build

CoDDL, a DLT system framework that transparently han-

dles automatic job parallelization and efficiently performs

frequent share re-adjustments. Our evaluation shows that

AFS outperforms Themis, SRTF, and Tiresias-L in terms of

average JCT by up to 2.2x, 2.7x, and 3.1x, respectively.

1 Introduction

Deep learning has become a key technology that drives in-

telligent services based on machine learning such as face

recognition [51,56,57], voice assistant [28,29,46], self-driving

cars [11, 16, 40], and medical image processing [35, 43]. Prac-

tical deep learning models often require training with a large

number of samples for high accuracy, so it is common prac-

tice to accelerate deep learning training (DLT) with parallel

execution using multiple GPUs. Thus, today’s GPU cluster

for DLT accommodates running multiple distributed DLT

jobs that multiplex the shared GPUs.

Minimizing the average job completion time (JCT) is often

a desirable goal, but existing approaches are ill-suited for two

reasons. First, existing DLT schedulers [24,34] tend to priori-

tize only "early-finishing" jobs, but we observe that prioritiz-

ing "late-finishing but scalable" jobs is key to average JCT re-

duction. Algorithms such as Shortest-Remaining-Time-First

(SRTF) [44] that prioritize early-finishing jobs have been

shown optimal when the throughput scales linearly with the

allocated GPUs [48]. However, this does not apply to DLT

jobs in general as evidenced by the fact that even a simple

fairness scheme such as Max-Min [20] often achieves better

average JCT than SRTF. Second, existing algorithms are typ-

ically coupled with non-elastic resource allocation [24, 55],

which always allocates the requested number of resources

to each job and rarely regulates it. This is inherently inef-

ficient as it disallows share re-adjustment at runtime even

when some GPUs are underutilized or idle. Also, job-level

resource preemption is often too coarse-grained for effective

mitigation of head-of-line (HOL) blocking.

In this work, we investigate scheduling algorithms that

accelerate DLT jobs. Our rigorous analysis and experiments

with real-world DLT traces reveal the following. First, it

is critical to consider both resource efficiency and short job

prioritization for average JCT reduction. This is because real-

world DLT workloads typically include relatively short jobs

whose throughput scales poorly as well as highly-scalable

jobs that run longer than others. In such scenarios, it is

detrimental to prioritize only short jobs as itwould reduce the

aggregate resource efficiency that ends up with average JCT

blowup. Second, designing an optimal algorithm is infeasible

as the optimal past decisions would highly depend on the

future jobs. In fact, repeatedly applying a greedy algorithm

leads to grossly poor behavior due to its overly optimistic

view toward future resource availability.

Incorporating the above findings, we draw a rule-of-thumb

of elastic resource sharing for average JCT reduction: more

resources to efficient jobs if the resource contention is heavy

in the future, otherwise more resources to short jobs. This

indicates that the scheduler should proactively prepare for

the contention in the future by utilizing current resources

more efficiently (see Section 3.2 for details). However, the
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future is typically unknown. Thus, of other possible ways to

achieve it, we propose a scheduling algorithmwhich assumes

that the future will be similar to the past, hence the name

Apathetic Future Share (AFS). By assuming that the future

load still exists, and that the level of it will be similar to the

past, we do not rush into overly biasing to either efficiency

or shortness. Instead, we gracefully adapt to the change of

contention by re-adjusting shares of all jobs at each churn

event. Our evaluation shows that this heuristic is highly

effective in real-world DLT traces. AFS outperforms existing

algorithms like Tiresias [24] and Themis [34] by 1.9x to 3.1x

and 1.2x to 2.2x in average JCT reduction.

To deliver the algorithmic benefits to the real world, we

also implement CoDDL, a DLT system framework that effi-

ciently supports elastic share adaptation. Users of CoDDL

simply submit a model based on a single GPU, and the sys-

tem transparently parallelizes it with an arbitrary GPU share

determined by the scheduler. The system handles frequent

share re-adjustments efficiently via fast cancellation of out-

dated in-flight re-adjustment commands, which avoids poten-

tial thrashing on a burst of reconfigurations. It also overlaps

job execution and slow initialization of a newly-allocated

GPU, which effectively minimizes the idle time of GPUs

during reconfiguration.

Our contribution is three-fold. (1) We show the impor-

tance of considering both resource efficiency and short job

prioritization for average JCT minimization. We present

empirical evidence with real-world traces and an analytical

model that considers both to reduce average JCT. (2) We

show that handling future jobs requires proactive prepara-

tion in current share calculation. We demonstrate that a

simple heuristic like AFS brings significant benefits to av-

erage JCT reduction. (3) We design and implement CoDDL,

which enables efficient realization of elastic share adaptation.

2 Background and Motivation

We begin by describing the DLT job scheduling problemwith

our underlying assumptions. We then present the limitations

of existing schemes and discuss an alternative as well as a

set of new challenges it poses.

2.1 Problem and Challenges
We investigate the problem of scheduling multiple DLT jobs

in a GPU cluster. A DLT job trains a deep neural network

(DNN) that can utilize multiple GPUs for parallel execution.

We assume that neither the arrivals of future jobs nor their

lengths (training durations) are known to the GPU cluster.
1

We seek to develop efficient algorithms and systems support

to enhance overall cluster performance: minimize average

JCT, enhance cluster efficiency, and alleviate job starvation.

1
For the sake of presentation, we consider the case where job lengths

are available to the GPU cluster in earlier parts of the paper.

Algorithms

Prioritize

short job

Prioritize

efficient job

Elastic

sharing

SRTF [44]

Max-Min [20] △

Optimus [38]

SRSF, Tiresias [24] △

Themis [34] △

AFS

Table 1: Comparison of the algorithmic gain with existing algo-

rithms. △ indicates that it is handled implicitly.

Our approach to improving cluster performance is to de-

sign a job scheduler that leverages elastic resource sharing
among DLT jobs. As opposed to non-elastic sharing [24, 55],

which only selects the jobs to run and allocates the requested

number of resources (job-level coarse-grained scheduling),

elastic sharing decides how many resources to allocate to

each job and regulates it during runtime to better achieve the

performance goal (resource-level fine-grained scheduling).

This approach opens up the possibility of further optimiza-

tion, but it is feasible only when jobs in the workload can

adapt to their changing resource usage with a high degree of

freedom. DLT jobs nicely fit into the category; they can scale-

in/out automatically [1, 4, 45] to utilize more or fewer GPUs,

as they have a common scale-out pattern for data-parallel

training [12, 13]. In a greedy multi-tenant environment, this

implies that DLT jobs always want more GPUs (as long as

it improves training throughput), thus the scheduler should

focus on better distribution of GPUs across jobs rather than

sticking to a fixed (or non-elastic) amount for each job.

Even when jobs can freely change their resource usage,

elastic sharing is not always effective for average JCT reduc-

tion. As regulating the resources of a running job incurs an

overhead, even migrating a job to avoid resource fragmen-

tation produces little gain unless the job’s runtime is long

enough. Also, the fine-grained scheduling via elastic sharing

does not provide any extra benefit for average JCT reduction

if the job throughput scales linearly to the given resources,

where SRTF is proven to be optimal [44, 48]. However, we

find that the DLT workload is one example that could benefit

from elastic sharing. DLT jobs typically run for a long time

in the cluster – the real-world workloads we use (see Sec-

tion 5.1) show up to 2.8 days of average JCT, while a typical
big-data job completes within 30 minutes [19, 26, 39]. Also,

the DLT job throughput is known to scale sublinearly to the

number of allocated GPUs due to inter-GPU communication

overhead for parameter updates.

Putting elastic resource sharing into practice poses a new

set of challenges on two fronts. On the algorithms side, we

find that minimizing average JCT of sublinearly-scaling jobs

requires fine-grained resource preemption that simultane-

ously considers job lengths and resource efficiency. Exist-

ing DLT schedulers either adopt non-elastic sharing that

only conducts a coarse-grained job-level resource preemp-

tion [24, 55], or handles preemption in a less aggressive
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Figure 1: Breakdowns of DLT restart overhead in TensorFlow. De-

tails of models are found in Table 4. Warm-up indicates the execu-

tion overhead seen at the first training iteration.

manner to reduce average JCT [34, 38] (see Table 1). We

investigate these challenges in greater detail in Section 3.

On the systems side, we find that the overhead of existing

DLT auto-scaling [1, 4, 45] and inter-GPU communication

APIs [2, 3] is too large to support elastic-share schedulers

because they require a complete restart of a DLT job when

it updates the resource share. A full restart of a DLT job

often takes tens of seconds (see Figure 1), and elastic sharing

would only aggravate the situation as it tends to incur more

frequent share re-adjustments. To bring the algorithmic

benefit to real-world DLT jobs, we build the CoDDL system

to address these challenges. We investigate these challenges

in greater detail in Section 4.

2.2 Resource Efficiency Matters
Before we present our results in the following sections, let

us look deeper into one central concept: resource efficiency.

Cluster resource schedulers are often coupled with job pre-

emption to curb HOL blocking that inflates average JCT.

For linearly-scaling jobs, the preemption needs to prioritize

short jobs (i.e. SRTF), which can be achieved with job-level

resource preemption alone. In this case, resource efficiency
2

is a non-issue as all jobs have the identical efficiency gain for

the same amount of extra resources. However, sublinearly-

scaling jobs (e.g., DLT jobs) tend to have a different efficiency

gain, so fine-grained balancing is required in prioritizing

either short or efficient jobs for HOL blocking mitigation.

Failing to consider both leads to suboptimal behavior.

Let us demonstrate that the existing algorithms fail to

explicitly consider either efficiency or short job prioritiza-

tion, thus exhibit inconsistent performance across two dis-

tinct workload scenarios. We run two non-elastic shar-

ing algorithms (SRTF and Shortest-Remaining-Service-First

(SRSF) [24]) and two elastic sharing ones (Max-Min and

AFS-L) using two traces.
3
SRSF is similar to SRTF in that

it performs job-level resource preemption, but differs in that

it prioritizes jobs with a smaller remaining service time (i.e.,

a product of remaining time and the number of requested

2
We refer to resource efficiency of a GPU as the marginal throughput in

ratio that it contributes to its job, which drops as a job is given more GPUs.

3
Except for Max-Min, all other algorithms require knowledge on job

lengths in this particular experiment. Max-Min is at a disadvantage.

(a) Trace #9. (b) Trace #3.

Figure 2: QL, CE, and BI (log-scale) during runtime for two traces

in Table 3. MM is Max-Min. Note the different scale of Y-axis in (a)

and (b). Experiment setup is in Section 5.1.

resources), in a way to penalize a job that requires many

resources. Max-Min distributes available resources across

all jobs in max-min fairness, hence performs finer-grained

resource preemption than SRTF and SRSF. AFS-L is our algo-

rithm whose details are deferred to Section 3. It is important

to note that (1) none of the existing algorithms (exceptAFS-L)

is the best in both traces, and more importantly, (2) Max-Min

outperforms both SRTF and SRSF in some cases (5 out of 11

traces in Table 3 in Appendix).

To make our discussion clear, we define three metrics:

• Queue Length (QL): number of pending jobs (yet to be

allocated resources) in the cluster. This metric roughly

measures the busyness of the cluster.

• Cluster Efficiency (CE): aggregate resource efficiency of the

cluster. A larger CE leads to a smaller makespan (elapsed

time to complete all jobs). Let us denote by 𝐽𝑅 the set of

running jobs on an 𝑀-GPU cluster. Then,

𝐶𝐸 ∶=

1

𝑀

∑

𝑗∈𝐽𝑅

Current Throughput of 𝑗
Throughput of 𝑗 with 1 GPU

.

• Blocking Index (BI): average fractional pending time to

remaining time of pending jobs, i.e. it increases as pending

jobs that can finish shortly pend for a long time. Let us

denote by 𝐽𝑃 as the set of pending jobs on an 𝑀-GPU

cluster. Then,

𝐵𝐼 ∶=

1

|𝐽𝑃 |

∑

𝑗∈𝐽𝑃

Pending Time of 𝑗
Remaining Time of 𝑗 with 1 GPU

.

Figure 2 illustrates two distinct workload scenarios with

the above three metrics. Figure 2a presents moderate con-

tention with a relatively few jobs that are submitted to the

cluster, whereas Figure 2b shows heavy contention with a

relatively large number of jobs.

Moderate contention. The average JCTs for SRTF, SRSF,
Max-Min, and AFS-L are 31.1, 32.8, 18.3, and 15.2 hours, re-

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    723



spectively. Note thatMax-Min achieves lower JCT than SRTF

and SRSF. This case is where job-level resource preemption,

being too coarse-grained, results in unnecessary job block-

ing, and in turn poor JCT performance. To see this, let us

consider Max-Min. As the number of submitted jobs is rela-

tively small, Max-Min enables the cluster to accommodate

nearly all jobs concurrently with individual resource-level
preemption. Max-Min does not explicitly aim to deal with

job blocking to reduce average JCT, but its behavior results

in effective mitigation (or even elimination) of it.

On the other hand, SRTF and SRSF impose restrictions on

the number of GPUs each job can utilize (either requested

amount or nothing) with job-level resource preemption. Due

to a small pool of jobs, SRTF and SRSF find it hard to select

a good combination of jobs to utilize GPUs. In Figure 2a,

Max-Min shows better QL and BI than SRTF and SRSF as it

accommodates all jobs in contrast to SRTF and SRSF.

Heavy contention. The average JCTs for SRTF, SRSF, Max-

Min, and AFS-L are 3.53, 3.32, 63.20, 2.40 days, respectively.

SRTF and SRSF achieve lower JCT than Max-Min in this case

as failing to prioritize short jobs aggravates job blocking,

which in turn leads to poor JCT. To see this, let us consider

SRTF and SRSF. Unlike the previous case, the number of

submitted jobs is relatively large, so it is unavoidable to leave

some jobs to starve. SRTF and SRSF mitigate job blocking to

curb it. As the pool of jobs is diverse in terms of the requested

number of GPUs due to its large size, SRTF and SRSF find it

easy to select a good combination of jobs to do so.

On the other hand, Max-Min aims tomaximize the fairness

across submitted jobs rather than to explicitly prioritize short

jobs. As a result, it leaves many (and a growing number of)

short jobs under-served, causing severe job blocking. In

Figure 2b, QL and BI show that Max-Min cannot deal with

a large number of submitted jobs while SRTF and SRSF are

good at prioritizing short jobs and thus able to keep it at bay.

3 Scheduling Algorithm

Our elastic resource sharing scheme strives to balance pri-

oritizing between short and efficient jobs. At first glance,

finding the optimal allocation strategy (possibly, by evalu-

ating all possible allocation candidates) is an NP-complete

problem [17]. Also, future job arrivals (which are unknown

at the time of scheduling) can wreak havoc on previous re-

source allocation decisions that would have been optimal

otherwise. Instead, we first gain insight through rigorous

analysis on a simplified problem, and then factor in practical

concerns of the original problem.

3.1 Overview
Problem.We formally define the DLT scheduling problem

as follows. Let 𝑛 denote the total number of jobs includ-

ing all unknown future jobs. Each DLT job 𝑗
𝑘
(1 ≤ 𝑘 ≤ 𝑛)

is submitted at an arbitrary time to a cluster with a fixed

number of GPUs (𝑀) where each job trains a DL model in

a bulk-synchronous-parallel (BSP) [12, 13] fashion.
4
Every

job in its lifetime incurs two scheduling events (i.e., arrival

and completion)
5
under which the scheduler re-adjusts the

GPU shares of all jobs to minimize average JCT. Specifically,

it strives to find the optimal value of 𝑛-dimensional vector

𝑅𝑢 = {𝑟1,𝑢 , 𝑟2,𝑢 ,⋯ , 𝑟𝑛,𝑢}, where 𝑟
𝑘,𝑢

is the number of GPUs

allocated to 𝑗
𝑘
after the 𝑢-th event (either arrival or comple-

tion, 1 ≤ 𝑢 ≤ 2𝑛).
6
For simplicity, we assume all GPUs have

the identical computing/memory capacity that is accessed

with the identical network latency.

Approach. As aforementioned, one cannot find the optimal

𝑅𝑢 without knowledge on the future jobs.
7
Thus, our goal

is to find a clever heuristic that helps improve overall JCT.

Our high-level intuition is that repeatedly applying greedy

optimization to existing jobs will be "overly optimistic" in

the future when a new job arrives, as it rests on the greedy

assumption that all resources released by finishing jobs will

be used solely by the existing jobs. This implies that the

scheduler assumes all active jobs in the cluster will have

a non-decreasing number of resources at every scheduling

event (i.e. 𝑟
𝑘,𝑢

≤ 𝑟
𝑘,𝑢+1

), which is far from reality except when

there is no more job in the future.

Key assumption.We propose the Apathetic Future Share

(AFS) assumption, which predicts that the resource usage

of each job (except the finishing one) would be the same in

the future, and find the optimized shares based on that. This

is not only simple but it also closely approximates the real

cluster environment where the level of resource contention

does not change dramatically during most of its runtime.

Organization. In what follows, we explain AFS in detail

and discuss its corner cases. First, in a two-job case with the

knowledge on their job length, we gain insight by presenting

a greedy optimization. Next, we extend it to an 𝑛-job case

without the knowledge on the job length by incorporating

the AFS assumption.

3.2 Insight from Two-Job Analysis
Time slot-based analysis. Let us consider a problem with

𝑛 DLT jobs submitted to an 𝑀-GPU cluster all at once in the

beginning. Assume that we know the optimal algorithm to

allocate the GPUs and schedule the jobs, and that Figure 3a

shows the allocation result over time. The jobs are listed

in the order of completion where 𝑗1 finishes first and 𝑗𝑛 last.

𝑡
𝑘
(𝑘 > 1) represents a time slot 𝑘 which denotes the time

interval between the completions of 𝑗
𝑘−1

and 𝑗
𝑘
; 𝑡1 represents

the interval from the beginning to the completion of 𝑗1. 𝑗𝑘 is

allocated 𝑟
𝑘,𝑡

GPUs at time slot 𝑡 . Its share is released and

re-distributed to other jobs at its completion.

4
Discussion on asynchronous training [32, 42] is found in Appendix D.

5
We omit other kinds of events (e.g. eviction timeout) for brevity.

6
Completed or not arrived jobs are allocated zero GPU.

7
Several simple examples are shown in Appendix A.
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Figure 3: Example timelines of jobs.

Optimal allocation for two jobs. Let us consider the sim-

plest scenario in which we have one GPU and two jobs (𝑗𝑎

and 𝑗
𝑏
). We need to allocate the GPU to the shorter job

first. Thus, we compute the lengths of both jobs to ob-

tain the solution, which Figure 3b illustrates: if 𝑗𝑎 turns

out to be shorter, (𝑟𝑎,1, 𝑟𝑎,2, 𝑟𝑏,1, 𝑟𝑏,2) = (1,0,0,1); otherwise,

(𝑟𝑎,1, 𝑟𝑎,2, 𝑟𝑏,1, 𝑟𝑏,2) = (0,1,1,0).

To extend the case to𝑀 > 1, without loss of generality, let

us assume 𝑗𝑎 finishes earlier than 𝑗
𝑏
. Suppose 𝑀 −1 GPUs

have been optimally allocated for 𝑡1 and 𝑡2. How should

one determine which job to allocate the extra 𝑀-th GPU to?

More concretely, let us denote by 𝑤
𝑘
(𝑘 is either 𝑎 or 𝑏) the

total training iterations required for 𝑗
𝑘
to complete and by

𝑝
𝑘,𝑢

the throughput of 𝑗
𝑘
with 𝑟

𝑘,𝑢
GPUs at time slot 𝑢. One

can express 𝑡1 and 𝑡2:

𝑡1 =

𝑤𝑎

𝑝𝑎,1

, 𝑡2 =

𝑤
𝑏
−𝑝

𝑏,1
𝑡1

𝑝
𝑏,2

.

We have two cases to consider. (a) 𝑗𝑎 earns the GPU first.

In this case, 𝑟𝑎,1 and 𝑟𝑏,2 increase by one (hence 𝑝𝑎,1 and 𝑝𝑏,2

will increase accordingly). (b) 𝑗
𝑏
earns the GPU first. In this

case, two possibilities arise depending on which job finishes

first as shown in Figure 3b:

Case (b1): 𝑗𝑎 finishes earlier (i.e.,
𝑤𝑎

𝑝𝑎,1
<

𝑤
𝑏

𝑝
′

𝑏,1

, where 𝑝
′

𝑘,𝑢
is

the throughput of 𝑗
𝑘
with (𝑟

𝑘,𝑢
+1) GPUs at time slot 𝑢). 𝑟

𝑏,1

increases by one and 𝑟
𝑏,2

=𝑀 .

Case (b2): 𝑗
𝑏
finishes earlier (i.e.,

𝑤𝑎

𝑝𝑎,1
≥

𝑤
𝑏

𝑝
′

𝑏,1

). 𝑟
𝑏,1

increases

by one and 𝑟𝑎,2 = 𝑀 .

We obtain (1) and (2) by subtracting the average JCTs

for cases (b1) and (b2) from the average JCT for case (a),

respectively:

𝑤𝑎

𝑝
′

𝑎,1

−

𝑤𝑎

𝑝𝑎,1

+

𝑤𝑎

2𝑝
′

𝑏,2
(

𝑝
′

𝑏,1

𝑝𝑎,1

−

𝑝
𝑏,1

𝑝
′

𝑎,1
)

, (1)

𝑤𝑎

𝑝
′

𝑎,1

−

𝑤
𝑏

𝑝
′

𝑏,1

+

𝑝
𝑏,1

2𝑝
′

𝑏,2
(

𝑤
𝑏

𝑝
𝑏,1

−

𝑤𝑎

𝑝
′

𝑎,1
)
−

𝑝𝑎,1

2𝑝
′

𝑎,2
(

𝑤𝑎

𝑝𝑎,1

−

𝑤
𝑏

𝑝
′

𝑏,1
)

. (2)

Here, if either (1) or (2) is positive, then one can allocate

the extra GPU to 𝑗
𝑏
first and further minimize average JCT.

Otherwise, one should allocate it to 𝑗𝑎 first.

For an arbitrary number of GPUs, one needs to repeat

the above procedure starting with one GPU. As long as one

knows the workload (𝑤
𝑘
) and throughput (𝑝

𝑘,𝑢
) information

in advance, she can determine the optimal resource allocation

for the simple two-job case.

Notation Description

𝑀 Total # of GPUs in the cluster

𝑛 # of jobs

𝑗
𝑘

Job 𝑘

𝑟
𝑘,𝑢

# of GPUs assigned to 𝑗
𝑘
after the 𝑢-th event

𝑅𝑢 {𝑟1,𝑢 , 𝑟2,𝑢 ,⋯ , 𝑟𝑛,𝑢}

𝑤
𝑘

# of training iterations of 𝑗
𝑘

𝑡𝑢 Length of time slot 𝑢

𝑝
𝑘,𝑢

Throughput of 𝑗
𝑘
using 𝑟

𝑘,𝑢
GPUs

𝑝
′

𝑘,𝑢
Throughput of 𝑗

𝑘
using 𝑟

𝑘,𝑢
+1 GPUs

Table 2: Description of mathematical notations.

Handling future jobs. We attain valuable insight when

we add a third job 𝑗𝑐 . For the sake of presentation, let us

assume 𝑗𝑐 is submitted right after 𝑗𝑎 finishes in case (b1).
8

With the new job present, 𝑗
𝑏
is likely to be allocated fewer

GPUs and consequently achieves a lower throughput (𝑝
′

𝑏,2
).

This could flip the sign of (1) from negative to positive, which

would prioritize the longer job (𝑗
𝑏
) over the shorter job (𝑗𝑎).

Likewise, a lower throughput of 𝑗𝑎 (𝑝
′

𝑎,2
) could flip the sign

of (2) from positive to negative in case (b2), which would

also prioritize the longer job (𝑗𝑎) over the shorter job (𝑗
𝑏
).

This example clearly shows that (1) the presence of a future

job at time slot 2 may impact the optimal decision at time

slot 1, which demonstrates the infeasibility of an optimal
resource allocation, and (2) if future jobs increase resource

contention, it is often beneficial to allocate more GPUs to
longer but efficient jobs, which is in contrast with SRTF.

9

This implies that we can prepare for future contention by

assigning more resources to efficient jobs, which would be

difficult for greedy optimization to achieve as it does not

consider future job arrivals.

Apathetic Future Share. We have learned that future jobs

may interfere with greedy decisions in the past. We can avoid

this pitfall by shifting from the optimistic view from greedy

decisions to our AFS assumption that the future share of any

existing jobwill be the same as the current share even if some

jobs finish and release their shares. Thus, we set 𝑝
′

𝑎,2
= 𝑝𝑎,1

and 𝑝
′

𝑏,2
= 𝑝

′

𝑏,1
in (1) and (2).

10
Then, evaluating if either (1)

or (2) is positive is translated into a simple inequality:

𝑝
′

𝑏,1
−𝑝

𝑏,1

𝑝
′

𝑏,1

>

𝑝
′

𝑎,1
−𝑝𝑎,1

𝑝𝑎,1

. (3)

If (3) is true, 𝑗
𝑏
has priority over 𝑗𝑎 for the extra GPU, and

vice versa.

AFS implicitly prepares for future job arrivals by continu-

ously adapting to the change of resource contention, which

is done by re-evaluating (3) to re-adjust the shares of current

jobs at each churn event. AFS tends to give higher priority to

longer-but-efficient jobs when the contention level increases,

refraining from over-committing resources to shorter-but-

inefficient jobs (i.e., greedy approaches). Our evaluation in

Section 5.2 shows that this assumption is highly effective in

8
This analysis is similarly applied regardless of when 𝑗𝑐 arrives.

9
Appendix B provides more rigorous details.

10
𝑝
′

𝑎,2
is not 𝑝

′

𝑎,1
as 𝑝

′

𝑎,2
is used when 𝑗𝑏 earns the GPU first (case (b2)).
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real-world DLT workloads as AFS achieves the best average

JCT reduction in all our traces.

The AFS assumption may prove ineffective in a few cor-

ner cases. One such case is when the future contention level

decreases; jobs start simultaneously but no future jobs arrive

until they finish. In this case, strategies acting more greedily

(exploiting decreasing contention) may perform better than

AFS. Although it is not uncommon in DLT workloads that

a slew of jobs start at the same time, e.g. parameter sweep-

ing [9], they typically run with other background jobs as we

observe in the real cluster traces, rendering the decreasing

contention assumption invalid. The other such case is when

the future contention level increases; jobs start at different

times and finish all at the same time. In this case, strategies

acting more altruistically (exploiting increasing contention)

may perform better than AFS, but we believe it is a rare case

in real-world clusters. We finally note that if contention

levels or their statistical characteristics are available, more

sophisticated strategies than AFS can be devised to take ad-

vantage of them. For the time being, we focus on the more

usual case where no such information is easily available.

3.3 AFS Algorithm for Multi-Job
Extending to 𝑛 jobs. One may have noticed that extending

the two-job case to the 𝑛-job case is highly non-trivial as

it would be prohibitive to analyze all cases that potentially

bring JCT reduction. To avoid the impasse, we directly apply

our heuristic, AFS-L, to pick the job with the highest priority

among 𝑛 jobs for allocating each GPU. We determine the

relative priority between any two jobs by evaluating (3) and

apply the transitivity of priority comparison (see the proof

in Appendix C) to find the job with the highest priority. We

repeat this process 𝑀 times, which results in 𝑂(𝑀 ⋅𝑛) steps

for 𝑀 GPUs with 𝑛 jobs.

Algorithm 1 formally describes AFS-L, our resource alloca-

tion algorithm for 𝑛 jobs under the assumption that workload

size information for the jobs is known. At each churn event,

Algorithm 1 determines the per-job GPU shares. The jobs

with a positive share run until the next churn event. More

specifically, AFS-L simply finds the job with the top prior-

ity (𝑗
∗
) via TopPriority() and allocates one GPU to it, and

repeats the same process 𝑀 times. TopPriority() starts by

picking two jobs at random. Given the current GPU shares,

𝑗𝑎 is the shorter job and 𝑗
𝑏
is the longer one. If the current

GPU share is zero, its length is considered infinite. Then it

evaluates (3) to find the higher priority job and marks it as

𝑗
∗
. It repeats for all jobs to find the top choice.

AFS-L is a two-stage operation. In stage one, it assumes

all jobs run with a single GPU and allocates one GPU in the

increasing order of the job lengths. If 𝑀 is smaller than the

current number of jobs, the algorithm stops here. Otherwise,

it moves into stage two, where it distributes the remaining

GPUs by considering both job length and resource efficiency,

which is achieved by evaluating (3).

Algorithm 1: AFS-L Resource Sharing

1 Function TopPriority(Jobs 𝐽 )
2 𝑗

∗
← any job in 𝐽

3 for 𝑗 ∈ 𝐽 do
4 𝑗𝑎 ← 𝑗

∗
, 𝑗𝑏 ← 𝑗

5 if 𝑗𝑎 .𝑐𝑛𝑡 = 0 and 𝑗𝑏 .𝑐𝑛𝑡 = 0 then
6 if 𝑗𝑎 .𝑙𝑒𝑛(1) < 𝑗𝑏 .𝑙𝑒𝑛(1) then 𝑗

∗
← 𝑗𝑎

7 else 𝑗∗ ← 𝑗𝑏

8 else
9 if 𝑗𝑎 .𝑙𝑒𝑛(𝑗𝑎 .𝑐𝑛𝑡) ≥ 𝑗𝑏 .𝑙𝑒𝑛(𝑗𝑏 .𝑐𝑛𝑡) then
10 Swap 𝑗𝑎 and 𝑗𝑏

11 if (3) is true then 𝑗
∗
← 𝑗𝑏

12 else 𝑗∗ ← 𝑗𝑎

13 return 𝑗
∗

14 Procedure AFS-L(Jobs 𝐽 , Total Resources 𝑀 )

15 for 𝑗 ∈ 𝐽 do
16 𝑗.𝑐𝑛𝑡 ← 0

17 𝑚←𝑀

18 while 𝑚 > 0 do
19 𝑗

∗
← TopPriority(𝐽 )

20 𝑗
∗
.𝑐𝑛𝑡 ← 𝑗

∗
.𝑐𝑛𝑡 +1

21 𝑚←𝑚−1

22 for 𝑗 ∈ 𝐽 do
23 Allocate 𝑗.𝑐𝑛𝑡 resources for 𝑗

Handling unknown job lengths. AFS-L performs well,

but it requires job length information to compare lengths of

𝑗𝑎 and 𝑗𝑏 in TopPriority(). As job length information is often

unavailable, we modify TopPriority() to function without

it by evaluating (3) for both cases: (𝑗𝑎 = 𝑗
∗
and 𝑗

𝑏
= 𝑗) and

(𝑗𝑎 = 𝑗 and 𝑗
𝑏
= 𝑗

∗
). (3) being true in either case indicates that

prioritizing 𝑗
𝑏
is better for average JCT. If it evaluates to false

in both cases, the real priority would depend on the finishing

order of the jobs, which cannot be decided without knowing

job lengths. In such a case, we give a higher priority to either

one at random. Note that (3) cannot be true in both cases.

AFS-P is our job-length-unaware algorithm that modi-

fies AFS-L by adopting the traditional processor sharing [31]
approach to mimic the SRTF-like behavior of stage one in

AFS-L. Specifically, the algorithm maintains a counter for

each job that tracks the amount of time for which it is sched-

uled. The counter is zero at job arrival and increases by one

whenever the job is executed for one unit of time.
11

If there

are fewer jobs than 𝑀 , the algorithm ignores the counters

and uses modified TopPriority() to determine the shares. If

the number of jobs exceeds 𝑀 (the algorithm stays in stage

one), it allocates one GPU in the increasing order of the job

counters in a non-preemptive manner and evicts a job when-

ever it is executed for one unit of time, which triggers the

scheduler to re-schedule all jobs. This policy mitigates job

blocking if the current number of jobs exceeds 𝑀 , but it is

unnecessary otherwise as every job would run with at least

one GPU. Appendix D provides more discussion on AFS.

11
AFS-P set the unit time as 2 hours for all full-scaled traces used in this

work. Like existing practices of processor sharing, we should scale the unit

time if the workload is in a different scale.

726    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



Submit a job

Controller

Scheduler

Worker

Comm Stack

sMPI(L)

NCCL

Server

Agent

DL Framework

(TensorFlow)

Distributed DL Control plane

Distributed DL Data plane

Client

Report progress

Downward: Scheduling decision

Upward: Status report 
(Resource usage, model throughput)

Worker

Comm Stack

sMPI(F)

NCCL

DL Framework

(TensorFlow)

Worker

Comm Stack

sMPI(F)

NCCL

Server

Agent

DL Framework

(TensorFlow)

Worker

Comm Stack

sMPI(F)

NCCL

DL Framework

(TensorFlow)

1

3

4

2

Figure 4: Overview of CoDDL system architecture. There are two

servers for the cluster and two GPUs for each server. sMPI (L) and

(F) refer to the leader and the follower stacks, respectively.

4 Systems Support for Elastic Sharing

Elastic share adaptation requires every job to reconfigure to

an arbitrary number of GPUs at any time. To support this

efficiently, we present CoDDL, our DLT system framework

that transparently handles automatic job parallelization.

4.1 CoDDL System Architecture
CoDDL is a centralized resource management system for a

dedicated DLT cluster. It enables the system administrator

to specify a scheduling policy and also parallelizes DLT jobs

automatically. The key requirement of this system is to

minimize the overhead incurred by frequent reconfiguration

of DLT jobs to their elastically adapted resource shares.

CoDDL is divided into a front-end and a back-end. The

front-end interacts with users (DLT job owners). It accepts a

DL model to train from a user and reports its progress back

periodically to the user. The current user interface is based

on TensorFlow [6], although we can easily support other

frameworks as well. A user specifies her model via native

TensorFlow APIs and provides the batch size and her model

graph (automatically extracted via native TensorFlow APIs)

to a CoDDL client. The client submits these to the back-end

system that initiates a DLT job.

The back-end determines resource shares for the submit-

ted jobs and allocates them. It consists of a central controller

(which includes the scheduler), per-server agents, and per-

GPU workers as shown in Figure 4. To clarify, a GPU cluster

consists of multiple servers, each of which consists of multi-

ple GPUs. The controller invokes the scheduler to determine

the shares and notify the agents of the updated per-job shares.

The agents in turn order their local workers to reflect the

changes. The agents manage the intra-server workers and

the workers carry out actual DLT with their own GPU.

4.2 Automated Parallel Training
A CoDDL user does not need to write a model for multi-

ple GPUs considering parallel execution. Rather, she writes

it only for a single GPU and the system automatically par-

allelizes it to run with an arbitrary number of GPUs. The

basic approach to the parallelization is similar to existing

works [1, 4, 30, 45] while it seamlessly supports a large batch

size that exceeds the physical memory size of a GPU.

Auto-parallelization. The key to job parallelization is to

enable each worker to exchange gradients for model update

with an arbitrary number of co-workers. To achieve this, we

insert special vertices for every pair of gradient and updater

vertices such that these new vertices work as a messenger

between the DLT framework and our custom communication

stack (see Section 4.3 for details) in Figure 4. Whenever a

gradient is calculated, the newly added vertex notifies the

communication stack of the availability of the gradient and

registers a callback function. Then, the communication stack

reduces the gradients, and triggers the callback function so

that the DLT framework starts updating the parameters.

Accumulative gradient update. Per-GPU batch size of a

job is determined by its total batch size and GPU share. The

smaller the GPU share of the job is, the larger the per-GPU

batch size gets. Hence, the memory footprint often exceeds

the physical memory budget of a single GPU. To prevent

memory overflows, CoDDL transparently performs accumu-

lative gradient update by adding extra vertices to the graph.

It selects the batch size small enough to fit the memory bud-

get of one GPU and repeatedly adds up the gradient results

until it reaches the originally-set per-GPU batch size.

4.3 Efficient Share Re-adjustment
Elastic resource sharing schedulers tend to perform frequent

share re-adjustments. In fact, we observe that AFS-P exe-

cutes 6.3x on average or up to 22xmore reconfigurations than

Tiresias-L for real-world traces. To address the overhead,

CoDDL optimizes the reconfiguration process and avoids

potential thrashing due to a burst of reconfigurations that

arrive in a short time.

Custom communication stack. CoDDL implements its

own communication stack so that workers can dynamically

join or leave an on-going DLT jobwithout checkpointing and

restarting it. It consists of a data-plane (NCCL [2]) stack and a

control-plane (sMPI) stack. The data plane is responsible for

efficient reduce operations with a static set of workers. The

control plane reconfigures NCCL whenever there is a GPU

share re-adjustment order from the controller ( 1⃝). It also

communicates with co-workers to monitor the availability

of intermediate data (e.g., gradients and parameters) ( 2⃝),

and invokes NCCL APIs to exchange it ( 3⃝, 4⃝). One of the

control-plane stacks operates as a leader, which periodically

polls all other followers if it is ready to join or leave the job,

and shares this information with all followers.

Concurrent share expansion with job execution.
CoDDL mitigates the overhead for resource share expan-

sion by continuing job execution during the reconfigura-
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tion. This would minimize the period of inactivity caused

by frequent reconfigurations. The key enabler for this is to

separate the independent per-GPU operations from the rest

that communicates with remote GPUs in distributed DLT.

The independent operations (e.g., forward/backward prop-

agation, gradient calculation, updating parameters) can be

executed on their own regardless of the number of remote

GPUs. Only the operations that gather the gradients would

depend on the communication with remote GPUs. So, when

a job is allocated more GPUs, the job continues the execution

with the old share while newly-allocated GPUs are being

prepared; the new GPUs are loaded with the graph, and re-

ceive the latest parameters from one of the existing workers

in the job. When the new GPUs are ready to join, they tell

other workers to update the communication stack to admit

the new GPUs. We find the overhead for this operation is as

small as 4 milliseconds.

Zero-cost share shrinking. The process of share shrink-
ing is even simpler. When the GPU share of a job decreases,

the job only needs to tell its communication stack to reflect

the shrunk share and continues the execution with the re-

maining GPUs. Then, the kernels on the released GPUs are

stopped and tagged as idle. Again, it takes only 4milliseconds

regardless of a model.

Handling a burst of reconfigurations.While running our

system, we often observe a burst of reconfiguration orders

from the controller as multiple churn events happen simul-

taneously. Naïvely carrying them out back to back would

be inefficient as the older configuration would be readily

nullified by the newer one. There are two approaches to

efficiently handling them. One approach is to coalesce mul-

tiple consecutive reconfiguration orders into one while the

current reconfiguration is going on. While it is simple to

implement, the controller would need to synchronize with all

agents andworkers before initiating the next reconfiguration.

Instead, we implement "cancelling" the current reconfigu-

ration on the individual worker level. In this approach, a

new reconfiguration order will be delivered to the agents as

soon as it is available, but the agent can cancel the on-going

reconfiguration with its workers. Unless careful, this could

create a subtle deadlock as one worker may leave a job on

a new reconfiguration order while the rest of the workers

wait for it indefinitely in a blocking call (e.g., initializing,

all-reduce, etc.). To avoid the deadlock, CoDDL allows a

worker to leave the job only when all others are aware of it.

Failure handling. Efficient share re-adjustment of CoDDL

makes it easy to handle failures efficiently as it is similar to

handling churn events. The controller and each agent are

responsible for monitoring the status of all agents and the

workers of its own, respectively. If any of them stops respond-

ing or returns a fatal error, it is reported to the controller,

and it simply excludes the failed entities from the available

resource list and re-runs the scheduler to reconfigure all jobs.

Unlike ordinary churn events, it is deadlock-free for a failed

worker to exit without informing to its co-workers since it

is done by agents and the controller instead.

4.4 Network Packing and Job Migration
Depending on the DL model, the placement of GPUs may af-

fect the training performance. It is generally more beneficial

to use as fewer machines as possible for the same number

GPUs to minimize network communication overhead [34,55].

Also, the performance could be unpredictable if multiple jobs

compete for network bandwidth on the same machine.

CoDDL adopts a simple yet effective GPU placementmech-

anism called network packing, which enforces the GPU share

of each job to be a factor or a multiple of the number of GPUs

per machine. For instance, in a cluster with 4 GPUs per ma-

chine, the share of a job should be one of 1/2/4𝑛 GPUs. This

regulation can be proven to eliminate the "network sharing",

which satisfies the following two conditions – (1) every job

is allocated GPUs scattered on the minimum number of ma-

chines and (2) at most one job on a machine communicates

with remote GPUs on other machines (while all other jobs

on the machine use only local GPUs). When the GPU share

is determined by the scheduling algorithm, the scheduler ap-

plies the regulation to come up with an allocation plan that

minimizes the difference from the original plan. More details

on the algorithm and the proof are found in Appendix E.

Despite the network packing, we still need job migration

as it does not prevent resource fragmentation. Since a job

can continue training without migration unless the newly

allocated GPU set does not include any GPU that the job was

previously using, the scheduler finds a placement decision

that maximizes the number of jobs which reuse at least one

GPU, and then maximizes the total number of reused GPUs

as the secondary goal. It conducts migration as the final

resort when it is unavoidable.

4.5 Throughput Measurement
Algorithms like Optimus [38] and AFS require the through-

put (or throughput scalability for AFS-P) with an arbitrary

number of GPUs for determining the GPU share. While Opti-

mus estimates the throughput scalability with a few sampled

measurements for iteration, gradient calculation, and data

transmission, we find it unreliable due to the heterogeneity

of computing hardware, network topology, and DL system

frameworks. Instead, CoDDL takes the "overestimate-first-
and-re-adjust-later" approach. It over-allocates the number

of GPUs first but re-adjusts the share from real throughput

measurements later. This exploits the fact that GPU share

shrinking incurs a small overhead of only a few milliseconds.

Overestimate first and re-adjust later. When a new job

arrives, the scheduler allocates an initial share to it by as-

suming the linear throughput scalability. We limit the initial

share to be within its fair share (1/n). When the job gets its

GPU share, it takes the throughput measurement with all
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allocatable units that are smaller than the given share. Note

that this measurement is done efficiently as shrinking the

share incurs little cost (Section 4.3) and all iterations used

for the measurement are part of training. In most cases, it

requires only two reconfigurations for a new job arrival. In a

rare case where a job needs to predict the throughput beyond

the currently allocated share, it assumes the linear scalability

from the last allocatable unit. Then, the re-adjustment is

made again when the real throughputs are reported to the

controller.

5 Evaluation

We evaluate AFS if it improves average JCT on a diverse

set of real-world DLT workloads against existing scheduling

policies. We evaluate it on simulation as well as on real-world

cluster with CoDDL.

5.1 Experiment Setup
Cluster setup. We use a 64-GPU cluster for experiments.

Each server is equipped with four NVIDIA GTX 1080 GPUs,

two 20-core Intel Xeon E5-2630 v4 (2.20GHz), 256 GB RAM,

and a dual-port 40 Gbps Mellanox ConnectX-4 NIC. Only

one NIC port of each server is connected to a 40 GbE net-

work switch and the servers communicate via RDMA (Ro-

CEv2), leveraging NCCL 2.4.8 [2]. All DLT jobs run Tensor-

Flow r2.1 [6] with CUDA 10.1 and cuDNN 7.6.3.

DLT workload. We use 137-day real-world traces from Mi-

crosoft [5, 27] (Table 3 in Appendix). We evaluate with all
traces except those that have fewer than 100 jobs. From the

traces, we use submission time, elapsed time, and requested

(allocated) numbers of GPUs of each job. Since the traces

do not carry training model information, we submit a ran-

dom model chosen from a pool of nine popular DL models

(Table 4 in Appendix) whose training throughput scales up

to the requested number of GPUs. Each DLT job submits

the chosen model for training in the BSP manner with the

same batch size throughout training, even though the GPU

share changes during the training. The number of training

iterations of the job is calculated so that its completion time

becomes equal to the total executed time from the trace,

based on the use of the requested number of GPUs.

Simulator. We implement a simulator to evaluate the al-

gorithms for large traces. All experimental results without

explicit comments are from the simulator. The simulator

is provided with the measured throughput of each model

on our real cluster for job length calculation. We confirm

that simulation results conform to those on real execution

for all algorithms with scaled-down traces. Figure 15 in Ap-

pendix shows examples of our scheduler conformance tests.

The error rate is low (<1%) for algorithms that do not re-

quire throughput measurements but slightly high for others

(2.7∼5.2%) due to the measurement overhead on real cluster.

Algorithms. Scheduling algorithms are divided into two
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Figure 5: Average JCT reduction rates with respect to baselines for

scheduling algorithms.

categories: job-length-aware and job-length-unaware. The

former consists of SRTF, SRSF [24], Optimus [38], and AFS-L

while the latter consists of Tiresias-L [24], Optimus, Max-

Min, Themis [34], and AFS-P. Optimus is counted into both

as real job lengths differ from the estimated ones by Optimus.

We just assume that their estimation is always correct.

Metrics.We evaluate average JCT, makespan, QL, CE, and

BI, and GPU utilization during runtime for real experiments.

While makespan is often used to evaluate resource efficiency

of scheduling algorithms [22,24,38], we believe CE is a better

metric as makespan would depend on the last job submission

time, which is orthogonal to resource efficiency. CE does not

suffer from such an issue as it reports the reduction rate of

makespan per unit time instead.

5.2 JCT Evaluation on Simulation
Figure 5 compares average JCT reduction rates for each cate-

gory of the algorithms. Values larger than 1 mean that their

average JCT is better than the baseline algorithms (SRTF or

Tiresias-L). Interestingly, we observe thatMax-Min and Opti-

mus show a similar trend on the same set of traces (1,2,3,5,6,8).

These traces launchmany jobs in a short interval while many

of them run longer than other traces. In such cases, it is im-

portant to serve shorter jobs first to avoid HOL blocking, but

neither does so. Not surprisingly, SRSF outperforms SRTF on

these traces as penalizing jobs with more GPUs helps reduce

HOL blocking beyond favoring short jobs. AFS-L and AFS-P

consistently outperform all others in their category by 1.2x to

2.7x over SRTF or by 1.9x to 3.1x over Tiresias-L. This shows

that resource efficiency-aware HOL blocking mitigation is

effective in practice.

One may argue that non-elastic sharing algorithms would

achieve better JCT if we allow them to use more GPUs as

we do for elastic-share algorithms. However, we find that

it only marginally improves average JCT or even performs

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    729



0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11

JC
T

 B
lo

w
u

p
 R

at
e

Trace ID

SRTF SRSF Tiresias-L

Figure 6: Average JCT blowup rates when we allow SRTF, SRSF,

and Tiresias-L [24] to use the maximum number of GPUs each job

can utilize. Dotted line indicates unity.

worse. For example, if we allow SRTF, SRSF, and Tiresias-L

to allocate enough GPUs for peak throughput of each job,

Figure 6 shows that their average JCTs rapidly grow by up

to 4.85x, 5.84x, and 16.14x, respectively. Only one trace im-

proves by 21% and 17% for SRTF and SRSF. This is because

non-elastic allocation with a larger GPU share reduces the

cluster efficiency as it would increase the inefficiency of indi-

vidual resource. What matters more is to flexibly adjust the

GPU share according to job lengths and resource efficiency,

which is impossible with non-elastic allocation.

5.3 Evaluation on Real Cluster
Algorithm behavior on real cluster. Figure 7 compares

job-length-unaware algorithms running on our GPU cluster.

As full-scale execution would take months to finish, we scale

down the job submission times and total iterations to 1% and

0.2% of the original values for traces #9 and #3, respectively.

We observe similar trends with QL, CE, and BI as those

in the full-scale simulations in Figure 2. AFS-P achieves (a)

3.54x and (b) 2.93x better average JCT over Tiresias-L, (a)

1.12x and (b) 1.66x better than Optimus, and (a) 1.22x and (b)

1.30x better than Themis. Note that the CEs of Optimus and

AFS-P fluctuate heavily in Figure 7a because they complete

most of the jobs in the cluster rather quickly, which decreases

the CE due to underutilization (see the low QL). Optimus,

Themis, and AFS-P show higher GPU utilizations than that

of Tiresias-L in Figure 7b as they tend to assign fewer GPUs

to each job than Tiresias-L especially when there are many

jobs in the cluster.

Efficient share re-adjustment.We evaluate the effective-

ness of CoDDL’s share re-adjustment over a baseline system

without concurrent share expansion and zero-cost shrinking

(ES) or without reconfiguration cancelling (RC). We moni-

tor the training progress of a specific job (video prediction

model) along with other jobs on a full-scale trace (#10) ex-

tracted from day 50 and 116. Figure 8 compares job progress,

allocated GPU shares, and # of jobs submitted over time.

In Figure 8a, we observe that the job finishes 2.12x and

2.82x faster than "No RC" and "No RC/ES", respectively. On

this day, 19 short jobs enter the system in a short time interval

of 2 to 70 seconds for the first few minutes. During this time,

the job with ES and RC is allocated a much larger GPU share

than the one with full restart. This is because ES enables

(a) Trace #9. (b) Trace #3.

Figure 7: Real-cluster execution over CoDDL using Tiresias-L (Ti),

Themis (Th), Optimus (O), and AFS-P (A) schedulers. Average JCTs

are (a) 1.45, 0.50, 0.46, and 0.41 hours (b) 5.65, 2.51, 3.21, and 1.93

hours, respectively.

the short jobs to finish more quickly as they can continue

job execution even during reconfiguration. This enables the

monitored job to earn more GPUs. In addition, RC helps the

job adapt to newly-assigned resources quickly even when

the controller updates the resource share frequently. In the

graph, we see that all short jobs that arrive at 4⃝ finish within

1.50 minutes ( 1⃝) while "No RC" and "No RC/ES" take 4.10

( 2⃝) and 5.06 minutes ( 3⃝), respectively.

Figure 8b shows results on day 116 where there are a slew

of job submissions (68 jobs) at start, commonly seen in DLT

clusters (e.g. parameter sweeping [9]). The monitored job

finishes 1.19x and 1.30x faster than "No RC" and "No RC/ES",

respectively. The AFS-P scheduler performs more stably at

heavy contention as each job would employ a small share

(one GPU per job if the number of jobs exceeds that of GPUs).

In this case, a churn would rarely affect other jobs as most of

them are likely to keep their previous share. This explains

the smaller benefit compared to the scenario in Figure 8a.

5.4 Evaluation of Tail JCTs
DLT jobs in a multi-tenant cluster tend to be heavy-tailed

(see Appendix F), so we evaluate tail JCTs of schedulers.

Unlike other systems whose tail latency directly measures

the worst-case system (or scheduler) performance caused by

the congestion, tail JCT in DLT clusters is a fairness metric

that evaluates the trade-off between average and tail JCTs.
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Figure 8: Real-cluster execution of parts of full-scale trace #10 over

CoDDL using AFS-P scheduler. X-axis indicates the elapsed time

since the arrival of the monitoring job. "No RC/ES" means that we

disable both RC and ES.

The difference arises as the intrinsic characteristic of a DLT

job (i.e. how much resource it can utilize and how long it

runs) often dominates the JCT rather than the congestion

itself. Consequently, it is often hard to blame the system for

a long tail when the major causes are (1) the user’s request

to run for a long time and (2) the scheduler’s decision that

avoids allocating more resources to those jobs that incur the

average-tail trade-off (or fairness) issue.

Figure 9 shows that AFS reduces tail JCTs over existing

schedulers in most cases in addition to the average JCTs, as

demonstrated in Figure 5 as well. Actually, other scheduling

algorithms targeting for reducing average JCT such as SRTF

often suffer from severe job starvation. In contrast, it is

interesting that AFS experiences little starvation (thus shows

good tail JCTs) while achieving low average JCT for online

jobs. As explained, AFS allocates at least one GPU for all jobs

when 𝑛 < 𝑀 (stage one), and distributes remainders when

𝑛 ≥𝑀 (stage two), which helps avoid job starvation. The low

BI values of AFS in Figure 7 also implies that it effectively

avoids starvation.

In some traces, Max-Min orOptimus shows better tail JCTs

overAFS. This is an expected behavior becauseMax-Min and

Optimus do not prioritize short jobs at all, which is relatively

more beneficial to tail JCT reduction. However, this does

not necessarily mean that they are fairer than AFS because

the tail JCT reduction is often achieved by sacrificing the

average JCT substantially, as is already shown in Figure 5. To

clarify this, Figure 10 compares the JCT reduction rates over

varying job lengths. The figures group all jobs into 100 bins

in the increasing JCT order on the X-axis (a longer job comes

more rightward) and plot the average reduction rate of each

bin on the Y-axis (a more prioritized job shows up higher).

1.58 1.99 1.86 

0.97 

1.83 1.59 
1.27 1.52 

4.88 

1.96 

3.62 

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11

JC
T

 R
ed

u
ct

io
n
 R

at
e

Trace ID

SRTF SRSF Optimus AFS-L

(a) Job-length-aware algorithms (baseline is SRTF).

1.07 1.12 
1.83 

1.32 
1.62 

1.30 1.26 1.44 

2.20 2.29 

3.49 

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11

JC
T

 R
ed

u
ct

io
n
 R

at
e

Trace ID

Tiresias-L Max-min Optimus
Themis AFS-P

(b) Job-length-unaware algorithms (baseline is Tiresias-L).

Figure 9: 99th%-ile JCT reduction rates with respect to baselines

for scheduling algorithms.
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Figure 10: JCT reduction rates over varying job lengths. Results

of other traces are omitted as they show similar results.

The result indicates that Max-Min not only performs more

poorly on average but it also shows uneven performance gain

compared to AFS-P. Especially when the cluster is heavily

contended (trace #3), it tends to prioritize very long jobs by its

algorithmic design.
12

While we do not present here, Optimus

also shows the similar behavior as Max-Min. In contrast,

AFS-P demonstrates relatively more even performance gain

regardless of the job length.

5.5 Benefit over Altruistic Approach
One low-hanging fruit of leveraging elastic resource sharing

is that it can enhance cluster efficiency by distributing idle

resources to running jobs. Altruistic scheduling [22] is a

straightforward approach to achieving this: it first schedules

jobs to achieve the primary goal (in this case, assigning the

user-requested number ofGPUs) and then distributes leftover

resources for the secondary goal (in this case, assigning more

GPUs to achieve the largest throughput). Figure 11 shows

12
Figure 10 shows that Max-Min also prioritizes very short jobs. This is a

common feature of job-length-agnostic schedulers (including AFS-P) rather

than being specific to Max-Min, because very short jobs are less affected by

the algorithmic detail of the scheduler as they typically finish as soon as

they are first scheduled.
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Figure 11: Benefit of altruistic approaches (SRTF-E and SRSF-E) to

reduce average JCT.

the performance of this approach when applied to SRTF and

SRSF to make their elastic versions, SRTF-E and SRSF-E,

respectively. Even though these reduce average JCT from

their non-elastic versions, AFS-L still shows a substantial

benefit over these, which indicates the importance of fine-

grained individual resource-level adjustment.

6 Related Work
Leveraging optimality of SRTF. SRTF, also known as

Shortest-Remaining-Processing-Time discipline (SRPT) or

preemptive Shortest-Job-First (SJF), has been proven to min-

imize average JCT in cases where a single resource is avail-

able [18,44,48]. In case of multiple resources, SRTF is optimal

only when the throughput of all jobs scales linearly to the

given amount of resources, which does not hold for DLT

jobs due to inter-GPU communication overhead. In general,

optimal scheduling of online jobs is NP-complete [17].

Even though SRTF does not perform optimally in real-

world systems, many practical cluster schedulers [21–24]

leverage it as a good heuristic for reducing average JCT.

Among them is Tiresias [24] designed for DLT job schedul-

ing similar to this work. It suggests a variation of SRSF that

considers remaining time multiplied by requested number of

GPUs instead of remaining time alone. This approach penal-

izes jobs that request many GPUs. Compared to SRTF, SRSF

improves average JCT because such jobs typically utilize

GPUs less efficiently, thus it is often better to execute jobs us-

ing fewer GPUs instead for resource efficiency. Tiresias also

focuses on relaxing the constraint of both SRTF and SRSF

that job lengths should be known in advance. In comparison,

our algorithms handle more general cases beyond penalizing

the jobs with a large share. Also, our algorithms benefit

from more fine-grained resource allocation and preemption,

which substantially improves both average and tail JCTs.

Elastic sharing algorithms. Optimus [38], OASiS [8], and

Themis [34] are DLT job schedulers that adopt elastic sharing

similar to this work. Optimus estimates finishing time of a

DLT job via modeling loss degradation speed and perform-

ing online fitting of the model during training, and designs

a heuristic algorithm to minimize average JCT. However,

the approach raises two issues. First, it is unclear whether

it is always possible to reliably estimate loss degradation

speed, which is also questioned by a follow-up work [24].

Second, Optimus has no mechanism to prioritize short jobs,

which would often suffer from HOL blocking that results

in JCT blowup. OASiS solves an integer linear program to

maximize the system throughput. As maximizing system

throughput often incurs severe starvation, it does not fit the

goal of our work. Themis suggests a resource auction algo-

rithm mainly motivated for fairness, but it actually achieves

the closest JCT performance to AFS-P among all existing

works. This is because it leverages elastic resource sharing

for its partial auction algorithm and random distribution of

leftover resources, prioritizes short jobs by setting a static

lease duration of assigned GPUs, and also tends to prioritize

efficient jobs since it is fairness-motivated, which prevents

greedy jobs (which are typically resource-inefficient) from

monopolizing resources. However, its optimization target is

maximizing fairness, which is not always ideal for reducing

average JCT. To be specific, if a job shows its largest through-

put with 𝑚 GPUs and the job has been running with other

𝑛 − 1 jobs on average over time, Themis’s fairness metric

tries to assign GPUs to this job until it achieves at least 𝑚/𝑛

times of throughput speedup.
13

Compared to AFS, this could

give much higher priority to inefficient jobs which is fairer

but it could degrade overall cluster performance.

Systems for elastic sharing.While there are several works

which suggest an elastic sharing algorithm for DLT job

scheduling [8,34,38], none of them fully cover the necessary

systems support for elastic sharing: automatic scaling, effi-

cient scale-in/out, and efficient reconfiguration handling. A

recent work [36] implement an efficient method for scaling

a single job without stop-and-resume similar to the ES in

Section 5.3 of our work. However, it focuses only on scaling

a single job, and does not cover handling churn events effi-

ciently in multi-job scheduling. We believe the latter is the

key to evaluating an elastic resource sharing system since its

overhead hugely depends on the frequency of churn events

as evidenced by the different amount of gain of either ES or

RC in Figure 8a and 8b.

7 Conclusion

Existing scheduling policies have been clumsy at handling

the sublinear throughput scalability inherent in DLT work-

loads. In this work, we have presented AFS, an elastic

scheduling algorithm that tames this property well into aver-

age JCT minimization. It considers both resource efficiency

and job length at resource allocation while it amortizes the

cost of future jobs into current share calculation. This ef-

fectively improves the average JCT by bringing 2.2x to 3.1x

reduction over the start-of-the-art algorithms. We have also

identified essential systems features for frequent share adap-

tation, and have shown the design with CoDDL. We hope

that our efforts in this work will benefit the DLT systems

community.

13
This does not cover all features of Themis. Refer to [34] for details.
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Appendix

A Future Dependency of Job Scheduling

At first glance, it may appear as if we could find the optimal

allocation of resource shares by taking into account all factors

we discussed. We would simply need to know the lengths of

all jobs that vary according to their GPU usage, enumerate

all possible allocation candidates, and compare the resultant

average JCTs to obtain the smallest.

Not only would such an attempt be infeasible due to the

exponential growth of possible candidates,
14

a fundamental

challenge underlies the usage of a GPU cluster in practice:

churn by future jobs. They can wreak havoc on previous

resource allocation decisions that otherwise would have been

optimal.

To see this, let us consider a toy example. Suppose we have

two jobs, A and B, initially submitted. With 1 GPU, each job

takes 2 hours to finish. With 2 GPUs, they take 1 and 1.5

hours, respectively. Let us assume that we run them on a

2-GPU cluster. The optimal strategy to achieve the minimal

average JCT of 1.25 hours would be SRTF: A is scheduled

first (1 hour) with 2 GPUs and then B (1.5 hours). A naïve

alternative that allocates all available resource shares equally

to all pending jobs (assuming for the sake of simplicity that

the number of pending jobs does not exceed the total number

of shares) would achieve the average JCT of 2 hours. What if

an unforeseen arrival of future jobs comes into the picture?

Suppose a sequence of identical future jobs were to arrive.

They take 2 hours with 1 GPU and 𝑥 hours (1 < 𝑥 < 2) with 2

GPUs. Let us consider a scenario in which the first future job

arrives 1 hour later since the beginning and all subsequent

jobs arrive x hours later than the preceding one. Regardless

of the value of 𝑥 , the naïve alternative achieves smaller av-

erage JCT than SRTF (Figure 12a). SRTF would perform as

in Figure 12b when 1.5 < 𝑥 < 2 and as in Figure 12c when

1 < 𝑥 < 1.5. This example demonstrates that even an opti-

mal allocation, if it does not account for future job arrivals,

can turn into a mediocre one. Thus, to design an algorithm

that performs well in practice, one must incorporate the

possibility of future job arrivals into her design.

B Impact of Resource Efficiency

To present how resource efficiency impacts the evaluation

of (1) and (2), which decides which job (either 𝑗𝑎 or 𝑗𝑏) gets

the extra GPU, let us first define 𝑓
𝑘
as fractional throughput

gain of 𝑗
𝑘
:

𝑓
𝑘
=

𝑝
′

𝑘,1

𝑝
𝑘,1

.

14
The optimal online job scheduling is NP-complete [17]. A brute force

search would require examining 10
209

cases if we run 20 concurrent jobs

on a 60-GPU cluster.

2

x

x

A

B

1

1

Time

Future

Job Seq.

(a) Naïve.

1

1.5

x

x

A

B

Future

Job Seq.
1.5

Time

(b) SRTF, 1.5 < 𝑥 < 2.

1

1.5
x

A

B

Time

x

Future

Job Seq.

(c) SRTF, 1 < 𝑥 < 1.5.

Figure 12: Examples in which the optimal allocation of resource

shares depends on the arrival pattern of future jobs. Dark gray,

light gray, and white boxes indicate that the corresponding jobs

use two, one, and zero GPUs, respectively.

This metric measures the marginal throughput 𝑗
𝑘
earns with

respect to its current throughput when it is allocated an extra

GPU. Intuitively, a larger value indicates a larger resource

efficiency. This metric is constrained by 1 < 𝑓
𝑘
≤ 2, as we

consider regimes where an extra GPU increases training

throughput and the throughput scales sublinearly to the

allocated GPUs.

We rewrite (1) (𝑗
𝑏
earns the extra GPU if it is positive) as

follows:

(

𝑝
𝑏,1

𝑝
′

𝑏,2

𝑓
𝑏
−2

)

𝑓𝑎 −

(

𝑝
𝑏,1

𝑝
′

𝑏,2

−2

)

. (4)

If no future job arrives, the share of an existing job would

monotonically increase. Hence, 𝑝
𝑏,1

≤ 𝑝
′

𝑏,2
holds. Combined

with 𝑓
𝑏
≤ 2, the terms in the parentheses are negative. This

means that smaller 𝑓𝑎 makes (4) more likely to be positive.

Also, one can check that larger 𝑓
𝑏
makes (4) more likely to

be positive. Put together, it concludes that 𝑗
𝑏
is more likely

to get the extra GPU if its resource efficiency is relatively

higher than that of 𝑗𝑎 .

If future jobs do arrive, the share of an existing job may

decrease (i.e., 𝑝
𝑏,1

> 𝑝
′

𝑏,2
may hold) to the point where (4) is

always positive, hence 𝑗
𝑏
always gets the extra GPU. Aside

from this case, similar arguments apply. Also, evaluating

whether (2) is positive follows a similar line of arguments and

leads to the same conclusion: resource efficiency matters.

C Transitivity of (3)

Since we use (3) as a job-to-job comparison function to select

a single job 𝑗
∗
with the top priority in Algorithm 1, (3) should

be transitive, otherwise we cannot guarantee that such 𝑗
∗

exists. As the transitivity of (3) looks non-trivial, we provide

a simple proof here.

Problem. Given that:

𝑝
′

𝑏,1
−𝑝

𝑏,1

𝑝
′

𝑏,1

>

𝑝
′

𝑎,1
−𝑝𝑎,1

𝑝𝑎,1

,

𝑝
′

𝑐,1
−𝑝𝑐,1

𝑝
′

𝑐,1

>

𝑝
′

𝑏,1
−𝑝

𝑏,1

𝑝
𝑏,1

,
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Figure 13: Rate of average JCT reduction fromAFS-L with different

scheduling algorithms using traces in Table 3 over a 64-GPU cluster.

prove:

𝑝
′

𝑐,1
−𝑝𝑐,1

𝑝
′

𝑐,1

>

𝑝
′

𝑎,1
−𝑝𝑎,1

𝑝𝑎,1

.

Proof. As 𝑝′
𝑏,1

≥ 𝑝
𝑏,1

, the following holds true.

𝑝
′

𝑐,1
−𝑝𝑐,1

𝑝
′

𝑐,1

>

𝑝
′

𝑏,1
−𝑝

𝑏,1

𝑝
𝑏,1

≥

𝑝
′

𝑏,1
−𝑝

𝑏,1

𝑝
′

𝑏,1

>

𝑝
′

𝑎,1
−𝑝𝑎,1

𝑝𝑎,1

.

D Discussion on AFS

AFS-L vs. AFS-P. Figure 13 compares the performance of

AFS-L and AFS-P. We observe that AFS-P performs espe-

cially worse than AFS-L when there are many unfinished

jobs in the cluster, whichmakes it more difficult for processor

sharing of AFS-P to mimic the SRTF-like behavior of AFS-L.

However, even in such cases, the average JCT blowup of

AFS-P is curbed at twice the value from AFS-L in our ex-

periments. It still outperforms other existing algorithms as

demonstrated in Section 5.

Sensitivity to throughput measurement. Unlike legacy
scheduling algorithms, AFS-P relies on throughput measure-

ment to determine the resource shares. To evaluate the per-

formance sensitivity to throughput measurement, we design

AFS-S as a proof-of-concept algorithm. AFS-S is the same

as AFS-P except that it only obtains the number of GPUs

that lead to the maximum throughput for a job, rather than

precisely estimating the throughput in relation to the num-

ber of GPUs. As it does not evaluate job throughputs, AFS-S

ends up distributing the resources by the max-min fairness

rather than enforcing fine-grained resource distribution of

AFS-P. Figure 13 shows that AFS-S performs similarly to

AFS-P in many cases. This implies that the performance of

AFS-P is insensitive to detailed throughput measurement,

rather contingent on figuring out the number of GPUs that

gives rise to the highest performance.

Asynchronous training. As CoDDL automatically scales

a DLT job instead of letting users do it manually, we need to

select a default strategy for distributed training. We select

bulk-synchronous-parallel (BSP) training over asynchronous

training because its system throughput is equal to algorith-

mic training throughput. With asynchronous training, it is

common that the system throughput increases linearly while

the algorithmic training throughput does not, partly due to

exchanging outdated parameter updates. This can be viewed

as wasting GPU resources (requiring extra training itera-

tions), similar to BSP’s wasting GPU time on GPU-to-GPU

communication. However, in case of asynchronous train-

ing, such a waste is difficult to be detected by the system,

as it additionally requires evaluating algorithmic training

performance (i.e. how fast training and/or evaluation ac-

curacy improves, what is the final accuracy of the trained

model, etc.). Optimus [38] suggests a method for measur-

ing algorithmic performance by predicting the training loss

curve, but it is unclear whether predicting the loss curve is al-

ways possible in theory, as is also questioned by a follow-up

work [24].

E Removing Network Sharing

This section provides the details and the proof of the guar-

antee mentioned in Section 4.4 – the network packing reg-

ulation removes network sharing across the cluster, while

providing a small constant bound of the difference from the

originally-determined share to the regulated share for all

jobs. We formulate the problem as follows. We assume a

homogeneous GPU cluster where each machine is equipped

with 2
𝑘
GPUs (𝑘 ≥ 0). Given 𝑛 jobs to share𝑚machines (𝑛 > 0

and𝑚 > 0), say the scheduling algorithm originally assigns 𝑠𝑖

GPUs to job 𝑖 (𝑖 ∈ {1,⋯ , 𝑛}), where ∑
𝑛

𝑖=1
𝑠𝑖 = 2

𝑘
𝑚. Then, the

controller applies the network packing regulation, adapting

𝑠𝑖 to 𝑟𝑖 that requires 𝑟𝑖 to be one of zero, 2
𝓁
(0 ≤ 𝓁 < 𝑘), or a

multiple of 2
𝑘
, for all 𝑖. We prove two propositions as follow.

Proposition 1: removal of network sharing. Given 𝑟𝑖

GPUs to job 𝑖 for all 𝑖, there exists at least one GPU placement

decision that the following conditions hold true. First, for all

𝑖, job 𝑖 uses exactly ⌈𝑟𝑖/2
𝑘
⌉ machines, which is the minimum

number required. Second, at most one job on any machine

uses two or more machines.

Proof. We describe one of the feasible placement algorithms

that makes this proposition hold true. Initially, no machines

are assigned to any jobs. First of all, we discard all jobs

that 𝑟𝑖 = 0. For all 𝑖 where 𝑟𝑖 is a multiple of 2
𝑘
, assign 𝑟𝑖/2

𝑘

machines to job 𝑖. Then, all those jobs and assignedmachines

already satisfy the two conditions of the proposition, so now

we only consider the remaining jobs and machines. Since

all remaining jobs are assigned less than 2
𝑘
GPUs each, to

satisfy the first condition, we need to let each remaining job

use only GPUs on the same machine – this is a bin-packing

problem where each machine is a bin of size 2
𝑘
and each job

is an item of size 𝑟𝑖 . Fortunately, since 𝑟𝑖 of all remaining
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jobs is a power of two less than 2
𝑘
, the bin size is always

divisible by the item size, thus the simple first-fit-decreasing

algorithm can always fit all remaining jobs to the remaining

machines. This also satisfies the second condition at the same

time because all remaining jobs do not use inter-machine

networking and all remainingmachines do not run anymulti-

machine jobs.

Proposition 2: feasibility and difference bound. Regard-
less of the value of {𝑠1,⋯ , 𝑠𝑛}, there always exists at least

one 𝑅 = {𝑟1,⋯ , 𝑟𝑛} that the following conditions hold true.

First, the total number of assigned GPUs do not change due

to the regulation, i.e. ∑
𝑛

𝑖=1
𝑟𝑖 =∑

𝑛

𝑖=1
𝑠𝑖 = 2

𝑘
𝑚.

15
Second, for

all 𝑖, we guarantee the minimum value of 𝑟𝑖 , say 𝑥𝑖 , which is

as follows:

𝑟𝑖 ≥ 𝑥𝑖 =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

⌊

𝑠𝑖

2
𝑘 ⌋
2
𝑘
, if 𝑠𝑖 > 2

𝑘
,

2
⌊log

2
𝑠𝑖⌋, if 0 < 𝑠𝑖 ≤ 2

𝑘
,

0, if 𝑠𝑖 = 0.

Note that 𝑥𝑖 is the maximum value that satisfies the network

packing regulation while not exceeding 𝑠𝑖 .

Proof. Say that we assign 𝑥𝑖 GPUs to all job 𝑖, i.e. 𝑟𝑖 = 𝑥𝑖 .

Then, 𝑅 satisfies both the network packing regulation and the

second condition of this proposition. However, since 𝑥𝑖 ≤ 𝑠𝑖 ,

this may not satisfy the first condition of this proposition,

i.e. this may remain unassigned idle GPUs and the number

is 𝑑 =∑
𝑛

𝑖=1
𝑠𝑖 −∑

𝑛

𝑖=1
𝑟𝑖 . Thus, we will prove that in any cases

where 𝑑 > 0, we can always reduce 𝑑 by assigningmore GPUs

while always satisfying the network packing regulation and

the second condition of this proposition.

If 𝑑 ≥ 2
𝑘
, we can reduce 𝑑 to be lower than 2

𝑘
using two

methods. First, assign 2
𝑘
more GPUs to any job 𝑖 with 𝑟𝑖 ≥ 2

𝑘
.

Since 𝑟𝑖 is already regulated by the network packing (i.e. it

is a multiple of 2
𝑘
), adding 2

𝑘
more GPUs to 𝑟𝑖 will keep it to

be a multiple of 2
𝑘
. Second, assign more GPUs to any job 𝑖

with 𝑟𝑖 = 2
𝓁
(0 ≤ 𝓁 < 𝑘) and 𝑑 ≥ 2

𝓁
so that 𝑟𝑖 increases to 2

𝓁+1
.

Note that at least one of these two methods is always usable

unless 𝑑 becomes less than 2
𝑘
.

If 𝑑 < 2
𝑘
, we can only use the second method aforemen-

tioned to reduce 𝑑 . Note that we cannot use the second

method if 𝑟𝑖 > 𝑑 for all job 𝑖. Thus, we need to prove that 𝑑

becomes zero if 𝑟𝑖 > 𝑑 for all job 𝑖. Actually, it is self-conflicted

if we say 𝑑 > 0 in that case. The total number of GPUs is

𝑑 +∑
𝑛

𝑖=1
𝑟𝑖 and it should be equal to 2

𝑘
𝑚, but it cannot be a

multiple of 2
𝑘
if 0 < 𝑑 < 𝑟𝑖 for all job 𝑖 because 𝑟𝑖 itself is a

multiple of 2
𝑘
or a power of 2 less than 2

𝑘
.

ID Virtual Cluster ID #Machines #GPUs #Jobs

1 0e4a51 398 1846 2465

2 6c71a0 409 1856 14791

3 b436b2 387 1668 9033

4 e13805 389 1750 938

5 6214e9 412 1868 51288

6 7f04ca 389 1714 1461

7 103959 226 470 2677

8 ee9e8c 412 1868 5781

9 2869ce 384 1668 956

10 11cb48 408 1860 19070

11 ed69ec 301 1454 1401

Table 3: Summary of Philly DNN workload traces [5, 27]. Jobs

which have incomplete information such as finished time or re-

quested GPU count are excluded. Among 15 total traces, 4 traces

which contain few jobs (less than 100) are excluded, so we make

use of 11 remaining traces.

Name Dataset

Batch

Size

Max

#GPUs

VGG16 [47] ImageNet [14] 256 8

GoogLeNet [49] ImageNet [14] 128 20

Inception-v4 [50] ImageNet [14] 256 52

ResNet-50 [25] ImageNet [14] 128 28

DCGAN [41] Celeb-A [33] 256 20

Video Prediction [15] Push [15] 64 28

Chatbot [54] OpenSubtitles [52] 256 4

Deep Speech 2 [7] LibriSpeech ASR corpus [37] 64 20

Transformer [53]

IWSLT 2016

English-German corpus [10]

256 44

Table 4: Description of real-world DL models for experiments.

F DLT Workload Details

All experiments carried out in this paper use the Philly DNN

workload [5, 27], 137-day real-world DNN traces from Mi-

crosoft. It consists of 15 traces from different virtual clusters,

andwe use 11 of them as shown in Table 3 that contain 100 or

more jobs. From the traces, we use submission time, elapsed

time, and requested (allocated) numbers of GPUs of each job.

Figure 14 shows that the DLT jobs in the workload tend to

be heavy-tailed.

Since the traces do not carry training model information,

we submit a random model chosen from a pool of nine popu-

lar DL models shown in Table 4 whose training throughput

scales up to the requested number of GPUs. Each DLT job

submits the chosen model for training in the BSP manner

with the same batch size throughout training, even though

the GPU share changes during the training. The number of

training iterations of the job is calculated so that its comple-

tion time becomes equal to the total executed time from the

trace, based on the use of the requested number of GPUs.

15
This condition is needed to make sure that the regulation avoids em-

barrassingly inefficient adaptation that makes extra idle GPUs.
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Figure 14: CDF of job sojourn time of traces in Table 3. X-axis is

log-scaled and the unit is minutes.

(a) Tiresias-L. (b) AFS-P.

Figure 15: Comparison of our simulator (sim) with real execution

(real) for (a) Tiresias-L and (b) AFS-P with trace #3 (down-scaled to

0.2%) in Table 3 on our 64-GPU cluster. Average JCTs are (a) sim:

5.62 and real: 5.65 hours (0.5% error) (b) sim: 1.83 and real: 1.93

hours (5.2% error), respectively.
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Abstract
Distributed deep neural network training (DT) systems are
widely deployed in clusters where the network is shared across
multiple tenants, i.e., multiple DT jobs. Each DT job computes
and aggregates gradients. Recent advances in hardware accel-
erators have shifted the the performance bottleneck of training
from computation to communication. To speed up DT jobs’
communication, we propose ATP, a service for in-network ag-
gregation aimed at modern multi-rack, multi-job DT settings.
ATP uses emerging programmable switch hardware to support
in-network aggregation at multiple rack switches in a cluster
to speedup DT jobs. ATP performs decentralized, dynamic,
best-effort aggregation, enables efficient and equitable shar-
ing of limited switch resources across simultaneously running
DT jobs, and gracefully accommodates heavy contention for
switch resources. ATP outperforms existing systems accel-
erating training throughput by up to 38% - 66% in a cluster
shared by multiple DT jobs.

1 Introduction
Traditional network design relied on the end-to-end princi-
ple to guide functionality placement, leaving only common
needs implemented within the network, primarily routing and
forwarding. However, datacenter networks and workloads
have evolved, and there is a strong case to support common
application functionality within the network [22, 41, 71].

Deep Neural Networks (DNN) are emerging as a critical
component of more and more enterprise applications such as
computer vision [33], natural language processing [26, 67],
databases [65], compilers [66], systems [68], and network-
ing [54]. These applications all require distributed DNN train-
ing (DT) to iteratively train better DNNs for improved predic-
tion performance. Enterprises typically run DT on multi-rack
clusters [12] shared by other applications. Each DT job has
several workers and parameter servers (PS) spread across
several machines. Workers compute gradients and send these
gradients to the PS(s) over the network for aggregation. Gradi-
ent aggregation, which combines partial results from multiple
workers and returns a single aggregated result, is commonly
used in DT, and contributes substantially to overall training
time [48]. Recent advances in special hardware [6, 12] have
shifted the performance bottleneck of distributed training

⇤ChonLam Lao and Yanfang Le are co-primary authors, and Wenfei Wu
is the corresponding author.

from computation to communication [48, 56]: VGG16 train-
ing can be 4X faster without network communication [56].

Further, datacenter networks are becoming feature-rich
with the introduction of new classes of programmable net-
work devices such as programmable switches (e.g., Intel’s
FlexPipe [8], Cavium’s XPliant [13], Barefoot Tofino [4])
and network accelerators (e.g., Cavium’s OCTEON and
LiquidIO products [9], Netronome’s NFP-6000 [10], and
FlexNIC [43]). Together, they offer in-transit packet process-
ing and in-network state that can be used for application-level
stateful computation as data flows through the network.

Current DT stacks implement gradient aggregation purely
in the application. However, the emergence of DT as a com-
mon application and its reliance on gradient aggregation, as
well as the emergence of application-level stateful computa-
tion as a network feature, suggests an opportunity to reduce
training time by moving gradient aggregation inside the net-
work. This reduces network bandwidth consumption from
workers to the PS(s). For both single DT and multiple DT
jobs (i.e., multi-tenant settings) this bandwidth allows pushing
more gradients through the network, and increases the total
throughput of gradient flows thereby reducing training times.

Recent proposals show the initial promise of such in-
network aggregation: e.g., SwitchML [56] increases training
throughput for VGG16 by 2X via in-network aggregation on a
programmable top-of-rack switch. However, the general prob-
lem of making aggregation a true in-network service to be
leveraged by multiple DT tenants in a multi-rack/multi-switch
cluster has not received systematic attention. Realizing such
a service calls for mechanisms to share limited multi-switch
aggregation resources across multiple tenants.

The key goal of our work is to speed up multiple DT jobs
running simultaneously in a cluster by maximizing the bene-
fits from in-network multi-switch aggregation, and distribut-
ing these benefits across multiple DT jobs in an equitable
manner. To do so, we propose a new network service for
multi-rack clusters called Aggregation Transmission Proto-
col, i.e., ATP. ATP supports dynamic aggregation at rack
switches. DT jobs go through ‘on’ and ‘off’ gradient aggre-
gation phases, and ATP uses decentralized mechanisms to
ensure that switch resources used by a DT job entering its off
phase can be dynamically reused by a DT job in its on phase.
ATP supports best-effort aggregation. This enables DT jobs
to gracefully fall back to end-host aggregation under heavy
contention from many tenants without extra overhead.
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ATP chunks gradients for each DT job into fixed size frag-
ments that we refer to as gradient fragment packets and par-
titions programmable switch resources into the same fixed
size fragments called aggregators. As these gradient fragment
packets flow through the network, ATP opportunistically ag-
gregates them by accumulating results at the earliest available
programmable switch, or in the worst-case at the PS end-host.

ATP proposes a decentralized aggregator allocation mecha-
nism that supports aggregation at line rate for multiple jobs
by dynamically allocating free aggregators when gradient
fragment packets arrive at a switch. A key issue with an in-
network aggregation service is that traditional end-to-end
protocols do not work when gradient fragment packets are
consumed in the network due to aggregation, as that may
be misinterpreted as packet loss. Thus, ATP co-designs the
switch logic and end host networking stack specifically to
support reliability and effective congestion control.

We opensource ATP’s implementation [2]. Our implemen-
tation works atop clusters using P4-programmable switches.
Such switches expose a limited set of in-network packet pro-
cessing primitives, place ungenerous memory limits on net-
work state, and have a constrained memory model restricting
reads/writes. We overcome these constraints, and show how
ATP can support highly effective dynamic, best-effort aggre-
gation that can achieve 60Gbps. Our implementation also has
mechanisms that improve state-of-the-art floating point value
quantization to support limited switch computation. ATP’s
implementation adopts a kernel bypass design at the end-host
so that existing protocol stacks are not replaced by ATP’s
network stack and non-ATP applications can continue to use
existing protocol stacks.

We run extensive experiments on popular DNN models
to evaluate ATP in a single rack testbed with multiple jobs.
Our evaluation shows that in multi-tenant scenarios, dynamic,
best-effort in-network aggregation with ATP enables efficient
switch resource usage. For example, the performance only
decreases by 5�10% when only half of the desired aggrega-
tors are available, and outperforms current state-of-the-art by
38% when there is heavy contention for on-switch resources.
We simulate multi-rack cluster experiments with a typical
topology and show a 66% reduction in network traffic with
ATP. We benchmark loss-recovery and congestion control
algorithms proposed in ATP. The loss recovery mechanism of
ATP outperforms the state-of-the-art (SwitchML) by 34% and
an ATP job with congestion control speeds up 3X compared
to one without congestion control.

2 Background and Motivation
2.1 Preliminaries
PS Architecture. This design [39, 51, 62] as shown in Fig-
ure 1 enables data-parallel training, where training data is
partitioned and distributed to workers. There are two phases:
gradient computation, where workers locally compute gra-

dients; and gradient aggregation, where workers’ gradients
are transmitted over the network to be aggregated (which in-
volves the addition of gradients) at one or more end-hosts
called parameter servers (PSs). The aggregated parameters
are then sent back to the workers. Gradients are tensors, i.e.,
arrays of values. With multiple PSs, each PS has a distinct
partition of parameters.
Programmable Switch. The recent emergence of pro-
grammable switches provides opportunities to offload
application-level stateful computation [41, 47, 71]. A pop-
ular example is the Tofino switch [4], which we use. Pro-
grammable switches expose memory as stateful and stateless
objects. Stateless objects, metadata, hold the transient state
for each packet, and the switch releases this object when that
packet is dropped or forwarded. Stateful objects, registers,
hold state as long as the switch program is running. A register
value can be read and written in the dataplane, but can only be
accessed once, either for read or write or both, for each packet.
A register is an array of values. In the context of in-network
aggregation, each packet has a subset of gradient values and
needs a set of registers to aggregate them. We call this set of
registers an aggregator.

Programmable switches have constrained compute re-
sources, memory(⇠ 10MB [53]), and programmability for
application-level processing. Register memory can only be
allocated when the switch program launches. To change mem-
ory allocation, users have to stop the switch, modify the switch
program and restart the switch program. The computation flex-
ibility is limited by the number of stages, the payload parsing
capability, and the time budget at each stage: only indepen-
dent computation primitives can be placed in the same stage
and the number of register accessed in the same stage is also
limited. These limits lead to small packet sizes for in-network
computation and storage applications: the payload size of
SwitchML and NetCache is 128B [40, 41, 46, 56] 1.
In-Network Aggregation. Gradients can be seen as a se-
quence of fragments (each fragment has a subset of gradient
values), and aggregation (addition of gradients) of all the
gradients is the aggregation of each of these fragments. In-
network aggregation for each fragment is done in a specific
aggregator. Figure 2 exemplifies this for a DT job with two
workers using one programmable switch. Workers 1 and 2
create packets having a fragment with 3 tensor values and
send them to the switch. Suppose the switch first receives the
packet p1 from worker 1. It stores the tensor values contained
in p1 in the aggregator’s registers R1, R2, R3. The switch
then drops packet p1. When the switch then receives packet
p2 from worker 2, it aggregates the tensor values contained
in p2 with contents of R1, R2, R3. If there were additional
workers, the switch would update the registers with the aggre-
gation of both packets. In this example, because p2 is from

1The exact parameters of programmable switches and ATP are specific
to “Tofino” programmable switches; if other programmable switches have
similar limitations, ATP can be used similarly.
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Figure 3: A DT job training VGG16
shows on-off communication pattern for
a simple one worker-one PS setting.

the last worker, the switch overwrites the values in packet
p2 with the aggregated result and multicasts p2 to both the
workers. This architectural improvement not only reduces net-
work traffic and eliminates the incast but also saves the CPU
cycles used for aggregation operation at the end hosts. As
this improvement only applies to communication, the overall
training acceleration ratio depends specifically on the ratio of
communication to computation in the DT job [28, 56].

A recent work, SwitchML [56], prototypes this idea for
a single DT job in a rack-scale network. We use SwitchML
as an example to illustrate the design space and underscore
the key attributes of an ideal in-network aggregation service.
SwitchML removes the PS by offloading gradient aggregation
entirely to the top-of-rack switch. It allocates a static pool
of aggregators in the rack switch to a DT job, and streams
gradient fragment(s) from workers to the switch only after
previously sent gradient fragment(s) are aggregated and have
vacated aggregator(s) on the switch. We argue next that de-
sign choices in SwitchML need to be reconsidered in the
multi-job and multi-rack settings, necessitating a systematic
in-network service.

2.2 In-Network Aggregation as a Service
When applied to multiple DT jobs, SwitchML requires static
partitioning of switch resources, where each job is statically
assigned to a partition. In a multi-tenant scenario, this results
in underutilization of switch resources. DT jobs go through
on and off gradient aggregation phases as shown in Figure 3,
and switch resources belonging to a DT job in the off phase
can be shared with a DT job in the on phase in a dynamic
manner, but static partitioning precludes this.

SwitchML offloads gradient aggregation for each DT job
entirely to the rack switch. With heavy switch resource con-
tention, DT jobs have to wait for switch resources leading
to underutilization of the network link bandwidth from the
workers to the PS(s). In a better design, a DT job could instead
aggregate a fraction of gradients at the switch in a best-effort
manner while aggregating the rest at the end-host.

Rack-scale solutions like SwitchML limit job scalibility
and are not optimal in terms of traffic reduction for cross-rack
jobs. Enabling aggregation service at every layer of the net-
work topology complicates the service design and the network
operation. ATP balances complexity and performance by en-
abling aggregation at the workers’ and PS’s ToR switches.

Thus, in the context of multi-job and multi-rack, an ideal
in-network aggregation service should support dynamic, best-

effort, multi-rack gradient aggregation for optimal efficiency
and speedup. As we show in Section 3, realizing such an
in-network aggregation service requires key innovations at
end-hosts and in how switch resources are apportioned and
dynamically (re)used. In addition, an in-network aggregation
service brings to fore two other aspects of the network stack
that need redesign, namely, reliability and congestion control.
Rethinking Reliability. In-network aggregation breaks end-
to-end semantics as some packets are consumed inside the
network during aggregation. Traditional end-host based reli-
ability mechanisms can misinterpret in-network packet con-
sumption as a packet loss, leading to unnecessary retransmis-
sions and lead to incorrect gradient aggregation due to the
inability of existing reliability mechanisms in dealing with
these new class of packet events. Thus, we need a new relia-
bility algorithm to deal with this new class of packet events.
Rethinking Congestion-Control. In the multi-tenant case,
the network resources (switch aggregators and network band-
width) available to a DT job fluctuates because (1) DT jobs
exhibit on-off communication phases (Figure 3), (2) the total
number of DT jobs varies, and (3) background traffic varies.
Utilizing fluctuating network resources efficiently and shar-
ing them fairly depends on congestion control. However, as
end-to-end semantics are broken we cannot use traditional
congestion control algorithms that rely on RTT or drops as
the congestion signal. We need a new congestion control al-
gorithm that identifies the right congestion signal so as to
modulate the throughput of gradient fragments from workers’
for each DT job to meet the requirements of efficient use and
fair division of network resources across DT jobs.

3 Design
ATP is a network service that performs dynamic, best-effort
aggregation across DT jobs. ATP’s design aligns with guide-
lines for building robust and deployable in-network computa-
tion [53]: (1) offload reusable primitives: ATP is a network
service for in-network aggregation and a common function to
different DT frameworks; (2) preserve fate sharing: ATP is
able to progress in the event of network device failure via fall-
back to aggregation at the end-host; (3) keep state out of the
network: ATP’s end-host reliability algorithms are able to re-
cover lost data and deal with partial aggregation; (4) minimal
interference: ATP chooses aggregation only at Top-of-Rack
(ToR) switches to sidestep issues owing to probabilistic rout-
ing in the network.
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3.1 ATP Overview
ATP lies in the transport layer which specifically targets in-
network aggregation of gradient tensors in DT applications;
it is not a general-purpose transport. Compared to general-
purpose TCP: (a) ATP redesigns specific transport features,
such as reliability, congestion control, and flow control for its
target context. (b) ATP does not implement TCP’s in-order
byte-stream and multiplexing abstractions as they do not apply
to the target context.

ATP performs aggregation at the granularity of fragments
of a gradient that fit in a single packet, i.e., gradient fragment
packets. ATP chunks the gradient tensor at each worker into
a sequence of fixed-size fragments such that each fragment
fits in a packet and assigns each a sequence number. Gradient
aggregation for a DT job merges values at the same sequence
number from each worker’s tensor.

Upon booting, each ATP programmable switch allocates
a portion of switch register memory to be shared by ATP
jobs. This memory is organized as an array of fixed-size
segments, which we refer to as gradient fragment aggregators,
or just aggregators. Each aggregator is accessed by its index
in the array, and aggregates gradient packets with a specific
sequence number belonging to the same DT job.

ATP workers stream gradient fragment packets to the
PS(s)2. ATP aggregates gradient fragment packets inside
the network when in-network resources are available. If in-
network resources are unavailable, gradient fragment packets
are sent to the end-host PS for aggregation. ATP restricts in-
network aggregation to ToR programmable switches. This
means that gradients from each worker can at most be ag-
gregated at two levels – (1) the rack switch at the worker
and (2) the rack switch at the PS. This requires coordination
of decisions to ensure that each gradient fragment packet is
aggregated exactly once. We use a decentralized, dynamic,
best-effort approach to determine where aggregation occurs.

Gradient fragment packets contains direction fields. These
directions interact with the ATP switch logic at the pro-
grammable switches, to program soft-state in the aggregator
to elicit a coordinated decision. The aggregator soft-state can
be discarded at any time, leading to aggregation at the PS
instead of the switch. The directions in a gradient fragment
packet comprise fields that help switches decide whether to
aggregate the packet, in which gradient aggregator to aggre-
gate, and to identify completion or failure of aggregation at an
aggregator. Switch logic uses these directions to program soft-
state in the switch that identifies whether a gradient aggregator
already exists for an incoming gradient fragment, and keeps
track of intermediate aggregation results and completion of
aggregation.

Soft-state in switches and directions in packets ensure that

2Note that two gradients from different workers that will be aggregated
never meet at switches in ring all-reduce architecture [58]. To the best of our
knowledge, any in-network aggregation, as well as ATP, can not apply to
ring all-reduce architecture.
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Figure 4: ATP dynamic, best-effort aggregation example. The
directions fields are job ID, sequence and aggregator index
in packet. soft-state is the values in the aggregators.
ATP does not require job-specific switch program changes
(and avoids switch restarts) upon job arrival/departure.

Figure 4 exemplifies how ATP achieves dynamic, best-
effort aggregation. A job with ID 3 has two workers, w1 and
w2. The workers compute gradients which are subsequently
broken by ATP at end hosts into two packets each - (A1, B1),
and (A2, B2). ATP aggregates gradient packets A1 with A2,
and B1 with B2, either at the switch or at the PS, as explained
next. Packets A1 and A2 are routed and hashed to aggregator 7;
since the aggregator is empty, it is “reserved” by packet A1 by
changing the aggregator’s soft-state to its job ID and packet
sequence. When A2 arrives at the switch, it hashes to the same
aggregator and triggers aggregation; then, the resulting packet
containing the aggregation result, A0

2, is sent to the PS. In
contrast, packet B1 can not reserve aggregator 9, because it
is reserved by a packet with job ID 1 and sequence 2. Thus,
packet B1 is forwarded directly to the PS; the same occurs
with B2. Packets B1 and B2 are aggregated at the PS. For either
pair of packets, the PS sends the parameter packets (A0 and B0)
via multicast back to workers w1 and w2. When the switch
receives A0, aggregator 7 is deallocated and set as empty (i.e.,
A0 is hashed to aggregator 7, and the aggregator’s job ID and
sequence match with those in A0) to enable aggregator 7 to be
used by future fragments from another job.

To detect and deal with packet losses ATP uses time-
out based retransmission or out-of-sequence parameter ACK
packets from the PS. When a packet is retransmitted, it sets
the resend flag. This serves as a direction for the switch to
deallocate and transmit any partially allocated result to the PS.
Also, to deal with congestion, say if queue depth is above a
certain threshold when packet A2 is received, an ECN flag in
A2 is set and carried over to A0

2. This is copied to the parame-
ter packet A0 in PS and received by the workers who adjust
their windows. The window adjustment is synchronized in
both the workers as it is triggered by the same ECN bit in A0.

3.2 ATP Infrastructure Setup
ATP requires a one-time static setup involving programming
and restarting switches to bring the service up. Any dynamic
per-job setup is managed by inserting the appropriate job-
specific directions in gradient fragment packets.
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Figure 5: ATP packet format.
Static Infrastructure Setup. The infrastructure, comprising
the switches and the end-host networking stack, is config-
ured once to serve all ATP jobs. Each programmable switch
installs a classifier to identify ATP traffic—gradient and pa-
rameter packets—and allocates a portion of switch resources—
aggregators—to aggregate ATP traffic. The end host installs
an ATP networking stack, which intercepts all the push or
pull gradient calls from DT jobs. End-hosts have knowledge
of the network topology—switch, end-host port connectiv-
ity, and total number of aggregators at a switch—so they can
orchestrate aggregation across multiple switches.
Dynamic Per-Job Setup. Each new DT job is assigned a
unique job ID. The job assigns each worker an ID from 1 to
W , where W is the total number of workers. The job tracks
the location of workers in the network topology to build an
aggregation hierarchy. In case workers and PS are spread
across racks, the job can use multiple switches for in-network
aggregation. The ATP networking library computes the job’s
worker fan-in at each level of the aggregation hierarchy, which
is used to determine when aggregation is complete (§3.5).
ATP uses IGMP to build a multicast distribution tree for the
PS to return parameters to workers.

3.3 Data Structures
Packet Format. Figure 5 shows the gradient fragment
packet format. The ATP header fields comprise direc-
tions and contain metadata about the fragment. The
jobIDAndSequenceNumber field is the identifier of a packet
and is used to match gradient packets from different workers
on the same job. The Data field contains tensor values (or
aggregated tensor values).

One-hot encoding is used to identify the worker’s posi-
tion in the aggregation hierarchy (bitmap0), and the first-level
switch’s position at the second edge switch (bitmap1). The
fan-in degree indicates the number of workers attached to
the first edge switch (fanInDegree0) and workers or switches
attached to the second edge switch (fanInDegree1). These
four fields are used to determine when aggregation has com-
pleted (§3.5). The edgeSwitchIdentifier flag is set to 0 if
the packet is en-route to the first edge switch in the aggrega-
tion hierarchy and 1 if the packet is en-route to the second
edge switch.

Workers detect dropped packets when they receive out-
of-order parameter packets, which triggers them to resend
gradient packets for aggregation (§3.7). The resend flag is
set if it is a retransmitted gradient packet. The ECN flag is
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Figure 6: ATP Switch memory layout.

marked by a switch when the switch’s output queue length
exceeds some threshold, which is used for detecting network
congestion. The collision flag is marked by a switch when
it forwards a gradient packet onward due to the aggregator
not being available because it is in use by a different job. This
flag helps PS choose another aggregator to avoid collision in
the next round.

Parameter packets use the same packet format, but indicate
the different contents by setting the isAck flag. They are
multicast from the switches to workers when an aggregation
is complete, and serve as acknowledgments (ACKs) for the
gradient packets sent by the workers.
Switch Memory. Figure 6 shows the switch memory layout.
Switch memory is organized as an array of fixed-size aggrega-
tors, each accessed by its index in the array. The value field
contains aggregated data from different workers. The size of
the value field is the same as that of a gradient fragment value.
The bitmap field records which workers have already been
aggregated to the aggregator’s value field. The counter field
records the number of distinct workers included in the aggre-
gated value. The ECN field records congestion status and is set
if any aggregated packet had the ECN flag set. The timestamp

field is updated when an aggregation is performed, and is
used to detect when an aggregator has been abandoned (e.g.,
when all workers fail) and can be deallocated (§3.7). The iden-
tifier fields <Job ID, Sequence Number> uniquely identify
the job and the fragment that this aggregator serves.

3.4 Inter-rack Aggregation
Scaling aggregation beyond a single rack provides more flexi-
bility w.r.t. where DT executes in a cluster. Aggregating just
at a worker’s local ToR switch is simple, but leads to unneces-
sary network traffic to the PS when workers reside in different
racks. Alternatively, aggregation can be done at higher lay-
ers of the network topology. However, this approach would
greatly increase protocol complexity because the system has
to handle route changes in the interior of the network. For
example, ECMP-based routing can change the number of
gradient streams incident at a particular switch in the inte-
rior of the network. This necessitates careful coordination
between network routing and the aggregator allocation mech-
anism. Thus, ATP only deploys in-network aggregation in
ToR switches, either at the worker’s rack (first-level) or at
the PS’s rack (second-level). This complies with a recent
study which shows that programmable switches today are
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Figure 7: Pseudocode of the switch logic in the ideal case.

usually deployed at ToR switches for near-server computation
offloading [27].

To coordinate where aggregation occurs, ATP uses two
groups of bitmap and fanInDegree fields in gradient pack-
ets, i.e., bitmap0/1 and fanInDegree0/1 as shown in Figure 5.
The edgeSwitchIdentifier field indicates which bitmap and
degree a switch should use when processing the gradient
packet, the first or second level of aggregation. When a
first-level aggregation switch forwards a packet, it sets the
edgeSwitchIdentifier bit in the packet header. The bitmap
size limits the total number of workers ATP can support. As
our testbed switch supports only 32-bit values, our implemen-
tation can support up to 1024 (=32⇥32) hosts; in general if
the programmable switch can support n-bit values, ATP can
support up to n2 workers.

It is worth noting that ATP’s multi-rack aggregation can be
extended to more levels as long as the aggregation point is
the fixed waypoint in the routing. As ATP’s switches in two
levels behave differently when handling packet retransmis-
sion (§3.7), switches whose level is higher than two should
follow the logic in the second level. More details can be found
in §A.2.

3.5 Switch Logic
Switch logic implements the algorithm that supports the dy-
namic, best-effort in-network aggregation service. It provides
aggregator allocation, deallocation, and gradient aggregation.
The allocation policy in ATP is First-Come-First-Serve with-
out preemption: if a gradient fragment packet can reserve an
aggregator, it keeps the aggregator until it is deallocated. In the
ideal case, each edge switch completes aggregation of all inci-
dent worker gradient packets and sends the aggregated result
downstream. We describe how failure cases (e.g., packet loss)
are handled in §3.7. A detailed flowchart outlining switch
logic can be found in Figure 7.
Aggregator Allocation. The arrival of a gradient frag-

ment packet triggers aggregator allocation. When a gradi-
ent fragment packet arrives, the switch checks the avail-
ability of the aggregator at the packet’s aggregatorIndex

field. End-hosts compute aggregatorIndex as HASH(<Job

ID, Sequence Number>)%numAggregators, which is consis-
tent across all workers in a job. However, hash collisions
could cause aggregatorIndex from different fragments and
different jobs to map to the same index: e.g., in Figure 4,
gradient fragment packets of Jobs 1 and 3 collide at index 9.

If the identifier field <Job ID, Sequence Number> in the
aggregator is empty, we store the packet’s identifier in the
aggregator, and copy the gradient packet’s data field into the
aggregators value field. The switch copies the bitmap field
in the aggregator from the appropriate bitmap field in the
packet (bitmap0 if edgeSwitchIdentifier is 0, else bitmap1),
and initializes the counter to 1.

If the aggregator’s identifier field is non-empty, the switch
compares it to packet’s identifiers (box 1 in Figure 7). If
they are different, there is a hash collision and ATP pushes the
gradient fragment packet downstream to be processed at the
PS. To avoid aggregation on this packet at the downstream
switch and propagate the collision information to the PS, ATP
sets resend and collision flags. To indicate this packet came
from a switch and not a worker, it flips the edge switch identi-
fier in the packet ( 2 in Figure 7) as well. If the aggregator
and packet identifiers are equal, gradient aggregation occurs.
Gradient Aggregation. If an aggregator is available for a gra-
dient fragment packet, ATP uses the edgeSwitchIdentifier

to fetch the fan-in degree and the bitmap for this switch from
the packet ( 3 in Figure 7). Then, ATP checks whether this
packet has been aggregated by testing the packet’s bitmap
against the aggregator’s bitmap ( 4 in Figure 7). If not, ATP
aggregates (adds) the packet’s gradient data to the value field
in the aggregators and also or’s the bitmap field in the gradient
packet to the bitmap field in the aggregator ( 5 in Figure 7).
ATP increments the aggregator’s counter field. If the packet
already been aggregated (e.g., it was resent), ATP OR’s the ECN

field from the packet into the aggregator’s ECN field and drops
the packet ( 7 in Figure 7).

If the counter in the aggregator is less than the correspond-
ing fan-in degree ( 6 in Figure 7), ATP drops the gradient
fragment packet and OR’s the ECN — this is the step that saves
bandwidth to the PS. If, however, they are equal then ag-
gregation at this switch is complete and ready to be pushed
downstream. The switch replaces the packet’s data field with
the aggregator’s value field, and the corresponding bitmap
field with the aggregator’s bitmap and sends the packet down-
stream towards the PS.

ATP chooses to forward the complete aggregation results
to the PS instead of sending them back to workers. This
design makes the aggregation results stored at the PS. When
a parameter packet to workers is dropped, the PS can resend
the aggregation result.
Aggregator Deallocation using Parameter Packets. The
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switch multicasts parameter packets back to the workers when
it receives parameter packets from PS. A parameter packet
works as the acknowledgement (ACK) of the gradient frag-
ment packets, and must traverse the edge switches used for ag-
gregation. When an ATP switch processes a parameter packet,
the switch checks if the aggregator at the packet’s index has
a matching identifier, and if so deallocates the aggregator by
changing all fields to null ( 8 in Figure 7).

3.6 End Host Logic
Workers in ATP push gradient fragment packets toward the PS
and receive updated parameters back. The PS accepts gradient
fragment packets, as well as partially or fully aggregated pack-
ets, to compute the full aggregation and sends the updated
parameters back to workers. The PS also addresses collisions
over aggregator indexes by rehashing.
Worker Pushing Gradients. The ATP end-host network
stack obtains gradients by intercepting push or pull calls from
DT jobs. It chunks these gradients into a sequence of 306B
packets (58B header + 248B gradient values). ATP converts
floating-point numbers in gradients to 32-bit integers [56] to
work with switches that do not support floating-point oper-
ations. These gradient fragment packets are small and ATP
introduces optimizations for high packet I/O throughput (§4).
PS Updating Parameters. ATP allocates an area of memory
for each job at the PS for collecting aggregated gradients as
an array of <bitmap, value> indexed by sequence number.
The bitmap tracks which workers’ gradient fragments have
been aggregated in the value field. PS maintains a bitmap for
each value to track which worker values have been aggregated.
When a gradient fragment packet arrives, the PS compares
its bitmap with that of the packet for an overlap. If they do
not overlap, the PS aggregates the packet’s data into its stored
value, and updates the stored bitmap from the packet’s bitmap.
For example, if the incoming gradient packet is an individual
gradient packet, PS checks if a packet from that worker was
already aggregated (i.e., PS bitmap for the worker is set to
1) due to a resent packet, drops duplicates and otherwise
updates the value and bitmap. On completion of aggregation
of a parameter fragment, the PS sends the updated parameter
fragment to the switch, which multicasts back to all workers
in the job.

For a single gradient fragment, it is possible that the aggre-
gator is busy when the first few packets arrive (hash collision),
but available for later packets (released). In this case, the
first packets are forwarded directly to the PS, while the re-
maining ones are aggregated at the switch. However, without
intervention the switch will never send along the aggregated
values because it is waiting for packets that have already
been sent. Workers detect this stalled aggregation when they
receive parameter packets for higher-sequenced fragments,
and all workers will treat the stalled fragment as a loss. Each
worker retransmits the stalled fragment with the resend bit
set. This ensures completion of aggregation (by piggybacking

on packet loss recovery; §3.7).
To reduce the frequency of aggregator collisions, we pro-

pose a dynamic hashing scheme. PS checks the collision bit
of gradient packets. If the collision bit is set, the PS rehashes
to get a new aggregator index (as HASH(<aggregatorIndex>
)%numAggregators). It sends this new aggregatorIndex to
workers in the unused bitmap field of the parameter packet.
Workers remap the collision-prone index to the new index,
and send any subsequent gradient that would have been sent
with the old index with the new index instead. This simple
approach helps evolve the hash function in a dynamic manner
over time at each worker, making it collision-resistant.
Worker Receiving Parameters. The network stack main-
tains a sliding window over the sequence of gradient frag-
ment packets. After sending an initial window of packets, the
worker records the first un-ACKed sequence number as the
expected sequence number and waits for parameter packets
from the PS. The worker uses the parameter packets from PS
to slide the window and send new gradient packets. When a
worker receives a parameter packet, it checks if the packet
has the expected packet sequence number. If the parameter
packet was already received (e.g., because it is lost by some
other worker and retransmitted at that worker’s request), it is
ignored. If it has the expected number, the worker increases
the expected sequence number and invokes the congestion
control algorithm (§3.7) to update the current window. If the
number of in-flight packets is less than the congestion window,
ATP sends the remaining window (congestion window size -
in-flight packets) of gradients fragment packets. If the param-
eter has a sequence number higher than expected, ATP may
consider the expected gradient fragment as lost, triggering
loss recovery (§3.7).

3.7 Reliability and Congestion Control
Reliability. Due to loss of gradient fragment or parameter

packets, the PS may not send parameter packets in sequence.
As noted previously, when this occurs, a worker updates the
received parameters but does not update expected sequence
number. When a worker receives three consecutive parameter
packets other than the expected sequence number, it detects
loss of the gradient fragment with the expected sequence num-
ber. In this case, ATP worker retransmits the missing fragment
packet with the resend bit set; this indicates to switches that
there may be a partial aggregation state in the switch.

ATP takes a simple approach and does not try to do in-
network aggregation of resent gradients. This design consid-
ers the case that packet drop is due to one or more worker
failures, where worker recovery can take a significant amount
of time (§A.3). In this case, the remaining active workers
still keep retransmitting gradient packets, but the switch can-
not complete the aggregation. The aggregators are occupied
but do not perform effective aggregation, which wastes the
aggregator.

ATP takes different steps at the first and second levels of ag-
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gregation. At the first level, when a resent packet arrives, the
switch checks for a matching aggregator. If it exists, and the
aggregator bitmap does not indicate that the resent packet’s
fragment has already been aggregated, then the switch aggre-
gates the value from the packet into the aggregator, merges the
bitmap from the packet into the aggregator’s bitmap, forwards
the results (which may be partial) downstream, and deallo-
cates the aggregator. When subsequent resent packets arrive,
the corresponding aggregator has already been deallocated,
so the switch simply forwards the resent packet downstream.

At the second level, the switch is unable to merge partial
results because it has one bit rather than a bitmap to indicate
the aggregation status for each of its first-level aggregation.
Instead, the second-level switch discards its aggregation state
and forwards any resent packet (including partial aggrega-
tions from the first level) to the PS, where the aggregation
ultimately completes. This ensures that upon packet loss, all
gradient fragments are (re)sent to the PS and the aggregator
for the fragment is deallocated.

The memory leaks can occur when a job stops abnormally
before PS sends parameter packets to deallocate aggrega-
tors. Without any mechanism, the aggregator would remain
occupied because the PS never ACKs with a corresponding
parameter packet. To handle this, on every parameter packet,
the switch checks the timeout value for the register specified
by the parameter packet’s index. Even if its job ID and se-
quence number do not match the parameter packet, the switch
will deallocate the aggregator if the timestamp is older than a
configured value.
Congestion Control. In a multi-tenant network, multiple
ATP jobs and other applications share the network. They
contend for various resources including network bandwidth,
receiver CPU, and switch buffers. In ATP, multiple jobs also
contend for aggregators at the switches.

High contention for aggregators in the switch can lead to a
situation where aggregators cannot aggregate all traffic. This
causes the traffic volume to increase, which will trigger queue
length buildup in switches and packet loss due to switch buffer
overflow. The observable symptoms in this case are similar
to network congestion. Based on this, ATP uses congestion
control to manage all contended resources.

In TCP, senders detect congestion using RTT, duplicated
ACKs, or ECN marks, and respond by adjusting sending win-
dows. For ATP, we pick ECN marks as the primary conges-
tion signal. RTT measured from a worker sending a gradient
packet to it receiving a parameter ACK packet will not work
because it includes synchronization delay between workers.
As all the workers receive the same parameter packet, using
ECN ensures that all workers see similar congestion signals.
We enable the ECN marking in switches, and use both ECN
and (rare) packet loss as the congestion signal. To ensure that
ECN marks are not lost during aggregation, ATP merges the
ECN bit in fragment packets into the ECN bit in aggregator ( 7
in Figure 7), which is later forwarded to the PS when aggre-

gation completes. This ECN bit is then copied to the parameter
packet and eventually reaches all the workers.

Each ATP worker applies Additive Increase Multiplicative
Decrease (AIMD) to adjust its window in response to con-
gestion signals. The window size ATP starts at 200 packets,
which at 300 bytes for each packet is within the bandwidth-
delay product (⇠ 60KB) of a 100Gbps network. ATP in-
creases window size by one MTU (1500 bytes or 5 packets)
for each received parameter packet until it reaches a threshold,
which is similar to slow start in TCP. Above the slow-start
threshold, ATP increases window size by one MTU per win-
dow. When a worker detects congestion via ECN marking on
a parameter ACK or three out-of-order ACKs, it halves the
window, and updates the slow start threshold to the updated
window.

3.8 Dealing with Floating Point
Gradient values are real numbers and DNN training frame-
works offer several numerical types to represent them, each
type offering varying trade-offs between range, precision and
computational overhead. Gradient values are typically repre-
sented using 32-bit floating point type.

The current generation of programmable switches does not
support 32-bit floating point arithmetic. Like prior work [56],
ATP converts gradient values at each worker from 32-bit float-
ing point representation to 32-bit integer representation by
multiplying the floating point number by a scaling factor (108)
and rounding to the nearest integer. The switch aggregates
these 32-bit integers and PS converts the aggregated value
back to 32-bit floating points by dividing by the scaling factor.
ATP chooses a large scaling factor, i.e., 108, so as to minimize
loss of precision as 32-bit floating point representation pro-
vides precision of 7 decimal digits [7]. A detailed justification
of ATP’s choice of scaling factor can be found in §B.1.

A large scaling factor can lead to the overflow of aggregated
gradients. There are two alternatives to deal with overflows:
proactive and reactive. The former (described in §B.2) is cau-
tious and wastes opportunities for in-network aggregation by
sending some gradient packets directly to the PS for aggre-
gation. We explain the pitfalls of this mechanism in §B.2.
Instead, ATP uses a reactive mechanism: all gradient pack-
ets are sent with the intention of aggregation at a network
switch. If a gradient packet triggers overflow at an aggregator
in the switch, we utilize a switch feature (saturation) to set the
aggregator value to the maximum value or minimum value
represented with 32-bit integers. If the aggregator value is sat-
urated, any further gradient packets destined at this aggregator
only update the directions (i.e., bitmap, fanIndegrees) and the
value remains saturated. When the aggregation is done, i.e.,
fanInDegree value is equal to the number of workers, the sat-
urated aggregator value is written to the gradient packet and
sent to the PS. If the PS finds the aggregator value is saturated,
it requests the original gradient values in floating-point for-
mat from all workers. This triggers a retransmission and all
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the workers send packets with floating-point gradient values
directly to the PS, which finally performs aggregation.

In the worst case, such a reactive overflow correction in-
curs the cost of retransmission of all gradient packets in an
iteration. Note that the overhead incurred during overflow
correction is exactly the same as that during packet loss re-
covery. In our evaluations, we see no deterioration in training
throughput if the packet loss rate is < 0.1% (§5.2.3). This
translates to overflow correction as well: if the frequency of
overflow correction is < 0.1% (over packets), we will see no
deterioration in training throughput. We empirically show that
there is hardly any overflow for all popular models’ training
in §5.3. The frequency of overflow correction can be further
reduced using a dynamic scaling factor (§B.3).

Because overflow correction adds little overhead, ATP’s in-
network aggregation yields substantial speed-up in per-epoch
times. Coupled with quantization not affecting the number of
epochs, ATP overall yields significant gains in time-to-target-
accuracy, as we also show in §5.3.

4 Implementation
ATP’s implementation consists of (i) the protocol logic on P4
switches and end host, and (ii) hardware offloads to optimize
small-packet performance.
Programmable Switch. The switch implementation has pro-
cessing logic for gradient aggregation and control logic to
allocate, deallocate, and manage aggregators. The main chal-
lenge is that the whole packet must be parsed in a limited time
budget and processed in the limited switch pipeline stages.

Aggregation. Prior work [56] processed packets in a single
pass, which limited packets to 184B. ATP increases this limit
by taking two passes (called two-pass) at the switch for each
packet, which is a mixed usage of the resubmit 3 and recircu-
late features. The details are in §C. This raises the maximum
packet size to just 306B – larger, but still small packets. This
leaves 4 switch stages for control operations.

Control logic. This is responsible for checking whether an
aggregator is available, processing protocol flags, and updat-
ing the aggregation state. To work within the restriction of
one-time access to a register, ATP applies various techniques
to handle complex operations. Consider the bitmap check
process, which involves a read of the bitmap in the aggregator
and then an arithmetic operation on the gradient value and
bitmap value; finally, a write to the bitmap in the aggregator.
We instead note that a write to bitmap is equivalent to setting
a bit always. This allows us to reorder the write operation to
just before the read operation. This read-followed-by-write
serves as one-time register access which is permissible. An-
other method in ATP to address one-time access restriction
for one packet is to use two packets; e.g., ATP allocates the ag-
gregator with gradient packets but deallocates the associated
aggregators using parameter packets.

3We leverage ‘ force_shift ingress‘ feature to drop the data part that has
been aggregated before the resubmit.

End-Host Networking Stack. We implement ATP as a
BytePS [69] plugin, which integrates in PyTorch [15], Tensor-
Flow [14] and MXNet [19]. BytePS allows ATP’s use without
application modifications. ATP intercepts the Push and Pull
function calls at workers as they communicate with ATP PS.

Small Packet Optimizations. ATP’s network stack leverages
Mellanox’s RAW ETHERNET userspace network program-
ming model [1]. ATP uses TSO [50] and Multi-Packet QP
(MP-QP) [42] hardware acceleration features to improve
small-packet processing. TSO speeds packet sending by of-
floading packetization to the NIC and improves PCIe band-
width via large DMA transfers. To improve packet receiving
rate, MP-QP uses buffer descriptors that specify multiple con-
tiguous packet buffers and reduce the NIC memory footprint
by at least 512X . These features together reduce CPU cost via
fewer calls to send/receive packets and fewer DMA operations
to fetch packet send and receive descriptors.

ATP uses multiple threads to speed up packet processing.
When ATP receives tensors to transfer, it assigns the tensor to
a thread to send, which may cause load imbalance across dif-
ferent threads. Each worker in ATP has a centralized scheduler
to receive tensors from the application layer, and maintains
the total workload for each thread. Whenever the scheduler
receives tensors to be sent, it extracts the size and assigns the
tensor to the least loaded thread to balance the load.
Baseline Implementation. We implement a prototype of
SwitchML [56], which uses the switch as the PS and provides
a timeout-based packet-loss recovery mechanism. We apply
TSO and MP-QP features to the SwitchML implementation
at end hosts to improve small-packet operations, but do not
apply the two-pass optimization at the switch to align with the
public version of SwitchML. As a result, the packet size for
SwitchML implementation is 180 bytes. We also open-source
our SwitchML implementation [3].

5 Evaluation
We evaluate ATP via testbed experiments and software emu-
lation to answer the following questions:

1. How does ATP perform compared to state-of-the-art
approaches for a single job (§5.2.1)?

2. How does ATP’s inter-rack aggregation perform com-
pared to an alternate rack-scale service (§5.2.2)?

3. What are the overheads of ATP’s loss recovery mecha-
nisms (§5.2.3)?

4. How does conversion to integers in ATP affect time to
accuracy (§5.3)?

5. How does dynamic aggregator allocation compare to a
centralized static scheme under multi-tenancy (§5.4)?

6. How effective is ATP’s congestion control (§5.5)?

5.1 Experimental Setup
Cluster Setup. We evaluate ATP on a testbed with 9 ma-
chines. 8 of them have one NVIDIA GeForce RTX 2080Ti
GPU with NVIDIA driver version 430.34 and CUDA 10.0.
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All machines have 56 cores of Intel(R) Xeon(R) Gold 5120T
CPU @ 2.20GHz, 192GB RAM with Ubuntu 18.04 and Linux
kernel 4.15.0-20. Each host has a Mellanox ConnectX-5 dual-
port 100G NIC with Mellanox driver OFED 4.7-1.0.0.1. All
the hosts are connected via a 32x100Gbps programmable
switch with a Barefoot Tofino chip. We evaluate inter-rack ag-
gregation using Tofino’s software switch model [5] to emulate
ATP switches in software with the same code.
Baselines. We compare ATP against BytePS [69]; both use
a worker-PS architecture. BytePS supports TCP (BytePS
+ TCP) and RDMA over Converged Ethernet (RoCE) [36]
(BytePS + RDMA) as network protocols. We turn on PFC [25]
for RDMA to provide a lossless network. While ATP uses
the default of N workers to 1 PS (labeled Nto1), we opti-
mize BytePS with as many PSs as the workers (labeled NtoN)
to alleviate the network bottleneck. Also, we co-locate one
each of the N PSs and N workers in the same machine. We
also compare ATP with our implementation of SwitchML,
a state-of-the-art baseline with in-network aggregation sup-
port. We also compare ATP against Horovod [58] with RoCE
(Horovod+RDMA) and with TCP (Horovod+TCP) which
uses a ring all-reduce architecture [61].
Workloads. We run Pytorch on top of the above schemes to
evaluate many popular real-world models: AlexNet, VGG11,
VGG16, VGG19, ResNet50, ResNet101, and ResNet152 [33,
44, 60]. Each model trains on the ImageNet dataset. The DT
job has 8 workers unless specified. For most experiments we
use VGG16 (model size 528MB) and ResNet50 (model size
98MB), as representatives for network-intensive and compute-
intensive workloads, respectively. We also run an aggrega-
tion microbenchmark where each worker repeatedly transfers
4MB tensors (maximum size BytePS supports), which are
aggregated in the network (ATP) or at the PS(s) (BytePS), and
are then sent back to the workers. In contrast to real jobs, this
microbenchmark has equal-sized tensors and always has data
to send with no “off” phase.
Metrics. We use three metrics to measure performance: (1)
training throughput for DT jobs, which is the number of im-
ages processed per second (image/sec) normalized by the
number of workers; (2) time to accuracy to show a DT job’s
quality, which is the training time to reach a target or maxi-
mum accuracy; and (3) aggregation throughput for the mi-
crobenchmark, which is the total bytes of parameters received
at each worker per second (Gbps).

5.2 Single Job Performance
5.2.1 ATP Training Performance
We compare ATP against all baselines on single-job training
throughput for all the models in our workload as shown in Fig-
ure 8. ATP achieves the best performance for all jobs with a
maximum speedup of 1.5X over BytePS NtoN RDMA, 1.24X
over Horovod RDMA, 2.5X over BytePS NtoN TCP, 8.7X
over BytePS Nto1 TCP, 4.2X over Horovod TCP and 1.5X
over SwitchML. Performance gains are larger on network-

intensive workloads (VGG) than compute-intensive work-
loads (ResNet). PS-based ATP is comparable to, and in many
cases outperforms, the state-of-the-art ring all-reduce ap-
proach (Horovod+RDMA). ATP outperforms SwitchML due
to support for larger packet size made possible via our opti-
mized two-pass implementation of switch logic.

5.2.2 Inter-rack Aggregation
ATP provides aggregation at two levels in inter-rack config-
urations. We pick a typical network topology as shown in
Figure 9, where the PS is connected to switch SW2 and work-
ers w0-w5 are connected to different switches. We compare
against a rack-scale solution (RSS) that aggregates locally at
each rack and forwards partial aggregates to the PS. In our
test topology, RSS performs aggregation for w0-w1 at SW0,
w2-w3 at SW1, w4-w5 at SW2, and then, aggregation from
SW0, SW1 and SW2 at the PS. This approach simplifies the
algorithm at the switch at the cost of more network traffic
to the PS. We measure the amount of traffic the PS receives
with ATP and RSS using the software simulator (so we cannot
measure real throughput). PS with RSS receives 3X more traf-
fic than PS with ATP. This is because RSS sends the partial
aggregates from SW0�SW2 to PS while ATP aggregates in-
dividual packets from w5 and w4 and partial aggregates from
SW0 and SW1 at switch SW2 before they are sent to PS; this
eliminates 2/3 of the traffic to the PS.

5.2.3 Packet Loss Recovery Overhead
ATP handles packet loss at the end host, but guarantees aggre-
gation correctness and prevents memory leaks in the switch.
To evaluate the overhead of packet loss recovery, we config-
ure one worker to adversarially drop packets with a packet
loss rate between 0.001% and 1% (as in prior work [56]). We
compare against SwitchML, which uses a timeout mechanism
to detect packet loss, and turn off ATP’s congestion control
to avoid window back-off due to this adversarial packet loss.
We use the timeout value (1ms) from SwitchML.

Figure 10 shows the training and microbenchmark through-
put normalized to no loss for varying loss rates. Overall, ATP
degrades gracefully when the loss rate increases, and to a
lesser degree than SwitchML. This is because ATP adopts out-
of-sequence ACKs as a packet loss signal, which enables ATP
to detect and respond to packet losses faster than SwitchML.

5.3 ATP Time-to-Accuracy (TTA)
5.3.1 Single Job TTA
ATP changes the nature of computation of gradient aggrega-
tion via conversion of gradient values to integers to enable
aggregation on the switch and has reactive mechanisms to
deal with overflows. To confirm this does not affect the train-
ing quality of our workload, we evaluate ATP’s accuracy over
time against the baseline (BytePS NtoN RDMA). We find that
ATP spends the same number of epochs to achieve the same
top-5 accuracy as BytePS NtoN RDMA for all the models.
Figure 11 plots the top-5 accuracy with time for ResNet50,
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Figure 10: Throughput in different packet loss rate.

VGG16 and ResNet152. With VGG16, a network-intensive
workload, ATP outperforms BytePS and reaches 75% top-
5 accuracy 1.25X faster than BytePS. With ResNet50, ATP
and BytePS reach 93% top-5 accuracy in comparable amount
of time (ATP is 1.02X faster) as shown in Figure 11a. ATP
does not speed up training for ResNet50 as it is a compute-
intensive workload. ResNet152 (Figure 11c) exhibits the same
trend as ResNet50. We also conduct TTA experiments on
VGG19, ResNet101 and AlexNet models, and observe that
ATP reaches target accuracy 1.2X , 1.01X and 2.39X faster,
respectively. Figures for these results are in §D.3.
Overflow Correction. Retransmissions due to ATP’s over-
flow correction mechanism can be a source of overheads. In
our results, we see overflows only with ResNet152, with 445
aggregated gradient packets (i.e., 0.00002% of all aggregated
gradient packets generated in an epoch) requiring overflow
correction. These happen only in the first few iterations of the
first epoch when the model is initialized with random weights
and the magnitude of gradient updates is large.
Worst-case Precision Loss. ATP uses a scaling factor of 108.
Gradient values with a magnitude less than 10�8 are approxi-
mated as zero and experience complete loss of precision. We
observe that an average of only 0.00002% of the gradients
values per epoch in ResNet50 are less than 10�8. As a result,
ATP causes no loss of accuracy in the final trained model.

5.3.2 Multi-job Time-to-Accuracy (TTA)
We also evaluate TTA with 2 VGG16 jobs for ATP, BytePS
NtoN RDMA, and Horovod with RDMA. Each job has three
workers. We use one switch to emulate a dumbbell topology
and separate one worker from the other two of a job at the two
ends of the dumbbell. The link line rate is 100Gbps. A worker-
to-worker (or PS) path from each job share the dumbbell link.
Figure 12 shows the 75% top-5 accuracy with time for each
VGG16 job. Similar as single job TTA performance, ATP
outperforms BytePS and Horovod and reaches 75% top-5

accuracy 1.20X faster than the fastest BytePS job, and 1.25X
faster than Horovod. Two jobs in ATP and Horovod achieve
the same accuracy with the same training time, while this
is not the case for BytePS. We observed PFC storms from
NICs in BytePS, which we suspect is due to the heavy PCIe
contention between NIC and GPU.

In summary, these results demonstrate that ATP does not
compromise training quality and is able to achieve baseline
training accuracy in less time than other methods owing to
the acceleration provided by in-network aggregation.

5.4 Multiple Jobs
ATP does dynamic best-effort sharing of switch resources
across multiple jobs. Our multi-tenant extension of SwitchML
statically partitions switch resources equally across jobs.

5.4.1 Dynamic vs. Static Sharing
We compare ATP’s dynamic best-effort approach against
SwitchML’s static approach by launching 3 identical VGG16
jobs (with identical placement for workers and PS) connected
to one programmable switch. We vary the number of aggrega-
tors for the 3 jobs on the switch. The static approach allocates
a fixed 1/3 fraction of the aggregators to each job, while
ATP’s dynamic approach shares these aggregators dynami-
cally, so that when any job is in an off phase its aggregators
are available to other jobs.

We first tune the number of aggregators reserved for the 3
jobs to find the minimum number needed to get maximal train-
ing throughput for each job with the static approach. We find
that 1980 aggregators, referred to as peak throughput aggre-
gators (PTA), equally divided across the three jobs maximize
throughput because jobs saturate the link from the switch
to the PS. To measure the impact of sharing strategy under
contention, we reduce the number of available aggregators
from 100% of PTA to 33% of PTA, and measure training
throughput with both static and dynamic approaches.

Figure 13a shows the average training throughput (mea-
sured after warm-up, from the second epoch of training on-
wards) as we vary the number of aggregators available to
the 3 jobs from 100% of PTA (1980 aggregators) to 33% of
PTA (660 aggregators). With 100%, the dynamic approach
performs similarly to static approach. This is because in both
cases all aggregation happens in-network, and the switch to
PS link is fully utilized. As we reduce the number of aggrega-
tors available, throughput for the dynamic approach degrades

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    751



0 10000 20000 30000 40000 50000 60000
Time(s)

50%

70%

93%

To
p 

5 
Ac

cu
ra

cy

ATP
BytePS NtoN RDMA
93% Accuracy

(a) ResNet50

20000 40000 60000 80000
Time(s)

50%

60%

75%

To
p 

5 
Ac

cu
ra

cy

ATP
BytePS NtoN RDMA
75% Accuracy

(b) VGG16

0 10000 20000 30000 40000 50000
Time(s)

50%

70%

90%

To
p 

5 
Ac

cu
ra

cy

ATP
BytePS NtoN RDMA
90% Accuracy

(c) ResNet152

Figure 11: Time to accuracy

50000 100000 150000 200000
Time(s)

50%

60%

75%

To
p 

5 
Ac

cu
ra

cy

ATP Job1
ATP Job2
Horovod Job1
Horovod Job2

BytePS Job1
BytePS Job2
75% Accuracy

Figure 12: TTA with two
VGG16 jobs

100% 85% 75% 60% 45% 33%
Peak Throughput Aggregators (PTA)

0

50

100

150

200

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

(im
ag

e/
se

c)

Dynamic Static

(a) Training performance as the number of
PTA changes.

0 50 100
Time(10ms)

0

20

40

PS
 A

gg
re

ga
tio

n
(o

ps
/1

0m
s)

Job1 Job2 Job3

(b) PS aggregations with 100% of PTA

0 100 200 300 400 500
Time(10ms)

0

5000

10000

15000

In
-n

et
w

or
k 

Ag
gr

eg
at

io
n

(o
ps

/1
0m

s)

Job1 Job2 Job3

(c) Network aggregations with 33% of PTA

Figure 13: Dynamic v.s. static allocation with different peak throughput aggregators (PTA) ratio.

less than that with the static approach. This is because the dy-
namic approach allows sharing of unused aggregators across
jobs and also uses available switch-to-PS link capacity for
PS-based aggregation. We show this by delving into ATP’s
dynamic approach when using 100% and 33% of PTA.

Figure 13b shows the total number of aggregations at the PS
every 10ms for each job with ATP’s dynamic approach using
100% of PTA, starting at job warm-up. Initially, there are
hash collisions because of jobs allocating the same aggregator
index, which leads to aggregation at the PS. After 500ms,
ATP’s hash-collision avoidance kicks in and the dynamic
approach converges to complete in-network aggregation.

Figure 13c shows how ATP’s dynamic approach responds
when jobs enter an off phase. The figure shows the number
of aggregations performed at the switch every 10ms when
only 33% of PTA are available. The trace shows that when
one job enters an off phase (zero in-network aggregations),
the number of in-network aggregations for the remaining jobs
increases. For example, at sample 120, job 3 (red) enters an
off phase, and the in-network aggregations for jobs 1 and 2
increase until job 3 resumes at sample 180.

5.4.2 Effectiveness of ATP’s Hashing Scheme
In §5.4.1, we show ATP’s hashing scheme works with 100%
of PTA for 3 jobs. To evaluate at larger scale, we launch 8
microbenchmark jobs with 100% of PTA with ATP’s hashing
enabled (Hash-based dynamic) and without hashing enabled
(Linear-based dynamic which allocates aggregator indexes
in sequence, i.e., index = seq_num % N), and compare against
the baseline scheme (static allocation with 100% of PTA).

Figure 14 plots the aggregation throughput for the three
schemes as the number of jobs increases. ATP’s hash-based
scheme matches the baseline static scheme and greatly outper-
forms the linear-based scheme, as without hashing, a continu-
ous sequence of gradients from multiple jobs collide, intro-
ducing a significant amount of retransmission. Overall, these
experiments indicate that the dynamic hash function can ef-
fectively distribute aggregators to each job. It can achieve
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Figure 16: Aggregation goodput with non-ATP traffic.

comparable performance to the static approach when there
is no contention for switch aggregators, and outperform the
static approach under contention.

5.5 Effectiveness of Congestion Control
ATP’s congestion control mechanism aims to minimize packet
loss while maximizing the link utilization. Network con-
gestion happens (1) when ATP traffic is co-located with
bandwidth-hungry normal traffic, such as TCP or RDMA
transfers; (2) when ATP does not perform in-network ag-
gregation due to a shortage of switch resources from other
contending ATP jobs, causing an incast to the PS. We evaluate
ATP’s congestion control mechanism in both cases.
With non-ATP traffic. It is common to co-locate multiple
systems and applications in a multi-tenant multi-rack cluster,
such as storage and data pre-processing systems. We validate
ATP’s congestion control effectiveness when co-locating with
such traffic. We launch a training job with 6 workers and 1 PS
for ATP. We add background flows competing for bandwidth
on a link to a worker, which individually can achieve line rate.
The experiment starts with background traffic, and then starts
a training job at t = 25s. We stop the training job after 50s.
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We perform this experiment both with VGG16 and with our
microbenchmark to emulate large models on ATP.

Figure 16a reports the aggregation goodput (total size of
parameters aggregated in a second) from the worker that ex-
periences network congestion for VGG16 (ATP), the goodput
from the non-ATP traffic (non-ATP), and the aggregate good-
put (ATP + non-ATP) over time. The dashed black line shows
the peak goodput VGG16 job can achieve without background
traffic; this link bandwidth demand is less than fair share. We
see that the VGG16 job with ATP is able to achieve peak
goodput (as demand is less than fair share) and that the sum
of goodputs is close to line rate on the uplink from this worker.
This indicates that ATP’s CC is able to co-exist with non-ATP
background traffic with max-min fair allocation in this setting.

Figure 16b plots the same scenario instead with the mi-
crobenchmark job. The dashed black line shows the peak
goodput this job can achieve without background traffic,
which is indicative of a link bandwidth demand greater than
fair share of the network uplink rate at the worker. We see that
ATP is able to achieve near the fair share of the bottleneck
link (the uplink from this worker) and that the sum of goodput
from both traffic types is close to link rate. This showcases
near equitable sharing of link bandwidth. Figure 16a and Fig-
ure 16b show that the congestion control of ATP is able to
respond quickly to changes in congestion, and converge to a
new bandwidth which is very stable.
With other ATP traffic. We launch a single VGG16 job (8
workers) using ATP for 10 iterations. We reserve only 50%
of the switch aggregators needed to achieve peak training
throughput with complete in-network aggregation (to emulate
contention from background ATP jobs). Figure 15 shows
the aggregation goodput averaged per second from a sin-
gle worker against time with and without congestion control
(CC). We see that the congestion control of ATP kicks in, and
the aggregation goodput stabilizes around 7.5Gbps for the
worker. Note that this goodput is lower than the peak goodput
(⇠20Gbps) from the previous experiment because here we
have an 8-to-1 (8 workers to 1 PS) incast, only 50% of traffic
is reduced in the network, and the PS in our implementation
saturates at 60Gbps (§D.1).

Without CC, the goodput fluctuates dramatically between
4Gbps and 0; this is because incast causes frequent packet
loss without congestion control, and introduces high packet
loss recovery overhead. The training goodput of ATP with
congestion control is 66.8 img/s while that without congestion
control is 23.2 img/s, a decrease of 65%. These results show
that the congestion control for ATP can effectively maintain
high goodput and is effective in avoiding packet loss.

In summary, ATP’s congestion control helps it co-exist with
other tenants (both ATP and non-ATP).

6 Other Related Work
We discuss prior works that propose advances in hardware,
software, offloads, and algorithms to accelerate DNN training.

Speedup Network Transmission. Prior efforts propose to
improve gradient aggregation time by (1) smarter network
scheduling – increasing the overlap between GPU/CPU com-
putation and network transmission via fine-grained tensors
transmission scheduling (per layer instead of the whole gra-
dient or parameter) [32, 37, 52, 70]; combining model- and
data-parallelism via pipelining [31, 35]; using asynchronous
IO [20, 24]. (2) reducing network traffic – using large batch
size to reduce the communication frequency [11, 29, 38]; us-
ing quantization [57] or reducing redundancy in SGD [45]
to reduce bytes sent over the network; optimizing mixture
of local-global aggregation to adapt to network change at
runtime [21, 64]. ATP can incorporate these optimizations to
further improve its performance.
In-network Aggregation. The idea of in-network aggrega-
tion has been explored in wireless networks [18, 59]; in
big-data systems and distributed training systems using end-
hosts [23], a specialized host [48], high performance middle-
boxes [49] or overlay networks [17,63]. DAIET [55] proposed
a simple proof-of-concept design of in-network aggregation
without a testbed prototype. ShArP [30], supported by special
Mellanox Infiniband switches, builds an overlay reduction tree
to aggregate data going through it, but it does not apply the
aggregation until the switch receives all the data. ATP is the
first to provide a dynamic, best-effort in-network aggregation
service for multi-tenant multi-switch clusters.

7 Conclusion
We build an in-network aggregation service, ATP, to accel-
erate DT jobs in multi-tenant multi-rack networks. ATP pro-
vides a best effort in-network aggregation primitive via care-
ful co-design of switch logic (for aggregation) and the end-
host networking stack (for reliability and congestion control).
Testbed experiments show that ATP is able to outperform
existing systems by up to 8.7X for a single job, and it is even
slightly better than the current state-of-the-art ring all-reduce
with RDMA. In a multi-tenant scenario, best-effort in-network
aggregation with ATP enables efficient switch resource usage,
and outperforms current state-of-the-art static allocation tech-
niques by up to 38% in terms of training time when there is
heavy contention for on-switch resources.
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A Additional Design Details
This section is a supplement to ATP’s design description
from §3. We first provide additional design details for clearer
exposition and then outline design extensions to make ATP
more general and robust.

A.1 Switch Algorithm for Reliability
Figure 17 explains the details on how the switch handles the
three issues discussed in Section 3.7. If the retransmitted gra-
dient fragment packets have an aggregator at switch ( 1 in
Figure 17), ATP uses the bitmap in the gradient fragment
packet header to check if bitmap field in the aggregator is
set ( 5 ). If unset, the data field element is aggregated to the
value field of the aggregator and the bitmap field in the ag-
gregator is set ( 6 ). After aggregation or if the retransmitted
gradient has already been seen, ATP copies the value field
and the bitmap field from the aggregator to the data field and
the bitmap field of the packet, deallocates the aggregator, and
sends the packet downstream ( 7 ). Given that only the first
retransmitted gradient packet triggers aggregator deallocation,
the retransmitted packets with the same sequence number
from other workers do not hit the aggregators or reserve a
new aggregator and thus, they will be directly forwarded to
upstream devices. Note that at the second level of aggregation,
ATP directly forwards a retransmitted gradient packet for sim-
plicity ( 3 ). In all the cases, ATP deallocates the aggregator
and sets all fields to null ( 3 and 7 ).

The parameter packet, whether it is retransmitted or not,
always triggers the deallocation of the aggregator with the
same <Job ID, Sequence Number>.
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Figure 17: Pseudocode of the switch logic dealing with packet
loss.

A.2 Aggregation at Multiple Hierarchy Lev-
els

ATP can be extended to support aggregation at multiple hier-
archy levels, i.e., beyond ToR switches to also enable aggrega-
tion at aggregation layer switches and core layer switches. The
only pre-requisite is that packet routes for all gradient packets
have to be deterministic (e.g., as in ECMP) and known ahead
of time so that ATP knows the exact switch in the network at
which gradient packets (or partially aggregated gradient pack-
ets) for a particular sequence number converge. This helps
to precisely determine the fan-in degree at each intermedi-
ate switch from workers to the PS. This helps higher-level
switches to aggregate partially aggregated results from lower-
level switches and determine when aggregation at higher-
level switches is complete. To enable multi-level aggregation,
we need to add more bitmap and fanInDegree fields to ATP
packet header (one for each additional in-network gradient
aggregating switch) to track the progress of aggregation at all
the switches involved in gradient aggregation enroute from

the workers to the PS.
Notably, for non-deterministic route load balancing

schemes, such as Presto [34] and CONGA [16], ATP pack-
ets only deterministically route through TOR switches with
non-deterministic routing at higher levels of the datacenter
network hierarchy. Thus, to support such cases, ATP does
aggregation only at the TOR-layer.

A.3 Recovering from Worker Failures
PS-based architectures deal with worker failures by re-
spawning a worker process, perhaps on a different machine
connected to a different ToR switch. This requires invalidat-
ing stale aggregators having incomplete aggregation results
that are waiting on gradient packets from the failed worker.
Such stale entries are invalidated as ATP has checks and bal-
ances to overcome switch memory leaks (described in §3.7).
Also, the re-spawned worker might be on a different machine
and connected to a different TOR switch. This might require
changes to the fanInDegree field in ATP packet headers. ATP
re-triggers dynamic job-setup phase (described in §3.2) af-
ter any such failure event and the PS re-initiates gradient
aggregation by sending an ACK on the new multicast tree
that includes the re-spawned worker for the earliest sequence
number that is yet to be aggregated.

A.4 Dealing with Stragglers
A slow worker or a slow link can slow down the whole training
process. However, this is an artifact of synchronous training
and not an issue with ATP. Note that because ATP alleviates
network bottlenecks as it aggregates gradients in the network,
it reduces the likelihood of network-induced stragglers.

A.5 Comparison to Ring All-reduce Ap-
proach

Ring all-reduce uses one-to-one communication in each train-
ing iteration/round. With this communication pattern, ATP
does not have any opportunity to assist. A drawback of ring
all-reduce is that the amount of data that each worker sends
and receives is higher and is 4(n�1) |U |

n , where n is the num-
ber of workers, |U | is the total number of bytes to be aggre-
gated. With ATP the amount of data that each worker sends
and receives is 2|U |; the amount of data that each PS sends
and receives is 2|U |/m where m is the number of PSs. Quan-
titatively, this indicates that ring all-reduce generates more
network traffic than ATP, which may congest the network for
other running applications in the cluster. We compare ATP
against the ring all-reduce approach (Horovod RDMA and
Horovod TCP) in Figure 8, demonstrating that ATP is better
than ring all-reduce for training popular models.

B Addtional details on dealing with
floating point

ATP converts floating point values to integers by multiply-
ing with a scaling factor to enable gradient aggregation on
programmable switches.
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B.1 ATP’s Choice of Scaling Factor
The choice of the scaling factor is crucial. A smaller scaling
factor can lead to rounding-off a lot of digits after the decimal
point and a greater loss in precision. Theoretically, the preci-
sion loss due to this conversion is bounded by n

s (Theorem 1
in [56]), where n is the number of workers and s is the scaling
factor. A large scaling factor can lead to aggregation of large
integers and may cause overflow at the switches. Theoreti-
cally, there is no overflow if gradient values are less than an
upper bound B = 231�n

ns (Theorem 2 in [56]).
Prior work [56] relies on empirical measurements to find

this upper bound B for gradient values of a popular suite of
ML training jobs and chooses a scaling factor s = 231�n

nB . The
precision loss with this choice of scaling factor is bounded by

n2B
231�n .

There are two drawbacks with this approach. First, the
guarantee of no overflows with this approach strictly relies
on obtaining an accurate estimate of the upper bound B on
gradient values. This makes the approach expensive to accom-
modate jobs that train new and unseen models as empirically
determining the value of B for a new model requires an end-
to-end training run. Second, the scaling factor decreases as
the value of B and the number of workers n increase, which
leads to an increasing loss of precision. With 100 workers
and B = 200, the value of the scaling factor is ⇠ 105 and the
maximum loss of precision is ⇠ 10�5 per gradient value. We
sample gradient values below 10�5 in some epochs across
models and find that there are 18% such gradient values for
ResNet50, 42.8% for VGG16 and 39.8% for AlexNet. These
values will experience completed loss of precision, hurting
model accuracy upon training.

With ATP, we choose a high scaling factor so as to min-
imize loss of precision. We note that 32-bit floating point
representation provides the precision of 7 decimal digits [7].
Thus, to provide an equivalent precision, ATP chooses the
scaling factor of 108. The decoupling of the scaling factor
from B completely eliminates the first drawback and partially
eliminates the second drawback described above. However,
a large scaling factor can lead to an overflow of aggregated
gradients.

There are broadly two mechanisms to overcome overflows:
proactive and reactive. ATP chooses a reactive mechanism
(§3.8) because there are drawbacks to using a proactive mech-
anism that we discuss next.

B.2 Pitfalls of Proactive Overflow Mechanism
The proactive mechanism prevents overflows from ever occur-
ring at the switch. It determines a maximum gradient value
threshold B such that, as long as gradient values aggregated
in the switch are less than B, any overflow is avoided. The
value of B (= 231�n

ns ) is computed at each worker during job
initialization. Packets with gradient values  B are aggregated
in the switch, while workers flag packets with gradient values
> B. Packets with this flag are not aggregated in the switch

Job False Positive Packets
ResNet50 - 8 Workers 37,002

ResNet50 - 16 Workers 231,528
ResNet50 - 32 Workers 1,156,126
ResNet50 - 64 Workers 14,602,998

Table 1: Average false positive packets per epoch increase as
workers increase.

and are eventually aggregated at the PS. It is worth noting that
this mechanism naturally fits with the best-effort aggregation
service provided by ATP and cannot be implemented in the
prior SwitchML work.

Unfortunately, a proactive mechanism severely limits the
opportunities for in-network aggregation. With 100 workers
and a scaling factor of 108, the value of B is 0.2. To highlight
this, in Table 1, we measure the number of false positives in a
single epoch when training a ResNet50 model. We classify
a gradient packet with a particular sequence number as a
false positive if the gradient value in that packet is > B but
the aggregated gradient value for that sequence number from
all the workers does not overflow the integer bound (231).
Each false positive packet could have been aggregated in
the switch and consumed in the network, but instead with
the proactive approach ends up traversing the network from
the worker all the way to the PS. As seen in Table 1, the
number of false positive packets gets worse as we increase
the number of workers in a ResNet50 job. This trend applies
to all models, although the magnitude of false positive packets
might change. This is not desirable because a higher number
of false positive packets means that we lose out on in-network
aggregation opportunities and that the number of packets
traversing the link to the PS increases. Thus, increasing false
positive packets leads to an increased likelihood of incast
which only snowballs as the number of workers in the job
increases.

For these reasons, in ATP, we avoid using a proactive mech-
anism and use a reactive mechanism for overflow correction
(§3.8).

B.3 Dynamic Scaling Factor
A static scaling factor can, in the worst case, lead to a very
high overflow correction frequency when the magnitude of
gradient values from all workers is large. In such a case,
reducing the value of the scaling factor will reduce the over-
flow correction frequency and will also not lead to a loss of
precision (as the gradient values are large). Thus, a possi-
ble optimization would be to make dynamic adjustments to
the scaling factor in reaction to the current range of gradient
values in recent iterations, especially for the case when the
number of workers n is large. In our evaluations with popu-
lar models and the scale at which these distributed models
are trained today, we do not see the need for such dynamic
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Figure 19: Throughput with different hardware acceleration.

scaling.
However, dynamic scaling adjustments may be beneficial

in the future as new large models emerge and training jobs
scale-out even further. Inspired by SwitchML [56], workers
compute the scaling factor for each gradient in the next win-
dow with s = 231�n

nb (Theorem 2 in [56]), where b is the gradi-
ent value. Workers pick the minimal scaling factor in a packet,
which guarantees there is not any overflow within a packet.
When a tensor aggregation starts, a gradient packet piggy-
backs this value of the subsequent packet, which is sent after
receiving the current packet’s corresponding parameter packet.
The switch computes the minimal scaling factor among work-
ers, which will be carried to the PS. PS can instruct workers
to use this scaling factor only when the overflow happens
frequently. Note that the first gradient packet aggregation for
each tensor can overflow with this approach. SwitchML sends
an empty packet only containing the scaling factor at the be-
ginning of the aggregation for each tensor, which causes one
RTT waste and the finishing time of a tensor can be doubled if
the tensor is small. ATP chooses the reactive approach, where
the cost is one RTT in the worst case that all the gradient
aggregations in the first window overflow. We leave this as
future work.

C Additional Implementation Details
This section supplements the description of ATP’s implemen-
tation in §4.

To increase the packet size processed by the switch, ATP
programs the switch to process each ATP packet twice, which
we refer to as two-pass. The first half of the gradients in
the packet are aggregated in the first pass and the second
half are aggregated in the second pass. Instead of using two

end-to-end (all the way from ingress on a port to egress to
a port) pipelines, which requires two ports to recirculate the
packets, ATP uses the resubmit and recirculate features to-
gether, which allows to re-process the same packet (except the
last packet that completes gradient aggregation) only in the
ingress pipeline of the switch. This avoids using an additional
port at the egress pipeline.

Recall that ATP drops the first n� 1 packets (where, n
is number of workers) after aggregation at the switch, and
writes the aggregated results from the aggregator to the n-th
worker’s gradient packet, where n is the number of workers.
ATP uses resubmit for the first n�1 gradient packets after the
first pass. As the name suggests, this takes the packet from
the end of the ingress pipeline after the first processing pass,
left shifts the packet using the ‘force_shift ingress’ feature
on the parser to drop the data part that has been aggregated
in the first pass, and immediately resubmits this packet to
the ingress pipeline for a second pass to process the second
half of the packet. However, we can not apply the resubmit
feature to the last gradient packet because ATP writes the
first half of the aggregated results to the last packet during
the first pass and a resubmit with left shift will lead to a
loss of this aggregated result. To deal with this, ATP avoids
using the resubmit feature for the last packet. Instead, we
use ‘recirculate’ to enable a second end-to-end pass for the
second half of the last packet. This approach requires only
one additional port to recirculate the last packet. If the next
generation of programmable switches is able to process larger
packet sizes or the NIC supports higher packet processing
rate, ATP will not require a two-pass implementation at the
switch.

D Additional Evaluation Details
This section provides additional evaluation results (§D.1,
§D.3) and supplements some existing results (§D.2).

D.1 Small Packets Optimizations
ATP applies multiple hardware acceleration techniques to
boost throughput with small-packets as mentioned in Sec-
tion 4. We demonstrate the effectiveness of each optimization
by measuring the throughput of the microbenchmark using
configurations that incrementally add more optimizations. We
launch two hosts attached to a single switch, one as a worker,
and the other as PS. The switch logic of ATP is forwarding
packets from the worker to the PS. The PS copies the received
data from the receiver memory region to the sender memory
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region and then sends the data back to the worker.
Figure 19 shows the network throughput gains as we pro-

gressively add optimizations. TSO provides the biggest bene-
fit, and increases performance by 3X . Incorporating MP-QP
(§4) at the end hosts further increases performance 1.47X . Fi-
nally, adding aggregation based on two-pass implementation
at the switches increases the throughput by a final 1.3X . Over-
all, ATP’s TSO+MP-QP+Two-Pass optimizations provide a
6X throughput improvement over no hardware acceleration
(Default). We also notice that throughput does not double
between TSO+MP-QP and TSO+MP-QP+Two-Pass when
packet size doubles. This occurs because throughput is bottle-
necked by the memory copy at the PS and workers 4.

In summary, ATP is able to achieve high throughput with
small packets by utilizing recent advances in hardware accel-
eration.

D.2 Switch Resource Sharing
In this section, we study ATP’s dynamic aggregator allocation
approach and observe the impact of the number of workers
and the model size on the performance of contending jobs.
We launch two DT jobs on ATP under various settings.

First, we launch two VGG16 jobs each with 3 workers.
Figure 20 shows the training throughput normalized against
the job in isolation. We see equal throughput, across identical
jobs (same model and number of workers), indicating equal
sharing of switch resources. Also, the throughput reduction
for each of the two jobs is only 10%.

Second, we launch two VGG16 jobs with 5 and 2 workers
each. The job with more workers performs slightly worse
than that with fewer workers (145.6 image/s for 5 v.s. 159.3
image/s for 2 workers).

Third, we launch a VGG16 and a ResNet50 job and ob-
serve only 5% and 10% throughput reduction respectively;
reduction for the large model (5% in VGG16) is less than that
for the small model (10% in ResNet50).

In summary, ATP’s switch resource sharing is equitable for
similar workloads. In the case of different workloads it tends
to favor jobs using fewer workers and larger models.

4The memory copy overhead can be eliminated by proper memory align-
ment. We leave this improvement for future work.

D.3 Time To Accuracy
Figure 18 illustrates the TTA training curve for ResNet101,
VGG19 and AlexNet with the same setting from §5.3.
ResNet101 (Figure 18a) does not see a noticeable speed up
(1.01X in ATP) as it is a compute-intensive model similar to
our measurements in §5.3 (ResNet50 and ResNet152). The
results for VGG19 (Figure 18b) and AlexNet (Figure 18c)
reflect 1.2X and 2.39X speed up, which is consistent with the
training throughput presented in §5.2.1 for communication-
intensive models.
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Abstract
There is a growing body of work that reports positive results

from applying ML-based performance prediction to a particu-

lar application or use-case (e.g., server configuration, capacity

planning). Yet, a critical question remains unanswered: does

ML make prediction simpler (i.e., allowing us to treat systems

as blackboxes) and general (i.e., across a range of applications

and use-cases)? After all, the potential for simplicity and gen-

erality is a key part of what makes ML-based prediction so

attractive compared to the traditional approach of relying on

handcrafted and specialized performance models. In this pa-

per, we attempt to answer this broader question. We develop

a methodology for systematically diagnosing whether, when,

and why ML does (not) work for performance prediction, and

identify steps to improve predictability.

We apply our methodology to test 6 ML models in predict-

ing the performance of 13 real-world applications. We find

that 12 out of our 13 applications exhibit inherent variability

in performance that fundamentally limits prediction accuracy.

Our findings motivate the need for system-level modifications

and/or ML-level extensions that can improve predictability,

showing how ML fails to be an easy-to-use predictor. On im-

plementing and evaluating these changes, we find that while

they do improve the overall prediction accuracy, prediction

error remains high for multiple realistic scenarios, showing

how ML fails as a general predictor. Hence our answer is

clear: ML is not a general and easy-to-use hammer for system

performance prediction.

1 Introduction
Performance prediction has long been a difficult problem,

traditionally tackled using handcrafted performance models

tailored to a specific application [26, 27, 43, 44, 53, 56, 61, 62]

or use-case1 [23,30,55,58]. However, this approach is tedious,

doesn’t generalize, and is increasingly difficult given the grow-

ing complexity of modern systems. Ideally, one would want

a predictor that is accurate, general, and easy to use. By

general, we mean an approach that applies to a broad range

of applications and a broad range of use-cases; by easy to use,

we mean an approach that can be applied without requiring

detailed knowledge of the application internals or use-case.

1Throughout this paper, we use the term use-case to refer to an application

of prediction such as scheduling (e.g., where/when to run jobs), configuration

(e.g.,, how many workers or how much memory to use), or capacity planning

(e.g., determining what server configurations to purchase).

Given the success of machine learning (ML) in many do-

mains, it is natural to think that ML might offer a solution to

this challenge: i.e., that an ML model can learn the relation-

ship between a system’s externally observable features and

its resultant performance while treating the application as a
black-box. The ability to treat the application as a black-box

and remain agnostic to the prediction’s use-case would enable

a predictor that meets our goals of generality and ease-of-use.

But does ML deliver on this promise? Several recent ef-

forts have applied ML to predict or optimize performance

[22, 37, 47, 57, 60]; these report positive results and hence

one might assume that the answer to our question is “yes.”

However, as we discuss in §9, these effort focus on specific

applications, models, or use-cases and hence do not shed light

on our question of broad generality and ease-of-use. In this

paper, we take a first step towards filling this gap, empirically

evaluating whether ML-based prediction can simultaneously

offer high accuracy, generality, and ease-of-use.

The first step in such an undertaking is to define a methodol-

ogy for evaluation. As we shall show, evaluating the accuracy

of a model’s prediction is subtle particularly when prediction

fails because in such cases we need to understand the cause

of failure: was it a poor choice of model? was the model

poorly tuned? or was the application’s performance somehow

fundamentally not predictable? In other words, we need a

methodology that allows us to both, evaluate the accuracy of

a predictor and attribute errors in prediction.

This observation led us to define a methodology for sys-

tematic evaluation and analysis of ML-based predictors that,

as we detail in §2, provides us with two bounds: a lower

bound on the prediction error that any model can hope to

achieve, and a more realistic bound that is based on the best

prediction made by the ML models that we consider. We

apply our methodology to evaluate 6 different ML models

(e.g., k-nearest neighbors, random forest, neural networks) in

predicting performance for 13 real-world applications (e.g.,
Tensorflow, Spark, nginx) under a range of test scenarios (e.g.,
predicting the impact of dataset size).

Our first key finding is that irreducible prediction errors are

common (§4). In particular, we find that the majority of our

applications exhibit a high degree of performance variability

that cannot be captured by any black-box parameters and that

manifests even in best-case scenarios (e.g., running an iden-

tical configuration of the application, on identical hardware,

with no contention for resources). E.g., we show that, even
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across identical runs, the performance of the JVM Garbage

Collector (GC) varies between two modes depending on the

precise timing of GC events (§5). Because of this variability,

our lower bound on prediction error is non-trivial: we show

that no application consistently achieves a lower bound on

prediction error that is <10% and many applications fare far

worse; e.g., the lower bound on prediction error in memcached

is >40% in ∼20% of our prediction scenarios. Borrowing the

terminology of the ML community [34], we say that the pre-

diction error that results from this variability is "irreducible"

as it stems from behavior that cannot be modeled or controlled,

and hence cannot be learned. Irreducible error fundamentally

limits the accuracy that any ML model can achieve.

We further find that, while the root cause of irreducible

error varies across applications, a common theme is that they

stem from design decisions that were made to optimize per-

formance, efficiency or resilience but in the process led to a

fundamental trade-off between predictability and these other

design goals (§5).

These findings suggest a clear negative result for our goal

of an ML-based predictor that is both accurate and general.

So, where do we go from here? A natural follow-on is to ask

whether we can usefully relax our goals of generality and ease-

of-use - i.e., make some assumptions about application design

or prediction use-cases that would improve predictability.

The second part of our paper explores this question. We do

so from two different vantage points: that of the application

developer and that of the operator who is using predictions

for some operational task.

Our developer-centric exploration asks: if developers ex-

pose knobs that give operators the option to disable design

features that lead to irreducible errors, how much would this

improve the accuracy of ML predictors?

Our operator-centric exploration asks: if we assume oper-

ators can accommodate some notion of uncertainty in how

they use the predictions, then could ML meet our goals for a

useful predictor?

We note that both of the above represent a non-trivial com-

promise on our original goal and, perhaps more importantly,

in neither case do we address the question of how developers/-

operators would make such changes nor the impact that such

changes might have on other design goals such as efficiency,

resilience, etc. Instead we are merely asking whether making

these changes would improve predictability.

Our findings on this front are mixed. We find that, in both

cases, our relaxed assumptions do significantly improve pre-

dictability in our best-case scenarios, but we continue to see

prediction fail in a non-trivial fraction of our more realistic

tests. E.g., in our best-case setup, the lower bound on predic-

tion error is now <6% in >90% of our test cases but, in our

more realistic tests, 3 (out of 13) applications see error rates

>30% in ∼10% of test cases.

While not the clean result that one might have hoped for,

they reinforce that ML-based performance prediction is best

applied with a scalpel rather than a hatchet. In this sense, our

study mirrors the extensive literature in applied machine learn-

ing that explores the trade offs between black- vs. gray-box

learning. While this trade off has been studied (and debated!)

in many other domains [35, 38, 54], to our knowledge we are

the first to do so for performance prediction in systems.

Thus unlike many NSDI papers, our contribution lies not

in the design and implementation of a particular system but

instead in triaging and critically examining the role of ML for

managing system performance. Specifically:

• We provide the first broad evaluation of the generality of

ML-based prediction, showing that blackbox prediction is

often fundamentally limited and expose why this is the case.

• In light of these limitations, we propose and empirically

evaluate two complementary approaches aimed at broadening

the applicability of ML-based prediction and show that these

approaches alleviate but don’t eliminate the above limitations.

We view our study as a first step and recognize that it

must be extended to more applications and models before

we can draw final conclusions on the generality of ML-based

performance predictors. We hope that our methodology and

results provide the foundation for such future work.

2 Methodology
Our methodology is based on two tests and two predictors:

the Best-Case (BC) and Beyond Best-Case (BBC) tests, plus

the Oracle and Best-of-Models predictor. In what follows, we

first define our metrics and parameters followed by these tests

and predictors.

2.1 Metrics and Parameters

We test prediction accuracy by comparing an ML model’s pre-

diction to the true performance measured in our experiments.

We measure quality of predictions using the root mean square

relative error (rMSRE) which is computed as:

rMSRE =

√
1

n

n

∑
i=1

(
Yi − f (Xi)

Yi

)2

, (1)

where n is the number of points in the test set for a given

prediction scenario and (Xi,Yi) is a test sample where Yi is the

true measured performance and f is the function learned by

the ML model that, given a test feature of value Xi, predicts

the performance as f (Xi). rMSRE is a common metric used

in regression analysis [34] and in prior work on performance

prediction [60]. Note that rMSRE measures the true error in

predicted performance - i.e., comparing predicted to actual

performance. It is possible that a predictor with high rMSRE

is still “good enough” for a particular use-case2 and, indeed,

it is common in papers that focus on specific use-cases to

evaluate prediction in terms of the benefit to their use-case.

However, given our goal of generality and remaining agnostic

2For example: say that a predictor must pick between two configurations

c1 and c2 where c1 leads to a JCT of 10s and c2 to 100s, then even a predictor

with an rMSRE of 50% would successfully pick the right configuration.
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to the specifics of a use-case, we believe rMSRE is the correct

metric for a predictor and one can separately study what

prediction accuracy is required for a target use-case.

We consider the following three classes of parameters that

impact an application’s performance3:

(i) Application-level input parameters capture inputs that

the application acts on; e.g., the records being sorted, or the

images being classified. We consider both the size of these

inputs and (when noted) the actual values of these inputs.

(ii) Application-level configuration parameters capture the

knobs that the application exposes to tune its behavior – e.g.,
the degree of parallelism, buffer sizes, etc.

(iii) Infrastructure parameters capture the computational

resources on which the application runs – e.g., CPU speed,

memory size, whether resources are shared vs. dedicated.

These parameters correspond to what-if questions that are

likely to be of practical relevance: e.g., predicting how per-

formance scales with input data size, under increasing paral-

lelism (executors), or with more infrastructure resources. We

note that the above parameters, when used as features for our

ML models, capture the application as a black-box, together

with the infrastructure it runs on. We also note that these are

static parameters known prior to running the application, in

contrast to runtime metrics and counters such as a task’s CPU

or cache utilization. While runtime counters are widely used

for monitoring performance, relying on them for prediction

limits our potential use-cases to scenarios where prediction is

invoked after the application is already running rather than

at the time of planning, placement, or scheduling. Moreover,

it is unclear how one might use a predictor based on runtime

counters to manage performance: e.g., even if an operator can

predict that a CPU utilization value of C leads to a desired

performance target, she must still know how to set system

parameters in order to achieve the desired CPU utilization. In

other words, runtime counters are measures not parameters.4

Hence, in this paper, we assume the ML models cannot use

runtime counters as features for prediction.

2.2 The Best-Case (BC) Test

Our BC test is designed to give a predictor the "best chance"

at making accurate predictions. It does so by making very

strong assumptions on both the systems and ML front, as we

describe below.

(1) ML front: simplifying the predictive task. The BC test

makes two assumptions that greatly simplify the prediction

task. First, in all the data given to the model (training and test),

only a single parameter is being varied and that parameter

is the only feature on which the model is trained. In other

3We define these precisely in the context of each application in §3.
4I.e., one would need to predict how a parameter impacts the runtime

metric in addition to how the runtime metric impacts performance. This

might be appropriate for certain use-cases that include long-running jobs,

e.g., [61], and where we cannot directly predict how parameters impact

performance but, for now, we focus on understanding whether the more

general and direct/simple approach works.

words: say we ask an ML model M to predict an application’s

performance for a particular configuration ci that is defined by

k parameters: i.e., ci =< p1 = X1, p2 = X2, p3 = X3, . . . , pk =
Xk> , where the pi are parameters and Xi are parameter values.

In the BC test, we give M a training data set in which only

one parameter - say p2 – is varied and all other parameters

are set to the test value; i.e., all training data will come from

runs where p2 is varied while p1 = X1, p3 = X3, . . . , pk = Xk.

We call this our one-feature-at-a-time assumption.

Second, the model’s training data always includes data-

points from the scenario it is being asked to predict. I.e., con-

tinuing with the above example, when predicting the applica-

tion’s performance for an input configuration <p1 = X1, p2 =
X2, p3 = X3, . . . , pk = Xk>, not only do we enforce the one-

feature-at-a-time assumption, we also require that the training

set for the task include datapoints with p2 = X2. Hence, the

training set contains data points from an identical configu-

ration to the one the model is being asked to predict! For

example, if we ask the model to predict the time it takes to

sort a dataset of size 5GB, the training set already includes

times for sorting the same 5GB dataset. We call this the seen-
configuration assumption since it ensures that, during train-

ing, the ML model has already "seen" the configuration it is

being asked to predict.

We emphasize the extreme simplification due to the above

assumptions: the complexity of prediction has been reduced

from understanding the impact of k features to just one feature

(e.g., p2), the training data is deliberately selected to cleanly

highlight the impact of this feature, and the training set in-

cludes data from test configurations that are identical to what

the model is being asked to predict!

(2) Systems front: best-case assumptions. Given our as-

sumptions so far, the only reason prediction might be non-

trivial is if we see variable performance across repeated runs

of the application even with a fixed configuration of parame-

ters. That software systems may exhibit variable performance

is well recognized in the systems community with two com-

monly cited reasons for this: (i) contention for resources that

an application might experience when it shares physical in-

frastructure with other applications/tenants [33,40,49,52] and

(ii) variability that arises when the processing time depends

on the values of data inputs [29] Our assumptions on the sys-

tems side aim to remove the likelihood of such variability. To

avoid variability due to contention, we run our workloads on

dedicated EC2 instances [1], and only run a single experiment

at a time on a given server. We call this our no-contention
requirement. We are still left with the possibility of contention

within the datacenter network.Our workloads are not network-

heavy and, with one exception (nginx, discussed later) none of

our workloads appear to be impacted by contention with other

apps over network bandwidth and hence we optimistically

conclude that network contention is unlikely to have affected

predictability for our workloads. We still cannot entirely avoid

contention, however – e.g., some of our apps use shared cloud
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services such as the S3 and DNS. Nonetheless, we believe

the scenario we construct is far more conservative than what

is commonly used in production and hence we view it as a

pragmatic approximation of the best case while still running

on real-world deployment environments like EC2.

Our second assumption is that, for a given input dataset size,

the application’s input data is identical across all experiments.

I.e., repeated runs of a test configuration act on the same input

data. E.g., all training/test data for an application that sorts N
records, will involve exactly the same N records. We call this

our identical-inputs assumption.

The sheer simplicity of our prediction tasks should be im-

mediately apparent:we’re essentially asking a model to predict

performance for a test configuration that is identical to that

seen in training. Our expectation was that, under these condi-

tions, a model should be able to predict performance with a

very high level of accuracy - e.g., with error rates well under

5-10% – and if a model cannot accurately predict performance

under the above conditions then it is unlikely to be a useful

predictor under more realistic conditions.

2.3 The Beyond Best-Case (BBC) Test

In the BBC test, we systematically relax each of the con-

straints/assumptions imposed in the BC test to study predic-

tion accuracy under more realistic scenarios:

(i) Relaxing the seen-configuration assumption. For this,

we perform a leave-one-out analysis in which all data sam-

ples corresponding to the configuration on which a model is

tested are withheld from the training set. More precisely, for

a performance dataset with N configurations {c1,c2, . . . ,cN},

when testing a datapoint with configuration ci, we use a model

trained on a dataset that consists of the N −1 configurations

other than ci; i.e., our training set excludes all training data-

points for configuration ci. We perform this N-fold leave-one-

out analysis for each of our prediction scenarios.

Note that predictions are now harder as models must learn

the trend in performance as a function of the parameter be-

ing varied. Such predictions are useful in answering what-if
questions of the form: “what performance can we expect if
we increase the number of workers to 10?”
(ii) Relaxing the one-feature-at-a-time assumption. We re-

lax our constraint of varying only one parameter at a time

and instead enumerate the configuration space generated by

simultaneously varying all the features in question and then

sample from this space to collect training and test data on

which we rerun our predictions. We describe the details of

our approach inline when presenting our results.

(iii) Relaxing the no-contention assumption. For this, we

repeat the experiments used to collect training and test data

but this time do not run our experiments on dedicated EC2

instances. We present additional detail on our experimental

setup in the following section.

(iv) Relaxing the identical-inputs assumption. For this, we

generate a different input dataset for each datapoint in the

training and test set. Section 3 provides additional detail on

our input datasets in the context of each test application.

We studied the impact of relaxing each of the above as-

sumptions individually and then all together. In this paper, we

present a subset of our results as relevant.

2.4 Predictors

As mentioned, our evaluation considers two predictors.

The Best-of-Models (BoM) predictor. Recall that in order to

obtain a broad view of ML-based performance prediction, we

consider a range of ML models (§3). For any given prediction

test, we compute the rMSRE for each ML model, and define

the best-of-models error (BoM-err) as the minimum rMSRE

across all the models we consider. Thus BoM-err tells us

how well some ML model can predict system performance.

However, if BoM-err is high, we still cannot tell whether this is

because of a poor choice or tuning of ML models, or whether

performance prediction was inherently hard. For this, what

we would like to have is a lower bound on the error rate we

can expect from any ML model. We achieve this through our

Oracle Predictor.

The Oracle predictor looks at all the data points in the test
set that share the same feature values as the prediction task,

and returns a prediction that will minimize the metric in Eqn. 1

for all these data points. We obtain this by differentiating the

expression for the metric in Eqn. 1 with respect to the pre-

diction and finding the global optima for each unique feature
value, , as below.

foracle(X) =
(

∑n
i=1

δ(Xi,X)
Yi

)
/
(

∑n
i=1

δ(Xi,X)

Y 2
i

)
, (2)

δ(a,b) = 1 if a is equal to b, and 0 otherwise. (3)

Note that our features are discrete entities (number of workers,

size of dataset, type of instance) and thus the oracle is well-

defined. We use O-err to denote the error rate obtained by this

Oracle. If there is no variance at all in these data points, the

Oracle will achieve zero error. Simply put, O-err quantifies

the impact of variance in performance – across multiple runs

of the same application and under identical configurations –

on prediction accuracy.

Clearly, our Oracle predictor is not usable in practice since

it is allowed to “peek” at both the test data and the error func-

tion; nonetheless O-err is helpful in attribution. Specifically,

it gives us a lower bound on the prediction error that any
ML model could achieve and, in this sense, sheds light on

whether performance prediction is at all feasible, i.e., a high

O-err perhaps suggests that predicting system performance

is “impossible.” In addition, a small gap between O-err and

BoM-err confirms that our model is well tuned (§3).

3 Test Setup
Our experimental setup comprises two main stages: applica-

tion profiling and model training. In the profiling stage, an

application is run under different configurations to generate a
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raw dataset. In the training stage, the dataset first undergoes

pre-processing (featurization, normalization, and outlier re-

moval), and is then randomly split into two disjoint datasets:

the training set is used to train models and the test set is re-

served for model evaluation. The training set is also used for

hyper-parameter tuning of ML models. In what follows, we

discuss key aspects of each stage. This is not an exhaustive

description of our experimental setup – all datasets [6] and

tooling [20] from our experiments are publicly available.

3.1 Application Profiling

Applications. Table 1 enumerates the applications used in our

study. Our selection reflects multiple considerations includ-

ing the application’s relevance in production environments,

diversity (spanning web services, timeseries database, mi-

croservices, data analytics, and model serving), and ease of

instrumentation. See Appendix A for additional details.

Parameter Values and Performance Metrics. We select

values for our three broad classes of parameters as follows:

(i) application-level input parameters. We experiment with

varying the size of these inputs on a scale of 1 to 10, with

scale 1 being the default input size in the workload generator;

(ii) app-level configuration parameters. We experiment with

varying the number of worker nodes between 1 and 10.

(iii) infrastructure parameters. We experiment with 13 differ-

ent EC2 instance types: from the 150+ instance types offered

on EC2 we select the latest generation of the three common

instance families (c5, m5 and r5) with four different scales

(large, xlarge, 2xlarge, 4xlarge) plus a c4.4xlarge instance for

a total of 13 instance types (see [2] for details). This selection

matches the instances used in prior work [57, 60].

As listed in Table 1, we use different performance metrics

(e.g., job completion time, request throughput) depending

on the application. We run each parameter setting 10 times

recording the resulting performance. This constitutes our raw

dataset. Appendix A and our code repository [20] include

additional details on the setup.

3.2 Model Training

We select six ML algorithms: k-nearest neighbors, random for-

est regression, linear regression, linear support vector machine

(SVM) regression, kernelized SVM regression, and neural net-

works. We select these as they are commonly used in practice

and, taken together, represent well the various families of ML

techniques: parametric and non-parametric models, linear and

non-linear models, discrete and continuous [34]. This diver-

sity is in contrast to prior work that focuses on a single ML

technique [22, 37, 47, 57, 60].We follow the standard machine

learning practice of k-fold cross-validation (k=3) for setting

hyper-parameters. Folds were carefully picked such that they

represented the data well and included points for each feature

value present in the training set. We searched for regulariza-

tion parameters (all models); kernels (RBF, polynomial, and

sigmoid) and their parameters for SVMs; number and depth

of trees for random forests; number of neighbors for nearest

neighbors; and number of hidden layers (varying from zero

to four), size of layers, activation functions (ReLU, tanh), and

learning rates for neural networks. The neural networks we

used, MLPs with different non-linearity, are the standard mod-

els for treating data of the form in this paper (as opposed to

RNN/LSTM/CNNs).

As is standard in machine learning, we pre-process our

dataset before training our models. We convert numeric fea-

tures to have zero mean and unit standard deviation (by sub-

tracting the mean and dividing by the standard deviation,

computed per feature channel across the entire training set).

We map all categorical features to their numerical index. We

also throw out outlier data-points (that have any feature value

or performance metric beyond the 99th percentile) from the

training set. We use scikit-learn, a widely used machine

learning tool-set for data preparation and model training [46].

We then train each model to predict the impact of a partic-

ular parameter p on performance for a given app A. For this,

we select data points corresponding to runs of A in which all
parameters other than p are fixed. We do a 50:50 random split

of the resultant dataset into a training and test set.

4 Results: Existing Applications and Models
We start with the results from our BC test. Recall that each

prediction task involves predicting the performance of a given

application for a given configuration of: (i) application input

size, (ii) number of workers, and (iii) instance types, while

subject to the constraints and assumptions presented in §2.2.

We start by looking at the results for our BC test. Fig.1a

plots the cumulative distribution function (CDF) of the O-err

for each application across all predictions tasks while Fig.1b

shows the same for the BoM-err.5 Recall that O-err captures

the irreducible error inherent to an application (i.e., no ML

model could achieve an error rate lower than the O-err) while

the BoM-err captures the lowest error rate achieved by some

ML model. Given the extreme simplicity of our best-case

prediction task, we expected a very high degree of accuracy

with an O-err of (say) well under 5% error. To our surprise, our

results did not match this expectation. For example: in 5 of our

13 applications, O-err is >15% for at least 20% of prediction

tasks; for LR1 O-err is >30% for 10% of the prediction tasks;

for memcached O-err exceeds 40% for approximately 20%

of prediction tasks; in fact, no application enjoys an O-err of

<10% in all prediction scenarios.

The high O-err that we see in our (extremely generous)

best-case scenario tells us that many applications suffer from

non-trivial irreducible error which fundamentally limits our

ability to achieve high prediction accuracy under the general

black-box conditions that we desired. Given that we fail even

at the BC test, we focus next on understanding the sources of

this irreducible error. But first, a few additional observations:

5We show a detailed breakdown of error based on the feature being

predicted in Appendix C.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    767



Framework Application/Description Input Workload Input
Parameter

App. Config.
Parameter

Infra.
Parameter

Metric

Memcached [12] Disributed in-memory k-v store Mutilate [13] value size # servers inst. type mean query lat.

Nginx [9] Web server, LB, Reverse Proxy Wrk2 [5] req. rate # servers inst. type median req. lat.

Influxdb [15] Open source time series database Inch [10] # points per

timeseries

# servers inst. type mean query lat.

Go-fasthttp [7] Fast HTTP package for Go wrk2 [5] # conn. # servers inst. type median req. lat.

Spark [3]

TeraSort: sorting records TeraGen # records

# executors inst. type JCT

PageRank: graph computation GraphX

SynthBenchmark [8]

# vertices

LR1: logistic regression MLLib examples

# examples

LR2: logistic regression

Databricks

Perf Test [16]

KMeans: clustering

Word2vec: feature extraction

FPGrowth: data mining

ALS: recommendation

TensorFlow [17],

Kubernetes [11]

TFS: Tensorflow model serving Resnet examples [18] # conn. # servers inst. type requests/sec

Table 1: Applications, input workload, parameters, and metrics used in our study.

(a) CDF of O-err in the BC test (b) CDF of BoM-err in the BC test (c) CDF of BoM-err in the BBC test

Figure 1: O-err and BoM-err for existing applications and ML models.

(i) As one might expect, prediction accuracy deteriorates as

we move from the BC to the BBC test. As a sample result,

Figure 1c shows the CDF of the BoM-err for our BBC test

when relaxing our seen-configuration assumption: for 6 of

our 13 applications (vs. 3 in the BC test), the 80%ile BoM-err

exceeds 20% (for 1 app, it exceeds 60% error!)

(ii) As the CDFs suggest (and as we validated on individual

data points), BoM-err on our BC test tracks O-err very closely,

confirming that the higher-than-expected errors arise from

irreducible causes, as opposed to poor ML engineering.

(iii) The error rates vary across applications even when they

use the same framework (e.g., Spark-based sort vs. LR2). This

reinforces the importance of considering a range of applica-

tions when evaluating ML for performance prediction.

5 Tackling Irreducible Error
The high irreducible errors that we saw in the previous sec-

tion tells us that, even for a fixed configuration of parameters,

there are times when an application’s performance was so

variable that no predictor could predict performance with high

accuracy. While it is well recognized that software systems

can experience variable performance due to various runtime

factors, we were surprised to see the extent of this variability

even in our best-case scenario. Recall that, in our best-case

scenario, we are essentially just repeatedly running an identi-

cal software stack, on identical hardware, with identical data

inputs, and without contention on our servers. What can cause

performance to vary significantly across runs? In particular,

we were interested in understanding whether the sources of

variability could be captured by features that are known prior

to runtime. If so, we could hope to achieve higher prediction

accuracy by simply adding more features to our ML models.

Unfortunately, we find that this variability stems from de-

sign choices – often optimizations – the effect of which could

not have been captured by system parameters known prior to

running the application. In this section, we briefly summarize

our findings (§5.1) and then discuss their implications (§5.2).

5.1 Root-Cause Analysis

Table 2 summarizes the findings from our root cause analy-

sis. Each entry summarizes the root cause we discovered, the

applications it impacted, the trade-off that eliminating this

root cause would impose, the manner in which we modified

applications to eliminate/mask their impact, and the burden

associated with undertaking such analysis. We stress that the

modifications we make are ad-hoc hacks intended only to

verify that we correctly identified our root-causes; as we dis-

cuss later, we do not view them as the desirable long-term fix.
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Finally, we report the person hours it took to identify and val-

idate these root causes. We recognize that any such estimate

depends on many nebulous factors such as our familiarity

with the codebase and experience in performance analysis.

We present it merely as anecdotal evidence that analyzing per-

formance in modern systems is non-trivial and would benefit

from better developer support as we discuss in §8.

To give the reader a tangible sense of these root causes, we

first present a longer description of the first two root causes,

followed by a very brief summary of the remaining ones. A

detailed description – with experimental validation – is in

Appendix B, while the following section (§6) evaluates the

impact of eliminating these root causes on O-err and BoM-err.

5.1.1 Spark’s “Worker Readiness” Optimization

We found that the relatively high O-err in Spark’s Terasort ap-

plication stems from a dynamic sizing optimization in Spark.

By default, Spark launches an application once at least 80%

of its target worker nodes are ready, and the application parti-

tions the input dataset based on the number of workers ready

at this time. This optimization ensures resilience to failure

and stragglers, but leads to variable parallelism and hence

JCTs. This variability leads to irreducible errors and cannot

be captured by any input parameters/features as the exact de-

gree of parallelism is affected by small differences in worker

launch times which cannot be predicted prior to runtime.

Disabling this optimization lowered Terasort’s average O-

err from 12.6% to 2.6% in our predictions that involve varying

the instance type. While this optimization also affected other

Spark apps (e.g., PageRank), its impact there was small.

5.1.2 Adaptive Garbage Collection in the JVM

Our analysis showed that

LR1’s error stems from

an optimization in the

Java Virtual Machine’s

(JVM) garbage collector

(GC). Specifically, we

found a positive correlation

between the number of “full” GC events (explained below)

and JCT, leading to the bimodal behavior in the figure above.

As a performance optimization, the JVM GC divides the

memory heap into two regions – young and old – and typically

tries to constrain garbage collection to just the young region.

However, in situations where the memory heap is consistently

low on free space, the JVM GC runs a “full” collection that

operates over the entire heap space (young and old regions).

To determine whether a full GC is needed, the JVM maintains

a promotion estimate metric. Our analysis revealed that due

to minor differences in the timing of memory allocation and

GC events, the promotion estimate ends up just above the

threshold (triggering a full GC) in some runs and just below it

in others, leading to the bimodal behavior (see Appendix B.2).

Once again, since the exact mode being triggered depends

on the detailed timing of runtime events, this effect could not

have been captured by any input parameters/features known

prior to actually running the job.

We verify our analysis by rerunning our experiments with

an extra 50MB of memory which ensures that the promotion

estimate remains below the threshold in all runs. This elimi-

nates the high-mode runs, reducing average O-err by 9× from

18.2% to 2.1% in our predictions that involve varying the

number of workers.

5.1.3 Other Root Causes

We briefly mention the remaining entries in Table 2; detailed

tracing for each is in Appendix 9.

HTTP Redirection and DNS Caching in S3. We found that

multiple applications built on Amazon’s S3 storage service

suffered variable performance that arose from the DNS-based

resolution of S3 object names; some name resolution requests

experienced HTTP redirects while others didn’t depending on

the detailed timing of when DNS updates were propagated.

Imperfect Load-Balancing. We observed high irreducible

errors when predicting the request throughput of a Tensor-

flow Serving (TFS) cluster. We run TFS within a Kubernetes

cluster and found that this error stems from the randomized

load-balancing policy that Kubernetes employs, which leads

to an inherent imbalance in the load at each server; when run-

ning the cluster at high utilization this imbalance led to some

servers being overloaded and the variability in this imbalance
leads to variations in the overall request throughput.

Non-deterministic Scheduling. We found that independent

Spark tasks were being scheduled in different orders across

different runs leading to different JCTs. This variability

arose because the data structure used to track runnable tasks

(Scala’s HashSet) offers no guarantees on the order of itera-

tion through the set members. Switching to a different data

structure eliminated this variability.

Variability in Cloud APIs. Our last two cases of high O-

err stemmed from variability across repeated invocations of

cloud APIs: memcached was affected by variability in how

worker instances were placed (which affects node-to-node

latency) while nginx suffered from variability in the default

network bandwidth associated with particular instances types.

Again, with little visibility into (or control over) cloud API

implementations, the impact of this variability could not be

predicted by input parameters/features prior to runtime.

5.2 Implications and Next Steps

At a high level, many of the irreducible errors we encoun-

tered may be attributed to two common design techniques:

the use of randomization (e.g., in load-balancing, scheduling)

and the use of system optimizations in which a new mode

of behavior is triggered by a threshold parameter (e.g., a pro-

motion estimate, timeouts, a threshold on available workers).

Some of these design choices can be altered with little loss to

design goals such as performance or resilience (e.g., remov-
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Root Cause Applications
Impacted

Trade-off Modification Effort to
diagnose

Spark’s “start when 80% of workers

are ready” optimization

Terasort Decreased resilience to stragglers

and worker failure

Disable optimization 5 person days

Multi-mode optimization in JVM

Garbage Collector

LR1 Slower garbage collection Avoid triggering, or disable,

optimization

39 person days

Non-determinism in Spark sched. PageRank None Use deterministic data structure 14 person days

HTTP redirects and DNS caching in

S3’s name resolution

KMeans, LR2,

FPGrowth, ALS

Decreased flexibility6 (OR slower

name resolutions)

Client-side caching of HTTP

redirects (OR always redirect)

10 person days

Imperfect load-balancing at high

load

TensorFlow

serving

Load imbalance when each server

has different numbers of workers

Modified load-balancing policy to

always favor local workers

7 person days

Variability in implementations of

Cloud APIs (EC2)

memcached,

Nginx

Cloud APIs expose more

information (less flexibility)

Use AWS placement APIs / include

inter-node RTTs as ML feature

5 person days

Table 2: Root causes of the irreducible errors we observed in our test applications. Person hours were calculated using the timestamps in our

debugging logs and covers the entire process of reproducing observed behavior, adding instrumentation, processing logs, modifying the system

to eliminate suspected causes, running tests for validation, etc.

ing the non-determinism in Spark’s scheduler). However, for

many others, eliminating them would come at some loss in

performance/efficiency (e.g., DNS caching improves scalabil-

ity, partitioning regions offers faster GC). Moreover, because

of the recent emphasis on extracting performance, modern

systems now make extensive use of such optimizations.

Given the lower bound set by the O-err (as discussed in

§2.4) and the underlying root causes, no amount of model

modifications or feature engineering would have resulted in

significantly better prediction accuracy. So, where do we go

from here? We set out to test an ambitious hypothesis: that

ML could serve as a general and easy-to-use predictor of sys-

tem performance. Unfortunately, we found that most of the

applications we studied suffered poor prediction accuracy on

a non-trivial number of test cases even under extremely fa-

vorable test conditions. Moreover, the design choices that led

to low accuracy cannot be easily forsaken without impacting

other goals such as performance.

Thus a natural follow-on is to ask whether we can usefully

relax our goal of generality - i.e., make some assumptions

about application design or prediction use-cases that would

still allow us to leverage ML-based prediction in a (mostly)

general and easy-to-use manner. As mentioned in §1, the re-

mainder of this paper explores this question from the vantage

point of application developers (§6) vs. operators (§7).

6 Results: Modified Applications
We now examine the impact of removing the above root-

causes on performance predictability. If doing so improves

prediction accuracy, then we can envision a workflow where

the application developer identifies the root causes of irre-

ducible errors and makes them configurable. For example, the

JVM garbage collector (GC) designer can expose a knob to

turn off the optimization for reducing full GCs. This, in turn,

would enable system operators to disable such techniques

depending on their desired trade-off between predictability

and other design goals such as performance.

We emphasize that our goal here is not to provide a mech-

anism for identifying and eliminating sources of irreducible

errors. Developing a systematic approach for this is an inter-

esting problem but beyond the scope of this paper. Instead,

we focus on the consequences of doing so: if these sources

are identified and eliminated, to what extent would it improve

performance predictability? Further note that, in line with

this objective, we focus on evaluating the resultant impact on

performance predictability, and not on performance itself.7

We now (re)evaluate predictability for our BC (§6.1) and

BBC (§6.2) tests after applying the “fixes” to remove the root

causes of irreducible errors as discussed in §5.

6.1 BC test results

Fig. 2a shows the CDF of the O-err for our modified applica-

tions across all prediction tasks. As expected, removing the

sources of irreducible errors results in a dramatic reduction in

O-err. All applications now have O-err well within 10% for

at least 90% of their prediction tasks. In other words, 90%ile

O-err is < 10% for all 13 applications, and in fact, only two

applications have O-err > 6%.

Fig. 2b shows the corresponding CDF for BoM-err. Again,

only two applications have 90%ile BoM-err > 6%, of which

only one (TFS) has 90%ile BoM-err > 10%. Further observe

that the trends for BoM-err closely track those of O-err above,

highlighting that ML comes close to achieving the lower

bound on prediction errors for our simple BC predictions.

6.2 BBC test results

With the promising BC test results, we next turned our atten-

tion to BBC tests after application modifications. We system-

atically relaxed the assumptions of our BC test (as described

in §2), and present a subset of results for brevity.

Fig. 2c presents the CDF for BoM-err after we relax the

seen-configuration assumption by performing a leave-one-out

test as described in §2. Note that, since the test dataset re-

mains unchanged, O-err is the same as in our BC prediction

above. Comparing Figures 2b and 2c, we see that the BoM-

7In fact, many of our “fixes” would actually improve performance (e.g.,
allocating more memory, caching the correct server address) and hence in-

cluding such results would be misleading!
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(a) CDF of O-err in the BC test (b) CDF of BoM-err in the BC test (c) CDF of BoM-err in the BBC test

Figure 2: O-err and BoM-err in the BC and BBC test after modifying applications to remove sources of irreducible errors. Note the sharp drop

in performance prediction errors, as compared to unmodified applications in Fig. 1.

Figure 3: CDF of BoM-err in the BBC leave-one-out test where

input data content is not identical, for predictions across varying

input data scale. Relaxing the identical-inputs assumption reduces

the prediction accuracy for multiple applications.

err is significantly higher for the BBC leave-one-out test than

for the BC test. 10 out of the 13 applications exhibit 90%ile

BoM-err > 10%. Some degradation in prediction accuracy

is expected due to the increased difficulty of the prediction

tasks, which now require the ML models to learn the trend
in performance. What is surprising is that multiple applica-

tions experience exceptionally high BoM-err for a significant

fraction of prediction tasks. For example, the 90%ile BoM-

err of memcached exceeds 60%, while that of KMeans and

TFS exceeds 25%. As can be seen, the corresponding 95%ile

BoM-err is even higher. We dig deeper into the reasons behind

these high errors in §6.3.

While we observe these high prediction errors for only a

subset of applications and prediction scenarios, these results

emphasize that we cannot simply rely on ML as a general

predictor that works across all apps and prediction scenarios.

We next present results from tests in which we relaxed

the identical-inputs assumption in addition to relaxing the

seen-configuration assumption. In other words, we perform

a leave-one-out analysis, but now generate a different input

dataset for each datapoint in the training and test set. We do

so for 10 applications by varying the random seed in the work-

load generator, keeping the distribution underlying the input

data unchanged. Fig. 3 shows the corresponding CDF for

BoM-err across prediction tasks where we vary input scale.

We observe that, in general, relaxing the identical-inputs as-

sumption further reduces the prediction accuracy for multiple

Figure 4: JCTs for KMeans with fixed vs. varied inputs for each

value of input scale. KMeans JCT is sensitive to the input dataset.

applications.8 The applications that are most notably impacted

are KMeans and LR2. This is because the performance of

these applications is sensitive to the input data. For example,

as we show in §6.3, the number of iterations for KMeans, and

therefore its JCT, depends on the actual values/content of the

input data. This results in a multi-modal behaviour for a given

input scale, and thus, high prediction errors. As expected, the

corresponding O-err (not shown for brevity) is also high.

Finally, we relaxed our no-contention assumption by re-

peating the above experiments on non-dedicated (or “shared”)

instances and found that doing so did not produce statistically

meaningful differences in our results. In particular, moving

to shared instances resulted in <3% degradation in BoM-err

across all scenarios (detailed results in Appendix D.2).

6.3 Deep Dive on high BBC prediction errors

Our BBC leave-one-out tests required the ML models to learn

the underlying trend in performance as a function of the pa-

rameter being varied. We observed that in many cases (with

high BoM-err), this trend is inherently hard to predict because

it changes too fast (i.e. the underlying function has a high

Lipschitz constant). This causes our ML models to generalize

poorly [24, 42]. We highlight this phenomena for three appli-

cations here, and discuss some of the others in Appendix D.4.

(i) KMeans has a high average BoM-err of 40.4% and 30.4%
for prediction across varying input-scale with identical inputs
and non-identical inputs respectively. We observed that the

8Note that Fig. 3 captures a subset of prediction scenarios (i.e. across

varied input scale). This is in contrast to Fig. 2c that captures a wider range

of prediction scenarios, which explains any observed deviation from this

general trend. Appendix D.3 shows the results for our leave-one-out test with

only the predictions across varied input scale, for a more direct comparison.
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Figure 5: Average request latency of go-fasthttp and TFS at varying

input scales. These functions vary too fast, and are hence inherently

hard to predict.

performance of KMeans is sensitive to the content of its input

dataset. At larger input sizes, Kmeans exhibits multi-modal

behavior; specifically, the number of iterations to converge

(and hence, the JCT) depends on the input data content (this

effect is shown in Fig. 4(b)). This multi-modality impacts

O-err and BoM-err in prediction tasks where input content is

varied. With identical inputs, this multi-modality impacts the

underlying trend as the input scale is varied, making it (sur-

prisingly, even more) difficult to learn. The JCT for an input

scale factor of 9 in Fig. 4(a) is an example of this behavior.

(ii) Go-fasthttp has an exceptionally high average BoM-err of
128.6% for predictions across varying input-scale.The mean

query latency increases dramatically at the highest input scale

because the system behavior changes under such high load due

to queuing (Fig. 5(a)). This sudden change makes prediction

on that value inherently difficult. The BoM-err for go-fasthttp

reduces to 4.9% if the test datapoints for the highest input

scale are removed from consideration.

(iii) TFS has a higher BoM-err of 52.7% for prediction across
varying input-scale. This is again due to the underlying func-

tion being difficult to learn, as shown in Fig. 5(b). We are still

investigating the root-cause behind this.

6.4 Summary

Application modifications to eliminate sources of irreducible

errors do produce a notable increase in prediction accuracy,

suggesting that a workflow where application developers pro-

vide knobs that give operators the option of disabling these

error sources could be a promising direction moving forward.

However, there are important concerns that cannot be ne-

glected: (1) From the viewpoint of predictability, as we move

to more realistic BBC scenarios, prediction errors do remain

high for certain applications due to the underlying trend be-

ing difficult to learn (as illustrated in §6.3). Eliminating irre-

ducible errors via application modification is not sufficient

in these scenarios. (2) From the viewpoint of generality and

ease-of-use, identifying the root causes of errors and making

them configurable imposes a non-trivial burden on application

developers; the same is true of asking system operators to

reason about the trade-offs between predictability and other

goals such as performance. In other words, such changes do

weaken the black-box nature of performance prediction that

we originally hoped ML-based predictors could provide.

7 Probabilistic Predictions
It may not always be possible to identify and eliminate sources

of irreducible errors as required by the previous section. For

instance, it might be too time-consuming to do so, or the sys-

tem may be closed-source and not amenable to modifications.

Or, operators may not want to compromise on the benefits of

the relevant system optimizations (e.g., experiencing slower

garbage collection by disabling the GC optimization). There-

fore, we now explore an approach that allows operators to

embrace, rather than eliminate, performance variability.

Our empirical observations in §5 reveal that the optimiza-

tions causing irreducible error often lead to bimodal/multi-

modal performance distributions. This is the key insight that

drives our approach, leading us to hypothesize that a way

forward could be to extend ML models to predict not just one

performance value, but a probability distribution from which

we derive k possible values, with the goal that the true value

is one of the k predictions, for a low k.

This immediately raises the question of whether such top-k
probabilistic predictions would even be useful to an operator?

We believe they can be, depending on the use case. For in-

stance, the operator can use the worst among the k predictions

when provisioning to meet SLOs; or they can use the average

expectations across the k predictions to pick an initial number

of workers in a system that anyway dynamically adapts this

number over time; or they can use the probability distribution

to compare which system configuration will perform better in

expectation when purchasing new servers. Note that, as in §6,

this approach also comes with a trade-off – using the worst

of k predictions may lead to over-provisioning, or using the

expected average may lead to sub-optimal choices.

Our goal here is not to design such use cases of probabilistic

predictions, or reason about these trade-offs. We instead focus

on the following questions: assuming operators could make

use of top-k probabilistic predictions: (i) how do we extend

ML models to enable top-k predictions, and (ii) is there a small

enough value of k that results in accurate top-k predictions? If

not, exploring use cases of top-k predictions would be moot.

We thus proceed with discussing how we extended two of

our models to predict probabilistic outputs (§7.1), and our

prediction results (§7.2).

7.1 Extending ML models

We extend random forest and neural network to predict perfor-

mance as a probability distribution across k possible outputs.

We chose these models as they were most natural to extend.

Probabilistic Random Forests (Prob. RF). Instead of using

the average JCT of the training points at the leaf node as

the prediction (as is done in conventional decision trees), we

use the distribution of the JCT data points at the leaf node,

modeled using a Gaussian Mixture Model (GMM) [34] with

k components. We train this Prob. RF as before, still picking

splits that minimize the variance of JCT in child nodes.

Mixture Density Networks (MDNs). We adopt MDNs [25],
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Figure 6: CDF of BoM-err in the BC test where models with prob.

outputs are used (k=3). Compare to Fig. 1b.

Figure 7: CDF of BoM-err in the BBC leave-one-out test where the

models with probabilistic outputs are used (k=3). Compare to Fig 1c.

and modify our neural network to predict parameters for a

Gaussian Mixture Model with k components (mean and vari-

ance for each component and mixing coefficients). We use

negative log-likelihood of the data under the predicted GMM,

as the loss function to train the MDN.

We implement Prob. RF based on random forest module in

scikit-learn, and MDN in TensorFlow [21].

7.2 Top-k Prediction Results

To evaluate predictability with the probabilistic models above,

we obtain k predictions from the models as the k different

means of the k component GMM, and report the top-k rMSRE
score, i.e. the rMSRE score of the best prediction among the

k predictions made by the model. Such a top-k rMSRE shares

the same interpretation as the rMSRE score – in fact, rMSRE

scores reported so far can be thought of as top-1 rMSRE

scores. In our evaluation, we observed a sharp drop in error

rates as we move from a top-1 to top-2 measure and that

further improvement plateaus off for k > 3. For brevity, we

present a subset of our results for k = 3.

BC Test Fig.6 shows the top-3 BoM-err under the BC pre-

dictions. We see a significant decrease in BoM-err com-

pared to our top-1 prediction presented earlier in Fig.1b. The

90%ile BoM-err is less than 10% for all but two applications.

Note that the test data set remains unchanged by our use of

probabilistic models, and hence O-err remains as high as in

Fig.1a. The reduced BoM-err with top-k predictions shows

the promise of this approach in embracing inherent variability.

BBC Test Fig.7 presents the top-3 BoM-err under the BBC

test, where we relax the seen-configuration assumption by

conducting leave-one-out predictions. While there is an im-

provement over models that make a single prediction (as in

Fig 1c), we note that our multi-modal predictions don’t im-

prove performance in cases where the underlying trend is

hard to predict for a reason other than multi-modality (e.g.,
TFS and go-fasthttp).

7.3 Summary

Our findings along this direction are similar to those in §6.

While it is possible to reduce prediction errors by extending

our ML models to predict top-k performance values, two

concerns with regard to generality and ease-of-use remain: (1)

Even with top-k predictors, we continue to see scenarios with

high error rates when we consider our more realistic BBC tests

because the underlying performance trend is difficult to learn.

Thus achieving a fully general predictor remains out of reach.

(2) The use of top-k predictors complicates the process of

applying performance prediction (which compromises ease-

of-use) and may lead to sub-optimal decisions; in fact, how

to best use such predictions and reason about the resulting

trade-offs remains an open question.

8 Takeaways and Next Steps
We set out to evaluate whether ML offers a simpler, more

general approach to performance prediction. We showed that:

(1) Taken “out of the box”, many of the applications we stud-

ied exhibit a surprisingly high degree of irreducible error,

which fundamentally limits the accuracy that any ML-based

predictor can achieve, and (2) We can significantly improve

accuracy if we relax our goals (accepting the trade offs) and

modify applications and/or modify how we use predictions.

But even with these relaxations we still see a non-trivial num-

ber of predictions with high error rates! E.g., apps where

∼10% of the BBC tests have BoM-err > 30-40%.

While ML fails to meet our goal of generality, we did find

several scenarios where ML-based prediction was effective,

showing that we must apply ML in a more nuanced manner

by first identifying whether/when ML-based prediction is ef-

fective. Our methodology provides a blueprint for this, as

summarized in Figure 8. Concretely, say that operators want

to assess and improve the predictability of a target application.

The first step is to run our BC test with the target workloads.

If O-err is low, they can continue to the BBC test and check

BoM-err. Otherwise, they have two options. The first is to

disable any root-causes of variability if possible, rebuild the

application, and re-run the BC test. If disabling root-causes is

not possible or not desirable, operators can choose to use the

top-k predictions. They can also combine both options, recon-

figuring the application and using probabilistic predictions.

Even for this more nuanced approach, many open questions

remain: (i) do our findings hold beyond the 13 apps and 6

models studied? (ii) how do we design systems to more easily

identify sources of irreducible error? (iii) how can developers

and operators more easily reason about trade offs between

predictability and other design goals? Etc.

Our work provides empirical evidence motivating the above
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Figure 8: Methodology blueprint. As examples from our findings: Terasort’s path (shown in blue) started out with only 73% of prediction tests

having an O-err <10% in our BC test but once we eliminated its root-cause of irreducible error (the worker-readiness optimization), 99+% of

test cases saw an O-err <10% and the BoM-err even in our BBC test was <10% for ∼90% of test cases leading to what we would deem a

successful outcome. By contrast, KMeans (shown by the red path) started with a good O-err in our BC test (>90% of test cases had O-err

<10%) but ultimately failed when we relaxed our identical-inputs assumption where point >60% of prediction tests had O-err >20%!

questions and a blueprint for how to approach and evaluate

them. Overall, we remain cautiously skeptical about the role

of ML in predicting system performance. We note that a

common thread in the above questions is the need to evaluate

predictors in a manner that is systematic and consistent across
studies. We call on the community to adopt and extend our

methodology as the foundation for such evaluation.

9 Related Work
Prior work has explored using ML based performance pre-

diction for tuning and optimizing system configuration.

Ernest [57] uses domain expert knowledge to build an an-

alytical model for Spark performance, that is based on trans-

formations and combinations of different features (such as

number of cloud instances and input dataset scale), and trains

the parameters of this model using ML.

Similar data-driven, gray-box modeling approaches have

been applied to predicting and tuning performance for

deep learning workloads and scientific computing [47, 48].

Paris [60] is a black-box performance modeling tool for se-

lecting the best instance type by training a Random Forest

model for each instance, and profiling unseen test applications

on a small subset of instances to feed as input to the model.

Selecta [37] makes innovative use of collaborative filtering

to predict performance and select the best-performing storage

configuration for data analytics applications. CherryPick [22]

explores black-box optimization (Bayesian Optimization) for

a guided search towards the optimal cloud configurations with-

out accurately predicting performance. Google’s Vizier [31]

leverages similar black-box optimization and makes it an in-

ternal application service for various workloads. Each of the

above focus on answering a specific question with a specific

ML technique. Our goal is to understand how ML can be more

broadly applied to predicting performance across a range of

systems and predictive tasks. We hope that our results, partic-

ularly as they relate to our methodology and irreducible error,

can be applied to many of the contexts explored in prior work.

Monotasks [44] proposes a radically new design for Spark

aiming at assisting performance diagnostics and prediction; it

does not explore the role of ML for performance prediction.

Similar to our proposal in §7.1, several recent papers recog-

nize that performance is perhaps better represented as a prob-

ability distribution. [51] proposes modeling the performance

of individual functions/methods as probability distributions

and presents automatic instrumentation to capture such distri-

butions. [45] shows how to design cluster schedulers that take

as input, distributions derived from historical performance.

Our proposal adds a new dimension to this general approach:

we show how to extend ML models to generate probabilistic

performance predictions.

Google Wide Profiler [36, 50] explores the use of perfor-

mance counter information collected on an always-on pro-

filing infrastructure in datacenters to provide performance

insights and drive job scheduling decisions. As mentioned in

§2, our work differs in that we focus on static parameters to

enable use-cases where predictions happen before runtime.

Performance variability has been widely reported in con-

texts from hardware-induced variability [41], to stragglers

in batch analytics [59], variability in VM network perfor-

mance [52], and tail request latencies in microservices [29].

Our work can be thought as complementary: we studied a

wide range of applications, report variability even under best-

case scenarios, focus on the impact of variability to ML-based

performance prediction, and propose systematic approaches

to cope with variability.
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Appendix
A Test Applications: Additional Detail
We include Memcached, a popular in-memory key-value

store. We use the mutilate [13, 39] memcached load gen-

erator which generates realistic memcached request streams

and records fine-grained latency measurements. We vary the

key size (corresponding to the varying input scale prediction),

number of memcached servers (varying number of servers),

and the server instance type, while keeping the other workload

parameters in mutilate as fixed values9. We report results on

predicting the average query latency.

We include Influxdb, a widely used timeseries database.

We use its official benchmarking tool Inch as the client. Inch

sends write queries to Influxdb and reports the time it takes to

complete each write query. We vary the number of points per

timeseries written per query (varying input scale prediction),

the number of Influxdb servers, and the server instance type.

We report results on predicting the query latency.

We include nginx. We use wrk2, an http benchmarking

tool used by nginx’s official benchmark reports [19]. It sends

http requests and reports fine-grain latency and throughput

measurements. We vary the per-client request rate, number of

worker processes (each worker process is a single-threaded

process; the maximum number of worker processes we vary to

is equal to the number of cores of the instance), and the server

instance type. We report results on predicting the median

request latency.

We include go-fasthttp, a high-performance HTTP pack-

age for building REST services. We use the wrk2 tool to

generate HTTP loads again. We vary the request rate, number

of server instances, and the server instance type. We report

results on predicting the median request latency.

We include multiple Spark-based applications spanning

diverse forms of computation: sorting, graph computation,

classification (two different implementations), data mining,

recommendation etc.

We include Tensorflow Serving (TFS), a high perfor-

mance model serving system, which we orchestrate using

Kubernetes (k8s). Our TFS setup resembles that of other (e.g.,

Web) serving systems in which a front-end load balancer (we

use EC2 ELB) spreads client requests across a backend of

(model) serving instances.

B Understanding Irreducible Errors – Details
B.1 Spark’s “Worker-readiness” Optimization

Details included in the main text.

B.2 Multi-mode Optimization in JVM GC

We elaborate on the details of how the JVM adapative GC

leads to variable application performance in the context of

our Spark Logistic Regression (LR1) workload.

9See https://github.com/perfd/perfd/blob/master/apps/memcached/

manifests/perf_predict/suite_1/keySize.yaml for an example setup.

Figure 9: High-mode (top) and Low-mode (bottom) trajectories for

promotion estimate and free space in old region during the first 30

garbage collections. Hollow blue dots depict major/full GCs and

solid blue dots depict minor GCs.

§5.1.2 revealed a positive correlation between the number

of full GCs (explained below) and JCT with a distinct bimodal

behaviour. We now describe how this bimodality arises. For

this, we first explain relevant aspects of the GC mechanism

in Java Virtual Machine (JVM) that Spark uses.

JVM divides the Java memory heap into two regions –

a young region to allocate new objects, and an old region

to accommodate ‘old’ objects that have survived multiple

GC rounds. It supports three different types of GCs over

these regions: (i) minor GC on the young region, (ii) major
GC on the old region, and (iii) full GC over the entire heap

space (both young and old regions), with the surviving objects

residing in the old region.

In the face of heap space shortage, JVM first runs a minor

GC on the young region, deleting the unused objects and

promoting the old objects (that have survived multiple GC

rounds) to the old region. A minor GC triggers a major GC if

the old region has too little free space to hold the promoted

objects. If a minor GC constantly triggers a major GC, the

garbage collector can save time by skipping the minor GC

(and the ensuing major GC), and directly running full GC

over the entire space. JVM implements this adaptive skipping

of minor GC as a performance optimization. To estimate

whether a minor GC would trigger a major GC, it maintains a

promotion estimate, calculated as the moving average of the

number of promoted objects after each round of minor GC.

If the promotion estimate is higher than the amount of free

space in the old region, JVM GC skips the minor GC and runs

a full GC directly.

We now show how this adaptive skipping behavior impacts

performance predictability. We randomly pick one sample
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each from the slower “high-mode” runs (whose JCTs sit at

the top-right corner of the figure in §5.1.2) and the faster

“low-mode” runs (whose JCTs sits in the bottom-left corner of

the figure in §5.1.2). The top and bottom plots in Fig.9 show

the promotion estimate values and the amount of free space

in the old region observed for the first 30 GC events in the

two sample runs respectively.

Fig.9(top) reveals that beyond GC event #21, the promo-

tion estimate in the high-mode run remains greater than the

amount of free space in the old region (even after event 30,

beyond what the plot shows). This results in consecutive full

GCs (shown as hollow blue dots). Note that since no objects

get promoted in a full GC, the JVM does not update the pro-

motion estimate.

Fig.9(bottom) shows how the low-mode run escapes from

such a fate: the promotion estimate is higher than the amount

of free old space only for a few GC events, and stays lower

than that beyond GC event #26. Consequently, the low mode

run sees more minor GCs than full GCs (shown as solid blue

dots). Since a full GC, which scans objects across a larger

memory space, is significantly more time consuming than a

minor GC, the perpetuation of full GCs has a large impact

JCT (witnessed in the scatter-plot in §5.1.2).

Fig.10 shows the corresponding time-series of GC events

along with events that mark the start and finish of individual

tasks (for clarity, we only show the time range of 20-26s,

which captures the regime where the two runs start deviating

from one another). Careful observation of Fig.10 reveals that

the GC behaviour of the two runs begins to diverge around

time 24s, when two of tasks finish slightly earlier in the high

mode run than in the low mode run. We checked that around

this time, the two modes see a difference of about 10MB in

the amount of free old space (which is rather small compared

to the total heap size of 1GB).

Such subtle differences cannot be determined without

knowing the runtime state of the garbage collection and the

Spark application.

B.3 Non-determinism in the Spark Scheduler

Our analysis revealed that PageRank’s high O-err stems from

non-determinism in the Spark scheduler. Specifically, in a job

with multiple stages, a stage A may be independent of stage

B in the sense that A’s tasks can be scheduled to run whether

or not B’s tasks have completed. Our traces showed that in-

dependent stages were being scheduled in different orders in

different runs leading to different JCTs. This arises because of

how the Spark scheduler tracks dependencies between stages.

Spark’s scheduler maintains a graph that captures the depen-

dencies between stages; a stage v’s parents in the graph are

those stages that can only be scheduled after v is complete.

Spark’s scheduler uses the Scala HashSet data structure to

track the parents of a stage. When the search propagates to the

parents, the order of visiting these parents can be inconsistent

across runs because HashSet makes no guarantees on the

Figure 10: High-mode (top) and Low-mode (bottom) trajectories

for the run-time events. Note that unlike Fig.9, the x-axis unit here

is the wall time.

Figure 11: Bimodal performance that results from scheduling inde-

pendent stages in different orders.

order of iteration through the set members.

Fig.11 shows the effect of this non-determinism. Stages 1

and 7 are two independent stages and the figure plots the JCT

for runs where stage 7 is scheduled before stage 1 (dots on the

bottom-left) and vice versa (dots on the top-right). We see that

the difference in scheduling order corresponds to bimodality

in the JCTs. We emphasize that this bimodality could not be

predicted prior to runtime as it depends on the runtime state of

the HashSet structure rather than any static input parameters.

Setup Naive-err BoM-err O-err

Baseline 44.7% 19.2% 18.2%

+Sched. mod. 40.7% 5.7% 3.2%

Table 3: Prediction error before vs. after.

To verify our analysis, we modify the Spark scheduler

such that the order of scheduled stages is consistent across

runs with identical configurations (replacing HashSet with

a LinkedHashSet). Table 3 shows that our modification (the

“+Sched. mod.” row) reduces the O-err by more than 5.7x

bringing the error to under 4%.
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B.4 HTTP Redirection and DNS Caching in S3

Multiple applications in our study – KMeans, LR2, FPGrowth,

and ALS – experienced irreducible errors due to name resolu-

tion in Amazon’s S3 storage service. We explain this effect in

the context of the KMeans application.

Figure 12: Breakdowns of Spark KMeans job completion time as

time spent on cloud storage IO (writing the results to S3) and on

computation for 100 experiment runs.

When triaging the overall JCT, we often found that, on

average, the computation time was on par with the S3 IO time

but that the standard deviation for the latter was 24× times

higher than the former (Fig.12). Analysis of the application’s

runtime logs for KMeans revealed that the variance in per-

formance stems from I/O to Amazon’s S3 storage service.

This is shown in Fig.12 which breaks down the overall JCT

into computation time and S3 IO time. We see that the com-

putation time has little variance while the S3 IO time has

substantial variance (between 17.5s and 9s).

Further instrumentation revealed a correlation between the

time spent on S3 IO and the number of HTTP redirection

events, and that the latter varied across multiple runs of iden-

tical test configurations.

S3 is a distributed storage service in which objects are

spread across multiple datacenters. When a new object

“bucket” is created, its DNS entry points to a default data-

center location. If a user creates a bucket in a datacenter other

than the default one, then a request to that bucket is first sent

to the default server, which responds with an HTTP redirect

containing a new URL that resolves to the datacenter where

the bucket is located.

Such redirection continues until the DNS entry for the

bucket is correctly updated.10 The S3 buckets in our experi-

ments were created in a different datacenter from the default

one, leading to such HTTP redirects.

Fig.13 illustrates the above behavior during one of our

experiments. We plot two values over time: (a) the number of

distinct S3 servers that our application connected to, and, (b)

the time spent on S3 IO. We observe three distinct phases to

S3 performance, demarcated by green lines in Fig.13.

Interestingly, we observe a significant intermediate period

where the two values oscillate. We found that this oscillation

arises because AWS load-balances DNS requests across a

pool of DNS servers and the servers in this pool converge to

the new DNS entry at different times. In summary, we see

10AWS states that DNS entries can take up to 24 hours to be fully propa-

gated; we observed average delays of approx 4 hours. AWS also recommends

that clients not cache the redirect URL as its validity is only temporary.

Figure 13: The number of S3 servers visited during the cloud storage

IO (top) and the total IO time (bottom). This is plotted over wall-

clock time during multiple rounds of experiments.

variable performance even for identical test configurations due

to the distributed and eventually-consistent nature of object

name resolution in S3. To validate our analysis, we repeated

our experiments after modifying the KMeans application to

cache the correct bucket location after the first redirection

event (yes, ignoring AWS’ recommendation). Table 4 shows

that this modification dramatically reduces prediction error to

an O-err of 1.0% and a BoM-err of 1.1%.
Setup Naive-err BoM-err O-err

Baseline 22.7% 16.0% 15.2%

Correct bucket loc. 5.6% 1.1% 1.0%

Table 4: Prediction error before vs. after.

One might ask whether it is possible to predict the impact of

AWS’s DNS service on applications. An in-depth exploration

of this question is beyond the scope of this paper. However,

we note that doing so appears impractical, if not infeasible,

since we would have to know how an application’s lifetime

overlaps with the DNS timers not just for a single server but

for an entire pool of servers, as well as precisely knowing

how DNS requests are load-balanced across this pool.

B.5 Imperfect load-balancing at high load

We observed high irreducible errors when predicting the re-

quest throughput provided by a TFS cluster under increasing

numbers of workers (servers). Our analysis revealed that this

high error stems from how client requests are load-balanced

across TFS servers. We run TFS servers within a Kuber-

netes cluster and hence incoming client requests undergo two

levels of load balancing. First, the AWS Elastic Load Bal-

ancer round-robins incoming client connections across the

k8s nodes. Next, each k8s node load balances incoming RPCs

across the TFS instances.

We found that the irreducible errors in TFS stem from the

second stage of load-balancing. The load-balancing within

k8s is based on selecting a TFS server at random, leading

to some inherent imbalance in the load at each server. When

running the TFS cluster at high utilization (as our experiments

do), this imbalance means that some servers are already run-

ning at capacity while others are running below the maximum

request rate they can sustain. The variability in this imbalance
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leads to variations in the overall request throughput; e.g., in

repeated runs of one identical test setup, we saw aggregate

throughput vary between 80-140 req/sec.

Setup Naive-err BoM-err O-err

Baseline tput. 123.5% 26.7% 11.8%

-Rnd LB tput. 163.2% 7.6% 6.7%

Table 5: Prediction error before vs. after.

To verify this effect, we reconfigure the k8s load-balancer

to always direct client RPCs to the local TFS server instance.

In effect, this disables the k8s load-balancer which is accept-

able for our test purposes. Table 5 shows that this modification

substantially reduces the prediction error. We found a similar

effect when predicting request latency and also found that

incorporating heavy-hitter clients exacerbated the error due

to randomized load-balancing.

B.6 Variability in Implementations of Cloud APIs

We observed high O-err in the memcached and ngnix appli-

cations, both stemming from variability in how the cluster is

configured and the limited control/visibility that default cloud

APIs provide for this process.

In the case of memcached, the variability stemmed from

how our worker instances were being placed within the cloud

infrastructure. Our experiments used EC2’s default VM place-

ment which offers no guarantee on the proximity between our

allocated instances and hence our node-to-node latency var-

ied across runs. This in turn led to variable memcached read

latencies, as we found memcached read times are dominated

by the network latency between the client and server in our

setup. We found that switching to an API that consistently

places a set of instances close together reduced the O-err from

36.9% to 2.4% (varying input scale) [14].

For nginx, the high O-err stemmed from variability in

the default network bandwidth associated with smaller in-

stance types. Specifically, with EC2’s “c5” instances types,

those smaller than c5.9xlarge are by default assigned "up to"

10Gbps network bandwidth while c5.9xlarge instances are

assigned exactly 10Gbps. For smaller instance types we found

that EC2 occasionally throttles network bandwidth and the

degree of throttling varies across runs (see Appendix B.6).

The response time in nginx is also dominated by the network

latency between client and server and hence this variability

in throttling leads to unpredictable request latencies. Repeat-

ing our scale-out and input-scaling tests with a c5.9xlarge

instance (instead of our previous default of c5.xlarge for the

client and c5.4xlarge for the server) reduced the O-err from

15.6% to 2.0% under varying number of workers.

Fig.20 depicts the varying available bandwidth across dif-

ferent runs of the same configuration (specifically, the number

of worker processes in varying number of worker process sce-

nario). We measured the node-to-node bandwidth using iperf

between the instance running the client (wrk2) and the in-

stance running the nginx right before the experiments were

Figure 14: Available bandwidth (measured with iperf) between

client and server nodes across different runs of the same configura-

tion.

run. The results show that despite the configurations (instance

types, number of worker processes) remaining the same, the

available bandwidth can vary. We conjecture this is a result of

the bandwidth allocation mechanism AWS employs, which

throttles bandwidth usage based on an estimation of the aver-

age network utilization of the instances [4].

Note that it is arguable whether the above sources of error

are "irreducible". On the one hand, it might be possible to aug-

ment cloud APIs or incorporate the parameters of cloud APIs

as a feature in our ML models, however, doing so is likely

to come at a loss in flexibility and efficiency for cloud opera-

tors. E.g., one might envisage placement APIs that guarantee

consistent proximity between instances, but the achievable

proximity is likely to vary depending on the number and type

of instances (we will see an example of this in §??). Simi-

larly, if the AWS throttling that we observed is determined

by current network load,11 then it is not clear how one might

capture the impact of throttling prior to runtime. We leave the

question of how cloud providers might augment their APIs to

aid performance predictability as a topic for future work.

C Best-Case Analysis - More Details
Fig.15 and Fig.16 describe the per-app average prediction

error rates for best-case experiments.

D Beyond Best-Case Analysis - More Details
D.1 Leave-one-out - More Details

Fig.17 and Fig.18 describe the per-app average prediction

error rates for leave-one-out experiments.

D.2 Dedicated Instance vs. Shared Instance

Fig.20 shows the impact of changing dedicated instance type

to shared instance type for the Memcached and Spark sorting

applications. We see that overall the relaxation does not have

a statistically meaningful impact on the predictability of these

two applications.

11AWS documentation does not elaborate on the exact conditions under

which they implement throttling [4]
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Figure 15: Best-case prediction errors for different applications under (a) changing input-scale, (b) scaling-out the number of workers, and (c)

scaling-up the instances; before system modifications.

Figure 16: Best-case prediction errors for different applications under (a) changing input-scale, (b) scaling-out the number of workers, and (c)

scaling-up the instances; after system modifications.

D.3 Leave-one-out Test with only Varied Input Scale

Fig.21 shows the CDFs of BoM-err in the BBC leave-one-out

test, for only the predicitons across varying input data scale.

D.4 High BoM-err in BBC after App. Modifications -
Other Applications

(i) TFS has a higher BoM-err of 52.7% for prediction across
varying input-scale. This proved to be because the trend in

TFS throughput under varying input scale is inherently hard

to predict. The underlying function – shown in Fig.5(a) – has

a high Lipschitz constant (i.e., it changes too fast), which

causes the trained model to have poor generalization [24, 42].

We have not yet been able to determine the root cause for this

odd trend in TFS.

(ii) Memcached has a high BoM-err of 50.9% for prediction
across scaling up instance types. Recall from §5 that mem-

cached performance is sensitive to the node-to-node latency

and hence we modified our experiments to use AWS’s clus-

ter placement group API that ensures nodes in a cluster are

consistently placed close to each other. This avoids variability

in placement across multiple runs of an identical test config-

uration. However, what we discovered is that while AWS’s

placement API is consistent in the proximity at which it places

instances of a particular type, this proximity may vary across

different instance types, making it hard for our ML models

to learn a trend across instance types (as is needed for our

leave-one-out analysis).

E Comparing ML Models

So far, we focused on the error of the best-performing ML

model for a given task. We now compare across our six ML

models. We do so in the context of our leave-one-out analysis

since it is both more challenging and realistic. Table 6(top)

reports the error rate that each model achieves for each of the

three prediction scenarios, averaged across all applications.

We normalize each of these error rates by the lowest average

error for the corresponding prediction scenario. Therefore,

a normalized value of 1.0 indicates that the corresponding

model performed the best (on average) for the corresponding

prediction scenario. Table 6(bottom) similarly reports the

normalized error rates for each model and each application,

but now averaged across all prediction tasks.

It is important to note that our analysis uses only out-of-the-

box versions of each ML model and applies the same hyper-

parameter tuning approach to each of them. This is in contrast

to many prior studies (in systems contexts and beyond) in

which a particular model is often specialized and carefully

tuned to achieve high accuracy for a given prediction task [28,

32, 60]. In this sense, our results can be viewed as a "fair"

comparison of models while at the same time we acknowledge

that the performance of any individual model/prediction could

probably be improved through careful tuning. We view our

approach as establishing a useful baseline and conjecture that

there is value to a low-effort ML predictor, especially given

the rapid pace of evolution in modern software services.

We draw the following conclusions from our results:
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Figure 17: Leave-one-out prediction errors for different applications under (a) changing input-scale, (b) scaling-out the number of workers,

and (c) scaling-up the instances; before system modifications.

Figure 18: Leave-one-out prediction errors for different applications under (a) changing input-scale, (b) scaling-out the number of workers,

and (c) scaling-up the instances; after system modifications.

Figure 19: CDF of BoM-err in the BBC leave-one-out test where

input data content is identical, for predictions across varying input

data scale

(i) The key takeaway from our results is that there is no clear

winner: no ML model performs the best across all prediction

scenarios and across all applications. This validates the merits

of studying a range of ML models and applications so that we

can understand how to best apply or combine various models.

(ii) There is no clear loser either: each model performs the

best for at least one prediction scenario or application.

(iii) Even though there is no clear winner, neural network often

results in the best performance or has error rates close to the

best performing model. There were a few exceptions where

neural network resulted in 2× higher error rates than the low-

est error. We found that using a different hyper-parameter

tuning methodology reduced the neural network error in these

cases. This confirms the common wisdom that neural net-

Figure 20: Memcached (md) and Spark sorting (sort) prediction

accuracy in the three prediction scenarios with dedicated instances

and shared instances.

works, while powerful, can be difficult to train and tune.

(iv) For cases where neural network performed the best, there

was often at least one other simpler model performed as well.
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Figure 21: CDF of O-err in the BBC leave-one-out test where input

data content is not identical, for predictions across varying input data

scale

Prediction Linear kNN Random SVM SVM Neural
Type Regression Forest kernelized Network

Input scale 1.0 3.5 3.5 1.0 2.4 1.0
# workers 2.0 2.0 2.1 1.6 1.4 1.0
Inst. type 4.0 1.2 1.0 1.4 1.4 1.6

Application Linear kNN Random SVM SVM Neural
Regression Forest kernelized Network

sort 4.8 2.9 3.3 2.2 1.8 1.0
LR1 1.3 1.6 2.0 1.2 1.1 1.0
TFS 4.3 2.4 2.2 1.3 1.0 1.1

pagerank 2.5 1.7 1.8 1.8 3.4 1.0
nginx 6.6 2.6 1.1 1.1 1.0 1.7

influxdb 1.2 2.9 2.9 1.0 1.2 2.6

memcached 1.0 1.0 1.0 1.0 1.0 1.4

go-fasthttp 1.5 1.1 1.2 1.5 1.0 1.1

kmeans 1.3 1.4 1.0 1.3 1.6 1.2

LR2 2.3 2.6 2.2 2.4 1.0 1.9

word2vec 1.2 5.0 5.1 1.0 4.1 2.1

fpgrowth 6.0 2.8 2.7 1.0 2.0 1.1

ALS 1.7 1.2 1.1 1.3 2.5 1.0

Table 6: Comparison across ML models. The top table reports the

error rates for each type of prediction scenario and ML model, aver-

aged across all applications, and normalized by the lowest average

error for that scenario. The bottom table similarly reports normalized

error rates for each application, averaged across different prediction

scenarios.
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Abstract
Training machine learning models in parallel is an increas-

ingly important workload. We accelerate distributed parallel
training by designing a communication primitive that uses a
programmable switch dataplane to execute a key step of the
training process. Our approach, SwitchML, reduces the vol-
ume of exchanged data by aggregating the model updates
from multiple workers in the network. We co-design the
switch processing with the end-host protocols and ML frame-
works to provide an efficient solution that speeds up training
by up to 5.5⇥ for a number of real-world benchmark models.

1 Introduction

Today’s machine learning (ML) solutions’ remarkable success
derives from the ability to build increasingly sophisticated
models on increasingly large data sets. To cope with the result-
ing increase in training time, ML practitioners use distributed
training [1, 22]. Large-scale clusters use hundreds of nodes,
each equipped with multiple GPUs or other hardware acceler-
ators (e.g., TPUs [48]), to run training jobs on tens of workers
that take many hours or days.

Distributed training is increasingly a network-bound work-
load. To be clear, it remains computationally intensive. But
the last seven years have brought a 62⇥ improvement in com-
pute performance [64, 78], thanks to GPUs [74] and other
hardware accelerators [11,34,35,48]). Cloud network deploy-
ments have found this pace hard to match, skewing the ratio
of computation to communication towards the latter. Since
parallelization techniques like mini-batch stochastic gradi-
ent descent (SGD) training [37, 43] alternate computation
with synchronous model updates among workers, network
performance now has a substantial impact on training time.

Can a new type of accelerator in the network alleviate
the network bottleneck? We demonstrate that an in-network

⇤Equal contribution. Amedeo Sapio is affiliated with Barefoot Networks,
but was at KAUST during much of this work.

aggregation primitive can accelerate distributed ML work-
loads, and can be implemented using programmable switch
hardware [5, 10]. Aggregation reduces the amount of data
transmitted during synchronization phases, which increases
throughput, diminishes latency, and speeds up training time.

Building an in-network aggregation primitive using pro-
grammable switches presents many challenges. First, the per-
packet processing capabilities are limited, and so is on-chip
memory. We must limit our resource usage so that the switch
can perform its primary function of conveying packets. Sec-
ond, the computing units inside a programmable switch oper-
ate on integer values, whereas ML frameworks and models
operate on floating-point values. Finally, the in-network ag-
gregation primitive is an all-to-all primitive, unlike traditional
unicast or multicast communication patterns. As a result, in-
network aggregation requires mechanisms for synchronizing
workers and detecting and recovering from packet loss.

We address these challenges in SwitchML, showing that
it is indeed possible for a programmable network device to
perform in-network aggregation at line rate. SwitchML is
a co-design of in-switch processing with an end-host trans-
port layer and ML frameworks. It leverages the following
insights. First, aggregation involves a simple arithmetic op-
eration, making it amenable to parallelization and pipelined
execution on programmable network devices. We decompose
the parameter updates into appropriately-sized chunks that
can be individually processed by the switch pipeline. Second,
aggregation for SGD can be applied separately on different
portions of the input data, disregarding order, without affect-
ing the correctness of the final result. We tolerate packet loss
through the use of a light-weight switch scoreboard mecha-
nism and a retransmission mechanism driven solely by end
hosts, which together ensure that workers operate in lock-step
without any decrease in switch aggregation throughput. Third,
ML training is robust to modest approximations in its com-
pute operations. We address the lack of floating-point support
in switch dataplanes by having the workers scale and convert
floating-point values to fixed-point using an adaptive scaling
factor with negligible approximation loss.
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SwitchML integrates with distributed ML frameworks,
such as PyTorch and TensorFlow, to accelerate their commu-
nication, and enable efficient training of deep neural networks
(DNNs). Our initial prototype targets a rack-scale architec-
ture, where a single switch centrally aggregates parameter
updates from serviced workers. Though the single switch
limits scalability, we note that commercially-available pro-
grammable switches can service up to 64 nodes at 100 Gbps
or 256 at 25 Gbps. As each worker is typically equipped with
multiple GPUs, this scale is sufficiently large to push the
statistical limits of SGD [32, 43, 50, 98].

We show that SwitchML’s in-network aggregation yields
end-to-end improvements in training performance of up to
5.5⇥ for popular DNN models. Focusing on a communication
microbenchmark, compared to the best-in-class collective li-
brary NCCL [77], SwitchML is up to 2.9⇥ faster than NCCL
with RDMA and 9.1⇥ than NCCL with TCP. While the mag-
nitude of the performance improvements is dependent on
the neural network architecture and the underlying physical
network speed, it is greater for models with smaller compute-
to-communication ratios – good news for future, faster DNN
training accelerators.

Our approach is not tied to any particular ML frame-
work; we have integrated SwitchML with Horovod [89]
and NCCL [77], which support several popular toolkits like
TensorFlow and PyTorch. SwitchML is openly available at
https://github.com/p4lang/p4app-switchML.

2 Network bottlenecks in ML training

In the distributed setting, ML training yields a high-
performance networking problem, which we highlight below
after reviewing the traditional ML training process.

2.1 Training and all to all communication
Supervised ML problems, including logistic regression, sup-
port vector machines and deep learning, are typically solved
by iterative algorithms such as stochastic gradient descent
(SGD) or one of its many variants (e.g., using momentum,
mini-batching, importance sampling, preconditioning, vari-
ance reduction) [72, 73, 83, 90]. A common approach to scal-
ing to large models and datasets is data-parallelism, where
the input data is partitioned across workers.1 Training in a
data-parallel, synchronized fashion on n workers can be seen
as learning a model x 2 Rd over input/training data D by
performing iterations of the form xt+1 = xt +Ân

i=1 D(xt ,Dt
i),

where xt is a vector of model parameters2 at iteration t, D(·, ·)
is the model update function3 and Dt

i is the data subset used
1In this paper, we do not consider model-parallel training [28, 82], al-

though that approach also requires efficient networking. Further, we focus
exclusively on widely-used distributed synchronous SGD [1, 37].

2In applications, x is typically a 1, 2, or 3 dimensional tensor. To simplify
notation, we assume its entries are vectorized into one d dimensional vector.

3We abstract learning rate (step size) and model averaging inside D.

at worker i during that iteration.
The key to data parallelism is that each worker i, in parallel,

locally computes the update D(xt ,Dt
i) to the model parameters

based on the current model xt and a mini-batch, i.e., a subset
of the local data Dt

i . Typically, a model update contributed by
worker i is a multiple of the stochastic gradient of the loss
function with respect to the current model parameters xt com-
puted across a mini-batch of training data, Dt

i . Subsequently,
workers communicate their updates, which are aggregated
(Â) and added to xt to form the model parameters of the next
iteration. Importantly, each iteration acts only on a mini-batch
of the training data. It requires many iterations to progress
through the entire dataset, which constitutes a training epoch.
A typical training job requires multiple epochs, reprocessing
the full training data set, until the model achieves acceptable
error on a validation set.

From a networking perspective, the challenge is that data-
parallel SGD requires computing the sum of model updates
across all workers after every iteration. Each model update
has as many parameters as the model itself, so they are often
in 100s-of-MB or GB range. And their size is growing expo-
nentially: today’s largest models exceed 32 GB [84]. These
aggregations need to be performed frequently, as increasing
the mini-batch size hurts convergence [66]. Today’s ML toolk-
its implement this communication phase in one of two ways:
The parameter server (PS) approach. In this approach,
workers compute model updates and send them to param-
eter servers [45, 56, 64]. These servers, usually dedicated
machines, aggregate updates to compute and distribute the
new model parameters. To prevent the PS from becoming a
bottleneck, the model is sharded over multiple PS nodes.
The all-reduce approach. An alternate approach uses the
workers to run an all-reduce algorithm – a collective commu-
nication technique common in high-performance computing –
to combine model updates. The workers communicate over
an overlay network. A ring topology [6], where each worker
communicates to the next neighboring worker on the ring,
is common because it is bandwidth-optimal (though its la-
tency grows with the number of workers) [79]. Halving and
doubling uses a binary tree topology [93] instead.

2.2 The network bottleneck
Fundamentally, training alternates compute-intensive phases
with communication-intensive model update synchronization.
Workers produce intense bursts of traffic to communicate their
model updates, whether it is done through a parameter server
or all-reduce, and training stalls until it is complete.

Recent studies have shown that performance bottleneck in
distributed training is increasingly shifting from compute to
communication [64]. This shift comes from two sources. The
first is a result of advances in GPUs and other compute acceler-
ators. For example, the recently released NVIDIA A100 offers
10⇥ and 20⇥ performance improvements for floating-point
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and mixed-precision calculations, respectively [74] compared
to its predecessor, the V100 – released just 2.5 years previ-
ously. This pace far exceeds advances in network bandwidth:
a 10⇥ improvement in Ethernet speeds (from 10 Gbps to 100
Gbps) required 8 years to standardize.

Second, the ratio of communication to computation in the
workload itself has shifted. The current trend towards ever-
larger DNNs generally exacerbates this issue. However, this
effect is highly application-dependent. In popular ML toolkits,
communication and computation phases can partially over-
lap. Since back-prop proceeds incrementally, communication
can start as soon as the earliest partial results of back-prop
are available. The effectiveness of this technique depends on
the structure of the DNN. For DNNs with large initial lay-
ers, its effectiveness is marginal, because there is little to no
opportunity to overlap communication with computation.

When is the network a bottleneck? To answer this quantita-
tively, we profile the training of 8 common DNNs on a cluster
with 8 workers using NVIDIA P100 GPUs. To precisely fac-
tor out the contribution of communication to the processing
time of a mini-batch, we emulate communication time at 10
Gbps or 100 Gbps Ethernet assuming transmission at line
rate. We record the network-level events, which allows us to
report the fraction of time spent in communication as well
as how much can overlap with computation (Table 1). At 10
Gbps, all but three workloads spend more than 50% of their
time in communication, usually with little computation-phase
overlap. These workloads benefit greatly from 100 Gbps net-
working, but even so communication remains a significant
share (at least 17%) of batch processing time for half of the
workloads.

What happens when GPUs become faster? Our profile
uses P100 GPUs, now two generations old. Faster GPUs
would reduce the computation time, increasing the rela-
tive communication fraction. Our measurement of non-
overlappable communication time allows us to determine the
scaling factor a applied to GPU computation time at which
point the network is saturated. There is still some speedup
beyond an a⇥ faster GPU, but it is limited to the initial phase,
before communication begins. Note a < 4 for half the work-
loads (Table 1), suggesting that network performance will be
a serious issue when using the latest GPUs with a 100 Gbps
network.

3 In-network aggregation

We propose an alternative approach to model update exchange
for ML workloads: in-network aggregation. In this approach,
workers send their model updates over the network, where an
aggregation primitive in the network sums the updates and dis-
tributes only the resulting value. Variations on this primitive
have been proposed, over the years, for specialized supercom-
puter networks [2, 26] and InfiniBand [33]. We demonstrate

Model Size Batch 10 Gbps 100 Gbps

[MB] size Batch [ms] Comm [%] Batch [ms] Comm [%] a

DeepLight 2319 213 2101 ± 1.4 97% (2%) 258 ± 0.4 79% (20%) 1.0
LSTM 1627 64 1534 ± 8.3 94% (10%) 312 ± 6.8 46% (56%) 1.5
BERT 1274 4 1677 ± 7.1 67% (3%) 668 ± 3.1 17% (35%) 3.5
VGG19 548 64 661 ± 1.9 73% (67%) 499 ± 1.1 10% (99%) 6.7
UGATIT 511 2 1612 ± 2.5 28% (84%) 1212 ± 3.5 4% (99%) 17.6
NCF 121 217 149 ± 0.6 72% (4%) 46 ± 0.1 23% (27%) 1.2
SSD 98 16 293 ± 0.6 26% (99%) 293 ± 1.6 3% (99%) 15.2
ResNet-50 87 64 299 ± 10.9 29% (67%) 270 ± 1.2 3% (94%) 19.8

Table 1: Profile of benchmark DNNs. “Batch [ms]” reports
the average batch processing time and its standard deviation.
“Comm” reports the proportion of communication activity as
% of batch time. The figure in parentheses is the percentage of
that time that overlaps with computation. For example, Deep-
Light at 10 Gbps spends 97% of its batch time in communica-
tion; only 2% of this 97% communication overlaps with com-
putation. The table lists a scaling factor for an hypothetical a⇥
faster GPU that implies communication is contiguous and satu-
rates the 100 Gbps bandwidth once communication begins.

that it is possible to realize in-network aggregation in an Eth-
ernet network and benefit ML applications.

In-network aggregation offers a fundamental advantage
over both all-reduce and PS. It achieves the minimum pos-
sible latency and the minimum communication cost, quan-
tified in data volume each worker sends and receives: 2|U |
bytes, where |U | is the total number of bytes to be aggre-
gated. This is a significant improvement over the equivalent
cost for bandwidth-optimal all-reduce, which is 4|U | n�1

n [79].
The PS approach can match this communication cost of 2|U |
bytes, at the expense of more resource cost; in the limit, it
doubles the number of required machines and network band-
width.4 Regardless of resource costs, in-network aggregation
avoids end-host processing required to perform aggregation
and, therefore, provides “sub-RTT” latency [46], which the
contrasted approaches cannot achieve.

Illustrating the advantages of in-network aggregation. To
characterize the extent to which communication is a bottle-
neck for training performance, we use our profile of eight
DNN models from §2.2. We evaluate the impact of commu-
nication performance using a trace of network-level events
recorded during training. This trace captures real compute
times and memory access latency, including the latency for
barrier events that precede each synchronization, but allows
us to emulate different network speeds and computation pat-
terns. In particular, our trace records the detailed timing of
individual all-reduce invocations, so it faithfully accounts for
potential overlap between communication and computation.5

We compare the performance of in-network aggregation
(INA) with the current best practice, ring all-reduce (RAR).
Table 2 summarizes the batch processing speedup over the

4If the PS nodes are co-located with the worker nodes, then the effective
bandwidth per node is halved, doubling latency.

5The ML toolkit adopts an optimization known as tensor fusion or bucket-
ing that coalesces multiple all-reduce invocations to amortize setup overhead.
Our traces reflect the effect of this optimization.
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Figure 1: Example of in-network aggregation of model updates.
Ui is the model update computed by worker i. Workers stream
pieces of model updates in a coordinated fashion. In the exam-
ple, each workers can have at most 4 outstanding packets at any
time to match the slots in the switch. The switch aggregates up-
dates and multicasts back the values, which are collected into
the aggregated model update Ai, then used to form the model
parameters of the next iteration.

ring all-reduce performance. INA is consistently superior to
RAR. For communication-bound models (the four models
in the 100 Gbps case), INA is up to 80% and up to 67%
faster at 10 and 100 Gbps, respectively. Note that this analysis
reflects a theoretically optimal implementation of RAR. The
measured speedups (§6) of our real INA implementation are
higher, because real RAR implementations do not achieve
optimal performance; it is difficult to fully exploit all available
bandwidth and avoid system overheads.

We also note that our profiling environment uses NVIDIA
P100 devices. These are currently two-generation old GPU
accelerators. We investigate with real benchmarks in §6 the
impact of faster GPUs, which increases the relative impact of
communication overheads.

Alternative: gradient compression. Another way to reduce
communication costs is to reduce the data volume of model
updates using lossy compression. Proposed approaches in-
clude reducing the bit-width of gradient elements (quantiza-
tion) or transmitting only a subset of elements (sparsification).
These approaches come with tradeoffs: too much compression
loss can impact the resulting model accuracy.

We adopt the results of a recent survey of gradient com-
pression methods [96] to emulate the behavior of Top-k [3]
and QSGD [4] as two representative sparsification and quan-
tization compressors, respectively. We use data from that
study to identify the compression overhead and data reduction
achieved. Our synthetic communication time, then, includes
both the computational cost of compression and the communi-
cation cost of the all-gather operation used to exchange model

Model INA QSGD Top-k

64 256 1% 10%

10 Gbps

DeepLight 1.80 1.27 0.97 9.24 (-1.1%) 1.05 (-0.9%)
LSTM 1.77 1.27 0.97 7.49 1.05
NCF 1.54 1.22 0.96 4.07 1.05 (-2.2%)
BERT 1.54 1.20 0.98 3.45 (†) 1.04 (†)
VGG19 1.60 1.22 0.97 2.13 (-10.4%) 1.04 (-3.3%)
UGATIT 1.22 1.12 0.99 1.58 1.02
ResNet-50 1.05 1.07 0.95 1.15 (-1.7%) 1.02 (+0.2%)
SSD 1.01 1.00 1.00 1.01 (-2.4%) 1.00 (-0.6%)

100 Gbps

DeepLight ⁄1.67 0.93 0.78 2.96 (-1.1%) 0.47 (-0.9%)
LSTM ⁄1.20 0.98 0.84 1.37 0.54
NCF 1.22 1.00 0.85 1.22 0.65 (-2.2%)
BERT ⁄1.14 0.98 0.92 1.27 (†) 0.74 (†)

† The BERT task is fine-tuning from a pre-trained model, for which compression does

not have a noticeable impact. The impact during pretraining is analyzed in Appendix E.

Table 2: Analysis of batch processing speedup relative to ring
all-reduce based on synthetic communication. For Top-k com-
pression, impact on model quality is shown in parentheses. Ac-
curacy penalties greater than 1% are shaded in gray; red indi-
cates failure to converge. At 100 Gbps, only the models that are
network bottlenecked are shown. ⁄ indicates 100 Gbps cases
where SwitchML achieves a higher batch processing speedup
due to practical system overheads.

updates (following their implementation [96]).
We observe (Table 2) that, although gradient compression

decreases data volume, it is not necessarily superior to INA.
In general, the computational cost of compression and decom-
pression is non-negligible [58,96]; in some cases, it outweighs
the communication-reduction benefits. In particular, INA out-
performs QSGD on all workloads for both the 64 and 256
levels (6 and 8 bits). Similarly, Top-k underperforms INA at
the 10% compression level, and even reduces performance
relative to RAR in the 100 Gbps setting. These observations
agree with recent work [58, 96]. In particular, Li et al. [58]
proposed additional hardware offloading, using an FPGA at
every worker, to mitigate compression costs. As this requires
additional hardware, our analysis does not consider it.

Gradient compression does outperform INA when it can
achieve high compression ratios, as with Top-k at 1%. How-
ever, in many cases, this level of compression either requires
more training iterations to converge, or hurts the accuracy
of the resulting model [96]. For example, the NCF model
achieves 95.8% hit rate without compression after 20 epochs
of training, while with Top-k compression at 10% it achieves
93.6%. It fails to converge at 1% compression. We report
convergence comparisons for various models in Appendix D.

4 Design

Our system, SwitchML, implements the aggregation primitive
in a programmable dataplane switch. Such switches are now
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commercially available, with only a small cost premium com-
pared to fixed-function switches [5]. In-network aggregation
is conceptually straightforward, but implementing it inside
a programmable switch, however, is challenging. Although
programmable switches allow placing computation into the
network path, their limited computation and storage capabili-
ties impose constraints on implementing gradient aggregation.
The system must also tolerate packet loss, which, although
uncommon in the rack-scale cluster environment, is neverthe-
less possible for long-running DNN training jobs. SwitchML
addresses these challenges by appropriately dividing the func-
tionality between the hosts and the switches, resulting in an
efficient and reliable streaming aggregation protocol.

4.1 Challenges

Limited computation. Mathematically, gradient aggregation
is the average over a set of floating-point vectors. While a
seemingly simple operation, it exceeds the capabilities of
today’s programmable switches. As they must maintain line
rate processing, the number of operations they can perform
on each packet is limited. Further, the operations themselves
can only be simple integer arithmetic/logic operations; neither
floating-point nor integer division operations are possible.

Limited storage. Model updates are large. In each iteration,
each worker may supply hundreds of megabytes of gradient
values. This volume far exceeds the on-switch storage capac-
ity, which is limited to a few tens of MB and must be shared
with forwarding tables and other core switch functions. This
limitation is unlikely to change in the future [10], given that
speed considerations require dataplane-accessible storage to
be implemented using on-die SRAM.

Packet loss. SwitchML must be resilient to packet loss, with-
out impact on efficiency or correctness (e.g., discarding part
of an update or applying it twice because of retransmission).

4.2 SwitchML overview
SwitchML aims to alleviate communication bottlenecks for
distributed ML training applications using in-network ag-
gregation, in a practical cluster setting.6 SwitchML uses the
following techniques to reduce communication costs while
meeting the above challenges.

Combined switch-host architecture. SwitchML carefully
partitions computation between end-hosts and switches to cir-
cumvent the restrictions of the limited computational power at
switches. The switch performs integer aggregation, while end-
hosts are responsible for managing reliability and performing
more complex computations.

6For simplicity, we assume dedicated bandwidth for the training jobs.
We also assume that worker, link or switch failures are handled by the ML
framework, as it is common in practice [1, 56].

Algorithm 1 Switch logic.
1: Initialize State:
2: n = number of workers
3: pool[s], count[s] := {0}
4: upon receive p(idx, off, vector)
5: pool[p.idx] pool[p.idx] + p.vector {+ is the vector addition}
6: count[p.idx]++
7: if count[p.idx] = n then
8: p.vector pool[p.idx]
9: pool[p.idx] 0; count[p.idx] 0

10: multicast p
11: else
12: drop p

Pool-based streaming aggregation. A complete model up-
date far exceeds the storage capacity of a switch, so it cannot
aggregate entire vectors at once. SwitchML instead streams
aggregation through the switch: it processes the aggregation
function on a limited number of vector elements at once. The
abstraction that makes this possible is a pool of integer aggre-
gators. In SwitchML, end hosts handle the management of
aggregators in a pool – determining when they can be used,
reused, or need more complex failure handling – leaving the
switch dataplane with a simple design.

Fault tolerant protocols. We develop lightweight schemes
to recover from packet loss with minimal overheads and adopt
traditional mechanisms to solve worker or network failures.

Quantized integer-based aggregation. Floating-point oper-
ations exceed the computational power of today’s switches.
We instead convert floating-point values to 32-bit integers
using a block floating-point-like approach [25], which is done
efficiently at end hosts without impacting training accuracy.

We now describe each of these components in turn. To ease
the presentation, we describe a version of the system in which
packet losses do not occur. We remove this restriction later.

4.3 Switch-side aggregation protocol
We begin by describing the core network primitive

provided by SwitchML: in-switch integer aggregation. A
SwitchML switch provides a pool of s integer aggregators,
addressable by index. Each slot in the pool aggregates a vec-
tor of k integers, which are delivered all at the same time in
one update packet. The aggregation function is the addition
operator, which is commutative and associative – meaning
that the result does not depend on the order of packet arrivals.
Note that addition is a simpler form of aggregation than ulti-
mately desired: model updates need to be averaged. As with
the all-reduce approach, we leave the final division step to the
end hosts, as the switch cannot efficiently perform this.

Algorithm 1 illustrates the behavior of the aggregation
primitive. A packet p carries a pool index, identifying the
particular aggregator to be used, and contains a vector of
k integers to be aggregated. Upon receiving a packet, the
switch aggregates the packet’s vector (p.vector) into the slot
addressed by the packet’s pool index (p.idx). Once the slot has
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aggregated vectors from each worker,7 the switch outputs the
result – by rewriting the packet’s vector with the aggregated
value from that particular slot, and sending a copy of the
packet to each worker. It then resets the slot’s aggregated
value and counter, releasing it immediately for reuse.

The pool-based design is optimized for the common sce-
nario where model updates are larger than the memory ca-
pacity of a switch. It addresses two major limitations of pro-
grammable switch architectures. First, because switch mem-
ory is limited, it precludes the need to store an entire model
update on a switch at once; instead, it aggregates pieces of the
model in a streaming fashion. Second, it allows processing
to be done at the packet level by performing the aggregation
in small pieces, at most k integers at a time. This is a more
significant constraint than it may appear; to maintain a very
high forwarding rate, today’s programmable switches parse
only up to a certain amount of bytes in each packet and allow
computation over the parsed portion. Thus, the model-update
vector and all other packet headers must fit within this lim-
ited budget, which is today on the order of a few hundred
bytes; ASIC design constraints make it unlikely that this will
increase dramatically in the future [10, 16, 92]. In our deploy-
ment, k is 64 or 256.

4.4 Worker-side aggregation protocol
The switch-side logic above does not impose any constraints
on which aggregator in the pool to use and when. Workers
must carefully control which vectors they send to which pool
index and, since pool size s is limited, how they reuse slots.

There are two considerations in managing the pool of ag-
gregators appropriately. For correctness, every worker must
use the same slot for the same piece of the model update, and
no slot can be simultaneously used for two different pieces.
For performance, every worker must work on the same slot
at roughly the same time to avoid long synchronization de-
lays. To address these issues, we design a custom aggregation
protocol running at the end hosts of ML workers.

For now, let us consider the non-failure case, where there
is no packet loss. The aggregation procedure, illustrated in
Algorithm 2, starts once every worker is ready to exchange its
model update. Without loss of generality, we suppose that the
model update’s size is a multiple of k and is larger than k · s,
where k is the size of the vector aggregated in each slot and s
denotes the pool size. Each worker initially sends s packets
containing the first s pieces of the model update – each piece
being a contiguous array of k values from offset off in that
worker’s model update U . Each of these initial packets is
assigned sequentially to one of the s aggregation slots.

After the initial batch of packets is sent, each worker awaits
the aggregated results from the switch. Each packet received
indicates that the switch has completed the aggregation of

7For simplicity, we show a simple counter to detect this condition. Later,
we use a bitmap to track which workers have sent updates.

Algorithm 2 Worker logic.
1: for i in 0 : s do
2: p.idx i
3: p.off  k · i
4: p.vector U[p.off : p.off + k]
5: send p
6: repeat
7: receive p(idx, off, vector)
8: A[p.off : p.off +k] p.vector
9: p.off  p.off + k · s

10: if p.off < size(U) then
11: p.vector U[p.off : p.off + k]
12: send p
13: until A is incomplete

a particular slot. The worker consumes the result carried in
the packet, copying that packet’s vector into the aggregated
model update A at the offset carried in the packet (p.off). The
worker then sends a new packet with the next piece of update
to be aggregated. This reuses the same pool slot as the one just
received, but contains a new set of k parameters, determined
by advancing the previous offset by k · s.

A key advantage of this scheme is that it does not require
any explicit coordination among workers and yet achieves
agreement among them on which slots to use for which pa-
rameters. The coordination is implicit because the mapping
between model updates, slots, and packets is deterministic.
Also, since each packet carries the pool index and offset, the
scheme is not influenced by reorderings. A simple check-
sum can be used to detect corruption and discard corrupted
packets.

This communication scheme is self-clocked after the initial
s packets. This is because a slot cannot be reused until all
workers have sent their contribution for the parameter update
for the slot. When a slot is completed, the packets from the
switch to the workers serve as flow-control acknowledgments
that the switch is ready to reuse the slot, and the workers are
free to send another packet. Workers are synchronized based
on the rate at which the system aggregates model updates.
The pool size s determines the number of concurrent in-flight
aggregations; as we elaborate in Appendix §C, the system
achieves peak bandwidth utilization when k ·s (more precisely,
b · s where b is the packet size – 1100 bytes in our setting)
matches the bandwidth-delay product of the inter-server links.

4.5 Dealing with packet loss
Thus far, we have assumed packets are never lost. Of course,
packet loss can happen due to either corruption or network
congestion. With the previous algorithm, even a single packet
loss would halt the system. A packet loss on the “upward”
path from workers to the switch prevents the switch from
completing the corresponding parameter aggregations. The
loss of one of the result packets that are multicast on the
“downward” paths not only prevents a worker from learning
the result but also prevents it from ever completing A.

We tolerate packet loss by retransmitting lost packets. In
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Algorithm 3 Switch logic with packet loss recovery.
1: Initialize State:
2: n = number of workers
3: pool[2, s], count[2, s], seen[2, s, n] := {0}
4: upon receive p(wid, ver, idx, off, vector)
5: if seen[p.ver, p.idx, p.wid] = 0 then
6: seen[p.ver, p.idx, p.wid] 1
7: seen[(p.ver+1)%2, p.idx, p.wid] 0
8: count[p.ver, p.idx] (count[p.ver, p.idx]+1)%n
9: if count[p.ver, p.idx] = 1 then

10: pool[p.ver, p.idx] p.vector
11: else
12: pool[p.ver, p.idx] pool[p.ver, p.idx] + p.vector
13: if count[p.ver, p.idx] = 0 then
14: p.vector pool[p.ver, p.idx]
15: multicast p
16: else
17: drop p
18: else
19: if count[p.ver, p.idx] = 0 then
20: p.vector pool[p.ver, p.idx]
21: forward p to p.wid
22: else
23: drop p

order to keep switch dataplane complexity low, packet loss
detection is done by the workers if they do not receive a re-
sponse packet from the switch in a timely manner. However,
naïve retransmission creates its own problems. If a worker
retransmits a packet that was actually delivered to the switch,
it can cause a model update to be applied twice to the aggre-
gator. On the other hand, if a worker retransmits a packet for
a slot that was actually already fully aggregated (e.g., because
the response was lost), the model update can be applied to the
wrong data because the slot could have already been reused
by other workers who received the response correctly. Thus,
the challenges are (1) to be able to differentiate packets that
are lost on the upward paths versus the downward ones; and
(2) to be able to retransmit an aggregated response that is lost
on the way back to a worker.

We modify the algorithms to address these issues by keep-
ing two additional pieces of switch state. First, we explicitly
maintain information as to which workers have already con-
tributed updates to a given slot. This makes it possible to ig-
nore duplicate transmissions. Second, we maintain a shadow
copy of the previous result for each slot. That is, we have two
copies or versions of each slot, organized in two pools; work-
ers alternate between these two copies to aggregate successive
chunks that are assigned to the same slot. The shadow copy
allows the switch to retransmit a dropped result packet for a
slot even when the switch has started reusing the slot for the
next chunk.

The key insight behind this approach’s correctness is that,
even in the presence of packet losses, our self-clocking strat-
egy ensures that no worker node can ever lag more than one
chunk behind any of the others for a particular slot. This
invariant is because the switch will not release a slot to be
reused, by sending a response, until it has received an update
packet from every worker for that slot. Furthermore, a worker

Algorithm 4 Worker logic with packet loss recovery.
1: for i in 0 : s do
2: p.wid Worker ID
3: p.ver 0
4: p.idx i
5: p.off  k · i
6: p.vector U[p.off : p.off + k]
7: send p
8: start_timer(p)
9: repeat

10: receive p(wid, ver, idx, off, vector)
11: cancel_timer(p)
12: A[p.off : p.off +k] p.vector
13: p.off  p.off + k · s
14: if p.off < size(U) then
15: p.ver (p.ver+1)%2
16: p.vector U[p.off : p.off + k]
17: send p
18: start_timer(p)
19: until A is incomplete

20: upon timeout p /* Timeout Handler */
21: send p
22: start_timer(p)

will not send the next chunk for a slot until it has received the
response packet for the slot’s previous chunk, preventing the
system from moving ahead further. As a result, it is sufficient
to keep only one shadow copy.

Besides obviating the need for more than one shadow copy,
this has a secondary benefit: the switch does not need to
track full phase numbers (or offsets); a single bit is enough to
distinguish the two active phases for any slot.

In keeping with our principle of leaving protocol complex-
ity to end hosts, the shadow copies are kept in the switch but
managed entirely by the workers. The switch simply exposes
the two pools to the workers, and the packets specify which
slot acts as the active copy and which as the shadow copy by
indicating a single-bit pool version (ver) field in each update
packet. The pool version starts at 0 and alternates each time a
slot with the same idx is reused.

Algorithms 3 and 4 show the details of how this is done.
An example illustration is in Appendix A. In the common
case, when no losses occur, the switch receives updates for
slot idx, pool ver from all workers. When workers receive
the response packet from the switch, they change the pool by
flipping the ver field – making the old copy the shadow copy
– and send the next phase updates to the other pool.

A timeout detects packet loss at each worker. When this
occurs, the worker does not know whether the switch received
its previous packet or not. Regardless, it retransmits its earlier
update with the same slot idx and ver as before. This slot is
guaranteed to contain the state for the same aggregation in
the switch. The seen bitmask indicates whether the update
has already been applied to the slot. If the aggregation is
already complete for a slot, and the switch yet receives an
update packet for the slot, the switch recognizes the packet
as a retransmitted packet and replies with a unicast packet
containing the result. The result in one slot is overwritten for
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reuse only when there is the certainty that all the workers have
received the slot’s aggregated result. Slot reuse happens when
all the workers have sent their updates to the same slot of the
other pool, signaling that they have all moved forward. Note
this scheme works because the completion of aggregation for
a slot idx in one pool safely and unambiguously confirms that
the previous aggregation result in the shadow copy of slot idx
has indeed been received by every worker.

This mechanism’s main cost is switch memory usage: keep-
ing a shadow copy doubles the memory requirement, and
tracking the seen bitmask adds additional cost. This may ap-
pear problematic, as on-switch memory is a scarce resource.
In practice, however, the total number of slots needed – tuned
based on the network bandwidth-delay product (Appendix C)
– is much smaller than the switch’s memory capacity.

4.6 Dealing with floating-point numbers
DNN training commonly uses floating-point numbers, but
current programmable switches do not natively support them.
We explored two approaches to bridging this gap.

Floating-point numbers are already an approximation.
SGD and similar algorithms are defined over real numbers.
Floating-point numbers approximate real numbers by trading
off range, precision, and computational overhead to provide a
numerical representation that can be broadly applied to appli-
cations with widely different properties. However, many other
approximations are possible. An approximation designed for
a specific application can obtain acceptable accuracy with
lower overhead than standard floating-point offers.

In recent years, the community has explored many spe-
cialized numerical representations for DNNs. These repre-
sentations exploit the properties of the DNN application do-
main to reduce the cost of communication and computation.
For instance, NVIDIA Volta and Ampere GPUs [17, 74]
include mixed-precision (16-/32-bit) TPUs that can train
with accuracy matching full-precision approaches. Other
work has focused on gradient exchange for SGD, using
fixed-point quantization, dithering, or sparsification to reduce
both the number of bits and the gradient elements transmit-
ted [7, 8, 60, 69, 88, 95, 99]. Further, others have explored
block floating-point representations [25, 53], where a single
exponent is shared by multiple tensor elements, reducing the
amount of computation required to perform tensor operations.
This innovation will continue (as work [40, 70] that builds
upon our architecture demonstrates); our goal is not to pro-
pose new representations but to demonstrate that techniques
like those in the literature are practical with programmable
switches.

We use a numeric representation, inspired by block floating-
point, that combines 32-bit fixed-point addition in the switch
with adaptive scaling on the workers. This representation is
used only when aggregating gradients; all other data (weights,
activations) remain in 32-bit floating-point representation.

Figure 2: Test accuracy of ResNet-110 on CIFAR10. SwitchML
achieves similar accuracy to the baseline.

To implement our representation, we scale gradient values
using a per-packet scaling factor f , which is automatically de-
termined for each use of an aggregator slot in the switch. The
scaling factor is set so that the maximum aggregated floating
point value within a block of k gradients is still representable
as a 32-bit fixed point value. Namely, let h be the largest abso-
lute value of a block of gradients; f is set to (231�1)/(n ·2m),
where m is the exponent of h rounded up to a power of 2 and
n is the number of workers. Appendix E formally analyzes
the precision of this representation.

To realize this quantization of floating-point values, work-
ers need to agree on a global value of m prior to sending
the corresponding block of gradients. We devise a simple
look-ahead strategy: when workers send the j-th block to slot
i, they include their local block j + 1’s maximum gradient
(rounded up to a power of 2). The switch identifies the global
maximum m and piggy-backs that value when sending the
aggregated gradients of the j-th block.

We verify experimentally that this communication quantiza-
tion allows training to similar accuracy in a similar number of
iterations as an unquantized network. We illustrate the conver-
gence behavior by training a ResNet-110 model on CIFAR10
dataset for 64,000 steps (about 41 epochs) using 8 workers.
Figure 2 shows the test accuracy over time. The accuracy
obtained by SwitchML (about 91-93% in the last 5 points) is
similar to that obtained by training with TensorFlow on the
same worker setup, and it matches prior results [38] with the
same hyperparameter settings. The training loss curves (not
shown) show the same similarity. In Appendix E, we further
give a detailed convergence analysis for the aforementioned
representation on models in Table 1.

While the above representation is used in the remainder of
the paper, we also explored the implementation of a restricted
form of 16-bit floating-point. In this version, the switch con-
verts each 16-bit floating-point value in the incoming packets
into a fixed-point value and then performs aggregation. When
generating responses, the switch converts fixed-point values
back into floating-point values. Due to resource limitations
in the switch, we were only able to support half the dynamic
range of the 16-bit floating-point format; we expect this to
lead to poor convergence during training. Conversely, our
32-bit integer format uses minimal switch resources, provides
good dynamic range, and has a minimal overhead on workers.
A 16-bit format would provide a bandwidth benefit (§6.3).
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5 Implementation

We build SwitchML as a collective library which we inte-
grate in PyTorch’s DistributedDataParallel module and in
TersorFlow via Horovod [89]. SwitchML is implemented as
a worker component written as ⇠3,100 LoCs in C++ and a
switch component realized in P4 [9] with ⇠3,700 LoCs. The
worker is built atop Intel DPDK. We have also built a RDMA-
capable implementation, but it is not yet integrated with the
training frameworks. Here, we highlight a few salient aspects
of our implementation. Appendix B describes more details.

Our P4 program distributes aggregation across multiple
stages of the ingress pipeline, and also implements flow con-
trol, retransmission, and exponent-calculation logic. It uses
the traffic manager subsystem to send multiple copies of re-
sult packets. It can process 64 elements per packet using one
switch pipeline, and 256-element (1024-byte) packets using
all four switch pipelines. On the worker side, we process each
packet in a run-to-completion fashion and scale to multiple
CPU cores using DPDK and Flow Director. We use up to 8
cores per worker. This scales well because we shard slots and
chunks of tensors across cores without any shared state. The
ML framework invokes our synchronous API whenever model
updates are ready. In practice, model updates consist of a set
of tensors that are aggregated independently but sequentially.
Supporting large packets. Good bandwidth efficiency re-
quires processing enough integer elements in each packet to
offset the network framing overhead. Our P4 program can
parse and aggregate 64 ⇥ 4-byte elements per packet, but can
only read 32 elements per packet when aggregation is com-
plete. With framing overheads, a 32-element payload would
limit goodput to 63% of line rate. Our P4 program supports
larger packets in two additional configurations for better effi-
ciency: a 64-element configuration with 77% goodput, and a
256-element one with 93% goodput.

We support larger packets through recirculation: sending
packets through the switch pipelines multiple times. Our 64-
element design uses a single pipeline. It makes one addi-
tional pass through the pipeline only when an output packet
is broadcast in order to read the results: this separation of
reads and writes allows us to write 64 elements in a single
pass. The internal recirculation ports provided by the chip
provide sufficient bandwidth. To support 256 elements, we
recirculate packets through all four switch pipelines. This
requires placing switch ports into loopback mode for more
recirculation bandwidth, leaving 16 ⇥ 100 Gbps bandwidth
available for workers. When a slot is complete, we recircu-
late again through all the pipelines to read the results. Tofino
has sufficient bandwidth to do this recirculation at 1.6 Tbps,
and the latency scales deterministically with the number of
pipeline passes: we measure an additional 520 ns per pass.
Supporting RDMA. Our host-side framework, even using
DPDK and multiple cores, has difficulty achieving 100 Gbps
throughput due to packet processing costs. We address this by

implementing a subset of RDMA in the switch. This allows
workers to offload packet processing: the RDMA NIC breaks
large messages into individual packets. Specifically, we use
RoCE v2 [42] in Unreliable Connected (UC) mode [67]. This
mode, which does not require any of RoCE’s link-level flow
control mechanisms, supports multi-packet messages and de-
tects packet drops, but does not implement retransmission.
SwitchML continues to rely on its existing reliability mecha-
nism. Timeouts and duplicate packets are handled as before,
except that a timeout forces a client to retransmit the entire
multi-packet message. To balance the benefit of offload with
the cost of retransmission, we use small, multi-packet mes-
sages (generally 16 packets per message). Although retrans-
missions are more expensive, the common case is much faster,
even though we use a single CPU core.

RDMA Write Immediate messages are used for all commu-
nication, allowing data to move directly between the switch
and GPUs, with client CPUs handling protocol operations.
SwitchML metadata is encoded in RDMA headers. Concur-
rent messages are sent on separate queue pairs to allow pack-
ets to interleave; queue pair IDs and access keys are nego-
tiated with the switch control plane during job setup. The
switch sends aggregated results by generating RDMA Write
messages to the destination buffer.

6 Evaluation

We analyze the performance benefits of SwitchML by using
standard benchmarks on popular models in TensorFlow and
PyTorch and by using microbenchmarks to compare it to
state-of-the-art collective communications libraries and PS
scenarios.

Testbed. We conduct most of our experiments on a testbed
of 8 machines, each with 1 NVIDIA P100 16 GB GPU, dual
10-core CPU Intel Xeon E5-2630v4 at 2.20 GHz, 128 GB
of RAM, and 3 ⇥ 1 TB disks for storage (as single RAID).
To demonstrate scalability with 16 nodes, we further use 8
machines with dual 8-core CPU Intel Xeon Silver 4108 at 1.80
GHz. Moreover, we use a Wedge100BF-65X programmable
switch with Barefoot Networks’ Tofino chip [5]. Every node
is networked at both 10 and 100 Gbps.

Performance metrics. We mostly focus on two performance
metrics. We define tensor aggregation time (TAT) as the time
to aggregate a tensor starting from the time a worker is ready
to send it till the time that worker receives the aggregated ten-
sor; lower is better. We also report aggregated tensor elements
(ATE) per unit of time, for presentation clarity; higher is better.
For these metrics, we collect measurements at each worker for
aggregating 100 tensors of the same size, after 10 warmups.
We measure training throughput defined in terms of the num-
bers of training samples processed per second. We measure
throughput for 100 iterations that follow 100 warmups. A vari-
ant of training throughput is the batch processing throughput,
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Figure 3: Microbenchmarks showing aggregated tensor ele-
ments per second on a 10 (top) and 100 (bottom) Gbps network
as workers increase.

which we use to analyze performance by replaying profile
traces. This throughput metric includes communication and
computation costs, but excludes the time to load data.
Benchmarks. We evaluate SwitchML by training with 8
DNNs introduced in Table 1. The detailed configuration of
the benchmarks is in Table 3 in Appendix B. Half of the
benchmarks execute on PyTorch and half on TensorFlow.
Setup. As a baseline, we run both PyTorch with native dis-
tributed data-parallel module and TensorFlow with Horovod.
By default, we use NCCL as the communication library, and
use both TCP and RDMA as the transport protocol. Our de-
fault setup is to run experiments on 8 workers.

6.1 Tensor aggregation microbenchmarks
To illustrate SwitchML’s efficiency in comparison to other
communication strategies, we devise a communication-only
microbenchmark that performs continuous tensor aggrega-
tions, without any gradient computation on the GPU. We
verify that the tensors – initially, all ones – are aggregated
correctly. We test with various tensor sizes from 50 MB to
1.5 GB. We observe that the number of aggregated tensor
elements per time unit (ATE/s) is not very sensitive to the
tensor size. Thus, we report results for 100 MB tensors only.

For these experiments, we benchmark SwitchML against
the popular all-reduce communication libraries (Gloo [31]
and NCCL [77]). We further compare against a parameter
server-like scenario, i.e., a set of worker-based processes that
assist with the aggregation. To this end, we build a DPDK-
based program that implements streaming aggregation as in
Algorithm 1. To capture the range of possible PS performance,
we consider two scenarios: (1) when the PS processes run on
dedicated machines, effectively doubling the cluster size, and
(2) when a PS process is co-located with every worker. We
choose to run as many PS processes (each using 8 cores) as
workers so that the tensor aggregation workload is equally
spread among all machines (uniformly sharded) and avoids
introducing an obvious performance bottleneck due to over-
subscribed bandwidth, which is the case when the ratio of
workers to PS nodes is greater than one.

Figure 3 shows the results at 10 and 100 Gbps on three clus-
ter sizes. The results demonstrate the efficiency of SwitchML:

Figure 4: Training batch processing speedup at 100 Gbps con-
sidering a P100 GPU and a 10⇥ faster GPU.

Figure 5: Training performance speedup normalized to NCCL
with TCP and RDMA transport protocols.

its highest-performing variant, which uses RDMA with 256-
value (1024-byte payload) packets, is within 2% of the max-
imum achievable goodput. Using smaller packets (k = 64
instead of 256) has a noticeable performance impact, un-
derscoring the importance of our multi-pipeline design. The
DPDK implementation has additional host-side overhead that
prevents it from achieving full link utilization at 100 Gbps.
In spite of this, SwitchML can still outperform the best cur-
rent all-reduce system, NCCL, even when it uses RDMA and
SwitchML does not. Moreover, SwitchML always maintains a
predictable rate of ATE/s regardless of the number of workers.
This trend should continue with larger clusters.

The Dedicated PS approach (with 256 values per packet)
– while using twice the number of machines and network
capacity – falls short of matching SwitchML DPDK perfor-
mance. Unsurprisingly, using the same number of machines
as SwitchML, the Colocated PS approach reaches only half
of Dedicated PS performance. Our PS implementation is sim-
pler than (and should outperform) a traditional PS, as we do
not store the entire model in memory. It demonstrates that,
in principle, our aggregation protocol could be run entirely
in software on a middlebox, but with lower performance: in-
network aggregation inherently requires fewer resources than
host-based aggregation.

6.2 SwitchML improves training speed
We analyze training performance on eight DNN benchmarks.
We normalize results to NCCL as the underlying communica-
tion backend of PyTorch and TensorFlow.

Figure 4 reports the speedup for processing a training batch
for SwitchML compared to NCCL at 100 Gbps. SwitchML
uses the DPDK implementation with 256-value packets.
These results replay the profile traces collected on our cluster
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Figure 6: Inflation of TAT due to packet loss and recovery. Re-
sults are normalized to a baseline scenario where no loss oc-
curs and the worker implementation does not incur any timer-
management overhead.

(§2.2), allowing us to report both the speedup on our testbed
GPUs (P100s, which are two generations old) and hypotheti-
cal GPUs that are 10⇥ faster (by uniformly scaling the traces
by this factor). This emulation lets us evaluate the setting
where a fast network is paired with fast GPUs. While it is
hard to predict future evolution of GPU speed vs. network
bandwidth, we reason that this scaling factor currently corre-
sponds to the span of two to three GPU generations (the A100
benchmarks at 4.2⇥ the V100 [75], which in turn is 1.4-2.2⇥
faster than our P100 [97]) and represents a likely bound on the
real-world speedups achievable, which are anyway dependent
on the model (e.g., the ResNet50 model sees a nearly 10⇥
speedup from an NVIDIA V100 GPU compared to a K80
GPU [71]) and the other infrastructure specifics.

As expected, SwitchML accelerates batch processing espe-
cially for the larger DNNs. The speedup over NCCL-RDMA
is at most 2.1⇥, which is in line with the fundamental 2⇥
advantage of INA over RAR (§3). In most cases, the mea-
sured speedup is higher than the emulated communication
results (Table 2) predict, because NCCL’s RAR implemen-
tation does not achieve the theoretical maximum efficiency.
The speedup relative to NCCL-TCP is larger (up to one or-
der of magnitude), which is attributable primarily to DPDK’s
kernel-bypass advantage.

SwitchML provides significant benefits for many, but not
all, real-world DNNs, even with 100 Gbps networks. For
example, DeepLight and LSTM enjoy major improvements.
BERT sees a somewhat lower speedup, in part because its
gradient consists of many relatively small (⇠60 MB) ten-
sors. Similarly, NCF, a relatively small model, has a modest
speedup. Other models, like UGATIT, SSD, and ResNet are
simply not network-bound at 100 Gbps. SSD is a particularly
challenging case: not only is it a small model that would re-
quire an a = 15.2⇥ faster GPU to become network-bound
(Table 1), it also makes many aggregation invocations for
small gradients. The overheads of starting an aggregation are
not well amortized, especially in the 10⇥ scaled scenario.

Finally, we consider the end-to-end speedup on a complete
training run with 16 workers. We focus on the four models
that are network-bottlenecked at 100 Gbps. Figure 5 shows
the training performance speedup compared to NCCL us-
ing RDMA and TCP. These measurements use SwitchML’s
DPDK implementation, with 256-value packets; we expect a
larger speedup once SwitchML’s RDMA implementation is
integrated with the training framework. Even so, SwitchML’s
speedups range between 1.13-2.27⇥ over NCCL-RDMA and

Figure 7: Timeline of packets sent per 10 ms during an aggrega-
tion with 0%, 0.01% and 1% packet loss probability. Horizon-
tal bars denote the TAT in each case.

2.05-5.55⇥ over NCCL-TCP. The results are not directly
comparable to Figure 4, because (1) they use a larger 16-node
cluster, and (2) they report total end-to-end iteration time,
which also includes data loading time. Our deployment does
not use any optimized techniques for data loading, an orthogo-
nal problem being addressed by other work (e.g., DALI [76]).

6.3 Overheads

Packet loss recovery. We study how packet loss affects TAT.
To quantify the change in TAT due to packet loss, we experi-
ment with a uniform random loss probability between 0.01%
and 1% applied on every link. The retransmission timeout is
set to 1 ms. We run microbenchmark experiments in similar
scenarios as §6.1. We report a few representative runs.

Figure 6 measures the inflation in TAT with different loss
probabilities. SwitchML completes tensor aggregation signif-
icantly faster than Gloo or NCCL when the loss is 0.1% or
higher. A loss probability of 0.01% minimally affects TAT in
either case. To better illustrate the behavior of SwitchML, we
show in Figure 7 the evolution of packets sent per 10 ms at a
representative worker for 0.01% and 1% loss. We observe that
SwitchML generally maintains a high sending rate – relatively
close to the ideal rate – and quickly recovers by retransmitting
dropped packets. The slowdown past the 150 ms mark with
1% loss occurs because some slots are unevenly affected by
random losses and SwitchML does not apply any form of
work-stealing to rebalance the load among aggregators. This
presents a further opportunity for optimization.
Tensor scaling and type conversion. We analyze whether
any performance overheads arise due to the tensor scaling
operations (i.e., multiply updates by f and divide aggregates
by f ) and the necessary data type conversions: float32-to-
int32! htonl! ntohl! int32-to-float32.

To quantify overheads, we use int32 as the native data type
while running the microbenchmarks. This emulates a native
float32 scenario with no scaling and conversion operations.
We also illustrate the potential improvement of quantization
to single-precision (float16) tensors, which halves the volume
of data to be sent to the network. (We include a conversion
from/to float32.) This setting is enabled by the ability to per-
form at line rate, in-switch type conversion (float16$ int32),
which we verified with the switch chip vendor. However, for
this experiment, we emulate this by halving the tensor size.

We find that these overheads are negligible at 10 Gbps.
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This is due to our use of x86 SSE/AVX instructions. When
we use float16, performance doubles, as expected. However,
these overheads become more relevant as data rates increase,
requiring to offload type conversion operations to the GPU
at 100 Gbps and scaling up the number of cores; RDMA
alleviates the pressure for CPU cycles used for I/O (see the gap
between DPDK- and RDMA-based performance in Figure 3).

Switch resources. We comment on SwitchML’s usage of
switch resources in relation to network bandwidth and number
of workers. As discussed in Appendix B, our implementation
only makes use of the switch ingress pipeline in maximizing
the number of vector elements that is processed at line rate.
Aggregation bandwidth affects the required pool size. We ver-
ified that the memory requirement is less than 10% of switch
resources. The number of workers does not influence the re-
source requirements to perform aggregation at line rate. That
said, the number of switch ports and pipelines obviously pose
a cap on how many directly-attached workers are supported.
A single pipeline in our testbed supports 16-64 workers de-
pending on network speed. We describe how to move beyond
a single rack scale in the next section.

7 Extensions

Scaling beyond a rack. We described SwitchML in the con-
text of a rack. However, large scale ML jobs could span be-
yond a single rack. SwitchML’s design can support multiple
racks by hierarchically composing several instances of our
switch logic, although we do not have a testbed large enough
to test (or require) such a design. Each worker is connected
to a top-of-rack switch, which aggregates updates from the
workers in the rack. Rather than broadcast the result packet to
the workers, it instead sends it to a tier-1 aggregation switch,
which aggregates updates from multiple racks. This can con-
tinue with as many levels as are needed to support the desired
network topology. Ultimately, a root switch completes the ag-
gregation of partial aggregates and multicasts a result packet
downstream. At each level, the switches further multicast the
packet, ultimately reaching the workers.

The hierarchical approach also allows us to support
switches with multiple processing pipelines. Suppose a switch
has pipelines that can aggregate up to p ports (for the switches
we use, p= 16). In this setting, each switch aggregates tensors
from d downstream ports and forwards partial aggregates via
u = d d

pe upstream ports. In other words, the switch operates
as u virtual switches, one for each pipeline in the switch.

This hierarchical composition is bandwidth-optimal, as
it allows n workers to fully utilize their bandwidth while
supporting all-to-all communication with a bandwidth cost
proportional to u instead of n. That is, every switch aggregates
data in a p : 1 ratio. As a result, the system naturally supports
oversubscription of up to this ratio at the aggregation or core
layers. This allows it to support large clusters with relatively

shallow hierarchies; using the current generation of 64-port, 4-
pipeline 100 Gbps switches, a two-layer hierarchy can support
up to 240 workers and a three-layer one manages up to 3,600.

Importantly (and by design), the packet loss recovery al-
gorithm described in §4.5 works in the multi-rack scenario.
Thanks to the use of bitmaps and shadow copies, a retrans-
mission originated from a worker will be recognized as a
retransmission on all switches that have already processed
that packet. This triggers the retransmission of the aggregated
packet toward the upper layer switch, ensuring that the switch
affected by the packet loss is always ultimately reached.

Congestion control. We have not implemented an explicit
congestion control algorithm; the self-clocking streaming
protocol is a flow control mechanism to control access to
the switch’s aggregator slots. It also serves as a rudimentary
congestion control mechanism, in that if one worker’s link
is congested and it cannot process aggregation results at full
speed, the self-clocking mechanism will reduce the sending
rate of all workers. This is sufficient for dedicated networks
(which is common for ML clusters in practice). For more
general use, a congestion control scheme may be needed;
concurrent work has been developing such protocols [29].

Deployment model. Thus far, we presented SwitchML as
an in-network computing approach, focusing on the mech-
anisms to enable efficient aggregation of model updates at
line rate on programmable switching chips with very limited
memory. While that might be a viable deployment model in
some scenarios, we highlight that our design may have more
ample applicability. In fact, one could use a similar design to
create a dedicated “parameter aggregator,” i.e., a server unit
that combines a programmable switching chip with a typical
server board, CPU and OS. Essentially a standard server with
an advanced network attachment, or in the limit, an array of
programmable Smart NICs, each hosting a shard of aggre-
gator slots. The switch component of SwitchML would run
on said network attachment. Then, racks could be equipped
with such a parameter aggregator, attached for example to the
legacy ToR using several 100 Gbps or 400 Gbps ports, or via a
dedicated secondary network within the rack directly linking
worker servers with it. We expect this would provide similar
performance improvements while giving more options for de-
ployment configurations; concurrent work has been exploring
a similar approach atop an FPGA board [62].

Multi-job (tenancy). In multi-job or multi-tenant scenarios,
the question arises as to how to support concurrent reductions
with SwitchML. The solution is conceptually simple. Every
job requires a separate pool of aggregators to ensure correct-
ness. As discussed, the resources used for one reduction are
much less than 10% of switch capabilities. Moreover, mod-
ern switch chips comprise multiple independent pipelines,
each with its own resources. Thus, an admission mechanism
would be needed to control the assignment of jobs to pools.
Alternatively, ATP [54] – a follow up work to ours – explores
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the idea of partitioning aggregation functionality between a
switch (for performance) and a server (for capacity) so as to
seamlessly support multi-job scenarios.
Encrypted traffic. Given the cluster setting and workloads
we consider, we do not consider it necessary to accommodate
for encrypted traffic. Appendix F expands on this issue.

8 Related work

In-network computation trends. The trend towards pro-
grammable data planes has sparked a surge of propos-
als [20, 21, 46, 47, 55, 61] to offload, when appropriate [80],
application-specific primitives into network devices.
In-network aggregation. We are not the first to propose ag-
gregating data in the network. Targeting partition-aggregate
and big data (MapReduce) applications, NetAgg [65] and
CamDoop [18] demonstrated significant performance ad-
vantages, by performing application-specific data aggrega-
tion at switch-attached high-performance middleboxes or at
servers in a direct-connect network topology, respectively.
Parameter Hub [64] does the same with a rack-scale parame-
ter server. Historically, some specialized supercomputer net-
works [2, 26] offloaded MPI collective operators (e.g., all-
reduce) to the network. SwitchML differs from all of these
approaches in that it performs in-network data reduction using
a streaming aggregation protocol.

The closest work to ours is DAIET [86], which was our
initial but incomplete proposal of in-network aggregation for
minimizing the overhead of exchanging ML model updates.

Mellanox’s Scalable Hierarchical Aggregation Protocol
(SHARP) is a proprietary in-network aggregation scheme
available in certain InfiniBand switches [33]. SHARP uses
dedicated on-chip FPUs for collective offloading. The most
recent version, SHARPv2 [68] uses streaming aggregation
analogous to ours. A key difference is that SHARP builds
on InfiniBand where it can leverage link-layer flow control
and lossless guarantees, whereas SwitchML runs on standard
Ethernet8 with an unmodified network architecture, necessi-
tating a new packet recovery protocol. More fundamentally,
SwitchML builds on programmable network hardware rather
than SHARP’s fixed-function FPUs, which offers two benefits.
First, operators can deploy a single switch model either for
SwitchML or traditional networking without waste: the ALUs
used for aggregation can be repurposed for other tasks. Sec-
ond, it allows the system design to evolve to support new ML
training approaches. For example, we are currently experi-
menting with new floating-point representations and protocols
for sparse vector aggregations [27]. With a fixed-function ap-
proach, these would require new hardware, just as moving
from single HPC reductions (SHARPv1) to streaming ML
reductions (SHARPv2) required a new ASIC generation.

8Although SwitchML uses RDMA, it uses only unreliable connections,
and so does not require any of the “lossless Ethernet” features of RoCE.

Concurrently, Li et al. [57] explored the idea of in-switch
acceleration for Reinforcement Learning (RL). Their design
(iSwitch) differs from ours in two fundamental ways. First,
while their FPGA-based implementation supports more com-
plex computation (e.g., native floating point), it operates at
much lower bandwidth (4⇥10 Gbps). Second, it stores an
entire gradient vector during aggregation; for RL workloads
with small models, this works, but it does not scale for large
DNN models. Our work targets both large models and high
throughput – a challenging combination given the limited on-
chip memory in high-speed networking ASICs. SwitchML’s
software/hardware co-design approach, using a self-clocking
streaming protocol, provides 40⇥ higher throughput than
iSwitch, while supporting arbitrarily large models.

Finally, targeting NVIDIA’s intra-GPU NVLink network,
Klenk et al. [52] proposed in-network aggregation in the con-
text of a distributed shared-memory fabric supporting multi-
GPU systems where accelerators are directly attached to the
fabric. While this work is orthogonal to ours, their push reduc-
tion design resembles the SwitchML protocol, suggesting that
streaming in-network aggregation has broader applicability
than discussed in this paper.

Accelerating DNN training. A large body of work has pro-
posed improvements to hardware and software systems, as
well as algorithmic advances for faster DNN training. We only
discuss a few relevant prior approaches. Improving training
performance via data or model parallelism has been explored
by numerous deep learning systems [1, 13, 15, 22, 56, 64, 94].
While data parallelism is most common, it can be advanta-
geous to combine the two approaches. Recent work even
shows how to automatically find a fast parallelization strat-
egy for a specific parallel machine [44]. Underpinning any
distributed training strategy, lies parameter synchronization.
Gibiansky was among the first to research [30] using fast
collective algorithms in lieu of the traditional parameter
server approach. Many platforms have now adopted this ap-
proach [30,37,41,87,89]. We view SwitchML as a further ad-
vancement on this line of work – one that pushes the boundary
by co-designing networking functions with ML applications.

9 Conclusion

SwitchML speeds up DNN training by minimizing commu-
nication overheads at single-rack scale. SwitchML uses in-
network aggregation to efficiently synchronize model updates
at each training iteration among distributed workers executing
in parallel. We evaluated SwitchML with eight real-world
DNN benchmarks on a GPU cluster with 10 Gbps and 100
Gbps networks; we showed that SwitchML achieves training
throughput speedups up to 5.5⇥ and is generally better than
state-of-the-art collective communications libraries. We are
in the process of integrating SwitchML-RDMA in various
ML frameworks.
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A Example execution

We illustrate through an example how Algorithms 3 and 4
behave in a system with three workers: w1, w2, and w3. We
focus on the events that occur for a particular slot (x) starting
from a particular offset (off).

• t0: Worker w1 sends its model update for slot x with
offset = off.

• t1: Worker w2 sends its model update for slot x with
offset = off.

• t2: Worker w3 sends its model update for slot x with
offset = off. This update packet is lost on the upstream
path at time t3, and hence the switch does not receive it.

• t4: w1’s timeout kicks in for the model update sent at t0,
leading to a retransmission of the same model update for
slot x with offset = off. The switch receives the packet,
but it ignores the update because it already received and
aggregated an update from w1 for the given slot and
offset.

• t5: w2’s timeout kicks in for the model update sent at t0,
leading to a retransmission of the same model update for
slot x with offset = off. The switch receives the packet,
but it ignores the update because it already received and
aggregated an update from w2 for the given slot and
offset.

• t6: w3’s timeout kicks in for the model update sent at t0,
leading to a retransmission of the same model update for
slot x with offset = off. The switch receives the packet
and aggregates the update properly. Since this update is
the last one for slot x and offset off, the switch completes
aggregation for the slot and offset, turns the slot into
a shadow copy, and produces three response packets
(shown as blue arrows).

• t7: The first response packet for w1 is lost on the down-
stream path, and w1 does not receive it.

• t8: Not having received the result packet for the update
packets sent out earlier (at t0 and t4), w1 retransmits
its model update the second time. This retransmission
reaches the switch correctly, and the switch responds by
sending a unicast response packet for w1.

• t9 and t10: w2 and w3 respectively receives the response
packet. Hence, w2 and w3 respectively decides to reuse
slot x for the next offset (off+ k · s) and sends their new
updates at t12 and t13.

• t11: The unicast response packet triggered by the second
model-update retransmission (sent at t8) arrives at w1.

• t14: Now that w1 has received its response, it decides
to reuse slot x for the next offset (off+ k · s) and sends
its new updates. This update arrives at the switch at t15,
upon which the switch realizes that the slot for offset
(off+ k · s) is complete. This confirms that the result
in the shadow-copy slot (the slot in pool 0) is safely
received by every worker. Thus, the switch flips the roles
of the slots again.

B Implementation details

Switch component. The main challenge we faced was to
find a design that best utilizes the available resources (SRAM,
TCAMs, hashing machinery, etc.) to perform as much com-
putation per packet as possible. Data plane programs are
typically constrained by either available execution resources
or available storage; for SwitchML, execution resources are
the tighter constraint. For example, a data plane program is
constrained by the number of stages per pipeline [92], which
limits the dependencies within the code. In fact, every action
whose execution is contingent on the result of a previous op-
eration has to be performed on a subsequent stage. A program
with too many dependencies cannot find a suitable allocation
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Figure 8: An example execution of a SwitchML switch interacting with three workers. The figure illustrates how a slot with index x
is used during the different phases (shown in different colors) that alternate between the two pools.

on the hardware pipeline and will be rejected by the compiler.
Moreover, the number of memory accesses per-stage is inher-
ently limited by the maximum per-packet latency; a switch
may be able to parse more data from a packet than it is able
to store into the switch memory during that packet’s time in
the switch.

We make a number of design trade-offs to fit within the
switch constraints. First, our P4 program makes the most use
of the limited memory operations by performing the widest
register accesses possible (64 bits). We then use the upper
and lower part of each register for alternate pools. These parts
can execute different operations simultaneously; for example,
when used for the received work bitmap, we can set a bit for
one pool and clear a bit for the alternate pool in one opera-
tion. Second, we minimize dependencies (e.g., branches) in
our Algorithm 3 in order to process 64 elements per packet
within a single ingress pipeline. We confine all processing
to the ingress pipeline; when the aggregation is complete,
the traffic manager duplicates the packet containing the ag-
gregated result and performs a multicast. In a first version
of our program, we used both ingress and egress pipelines
for the aggregation, but that required packet recirculation to
duplicate the packets. This caused additional dependencies
that required more stages, preventing the processing of more
than 64 elements per packets. Moreover, this design experi-
enced unaccounted packet losses between the two pipelines
and during recirculation, which led us to search for a better,
single pipeline, program.

Worker component. Our goal for implementing the worker
component is to achieve high I/O performance for aggregating
model updates. At the same time, we want to support existing
ML frameworks without modifications.

In existing ML frameworks, a DNN model update U com-
prises of a set of tensors T , each carrying a subset of the
gradients. This is because the model consists of many layers;
most existing frameworks emit a gradient tensor per layer and
reduce each layer’s tensors independently. Back-propagation
produces the gradients starting from the output layer and mov-
ing towards the input layer. Thus, communication can start on
the output layer’s gradients while the other gradients are still
being computed, partially overlapping communication with

computation. This implies that for each iteration, there are as
many aggregation tasks as the number of tensors (e.g., 152
for ResNet50).

Our implementation exposes the same synchronous all-
reduce interface as Gloo. However, rather than treating each
tensor as an independent reduction and resetting switch state
for each one, our implementation is efficient in that it treats
the set of tensors virtually as a single, continuous stream of
data across iterations. Upon invocation, our API passes the
input tensor to a virtual stream buffer manager which streams
the tensor to the switch, breaking it into the small chunks
the switch expects. Multiple threads may call SwitchML’s
all-reduce, with the requirement that each worker machine’s
tensor reduction calls must occur in the same order; the stream
buffer manager then performs the reductions and steers results
to the correct requesting thread.

One CPU core is sufficient to do reduction at line rate on
a 10 Gbps network. However, to be able to scale beyond 10
Gbps, we use multiple CPU cores at each worker and use
the Flow Director technology (implemented in hardware on
modern NICs) to uniformly distribute incoming traffic across
the NIC RX queues, one for each core. Every CPU core runs
an I/O loop that processes every batch of packets in a run-
to-completion fashion and uses a disjoint set of aggregation
slots. Packets are batched in groups of 32 to reduce per-packet
transmission overhead. We use x86 SSE/AVX instructions to
scale the model updates and convert between types. We are
careful to ensure all processing is NUMA aware.

RDMA implementation details. We found that the cost of
processing individual SwitchML packets, even using DPDK
with 256-element packets and multiple cores, was too high to
achieve line rate. Other aggregation libraries use RDMA to
offload packet processing to the NIC. In RDMA-based sys-
tems NICs implement packetization, flow control, congestion
control, and reliable delivery. In normal usage, clients use
RDMA to send and receive messages of up to a gigabyte; the
NIC turns them into packets and ensures they are delivered re-
liably. Furthermore, clients may register memory regions with
the NIC, allowing other clients to remotely read and write
them without CPU involvement. This reduces or eliminates
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work done on the clients’ CPUs to complete the transfer.
Turning a Tofino switch into a fully-featured RDMA end-

point is not the solution. Implementing timeouts and retrans-
mission in a way that is compatible with existing poorly-
documented existing RDMA NICs would be complex. Fur-
thermore, such an implementation would not be an good fit
for SwitchML: the RDMA protocols are largely designed for
point-to-point communication, whereas SwitchML’s protocol
is designed for collective communication.

Fortunately, RDMA NICs implement multiple protocols
with different properties. The standard Reliable Connected
(RC) mode ensures reliable delivery and supports CPU-
bypassing remote reads and writes (as well as sends and
receives) of up to 1 GB. The UDP-like Unreliable Datagram
(UD) mode supports just sends and receives of up the net-
work MTU. Finally, the Unreliable Connected (UC) mode fits
somewhere in between. It supports packetization, allowing
for sends, receives, and writes of up to 1 GB. It also generates
and checks sequence numbers, allowing it to detect packet
drops, but it does not retransmit: instead, if a gap in sequence
numbers is detected, incoming packets are silently dropped
until the first packet of a new message arrives. Then, the se-
quence number counter is reset to the sequence number of
that packet, and normal reception continues.

We use RDMA UC to implement a RDMA-capable variant
of SwitchML using a subset of the RoCE v2 protocol [42].
Its operation is very similar to what is described in Section 4,
with three main differences.

First, where base SwitchML sends and receives slot-sized
packets, SwitchML RDMA sends multi-slot messages. Each
packet of a message is treated largely as it is in the base
protocol by the switch, but the pool index for each packet is
computed as an offset from the base index provided with the
first packet of the message. Timeouts are tracked just as they
are in the base protocol, but when a packet drop is detected,
the client retransmits the entire message rather than just the
dropped packet. This makes retransmissions more expensive,
but it also drastically lowers the cost incurred sending packets
in the common case of no packet drops; since packet drops
are rare within a datacenter, the benefit is large.

Second, SwitchML consumes and generates sequence num-
bers on the switch. In order to allow messages with multiple
packets to aggregate concurrently, each in-flight message is
allocated its own queue pair, with its own sequence number
register. This allows clients to to be notified when a write
message from the switch has arrived with no drops; it also
allows the switch to ignore packets in messages received out
of sequence. However, the same per-slot bitmap used in the
base protocol is still used to ensure that duplicate packets
from a retransmission of a partially-received messages are
not re-applied. Packets are transmitted as individual slots ad-
dressed by a message complete. This means that the packets
from multiple messages may interleave on the wire, but since
each is on a separate queue pair with its own sequence number

Figure 9: Effect of pool size on overall tensor aggregation time
(TAT) and per-packet RTT (right y-axis) at 100 Gbps.

space, the NIC will reassemble them successfully.
Third, SwitchML RDMA uses RDMA Write Immediate

messages for all communication. This allows clients to send
data directly from GPU memory, and the switch to write
directly into GPU memory (if the host is GPU Direct-capable).
Byte order conversion and scaling are done on the GPU; the
CPU is responsible only for issuing writes when data from the
GPU is ready, detecting completions and timeouts, and issuing
retransmissions when necessary. Necessary metadata for the
SwitchML protocol is encoded in fields of the RDMA header;
the RDMA RKey and Address fields are used to encode the
destination slot and the address to write the response to. The
Immediate field is used to carry up to four scaling factors. At
job setup time, the clients communicate with the switch and
give it their queue pair numbers, initial sequence numbers,
and an RKey for its switch-writable memory region. The
switch uses these to form RDMA Write Immediate messages
with appropriate sequence numbers, destination addresses,
and immediate values, of the same size as the messages sent
from the clients to the switch.

Finally, it is important to note that SwitchML RDMA does
not require lossless Ethernet to be configured, as is common in
RoCE deployments. Enabling lossless Ethernet would reduce
the probability of packet drops, but would add complexity
to the network deployment. SwitchML’s reliability protocol
makes this unnecessary.
DNN workloads. Table 3 details the models, datasets and
ML toolkits used in the experiments.

C Tuning the pool size

As mentioned, the pool size s affects performance and relia-
bility. We now analyze how to tune this parameter.

Two factors affect s. First, because s defines the number of
in-flight packets in the system that originate from a worker,
to avoid wasting each worker’s network bandwidth, s should
be no less than the bandwidth-delay product (BDP) of each
worker. Note that the delay here refers to the end-to-end
delay, including the end-host processing time, which can be
easily measured in a given deployment. Let b be the packet
size, which is constant in our setting. To sustain line rate
transmission, the stream of response packets must arrive at
line rate, and this is possible when s · b matches the BDP.
A significantly higher value of s, when used as the initial
window size, will unnecessarily increase queuing time within
the workers.
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Model Task Dataset Sys
DeepLight [23] Click-through Rate Prediction Criteo 1TB [19] PyT
LSTM [49] Language Modeling GBW [12] PyT
NCF [39] Recommendation ML-20m [36] PyT
BERT [24] Question Answering SQuAD [81] TF
VGG19 [91] Image Classification ImageNet-1K [85] PyT
UGATIT [51] Image-to-Image Translation Selfie2Anime [51] TF
ResNet50 [38] Image Classification ImageNet-1K [85] TF
SSD [63] Object Detection COCO 2017 [59] PyT

Table 3: DDL benchmarks. Models, task, dataset used for train-
ing and ML toolkit (PyT=PyTorch; TF=TensorFlow).

Model Metric No compression Top-10% Top-1%
DeepLight AUC 0.9539 0.9451 0.9427
LSTM Perplexity 32.74 86.26 82.55
NCF Hit rate 0.9586 0.9369 -
BERT F1 score 91.60 91.47 91.52
VGG19 Top-1 accuracy 68.12 64.85 57.70
UGATIT - - - -
ResNet50 Top-1 accuracy 74.34 74.59 72.63
SSD Accuracy 0.2549 0.2487 0.2309

Table 4: Test metrics comparison. NCF at Top-1% did not con-
verge. BERT result is the median of 6 runs of fine-tuning from
a pre-trained model. BERT pre-training results are shown in
Figure 13. UGATIT fails to execute with the compressor imple-
mentation in [96]. See Figure 10 for the convergence behavior
during training.

Second, a correctness requirement for our communication
scheme is that no two in-flight packets from the same worker
use the same slot (as no worker node can ever lag behind
by more than one phase). To sustain line rate and preserve
correctness, the lower bound on s is such that s · b matches
the BDP. Therefore, the optimal s is for dBDP/be.

In practice, we select s as the next power of two of the
above formula because the DPDK library – which we use to
implement SwitchML – performs batched send and receive
operations to amortize system overheads. Based on our mea-
surements (Figure 9), we use 128 and 512 as the pool size for
10 and 100 Gbps, respectively. This occupies 256 KB and 1
MB of register space in the switch, respectively. We note that
the switch can support one order of magnitude more slots,
and SwitchML uses much less than 10% of that available.

D Compression affects convergence

Table 4 reports the model quality obtained without gradient
compression and with Top-k compression using k = 1%,10%.
Model quality is assessed using per-model accuracy metrics.

Results are shown in Figure 10. We observe that loss and
accuracy do not necessary correlate well. For example, in the
case of SSD all methods have similar loss trace, but obvious
accuracy gap. For NCF, Top-k at 1% does not converge, but
the accuracy can still go up.

E Model quantization

To the best of our knowledge, no Ethernet switching chip of-
fers floating-point operations in the dataplane for packet pro-

cessing. Some InfiniBand switching chips have limited sup-
port for floating-point operations for scientific computing [33].
We also confirmed that the state-of-the-art programmable Eth-
ernet switching chips do not support native floating-point
operations either. These observations lead us to two main
questions.
Where should the type conversion occur? In theory either
workers or the switch can perform type conversion. In the for-
mer case, packets carry a vector of integer types while in the
latter case the switch internally performs the type conversions.
It turns out to be possible to implement a restricted form of
16-bit floating point on a Tofino chip by using lookup tables
and ALUs to do the conversion. This means there is no type
conversion overhead at end hosts. However, this approach
still requires to scale the gradient values due to the limited
range of floating point conversion the switch can perform.
Besides, unless half-precision training is used, the worker
must still convert from 32-bit to 16-bit floating points. At the
same time, an efficient implementation that uses modern x86
vector instructions (SSE/AVX) to implement type conversion
sees only a negligible overhead (see Figure 11).
What are the implications in terms of accuracy? Recently,
several update compression (e.g., quantization, dithering or
sparsification) strategies were proposed (see [96] for a survey)
to be used with standard training methods, such as SGD, and
bounds were obtained on how these strategies influence the
number of iterations until a sufficient convergence criterion
is satisfied (e.g., being sufficiently close to minimizing the
empirical loss over the data set). These include aggressive
1-bit compression of SGD for DNNs [88], signSGD [7, 8],
QSGD [4], which uses just the sign of the stochastic gradi-
ents to inform the update, Terngrad [95], which uses ternary
quantization, and the DIANA framework [69], which allows
for a wide array of compression strategies applied to gradi-
ent differences. All the approaches above use lossy random-
ized compression strategies that preserve unbiasedness of the
stochastic gradients at the cost of increasing the variance of
gradient estimators, which leads to worse iteration complexity
bounds. Thus, there is a trade-off between savings in com-
munication and the need to perform more training rounds. In
contrast, our mechanism is not randomized, and for a suitable
selection of a scaling parameter f , is essentially lossless or
suffers negligible loss only.

We shall now briefly describe our quantization mechanism.
Model updates are divided into packet-sized blocks. With a
small abuse of notation, in the following all equations refer to
per-block operations. Each worker multiplies its block model
update Dt

i = D(xt ,Dt
i) by a vector of scaling factors f > 0,

obtaining f Dt
i . The elements of f are chosen per block, and

are chosen such that that all k entries of the scaled update can
be rounded to a number representable as an integer without
overflow. We then perform this rounding, obtaining vectors
Qt

i = r( f Dt
i) 2 Zk for i = 1,2, . . . ,n, where r is the round-

ing operator, which are sent to the switch and aggregated,
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Figure 10: Convergence behavior under different compression scheme. The x axis shows the iteration number. All methods execute a
fixed number of steps and hyperparameters are kept the same. Refer to Table 4 for test metrics of each task. We plot generator loss
as the metric for UGATIT because there is no objective metric available for GAN workloads. Note that for the perplexity metric of
LSTM, lower is better.

Figure 11: TAT comparison between aggregating native-integer
tensors, scaling and converting from single-precision (float32)
tensors, and scaling and converting from half-precision (float16)
tensors.

resulting in

At =
n

Â
i=1

Qt
i.

Again, we need to make sure f is not too large so that At can
be represented as an integer without overflow. The aggregated
update At is then scaled back on the workers, obtaining At/ f ,
and the model gets updated as follows:

xt+1 = xt +
1
f

At .

Let us illustrate this on a simple example with n = 2 and
d = 1. Say Dt

1 = 1.56 and Dt
2 = 4.23. We set f = 100 and get

Qt
1 = r( f Dt

1) = r(156) = 156

and
Qt

2 = r( f Dt
2) = r(423) = 423.

The switch will add these two integers, which results in At =
579. The model then gets updated as:

xt+1 = xt +
1

100
579 = xt +5.79.

Notice that while the aggregation was done using integers
only (which is necessitated by the limitations of the switch),
the resulting model update is identical to the one that would
be applied without any conversion in place. Let us consider
the same example, but with f = 10 instead. This leads to

Qt
1 = r( f Dt

1) = r(15.6) = 16

and
Qt

2 = r( f Dt
2) = r(42.3) = 42.

The switch will add these two integers, which results in At =
58. The model then gets updated as:

xt+1 = xt +
1
10

58 = xt +5.8.

Note that this second approach leads to a small error. Indeed,
while the true update is 5.79, we have applied the update 5.8
instead, incurring the error 0.01.

Our strategy is to apply the above trick, but take special
care about how we choose the scaling factor f so that the trick
works throughout the entire iterative process with as little
information loss as possible.
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Figure 12: Convergence analysis of SwitchML quantization method on a single GPU. The x axis shows the iteration number.

A formal model. Let us now formalize the above process.
We first assume that we have a scalar f > 0 for which the
following holds:

Assumption 1. |r( f Dt
i)| 231 for all i = 1,2, . . . ,n and all

iterations t.
Assumption 2. |Ân

i=1 r( f Dt
i)| 231 for all iterations t.

The above assumptions postulate that all numbers which
we obtain by scaling and rounding on the nodes (Assumption
1), and by aggregation on the switch (Assumption 2), can be
represented as integers without overflow.

We will now establish a formal statement which character-
izes the error incurred by our aggregation procedure.

Theorem 1 (Bounded aggregation error). The difference
between the exact aggregation value Ân

i=1 Dt
i (obtained in

case of perfect arithmetic without any scaling and rounding,
and with a switch that can aggregate floats) and the value
1
f At = 1

f Ân
i=1 r( f Dt

i) obtained by our procedure is bounded
by n

f .

Proof. To prove the above result, notice that

1
f

n

Â
i=1

r( f Dt
i)  1

f

n

Â
i=1
d f Dt

ie

 1
f

n

Â
i=1

( f Dt
i +1)

=

 
n

Â
i=1

Dt
i

!
+

n
f
.

Using the same argument, we get a similar lower bound

1
f

n

Â
i=1

r( f Dt
i) � 1

f

n

Â
i=1
b f Dt

ic

� 1
f

n

Â
i=1

( f Dt
i�1)

=

 
n

Â
i=1

Dt
i

!
� n

f
.

Note that the error bound postulated in Theorem 1 improves
as f increases, and n decreases. In practice, the number of
nodes is constant n = O(1). Hence, it makes sense to choose
f as large as possible while making sure Assumptions 1 and 2
are satisfied. Let us give one example for when these assump-
tions are satisfied. In many practical situations it is known
that the model parameters remain bounded:9

Assumption 3. There exists B > 0 such that |Dt
i| B for all

i and t.
As we shall show next, if Assumption 3 is satisfied, then

so is Assumption 1 and 2.
Theorem 2 (No overflow). Let Assumption 3 be satisfied.

Then Assumptions 1 and 2 are satisfied (i.e., there is no over-
flow) as long as 0 < f  231�n

nB .

Proof. We have r( f Dt
i)  f Dt

i + 1  f |Dt
i|+ 1  f B + 1.

Likewise, r( f Dt
i)� f Dt

i�1�� f |Dt
i|�1 =�( f B+1). So,

9If desirable, this can be enforced explicitly by the inclusion of a suitable
hard regularizer, and by using projected SGD instead of plain SGD.
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Figure 13: Loss curves for BERT pretraining’s two phases on 8 workers.

|r( f Dt
i)|  f B + 1. Hence, as soon as 0 < f  231�1

B , As-
sumption 1 is satisfied. This inequality is less restrictive as
the one we assume. Similarly, |Âi r( f dt

i)|  Âi |r( f Dt
i)| 

Âi( f B+ 1) = n( f B+ 1). So, Assumption 2 is satisfied as
long as n( f B+1) 231, i.e., as long as 0 < f  231�n

nB .

We now put all of the above together. By combining Theo-
rem 1 (bounded aggregation error) and Theorem 2 (no over-
flow), and if we choose f = 231�n

nB , then the difference between
the exact update Âi Dt

i and our update 1
f Âi r( f Dt

i) is bounded

by n2B
231�n . In typical applications, n2B⌧ 231, which means

that the error we introduce is negligible.
Empirical study. We name the above method “SwitchML
quantization” and run end-to-end experiments to study its
convergence behavior. Figure 12 shows that SwitchML quan-
tization achieves similar training loss and does not incur test
metric decrease in all models detailed in Table 4. We further
show in Figure 13 that SwitchML quantization has little to
no difference in the training loss curve of BERT [24] pre-
training compared to the no compression baseline, while Top-
k compression with k = 1%,10% has a big impact on model
convergence.

F Encrypted traffic

A recent trend, especially at cloud providers, is to encrypt
all datacenter traffic. In fact, data encryption is generally
performed at the NIC level itself. While addressing this setting
is out of scope, we wish to comment on this aspect. We believe
that given our substantial performance improvements, one
might simply forego encryption for ML training traffic.

We envision a few alternatives for when that is not possible.
One could imagine using HW accelerators to enable in-line
decryption/re-encryption at switches. However, that is likely
costly. Thus, one may wonder if computing over encrypted
data at switches is possible. While arbitrary computations
over encrypted data are beyond current switches’ capabilities,
we note that the operation performed at switches to aggregate
updates is simple integer summation. The appealing property
of several partially homomorphic cryptosystems (e.g., Pail-
lier) is that the relation E(x) ·E(y) = E(x+ y) holds for any

two values x,y (where E denotes encryption). For instance,
recent work by Cheon et al. [14] developed a homomorphic
encryption scheme for approximate arithmetic. By customiz-
ing the end-host encryption process, the worker could encrypt
all the vector elements using such a cryptosystem, knowing
that the aggregated model update can be obtained by decrypt-
ing the data aggregated at the switches. We leave it to future
work to validate this concept.
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Abstract
Contact force is a natural way for humans to interact
with the physical world around us. However, most of
our interactions with the digital world are largely based
on a simple binary sense of touch (contact or no contact).
Similarly, when interacting with robots to perform com-
plex tasks, such as surgery, richer force information that
includes both magnitude and contact location is impor-
tant for task performance. To address these challenges,
we present the design and fabrication of WiForce which
is a ‘wireless’ sensor, sentient to contact force magnitude
and location. WiForce achieves this by transducing force
magnitude and location, to phase changes of an incident
RF signal of a backscattering tag. The phase changes are
thus modulated into the backscattered RF signal, which
enables measurement of force magnitude and contact lo-
cation by inferring the phases of the reflected RF signal.
WiForce’s sensor is designed to support wide-band fre-
quencies all the way up to 3 GHz. We evaluate the force
sensing wirelessly in different environments, including
through phantom tissue, and achieve force accuracy of
0.3 N and contact location accuracy of 0.6 mm.

1 Introduction
Our sense of touch is critical for understanding and in-
teracting with the world around us. While interacting
with the physical world, force-sensitive mechanorecep-
tors in the skin respond to various vibrations, motions,
pressures, and stretching of the skin to provide us with
critical information on the location and magnitude of the
stimuli [1]. Thus, if we want the next generation of tac-
tile sensors to emulate how our skin reacts to stimuli, we
need to both sense the magnitude and location of contact
forces acting on the sensing surface.

Current skin-like continuum tactile sensors enable nu-
merous critical applications. These applications mostly
involve dexterous tasks to be performed via mechani-
cal tools or robotic manipulators, rather than via human
hands. For example, in order to grasp and manipulate
an object, a robot must be able to sense where and how
firmly it is pressing the object [2, 3]. Another example
can be seen during minimally invasive surgery, where
a surgeon must operate inside the body with a surgical
tool that naturally contacts numerous tissues throughout
the procedure. A sensing layer which acts like a skin
covering the entire surgical tool could enable safer surg-
eries [4–6], since the surgeon would know exactly where

the tool is in contact with the tissues and with how much
force. In addition to these robotics applications, tactile
sensing can supplement our interactions with the digi-
tal world. Most of our current interactions with digital
technologies occur with aid of a touchscreen, which bi-
narizes human contact into simply touch/no-touch, and
the richer information on contact force is typically lost.
Augmenting our digital interfaces with the capability to
sense the magnitude of the forces with which we interact
with them could lead to more natural, intuitive, and real-
istic interactions, creating new possibilities for the evolv-
ing AR/VR settings [7–9].

Driven by these applications, design of such contin-
uum sensor skins has been an active area of research
over the past decade [10–20]. The common approach
has been to create a sensing surface consisting of an
array of discrete force sensitive resistors or electrodes,
whose measurements are interpolated to reconstruct a
continuum force profile. However, this approach has pro-
hibitive wiring costs [10–16], since it requires a wired
link to obtain data from each individual sensor, as well
as wires for satisfying the power requirements. In scenar-
ios where space is a premium, including surgical robotic
applications, this wiring challenge is exacerbated, and
force sensing for the surgical robotics has been acknowl-
edged as a ‘Grand-Challenge’ [21]. One way to address
the wiring requirements is to reduce the density of sen-
sors in the surface and improve the interpolating algo-
rithms [10–12]. A more drastic solution is to eliminate
the wiring problem completely by creating new sens-
ing modalities with modest power requirements such that
both the sensor feedback and power can be delivered
wirelessly [13, 14, 16].

Motivated by these challenges, we present WiForce,
which makes progress in this direction by sensing force
magnitude and location over a 1-D continuum by lever-
aging backscattering techniques. Rather than generating
a wireless signal to feed back the sensor readings, which
would require power-hungry electronics, WiForce’s sen-
sor transduces force magnitude and location directly onto
the reflections of the incident RF signals. The design has
very minimal power requirements, and consists of only
one antenna, a small identification unit, and a force con-
tinuum surface. Thus, WiForce presents a new tactile
sensing modality, which makes headway towards bat-
teryless wire-free sensor skins.

The key enabler for such a low-powered design is the
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Figure 1: Beam bending in effect of contact force: As contact
force increases (shown via increasing arrow lengths), the top
beam bends and collapses more and more onto the bottom beam

transduction mechanism, which modulates the reflected
signal with information on the contact force and its lo-
cation, by altering the RF signal parameters as applied
force on the sensor changes. To achieve this, WiForce
links contact force, a mechanical entity, to RF signal pa-
rameters by combining classical beam bending models
and RF transmission line concepts, using a novel sen-
sor surface. This sensor surface consists of two paral-
lel conductive traces, similar to a microstrip line, aug-
mented with a soft specialized polymer beam. As a force
is applied at a specific location on the sensor surface, the
beam bends, causing the traces to connect (Fig. 1). From
the RF perspective, this beam bending leads to shorting
of the traces, which causes reflection of signals. From
the mechanical perspective, the soft beam allows us to
use beam bending models to characterize how the short-
ing phenomenon changes as the applied force increases.

Essentially, the shorting points shift towards the ends
of the sensor, as the applied force increases and the soft
layer of the beam bends and flattens on the bottom trace
(Fig. 1). By estimating the shorting lengths from both
ends of the sensor, we can determine the magnitude and
location of the applied force. The shorting lengths are
related to the signal phases measured on both the ends
of the sensor. Basically, the longer the signal travels on
the sensor surface, the more phase change it will accu-
mulate. The goal at the wireless reader is to measure
the accumulated phases due to signal propagation on the
sensor surface from both the ends, in order to use the
transduction mechanism to sense and localize the forces.

To enable sensing of these phases by the wireless
reader, the phases from both ends have to be disam-
biguated, and thus each end has to be given an identity.
To do so, a naive solution would be to have RF switches
toggling on-off with different frequencies on either ends
( fs1 , fs2 , Fig. 2), with the toggling frequency providing
the unique identity to each of the ends. However, this
naive solution does not work out of the box, because the
two ends are electrically connected to each other via the
transmission line, causing signals to leak from one end
to the other, which would in turn cause intermodulation
effects. To resolve this issue, WiForce comes up with a
creative RF switch toggling strategy, which not only pro-
vides electrical isolation to combat intermodulation, but
also provides different identities to these ends in terms
of different frequency shifts. Thus, the external wireless

Figure 2: The key insight of WiForce is to view the paral-
lel beams as a microstrip line. Force Fc and it’s location lc
gets transduced onto changes in the reflections due to the line
shorting caused by beam bending. The wireless reader uses the
reflected signals to estimate lc,Fc

reader is able to view the sensor ends as having different
identities in frequency domain, as envisioned by the intu-
itive scheme in Fig. 2, with the intermodulation problem
abstracted out via the intelligent toggling scheme.

The final piece in WiForce is designing the wireless
reader, such that it can use any wireless device (like WiFi
(OFDM) or LoRa (FMCW)) with wide-band transmis-
sion to read the WiForce’s force and location. The task
of the wireless reader is two-fold, first identify and iso-
late the signals coming from the sensor and second, ac-
curately track the phase of the sensor signal. Since the
wireless phase observed by the reader can also be altered
by various entities in the environment, the task of read-
ing phase changes stemming only from the sensor is non-
trivial. Hence, WiForce designs a novel signal process-
ing algorithm which utilizes periodic wide-band channel
estimates to pick up the reflection signatures from the
sensor to isolate the signal, as well as to read the phase
changes at multiple frequencies, providing robustness to
the phase sensing requirements for the proposed force
transduction mechanism.

We designed and fabricated the sensor with a soft-
polymer augmented microstrip line, which is ‘force-
sensitive’. That is, the microstrip line sensing surface has
bending properties which maximize the phase changes
transduced by contact forces. This sensing surface
was retrofitted with RF-switches and antenna to enable
backscattered feedback. The fabricated sensor works for
the entire sub-3 GHz verified with the test equipment
(vector network analyzer). We evaluated the WiForce
sensor abilities to report force magnitude and location
in multiple settings, both indoors and inside a body-like
environment using gelatin. We used USRP radios as the
readers, and tested the sensor at 900 MHz and 2.4 GHz,
which are the two most popular ISM bands. We show
that the sensor can be read up to 5 meters of range over
the air, and show the algorithm working even with prop-
agation through the gelatin-based muscle/fat/skin tissue
layers composition similar to the human body to demon-
strate the surgical applications. We achieved phase sens-
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ing with an accuracy as low as 0.5o, giving us a force
resolution of 0.3 N, and location accuracy of 0.3 mm.
We also showcase the ability to read from multiple sen-
sors, by sensing forces from 2 sensors simultaneously.
Finally, we even evaluated our force sensor with a user
pressing with his hand, and we achieved force resolution
of 0.3 N, and location accuracy of 0.3 mm. In fact, recent
interfaces for Human-Computer Interactions (HCI) work
shows that similar resolution (0.2 N) is required to sup-
port force enabled gestures on smartphones and desktop
computers [22]. We believe this is the first step towards
enabling numerous force sensing applications.

2 Background and Motivation
The problem of sensing tactile phenomenon over a sur-
face continuum has attracted considerable research inter-
est [10–12, 15, 18, 20]. The usual approach has been to
densely populate the surface with either force sensitive
resistors [15], electrodes [10–12, 20], or force sensitive
yarns [18]. The continuum sensing is performed by in-
terpolating over the sensor readings of these discrete sen-
sors. Numerous papers in the past decade have raised the
issues stemming from the wiring requirements of the de-
veloped sensor skin modalities [13, 14, 16].

Researchers have tried addressing these issues by con-
sidering sparser deployments, such as considering sen-
sors only on the boundaries [20], or populating the sen-
sors in a minimal way across the surface [10, 23]. Al-
though these efforts have reduced the wiring require-
ments for sensing considerably, these surfaces still lack a
solution to both feedback the sensor readings wirelessly,
as well as get rid of wired battery connections required
for these sensing efforts. Recent review papers have ad-
vocated the need of powering up these sensing surfaces
with energy harvesting methods to alleviate the battery
requirements [14, 16], and a backscatter-enabled sensor
is a promising approach to address the battery concerns.

Before re-designing the sensing modalities to be com-
patible with low-powered backscatter communications,
a key question to answer is whether a hybrid solution
would work. That is, can we take one of the sens-
ing solutions requiring the least number of wired con-
nections across the surface [10, 20] and feedback the
sensor readings via currently developed backscattering
RFICs1 [24, 25]. However, this solution won’t suffice
since these backscatter links typically work with a RF
energy harvestor, which generates small voltages capa-
ble of powering a small RFID chip, and not a large con-
tinuum sensing surface. Further we would need to sense
multiple voltages from these electrodes via an array of
ADCs (Fig. 3), managed by a micro-controller, which

1This fusion of sensor skin + backscatter RFIC has not been yet
demonstrated, however we consider it as an hypothetical scenario
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(a) Shows a possible continuum sensing approach with existing wired
force sensors, which sense discrete voltage changes over a continuum
(∆V1,∆V2,∆V3), and how this sensing approach could be made wireless

Force F

The continuous beam bending effect gets mapped 
to analog phase changes in the reflected signal

{

(b) WiForce transduces the continuum force information directly onto
analog backscattered phase changes without discretization
Figure 3: Force feedback design, WiForce in comparison with
a possible wireless extension to existing sensing modalities

would then digitize and buffer the data for transmission
through the low capacity backscatter link.

Hence, WiForce attempts a RF-only analog approach,
where the sensing modality directly transduces force and
its location into wireless signal phase changes, which can
be read by a radio over the air. The argument here is that,
if analog phase readings can be fed back accurately, it
would require much less power than procuring the ana-
log readings, digitizing/buffering them, and then sending
them over the backscatter link. Thus, the novel force
to phase transduction mechanism, coupled with the ana-
log phase feedback, fulfills both the key requirements for
low powered tactile sensing – the ability to sense over a
continuum and low-powered battery-free operation.

3 Design of WiForce
In this section, we present the design principles of
WiForce. First, we describe WiForce’s force transduc-
tion mechanism, which translates the force and its ap-
plication location to changes in the RF signal phase.
Next, we present novel algorithms to measure changes
in the RF properties to deduce the force and its applica-
tion location wirelessly. Finally, we conclude with a ro-
bust channel measurement technique that uses a wireless
waveform to read the sensors while rejecting multi-path.

3.1 Force Transduction Mechanism
As a first step towards a backscattered force sensor,
WiForce has to formulate a transduction mechanism
which relates force magnitude and application location,
to parameters like RF signal amplitude and phase, which
can then be used to modulate the sensor readings onto the
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Figure 4: Bending of (a) Thin, (b) Soft beam augmented thick
trace, as forces increase (F1 < F2 < F3). The soft beam dis-
tributes forces along the length, which leads to profound phase
changes (c) as compared to thin traces w/o soft beam

reflected signals. The challenge here is to take an object
(like transmission lines) which supports RF signal prop-
agation, and make it force-sensitive. That is, RF propa-
gation in this object should give significant changes in its
signal parameters as we press the object at different loca-
tions with varying force magnitudes. In this section, we
will elaborate on how WiForce makes microstrip lines
‘force-sensitive’.

A microstrip line traditionally consists of two parallel
conducting traces– the signal trace and the ground trace.
A force applied to the microstrip line would cause the
traces to bend and come in contact with each other, which
shorts the line and leads to signal reflections. The reflec-
tions produced by this shorting have different phase ac-
cumulation based on the location of pressing. However,
this reflected phase is not sensitive to force magnitude
at all. That is, irrespective of the contact force applied,
the traces will short each other only in the vicinity of a
single point (Fig. 4a). The contact point invariance leads
to a near invariant phase response as force is changed
(Fig. 4c), therefore preventing the measurement of force
through phase changes.

WiForce modifies the traditional microstrip line by
augmenting a new soft, flexible beam on top of the sig-
nal trace to address this problem and make the microstrip
line force-sensitive. The key insight here is that the soft
beam distributes the force along the length of the trace
(Please refer to [26] for details on the mechanical imple-
mentation of the sensor). The distributed force leads to
a finite length of the signal trace to come in contact with
the ground trace, creating two distinct shorting points, as
shown in Fig. 4b. Further, these shorting points shift to-
wards the ends as the applied force magnitude increases.
Varying shifts induce different phase changes since the
signals travel less distance on the microstrip line before
getting reflected at the shorting points. Hence, the reflec-
tions caused by higher magnitude forces accumulate less
phase relative to the reflected phases when lower force
was applied. Thus, the soft beam augmented microstrip
line allows phase to force transduction (Fig. 4c).
This beam bending effect manifests itself in the form of
a varying phase-force relationship depending on the con-
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Figure 5: The shorting points shift due to increased force be-
cause of bending of the soft beam, changing the reflected phase.
When the force is applied at the middle, we observe symmetric
phase change across the two ports, whereas when force is ap-
plied towards the ends, we see asymmetric phase changes, due
to the beam bending mechanism illustrated in the top row

tact force’s point of application (Fig. 5, top images). A
force applied in the middle of the sensor compresses it
symmetrically, and therefore the reflected signals from
both the ends show similar phase changes. In contrast,
a force that acts asymmetrically will disproportionately
compress the smaller length of the beam. Therefore, the
end near the smaller length shows a higher phase shift
than the end near the longer one. The longer length col-
lapses onto the bottom trace, leading to an almost station-
ary shorting point as the force increases (Fig. 5, bottom
images). These varying phase changes that depend on the
location of a contact force also allow WiForce to local-
ize the force application point. Thus, the double-ended
measurement allows us to estimate the applied force’s
magnitude and its application location along the sensor
length. However, at the same time, this asymmetric be-
havior of phase change with force contact location ne-
cessitates sensing phases from both ends of the sensor.

3.2 Two-ended backscatter modulation
As described in the previous section, sensing phases
from both ends of the sensor forms the cornerstone of
the phase to force transduction mechanism. This is be-
cause it allows to disambiguate the different force pro-
files observed as the sensor is pressed at different loca-
tions, which basically allows us to both locate and then
measure how much force was being applied. In this sec-
tion, we will go over how to attempt this double ended
phase sensing via wireless backscatter sensing.

The first and foremost thing which any backscatter
sensing solution needs, is an ability to give an identifica-
tion to the reflections occurring at the sensor. This iden-
tification helps the wireless reader isolate the sensor re-
flections from the environmental clutter. A popular tech-
nique to do so has been to use RF switches toggling at
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RF Switch 2RF Switch 1

Figure 6: RF switches toggle between sensor (on) and 50 Ω

(off) depending on the control input. Different freq. clocks as
control inputs introduce intermodulation due to both switches
being toggled on at the same time (grey shaded time instants)

different frequencies as identification unit [27–29]. This
technique basically multiplies the incident signal with an
on-off modulation of certain switching frequency.

In frequency domain, this operation leads to fre-
quency shifts corresponding to the switching frequency.
Putting this mathematically, say the sensor receives the
excitation signal s(t) and reflects s(t)m(t) where m(t)
is a square wave, with time period T . Expanding
m(t)’s Fourier series, we get odd harmonics, m(t) =
∑k∈(2i+1),i∈Z

1
|k|e

( j2πk fst) where fs = 1
T . Ignoring the

high order harmonics, we get reflected signal as r(t) =
s(t)m(t)≈ s(t)e j2π fst . Hence the reflected signal will be
shifted by the switching frequency± fs, which allows the
reflected signal, r(t), to be isolated from the excitation
signal, s(t) in the frequency domain.

A naive extension of this idea to the double ended
sensing problem at hand, would be to have switches at
both ends of the sensor and make them switch at dif-
ferent frequencies ( fs1/ fs2 ). Theoretically, this solution
should give separate identities to reflections emanating
from both the ends. However, the problem at hand is in-
herently coupled to allow for such naive de-coupled solu-
tions, because both the ends are physically connected to
each other via a microstrip line. When both the switches
are toggled-on, the signals will propagate through the
sensor and leak out from the other end (Fig. 6). This
causes intermodulated reflections, where the reflected
signal would be partially modulated by both toggling fre-
quencies, leading to muddled up identities.

The challenge in avoiding the intermodulation effects
is that the sensor has to reflect signals from the opposite
end when a switch is toggled on. Using reflective RF
switches in the off state allows us to make either of the
ends reflective, under the restriction that the other should
be off when one switch is on. Said differently, we want
to design a coupled two-ended switching scheme, which
gives separation in frequency domain, under the con-
straint that both switches are not ‘on’ at the same time.
The unique insight which allows WiForce to have such
an switching scheme, is the use of duty cycle properties
of square wave Fourier series.

In a standard square wave, with 50% duty cycle, all
the even harmonics (i.e. every second harmonic) are
absent. Similarly, in a wave with 25% duty cycle, ev-

RF Switch 1
2f with 25% duty cycle
Modulation at 2f, 4f, 6f...

RF Switch 2
f with 25% duty cycle
Modulation at f, 2f, 3f...

f

f2f

Splitter

Figure 7: The duty-cycled modulation ensures that switches
aren’t toggled on at once, as well as providing freq. separation

ery fourth harmonic would be absent. Hence, a fre-
quency fs, 25% duty cycle square wave will give mod-
ulation at fs,2 fs,3 fs,��4 fs5 fs, . . . Similarly, a frequency
2 fs, 25% duty cycle square wave will give modulation
at 2 fs,4fs,6 fs,��8 fs,10 fs . . . Observe that a combination of
these 2 clocks will cause interference at 2 fs, but can be
read up individually at fs for the former clock, and 4 fs for
the latter clock. Hence, a combination of these 2 clocks
can provide separation in the frequency domain. Also,
by controlling the initial phases of these two clocks, we
can suppress the intermodulation problem as well. This
is possible because when one clock is high, the other
clock will be guaranteed to be low and vice versa (Fig. 7).
Hence, at any given time, only one port will be on, and
other port will be reflective open.

Further, this clocking design allows us to reduce the
form factor requirements, instead of having 2 antennas,
one for each end of the sensor, we can just have just a
one antenna design using a splitter. Since the clocking
strategy provides separation in the frequency domain, we
can add the modulated signals from the either ends via a
splitter. Thus, the wireless reader can identify the two
ends by reading at fs,4 fs frequency shifts.

3.3 Sensing Forces at the Wireless Reader
Till now, we have described the phase-force transduc-
tion mechanism, and delineated a method to give dis-
ambiguated identities to both ends of the sensor. Now,
in this section, we move on to the description of how
the wireless reader is designed. We design our wireless
reader to detect the separate identities stemming from
frequency shifts, and then extract the valuable phase in-
formation which allows us to sense and localize forces.
The key insight of WiForce here is to view the fre-
quency shifts from the sensor as ‘artificial-doppler’ and
use wide-band channel estimates in order to estimate the
doppler and thus isolate the signal coming from the sen-
sor. This approach to view the backscatter tag’s fre-
quency shift as an artificial doppler has been also uti-
lized in some of the recent past work [28]. Finally, to
obtain the required analog phase estimates required to
sense and localize the forces, we utilize that fact that
force, a mechanical quantity, changes slowly (at about
1 kHz rate [30–32]), as compared to MHz’s of RF band-
width. This allows us to group the channel estimates and
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perform a ‘short-time phase transform’, which enables us
to track the phase shifts at the two artificial doppler bins
corresponding to the two ends of the sensor.

The algorithm WiForce uses to extract the backscat-
tered phases embedded inside the wideband channel es-
timates is visually illustrated in Fig. 8. Say we are esti-
mating the channel periodically after every T seconds,
with frequency steps of F . If we use OFDM chan-
nel sounding strategy, T will be the time of the OFDM
frame, and F will be the subcarrier spacing. We denote
H(kF,nT ) = H[k,n] where k is subcarrier index and n is
time index. If there are M multipaths in addition to the
signal coming from the sensor, we can write the channel
estimates from geometric channel model as

H[k,n] =
M

∑
i=1

αie− j2πkF di
c +(s1(nT )e− jφ1

n

+ s2(nT )e− jφ2
n )αse− j2πkF ds

c

(1)

Here, αi is the attenuation factor for the i-th path, di
is the distance separation between the TX-reflector and
reflector-RX, and φ 1

n ,φ
2
n is the phase accumulated from

the RF propagation in the microstrip line sensor at time
index n from sensor end 1 and sensor end 2. s1(t),s2(t)
are the duty-cycle square wave modulations to give in-
termodulation free frequency identities at fs,4 fs as dis-
cussed in Section 3.2. Ignoring the higher harmonics
terms in s1(t),s2(t), we get

H[k,n]≈
M

∑
i=1

αie− j2πkF di
c +(e j2π( fs)nT e− jφ1

n

+ e j2π(4 fs)nT e− jφ2
n )αse− j2πkF ds

c

(2)

Now, to isolate the signal from the sensor, we take FFT
over the n index, to obtain H̃[k, f ]. We observe N channel
snapshots to calculate, H̃[k, f ] = ∑

N
n=1 H[k,n]e− j2π f nT .

Assuming φ 1
n ,φ

2
n stay constant over the period of N snap-

shots, at fs, 4 fs, we have,

H̃[k,{ fs,4 fs}] =
N

∑
n=1

H[k,n]e− j2π{ fs,4 fs}nT

= αse− j2πkF ds
c e jφ{1,2}n

(3)

Observe that for this transform, the nyquist frequency
would be 1

2T , and hence, fs has to be chosen such that
4 fs ≤ 1

2T . The switching frequency fs can be related to
an equivalent Doppler, fs =

fcv
c , and thus an object in the

environment moving at velocity v = c fs
fc

would create in-
terference with the sensor signal. However, the chosen fs
is large enough so that this equivalent speed is so high to
guarantee that, the signal observed in the frequency bins
corresponding to fs,4 fs are free from multipath clutter.

However, recall that while writing Eqn. (3), we as-
sumed φ 1

n ,φ
2
n stay constant as n goes from 1 to N. That

is, the transform is only valid when the phases from the
sensor ends do not change much over the period of taking
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Figure 8: WiForce’s reader utilizes wideband channel esti-
mates to isolate sensor signal from multipath in doppler do-
main. Arranging the channels into ‘groups’ allows to read
phase changes across subcarriers to give robust measurements

the transform. This is a reasonable assumption to make,
since the sampling is occurring in MHz rate, whereas
force will at max change in rate of kHz, since it is a
mechanical quantity. However, we can not obviously as-
sume the phase to stay constant forever, and, the phase
will change as we apply force on the sensor which would
move the shorting points. More importantly, we need
to not only tweak the standard doppler transform to re-
spect phase change, we also need to estimate the phase
changes in order to estimate the forces. Thus, WiForce
designs an algorithm similar to the familiar short-time
transforms. The algorithm divides the channel estimates
into groups of Ng, referred to as ‘phase-groups’. For
each phase-group we first take the harmonics FFT as de-
scribed earlier and obtain two K×1 vectors from Eqn.3
for FFT frequency fs, 4 fs. Assume that there are G such
phase groups, i.e. N = GNg. For all the Ng samples
of g-th group, φ 1

n ,φ
2
n ≈ φ 1

g φ 2
g∀n ∈ {1,2, . . .Ng} from the

choice of Ng to respect the time it takes for the force to
become effective. The output at g-th phase group, k-th
subcarrier, after harmonics FFT at fs,4 fs, is denoted as
P1[k,g],P2[k,g].

P{1,2}[k,g] = H̃[k,{ fs,4 fs}] = αse− j2πkF ds
c e jφ{1,2}g (4)

To get rid of the air phases, we can obtain the phase
change between 2 groups by conjugate multiplication:

P̃{1,2}[k,g] = P{1,2}[k,g+1]∗ conj(P{1,2}[k,g])

= α
2
s e j(φ{1,2}g+1 −φ

{1,2}
g ) (5)

Hence, we have
∠P̃1[k,g] = φ

1
g+1−φ

1
g ,∠P̃2[k,g] = φ

2
g+1−φ

2
g (6)

for each subcarrier k. Observe that the right side of the
equation is the phase change independent of k, which en-
tails that we have K independent estimates of the phase
change from the K subcarriers. Thus, we can estimate
very precise phase changes by averaging over these K in-
dependent estimates, allowing WiForce to calculate very
precisely the analog phase changes.

The last piece in the puzzle to conclude the design sec-
tion, is to internalize how can we use differential phase
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Figure 9: Differential Phase measurements can be compen-
sated with fixed quantity φno-touch procured via calibration, to
obtain the quantity of interest φtouch, which varies with force
magnitude and location

to sense and localize the contact forces. In fact, since
force is an event based quantity, that is, unlike quanti-
ties like temperature, moisture, which sense the ambient
quantity, tactile sensors have to sense the force from an
‘touch-event’ which exerts certain force on the sensor at
a given location. When we measure the differential phase
between the ‘no-touch’ and ‘touch’ events, we can mea-
sure differential phase and obtain the absolute phase by
simply subtracting the phase which the waves accumu-
late when the sensor is at rest (Fig. 9). Since this no-
touch phase is a fixed quantity and depends only on the
length of the trace, we measure it beforehand via a VNA
setup and compensate. Hence, compensating the differ-
ential phase with the VNA calibrated no-touch phase al-
lows us to recover phases from both the ends, which can
then used by the transduction mechanism in order for es-
timation of force magnitude and location at the reader.

4 Implementation
4.1 Microstrip line RF Interfacing
To support the two broad applications targeted by
WiForce, the sensor must give good RF propagation per-
formances at 900 MHz (for in-body sensing applications)
and at 2.4 GHz (to be compatible with Wi-Fi/Bluetooth
standards). From our simulations (Section 10.2), we ex-
pect that by having the ratio between trace width and
sensor height to be around 4 : 1, we should get good
impedance matching. Hence, we design an air substrate
microstrip line with trace width of 2.5 mm, ground trace
width of 6 mm and height of 0.63 mm, for a sensor length
of 80 mm. To verify the impedance matching, we as-
sess the RF design performance of the sensor in terms of
insertion/thru losses. For this, we perform a 2 port am-
plitude/phase analysis using VNA. As visible in Fig. 10,
this leads to a S11/S22 ratio below -10 dB over the entire
frequency range from 0 to 3 GHz, along with linear S12
phase, which justifies the broadband nature of the sensor.

4.2 Forming the sensor model with soft
beam microstrip line

After having verified the RF properties of the microstrip
line, we fabricate the soft layer using Ecoflex 00-30 (a
commonly used elastic material [33–35]). The Ecoflex
layer is placed onto the top trace to create the WiForce
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Figure 10: 2 port RF profiling of the sensor. S11 stays below -
10 dB across 0-3 GHz, with S12 around 0 dB with linear phase.

sensing surface with thick traces, endowed with the novel
phase to force transduction mechanism.

To verify if the sensor is following the transduction
mechanism, we exert forces on the sensor at 5 locations,
namely 20, 30, 40, 50 and 60 mm (20, 40, 60 marked
in Fig. 11). We expect the beam to show a symmet-
ric phase changes on both the ends when tested at the
center point, and asymmetric phase changes for the end
points, as described in Section 3.1. When pressed on
the end points, the port near the pressing location would
show more phase change, whereas the other end essen-
tially shows a constant phase as force increases. For this
testing, we use the setup visible Fig. 11, where an inden-
ter allows us to apply a force at a given location on the
sensor, and a load cell on which the sensor is attached, al-
lows us to collect the values of force magnitudes applied.
As seen clearly in the 20/40/60 mm figures in Table 1, the
phases do follow the beam bending model as discussed
above, since 40 mm testing shows symmetric behaviour,
whereas for 20/40 mm, one of the ends show a constant
phase as force magnitude is increased.

We now use the data obtained by applying forces at
all 5 locations, and compute a cubic-fit to make a sensor
model that allows us to compute the force magnitude and
force location based on the measured phase changes. To
confirm the validity of the model, we asses it at an inter-
mediate point (55 mm), and plot the phase-force profile

Sensor

@
@
@R

Actuated indenter
moves up-down, left-right

?

Load cell

6
Switch 1 to
VNA port 1

6

Switch 2 to
VNA port 2

6

Figure 11: Sensor on the load cell platform, The actuated
indenter which can move up-down to exert force on the sensor,
as well as left-right, to do so at a particular location, shown via
blue arrows . A load cell below the platform and VNA (not
shown here) provide force, phase ground truth measurements.
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Table 1: Ground truth phase-force profiles (red) measured via the VNA and load cell setup show symmetric phase changes when
pressed at center (lc = 40mm, total length is 80mm), and asymmetric phases when pressed at lc = 20,60mm, as discussed in
Section 3.1. We collect VNA data at lc = 20,30,40,50,60mm, and perform a cubic fit to get the sensor model, which is evaluated
by testing at intmd. lc = 55mm. The wireless phase measurements, as well as the model predictions at 55mm consistently overlap
with ground truth, warranting the performance of WiForce’s design .

as predicted by the model alongside the ground-truth pro-
file we collect from the VNA. As visible in Table 1, all
graphs for force applied at 55 mm overlay on each other,
which confirms the reliability of the sensor model.

4.3 Clock Design and RF Switches
To encode the phase changes caused by different short-
ing positions on the microstrip line due to application
of a force, we utilize 2 RF-switches with the duty cy-
cled clocking strategy described in Section 3.2. We use
the HMC544AE from Analog Devices in our prototype,
which is a reflective-open switch consistent with our duty
cycling requirements discussed in Section 3.2.

The final component in our prototype design is the
clock source. We use the timer channels in Arduino
Due with an Atmel SAM3X8E ARM Cortex-M3 pro-
cessor [36] to generate the duty cycled clock source as
described in Section 2. We generate a 25% duty cycled
1 kHz square wave, and a 75% duty cycled 2 kHz square
wave to modulate the two RF switches. This gives us
interference-free modulation at 1,4 kHz.

Hence our sensor prototype consists of five compo-
nents, shown in Fig. 12b, the microstrip line sensor, 2
RF switches, 2 clock sources, a splitter to combine out-
puts of the 2 switches and one antenna to communicate
the backscaterred phases to the wireless reader. The el-
ements in our design which require power thus are the 2
RF switches and the 2 clock sources. For switching at
kHz frequencies, we observed that the power consumed
by the 2 HMC544AE switches was almost similar to the

static power consumption of 3.3 µW (the static current
for switch at 3.3V voltage level is 0.5 µA [37]). Al-
though in our design we use a microcontroller to pro-
vide the clocks, by using low-powered oscillators, we
can meet the clocking requirements with about 2 µW
power budget [38]. Overall, the requirements are lesser
than 10µW which are modest enough to be supported
by a RF energy harvesting circuit. In recent works, pa-
pers have even shown more than 50 µW power being
harvested via RF signals, across 1cm of tissue [39].

4.4 Wireless Reader Implementation
The main task of the wireless reader is to transmit the
OFDM waveform and periodically estimate the channel,
so that phase changes at the shifted frequencies from the
sensor can be read wirelessly. To perform the chan-
nel estimation, we utilize a 64 subcarrier, 12.5 MHz
OFDM waveform. We test this for both center frequency
of 900 MHz and 2.4 GHz. We use separate antennas
for transmission and reception, and use the same USRP
N210 SDR [40]2 for both functions. Since the transmit
and receive chains are on the same device, they are syn-
chronized and will not show frequency/phase offsets. We
emphasize here that the arduino clock is not synchro-
nized with the other elements of the system since the
force sensor is deployed as a separate entity.

We use a 320 sample long OFDM preamble padded
with 400 zeros for the channel estimate. At the sam-

2We can potentially use a COTS device as well as the wireless
reader. Refer to Section 10.1 for a brief discussion on the same
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pling rate used, this translates to fresh channel estimates
every T = 720

12.5×106 = 60 µs. Recall that to sense har-
monics, the maximum harmonic frequency which can
be sensed would be | fmax| = 1

2T ≈ 8.7 kHz due to the
Nyquist Limit. We therefore chose our sensor clock fre-
quencies to be 1,2 kHz, which would give modulation at
1,4 kHz, and falls comfortably within measurable limits.

5 Experimental Evaluation
Armed with a sensor model to get from phases to force
magnitude/location, as well as wireless reader and sensor
implementation to enable backscatter sensing capabili-
ties, we now evaluate the wireless performance of our
sensor in different indoor environments. The developed
sensor model is first used to estimate the force magni-
tude and location exerted on the sensor, and this pre-
dicted force magnitude/location is compared to ground
truth readings from the load cell and actuator position, as
shown in Fig. 12a. In addition, we plot empirical CDFs,
which allow us to understand the accuracy of our sens-
ing solution. Not restricting to over the air evaluations,
we even evaluate our sensor when the wireless propa-
gation occurs through tissue phantoms made to emulate
human tissues. We also show the capability of read-
ing forces from two sensors simultaneously. Finally, we
show that the force sensing works not only with the pre-
cision touches of the actuator, but can also detect the
force and contact location when a human interacts with
the sensor via finger touches.

5.1 Wireless Performance Evaluation
The first step in the wireless performance evaluation is
to verify if the estimated force magnitudes and locations
agree with the ground truth force-phase curves obtained
via the load cell and the VNA setup. For this purpose,
the setup illustrated in Fig. 12a is used3, with the sensor
on top of a platform having load cell to give ground truth
readings for the experiment, similar to the VNA exper-
iment in Section 4.2. Forces are applied between 0 and
8 N at 20, 40, 55 and 60 mm positions on the sensor.
From Table 1, we can clearly see that wireless sensing is
able to follow the VNA force-phase curves. Hence, this
allows to validate the wireless implementation.

Using the estimated values of force magnitudes and
force location to the ground truth, i.e. load cell read-
ings and indenter location, we plot empirical CDFs to
evaluate the wireless performance metrics. In Fig. 13a,
Fig. 13b, we see that median error of force magnitude
estimation of WiForce is 0.56 N when being read at 900
MHz, and 0.34 N when being read at 2.4 GHz. These
results are satisfactory, since the errors are a fraction
of the operating range of the sensor, which is approxi-
mately 8 N. One can observe that the error is lower at

3We also evaluate the performance of the sensing algorithm over a
range of distances till 2m. The results are presented in Section 10.3

high frequency. Since higher frequency signals accu-
mulate more phases for the same travelled distance, the
required granularity for phase sensing is more relaxed,
leading to lower error than sensing at low frequencies.
Another observation from Fig. 13a, Fig. 13b, is that the
sensor works uniformly across its length, i.e. error CDFs
are similar when plotted for touching at individual loca-
tions with increasing magnitude of forces.

Proceeding similarly, the median errors on the es-
timated force location is 0.86 mm at 900 MHz, and
0.59 mm at 2.4 GHz, as visible in Fig. 13c. Similar to
force magnitude CDFs, performance is better at a higher
frequency, since more phase change is accumulated per
unit length at higher frequencies, enabling finer loca-
tion estimation. These location results are satisfactory,
with about 5 times higher accuracy than reported in re-
cent work [41, 42], where errors are in the order of mag-
nitude of centimeters. The reasons for this improved
performance are two-fold. To localize the contact loca-
tion, WiForce correlates the extra separation between the
shorting points caused by sensor bending in the action
of a certain contact force. This correlation is enabled by
the novel two-ended sensing strategy of WiForce. This
is fundamentally very different from the past contact lo-
cation sensing approaches [41, 42]. Furthermore, this is
supported by a wideband phase sensing algorithm (Sec-
tion 3.3), which is capable of sensing these phases very
accurately and robustly, unlike the previous works which
used a narrowband RFID reader for the evaluations [41].

5.2 Testing with Tissue Phantoms
We now assess the performance of our backscatter sens-
ing strategy through human tissue. Propagation through
human tissues necessitates using 900 MHz over 2.4GHz,
as frequencies higher than 1 GHz are severely attenuated
in such environments [43, 44]. Wireless signals undergo
huge losses when they propagate through human tissue,
since these tissues are typically materials with high di-
electric constants (with εr > 10) [45]. Further, the propa-
gation is hampered via refraction and total internal prop-
agation effects, which exacerbate the losses. Thus, to
sense the robustness of our strategy with these impair-
ments, we use the setup visible in Fig. 13d. It consists
of a tissue phantom composed of three layers (muscle,
fat and skin, and thickness of 25, 10 and 2 mm, respec-
tively), with dielectric properties selected to mimic hu-
man tissue properties, as in [46].

During these experiments, we observe that there was
around 110 dB two-way backscatter loss from the TX-
sensor and sensor-RX, for center frequency 900 MHz,
when communicating through the tissue phantom. How-
ever, the direct path TX to RX signal had about 10-15 dB
loss. The dynamic range of the USRP SDR we use
was around 60 dB, because of which we can’t decode
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the weak backscattered signal under the presence of the
much stronger direct path signal. Hence, for these ex-
periments, we isolated the TX and RX with a metal plate
for this experiment. Because of the metal plate, the di-
rect path loss increased to about 60 dB, which allowed us
to decode the 50 dB lower backscattered signal at the re-
ceiver using the 60 dB dynamic range ADC of the USRP.
For this experiment, we apply contact force at 60 mm on
the sensor. We obtain similar performance as with the
over-the-air tests, with the median force error increas-
ing slightly from 0.56 N to 0.62 N (Fig. 13d). These
results demonstrate the robustness of WiForce’s wireless
capabilities, since the sensing algorithm was able to de-
code force readings from a weaker signal trough the tis-
sue phantom. In future works, the metal blockage can be
replaced by self-interference canceling strategies, how-
ever, this is beyond the scope of this paper.

5.3 Multi-sensor experiments
We also evaluate the capability of WiForce to sense from
multiple sensors simultaneously. The setup here consists
of two sensors placed on a platform, and we use a custom
designed indenture with the actuator in order to press on
the two sensors simultaneously (Fig. 12c). A load cell
is attached below the platform to measure the combined
forces acting on the platform (Fig. 14), whereas via wire-
less sensing from the two sensors we can estimate F1,F2
individually. In order to have separate identities for the
two ends of the other sensor, we modulate via 1400, 2800

Hz duty cycled waves (visually illustrated via red, blue
waves Fig. 12c, Fig 14).

By reading at these frequencies, we can wirelessly ob-
tain estimates F̂1, F̂2 of F1,F2. Because the load cell mea-
sures F1 +F2, we expect that adding these two estimates
should allow us to compare against the ground truth load
cell readings. The added estimates are expected to give a
median error of 1.12N, since one estimate from the sen-
sor comes with a median error of 0.56N at 900 MHz,
as profiled by the CDF plots (Fig. 13). Thus, we plot
F1 + F2 ± 1.12N as the blue shaded region as the ex-
pected median performance of the sensor to sense the
added force. Indeed, we see the added up estimates re-
specting the median error by being confined inside the
median error region (Fig. 14).

5.4 Getting More Than Finger Touch:
Measuring Fingertip Forces

We now motivate a UI use case, which has the potential
to improve and change the way users interact with digital
devices. For this purpose, we select a center frequency
of 2.4 GHz for our sensor, which is well-adapted to Wi-
Fi and Bluetooth devices. To assess the relevance of our
sensor for such applications, we use the fingertip, instead
of the actuated indenture, to press the sensor with varying
force levels. An operator presses the sensor at the 60 mm
location. We plot the force readings from the load cell
in real time, and use this real-time plot to give the user
visual cues to settle in to some force level. Then, we
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Figure 15: Wireless Sensing results for pressing at 60 mm
with increasing force levels via a fingertip. From (a) we see
that all the touch interactions at 60 mm±20mm were classified
correctly, as the sensor was pressed with a finite-width finger-
tip (about 15-20 mm [47, 48]). From (b), it can be seen that
WiForce was able to estimate increasing force levels accurately

estimate these force levels using WiForce to evaluate if it
can support these sensing capabilities.

Fig. 15 shows the evaluation results of WiForce’s ex-
periments. From Fig. 15a one can see that the sensor
could accurately detect the pressing location, which was
60 mm, with sufficient accuracy, considering the fact that
a typical human fingertip has a width and thickness of
approximately 15-20 mm [47, 48]. That is, even though
WiForce’s location sensing had sub-mm location sensing
accuracy, now the error source will most likely be com-
ing from the uncertainty of how operators press the sen-
sor with their finite width fingertips, instead of the pre-
cise point-pressing feature of the actuator before. Since
most of the readings are clustered ±20mm near the vi-
sual cue of 60mm given to the operators, WiForce does
operate under the practical limit of the experimental set-
ting due to finite width of the operators.

Further, in Fig. 15b, we see how WiForce is able to
get more than just binary touch sensing results. Not only
can WiForce detect the point where a finger touched the
sensor, going one step ahead, WiForce is able to detect
the force profiles of the touch interactions as well, which
motivates much improved UI use cases by getting more
than just touch/no touch information.

6 Discussions and Applications
The most natural usecase for such wireless haptic feed-
back lies in surgical robots and tools. Human hands are
extremely dexterous, and provide unparalleled sensory
feedback which enable very precise operations required
for surgery. However, we need tools and robots to em-
ulate the human hands when direct operation is not pos-
sible, such as during minimally invasive surgical oper-
ations. Ideally surgeons should receive haptic feedback
from the tools/robots they are operating, which would
require information of both force magnitude and contact
location. However, such haptic feedback is generally not
available in practice, and one reason has been that force
sensing modalities are still not evolved enough to support
these applications [5,49–52]. Loss of haptic feedback in-
creases the training time for surgeons, increases risk of
surgical errors, and hinders the closed-loop operation for
robot assisted surgeries [53–56].

The current form factor and sensor interface hinders
direct use of WiForce’s sensor in more complex surgi-
cal tasks requiring force feedback, such as cardiac abla-
tion [55] or pre-retinal membrane peeling [57]. However,
the sensor can help solve a major problem in laparoscopy
known as the fulcrum effect [58]. The fulcrum effect is
caused due to lever effect caused by contact forces be-
tween the body and surgical tool, at the entry point of
the surgical incision. Due to lack of feedback on both
the magnitude of force and location, the tool tend to slip,
which causes risks of tissue damage. A laparoscopic sur-
gical tool augmented with a WiForce sensor to determine
and localize the contact force can prevent this fulcrum
effect since the surgeon can do a closed loop correction
based on this haptic feedback.

Apart from surgical applications, sensing contact force
and location can be extremely useful for robotic tasks
which require a manipulator/gripper. Robotic manipula-
tors need this haptic feedback to determine how firmly
they have grasped a particular object [2, 3]. People have
attempted doing this via vision induced haptics [59, 60],
however, these methods typically require computation-
ally intensive algorithms and fail to meet the required
temporal rate of feedback required to determine if the
grasp of the object is loosening and slipping [61]. How-
ever, since wireless sensing is not bound to such issues,
and can be made near real-time. Thus, such sensors can
be used for direct and low-latency haptic feedback to im-
prove robotic manipulation operations.
Alongside the robotics centered applications, force sens-
ing can have many latent applications in the next gen-
eration interfaces for HCI/AR-VR. Smart surfaces have
been an active area of research, with touch sensing touted
to a game changer for ubiquitous computing [62–64].
Force sensing will add more depth to these touch sensing
solutions, and can lead to some unforeseen applications.
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7 Future Work
Extending to 2-D continuum: The current sensor proto-
type of WiForce consists of sensing on a 1-D continuum.
To extend this sensing to a 2-D continuum, we can de-
ploy multiple WiForce sensors placed next to each other.
Hence, by reading phase changes from multiple WiForce
sensors, we can infer the location and contact force mag-
nitude on the 2-D continuum spanned by these multiple
sensors. A hindering factor to this 2-D extension is how
to address multiple touch points simultaneously, which
will be explored in future works.
Reducing the form factor: WiForce is the first work
which presents such a low-powered sensor, and thus nat-
urally leads the way to realize a battery-free haptic feed-
back. The current sensor prototype of WiForce is 80 mm
long, and about 10 mm thick. With the current form fac-
tor, the sensor is not directly applicable for some of the
medical applications which need smaller sensors. The
sensors can get to the correct form-factor requirements
by designing integrated circuits, antenna and the sensor
fabrication. To make the sensor prototype more flexible,
we will explore new fabrication strategies like flexible
PCB printing and creating custom RF connectors.

8 Related Work
Force sensors have been developed using a variety of
transduction mechanisms, such as capacitive, piezoresis-
tive, piezoelectric, optical, magnetic, and inductive [65].
There are a number of tradeoffs among the various mech-
anisms, including, for example, sensitivity, spatial reso-
lution, accuracy, power consumption, and size. To meet
the requirements of many emerging systems, particularly
those where it may be difficult to have a physical wired
connection to the sensors, many researchers have been
investigating the creation of wireless sensors.

Wireless force sensors: A number of wireless ca-
pacitive force sensors that leverage a change in capaci-
tance due to deformation have been recently developed.
For example, a flexible capacitive sensor was created for
wirelessly measuring strain in tires [66], and a capaci-
tive textile sensor was developed for wireless respiratory
monitoring [67]. While the capacitive sensing paradigm
can work well for a number of force sensing applications,
it is not naturally compatible with wireless sensing. In
order to wirelessly transmit force information obtained
through capacitive sensing, additional hardware and cir-
cuits are needed, complicating the design.

Inductor-capacitor (LC) wireless sensors are passive
devices that can remotely sense a number of parameters,
including pressure. The working principle of these sen-
sors is based on changes in the capacitance that causes
a shift in the LC resonant frequency, which can be wire-
lessly measured [68, 69]. A number of these LC sensors
have been developed for applications like monitoring of

pressures during arterial blood flow [70], and the mea-
sure of finger tip forces during athletic activities [71].
However, the resonance frequency of these sensors is
in the range of a few hundred kHz to a few MHz [69],
which makes wireless sensing difficult. As a conse-
quence, these sensors suffer from short interrogation dis-
tances in the range of a few centimeters [69, 72].

There has also been a large body of research on strain
sensors [35, 73–76]. In strain sensing, instead of sens-
ing the normal transversal force, the longitudinal force is
sensed. Longitudinal force has a tendency to stretch and
elongate the object it is acting upon, hence these sensors
estimate the change in the length to infer strain. Thus,
most of the wireless strain sensors exploit the shifts in
resonant frequencies to sense strain. Thhat is, to in-
fer strain, a wireless reader evaluates signal strength at
multiple frequencies, to estimate the resonant frequency,
where a notch will form in the signal strength measure-
ments. It is well known that signal strength is a fickle
quantity easily corrupted by multipath. Indeed, most of
these works show evaluations in a controlled, anechoic
environment, and the technology has not been found to
be robust to static multipath [74].

Backscatter sensing systems: Recent advancements
in ‘backscatter sensing’ has enabled the creation of pas-
sive, battery-free touch interfaces. Touch sensing has
been a well explored use case of RFID-based sens-
ing [41, 42, 77–82]. IDSense [82] utilized the fact that
reflected RSS and phase change in a unique way when
the RFID chip is touched, and following up on this Pa-
perId [81] even gave a simple manufacturing method by
which one could simply use an inkjet printer to manufac-
ture these RFID tags and augment everyday objects with
touch interactions. RIO [41] further explored the touch
to reflected signal phase mapping to extend touch sens-
ing to multiple RFID tags by utilizing mutual coupling
effects, and extended the design further to use custom
designed, application specific RFID tags. Livetag [42]
presented a similar touch sensing system showing how to
sense these touch interactions using Wi-Fi based readers,
instead of relying on expensive, dedicated RFID readers
used by earlier works. However, none of these systems
could sense force magnitude and were limited to sens-
ing just the position where the tag was being touched in
order to sense simple gestures/sliding movements etc.
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10 Appendix
10.1 Replacing SDR with COTS

We can read the sensor using a COTS-WiFi imple-
mentation which can provide CSI, like Quantenna [83].
With COTS devices, periodic channel estimates can be
obtained with similar time latency as compared to our
implementation using SDRs. In our implementation,
T = 60µs (Section 4.4), which is reasonably higher than
packet sizes of 12µs achievable by 1 Gbps WiFi sys-
tems [84]. A potential issue could be MAC overheads, as
also cited in [84], however, we can alter the packet struc-
ture slightly to avoid backoffs which can mitigate against
the MAC overheads. However, with COTS devices, we
will have to deal with CFO effects in the measured chan-
nel response.

In our implementation on USRP, we had TX and RX
sharing the same RF chain. With COTS devices like
quantenna, we will have TX and RX as separate devices
which might not be able to share a clock, thus leading to
frequency and phase offsets. Although WiForce design is
robust to phase offsets due to our differential phase sens-
ing approach, we would need to counter CFO. To counter
the CFO effects, we can use the fact that CFO will remain
same for both the direct path between TX and RX, and
the reflected signal from the sensor. To do so, we can
consider a differential sensing approach by calculating
phase relative to the direct path, and similar approaches
have been explored to do so in past work [85, 86]

10.2 HFSS Simulations
For an air substrate microstrip transmission line,

we have the following equation which governs the

impedance matching, Z = 60ln

[
6h
w +

√
1+
(

2h
w

)2
]

,

where h is the vertical separation between signal and
ground trace, and w is the width of the signal trace [87].
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Setting Z = 50 Ω in the above equation, gives us the oper-
ating h

w ratio to be approximately 5 : 1. In order to inter-
face SMA connectors to the air-substrate microstrip line
designed, we have to increase the width of the ground
trace so that the bottom legs of the SMA connector can
be soldered directly to the ground trace.

However, we notice some deviation from this ratio
when the width of ground trace is increased to allow for
easier interfacing with SMA connectors. We simulate the
sensor in Ansys HFSS (Fig. 16) to determine this devi-
ation, and observe that the ideal operating ratio shifts to
about 4:1 instead of 5:1 when the width of ground trace
is increased.
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Figure 16: HFSS simulation results: as the ground layer width
is increased to allow for easier interfacing with the SMA con-
nector, the ideal height:width ratio decreases from 5:1 to 4:1.

10.3 Performance with distance
We also evaluate our sensor and wireless reader design
over a range of distances. For this experiment, we place
the TX antenna, sensor antenna and RX antenna along a
straight line. The TX antenna is placed 4 m away from
the RX antenna, and the sensor is moved from the mid-
point, which is 2 m away from both to distances, closer
to the RX antenna, and farther away from the TX an-
tenna. The TX power is set to 10 dBm, and the cen-
ter frequency for this experiment was 900 MHz. We
can observe that the sensor gives accurate and satisfy-
ing phase stability of less than 1o even at a distance of
1 m, 3 m from the RX/TX, and acceptable within 5o per-
formance even at the worst 2 m, 2 m distance from the
TX/RX. These operating distances are comparable with
previously shown evaluations with RFID based backscat-
ter at 900 MHZ [41], which tested sensing at a maximum
distance of 2 m from the RFID reader.
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Figure 17: Testing WiForce over a range of distances
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MAVL: Multiresolution Analysis of Voice Localization

Mei Wang∗, Wei Sun∗, Lili Qiu
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Abstract
The ability for a smart speaker to localize a user based on
his/her voice opens the door to many new applications. In this
paper, we present a novel system, MAVL, to localize human
voice. It consists of three major components: (i) We first
develop a novel multi-resolution analysis to estimate the AoA
of time-varying low-frequency coherent voice signals coming
from multiple propagation paths; (ii) We then automatically
estimate the room structure by emitting acoustic signals and
developing an improved 3D MUSIC algorithm; (iii) We finally
re-trace the paths using the estimated AoA and room structure
to localize the voice. We implement a prototype system using
a single speaker and a uniform circular microphone array.
Our results show that it achieves median errors of 1.49o and
3.33o for the top two AoAs estimation and achieves median
localization errors of 0.31m in line-of-sight (LoS) cases and
0.47m in non-line-of-sight (NLoS) cases.

1 Introduction

Motivation: The popularity of smart speakers has grown ex-
ponentially over the past few years due to the increasing
penetration of IoT devices, voice commerce, and improved
Internet connectivity. The global smart speaker market is esti-
mated to grow at a rate of 21.12% annually and reach 19.91
billion US dollars in 2024.

The ability to localize human voice benefits smart speakers
in many ways. First, knowing the user’s location allows the
smart speaker to beamform its transmission to the user so that
it can both hear from and transmit to a faraway user. Second,
the user location gives context information, which can help us
better interpret the user’s intent. For example, as shown in Fig-
ure 1, when the user issues the command to turn on the light,
the smart speaker can resolve the ambiguity and tell which
light to turn on depending on the user’s location. In addition,
knowing the location also enables location based services. For

∗Both authors contributed equally to this work

Figure 1: Illustration of application for MAVL under multiple
coherent incoming paths in LoS and NLoS scenarios.

instance, a smart speaker can automatically adjust the temper-
ature and lighting condition near the user. Moreover, location
information can also help with speech recognition and natural
language processing by providing important context informa-
tion. For example, when a user says "orange" in the kitchen, it
knows that refers to a fruit; when the same user says "orange"
elsewhere, it may interpret that as a color.

There have been a number of interesting works on motion
tracking and localization using audio [23, 25, 29, 32, 41, 44,
50, 52], RF [43, 45, 48] and vision-based schemes [8, 53], etc.
Cameras cannot be deployed everywhere at home for privacy
concerns. Device-based tracking requires carrying a device,
which is not convenient for people at home. Device-free RF
is interesting, but requires large bandwidth, many antennas,
or mmWave chips to achieve high accuracy, which is not easy
to deploy at home. Meanwhile, acoustic-based tracking has
also been shown to achieve high accuracy. In the past few
years, acoustic tracking accuracy has improved from centime-
ter level [50] to millimeter level [23, 29, 41, 44]. These works
focus on tracking users by emitting specially designed acous-
tic signals. These signals are mostly in inaudible frequency
range 16kHz-22kHz.

Challenges: Despite significant acoustic based tracking
works, localizing human voice poses new challenges:

•Many of the existing systems require transmission of
known signals (e.g., chirps, OFDM symbols, sine waves).
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Figure 2: MAVL system involves a three-step process. (1) estimate AoA from multiple paths, (2) recover room structure by
actively emitting wideband chirps, (3) localize the voice by retracing back the estimated AoA based on room structure.

In comparison, we can neither control nor predict users’
voice signals, including their timing, frequency, and con-
tent. This makes it challenging to apply traditional channel
estimation and distance estimation based methods.

• In order to localize a user, we need to estimate angle of
arrival (AoA) of multiple propagation paths so that we
can trace back these paths to localize the user. The signals
traversing via multipath are coherent, which significantly
degrades the accuracy of AoA estimation methods (e.g.,
MUSIC requires all signals be independent).

• To enable retracing the location using multiple AoAs, we
also need to estimate the indoor environment first. However,
depth sensors are not widely deployed at home and vision-
based approaches raise privacy concerns.

• The user may not be in line of sight (LoS) from the smart
speaker (e.g., the user is behind a wall or in a different
room). Localizing the user in NLoS using acoustic signals
remains an open problem due to low SNR and detoured
propagation paths.

Our approach: In this paper, we build a novel indoor voice
localization system, MAVL, by retracing multiple propagation
paths that the user’s sound traverses, as shown in Figure 2.
First, we estimate AoAs of the multiple paths traversed by
the voice signals from the user to the microphone array on
the smart speaker. The multipath may include the direct path
(if available) and the reflected paths. Second, we estimate
the indoor space structure (e.g., walls, ceilings) by emitting
wideband chirps to estimate the AoA and distance to the
reflectors in the room (e.g., walls). Third, we re-trace the
propagation paths based on the estimated AoA of the voice
signals and the room structure to localize the voice.

We choose AoA since it eliminates the need of distance es-
timation, which is challenging when we do not know the
transmission signals. We use a microphone array widely avail-
able on a smart speaker to collect the received signals. While

there have been many AoA algorithms proposed, the low fre-
quency of voice signals and the presence of coherent paths
pose significant new challenges. To reduce coherence and
separate paths, we capture the voice signal that finishes fast
so that the signal traversing via the shortest path has small
or no overlap with those traversing via the longer paths. We
cannot control how many words a user speaks. Instead, we
could select the voice signals that occupy some frequencies
for a short time period. This requires good time and good
frequency resolution. Since there is no single method that
can simultaneously achieve good time and good frequency
resolutions, we perform wavelet and STFT analyses over dif-
ferent time windows to benefit from both transient signals
with low coherence and long signals with high cumulative
energy. We further use differencing to cancel the signals in
the time-frequency domain to reduce coherence, thereby im-
proving the AoA accuracy.

Next we need to estimate the room contour, i.e., the dis-
tances and direction of the walls. Researchers have used
depth sensors [2, 15, 31], cameras [9, 18, 21] or multiple sen-
sors [7, 12, 49] to estimate the indoor room contour. How-
ever, these systems require extra sensors and some need sig-
nificant computation cost. It also raises significant privacy
concerns. Acoustic has been applied to image the shape of
objects [20, 24, 47]. It is promising to use acoustic signals
to capture the room contour. Our system emits wide-band
Frequency Modulated Continuous Waves (FMCW) chirps
and propose the wide-band 3D MUSIC to estimate multi-
ple propagation paths simultaneously. The wide bandwidth
not only improves distance resolution, but also allows us to
leverage the frequency diversity to estimate AoAs of coherent
signals. We improve the AoA estimation by leveraging the
assumption of a rectangle room (which is common in real
world scenarios), and improve the distance estimation to the
wall by using beamforming.

Finally, we develop a constrained beam retracing algorithm
based on the estimated AoA candidates and room structure.

846    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



We localize the user at the intersection between the propaga-
tion paths with only one-time reflection. Our retracing can
effectively identify the plausible user location.

We implement and evaluate our AoA and localization ap-
proaches in an anechoic chamber, conference room, bedroom
and living room. Our results show that our AoA estimation
yields median errors of 1.49o and 3.33o for the top two paths
in LoS, and 2.75o and 6.49o in NLoS. Moreover, our retracing
algorithm can localize the user with a median error of 0.31m
in LoS and 0.47m in NLoS.

The contributions can be described as follows:

1. We develop a multi-resolution analysis to estimate the AoA
of multipath. It combines STFS over different window sizes
and wavelet to reduce coherence between signals.

2. We develop an effective method to estimate room structure
and retrace the user based on the estimated AoA and room
structure.

3. We implement a system to actively map indoor rooms and
localize voice sources using only a smartspeaker without
additional hardware. Our prototype system can localize
voice in both LoS and NLoS. To our knowledge, this is the
first indoor sound source localization system that works for
None-Line-of-Sight (NLoS) scenarios.

2 Primer on AoA Estimation

In this section, we introduce AoA estimation problem, exist-
ing approaches, and challenges.

2.1 Antenna Array Model
We can estimate the AoA using an antenna array. The antenna
array can take different forms, such as uniform circular array
(UCA), uniform linear array (ULA), or even non-uniform
array. This paper uses a uniform circular array consisting of
N microphones as shown in Figure 3. The circle has a radius
of r. The azimuth and elevation angles of signal arrival are θ

and φ, respectively.

Figure 3: UCA Array model and angle notations.

A general model for the received signal of a single source is

x(t) = a(θ,φ)s(t)+n(t), (1)

where a is the array steering vector and n(t) is the noise vector.
The steering vector for UCA is as follows:

a(θ,φ) = [1,e j2π
f
c rcos(θ)sin(φ), . . . ,e j2π

f
c r(N−1)cos(θ)sin(φ)]T .

(2)
where f is center frequency and c is sound propagation speed.
For M independent source signals S(t) = [s1(t), . . . ,sM(t)]T ,
we can extend the steering vector to a steering matrix,
A(θ,φ) = [a(θ1,φ1), . . . ,a(θM,φM)], where the ith column is
the steering vector associated with the ith signal.

2.2 AoA Estimation Algorithms
There are several AoA estimation algorithms, including
phase [43], MUSIC [35], ESPIRIT [17], and beamforming.
The subspace based MUSIC algorithm is the most accurate.
To apply MUSIC, we calculate the auto-correlation matrix R
for the received signals x as xHx, where xH is conjugate trans-
pose of x and R has the size N×N. Following that, we apply
eigenvalue decomposition to R, and sort the eigenvectors in a
descending order in terms of the magnitude of corresponding
eigenvalues. The space spanned by the first M eigenvectors
is called signal space, and the space spanned by the other
eigenvectors is called noise space. Let RN denote the noise
space matrix, whose the ith column is the ith eigenvector in
the noise space. It can be shown that

RH
N ·a(θ0,φ0) = 0, (3)

when θ0 and φ0 are the incoming azimuth and elevation an-
gles [35]. Based on this property, we can define a pseudo-
spectrum of the mixed signals as

p(θ,φ) =
1

a(θ,φ)HRNRH
N a(θ,φ)

. (4)

Then we can estimate the AoA by locating peaks in the
pseudo-spectrum.

2.3 Modeling Multipath Propagation
Now we consider signals under multipath propagation. Most
traditional AoA estimation algorithms have the assumption
that the signal sources should be independent. In contrast, our
system requires estimating the AoA of multipath and have to
handle coherent signals. To capture multipath effects, we intro-
duce a channel matrix H(α,d) = [h(α1,d1), . . . ,h(αM,dM)]T ,
where αi, di, and h(αi,di) = αi

d0
di

e j2π
f
c di are the attenuation,

propagation delay, and channel of the i− th path, respectively.
The received signal x(t) under multipath is as follows:

x(t) = A(θ,φ)H(α,d)s(t)+n(t), (5)
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For the array model under multipath in Equation 5, we define a
transformation matrix T =A∗H to capture the array manifold
matrix A and propagation paths H. The transformation matrix
T is

Ti, j,k = α j
d0

d j
e

j2π
d j
λk e

j2π
r

λk
(i−1)cos(θ j)sin(φ j) (6)

where 1≤ i≤ N denotes the microphone index, 1≤ j ≤M
denotes the jth arrival path, and k denotes the frequency bin
index. The transformation matrix T takes three dimensions:
spatial dimension i, path delay in time dimension j, and fre-
quency dimension k, which allows us to perform cancellation
in the time-frequency domain.

The received signal from all incoming paths to microphone
mi on frequency fk is

x(t)i,k = T̂i,k ∗ s(t)+n(t). (7)

where T̂i,k = ∑1≤ j≤M Ti, j,k. In order to estimate the AoA of
multipath, we need to deconvolve T̂i,k to each propagation
path Ti, j,k.

2.4 Challenges

Coherent signals: A major source of AoA error comes from
the coherence in the incoming signals. In our context, the
received signals come from the same voice source and only
differ in their propagation paths. Such strong correlation can
significantly degrade the AoA estimation accuracy. We quan-
tify the impact of coherent signals on several well-known AoA
estimation schemes in the frequency range of human voice.
We use a UCA with radius of 9.6cm, which is approximately
the half wavelength of 2kHz. The two signals are (70,120)
and (30,60) in the azimuth and elevation angles. Figure 4(a)
and (b) are the azimuth and elevation power profiles of five
AoA algorithms for two non-coherent signals and Figure 4(c)
and (d) are profiles of two coherent multipath signals com-
ing from the same source. MUSIC performs the best in all
scenarios. However, when coherence occurs, the estimation
errors increase in all algorithms. For example, the two peaks
in MUSIC merge into one peak in this case and LP even gives
incorrect results.

Impact of frequency: The low frequency of the voice also ac-
counts for part of the error. Existing acoustic tracking schemes
(e.g., [23,25,44]) use frequency at 16kHz or higher. In compar-
ison, human voice is typically below 6kHz [27, 33] and most
energy is concentrated in 100Hz-3kHz. The corresponding
wavelength ranges between 11cm and 3.4m. The resolution
of angle of arrival is determined by the antenna separation dis-
tance normalized by the wavelength. Therefore, with centime-
ter level separation between the microphones and dm-level
wavelength, the AoA resolution is very coarse.

(a) Non-coherent Azimuth (b) Non-coherent Elevation

(c) Coherent Azimuth (d) Coherent Elevation

Figure 4: Comparison of power profiles for different AoA
algorithms in non-coherent (a,b) and coherent (c,d) scenarios.
Coherence makes peaks merged and introduces error.

Summary: The above evaluation shows that MUSIC is com-
petitive for AoA estimation accuracy. However, the accu-
racy is still insufficient to support coherent low-frequency
voice signals. Motivated by these observations, next we will
design approaches to explicitly address these major chal-
lenges.

3 Multipath Voice Localization

We decompose our approach into the following three steps: (i)
estimate the AoA of coherent low-frequency voice signals, (ii)
estimate the room structure, (iii) retrace the paths to localize
the user. Below we describe each step in turn.

3.1 AoA Estimation of Voice Signals
As shown in Section 2, we should address two major chal-
lenges in AoA estimation of human voices: (i) received sig-
nals are strongly correlated and (ii) limited resolution due to
the low frequency of human voice. Below we describe our
sections in turn.

Limitation of existing work: Recently, Voloc [37] proposed
an iterative-delay-and-cancellation algorithm to align and
cancel the correlated paths to separate multipath signals in
the time domain. Their first step, called ICA, is to estimate
the AoA of the first reflection by using the initial recording
samples before mixing with the second reflection. However,
this method introduces two major problems. First, in order
to cancel in the time domain, we need to use a small enough
time window during which only samples from the direct path
are included, usually only tens of samples. A small number
of samples limits the AoA estimation accuracy. Moreover, hu-
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Figure 5: Illustration for multi-resolution analysis algorithm. We perform wavelet and STFT analyses over different time windows
followed by the differencing component for small windows. We synthesize the combined results to select the final AoA results.

man voice ramps up slowly. This means the beginning cleaner
audio samples for AoA estimation have low SNR, which
also limits the accuracy. In addition, the cyclic autocorrela-
tion property of human voice is large, which indicates small
alignment error introduces large cancellation error. Therefore,
Voloc reports over 10 degrees error for the first path AoA
and relies on their second step, which uses joint optimiza-
tion based on wall geometry to refine the estimation result.
This has several limitations: (i) its standalone AoA estimation
has limited accuracy, and (ii) the second step requires explor-
ing a large search space, which is very time consuming (e.g.,
hours to estimate wall parameters and 5 seconds to localize
voice).

Overview: Different from [37], we use time-frequency anal-
ysis to reduce coherence in voice signals since signals that
differ in either time or frequency will be separated out. As
the transformation matrix Ti, j,k shown in Equation 6, the IAC
algorithm in Voloc aligns phases for each microphone i to
cancel path delays d j and get the second reflected path. We
first separate coherence in across different frequency bins,
and then cancel the paths in each frequency bin by taking the
difference between the two consecutive time windows. This
is especially useful for voice signals since different pitches
may occur at different time. An important decision in time-
frequency analysis is to select the sizes of time window and
frequency bin to perform the analysis.

On one hand, aggregating the signals over a larger time win-
dow and larger frequency bin improves SNR and in turn im-
proves the AoA estimation accuracy according to the Cramer-
Rao bound [38]. On the other hand, a larger time window
and larger frequency bin also mean more coherent signals.
Moreover, the frequency of voice signals varies unpredictably
over time, which makes it challenging to determine a fixed
time window and frequency bin.

To separate paths with different delay, we desire good time
resolution. Small time windows have good time resolution,
but poor frequency resolution. To separate paths with differ-
ent frequencies, we desire good frequency resolution. Small
frequency bins have good frequency resolution, but poor time
resolution. Therefore, there is no single time window or fre-
quency bin that works well in all cases.

To address this challenge, we use multi-resolution analysis
as illustrated in Figure 5. Specifically, we use Short Term
Fourier Transform (STFT) with different window sizes and
wavelet as they are complementary to each other. Our first
method performs STFT using a large time window and feeds
the spectrogram to MUSIC. While STFT results with large
window have more coherent signals, which results in more
outliers, their peaks also include points that are close to the
ground truth, likely due to the stronger cumulative energy. Our
second method is to perform frequency analysis using smaller
windows and take difference between adjacent windows to
reduce the coherent signals and improve AoA estimation un-
der coherent multipath. Our third method uses wavelet. It has
higher time resolution for relatively high frequency signals.
This allows us to capture the transient voice signals that has
low or no coherence, thereby reducing outliers in MUSIC
AoA estimation. However, since transient signals have low
cumulative energy and cause non-negligible AoA estimation
errors, we combine Wavelet with STFT with different window
sizes. Below we elaborate these three methods.

STFT using a large window size: We perform STFT us-
ing a larger time window. A larger window yields higher
SNR and hence higher accuracy according to the Cramer-Rao
bound [38]. On the other hand, a larger window tends to have
more coherent multipath, which may degrade the accuracy.
This is shown in Figure 4(c), where we see a merged peak
near the ground truth. So this approach can provide informa-
tion about the AoA of the direct path, but not sufficient on its
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own.

STFT using a short window: Using a smaller time window
gives good time resolution and helps separate paths with
different delays. We choose to use a smaller time window and
select the evanescent pitches in the time-frequency domain
to reduce error from coherence. The next step is to further
reduce coherent signals by taking difference between two
consecutive time windows for each antenna. This cancels the
paths with different delay in the time-frequency domain, and
is more effective than cancelling in the time-domain alone.
If the difference between two adjacent windows is greater
than the delay difference of any two paths, this process can
remove the old paths. This cancellation is not perfect since the
amplitude may vary over time and each window may contain
different sets of paths. Nevertheless it reduces coherence in a
short time window.

Wavelet based analysis: Wavelet is a multi-resolution anal-
ysis. We can use both short basis functions to isolate signal
discontinuities and long basis functions to perform detailed
frequency analysis. It has super resolution for relatively high
frequency signals. Transient signals in small time window
have less energy and may yield large errors. To improve the
accuracy, we also take difference of wavelet spectrum in the
two consecutive time windows to further reduce the coher-
ence.

Comparison: We compare the AoA derived from applying
MUSIC to STFT and wavelet. Figure 6 shows the result for
the case where a woman speaks at 2.4m away from the micro-
phone array. The dashed red lines are ground truth AoAs of
different paths. The STFT results without taking difference,
shown in the blue circles, deviate from the right angles due
to coherence even after using different window sizes. The
wavelet results without taking difference are plot as yellow
circles, which also deviates a lot from red dashed lines be-
cause of low energy. The stared orange and purple points are
the AoA estimates derived from MUSIC when we apply dif-
ferencing to STFT and wavelet, called STFT Diff and Wavelet
Diff methods. Compared with the original results (shown in
blue and yellow circles), differencing brings the estimation
closer to the ground truth angles (shown as dashed lines). It is
interesting to observe that there are false peaks in STFT Diff
but the peaks in the Wavelet Diff are all close to the ground
truth though STFT Diff may have peaks closer to the ground
truth than the wavelet. This suggests that it is beneficial to
combine STFT Diff and wavelet Diff results.

Final algorithm: Figure 5 shows our final algorithm. For
each algorithm, we derive the results using different time
windows. Then we compute weighted cluster of these points
where the weight is set according to the magnitude of the MU-
SIC peak. We select the top K clusters from each algorithm.
Our evaluation uses K = 6. To combine the results across

Figure 6: Comparison of AoA derived from STFT, Wavelet
with and without differencing.

different algorithms, we use nearest neighbors. Since STFT
with a large window provides more stable results without
significant outliers, we use them to form the base. For each
point in the base, we search for the nearest neighbor in the
results of the other two methods as they contain both more
accurate real peaks and outlier peaks. Finally, we pick the top
P peaks from the selected nearest neighbors as the final AoA
estimates. Our evaluation uses P = 5.

Algorithm 1 Multi-resolution analysis algorithm.
1: function [AoAs, w] = MultiResolutionAoA(signal)
2: Bandpass filter in voice frequency range
3: spectLong = STFT(signal,LongWindow);
4: spectShortDiff = diff(STFT(signal,ShortWindow));
5: spectWaveletDiff = diff(Wavelet(signal));
6: Select frequency and time ranges based on spectrograms
7: for method in STFTLong,STFTDiff,WaveletDiff do
8: for time in SelectedTimeSlots do
9: for frequency in SelectedFrequencies do

10: forward backward smoothing;
11: compute MUSIC profile;
12: end for
13: accumProfile = SUM(profile)
14: [results,weights] = findPeaks(accumProfile);
15: estimate candidateAoAsm and weightsm;
16: end for
17: end for
18: AoAs = select top P peaks from candidateAoAsm for m=1..3

3.2 Room Structure Estimation

In order to localize the user, we need not only the AoAs of the
propagation paths of the voice signals, but also the room struc-
ture information so as to retrace back the paths. In this section,
we estimate the room contour using wideband 3D MUSIC al-
gorithms. We improve the accuracy by leveraging constraints
of the azimuth AoA and applying beamforming.
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3.2.1 3D MUSIC

The smart speaker estimates the room structure once unless
it is moved to a new position. The smart speaker estimates
room structure by sending FMCW chirps. Let fc, B and T
denote the center frequency, bandwith, duration of the chirp.
Upon receiving the reflected signals, it applies the 3D MUSIC
algorithm.

We generalize 2D Range-Azimuth MUSIC algorithm [5,6,22]
to 3D joint estimation of distance, azimuth AoA and eleva-
tion AoA. 3D MUSIC has better resolution than 2D MUSIC
since the peaks that differ in any of the three dimensions are
separated out. Our basic idea is to transform the received
signals into a 3D sinusoid whose frequencies are proportional
to the distance and a function of the two angles. We extend
the steering vector to have three input parameters: distance R,
azimuth angle θ, and elevation angle φ.

â(R,θ,φ) = e j2π
r
c fc sinφcos(θ− 2πi

N )+ j4π
RB
cT NsMsTs , (8)

where i is the array index, N is the number of microphones, r
is the radius of the microphone array, c is sound speed, Ns is
the subsampling rate, Ms is the temporal smoothing window
and Ts is the time interval.

3.2.2 Our Enhancements

However, there are several challenges in applying the 3D
MUSIC algorithm to indoor environments. First, the number
of microphones and their sizes are both limited, which lim-
its the resolution of 3D MUSIC. Second, there is significant
reverberation in indoor scenarios. Third, large bandwidth is
required to get accurate distance estimation, but MUSIC re-
quires narrowband signals for AoA estimation. Therefore, we
develop three techniques to improve the 3D MUSIC algo-
rithm: (i) leveraging frequency diversity, (ii) incorporating
the fact that rooms are typically rectangular shaped, and (iii)
using beamforming to improve distance estimation.

Multiband 3D MUSIC: We use FMCW signals from 1kHz
to 3kHz for AoA estimation. To satisfy the narrowband re-
quirement in the MUSIC algorithm [35], we divide the 2 KHz
bandwidth into 20 subbands each with 100Hz. Since the fre-
quency of FMCW signal increases linearly over time, we can
divide the FMCW signal into multiple subbands in the time
domain, run 3D MUSIC in each subband, and then sum up
the MUSIC profiles from all subbands.

In order to use the 100Hz subband for 3D MUSIC, we should
properly align the transmission signal with the received sig-
nal so that they span the same subband. The alignment is
determined by the distance. Therefore, we search over the
azimuth and distance for a peak in the 3D MUSIC profile
obtained by mixing the received signal with the transmitted
signal that is sent δT ago, where δT is the propagation delay
and determined based on the distance.

We use the azimuth AoA and distance output from the 3D
MUSIC. Figure 7 shows an example of azimuth-distance
profile. Note that we adjust the elevation angle to the horizon-
tal AoA since the elevation AoA estimation from the UCA
(which has all antennas on the same horizontal plane) is not
very accurate. However, despite a larger error in elevation
AoA, the 3D MUSIC is more effective in separating the paths
than the 2D MUSIC.

Figure 7: An example of azimuth-distance profile from real
trace. Azimuths are accurate and distances requires further
the fine granularity search.

Refine AoA for a regular room: Due to multipath, the MU-
SIC profile can be noisy, which makes it hard to determine
the right peaks to use for distance and AoA estimation of
walls. Since most rooms take rectangular shapes, we lever-
age this information to improve peak selection. Specifically,
we select the peaks such that the difference in the azimuth
AoA of two consecutive peaks are as close to 90o as possi-
ble. That is, we search for the 4 peaks {θ0,θ1,θ2,θ3} from
the 3D MUSIC profile that minimizes the fitting error with a
rectangular room (i.e., min∑i |PhaseDi f f (θi−θi+1)−π/2|,
where PhaseDi f f (.) is the difference between the two an-
gles by taking into account of the phase wraps every 2π.
After finding these peaks, we further adjust the solutions
so that the difference between the adjacent AoA is ex-
actly π/2. This can be done by find θ′1 that minimizes
∑i |PhaseDi f f (θ′1 + π/2(i− 1)− θi)| and the final AoA is
set to (θ′1,θ

′
1 +π/2,θ′1 +π,θ′1 +3/2π).

Improve distance estimation by beamforming: Accurate
distance estimation requires a large bandwidth and high SNR.
Therefore, to improve distance estimation, we send 1kHz-
10kHz FMCW chirps. Among them, we only use 1KHz−
3KHz for AoA estimation to reduce computational cost since
MUSIC requires expensive eigenvalue decomposition, but
use the entire FMCW for distance estimation. We increase
the SNR using beamforming. We use delay-and-sum (DAS)
beamforming algorithm towards the estimated azimuth AoAs.
Then we search a peak in the beamformed FMCW profile. We
find that the peak magnitude increases significantly and get
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more accurate distance estimation after beamforming.

3.3 Constrained Beam Retracing
We can localize the user by retracing the paths using the esti-
mated AoA of the voice signals and room structure. As shown
in left figure of Figure 8, we can first find the reflection points
on the walls by the propagation path derived from the esti-
mated AoA. Then we trace back the incoming path of voice
signals before the wall reflection based on the reflection prop-
erty. If we have at least two paths, the user is localized at the
intersection between the incoming paths. However, the above
method is not robust against AoA estimation error. When
simulating the retracing algorithm, we find that even when the
AoA estimation errors of 2 paths are only 0.5 degrees, it can
cause a localization error of more than 60 cm at a distance
of 4 meters. A small AoA error can result in a large local-
ization error at a large distance. Moreover, an AoA error in
the outgoing path can result in an error in the incoming path,
thereby further amplifying this effect. To enhance robustness

(a) Two near parallel paths (b) More paths

Figure 8: Retracing using ray or cone.

against AoA estimation, we employ two strategies. First, in-
stead of treating each propagation path as a ray defined by the
estimated AoA, we treat it as a cone where the cone center is
determined by the estimated AoA and the cone width is deter-
mined by the MUSIC peak width. This allows us to capture
the uncertainty in the AoA estimation.

Second, while theoretically two paths are sufficient to per-
form triangulation, it is challenging to select the right paths
for triangulation. Therefore, instead of prematurely selecting
incorrect paths, we let the AoA estimation procedure return
more paths so that we can incorporate the room structure to
make informed decision on which paths to use for localiza-
tion. Specifically, for each of the K paths returned by our AoA
estimation, we trace back using the cone structure as shown in
Figure 8. We observe that the azimuth AoA is reliable for the
strongest path, which is the direct path in LoS or the path from
the user to the ceiling and then to the microphone in NLoS.
Therefore, within the cone corresponding to the strongest path
we search for a point O such that the circle centered at the
point with radius of 0.5m overlaps with the maximum number
of cones corresponding to the other K−1 paths. We localize
the user at the point O. Our evaluation sets K = 4.

4 Implementation

Setups: We implement our system on a Bela platform [4]. It is
connected with a JBL Clip 3 or an echo dot speaker and a cir-
cular microphone array with 8 microphones. Figure 9 shows
an example setup in a conference room. Each microphone
uses a sampling rate of 22.05kHz. Many commercial smart
speakers have similar numbers of speakers and microphones.
We test our system using two microphone arrays: a larger
array has radius of 9.6cm and a smaller one has radius of
5.0cm. We use the smaller array to compare with VoLoc [37]
since its size is similar to their setup. The Bela board uses a 1
GHz ARM Cortex-A8 single-core processor. The Bela is con-
nected to a laptop with Intel I5 processor and 8GB memory.
We use javaosc protocol to listen and continuously transmit
the audio signals in WAV format encapsulated in OSC packets
to the laptop through USB in real time and run the processing
program in MATLAB on the laptop to derive the AoAs and lo-
calize the user. In MAVL , AoA estimation takes 2.35 seconds,
room estimation takes 87 seconds, and retracing takes 0.16
seconds. In comparison, VoLoc spends hours in estimating
wall parameters and 5 seconds in AoA estimation.

Figure 9: System setups in conference room and mic arrays.

Evaluation environments: We evaluate our system in differ-
ent environments, including an anechoic chamber, conference
room, bedroom and living room. These rooms take differ-
ent sizes: 2.5m×3.5m, 3.5m×4.0m, and 5.1m×7.5m. We use
a wooden board as a blockage in NLoS cases as shown in
Figure 9. We let a person speak at 1− 6 meters away from
the microphone array in the room. We also vary the distance,
users, type of voices (e.g., man, women, child and applause),
smartspeaker positions, clutter and noise levels to assess their
impacts.

Ground truth: We measure the relative locations of the
smartspeaker, user and walls using a measuring tap. We derive
the ground truth AoAs of the direct path and 5 reflected paths
(i.e., the paths from 4 side walls and ceiling) in LoS scenarios.
In NLoS scenarios, we derive the AoAs of the 4 reflected
paths and 1 diffraction path.
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Metrics: We quantify the errors using both AoA estimation
error and localization error. The localization error is computed
based on the Euclidean distance between the ground truth and
estimated positions.

5 Evaluation

In this section, we evaluate our AoA estimation, room contour
estimation, and voice localization accuracy.

5.1 Performance of AoA Estimation

Two paths in anechoic chamber. We start from testing our
AoA estimation algorithm in the anechoic chamber, where
there is no reflection in the room. We put our microphone
array on the ground and place an acrylic board to act as a wall
to introduce a reflection path. The ground truth of two angles
are 81.95o and 112.68o. Figure 10 shows the MUSIC power
profile. It has a single merged peak around 90o, which results
in 8o and 22.68o errors for the two paths. In comparison, our
algorithm accurately estimates these two paths within the
error of 1.5o. We can clearly see there are two separate peaks
in our MUSIC profile Figure 10. We also change the acrylic
board reflector to other places, and find that MUSIC can sep-
arate the two paths only when the difference between two
ground truth angles is greater than 90o. This resolution is not
sufficient for voice localization since it is quite likely to have
reflected paths within 90o. In comparison, our approach can
separate the two paths as long as they are 30o apart.

(a) MUSIC with merged peak. (b) MAVL with separated peaks.

Figure 10: Comparison of power profiles in anechoic chamber.

AoA accuracy for LoS and NLoS: Next we conduct exper-
iments in three rooms. Figure 11 shows the CDF of LoS
AoA estimation error of six methods for the top 3 angles
across all experiments. We use a large UCA of radius 9.6cm,
comparable to Amazon Echo Studio, Google Home Max and
Apple HomePod. The median error of our approach for the
top two paths are 1.49o and 3.33o, respectively. This accuracy
is sufficient for retracing. In comparison, the corresponding
numbers for MUSIC are 2.55o and 14.54o , which are signifi-
cantly worse.

Figure 12 shows the CDF of NLoS AoA estimation error for
the top 3 angles across all experiments. The median errors

of the top two paths are 2.75o and 6.49o. We also plot the
CDF for the third angle estimation. In theory, one can retrace
the user’s location using two paths. However, a median error
around 10o for the third path is too large to be used directly
for triangulation. Nevertheless our cone-based retracing algo-
rithm can still leverage the AoA of the paths beyond the top
two paths to improve the localization accuracy despite their
relatively high errors.

We also evaluate MAVL using a smaller UCA with a radius
of 5cm, comparable to the size of Echo Dot, Amazon Echo
and Google home. Figure 13 compares the AoA accuracy
of the first path with MAVL using small UCA, VoLoc using
ICA algorithm only and VoLoc using joint estimation. Us-
ing our approach, the median AoA error of the first path is
1.98o and the second path is 4.08o, both of which are larger
than the errors from the larger UCA, which are 1.49o and
3.33o, respectively. In comparison, Voloc yields median er-
rors of 18.04o and 5.28o before and after joint optimization,
respectively, much larger than the errors of MAVL.

AoA performance to distance: Figure 14 plots the AoA
error versus the distance between the user and smart speaker
in a 7.5m× 5.1m conference room. Overall, the accuracy
degrades slightly as the user moves away from the microphone
array. The SNR of voice is not a serious problem because its
frequency is low and it attenuates slowly in the air.

Interestingly, the AoA error of our approach at 4m is better
than many other distances. This could be due to the specific
room structure and user’s distance to the nearby wall. Mea-
surements at the distance around 4m were collected when
the user is near the middle of the room, which makes the
propagation delay from the reflected path well separated from
the direct path and alleviates the coherence effects. The mea-
surements at a larger distance (e.g., 5m) were collected when
the user was close to the wall and the difference between the
direct path and reflect path is smaller, which makes it more
challenging to separate in the MUSIC profile.

Performance to different voices: We classify our measure-
ments into four groups: i.e.man, woman, child, and applause.
Figure 15 shows the sensitivity to different users’ voices. The
bars are centered at the mean error and their two ends denote
the minimum and maximum values across all traces. Our
system is fairly robust across the users and the voice they
produced. We also evaluate the applause sound, and find the
AoA errors of the two paths are about 1.4o and 3.0o. The
applause sound has smaller AoA error because it is shorter
than the human voice, which reduces coherence and improves
AoA estimation accuracy.

Impact of smartspeaker positions: The relative positions
between the microphone array and walls have direct influence
on multiple propagation paths. VoLoc requires the micro-
phone array to be close to a wall to ensure that the first two
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(a) AoA 1 CDF. (b) AoA 2 CDF. (c) AoA 3 CDF.

Figure 11: Comparison of LoS CDF of AoA estimation.

Figure 12: CDF of AoAs error
for NLoS.

Figure 13: Comparison of AoA estimation
for the small UCA.
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Figure 14: AoA accuracy vs distance.
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Figure 15: AoA accuracy to voices.

paths come much earlier than other paths. We evaluate the
robustness of MAVL against smartspeaker positions. We eval-
uate UCA setup at three positions:

(1) center: 2.35m and 2.92m to the two closest walls;
(2) close to one wall: 0.3m and 2.4m to the two closest walls;
(3) corner: 0.26m and 0.39m to the two closest walls.

The median AoA errors of MAVL are 1.80o, 1.97o, 2.08o for
the direct path, when the smartspeaker is at center, close to
one wall and corner, respectively; the corresponding AoA
errors are 3.07o, 4.51o, 4.37o for the second path AoA, re-
spectively. MAVL performs best at the center and worst near
the corner. The latter is because the second and third paths
have comparable SNR and closer AoAs to the direct path,
which increases coherence. But overall it is fairly robust to
different placement. In comparison, the median AoA error of
VoLoc before its joint optimization is 18.04o for direct path,
when the UCA is placed close to one wall. It does not work
at the center or corner. VoLoc only works when the UCA is
close to one wall and users are not close to any wall.

5.2 Performance of Room Estimation
Next we evaluate our room structure estimation algorithm us-
ing different room sizes and microphone placements.

Overall Room estimation Performance: We use room sizes
of 2.5m×3.5m, 3.5m×4.0m, and 5.1m×7.5m. The median dis-

tance error for all walls is 2.8cm and azimuth error is 1.8o.
We can reduce the azimuth error to 1.4o by leveraging the
knowledge of room shape (i.e., the azimuth angles of walls
differ by 90 degrees for rectangular rooms). VoLoc jointly es-
timates the wall parameters. We follow the VoLoc’s setup that
the UCA is close to one wall. We speak 5 commands to find
the best parameters. The distance error is 2.5cm and azimuth
error is 12o. Its performance is sensitive to the selection of the
beginning samples and window size for cancellation.

Impact of smart speaker positions: We also vary the posi-
tions of the smart speaker in the rooms to evaluate its impact.
We plot the median AoA and distance errors in Figure 16 as
we vary the distance between the smart speaker and the wall
from 5cm to 20cm. We find an interesting trade-off between
the distance error and azimuth error. For the shortest distance
range (< 0.5m), it has a small distance error of 1.5cm and
a larger azimuth error 5.1o. For the longest distance range
(> 2m), it has an azimuth error of 1.1o and a distance error of
5.4cm. The worse distance error for the far away wall has lit-
tle impact on the final localization error, because the reflected
signals from this wall always have a much lower SNR and
these results are rarely used for retracing.

5.3 Overall localization results

Localization accuracy: Figure 17 shows the CDF of
MAVL localization errors in LoS (blue line) and NLoS (or-
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Figure 16: Wall estimation performance
over distance.

Figure 17: CDF of Localization error for
LoS and NLoS, small UCA and Voloc.

Figure 18: CDF of MAVL Localization
error in different rooms.

ange line) scenarios. The median error is 0.31m for LoS and
0.47m for NLoS across all ranges and environments in our
evaluation. The accuracy decreases slightly in the NLoS sce-
nario compared to LoS because the diffraction path has lower
SNR. The overall localization error for smaller UCA is 0.56m
in MAVL . VoLoc [37] reports an overall median error of
0.44m in LoS and a median error of 1.7 m at a large dis-
tance (>4m). In our setup, we put the smart speaker close
to one wall, which is the only setup that VoLoc can work,
and find the median error of 1.32 m. This error is larger than
the one reported in [37] likely due to different distances and
environments.

Performance in different rooms: Figure 18 presents the
CDF of localization errors in different rooms. We select three
representative environments: a 7.5m x 5.1m conference room
with a large desk and many chairs, a 4m x 3.5m bedroom with
strong reflectors, such as monitors and wooden furniture, a
3.5m x 2.5m utility room with soft reflectors. We can see that
localization error increases with the increasing room size and
the number of strong reflectors. A larger room size reduces
SNR. For many locations in a large room, the directions of
reflected paths are close to each other, which makes it more
difficult to separate difference paths. Strong reflection from
walls and large furniture may produce merged peaks in the
MUSIC profiles. Nevertheless, MAVL still achieves 0.45m
median error for the complex bedroom .

Impact of UCA size: As discussed earlier, a smaller UCA
size degrades the accuracy of AoAs. The overall localization
error for smaller UCA is 0.56m. The yellow line in Figure
17 shows how small UCA works in our system. Although it
is worse than that of the larger UCA size, the error can still
support many indoor localization applications (e.g., provid-
ing useful context information for speech recognition and
beamforming to strengthen SNR).

Impact of different positions of UCA: Position of the micro-
phone array have impact on both room contour estimation and
source AoA estimation. We place the UCA at three predefined
locations, center, close to one wall and corner and evaluate

our system. The median localization errors are 0.41m, 0.59m,
0.76m at center, close to one wall, and corner, respectively.
Our system works the best when the UCA is placed at the
center. The accuracy degrades significantly if the UCA is
placed at the corner due to increased coherence. VoLoc re-
ports 0.44m overall error and 1.7m error beyond 4m when
UCA is placed close to one wall. But in our settings with a
larger room size and larger distance, VoLoc yields a median
error of 1.32 m. VoLoc relies on direct path and reflection path
from the close wall in the back. When one retrace using these
two paths, a small AoA error may lead to a large localization
error. Note that what matters is not the absolute distance to
the wall but the ratio between the distance to the wall and the
room size. For instance, 0.5m to a wall is considered close
for a 5.1m×7.5m room and large for a 2m×3m room. Our
system works best in the center position, but also works well
for the other setups. Therefore it can support more flexible
placement.

Performance to clutter levels: Nearby objects introduce
multipath, which makes the AoA estimation more challeng-
ing. Figure 20 shows how the clutter level affects the final
localization errors across different types of voice. Increasing
the clutter level increases the localization errors as we would
expect.

(a) Sparse (b) Moderate (c) Dense

Figure 19: Clutter Setups.

Performance to noise level: MAVL is robust to different
background noise. Figure 21 shows the influence of various
background noise and noise levels. White noise just degrades
the accuracy slightly even when SNR is as low as -10dB,
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Figure 20: Localization accuracy across clutter levels.

and background music has larger impact than white noise as
there are human voices in songs. Our approach is fairly robust
against background music unless the SNR is too low (e.g.,<
-10dB SNR), in which case the error increases to 1.4m.

Figure 21: Localization accuracy vs noise levels.

6 Related Work

Acoustic Sensing: A number of systems have been proposed
to track a mobile device using acoustic signals [19, 23, 32, 50,
52]. Several recent systems [25, 28, 29, 51] enable device-free
tracking using acoustic signals. Many systems generate in-
audible acoustic sound for motion tracking. Some use Doppler
shift (e.g., AAMouse [50]), time of flight (e.g., BeepBeep [32],
or combination (e.g., CAT [23]). Covertband [30] actively
sends out OFDM based inaudible signals and builds on top of
MUSIC to improve sensing energy. BreathJunior [42] encodes
FMCW into white noise to detect motion and breathing of
infants. These systems require controlling transmitted acous-
tic signals and are not suitable for tracking human voice. The
most relevant work to ours is VoLoc [37]. Our work advances
VoLoc in several important aspects. First, we improve the
AoA accuracy from 10 degrees to 1.5 degrees by leveraging
multi-resolution analysis in the time-frequency domain. Sec-
ond, we develop a novel method to automatically estimate the
room contour. This significantly eases the deployment effort.
Third, we can localize users in both LoS and NLoS whereas
they only support LoS.

RF Based Localization: The accuracy of RF based localiza-
tion approaches are mostly limited by its large wavelength
and fast propagation speed for commodity WiFi infrastruc-
ture. Chronos [40] can achieve decimeter level localization
accuracy by inverting the NDFT. Spotfi [16] incorporates
novel filtering and estimation techniques to identify AoA of

direct path. Arraytrack [48] designs a novel multipath sup-
pression algorithm to remove reflection between clients and
APs. However, they use more than three APs with 16 anten-
nas and require controlling the transmitted signals. Moreover,
their approach is focused on eliminating multipath rather than
separately estimating each multipath.

Sound Source Localization: There has been a few sound
source localization work [26, 34, 46]. [14] builds a real-time
system to detect the AoAs of different sound sources. [2]
requires a Kinect depth sensor to build a 3D mesh model of
an empty room. It estimates multipath AoAs using a cubic
microphone array and perform 3D reverse ray-tracing to lo-
calize the voice. Its localization error is around 1.12m. [1]
considers the diffraction path and applies Uniform Theory of
Diffraction for voice localization. Its error is 0.82m. These
works either require multiple specialized sensors to get indoor
environment or only estimate AoAs instead of localization.
They do not address the coherence arising from multipath, so
their AoAs are not reliable. MAVL can localize a user using
a single smart speaker without extra hardware and explicitly
addresses the coherence of multipath.

Audio-Visual Indoor Representation Learning: Recent
work combines sound and vision in multimodal learning
frameworks to better understand the environment so that they
can track audio-visual targets [3, 11, 13], localize pixels rele-
vant to sound in videos [36, 39], and navigate indoor environ-
ments [10]. VisualEchoes [12] emits 3ms chirps to combine
multipaths and images at different location and learn spatial
representation without manual supervision. Soundspaces [7]
applies multi-modal deep reinforcement learning on a stream
of egocentric audio-visual observations. Our work uses a
stand-alone smart speaker, and does not require vision data or
pre-training.

7 Conclusion

In this paper, we develop a system, MAVL, to localize users
based on their voice using a smartspeaker like device. Our
design consists of a novel multi-resolution based AoA estima-
tion algorithm, an easy-to-use acoustic-based room structure
estimation approach and a robust retracing to localize the
user based on the estimated AoA and room structure. We
evaluate MAVL using different sound sources, room sizes,
smart speaker setups, noise and clutter levels to demonstrate
its effectiveness.
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Abstract
We report a 3-year city-wide study of an operational indoor
sensing system based on Bluetooth Low Energy (BLE) called
aBeacon (short for alibaba Beacon). aBeacon is pilot-studied,
A/B tested, deployed, and operated in Shanghai, China to infer
the indoor status of Alibaba couriers, e.g., arrival and depar-
ture at the merchants participating in the Alibaba Local Ser-
vices platform. In its full operation stage (2018/01-2020/04),
aBeacon consists of customized BLE devices at 12,109 mer-
chants, interacting with 109,378 couriers to infer their status
to assist the scheduling of 64 million delivery orders for 7.3
million customers with a total amount of $600 million USD
order values. Although in an academic setting, using BLE
devices to detect arrival and departure looks straightforward,
it is non-trivial to design, build, deploy, and operate aBeacon
from its conception to its retirement at city scale in a metric-
based approach by considering the tradeoffs between various
practical factors (e.g., cost and performance) during a long-
term system evolution. We report our study in two phases, i.e.,
an 8-month iterative pilot study and a 28-month deployment
and operation in the wild. We focus on an in-depth reporting
on the five lessons learned and provide their implications in
other systems with long-term operation and large geospatial
coverage, e.g., Edge Computing.

1 Introduction
Instant delivery is an emerging business where online orders
(e.g., groceries or foods) are delivered within a short time
(e.g., 30 mins) from merchants (e.g. grocery stores and restau-
rants) to customers. This business grows rapidly in recent
years with the emergence of several online platforms, e.g.,
Prime Now [6], Uber Eats [50], Instacart [26], DoorDash [16],
Deliveroo [14], and Alibaba Local Services [17]. In an instant
delivery service, a customer uses an APP on a platform to
place an order at a merchant; the platform assigns a courier
to pick up this order at the merchant and then deliver it to the
customer. It is essential for the platform to know its couriers’
real-time arrival status at merchants, which is used to assign
new orders to the most suitable couriers based on their loca-
tions to avoid an order delivery overdue given short delivery
window [57]. While the outdoor status of couriers can be
obtained by smartphone GPS, inferring the indoor status is
always challenging due to a lack of infrastructure at scale.

In this paper, we report a 3-year study for a system named
aBeacon developed by Alibaba Inc. [5] in Shanghai to infer

its couriers’ indoor status, i.e., arriving and departing at mer-
chants. The indoor status inference is of great significance
for Alibaba Local Services (a subsidiary of Alibaba Inc. for
instant delivery), since couriers spend almost one third of total
working time indoor based on our data. The goal of aBeacon
is to provide a city-wide indoor sensing solution with practical
cost/performance tradeoffs when deploying in the wild. We
share one-month data of aBeacon for future research1 [1].

Admittedly, indoor arrival and departure status detection
is not technically challenging and has been widely investi-
gated in controlled environments, e.g., labs, museums, and
airports. However, it is still an open question for city-wide
detection in the wild. In industry, current solutions mainly
rely on either courier’s smartphone GPS (which is inaccu-
rate in indoor environments) [29] or manual reporting (which
suffers from intentional or unintentional human errors). In
academia, the solutions are based on Wi-Fi [11,13,23,31,39],
LED fixtures [32, 49, 52, 54], and RFID [2, 51]. However,
each of them has limitations for a city-wide deployment with
more than 12,000 merchants and 109,000 couriers with only
commodity smartphones. Wi-Fi based solutions are limited
because continuous scanning is required to keep the Wi-Fi
list updated, which brings much extra power consumption for
courier’s smartphones, and more importantly, for merchants
without Wi-Fi Access Point devices, it is costly to deploy
new ones [9, 30, 33, 41]. LED solutions do not scale up due
to hardware modification costs [49]. RFID solutions require
additional equipment on both receivers and transmitters.

In this work, we argue the Bluetooth Low Energy (BLE)
device [15, 19, 24, 56] is a promising solution to achieve our
goal. BLE is not a new technology, and BLE-based iBeacon
was introduced by Apple [25] in 2013. However, the new fea-
tures provided in BLE 5.0 [45] in 2016 (e.g., longer range and
faster speeds) offer us the opportunity to build aBeacon start-
ing from 2017/05. We deploy 12,109 customized aBeacon
devices to 12,109 merchants on Alibaba platform in Shanghai.
An aBeacon device is a low-cost ($8 USD) broadcast-only
BLE device, and does not have GPS or cellular/ Wi-Fi con-
nections, so it cannot receive any update, and it also cannot
directly communicate with back-end servers. An aBeacon
device deployed in a merchant constantly broadcasts its ID tu-
ple (UUID, major, minor) following the BLE protocol, which
will be received by couriers’ smartphone APP if in proximity

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=76359
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and then uploaded to a server by APP using smartphones’
Internet connection. Based on the uploaded ID tuple, the
server is aware of the couriers’ arrival to this merchant given
previously-mapped device-merchant pairs in the deployment.

BLE devices have several advantages. Continuous scanning
in BLE only introduces less than 2% extra power consumption
on couriers’ smartphones based on our experiments, which is
much less than Wi-Fi [7]; compared to RFID-based solutions,
no hardware modification is needed on the courier end, since
aBeacon only requires a courier to have a smartphone; com-
pared to LED, battery-powered BLE devices can be installed
in many places due to their small size and portability. We
note that a key limitation of aBeacon is we need to deploy
an aBeacon device at every merchant, which introduces both
hardware and deployment costs. However, our deployment
has a low cost since we utilize an Alibaba in-house team and
its members visit merchants periodically for business devel-
opment; the hardware cost of aBeacon can be managed if we
only remain core functions, e.g., no GPS, no cellular/Wi-Fi,
and no Over-The-Air (OTA) updates.

In a control environment, using BLE devices to detect ar-
rival and departure is straightforward. However, it is non-
trivial to build, deploy, and operate aBeacon from the ground
up, considering the tradeoffs between various practical fac-
tors, e.g., cost and performance, in a metric-based approach.
BLE devices are already applied in real-world applications,
e.g., interaction in museums [34] and indoor localization in air-
ports [47]. However, we argue that these indoor environments
are normally under the control of BLE system operators. Still,
the indoor environments for instant delivery (e.g., shopping
mall) are not under the company’s control, i.e., in the wild.
To our knowledge, there are few studies, if any, on a practical
city-wide BLE device deployment in the wild. We introduce
aBeacon based on Alibaba Local Services for courier indoor
status monitoring (i.e., arrival and departure) in a 36 month
two-phase study from 2017/5 to 2020/4.
• Phase I: 8-Month Iterative Pilot Study (2017/5-12). We

deployed three types of commodity BLE devices in 18
merchants and built an APP to test the feasibility of BLE.
Based on the promising results, we customized aBeacon
devices for lower cost and new functions. We deployed one
customized aBeacon device and one commodity device in
200 merchants to A/B test their performance.

• Phase II: 28-Month Deployment and Operation in the
Wild (2018/1-2020/4). We deploy and operate 12,109
aBeacon devices in Shanghai with one device in each mer-
chant. In this phase, aBeacon interacts with 109,378 couri-
ers to provide their status to assist the scheduling of 64
million delivery orders for unique 7.3 million customers
with a total amount of $600 million USD order values.

As of 2020/4, aBeacon is being retired and replacing by a
new system aBeacon+ (introduced in the Discussion section).
In this Operational Systems track submission, we focus on 5
lessons we learned in our 3 year study of aBeacon from its

conception to retirement to provide new insights for the exist-
ing design assumptions based on our successes and failures.

Lesson learned 1: Explicitly Quantifying the System
Gain. During our interaction with the Alibaba executives
team who makes the decision to fund aBeacon, we utilize a
metric-based approach to quantify aBeacon’s monetary gain
(i.e., benefit minus cost) to justify aBeacon. In particular,
we explore the fundamental tradeoff between cost and bene-
fit (proportional to its performance) to optimize the gain of
aBeacon by (i) reducing the cost by customizing new devices
and utilizing our in-house team without technical expertise for
configuration-free deployment, and (ii) increasing the benefit
by improving lifetime, reliability, and utility. We study the sys-
tem gain in an evolving cumulative fashion at the fine-grained
device level. aBeacon achieves the break-even point where its
benefit is equal to its cost after 12 months of the deployment,
and then generate 14 months of benefits. In retrospect, a batch
deployment, instead of an "one-shot" deployment, could make
aBeacon break even earlier.

Lesson learned 2: System Scale Evolution in the Wild.
Even though a device has an expected lifetime of 24 months,
aBeacon’s scale (i.e., number of live devices) has been con-
stantly shrinking, immediately after fully deployed in the wild,
for the entire 26 months of the operation. In particular, the
decrease is steady in the first 20 months due to various fac-
tors (e.g., deployment, hardware, and merchants closed) yet
with a stable citywide spatial coverage; whereas the decrease
is dramatic in the last 6 months due to clustered device bat-
tery run-outs. This observation has the potential to provide
some guidance on the re-deployment strategies (e.g., timing
and priority) to keep the system scale and a positive gain
(as suggested in the Lesson Learned 1), e.g., large-scale re-
deployment much earlier than expected battery lifetime. In
retrospect, aBeacon’s scale shrinking is much worse than our
expectation, making us rethink the initial rationale of deploy-
ing physical devices in the wild. It motivated us to virtualize
the next generation of aBeacon, i.e., aBeacon+.

Lesson learned 3: Lifetime in the Wild. During the
aBeacon operation, the lifetime of 42% devices is longer
than deployment environment (e.g., a device is live but the
merchant it was deployed is closed). However, once deployed
in the wild, large-scale recycling of low-cost ($8 USD) de-
vices from these short-lifetime environments is not practical
due to significant labor. In retrospect, aBeacon devices could
be designed with different energy modules for different envi-
ronment lifetime (e.g., predicted based on our order data) to
minimize the hardware cost.

Lesson learned 4: Reliability in the Wild. Many existing
sensing systems (e.g., proximity [36], gesture [58], and breath
[55]) are mainly tested in control environments with high
reliability [22]. However, we found that even for simple ar-
rival detection in aBeacon the reliability is heavily affected
by many real-world factors including smartphone diversity
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(e.g., 52 phone brands and 672 phone models in our platform),
device placement (e.g., non-expert installation), and courier
mobility behaviors. In retrospect, we could add an OTA up-
date function to some devices (but not all devices) deployed
in uncertain environments, and utilize couriers’ phones to
update them, e.g., increasing their transmission powers.

Lesson learned 5: Utility in the Wild. Unlike other infras-
tructures, e.g., Wi-Fi, we found that in our aBeacon operation,
the locations with more interactions between couriers and
devices may not have higher device deployment utility (quan-
tified by the order delivery rate improvement based on courier
detection). In contrast, the locations with higher uncertainty
of courier mobility behaviors (e.g., higher floors) lead to a
higher utility. In retrospect, we could change our deployment
strategies to prioritize more uncertain environment.

Based on the above lessons learned, we discuss our limi-
tations and potential applications of aBeacon and then dis-
cuss their implications to other systems with long-term broad
geospatial coverage (e.g., Edge Computing), and finally share
the direction of our ongoing work aBeacon+.

2 aBeacon Design Goal
In aBeacon, a generic workflow is as follows: (1) devices de-
ployed in indoor merchants to continually broadcast their ID
tuples; (2) an embedded BLE scanning module in the Alibaba
couriers’ smartphone APP (mandatory for all couriers) to re-
ceive these ID tuples from devices when in proximity and to
upload them to a back-end server using the smartphone Inter-
net connectivity; (3) The server updates couriers’ arrival and
uses them for various functions, e.g., new order scheduling.
Based on this workflow, we introduce our metrics as follows.

2.1 Cost and Performance Metrics
Cost CDev: The costs of a device in aBeacon mainly consist of
the hardware cost and the deployment cost (i.e., the shipping
and labor cost to deploy a device at a merchant).
Lifetime Pi

Life: In our design, we envisioned a lifetime of a
device for two years, and then redeploy new devices after two
years if (i) aBeacon was successful (Yes); (ii) the deployment
cost was still low (Yes); and (3) aBeacon was still the best so-
lution (No since we have aBeacon+). The lifetime of a device
i is affected by the design (e.g., battery) and the environment
(e.g., the deployed merchant is closed).
Reliability Pi

Reli: We quantify a device i’s reliability by the
percentage of couriers we detected among all arrived couriers.
The ground truth of the courier arrival is obtained by the
delivery order accounting data. Pi

Reli is affected by device
deployment, smartphone diversity, and courier mobility.
Utility Pi

Util: We quantify the utility of a device i by overdue
delivery rates reduction for the merchant after i was deployed
in it. After a merchant was deployed with a device, the plat-
form can better detect and predict the status of couriers around
this merchant, which are used to schedule new orders for this
merchant by finding nearby couriers (e.g., a courier just left),

Table 1: Metric Summary
CDev: cost of a device, i.e., hardware & deployment
COver: cost of overdue penalty per order, e.g., $1.
Pi

Life: lifetime of a device i
Pi

Reli: reliability of i
Pi

Util: utility of i
t i
0: day of i was deployed

T : # of days since aBeacon deployed
Nt : # of deployed devices until the tth day
Oi

t : # of orders at tth day in the merchant with i

thus reducing the overdue rate for this merchant. Pi
Util is af-

fected by a merchant’s features where i was deployed (e.g.,
merchant locations, floors).

2.2 Metric-based Approach for Trade-offs
We utilize a metric-based approach to explore the trade-off
between costs and performance by Eq. (1). Assuming it has
been T days since aBeacon was deployed, the cumulative
aBeacon gain GT is given by the difference of (i) the cost CT
of deploying aBeacon until the T th day; and (ii) the benefit
(i.e., monetary saving) brought by performance improvement,
i.e., overdue reduction due to better detection by aBeacon.

GT =
T

∑
t=1

Nt

∑
i=1

Bi
t −CT (1)

where Nt is the number of devices deployed until the tth day
(t ≤ T ) including live and dead devices. CT = NT ·CDev is the
cost of all devices until T th day where CDev is a device cost.
Bi

t is the Benefit of a device i in the tth day as

Bi
t = F1( Pi

Life, t, t i
0 ) · F2( Oi

t , Pi
Reli, Pi

Util, COver ). (2)

F1(Pi
Life, t, t

i
0) indicates whether or not a device i reached its

lifetime limit by the tth day. It was calculated by remain-
ing lifetime Pi

Life − (t − t i
0), where Pi

Life is the lifetime of
i; t i

0 is number of days that device i has been deployed.
F1(Pi

Life, t, t
i
0) = 1 if Pi

Life− (t− t i
0)≥ 0; F1(·) = 0 otherwise,

i.e., no remaining lifetime, so we do not have to consider F2.
F2(Oi

t ,P
i
Reli,P

i
Util,COver) indicates the monetary saving by re-

duced overdue penalty of the orders detected by i. Oi
t is the

number of orders at the tth day in a merchant with i, e.g., 100;
Pi

Reli is the percentage of the orders whose couriers can be
detected by i, e.g., 80%; Pi

Util is the reduced overdue rate (com-
pared to the overdue rate before the device was deployed) for
all orders whose couriers are detected by i, e.g., 20%; COver
is the overdue penalty per order, e.g., $1. An example of F2 is
the product of all these terms, i.e., Oi

t ·Pi
Reli ·Pi

Util ·COver (e.g.,
saving is 100 ·80% ·20% ·$1 = $16).

3 aBeacon Life Cycle Overview
Unlike the wireless systems (e.g., Smart Home IoT) that can
be updated by OTA, an aBeacon device was not designed
to be updated after customization to save the hardware cost.
Thus, separated by the time we finished the customization
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Table 2: Overview of Two Phases

Phase I: 8-month Pilot Study
(2017/5 – 2017/12)

Phase II: 28-month Operation in the Wild
(2018/1 – 2020/4)

Conception Stage
(2017/5-8)

18 merchants,54 devices

Customization Stage
(2017/8-12)

200 merchants, 400 devices

Deployment Stage
(2018/1-3)

12,109 merchants & devices

Operation Stage
(2018/3-2020/4)

Evolving 

C
os

t Hardware Commodity (Fig.1) Commodity ($11, Fig.1, T4) 
Customized ($8, Fig.2) Customized

Deployment Our Team (Fig.1) Our Team 302 Business Managers

Pe
rf

or
m

an
ce Lifetime Fig. 1 Commodity (2-3 yrs. advertised)

Customized (2 yrs. designed)
In retrospect, we should have selected 

the merchants with longer lifetime Fig. 4 & 5

Reliability 98% Both are Close to 98% Installation Handbook Provided Fig. 6-8 & Table 5

Utility Highly Profitable Merchants Selected Fig. 9-12

Phase

Stage & Scale

Goal

Tx Power -59 dB -65 dB -65 dB
Advertised 

Lifetime ≤ 3 yr 2 ~ 3 yr ≤ 3 yr

Cost $11 each $10 each $10 each
Encapsulation Water, Dust, Shock Proof Dust Proof Only

Merchant 

Devices

Size Comparison Device 1 (T15) Device 2 (T4) Device 3 (T11)

Fig 1: Deployment for Conception Stage

(i.e., 2018/01), we divide the entire 3-year study of aBeacon
into two phases, i.e., Phase I: 8-Month Pilot Study; and Phase
II: 28-month Deployment and Operation.

As in Table 2, we carefully designed the stage, scale, cost,
and performance to serve each phase’s purposes.

3.1 Phase I: 8-Month Pilot Study (2017/5-12)
In this phase, we performed two studies in a conception stage
to investigate three commodity devices, and a customization
stage to design and evaluate new devices with A/B testing.

(i) Conception Stage (2017/5-8): As shown in Table 2, we
aim to understand whether a BLE device system can detect the
couriers’ indoor arrival and departure with reliability higher
than 95%. We bought 54 commodity devices in three brands
and deployed them in 18 merchants of a shopping mall in
Shanghai. Each merchant was equipped with three commodity
devices of different brands, as shown in Fig.1 with technical
specifications. We set some key configurations of couriers’
mobile APP when interacting with commodity devices as
parameters for further developing, e.g., scanning duration

Table 3: BLE Chip Comparison
.

BLE
Chip

Link
Budget

Tx Power
Consump.

(curr. at 0dB)

Sleep Power
Consump.

(curr.)

Price
$/unit

CC2540 [27] 97 dB 21 mA 0.9 ua ∼1.1
DA14580 [43] 93 dB 12.4 mA 0.5 ua ∼1.1
CSR1010 [40] 93 dB 18 mA 5 ua ∼1.1
nRF51822 [44] 96 dB 8.06 mA 2.6 ua ∼1.1

and intervals, data upload cycle, and working hours. Note
that the couriers’ APP and the back-end server developing
were also the major works in this stage, but we omit them in
this paper since they are standard. After this study, we had
average reliability of 98%, so we concluded that a beacon-
based solution could achieve high reliability.

(ii) Customization Stage (2017/8-12): Instead of using
commodity devices, we customized our aBeacon device for
low cost ($8 per device) and longer lifetime. We performed a
middle-scale A/B testing between the best one among three
commodity devices and our customized device. As in Table
2, after the reliability had been proved in the previous stage,
our customization was focused on the hardware cost and life-
time since the large-scale city-wide deployment cost in Phase
II is marginal when we utilize our in-house business team.
In our customization, three components, i.e., BLE chip, bat-
tery, and casing, were carefully customized to achieve overall
lower cost and longer lifetime. (1) For the BLE chip, we com-
pared the mainstream BLE chips as in Table 3. Since our
BLE devices in aBeacon were expected to broadcast for at
least two years without external power continuously, we chose
the nRF51822 from Nordic Semiconductor as the BLE chip
since it has both the minimum Tx power and acceptable other
configurations. (2) For the battery, we considered both the
lithium battery and the alkaline battery since we expected
an aBeacon device could operate for at least two years with-
out maintenance. The lithium battery usually has a smaller
size, but the alkaline battery has a much better unit capacity
(mAh/$), so we used two alkaline AA batteries in cascade .
(3) For the casing, we considered dust, water, and shockproof
for transportation and operation in various indoor (or poten-
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tial future outdoor) operations. Finally, we built 200 aBeacon
devices, as shown in Fig.2. We A/B tested our 200 customized

Battery(2xAA)PCB Board
(nRF51822)

Water-proof 
Dust-proof  

Shock-proof
casing

Fig 2: Customized Hardware for aBeacon
devices with 200 commodity devices (i.e., Device 2 (T4) [10]
in Fig.1). We selected 200 merchants in two malls and placed
one customized device and one commodity device side by
side to compare their performance. After 2-month testing,
we concluded our customized devices are ready for deploy-
ment and operation because they have similar reliability with
the commodity devices, but have a lower hardware cost and
potentially longer lifetime.

3.2 Phase II: 28-month Operation (18/1–20/4)
We introduce a 3-month deployment and a 25-month opera-
tion stage of 12,109 devices in Shanghai (visualized in Fig.3.)

(i) Deployment Stage (2018/1-3). After we received all
aBeacon devices from a manufacturer, we aim to deploy
them in 12,109 chosen merchants among 57,223 merchants in
Shanghai after consulting with our accounting department to
understand these merchants’ profitability, potentially decides
our aBeacon’s utility. We decided to deploy around 12 thou-
sand devices for aBeacon because of the approved $100,000
budget, i.e., the system cost. Assuming no benefit at all, based
on Eq. (1), our system gain GT is −$100,000 (i.e., the trivial
lower bound in Fig.3 (iii)). In Phase I, our team deployed
200 devices by ourselves, but 12,109 devices were out of our
team’s capability. As a result, we utilize our in-house regional
business development managers who periodically visit all mer-
chants for regular business meetings to install our aBeacon
device. We mailed our aBeacon devices and guided them for
aBeacon device deployment and mapping between aBeacon
devices and merchants by a detailed handbook, which shows
“Where to attach the device?” (e.g., main entrance), “How
to attach the device?” (e.g., double-sided tape) and “How to
map the device?”. The mapping was achieved by scanning
a QR code on an aBeacon device and then choosing its mer-
chant from a given merchant list in a business manager APP.
302 managers participated in our deployment process, and it
took us around two months to deploy all the devices after one
month of shipping and logistics. Since our business managers
deploy our devices for free, the main deployment cost is the
shipping cost, which is around $1 per device.

(ii) Operation Stage (2018/3-2020/4). After the deploy-
ment, aBeacon is fully operational, and we have been mon-
itoring its status and utilizing it to detect couriers remotely
based on the data we collected from couriers’ APPs. We em-
bed the device monitoring function in the official smartphone
APP of 109,378 Alibaba couriers in Shanghai. When we first
receive an aBeacon device ID tuple from a courier’s phone,

Table 4: Operation Data Collected

Attribute Example
Courier ID C_000001
Timestamp 2019/08/15 12:30:23
Device ID Tuple (UUID, Major, Minor)
Merchant ID M_000001

Attribute Example
RSSI -80dB
Phone ID D_000001
Phone Brand/OS Apple/iOS
Phone Model iPhone X

Attribute Example
Courier ID C_000001
Timestamp 2019/08/15 12:30:23
Latitude 31.243715
Longitude 121.245847
Speed 3.7 km/h
Altitude 40.2 meters

Attribute Example
Courier ID C_000001
Timestamp 2019/08/15 12:30:23
Merchant ID M_000001
Order ID O_000001

Report Type
Acceptance/Arrival/
Departure/Delivery

(b) Courier GPS data

(a) aBeacon monitoring data

(c) Courier order report data

we need to make sure this live device is correctly deployed
and works properly. For all devices, their initial status on our
server end is “Not Deployed”; once a manager completes
the mapping operation on her APP, a “Not Deployed”device
becomes “Online”. For all “Online", we use order accounting
data to validate if the deployment is correct or not indirectly:
(1) if a device is heard by more than three couriers whose
current orders or GPS would not let them pass the merchant
mapped to this device, this “Online” device would be changed
to “Wrongly Deployed”; (2) if no ID tuples were received
from a device for 24 hours, and if the mapped merchant still
has orders during these 24 hours (e.g., more than ten orders),
then this “Deployed” device would be considered as “Offline"
or “Retired” based on its expected lifetime is reached or not
since deployment; (3) if ID tuples were received from a de-
vice, but the merchant was closed (based on our accounting
data), it would be considered “Closed".

(iii) Operation Data Collected. During our operation, we
collected three kinds of data sets to monitor and validate
aBeacon. (a) aBeacon Monitoring Data. As in Table 4(a),
every time an aBeacon broadcast was received by a courier’s
phone, we recorded the information of the aBeacon device,
phone, and the Received Signal Strength Index (RSSI) of the
broadcast. (b) Courier GPS data. As in Table 4(b), GPS data
were collected under courier consent since customers also like
to know where his/her order is, and the platform needs to know
couriers’ locations for order assignment. (c) Courier Order
Report Data. As in Table 4(c), for each delivery order, the
courier needs to report when he/she arrives at or leaves from
the merchants manually for real-time order status updates.
These report data are used as the ground truth for aBeacon
detection. However, in our previous study, we found couriers
often forgot to report their status and exaggerate their status
(e.g., early reporting) to game the scheduling system for better
order assignment. That is why these report data can only be
used as post-hoc ground truth, i.e., we know that a courier
arrived at a merchant after an order was delivered since a
courier often forgets or falsely reports their arrival. Please
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operation stage); (ii) aBeacon device heatmaps in Shanghai for four key stages; the background shapes are expended to the
corresponding time in (i) and the system gains (iii); (iii) Three aBeacon gains with three kinds of utility.

see our Discussion section for details on using aBeacon for
Anomaly Detection.

4 aBeacon Operation Results
4.1 Result Overview
In Fig.3, we show a panorama of aBeacon life cycle with our
two phases from 2017/5 to 2020/4.
Quantitative System Evolution Overview: In Fig.3 (i),
given a day t, we show both the number of aBeacon devices
Nt with “Deployed” status in t and the number of delivery or-
ders Ot whose couriers are detected by aBeacon in t. We omit
the number of couriers detected since it is highly correlated
with the number of delivery orders. The detailed analysis on
Nt and Ot in Sec.4.3, but we would like to highlight two tech-
nical incidents affecting both Nt and Ot as indicated by three
circles in Fig.3 (i). On May 16th and 21st, 2018, a configura-
tion exception occurred on the APP server and led to data loss,
and our team diagnosed and fixed it quickly. In May 2019,

we found an unusual decrease in detected orders, which took
our team around two months to diagnose the root cause, i.e.,
a caching problem in the courier APP of some phone brands.
In particular, since the courier APP is not always connected
to the server, it would cache some received aBeacon device
data if the network connection is unavailable. But when the
local cache was full, received data got lost without exceptions
raised in some smartphones brands. By the end of June, the
problem was fixed, and the detected orders increased.

Qualitative Spatial Coverage Evolution: In Fig.3 (ii), we
visualize the aBeacon spatial evolution in Shanghai at four
critical periods. (a) 2018/01: 2 weeks into the deployment
stage where aBeacon has not been uniformly deployed; (b)
2018/03: aBeacon is fully operational, reaches its spatial scale
peak, and covers all the central business districts in Shang-
hai; (c) 2019/09: aBeacon has been operating for 20 months,
and the spatial cover remains relatively similar, and it is two
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months away from the starting of clustered battery run-out;
(d) 2020/03: aBeacon drops below a critical level and is being
retired and replaced by aBeacon+ (see the Discussion sec-
tion). We found even the scale of aBeacon has been shrinking
right after the full deployment due to various real-world is-
sues, the spatial coverage has been relatively stable for 20
months. Based on our field study, we found the most of the
dead devices are related to merchants closed, deployment im-
perfection, hardware malfunction, and vandalism. It provides
some practical guidelines for our current project of the next
generation of aBeacon, i.e., aBeacon+.

4.2 System Gain Evolution
System Gain Overview: In Fig.3 (iii), we utilize Eq. (1) to
show the system gain, i.e., the monetary saving minus the
system cost. All metrics in Eq.(1) can be directly measured
by our aBeacon data except the system utility Pi

Util. We show
three cumulative gains (defined in Sec.2.2) based on the empir-
ical value of system utility Pi

Util (overdue rates reduction after
device i was deployed, discussed in Sec.4.6), along with its
lower bound Pi

Util (no overdue reduction at all) and its upper
bound Pi

Util (complete overdue reduction), respectively. We
found aBeacon achieved a break-even point after 12 months ,
which provides empirical guidance for our aBeacon+. Some
additional applications of aBeacon for the Alibaba group are
shared in the Discussion section.

Lesson Learned 1: Explicitly Quantifying the System
Gain. Even though the cost of a real-world system can be of-
ten explicitly quantified, the benefit of a system is often hard
to be, which makes the justification of deploying a system
challenging when convincing the decision-makers. Based on
our interactions with the Alibaba executive team, who made
decisions to initiate and fund aBeacon, we utilized a metric-
based approach to quantify the cumulative system gain to
justify aBeacon development. In particular, we explore the
cumulative system gain by (i) reducing the cost by customiz-
ing new devices (e.g., 20% less than commodity devices yet
with more functionality) and utilizing our Alibaba in-house
business development team without technical expertise for
large-scale deployment due to our configuration-free setting,
and (ii) increasing the performance by extending device life-
time, improving reliability, and enhancing utility. As shown
in Fig.3 (iii), aBeacon achieves a break-even point after 12
months. In retrospect, a few approaches could be used to
make sure aBeacon achieves break-even earlier. The most
promising one is a batch deployment instead of a “one-shot"
deployment in a short time, which have been used in our other
physical device deployment projects.

In-depth System Gain Investigation Overview: To provide
an in-depth investigation on the cumulative system gain, we
analyze seven metrics in Eq.(1) and (2) individually: (i) CDev
and COver are the individual device cost and the order overdue
penalty, which are almost fixed in our setting; (ii) Nt and Ot

are related to the system scale and we study them in Sec. 4.3;
(iii) Pi

Life, Pi
Reli, Pi

Util are related to the system performance in
terms of lifetime, reliability, and utility, which are studied in
Sec. 4.4, 4.5, and 4.6, respectively. The correlation between
different metrics is introduced in Sec. 4.7.

4.3 Scale Metric: Number of Device & Order
Scale Metric 1: Number of Devices Nt . In Fig.3 (i), start-
ing from our deployment stage in Phase II, the number of
aBeacon devices increased significantly until the end of our
deployment stage in 2019/3. However, after aBeacon scale
peaked in 2019/3, two decreasing trends are observed. (1) The
first one is a slow decrease throughout the major part of Phase
II from 2018/3 to 2019/10, where we lost some devices ev-
ery day. In addition to vandalism, deployment, and hardware
issues, the primary reason is that some merchants terminate
their business with Alibaba every day. The merchant turnover
rate in China online platforms is high, and almost 70% of
new merchants were closed within one year of the opening
in 2017 [20]. We report our empirical merchant lifetime data
in Fig.4 and analyze it in detail later. (2) The second one is
the sharp decrease from 2019/11 to 2020/2, due to the clus-
tered battery running out after 20 months of operations since
2018/3. Such an observation provided some insights about
our potential re-deployment strategies, which we will discuss
in the Lesson Learned 2.

Scale Metric 2: Number of Orders Ot . As shown in the
Cumulative System Gain Eq.(1), the number of orders Ot
whose couriers were detected by aBeacon is the central part
of deciding the gain of aBeacon. In Fig.3 (i), we found in the
full operation stage of Phase II (from 2018/3 to 2019/11), the
number of orders detected is around ten times the number of
aBeacon devices, which implies each device serves ten orders
on average every day. This ratio remains similar throughout
Phase II except for the mid-February, during which the overall
number of orders decreases sharply. Mid-February is typically
the Chinese Spring Festival, i.e., the biggest holiday where the
number of total orders reduced since many merchants closed
during this time. We observed sharp decreases and recoveries
during February of 2018, 2019, and 2020 in Fig.3 (i), and
the corresponding impact on the system gain in Fig.3 (iii). In
2020, the impact of COVID-19 lasts after February, so we do
not see an apparent recovery at the end of February.

Lesson Learned 2: System Scale Evolution in the Wild.
The scale of aBeacon (quantified by the number of devices
Nt and the number of associated orders Ot) is essential to
ensure the cumulative system gain. As in Fig.3 (i), after fully
deployed in the wild (2018/3), aBeacon scale has been con-
tinuously shrinking for 26 months until 2020/4, even though
devices have an expected lifetime of 24 months. In particular,
the decrease is steady in the first 20 months (from 2018/3 to
2019/10) due to various factors (e.g., vandalism, hardware
malfunction) yet with a stable city-wide spatial coverage in
Shanghai (Fig.3 (ii)). In contrast, the decrease is quite sharp in
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the last six months (from 2019/10 to 2020/4) due to clustered
battery run-out. It suggests that if we want to keep the system
scale, we should start a full-scale re-deployment much earlier
than expected, or perform batch-based small re-deployment
continuously if we want to keep aBeacon at scale. However,
we did neither of them in practice since we move on to a new
system aBeacon+ without deployed devices as introduced in
future work. Further, by using the number of orders as a bridg-
ing factor, our results also provided some insights on how to
link the traditional system scale (i.e., number of devices) to
the business revenue (i.e., reduced order overdue penalty) to
justify their potential correlation. The insights help us com-
municate with the Alibaba executive team when reporting the
impact of aBeacon on the overall Alibaba ecosystem.

4.4 Performance Metric 1: Lifetime Pi
Life

Lifetime Overview: The lifetime of an aBeacon device is
decided by two primary factors: (i) the battery size, which
was considered in the customization stage of Phase I when we
design our hardware; (ii) the merchant lifetime, which unfor-
tunately was not considered in the deployment stage of Phase
II as shown in Table 2 since we mainly consider the prof-
itability of merchants. In our defense, there should be a strong
correlation between the profitability and lifetime of a mer-
chant, but we found that the profitability of many merchants
has been rapidly changing, especially on the online platform.

(1,	0.	23)
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C
D
F

0

0.25

0.5

0.75

1

Lifetime	(years)
0 1 2 3 4 5

Fig 4: CDF of Device Lifetime
and Merchant Lifetime

Further, given the high real
estate rental fees in Shang-
hai, many merchants move
their physical stores fre-
quently. If a merchant de-
ployed with an aBeacon
device is closed or moved,
there is a high chance that
the deployed device would
be thrown away. The CDF
of devices’ and merchants’
lifetime are given in Fig.4. Around 23% and 40% of mer-
chants closed within 1 or 2 years, respectively; whereas more
than 50% of devices died within one year, much less than the
expected lifetime based on battery alone.

Lifetime Correlation: An in-depth visualization of the cor-
relation between these two factors is scatter-plotted in Fig.5
where we record the last day a device i was heard as X-axis;
the last day the corresponding merchant had orders on our
platform as Y-axis. We have three observations: (1) points
(15%) around the diagonal (|x−y| ≤ 14, i.e., 14 days) suggest
devices died within two weeks of the closure of the corre-
sponding merchants on our platform; (2) another cluster of
points (17%) is around x = 640, which means a device is
dead after 21 months of operation, as observed in Fig.3 (i).
(3) for the points above the diagonal (26%, x < y), it indi-
cates the merchant has active orders from our platform, but
the aBeacon device is dead; for the points below the diag-

onal (42%, x > y), it indicates the merchant closes on our
platform (i.e., no orders) but the device can still be heard
by couriers, i.e., the device may be in the original locations
or nearby, and can be heard when our couriers in proximity.

Fig 5: Last day a Device was
Heard and Last day the Corre-
sponding Merchant has Orders

We note that a merchant
has no orders on our plat-
form does not necessar-
ily mean the merchant is
closed, but it can be used
to approximate the mer-
chant’s lifetime on our plat-
form. For a closed mer-
chant, an intuitive idea is
to recycle the device for re-
deployment, but in practice,
we did not do it due to two
reasons: (1) the platform is
not generally informed in
advance when the merchant is closing so we cannot prepare
in advance to recycle the device; (2) the device recycling in-
troduces significant labor and shipping costs, and the recycled
devices may be damaged or with low battery, which makes
purchasing a new device a better choice overall. As a result,
we did not perform large-scale device recycling in practice.

Lesson Learned 3: Lifetime in the Wild. The lifetime of
42% devices is longer than the lifetime of their deployed en-
vironment (e.g., merchants). It provides new insights on our
design assumption on mobile device energy since a longer
battery life may not increase the device lifetime due to uncer-
tainty of the deployed environment but introduce higher costs.
This lesson is especially true when the large-scale device
recycling and re-deployment are not practical due to higher
labor cost. It motivated us to design devices with different
battery capacity and then deploy devices in batches to accom-
modate the environment’s lifetime, which can be predicted
by our platform data. We apply this lesson in our aBeacon+
where we use merchant phones as our virtual devices (instead
of deploying physical devices) to broadcast their ID so that
the couriers can receive them in proximity. In aBeacon+, em-
bedded in merchants’ smartphone APPs, the virtual device
broadcasting module has different versions, whose parameters
were set differently for different merchants.

4.5 Performance Metric 2: Reliability Pi
Reli

We quantify the reliability Pi
Reli of an aBeacon device i with

a percentage indicating among all the orders from a merchant
deployed with the device i, how many orders we detect. There
are three major factors impacting Pi

Reli: Stay Duration, Device
Deployment, and Smartphone Hardware.

Impact of Stay Duration on Pi
Reli. The stay dura-

tion is the time between a courier arrives at and de-
parts from a merchant. The stay duration varies due to
multiple factors such as the layout of a merchant, the
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courier’s walking speed, and whether an order is ready
when the courier arrived, i.e., waiting for the order or not.
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Fig 6: Impact of Stay Duration

In Fig.6, we found that the
longer that a courier stays,
the higher the Pi

Reli. The
stay duration is computed
as the differences of depar-
ture and arrival time from
the couriers’ order report
data in Table 4(c) Even
though there were inaccu-
rate report data due to hu-
man errors, our results are based on 76 million orders for two
years, ensuring our results are statistically significant. Two
observations can be made from Fig.6: (1) The reliability in-
creases with the staying duration, but does not change much
after 7 mins; (2) iOS has a much better performance than
Android.

Impact of Deployment Position on Pi
Reli. The deployment

position is an essential factor for reliability, as we found some
merchants with an exceptionally low detection ratio. Although
our deployment handbook suggested that “Beacons should
be attached around the order pickup area”, some business
managers put devices somewhere else due to various reasons.

Actual 
Device 

Coverage

Ideal 
Device

Coverage
Pickup
Area

Courier 1
Pickup Trace

Wall
Courier 2
Pickup
Trace

Fig 7: A Field Study of Deploy-
ment Position Impact

For example, some mer-
chants do not have a fixed
“meal/groceries pickup
area"; some merchants pre-
fer the device to be placed
somewhere else, e.g., under
the counter. We performed
some field study, and our
findings can be clearly
explained with Fig.7 that
depicts the layout of a
real-world restaurant. In
this merchant, there are
two entrances with a horizontal wall in the center. Two
couriers may pick up orders from both entrances, which leads
to the different indoor pickup traces. Unfortunately, because
the wall obstructs the device broadcast, only the Courier 1’s
arrival was detected, which results in a reliability Pi

Reli of
46% in our observed period. If the aBeacon device were
placed in the pickup area, we could have better reliability
since both courier traces can be detected. In short, the impact
of deployment position is difficult to estimate due to the
uncontrollable deployment quality. The reason is we utilize
our in-house business team with no deployment expertise (or
incentive), and a deployed device can be moved as well, both
of which typically leads to low reliability at some merchants.

Impact of Phones Brands and OS on Pi
Reli. Our goal is to

have most courier smartphones (if not all) to be compatible
with aBeacon at both the hardware (i.e., phone brands and

models) and software level (i.e., OS types). Given more than
109,000 couriers in Shanghai, it is challenging to either force
the couriers to use specific smartphone brands or know if a
courier uses an un-supported smartphone. To analyze the im-
pact of smartphone OS, we divide all the orders in aBeacon
merchants into two dimensions: whether its courier was de-
tected by aBeacon or not; whether its courier was using an
Android or iOS phone. As in Table 5, 63.4% of the orders

Table 5: Detected Ratio of Device OSs over All the Orders

Devices Detected Undetected
iOS 13.4% 2.4%

Android 63.4% 20.8%

were detected with the Android couriers (including 52 brands
and 672 models), and their average Pi

Reli is 63.4%
63.4%+20.8% =

75.2%; 13.4% of the orders were detected with the iOS
couriers, and their average Pi

Reli is 13.4%
13.4%+2.4% = 84.8%.
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Fig 8: Impact of Smartphone
Brand on Reliability

We found iOS performs
significantly better than
Android. For different
phone brands (different
hardware), the average
Pi

Reli varies. We show
the average Pi

Reli of nine
well-known brands in
China in Fig.8, in which
Nexus has the highest Pi

Reli
of 92%, and iPhones has a
Pi

Reli of 84%.

Lesson Learned 4: Reliability in the Wild. Many existing
wireless sensing systems (e.g., proximity [36], gesture [58],
breath [55], human-object interaction [22], and indoor path-
way mapping [46]) are mainly tested in the environments with
little uncertainty, so they have high reliability. However, we
found that even the reliability of a simple presence detection
(i.e., courier arrival) is far from guaranteed in a wild, and it
is affected by many real-world factors including smartphone
software& hardware combination (e.g., 52 phone brands and
672 phone models in Table 5 and Fig.8), and installation
position (e.g., low-cost yet unprofessional installation and
obstacles in Fig.7), and stay duration (e.g., no waiting time
for couriers in Fig.6). In retrospect, we could add an OTA
function to some of our devices (but not all devices) deployed
in uncertain environments and update them with couriers’
phones, e.g., increasing transmission power.

4.6 Performance Metric 3 Utility: Pi
Util

The overdue rate reduction is the metric we use to measure the
utility Pi

Util of deploying an aBeacon device i at a particular
merchant. For an overdue delivery order (e.g., longer than 30
mins for food), there is an overdue penalty COver with which
the platform will compensate the customer. A typical COver
is $1, but an overdue penalty could be as high as 200% of
the average profit per order if a customer brought delivery
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insurance. Specifically, the overdue rate is the percentage of
the overdue orders among the total orders. So the overdue rate
reduction is the difference between the overdue rates before
and after an aBeacon device deployment. We note that other
factors impact the overdue rates of a merchant, e.g., holidays
and weathers, but they are out the scope of our paper. We
use six months of data before aBeacon deployment and 24
months of data after aBeacon deployment in the evaluation.
There are many features of a merchant that decide the utility
of deploying an aBeacon device. We study two of them, i.e.,
Building Floor and City District, due to the space limitation.

Impact of Different Building Floors On Pi
Util. To evaluate

the impact of deploying an aBeacon device on different floors
on utility, we aggregate the overdue rate reduction on different
floors and compare them with the average overdue rate of all
merchants in Shanghai city before and after our aBeacon is
deployed. The device scale distribution on different floors
is given in Fig.9. As shown in Fig.10, the utility is higher
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Fig 10: PUtil after Deploy-
ment in Different Floors

on higher floors or lower basements than the ground floor.
This is because the stability of the courier indoor mobility
is disproportional to the distance after they enter a building.
The higher the floor, the longer the distance, the less stable of
courier mobility behaviors (e.g., arrival), the higher benefit for
aBeacon to detect these behaviors for later order scheduling.

Impact of Different City Districts on Pi
Util. To evaluate

the impact of districts, we choose five typical districts in
Shanghai and compare their average utility, i.e., the overdue
rate reduction after aBeacon was deployed. As shown in
Fig.11, Huangpu is a central business district with a popula-
tion density of 32,004/km2, about three times of New York
City (10,194/km2). Songjiang is a suburban area with a pop-
ulation density of 2,892/km2, comparable to Los Angeles
(2,910/km2). As shown in Fig.12, Pi

Util for all merchants with
aBeacon devices in Songjiang is lower than Shanghai city
average; whereas Pi

Util in Huangpu is much higher than the
average. This is because (1) there are more orders in a more
populous area such as Huangpu where each device can serve
more orders (we omit the results due to space limitation); (2)
the overdue rate is more severe in the city center, and the
aBeacon can detect couriers more effectively, which leads to
better scheduling and thus higher overdue rate improvement.

Lesson Learned 5: Utility in the Wild. Unlike other wire-
less infrastructures, e.g., Wi-Fi, we found the deployment
locations with more courier interactions (i.e., demand) during
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our system operation may not have higher utility (quantified
by delivery overdue improvement). Instead, we found that
the utility of an aBeacon device is proportional to the uncer-
tainty of the courier behaviors it can detect (e.g., couriers in
higher floors and basements or the downtown area as shown
in Fig.9 and Fig.11) because detecting couriers in these un-
certain environments can improve the later order scheduling,
thus higher utility. This is different from Wi-Fi or cellular
device deployment, which are mostly focused on the high
user density area. In short, our above findings can provide
practical design guidance for battery capacity, transmission
frequency and power, OTA interface, better installation, and
deployment strategies for future wireless systems in the wild.

4.7 Correlation between Different Metrics
Due to the space limitation, we briefly report the results of
the correlation between different performance metrics. Our
main finding is that for the same aBeacon device, when its
reliability is low, usually its utility and lifetime are below
average; whereas when its reliability is high, the utility is
more impacted by the merchant’s floors and districts. When
reliability Pi

Reli < 0.5, this correlation might be caused by
improper deployment, which (i) weakens the device utility
due to limited data gathered for order scheduling, and (ii)
reduces the device lifetime due to potential damage from
improper deployment. It also implies that we need to consider
other factors if we want to have a longer lifetime and push the
utility to the limit when Pi

Reli is already high. In our analyses,
lifetime and utility are not strongly correlated.

5 Discussions
5.1 Limitations of aBeacon
Manual Deployment: For a real-world deployment in the
wild, hiring professional teams ensure reliable deployment
results but introduces a higher deployment cost per device.
In our project, we use our in-house business team to deploy
and install aBeacon devices at more than 12,000 merchants.
Our aBeacon system works well in general under this deploy-
ment strategy. We admit that our approach may not apply to
other settings where such an in-house team is not available.
However, we believe our approach can be implemented by
Crowdsourcing [42] to deploy wireless devices with a lower
labor cost, given little configuration is needed.

No Precise Locations: Another critical limitation of
aBeacon is that it can only detect couriers’ arrival at mer-
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chants but cannot perform localization. Given our design goal,
a fine-grained localization would be a nice feature to have,
but it may not provide higher system gain. Localization in-
creases both hardware cost and deployment cost significantly
(it may need onsite configuration or fingerprinting [19]), and
may not reduce the overdue rates substantially since the order
scheduling only needs coarse-grained locations of couriers.

5.2 System Security
In addition to the hardware cost reduction, another significant
improvement in our customization stage is that we enable
our devices’ security functions. In traditional iBeacon pro-
tocol [25], a device ID tuple is fixed for each hardware and
broadcast in clear words. It reduces the system complexity
while making a device sniffer possible. For example, (1) ma-
licious attackers or unauthorized users (free-riders) can easily
restore the device map through war-driving around the de-
vices; (2) if they replicate some device IDs somewhere else,
wrong detection information will be collected by aBeacon.
To address this problem, we designed and implemented a
Time-based One-Time Password (TOTP) [53] algorithm to
encrypt the device ID broadcast by changing the major and
minor in the ID tuple periodically. A shorter period makes
the mapping harder to be restored, whereas a longer period re-
duces the complexity and the server workload. We set a daily
periodical change after exploring the trade-off. The mapping
of the device IDs and the merchant locations was stored on the
server so that only authorized users can access it. A detailed
study of system security is out the scope of this work and will
be reported in future work.

5.3 Courier Survey
Feedback is collected from couriers every month regarding
multiple aspects, e.g., APP performance, order scheduling,
employee care, and penalty appeal. Among the 433 negative
feedback on “APP performance” in a recent month, we found
the following feedback potentially related to aBeacon (# of
reports): inaccurate localization (23), slow localization (14),
cannot report arrival at the merchants (11), too much battery
consumption (8), too much data consumption (2), mandatory
Bluetooth on (2). The top three criticisms are all about local-
ization. The underlying reason is that the couriers must report
“arrival” at the merchants and customers, and the report must
be conducted near (e.g. within 500m) the merchants or cus-
tomers based on the courier’s GPS and the latitude/longitude
of the merchant or customer. GPS drifting due to the indoor
environment is the main reason for failed reports. The feed-
back results indicate that alternatives are need besides GPS.
aBeacon can help in some cases, but we still need to fix
the cases when GPS and aBeacon fail at the same time. We
should also take care of the battery and data consumption.

5.4 Ethics and Privacy
All the data sets are collected under the consent of the couri-
ers. In all our analyses, we have been working on aggregate

data. As a result, our results cannot be used to trace back
to individuals. The courier ID is an anonymous key to join
different data sets, and any other ID information cannot be
tracked or identified in practice. We did not utilize personal
information from the couriers, e.g., age, gender, income, to
protect the couriers’ privacy.

5.5 Additional Applications of aBeacon
In addition to the direct system gain we measure in this paper,
Alibaba has been using aBeacon data for a few additional
applications based on courier arrival detection.

Order Delivery Time Estimation: The Estimated Time of
Arrival (ETA) problem is one of the critical issues in the de-
livery industry, especially hard for the indoor environment.
Based on aBeacon data, we obtain travel time between differ-
ent indoor merchants and build a data-driven model for de-
livery time prediction, which has been used by other Alibaba
teams to predict the overdue rate for the order scheduling.

Merchant Location Correction: Accurate merchant loca-
tions are essential in the delivery service. Currently, these
locations are provided by merchants themselves and consist
of unintentional or intentional errors. Based on the aBeacon
data, we can measure the travel time between different mer-
chants, cross-validate the accuracy of these locations, and
potentially correct them based on massive traveling data.

Anomaly Detection: Unlike GPS data that can be faked on
the smartphone [37], aBeacon data provide a physical pres-
ence confirmation. aBeacon data have been used to detect
cheating in the delivery process, e.g., frauds conducted by
merchants and couriers for the platform subsidy. A detailed
courier behavior study measured by manually reported data
and automatically collected aBeacon data is out of this pa-
per’s scope and merits additional investigation.

5.6 aBeacon+: Next Generation of aBeacon
Since it is expected the maximum lifetime of aBeacon is
two years, we have been working on a new system called
aBeacon+ built upon aBeacon to retain its strengths and
address its limitations. In aBeacon+, under the merchants’
consent, we use merchants’ smartphones as aBeacon devices
instead of deploying aBeacon devices, to avoid the hardware
and deployment cost. aBeacon+ does not suffer from vandal-
ism, hardware malfunction, and merchant closures. We embed
a broadcasting module in the official merchant APP based on
the opportunity that almost every merchant owner needs to in-
stall a merchant APP to manage orders. The deployment and
operation insights we obtained from aBeacon have guided
our development of aBeacon+, e.g., batch-based deployment
and merchant targeting (see our Lessons Learned for details).

We acknowledge the incentives and privacy issues need our
attention to make aBeacon+ practical and salable. However,
we argue that the APP users may be willing to provide their
locations voluntarily with appropriate incentives in some set-
tings. In our case, a merchant provides this virtual aBeacon
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service on its smartphone. The virtual aBeacon can help the
platform decide whether an overdue order is because of the
merchant’s long order preparation time or the courier’s late
pickup. Similar applications have been launched in Singapore
and potentially in the US for public health purposes during
the recent COVID-19 pandemic. TraceTogether [35], a BLE
based APP developed in Singapore operates similarly to an
aBeacon+ scheme that users nearby can detect each other for
contact tracing purpose in response to COVID-19, which is
another example of smartphone users’ voluntary participation
under some practical incentive.

5.7 Implications on Others Systems
Our study offers some interesting implications for current and
future networked systems’ design, verification, and operation.

Offline Ground Truth Collection for the Verification of
Wi-Fi based Solutions: Along 48% of our merchants have
stable Wi-Fi access, aBeacon can be used to collect offline
ground truth for various applications based on Wi-Fi in the
wild to verify existing assumptions or models on Wi-Fi sys-
tems and contribute to the community.

Deployment Strategies for 5G and Edge Computing: It
has been widely accepted that the extreme densities of base
stations and devices are needed to support 5G applications
due to its high carrier frequencies with massive bandwidths
[3, 8]. Edge computing networks also have a similar setting.
Although these systems may need professional teams for the
deployment since their devices typically require configuration,
our five lessons learned on quantifying system gain, scale
evolution, and performance metrics (e.g., lifetime, reliability,
and utility) may reduce their indoor operation efforts.

6 Related Works
Table 6: Operational BLE Device Systems

.
Nation Deployment Site Application Scale
Iceland Eldheimar museum [34] Localization 54 devices

U.S. Beale Street [48] Presence detection 100 devices
U.K. Gatwick airport [21] Localization 2,000 devices
India Railway station [18] Presence detection 2,000 devices
Brazil Tom Jobim airport [4] Localization 3,000 devices

Operational BLE Device System: To our knowledge, as we
are proposing one of the largest BLE device systems in the
world, it is worthwhile to give a summary of existing opera-
tional BLE device systems. As shown in Table 6, most BLE
systems are operated in public sites such as airports or muse-
ums for presence detection or indoor localization. The largest
BLE system we found is deployed in Tom Jobim airport in
Brazil with 3,000 devices, which is fewer than the 12,109
devices in aBeacon we deployed in Shanghai, China. More
importantly, these existing systems are operated in a con-
trolled environment (e.g., airports, museums, train stations),
but our operating environment is in the wild and out of control.
It enables our system to provide some new insights from our

lessons learned from large-scale system lifetime, reliability,
utility, and cost.

BLE Device Studies: Existing BLE system studies can be
categorized according to their applications: localization or
presence detection. Indoor localization with BLE systems is
similar to works done with Wi-Fi. Fingerprinting is studied
in [19] to achieve the accuracy of < 4.8 m at the density
of one device per 100 m2, compared with < 8.5 m for Wi-
Fi. Map matching is used in [56] to estimate a user’s route
based on devices with known locations. 1,600 BLE devices
are deployed in all the classrooms and corridors of an insti-
tute for evaluation. Dynamic RSSI propagation modeling is
proposed in [12] to achieve fine-grained (< 2 m) localization
and tracking. There are also studies exploring the proximity
information provided. Dining hall usage and student check-in
are studied in [38] and [24] with BLE device proximity infor-
mation. Hardware modifications such as energy harvester are
also studied in [28] for better performance.

Real-world Sensing Systems: Another related topic is the
large-scale real-world sensing system. These studies lay more
emphasis on the system implementation and operation for
practical problems. LiveTag is proposed in [22] to sense
human-object interaction passively. [51] attempts to answer
why RFID sensing systems remain research prototypes and
have not been widely deployed in practice with theoretical
analysis and real-world experiments.

7 Conclusion
This paper introduces aBeacon, a wireless indoor BLE device
system in Alibaba, from its conception to its retirement by a
unique operation study in Shanghai. We quantify aBeacon’s
performance by scale, lifetime, reliability, and utility, for all
of which we provide some new insights obtained in our 3-year
system operation in the wild. In particular, we built aBeacon
from the ground up in a metric-based approach consisting
of two phases, i.e., an 8-month pilot study and a 28-month
deployment and operation in the wild, including devices in
12,109 merchants and interactions with 109,378 couriers.
From the long-term city-wide study, we identify five key ob-
servations and lessons regarding system gain quantification,
system scale evolution, lifetime, reliability, and utility in the
wild. We believe these in-depth lessons learned have impli-
cations for other systems requiring long-term operations and
broad geospatial coverage such as 5G and Edge Computing.
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Abstract
Eavesdropping is a fundamental threat to the security and

privacy of wireless networks. This paper presents EarFisher –
the first system that can detect wireless eavesdroppers and dif-
ferentiate them from legitimate receivers. EarFisher achieves
this by stimulating wireless eavesdroppers using bait net-
work traffic, and then capturing eavesdroppers’ responses by
sensing and analyzing their memory EMRs. Extensive experi-
ments show that EarFisher accurately detects wireless eaves-
droppers even under poor signal conditions, and is resilient to
the interference of system memory workloads, high volumes
of normal network traffic, and the memory EMRs emitted by
coexisting devices. We then further propose a method to de-
tect eavesdropper’s countermeasure, which deliberately emits
strong memory EMR to interfere with EarFisher’s detection.

1 Introduction

Rendered by the broadcast characteristic of wireless medium,
eavesdropping has been a fundamental threat to the security
and privacy of wireless networks ever since the invention of
wireless communication. While significant cryptographic re-
search has been devoted to tackling this threat, in this paper,
we take an orthogonal angle to explore the feasibility of wire-
less eavesdropper detection. A security primitive capable of
this task is essential in a wide range of scenarios. First, in
wireless networks serving public areas (e.g., airports, campus,
malls, etc), Layer-2 encryption is commonly disabled to facili-
tate open access. Second, encryption algorithms are subject to
extensive side channel analysis [7, 8, 11, 15, 16, 21, 22], which
allow attackers to decipher encryption keys. Third, crypto-
graphic protocols themselves often suffer fatal flaws that are
difficult to identify before universal adoption. For example,
in 2017, researchers uncovered that the four-way handshake
of WPA2 is vulnerable to the key re-installation attack [35],
which allows eavesdroppers to compromise encryption key-
chains. The flaw had been present since the release of 802.11i

∗Corresponding author: junhuang@mit.edu.

in 2004, leaving billions of Wi-Fi users potentially exposed
to eavesdropping for more than 13 years.

Beyond complementing encryption schemes, an eavesdrop-
per detector can be an essential building block of a secure
network. For example, in quantum networks, legitimate re-
ceivers can detect eavesdroppers by leveraging the quantum
physic law, where the state of a quantum bit ‘collapses’ when-
ever it is intercepted. Quantum key distribution protocols [9]
use this law to verify the confidentiality of encryption keys,
which leads to fundamentally assured communication security
in quantum networks.

Unfortunately, to date, there has been no effective method
to detect eavesdroppers in wireless networks. Unlike quan-
tum eavesdroppers, wireless eavesdroppers can be completely
passive without actively transmitting or altering signals in the
air. Recent studies exploit the RF leakages of radio circuits to
detect wireless receivers [13, 24, 26, 27, 32, 34, 36]. However,
such leakages are extremely weak, limiting detection range to
only a few feet. More importantly, because all wireless radios
emit leakages during signal reception, this method cannot
differentiate eavesdroppers from legitimate receivers.

In this paper, we present EarFisher – the first system that
can detect wireless eavesdroppers and differentiate them from
legitimate receivers. The key idea is based on the observation
that, unlike legitimate receivers who drop others’ packets in
network interface cards (NICs), only eavesdroppers digest all
packets in their CPU-memory systems. Inspired by this ob-
servation, EarFisher stimulates eavesdroppers by transmitting
a flow of bait packets forged with a virtual receiver address,
and then detects eavesdroppers by sensing the surge of their
electromagnetic radiations (EMRs) when they write baits into
their memories. Recent studies show that the multi-channel ar-
chitecture of modern memories amplifies memory EMR [17],
which helps EarFisher extend detection range.

To realize this idea, we tackle four key challenges. First,
when multiple devices having the same memory frequency
coexist in an environment, their memory EMRs mix in fre-
quency spectrum, making it difficult to accurately sense them
separately. Second, memory workloads of operating systems
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and applications also produce memory EMRs, which are dif-
ficult to distinguish from the eavesdropper’s responses when
the memory activities coincidentally occur at the same time of
bait packet transmissions. Third, despite the amplification of
multi-channel architecture, memory EMR is still very weak,
requiring a long time of stimulus to trigger a sufficiently
strong response at the eavesdropper. However, intensive bait
packet transmissions in a large time window can block the
wireless channel, and may present a distinguishable traffic
pattern that can be noticed by crafty eavesdroppers. Fourth,
eavesdroppers knowing the design and presence of EarFisher
may deliberately write its memory, which will produce strong
memory EMR that interferes with EarFisher’s detection.

To address these challenges, EarFisher employs new sig-
nal processing algorithms to sense and separate the memory
EMRs of different devices, obscures and disguises stimulus
traffic as short bursts of normal packets, incorporates statis-
tical tool to tolerate the interfering EMRs produced by sys-
tem memory workloads, and exploits a fundamental dilemma
of eavesdroppers to detect deliberate writing-based counter-
measure. Extensive experiments show that EarFisher accu-
rately detects eavesdroppers even under poor signal condi-
tions, and is resilient to the interference of system memory
workloads, high volumes of normal network traffic, and the
memory EMRs of coexisting devices. We then further demon-
strate EarFisher’s effectiveness in a real testbed, where three
EarFisher nodes are deployed to monitor an indoor area of
1600 ft2. Experiment results show that EarFisher reliably de-
tects eavesdroppers placed at different locations despite the
complexity of indoor environments, such as the block of walls.

2 Related Work

Cryptographic attacks. Since the invention of wireless com-
munication, encryption has been the primary security measure
to combat eavesdropping. However, extensive research shows
that eavesdroppers can compromise encryption based on a
variety of side-channel attacks [7, 8, 15, 16, 21, 22]. In partic-
ular, Camurati et al. [11] show that the EM leakage of the
processor on wireless chips can be inadvertently amplified
by RF front-end, allowing an eavesdropper to decipher the
encryption key from a distance.

Moreover, cryptographic protocols themselves often suf-
fer fatal flaws that are difficult to identify before universal
adoption. For example, Wired Equivalent Privacy (WEP), a
security protocol ratified as a part of 802.11 in 1997, was
found to have fatal flaws in 2001 [14]. WEP was then super-
seded by Wi-Fi Protected Access (WPA) in 2004, but history
repeated itself. In 2017, researchers demonstrated that the
four-way handshake of WPA has a fatal vulnerability, which
allows eavesdroppers to compromise the encryption keychain
using key reinstallation attacks [35]. From 2004 to 2017, the
vulnerability of WPA left billions of Wi-Fi users potentially
exposed to eavesdropping for more than 13 years.

Eavesdropper detection. Prior eavesdropper detectors com-
monly rely on sensing RF signals leaked from the front-end
circuit of wireless receiver. This method was first proposed
in [27, 36] to detect primary receivers in cognitive radio net-
works, and then extended to UWB, WiMAX, and MIMO chan-
nels to detect hidden radios [24, 26]. Ghostbuster [13] further
augments this method using spatial cancellation of interfer-
ence and frequency cancellation of signal artifacts, which
allow it to extract leakages under poor signal conditions in the
presence of ongoing wireless transmissions. However, Ghost-
buster still suffers limited detection range (less than 1m for
COTS Wi-Fi receivers) because of the weak power of leakage
from RF circuit.

Recent studies [32, 34] show that superheterodyne and su-
perregenerative receivers can be detected from a longer dis-
tance by exploiting the known characteristics of their RF
leakages. However, these techniques are highly dependent
on the receiver architecture. Unfortunately, superheterodyne
and superregenerative receivers are commonly used in low-
power wireless remote, but are far less common in mainstream
wireless communication systems such as Wi-Fi.

More importantly, because all radios emit RF leakages dur-
ing signal reception, existing eavesdropper detectors suffer a
common limitation as they cannot differentiate eavesdroppers
from legitimate receivers. To sidestep this limitation, Ghost-
buster assumes a threat model where the number of legitimate
receivers is known a priori [13]. This assumption restricts its
usability to a very narrow range of specific scenarios.
EM side-channels. Recently, researchers leverage the EM
side channels of CPU and memory for attestation [29], mem-
ory profiling [30], and malware detection [18, 25, 37]. Dif-
ferent from these passive analysis, EarFisher features a new
paradigm that actively stimulates memory EMR. Moreover,
EarFisher employs a signal processing algorithm that bases
on fine-grained measurement and theoretical characterization
of memory clock, which makes it possible to not only ex-
tract weak memory EMRs under poor signal conditions, but
also separate and track individual memory EMRs when mul-
tiple devices having the same memory frequency coexist in a
crowded environment.

3 Threat Model

A wireless eavesdropper is a malicious receiver who sniffs on
other devices’ packets. Typically, eavesdropping can be im-
plemented by modifying the device driver to enable monitor
mode, in which a wireless chip transfers all received packets
to the host. A recent study shows that most drivers on major
operating systems (e.g., Linus, Windows, macOS) support
monitor mode by default [1].

By eavesdropping on network traffic, the attacker’s goal
is to gather sensitive data, such as personal and business re-
lated information, or secrets necessary to enable decipher and
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man-in-the-middle attacks. Typically, wireless chips are in-
tegrated with a microcontroller and a small RAM of at most
a couple of MiBs. The on-chip system is tasked for simple
computation such as checking receiver address and verifying
packet checksum, but is far from capable of security- and
privacy-intrusive processing. As a result, the eavesdropper
must digest sniffed packets in the CPU-memory system of
the host.

To this end, the wireless chip of the eavesdropper needs to
write all sniffed packets to the memory of the host. This is
typically under the control of DMA, and will produce EMR
when sniffed packets are transferred over memory bus. Specif-
ically, for SDRAMs, memory EMR can be observed as a radio
signal around the frequency of memory clock. Because DDR
uses double pumping, the clock frequency is a half of mem-
ory speed. In practice, the clock frequency of a modern DDR
has 13 possible values ranging from 200 MHz of DDR2-400
to 1600 MHz of DDR4-3200. To sense memory EMR, one
can scan DDR frequencies one by one, or use a group of sen-
sors to monitor multiple frequencies in parallel. In the rest
of this paper, we assume the memory clock frequency of the
eavesdropper is known.

4 Characterizing Memory EMR

In this section, we present measurements and model to char-
acterize memory EMR. Our measurements are conducted on
two laptops of DDR3-1600 and DDR4-2133, respectively. A
BladeRF with an omni-directional 5 dBi antenna is employed
as the receiver.

4.1 Spectrum Pattern

Measurement-based characterization. To measure the fre-
quency spectrum of a device’s memory EMR, we take FFT
over an 1s window of signals captured around the clock fre-
quency of the device’s memory. To study how memory work-
load impacts on memory EMR, we created a process to write
memory intensively1, and then compare the spectrum patterns
measured before and after the start of the process.

As shown in Fig. 1, we observe that the frequency spectrum
of memory EMR features a series of energy peaks distributed
over a side-band of about 1 MHz below the frequency of mem-
ory clock. In the presence of intensive memory workload, the
amplitudes of all energy peaks increase simultaneously and
significantly. To further characterize the spectrum pattern, we
examine the auto-correlation of peak frequencies and find that
the frequency interval between consecutive peaks is constant.
Specifically, for the DDR3-1600 and the DDR4-2133, the
frequency intervals are 31.8 KHz and 31.2 KHz, respectively.
Theoretical characterization. We then further characterize
memory EMR based on the theoretical model of memory

1To write memory directly, we used SSE instructions to bypass cache.

(a) DDR3-1600.

(b) DDR4-2133.

Figure 1: The spectrum pattern of memory EMR with and
without memory workload.

clock. Because memory clock injects fluctuating current into
memory bus, it produces EMR at the clock frequency. As
memory reads/writes are performed at clock edges, they am-
plify EMR amplitude of memory clock but will not affect the
pattern of frequency spectrum.

The simplest form of a clock is a sine wave of which the
energy is all concentrated at clock frequency. However, this
leads to a high EMR intensity that may violate regulatory re-
quirement for electromagnetic compatibility. To walk-around
this issue, modern clock generators use spread spectrum tech-
niques to reshape the energy distribution of clock. Denote an
unspread clock as,

Vclk(t) = Acos(2π f0t),

where f0 is the frequency of memory clock. A spread spec-
trum clock is the frequency modulation of Vclk(t), which can
be expressed as,

Vssc(t) = Acos(2π f0t +
∆ f
fm

sin(2π fmt)), (1)

where fm and ∆ f are the modulation frequency and peak
frequency deviation, respectively. By expanding Eqn. 1 using
the Jacobi-Anger expansion, the frequency spectrum of Vssc(t)
can be expressed as [10],

‖Fssc( f )‖ def
= ‖∑

n
Jn(

∆ f
fm

)(δ( f − f0 +n fm)

−δ( f − f0−n fm))‖.

where Jn(·) is the Bessel function of the first kind, and δ(·) is
the Dirac delta function.

To maintain a stable synchronization between memory
and memory controller, Vssc(t) needs to be band-pass filtered
before being used as a memory clock. Typically, the band-pass
filter removes frequency components higher than memory
clock frequency and then imposes a low cutoff to limit the
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maximum frequency deviation. After band-pass filtering, the
frequency spectrum of Vssc(t) is transformed to,

‖Fssc( f )‖ def
= ‖A( f )∑

n
Jn(

∆ f
fm

)δ( f − f0 +n fm)‖, (2)

where A( f ) is the impulse response of the band-pass filter.

Summary of characteristics. Eqn. 2 indicates that the en-
ergy of memory EMR is non-zero only at f0− n fm, which
interpreted the spectrum pattern shown in Fig. 1. In other
words, memory EMR is composed of a series of sub-clock
components, where the frequency interval between consecu-
tive sub-clocks is fm, and the first sub-clock is at f0.

4.2 Directivity and Range
We then place receiver at different directions to measure the 3
dB range of memory EMR, which is defined as the maximum
distance from which the SNR of received memory EMR is
higher than 3 dB. In this experiment, we calculate SNR of
memory EMR using the sub-clock of the highest power.

It is worth noting that the SNR of received memory EMR is
dependent on the size of FFT window. As shown in Fig. 2, the
larger the FFT window, the higher the SNR. However, the gain
yielded by enlarging FFT window gradually diminishes as the
size of FFT window increases. To understand why, consider
a FFT bin (whose size equals the inversion of FFT window
size) that is large enough for containing one sub-clock. In this
case, one can always reduce the FFT bin to suppress noise
without affecting the sub-clock, thereby increasing SNR. On

the other hand, if the size of FFT bin is already smaller than
the bandwidth of sub-clock, then further reducing FFT bin
will also reduce the energy of contained memory EMR, thus
providing no SNR gain. Based on the results shown in Fig. 2,
we set FFT window size to 1s in the following measurements.

Fig. 3 plots the 3 dB range of memory EMR measured
from different directions. We observe that receiving direction
has a slight impact on range, which should be attributed to
the shape of shielding cases of particular devices. Moreover,
because of the lower operating voltage, the range of DDR4-
2133’s EMR is about 25% shorter than that of DDR3-1600.
Nevertheless, even when receiving from the worst direction,
the 3dB ranges of DDR3-1600 and DDR4-2133 exceed 25m
and 20m, respectively.

4.3 Response to Stimulus
To understand the impact of stimulus network traffic on eaves-
dropper’s memory EMR, we setup an experiment where the
laptop equipped with DDR4-2133 is employed to eavesdrop
on an 802.11n transmitter. The experiment is conducted on
a clean channel to avoid the interference of uncontrolled net-
work traffic. The 802.11n transmitter is configured to send an
100 ms UDP flow every 200 ms. We then vary the rate of the
UDP flow and repeat the experiment.

Fig. 4 shows the time varying amplitude of memory EMR
measured in close proximity to the eavesdropper using a slid-
ing FFT window of 100 ms. As shown in Fig. 4, the eavesdrop-
per’s memory EMR demonstrates a clear responsive pattern
when the rate of UDP flow increases to only 2 Mbps. The
amplitude of response can be significantly boosted by further
increasing the rate of stimulus network traffic.

5 EarFisher Overview

EarFisher is designed as a standalone system to detect eaves-
droppers in a wireless network without the cooperation of
other network nodes. It differentiates eavesdroppers from le-
gitimate receivers based on an architectural criteria, where
receivers are convicted of eavesdropping as long as they trans-
fer other devices’ packets to memory. In contrast, a legitimate
receivers should drop other devices’ packets immediately in
wireless NICs.

As illustrated in Fig. 5, EarFisher consists of a stimulator
and a detector. The stimulator is a wireless network of two co-
operative nodes, which exchange packets to generate stimuli2.
The detector senses memory EMR using a software defined
radio, which is hosted by one of the stimulator nodes and is
synchronized with the wireless NIC to monitor the variations
of memory EMRs under traffic stimuli.

2A simpler method is to use a single wireless device to forge a packet
flow. However, crafty eavesdroppers may detect the forged packet flow by
noticing that the sender and the receiver manifest the same channel state
information.
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(a) Rate = 600 Kbps.
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(c) Rate = 20 Mbps.

Figure 4: Time varying amplitude of memory EMR under the stimuli of periodic UDP flows.
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Memory 
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Bait packets

Figure 5: EarFisher architecture.

At a high-level, EarFisher features four key designs.
Sensing memory EMRs. Despite the amplification by multi-
channel architecture, memory EMR is still very weak and thus
can be easily buried by noise when sensing from a distance.
Moreover, when devices having the same memory frequency
coexist in an environment, their memory EMRs will be mixed
together in frequency spectrum, making it difficult to track
them separately. EarFisher addresses these challenges by us-
ing folding [39] – a signal processing algorithm originally
used by large radio telescopes to amplify astronomical sig-
nals – to sense weak memory EMRs. It then leverages the
fingerprint of memory clock to separate and track the memory
EMRs of different devices.
Obscuring stimulus traffic. Sensing weak memory EMRs
requires a large FFT window to suppress noise. However,
intensive transmission of stimulus traffic in a large time win-
dow may interfere with normal network traffic. In addition, it
may introduce a distinguishable traffic pattern to alert crafty
eavesdroppers. To address this challenge, EarFisher first splits
a large block of bait packets into small pieces and then dis-
guises them as normal network traffic. At the detector side,
EarFisher stitches signal samples captured at the time instants
of stimuli into a complete window before taking FFT.
Tolerating system memory workloads. Memory workloads
of operating systems and applications also produce memory
EMR, which is difficult to distinguish from the response of
eavesdropper when memory activities coincidentally occur
at the time instants of traffic stimuli. To avoid false alarm,
EarFisher profiles the memory EMR incurred by system mem-
ory workloads for each device at runtime. It then tests the
hypothesis if the surge of memory EMR under stimuli is
sufficiently significant to claim a detection of response.
Detecting countermeasure. Eavesdroppers knowing the de-
sign and presence of EarFisher may actively write memory
to emit strong EMR, which will interfere with EarFisher’s
detection. To detect this countermeasure, EarFisher exploits
a fundamental dilemma faced by the eavesdropper, where
intermittent writing of memory leaves significant chance of
exposing the response to stimuli, while consistent writing
presents an abnormal EMR pattern that can be distinguished
from normal system memory workloads.
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Figure 6: The distribution of memory clock fingerprints.

6 System Design

This section presents the design of EarFisher in detail. We first
propose a sensing primitive to monitor memory EMRs, and
then describe the design of stimulator and detector. Finally, we
discuss how to detect eavesdroppers who deliberately write
memory to interfere with EarFisher’s detection.

6.1 Sensing Memory EMRs

As discussed in section 4, memory EMR consists of a se-
ries of sub-clocks, where the i-th sub-clock is at f0 − i fm.
Due to minute manufacturing deviations, f0 and fm present a
unique fingerprint, which distributes the sub-clocks of differ-
ent devices to different frequencies. In the following, we first
characterize memory clock fingerprint to study if it is suffi-
ciently diverse to allow the separation of memory EMRs. We
then discuss how to fuse sub-clocks to sense memory EMRs
buried by noise, and develop a signal processing algorithm
that exploits memory clock fingerprint to separate and track
the memory EMRs of individual devices.
Characterizing memory clock fingerprints. To character-
ize the fingerprint of memory clock, we conduct measure-
ments on 32 devices equipped with DDR3-1600, including
a Dell Inspiron, a Thinkpad, and 30 identical desktops in the
computer room of a university library. Fig. 6 plots the distri-
bution of their memory clock fingerprints. We observe that f0
differs even across the 30 identical desktops. In comparison,
the offset of fm is only significant across different devices,
which should be attributed to the different modulation fre-
quencies of their clock generators.
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(a) Noisy spectrum after FFT. (b) Results of folding.

(c) FFT. (d) Auto-correlation.

Figure 7: Comparison between folding, auto-correlation and FFT over a noisy spectrum containing the memory EMRs of two
computers whose fm are 31.815 KHz and 32.114 KHz, respectively.
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Figure 8: The CDFs of ∆ f0 and sub-clock bandwidth.

To validate if the fingerprints are sufficiently diverse, con-
sider an arbitrary pair of identical desktops. As they have sim-
ilar fm, the separation of their sub-clock components solely
depends on the offset of f0. Specifically, if the offset of f0 is
too small, sub-clock components will overlap in frequency in
a pair-wise fashion. In this case, the overlapped bandwidth
can be computed as,

∆BW =
BWa +BWb

2
−∆ f0,

where ∆ f0 is the offset of f0; BWa and BWb are the sub-clock
bandwidth of the two devices, respectively. Clearly, their mem-
ory EMRs are separable if and only if BWa+BWb

2 is smaller
than ∆ f0. Fig. 8 further compares the distributions of ∆ f0
and BWa+BWb

2 measured on the 30 identical desktops. We ob-
serve that ∆ f0 is significantly larger than sub-clock bandwidth.
Specifically, ∆ f0 is larger than 300 Hz in 94% cases, whereas
the bandwidth of all sub-clocks are smaller than 300 Hz.

Based on f0 and sub-clock bandwidth measured on the 30
identical desktops, we further conduct a simulation to test the
capacity of a memory ‘channel’, i.e., the maximum number
of identical devices that can coexist on the same memory
frequency without mixing memory EMRs. In each run of the
simulation, we randomly add desktops to the memory channel
until the produced memory EMRs become inseparable. After
10000 runs, we find that the average capacity is 7. We note that

the capacity should be significantly higher if coexisting de-
vices are different. In particular, for a pair of different devices,
even if some of their sub-clock components are overlapping,
others are likely separated because of different fm.
Fusing sub-clocks. We then discuss how to fuse sub-clocks
to boost the SNR of memory EMR. A key design requirement
is to achieve computational efficiency, because the signal pro-
cessing targets at high-resolution frequency spectra obtained
by large FFT windows.

To this end, we propose a novel use of folding – a fast
algorithm originally used by large radio telescopes to amplify
periodic astronomical signals [23, 31, 39]. EarFisher utilizes
folding to search for sub-clock components distributed over
frequency. Suppose P represents the series of N points of the
spectrum and P [i] (i ∈ [1,N] is the amplitude of the ith point.
The objective of folding is to search for a signal with a period
of T . The spectrum is first divided into small windows of T
points and then added in a window-wise fashion as,

FT [i] =
bN

T c−1

∑
j=0

P [i+ j ∗T ].

When folding up the spectrum using a window size of fm,
the energies of sub-clock components will be fused while the
sum of noise is likely smaller due to their non-periodicity. The
position of folding peak, i.e., the i that maximizes ‖FT [i]‖,
is dependent on the offset between receiving frequency and
the memory clock’s f0. Because the fm of memory clock is
unknown, EarFisher performs folding at each possible fm to
search for memory EMRs. Fig. 7a shows an example of a
noisy spectrum containing the memory EMRs of two laptops,
whose fm is 31.815 KHz and 32.114 KHz, respectively. Fig.
7b plots the folded spectra where the peaks corresponding to
the fused energies of sub-clocks can be clearly identified. In
comparison, as shown in Fig. 7c and Fig. 7d, the performance
of auto-correlation and FFT – two widely used signal pro-
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cessing algorithm of periodic signal detection – is worse than
folding despite their higher computational overhead. Specif-
ically, FFT fails to identify memory EMRs due to its poor
resolution. Auto-correlation identified one of the laptops but
is significantly more susceptible to noise than folding.
Separating memory EMRs. EarFisher exploits the diversity
of memory clock fingerprints to separate and track memory
EMRs. To this end, EarFisher performs two steps of process-
ing iteratively. First, it folds up the spectrum at all possible
fm, and then identifies the highest folding peak caused by the
device that has the strongest memory EMR. Name this device
as Alice. Second, EarFisher outputs the highest folding peak,
which reflects the fused amplitude of Alice’s memory EMR,
and then removes the sub-clock components of Alice from
the spectrum. The goal is to eliminate possible peaks yielded
by Alice in subsequent rounds of folding, which may prevent
EarFisher from identifying the folding peaks of other devices.
Note that each sub-clock component may include multiple
spectral points depending on its bandwidth. EarFisher identi-
fies sub-clock bandwidth using standard edge detection algo-
rithm [19], and then removes all points included in the peak.
The above procedure is repeated until the highest folding peak
falls below a predefined threshold.

In practice, the spectrum may contain other signals pro-
duced by wireless communication. EarFisher classifies mem-
ory EMR and wireless communication based on two simple
rules. First, the highest folding peak should trace-back to at
least two peaks separated by the folding period in the spec-
trum. Second, the bandwidth of each trace-backed peak should
not exceed 300 Hz – an empirical upper bound on sub-clock
bandwidth obtained through extensive measurements. In com-
parison, the signal bandwidth of wireless communication is
typically orders-of-magnitude higher in order to achieve a
meaningful data rate.
Tracking memory EMRs. EarFisher tracks memory EMRs
of different devices by using ( f0, fm) as a device identity. In
practice, ( f0, fm) may experience small variance over time. To
address this issue, EarFisher clusters folding peaks obtained
at different time instants based on the euclidean distance of
( f0, fm), where each cluster corresponds to one device. It then
assigns a unique ID to each device and tracks the variation of
f0 and fm using standard phase-locked loops.

6.2 Stimulator
The stimulator of EarFisher consists of two cooperative de-
vices, which exchange packets to generate stimulus traffic. To
detect eavesdroppers in a specific wireless network, the bait
packets should be transmitted on the same frequency channel.
In case the network to protect is operated on multiple chan-
nels, the stimulator can hop across channels to inject baits. In
the following, we focus on the design of a Wi-Fi stimulator.
The principle of the presented design is broadly applicable to
other types of wireless networks.

Figure 9: Eavesdropper’s response to the stimuli of web page
downloads.
Engineering stimulus traffic. EarFisher disguises the net-
work of Wi-Fi stimulator as a WLAN where one device hosts
a virtual access point and the other is attached as a client. To
stimulate a Wi-Fi eavesdropper without incurring its alert, the
client launches a sequence of webpage downloads at random
time instants, where each download generates a short stimulus
consisting of several MBs of data depending on the size of
webpage3. Fig. 9 shows an eavesdropper’s response to stim-
uli when it is sniffing on the downloads of the homepage of
NSDI as well as 6 popular pages top-ranked in Alexa [2]. We
observe that YouTube triggered the strongest response due
to its large page size, suggesting that the stimulator should
leverage media-rich pages for stimuli.

In practice, round-trip delays occurred at upper-layers pre-
vent the stimulator from achieving a high throughput, thereby
degrading the intensity of stimulus. For example, as can be
seen in Fig. 9, the downloading traffic of Facebook page was
divided into two parts due to large upper-layer delay, which
significantly weakens the eavesdropper’s response despite the
large size of Facebook page. To address this issue, EarFisher
first records the real traffic of webpage downloads, and then
replays the traffic in the local network of stimulator.
Media access control. To further improve the effectiveness
of stimulus, EarFisher leverages the following MAC-layer
schemes. First, EarFisher utilizes the frame aggregation fea-
ture of 802.11 to bundle multiple bait packets in a single trans-
mission, which effectively increases the throughput of stimu-
lus traffic. Second, before transmitting bait packets, EarFisher
uses RTS and CTS to mute normal network traffic. The goal
is to reduce the chance of false alarm, which may happen
if legitimate network nodes transmit or receive and thereby
produce memory EMRs during stimulus period. One of our
future work is to further control the timing of stimuli to mini-
mize the interference with normal network traffic. This can be
achieved by predicting the variation of normal network traf-
fic using theoretical models [28] and then sending stimulus
traffic only when the wireless channel is under-utilized.

3According to httparchive [4], the average webpage size has increased
from 1.6 MB in 2014 to 4 MB in 2019.
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6.3 Detector

At a high-level, the detector of EarFisher separates and tracks
memory EMRs using the sensing primitive proposed in sec-
tion 6.1, and then inspects each memory EMR to infer the re-
sponse to traffic stimuli. Note that whenever transmitting bait
packets, the stimulator will also emit memory EMR, which is
difficult to distinguish from the response of an eavesdropper.
To address this issue, a straightforward method is to count
bait receivers and check if the number is larger than expected.
In the design of EarFisher, we employ a simple alternative
to walkaround receiver counting. Specifically, EarFisher em-
ploys two stimulators of different memory frequencies. In
this case, because the eavesdropper’s memory frequency must
differ from that of at least one stimulator, the detector can
quickly identify eavesdropper’s memory EMRs based simply
on emission frequency.
Profiling memory EMRs. To detect the presence of eaves-
droppers, EarFisher compares the amplitudes of memory
EMRs measured in the presence and absence of stimulus
traffic, named as stimulus set and baseline set, respectively.

To profile the stimulus set, EarFisher first captures signals
around the transmission time of bait packets, and then puts
captured signals in a large FFT window. Once the window is
completely filled, EarFisher runs the algorithm proposed in
section 6.1 to identify memory EMRs. Suppose n memory
EMRs are observed at Ii = ( f i

0, f i
m), i ∈ (1,n). For each Ii,

EarFisher establishes a stimulus set to record the amplitude
of memory EMR, and then populates the set when new FFT
windows are available.

Note that a surge of memory EMR under traffic stimuli
could be a coincidence caused by system memory work-
load. To profile the probability of such coincidence, EarFisher
keeps tracking the amplitude of memory EMR for each Ii to
build the baseline set. To prevent memory EMRs caused by
network activity from polluting the baseline set, EarFisher
purges signals captured in the presence of ongoing network
traffic, and then stitches remaining signals into FFT windows.
Statistical hypothesis testing. EarFisher then compares the
stimulus and baseline set using a statistical hypothesis test
called t-test, which is widely used to decide whether a drug
has had a significant effect on the studied population. A t-test
takes the means, variances, and the number of samples of the
two compared sets, and then computes a t-value as follows,

t =
µstimulus−µreference√

σstimulus
nstimulus

+ σreference
nreference

, (3)

where µ and σ are the mean and variance of a set, respectively;
n is the number of samples, which determines the degrees of
freedom of the test.

Once the t-value and degrees of freedom are determined, a
p-value can be calculated. A large positive p-value is an evi-
dence that µstimulus is significantly larger than µref. EarFisher

then compares the p-value with a a chosen level of statistical
significance, denoted as α. Basically, a high α assures low
false alarm rate but may raise miss detection. EarFisher ex-
poses the configuration of α, which allows users to tune the
balance between detection rate and false alarm.

6.4 Detecting Countermeasure
To counteract the detection of EarFisher, eavesdroppers know-
ing the design and presence of EarFisher may actively write
memory to emit strong EMR, which will pollute the base-
line set profiled by EarFisher, thus defeating the statistical
test given in Eqn. 3. In the following, we propose a simple
method to detect this countermeasure.
The dilemma of eavesdropper. Our insight is that, when ac-
tively writing memory, the eavesdropper faces a fundamental
dilemma where intermittent writing leaves significant chance
of exposing the response to stimuli, while consistent writing
presents an abnormal pattern of memory EMR that can be
distinguished from normal system memory workloads.

Specifically, to mask the response to traffic stimuli, the
eavesdropper must erase the difference between the reference
and stimulus set. However, because the stimulus set is built
by stitching signals received under traffic stimuli, it captures
the eavesdropper’s memory EMR in a status of virtually con-
sistent writing of memory. In order to defeat the statistical
test, the eavesdropper must write memory at a comparable
intensity to corrupt the baseline set.

On the other hand, due to the presence of hierarchical cache,
a normal system rarely writes memory consistently. In partic-
ular, unlike wireless NICs that write received packets directly
into memory, legitimate programs only read/write memory
under cache miss, while modern Intel and AMD CPUs can
maintain cache hit rate above 90%. Moreover, due to the high
bus bandwidth of modern memory (ranging from a couple
of GB/s of DDR to tens of GB/s of DDR4), the data transfer
caused by normal memory workload typically completes in
very short time, producing only intermittent bursts of memory
EMRs. As an example, Fig. 10 shows the time-varying ampli-
tude of memory EMR measured on a laptop running Ubuntu
18.04 and Windows 10 with no other programs. We observe
that the operating systems alone yield noticeable variance of
memory EMR. In contrast, consistent writing of memory can
easily erase the variance, presenting a distinguishable pattern.
Exploiting the dilemma. To detect eavesdroppers who de-
liberately write memory to mask response to traffic stimuli,
EarFisher complements the detector proposed in section 6.3
with an auxiliary detector to inspect abnormal EMR pattern
caused by deliberate writing.

The auxiliary detector uses the variance of normalized
memory EMR amplitude as a feature to investigate if the base-
line set has been polluted by deliberate writing. However, be-
cause measuring memory EMR requires a large FFT window
to suppress noise, obtaining a fine-grained estimation of EMR
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(a) Ubuntu 18.04, mean = 0.14, var = 0.35.
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(b) Windows 10, mean = 0.68, var = 0.33.
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(c) Deliberate writing, mean = 0.73, var = 0.15.

Figure 10: The time varying memory EMR induced by oper-
ating systems and deliberate writing.

variance may incur a long delay. EarFisher circumvents this
issue by oversampling the baseline set. Specifically, EarFisher
divides each FFT window in the baseline set into small blocks
of signals, and then randomly picks blocks from different
FFT windows to create new EMR samples. EarFisher then
calculates the variance of created EMR samples, and repeats
this for multiple rounds to profile a fine-grained distribution
of EMR variance using a small number of FFT windows.

Once the distribution of EMR variance has been profiled,
EarFisher performs t-test again to check if the mean of the
distribution is smaller than an empirical threshold. To de-
termine the threshold, we conduct extensive measurements
on devices of different configurations. Our measurements
lead to several findings. First, the variance is smaller on de-
vices of larger cache and faster memory. Second, the variance
is minimum when a devices is running no program except
the operating system. Third, Windows typically demonstrates
smaller variance than other operating systems. In our measure-
ments condcuted on 39 devices, the minimum and maximum
variance are 0.32 and 0.35, which are measured on a Dell Insp-
iron equipped with an 8 MB cache and DDR4-2133 running
Windows 10, and a Thinkpad equipped with a 4 MB cache
and DDR3-1600 running Ubuntu 18.04, respectively. Notice
that the measured EMR variance may vary under different
SNRs, we further profile the minimum EMR variance on Insp-
iron running Windows under different attenuation conditions.
Before taking statistical test, EarFisher chooses a threshold
based on the measured SNR of memory EMR. To avoid false
alarm and account for devices of higher configurations, the
current design of the auxiliary detector adopts a conservative
threshold that is 10% lower than the empirically profiled min-
imum variance. Further refining the threshold for higher-end
cache and memory configurations is left to our future work.

7 Evaluation

This section evaluates the performance of EarFisher in an
802.11n network. The current prototype of EarFisher employs
BladeRF [3] to sense memory EMRs. To generate stimulus
traffic, EarFisher replays the recorded traffic of YouTube page
download at about 10 MB/s in its local stimulator network.
Based on empirical measurements shown in Fig. 2, the FFT
window size of memory EMR sensor is set to 1s, as larger
windows increase detection latency but yield limited SNR
gain. When performing statistical test to detect eavesdroppers,
the stimulus and baseline set are profiled based on 1s and 3s
of memory EMR signals, respectively. To improve the gran-
ularity of profiling, the baseline set is oversampled to create
10 FFT windows using the method described in section 6.4.

In the following, we first evaluate the accuracy of EarFisher
in detecting eavesdropper and countermeasure, and then study
its performance in a real deployment scenario where three
EarFisher nodes are deployed to monitor an indoor environ-
ment of about 1600 ft2.

7.1 Eavesdropper Detection

We conduct experiments on two commodity laptops, including
a Thinkpad with DDR3-1600 and a Dell Inspiron with DDR4-
2133. To evaluate the detection performance of EarFisher,
we let the laptops act as eavesdropper (EV) and legitimate
receiver (LR), and then compare the p-values computed by
EarFisher. It is important to note that the p-values of EV and
LR are NOT equivalent to the probability of detection and
false alarm. Instead, the final detection result depends on the
choose of p-value threshold, which EarFisher exposes to the
user for configurable trade-off between detection rate and
false alarm. In the following, we study the impacts of four
key factors on EarFisher’s detection performance, including
the attenuation of memory EMR, system memory workloads,
normal network traffic, and the interfering EMRs emitted by
coexisting devices that have the same memory frequency.
Attenuation. We first study the impact of EMR attenuation on
EarFisher’s detection performance. We note that accurately
controling EMR attenuation is difficult because we cannot
connect an attenuator to the ‘antenna’ of the EMR emitter, i.e.,
the memory bus. To walk-around this issue, we first record
the memory EMR of eavesdropper in close proximity, and
then emulate a certain level of attenuation by mixing the
recorded signal with an equivalent amount of white noise. In
this experiment, the eavesdropper runs no software except OS,
which allows us to exclude the interference of system memory
workloads and study the optimal detection performance of
EarFisher as a function of EMR attenuation.

As shown in Fig. 11, we observe that the p-values of DDR3
and DDR4 eavesdroppers are consistently higher than 0.9 be-
fore the amount of attenuation exceeds 29 dB and 21 dB,
which typically translate to a line-of-sight path loss of about
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Figure 11: The p-values for the eavesdropper (EV) and the
legitimate receiver (LR) as a function of EMR attenuation
(left: DDR3, right: DDR4).
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(a) Wireshark.
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(b) VLC media player.

Figure 12: The impact of memory workloads (left: DDR3,
right: DDR4).

30 m and 24 m, respectively. When the amount of attenua-
tion further increases, the p-value for eavesdropper begins to
decrease, as the surge of eavesdropper’s memory EMR corre-
sponding to the response to stimuli is gradually submerged by
noise. We note that DDR3 is more resistant to attenuation than
DDR4 because of the stronger EMR attributed to the higher
operating voltage. In comparison, the p-value of legitimate
receivers fluctuates in between 0.4 to 0.6 consistently despite
the increase of attenuation. The results indicate that, if the
user chooses a p-value threshold of 0.9, then EarFisher will
detect all DDR3 and DDR4 eavesdroppers before attenuation
reaches 29 dB and 21 dB while without miss-classifying any
legitimate receivers as eavesdroppers.
System memory workload. Memory EMR produced by sys-
tem memory workload will pollute the baseline profiled by
EarFisher and thus will affect the result of statistical test. To
study the impact of system memory workload, we let the lap-
tops run two representative applications, including Wireshark
– a widely used packet analyzer, and VLC media player, which
reads memory intensively to load a high-definition video.
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Figure 13: The impact of network traffic (left:DDR3,
right:DDR4).

As shown in Fig. 12, compared with the results shown
in Fig. 11, the attenuation resistance of EarFisher degrades
by less than 1 dB and 5 dB when the eavesdroppers run
Wireshark and VLC, respectively. VLC imposes a higher
impact because it involves more frequent memory activities
and thus produces a higher level of pollution to the baseline
set. Nevertheless, even under the interference of VLC, the p-
values of the DDR3 and DDR4 eavesdroppers are consistently
higher than that of legitimate receivers as long as the levels
of attenuation are below 25 dB and 19 dB, respectively.

We also observe that the p-values of legitimate receivers
are not affected by Wireshark and VLC on both DDR3 and
DDR4 laptops. This is because system memory workload
will impact the baseline and stimulus set uniformly, hence the
results of statistical test will remain unbiased.

Although we focus on only two representative applications
in this experiment, we note that the interference caused by
memory workload can be generally quantified using the busy
ratio of memory bus. We will study EarFisher’s performance
as a function of memory busy ratio in section 7.2.
Network traffic. To study the impact of network traffic, we
employ two additional 802.11n nodes to inject normal net-
work traffic using iPerf [5]. In this experiment, we place eaves-
droppers at 10m away from the EarFisher’s detector. We then
compare the p-values for eavesdroppers and legitimate re-
ceivers in the presence of different volumes of network traffic.
We use channel busy ratio to quantify the interference pro-
duced by normal network traffic, because absolute volume
can be misleading when characterizing interference intensity
in wireless networks of different data rates.

As shown in Fig. 13, we observe that the detection perfor-
mance of EarFisher is reliable as long as the channel busy
ratio is below 73%. As channel busy ratio further increases, it
becomes increasingly difficult to profile a clean baseline set
not affected by network traffic. As a result, the p-value of the
eavesdropper will begin to degrade.
Coexisting devices. We next evaluate EarFisher in a crowded
environment where devices having the same memory fre-
quency introduce interfering memory EMRs. We place the
DDR3 eavesdropper in a library computer room that has 40
identical desktops, all having the same memory frequency as
the eavesdropper. We then turn on desktops one by one and
study the impact on EarFisher’s performance.
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Figure 15: The p-values of the eavesdropper (EV) and the
countermeasure (CM) detectors under different memory busy
ratios (left: DDR3, right: DDR4).

Fig. 14 compares the p-values for eavesdropper and legiti-
mate receiver as the number of coexisting desktops increases.
We observe that EarFisher is fairly resistant to the interfer-
ence of coexisting devices. Even when all 40 desktops are
active simultaneously, the p-value for eavesdropper remains
higher than 0.8, while the p-value of legitimate receiver fluc-
tuates around 0.5. This should be attributed to the diversity of
memory clock fingerprint, which allows EarFisher to separate
the memory EMRs of different devices.

7.2 Countermeasure Detection

We next evaluate EarFisher’s performance of detecting eaves-
droppers that deliberately write memory to mask response
to stimuli. We explore the parameter space of eavesdrop-
per’s countermeasure by tuning the ratio of deliberate writing,
which results in different memory busy ratios. We then study
the impacts on the p-values calculated by EarFisher’s eaves-
dropper and countermeasure detector, denoted as EV and CM
in Fig. 15, respectively. In this experiment, the eavesdropper
is placed at 12 m away from EarFisher, which causes a path
loss of about 15 dB.

As shown in Fig. 15, we observe that, as memory busy ra-
tio increases, the p-value of eavesdropper detector decreases
because the baseline set becomes increasingly polluted. In
contrast, the p-value of countermeasure increases because
the baseline set demonstrates increasing abnormality. For ex-
ample, as the p-value for the DDR4 eavesdropper begins to
drop when memory busy ratio increases to above 0.75, the
p-value of countermeasure detector has reached 1.0. The re-
sults validate that the eavesdropper cannot defeat EarFisher’s
eavesdropper and countermeasure detectors at the same time.

7.3 A Deployment Case

In the following, we evaluate EarFisher on a testbed where
three EarFisher nodes are deployed at different locations (i.e.,
S1-S3) in an indoor environment of 1600 ft2, as shown in
Fig. 16. We place the eavesdroppers at 9 locations in different
rooms. We then randomly choose a node at another deploy-
ment location to stream a live video. The eavesdropper runs
Wireshark and sniffs on the streamed video. All doors are
closed during experiment. We study the precision and recall
of EarFisher when the p-value threshold is set to 0.6 and 0.75,
respectively.

As shown in Fig. 17, when the p-value threshold is set to
0.75, 8 of 9 DDR3 and 7 of 9 DDR4 eavesdroppers can be
detected by at least one of the three EarFisher nodes with a
recall higher than 90% while incurring no false alarms. In
particular, eavesdroppers at location B and C can be accu-
rately detected by EarFisher deployed at S3 and S2, despite
the block of doors and walls. When the p-value threshold
is relaxed to 0.6, the recall for the DDR4 eavesdropper at
location F increases from 0% to 83%. However, this is at the
cost of slightly reducing the precision from 100% to 94% and
97% at location A and B, respectively. We find that location G
demonstrates as a blind spot due to severe EMR attenuation.
We note that the performance of EarFisher can be further
improved by leveraging advanced radio equipment such as
high-gain LNA, better planing the deployment of EarFisher,
or deploying more EarFisher nodes.

8 Discussion

In this section, we discuss important issues related to the de-
sign of EarFisher, including response mitigation-based coun-
termeasures and EarFisher’s limitations.

8.1 Response Mitigation

As discussed in section 6.3, EarFisher detects eavesdroppers
by comparing the baseline and stimulus set to identify eaves-
droppers’ responses to stimuli. Accordingly, eavesdroppers
can counter EarFisher by either polluting the baseline or mit-
igating the evidence of response in the stimulus set. In sec-
tion 6.4 and section 7.2, we have shown how EarFisher effec-
tively detects the first countermeasure. In the following, we
discuss and analyze the second.
Eavesdropping on specified receivers. By modifying the
firmware of wireless NIC, eavesdroppers can be configured
to only sniff on packets transmitted to a specified receiver.
EarFisher can detect such attacks by counting the receivers
of packets sent to a specific address. This is feasible as long
as the memory EMRs of the eavesdropper and the legitimate
receiver can be separated in frequency spectrum, which is at
a high probability as measured and discussed in section 6.1.
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Figure 16: Testbed de-
ployment.

DDR3, p-value threshold = 0.75
S1 S2 S3

Rc Pr Rc Pr Rc Pr
A 0 0 0.34 1.00 1.00 1.00
B 0 0 0.05 1.00 1.00 1.00
C 1.00 1.00 1.00 1.00 0 0
D 1.00 1.00 0 0 0 0
E 1.00 1.00 0.97 1.00 0 0
F 1.00 1.00 0 0 0 0
G 0 0 0 0 0 0
H 0.57 1.00 1.00 1.00 0 0
I 0.12 1.00 1.00 1.00 0 0

DDR4, p-value threshold = 0.75
S1 S2 S3

Rc Pr Rc Pr Rc Pr
0 0 0 0 1.00 1.00
0 0 0 0 0.93 1.00
0 0 0.90 1.00 0 0
1.00 1.00 0 0 0 0
1.00 1.00 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1.00 1.00 0 0
0 0 1.00 1.00 0 0

DDR4, p-value threshold = 0.60
S1 S2 S3

Rc Pr Rc Pr Rc Pr
0 0 0.52 1.00 1.00 0.94
0 0 0.07 1.00 1.00 0.97
0.63 1.00 1.00 1.00 0 0
1.00 1.00 0 0 0 0
1.00 1.00 0 0 0 0
0.83 0.96 0 0 0 0
0 0 0 0 0 0
0.61 1.00 1.00 1.00 0 0
0 0 1.00 1.00 0 0

Figure 17: The recall (Re) and precision (Pr) for eavesdroppers deployed at different locations.

Weaponizing low-power wireless. Eavesdroppers may cir-
cumvent EarFisher’s sensing by repurposing low-power wire-
less devices. As an example, ESP8266 [33] – a Wi-Fi enabled
IoT – has a microcontroller that directly controls Wi-Fi chip
via UART, thus avoiding strong memory EMR when receiv-
ing packets. However, such low-power architectural features
typically limit the computation and storage capability of IoTs,
making them ill-suited for security-intrusive tasks. For ex-
ample, the on-board memory of ESP8266 is only 32 KiB for
instruction and 80 KiB for data. In comparison, to crack a
WEP key, the attacker needs to perform a computation over
millions of encrypted packets [14]. As a result, to work as a
full-fledged eavesdropper, low-power wireless devices have
to rely on a host, which will leak strong memory EMR that
can be captured by EarFisher.
Physical shielding. A physical method to mitigate response
is to shield eavesdropper’s memory bus to attenuate EMR.
However, unlike shielding external emanation sources such
as monitor cables, shielding memory bus can be prohibitively
challenging and expensive.

8.2 Limitations

Excessive verdicts. By EarFisher’s detection methodology,
any device that digests others’ packets in CPU-memory sys-
tem will be convicted of eavesdropping. Unfortunately, it is
difficult, if not impossible, to differentiate benign or mali-
cious use of other’s packets. As a result, all software radios
will be identified as eavesdroppers as long as they transfer
baseband signals to a host or process signals on board, both
will emit strong memory EMRs. This is harsh but reasonable,
because software radios process other devices’ signal (albeit
such processing may be only at the PHY layer) in an intrusted
context with rich storage and computational resources capable
of security- and privacy-intrusive tasks.

Besides software radios, recent wireless sensing and com-
munication primitives such as backscatter [20] and localiza-
tion [6, 38], may require Wi-Fi NICs to operate in monitor
mode. To authenticate these applications, a possible method
is to register legal eavesdropping devices a priori, and then let
EarFisher count the number of eavesdroppers to determine
the presence of illegitimate ones.

Low rate wireless networks. Experiment results shown in
Fig. 4 suggest that a traffic stimulus of as slow as 2 MB/s
suffice to trigger the eavesdropper’s response. Unfortunately,
this is still beyond the maximum data rate of many low-power
wireless networks such as ZigBee. However, we expect that
EarFisher will achieve better detection performance in the
coming generation of high-rate wireless networks such as
IEEE 802.11ax, which features GB/s level data rate, thus
allowing for traffic stimuli of much higher intensities.
Blind spots. Eavesdroppers knowing the deployment of Ear-
Fisher may exploit locations subject to severe EM attenua-
tion, such as room G shown in Fig. 16. Another example
is to deploy eavesdroppers as hidden terminals, where the
eavesdropper can hear the packets of a transmitter-of-interest,
but is at a location relatively distant to EarFisher, such that
the memory EMR cannot be accurately sensed. Such blind
spots of detection can be mitigated by extending the coverage
of EarFisher. Possible methods include but not limited to us-
ing high-gain LNA, leveraging advanced signal processing
such as blind beamforming [12], or deploying more EarFisher
nodes to monitor the area-of-interest.

9 Conclusion

This paper presents EarFisher – a system that detects wireless
eavesdroppers by stimulating and sensing memory EMRs.
Experiment results show that EarFisher accurately detects
eavesdroppers despite poor signal conditions and the interfer-
ence of normal network traffic, system memory workloads,
and the interfering EMRs emitted by coexisting devices. We
believe EarFisher provides an important block for building
secure wireless networks. Incorporating EarFisher in wireless
security protocols, such as to verify the confidentiality of key
establishment, remains an important problem for future work.
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Abstract
Recent years have witnessed the rapid deployments of

wireless mesh networks (WMNs) for industrial automation,
military operations, smart energy, etc. Although WMNs
work satisfactorily most of the time thanks to years of re-
search, they are often difficult to configure as configuring a
WMN is a complex process, which involves theoretical com-
putation, simulation, and field testing, among other tasks.
Simulating a WMN provides distinct advantages over ex-
perimenting on a physical network when it comes to iden-
tifying a good network configuration. Unfortunately, our
study shows that the models for network configuration pre-
diction learned from simulations cannot always help physi-
cal networks meet performance requirements because of the
simulation-to-reality gap. In this paper, we employ deep
learning based domain adaptation to close the gap and lever-
age a teacher-student neural network to transfer the network
configuration knowledge learned from a simulated network
to its corresponding physical network. Experimental results
show that our method effectively closes the gap and increases
the accuracy of predicting a good network configuration that
allows the network to meet performance requirements from
30.10% to 70.24% by learning robust machine learning mod-
els from a large amount of inexpensive simulation data and a
few costly field testing measurements.

1 Introduction

Recent years have witnessed rapid deployments of wireless
mesh networks (WMNs) for industrial automation [38, 95],
military operations [57], smart energy [80], etc. For instance,
IEEE 802.15.4-based industrial WMNs, also known as wire-
less sensor-actuator networks (WSANs), are gaining rapid
adoption in process industries over the past decade due to
their advantage in lowering operating costs [51]. Battery-
powered wireless modules easily and inexpensively retrofit
existing sensors and actuators in industrial facilities without
the need to run cables for communication and power. Indus-
trial standard organizations such as HART [31], ISA [38],

IEC [37], and ZigBee [104] are actively pushing the real-
world implementations of WSANs for industrial automation.
For example, more than 54,835 WSANs that implement the
WirelessHART standard [95] have been deployed globally
by Emerson Process Management to monitor and control in-
dustrial processes [24].

Although WMNs work satisfactorily most of the time
thanks to years of research, they are often difficult to config-
ure as configuring a WMN is a complex process, involving
theoretical computation, simulation, and field testing, among
other tasks. Simulating a WMN provides distinct advantages
than experimenting on a physical network when it comes to
identifying a good network configuration: a simulation can
be set up in less time, introduce less overhead, and allow for
different configurations to be tested under exactly the same
conditions. Significant efforts have been made to investigate
the characteristics of wireless communication in the litera-
ture. For instance, there has been a vast array of research
that empirically studied the low-power wireless links with
different platforms, under varying experimental conditions,
assumptions, and scenarios [6]. Decades of research have
gathered precious knowledge and produced a set of math-
ematical models that capture the characteristics of wireless
links, interference, etc, and enable the development of wire-
less simulators, such as TOSSIM [44, 84], Cooja [17, 65],
OMNeT++ [63, 89], and NS-3 [61].

However, it is still very challenging to date to set up a
simulation that captures extensive uncertainties, variations,
and dynamics in real-world WMN deployments. Our study
shows that the models for network configuration predic-
tion learned from simulations cannot always help physi-
cal networks meet performance requirements because of the
simulation-to-reality gap; therefore the advantages of using
simulations to reduce experimental overhead, improve flexi-
bility, and enhance repeatability come at the expense of ques-
tionable credibility of the results. On the other hand, data
collection from many WMN deployments, which include the
ones in industrial facilities, is costly; therefore it is difficult
to obtain sufficient information to train a good model or iden-
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tify an optimal policy for network configurations by relying
solely on field testing.

In this paper, we formulate the network configuration pre-
diction into a machine learning problem, use the configura-
tions of a WirelessHART network [95] as an example to il-
lustrate the simulation-to-reality gap, and then employ deep
learning based domain adaptation to close the gap. Specifi-
cally, this paper makes the following contributions:

• We present the simulation-to-reality gap in network
configurations and show that the models for network
configuration prediction learned from simulations can-
not always help physical networks meet performance
requirements;

• We develop a teacher-student neural network1 that
learns robust machine learning models for network con-
figuration prediction from a large amount of inexpen-
sive simulation data and a few costly physical measure-
ments; to our knowledge, our work represents the first
systematic study of the effectiveness of domain adapta-
tion in closing the simulation-to-reality gap in network
configurations;

• We implement our method, evaluate it using four sim-
ulators and a physical testbed, and repeat our evalu-
ation with different network topologies under various
wireless conditions. Experimental results show that our
method can significantly improve the prediction accu-
racy and help physical networks meet performance re-
quirements.

The remainder of our paper is organized as the following
sections. Section 2 reviews the related work. Section 3 in-
troduces the background of WirelessHART networks. Sec-
tion 4 presents our problem formulation, our feature selec-
tion study, the simulation-to-reality gap, and our method that
closes the gap. Section 5 shows the design of our teacher-
student neural network. Section 6 evaluates our method.
Section 7 concludes the paper.

2 Related Works

The current practices in network configurations rely largely
on experience and rules of thumb that involve a coarse-
grained analysis of network loads or dynamics during a few
field trials. For example, the WirelessHART standard speci-
fies the use of all available channels after a human operator
manually blacklists noisy ones [95], and Emerson Process
Management [22] recommends using a constant value (60%
in general or 70% for control and high speed monitoring) as
the packet reception ratio (PRR) threshold to select links for

1To eliminate ambiguity, we use the word “network” to denote a wireless
network and use the word “neural network” to represent a deep learning
model in this paper.

routing [23]. Unfortunately, recent studies show that such
specifications are problematic, because using more channels
or a fixed PRR threshold is not always desirable in Wire-
lessHART networks [30,75,76]. In the literature, significant
research efforts have been made to model the characteris-
tics of wireless networks and optimize network configura-
tions through mathematical techniques such as convex op-
timization [52], game theory [2], and meta heuristics [73].
For instance, the characteristics of low-power wireless links
have been studied empirically with different platforms, un-
der varying experimental conditions, assumptions, and sce-
narios [6]. Runtime adaptation methods have been devel-
oped to improve the performance of wireless sensor net-
works (WSNs) by adapting a few parameters in the physical
and media access control (MAC) layers [20, 25, 70, 90, 105].
Those methods are not directly applicable to configure a net-
work with many interplaying parameters.

As wireless deployments become increasingly hierarchi-
cal, heterogeneous, and complex, a breadth of recent re-
search has reported that resorting to advanced machine learn-
ing techniques for wireless networking presents significant
performance improvements compared to traditional meth-
ods. Deep learning has been used to handle a large num-
ber of network parameters and automatically uncover corre-
lations that would otherwise have been too complex to ex-
tract by human experts [5, 14, 42, 54, 97, 101] and reinforce-
ment learning has been employed to enable network self-
configurations [18, 32, 36, 45, 47, 53, 56, 59, 60, 67, 72, 74, 91,
93,96,98–100,103]. The key behind the remarkable success
of those data-driven methods is the capability of optimizing a
huge number of free parameters [33,35] to capture extensive
uncertainties, variations, and dynamics in real-world wire-
less deployments, which not only yield complex features,
such as communication signal characteristics, channel qual-
ity, queuing state of each device, and path congestion situ-
ation, but also have many control targets, such as resource
allocation, queue management, and congestion control.

However, data collection from many wireless deployments
that are not easily accessible (e.g., the ones in industrial
facilities) is costly; therefore it is difficult to obtain suffi-
cient information to train a good model or identify an op-
timal policy for network configurations. In such scenar-
ios, the benefits of employing learning-based methods that
require much data are outweighed by the costs. Industry
has consequently shown a marked reluctance to adopt them.
To address this limitation, there has been increasing inter-
est in using simulations to identify good network configura-
tions [7, 40, 46, 49, 75, 76, 79, 82]. Unfortunately, our study
shows that a straightforward deployment of a model learned
from simulations results in poor performance in a physical
network due to the simulation-to-reality gap.

Domain adaptation aims to learn from one or multiple
source domains and produce a model that performs well on a
related target domain; the assumption is that the source and

888    18th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



target domains are associated with the same label space. It
has been successfully used in computer vision [69, 92], nat-
ural language processing [66], and building occupancy esti-
mation [3, 102]. Studies have shown that domain adaptation
can mitigate the harmful effects of domain discrepancy by
optimizing the representation to minimize some measures
of domain shift, such as maximum mean discrepancy [13]
or correlation distances [27]. Compared to fine-tuning the
deep learning model, which is pre-trained using simulation
data, employing domain adaptation is expected to close the
gap between the simulated network (source) domain and the
physical network (target) domain with fewer costly physi-
cal measurements. Recent work has focused on transferring
deep neural network (DNN) representations from a labeled
source dataset to a target domain where labeled data is sparse
or non-existent. The main strategy is to guide feature learn-
ing via minimizing the difference between the source and tar-
get feature distributions. The maximum mean discrepancy
(MMD) has been successfully used for domain adaptation,
which computes the norm of the difference between two do-
main means [29, 86]. Several methods employed an adver-
sarial loss to minimize domain shift and learned a represen-
tation that is simultaneously discriminative of source labels
while not being able to distinguish between domains [19,26].
Despite the extensive literature on domain adaptation, little
work has been done to investigate whether it can be applied
to close simulation-to-reality gap in network configurations.

3 Background of WirelessHART Networks

To meet the stringent reliability and real-time requirements
of industrial applications, WirelessHART networks [95]
made a set of specific design choices that distinguish them-
selves from traditional WSNs designed for best effort ser-
vices [51]. A WirelessHART network is managed by the
centralized network manager, a software module, which is
responsible for managing the entire network that includes
generating routes, scheduling all transmissions, and select-
ing network parameters. Network devices include a set of
field devices (sensors and actuators) and multiple access
points. Each network device is equipped with a half-duplex
omnidirectional radio transceiver compliant with the IEEE
802.15.4 standard [1].

WirelessHART networks adopt the time-slotted channel
hopping (TSCH) technique [85], which combines time-
slotted medium access, channel hopping, and multi-channel
communication to provide time-deterministic packet deliv-
eries2. Under TSCH, time is divided into 10ms time slots,
each of which can be used to transmit a packet and receive
an acknowledgment between a pair of devices. The net-
work uses up to 16 channels in the 2.4 GHz ISM band and

2Packets must be delivered along the data flow (from a sensor to an ac-
cess point and then to an actuator) by the specified time deadline.

Figure 1: Device deployment on our testbed. The device ID
ranges from 100 to 149.

performs channel hopping in every time slot to combat nar-
row band interference. WirelessHART networks support two
types of routing: source routing and graph routing. Source
routing provides a single directed path from each data source
to its destination. Graph routing is designed to enhance net-
work reliability by providing redundant routes between field
devices and access points. A packet may be transmitted
through the backup routes if the links on the primary path
fail to deliver it.

4 Methodology

In this section, we first describe our experimental setup and
data collection method. Then we formulate the network
configuration prediction as a machine learning problem and
present our feature selection study and the simulation-to-
reality gap. Finally, we introduce our deep learning based
domain adaptation method, which closes the gap.

4.1 Experimental Setup and Data Collection
We adopt the open-source implementation of WirelessHART
networks provided by Li et al. [94] and configure six data
flows on our testbed, which consists of 50 TelosB motes [81].
Figure 1 shows the device deployment on our testbed and Ta-
ble 1 lists the source node (sensor), the destination node (ac-
tuator), the data generation interval (period), and the priority
of each data flow. We employ the rate monotonic schedul-
ing [48], an optimal fixed-priority policy, to generate the
transmission schedule, set the data delivery deadline of each
data flow to its period, and configure the devices with ID 111
and 138 to serve as two access points.

We consider three configurable network parameters,
which include (i) the PRR threshold for link selection R,
(ii) the number of channels used in the network C, and
(iii) the number of transmission attempts scheduled for each
packet A, and three network performance metrics, which
include (1) the end-to-end latency L, (2) the battery life-
time B, and (3) the end-to-end reliability E. We consider
R ∈ {0.7,0.71,0.72, ...,0.90}3, C ∈ {1,2,3,4,5,6,7,8}, and

3Emerson Process Management [22] recommends using a constant value
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Table 1: Data flows.

Flow
ID Source Destination Period

(ms) Priority

1 147 146 500 1
2 144 143 500 2
3 105 104 500 3
4 149 118 1000 4
5 136 135 1000 5
6 137 108 1000 6

A ∈ {1,2,3} as the possible parameter values, and combine
them to create 744 (31∗8∗3) network configurations. Please
note that some network configurations make the network
manager generate the same routes and transmission sched-
ule. After removing all redundancy (the configurations lead-
ing to the same routes and transmission schedule), there are
88 distinct network configurations left under our experimen-
tal setup.

After deploying the data flows on the testbed, we imple-
ment the same network in the simulator4, feed the PRR and
noise traces, the routes, and the transmission schedule col-
lected from the physical network into the simulator, and then
run simulations to evaluate network performance under each
network configuration. Specifically, the simulator generates
simulated L, B, and E values under each network configura-
tion (R,C,A). The network performance (L, B, and E values)
is computed in every 50s. 75 network performance traces
are collected under each network configuration. In total, we
collect 6,600 (88 ∗ 75) data traces from simulations. Then,
we run experiments on our testbed and measure the network
performance under each network configuration. Similarly,
we collect 6,600 data traces from our testbed. The data gath-
ered from the simulated network and the physical network is
denoted as Ds and D p, respectively.

4.2 Network Configuration Prediction
The primary task in network configurations is to select the
configuration (the selections of parameters R, C, and A),
which allows the network to meet the performance require-
ments (L, B, and E) specified by the application. The param-
eter selection should be as accurate as possible with minimal
data collection overhead. We formulate the network config-
uration prediction task as a machine learning problem. Let
x = concatenation(L,B,E) denote the given network perfor-
mance requirements and y = concatenation(R,C,A) denote
the configuration, which allows the network to meet perfor-
mance requirements. The goal is to learn a nonlinear map-

(0.6 in general or 0.7 for control and high speed monitoring) for R [23]. We
did not consider R lower than 0.7 because of the consistent low reliability
we observed.

4We repeat our experiments using four simulators: TOSSIM, Cooja,
OMNeT++, and NS-3.

Figure 2: Importance factors of different features when using
tree-based feature selection method. Under the tree-based
method, the features that are selected at the top of the trees
are in general more important than the features that are se-
lected at the end nodes of the trees, as generally, the top splits
lead to bigger information gains. We use the normalized im-
portance factor generated by the tree-based method as a met-
ric for feature selection.

ping fθ(·) : x→ y. Based on the specific application, the user
can set the performance requirements (x). The input features
in x are selected by the feature selection study in Section 4.3.

We use θ to denote the model parameters that are learned
from data in a data-driven manner. Given the fact that the
network configuration values (y) can be discretized without
losing the generality, we further restrict fθ as a discrimi-
native model to solve a classification problem: an applica-
tion can set its performance requirements (x), and the clas-
sifier ( fθ) will predict the network configuration (y) to sat-
isfy the application requirements. This data-driven learning-
based model can take advantage of a large amount of data to
consistently improve its performance. Experimental results
(See Section 6.2) show that it significantly outperforms tradi-
tional optimization-based methods such as Response Surface
Methodology (RSM) [9] and Kriging surrogate modeling ap-
proach [78]. The latter usually suffers the issues that include
limited predictive power and being vulnerable to uneven data
distribution [15].

4.3 Feature Selection

In addition to the features (L, B, and E) that represent perfor-
mance requirements, we consider nine other features, which
include the received signal strength RSS [8], the link qual-
ity indicator LQI [6], the background noise G [6], the packet
delay variation O, the power consumption variation K, the
network reliability variation M, the received signal strength
variation V , the link quality indicator variation Q, and the
background noise variation N. Using all features that are rel-
evant to the network configuration prediction problem may
not necessarily achieve the best performance but rather in-
creases computational cost and data collection overhead. We
perform a study that employs three classic feature selection
methods (the tree-based method [50], the univariate feature
selection method [39], and the recursive feature elimination
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Figure 3: Modeling accuracy when model is trained and
tested on different data sets (Ds: the simulation data pro-
duced by OMNeT++ and D p: the physical data). The dif-
ference between the grey bar and the blue bar indicates the
simulation-to-reality gap.

method [16]) to pick the most useful features. Figure 2 plots
the importance factors of different features when we use the
tree-based method. As Figure 2 shows, L, B, and E have
much higher importance factors (0.315, 0.262, and 0.258)
than the rest. Similar results are observed when we use other
methods. Therefore, we use L, B, and E as the input features
for WirelessHART networks. Please note that our method
can accept more features for other networks.

4.4 Simulation-to-reality Gap
Our goal is to learn a classifier to predict network configu-
rations on the physical data. However, it is a nontrivial task
to learn the model from either the physical data (D p) or the
simulation data (Ds). Instead, we propose to use both D p

and Ds to learn the model as explained in the next section.
Using only physical data (D p): This would result in signifi-
cant time and energy consumption due to the costly data col-
lection process. We first leverage the physical data (D p) col-
lected from the physical network to train machine learning
models and explore its feasibility for our network configura-
tion prediction problem. We employ two machine learning
models, DNN and support vector machine (SVM), for clas-
sification. The input to the models is network performance
requirements and the output is network configurations. We
normalize the collected data (D p) into the [0,1] range and
split it randomly for training and testing. The yellow bars in
Figure 3 show the modeling accuracy5, when DNN and SVM
models are used for the network configuration prediction, re-
spectively. Both DNN and SVM models trained based on
the physical data can provide high modeling accuracy when
we test the models on the physical data (DNN: 79.83% and
SVM: 52.90%), as the yellow bars show. This justifies the
feasibility of our proposed machine learning method in Sec-
tion 4.2 for the network configuration prediction and we may
use the measurements collected from the physical network to

5The modeling accuracy is defined as, given a set of input network per-
formance requirements (L,B,E), the percentage of the testing set that a
model can select the network configuration (R,C,A), which allows the net-
work to meet performance requirements.

train a good model. Unfortunately, relying on running exper-
iments on a physical network to explore the configuration pa-
rameter space is impractical in many cases because running
experiments on a physical network is very costly and time-
consuming. The left side of Table 2 shows the modeling
accuracy, data collection time, and device energy consump-
tion when we train the DNN model with different sizes of
the physical data (collected from a physical network). The
modeling accuracy increases significantly from 19.39% to
79.83% with the size of the training set (D p) that increases
from 88 traces to 3,960 traces. However, the time spent on
collecting the training data (D p) increases from 1.22hours
to 55.00hours. Moreover, the energy consumed by each
field device for data collections on average increases from
310.61J to 13,974.26J, which represents 0.73% and 32.73%
of its total energy capacity.
Using only simulation data (Ds): This would result in low
modeling accuracy due to the simulation-to-reality gap. The
simulation data can be quickly and cheaply obtained from
a simulator. As the right column of Table 2 show, the time
spent on generating the simulation data varies from 27.41s to
1,231.40s and no energy is consumed by any field devices.
However, a classifier that is trained based on the simulation
data (Ds) may suffer the following issue when applied on the
physical data. As the grey bars in Figure 3 show, both mod-
els provide high modeling accuracy when we train based on
the simulation data (Ds) and test the models on the simula-
tion data (DNN: 88.92% and SVM: 69.12%). However, the
modeling accuracy drops rapidly when we test the models on
the physical data (D p) as shown in blue bars (DNN: 25.70%
and SVM: 20.25% ). The differences on the modeling ac-
curacy (DNN: 63.22% and SVM: 48.87%) clearly show the
effect of the simulation-to-reality gap, a subtle but important
discrepancy between reality and simulation that prevents the
simulated experience from directly enabling effective real-
world performance [12, 77]. The simulation-to-reality gap
exists in network configurations because the theoretical mod-
els adopted by the simulator cannot capture all real-world
performance-related factors. For example, the prerecorded
noise traces and the probability-based prediction on packet
reception cannot precisely capture the effects of packet fail-
ures caused by extensive uncertainties, variations, and dy-
namics in real-world wireless deployments (see Section 6.5).
We observed similar discrepancy gaps when using Cooja,
TOSSIM, OMNeT++, and NS-3. Because of the simulation-
to-reality gap, the machine learning models trained based on
simulation data (Ds) for network configurations, no matter
how large the data volume is, may not generalize well to a
physical network.

4.5 Close the Gap by Domain Adaptation

The observations presented in Section 4.4 motivate us to ex-
plore the feasibility of using a substantial amount of inexpen-
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Table 2: Modeling accuracy (%), data collection time (s), and device energy consumption (J) when using the physical data
(D p) or the simulation data (Ds) produced by OMNeT++ for training. For comparison, our solution achieves 70.24% accuracy
with only 440 data samples which are collected in 22,000s with 1,502.88J of energy (see Section 6.2).

# of Data Samples
Used for Training

From a Physical Network (Train: D p, Test: D p) From Simulations (Train: Ds, Test: D p)

Accuracy (%) Collection Time (s) Energy (J) Accuracy(%) Collection Time (s) Energy (J)

88 19.39 4.40∗103 310.61 6.52 27.41 0
528 42.16 2.64∗104 1,863.53 13.70 163.09 0
968 57.92 4.84∗104 3,416.34 17.69 301.95 0
2,024 67.68 1.01∗105 7,143.11 20.17 633.11 0
3,080 78.82 1.54∗105 10,869.61 22.44 933.99 0
3,960 79.83 1.98∗105 13,974.26 25.70 1,231.40 0

Figure 4: Our teacher-student neural network.

sive simulation data together with a small amount of costly
physical data to train the model for network configuration
prediction. To this end, our objective narrows down from
solving a classification problem to using domain adaptation
to address the domain discrepancy issue. Specifically, we
first gather Ns data tuples by running simulations (source
domain) and then acquire N p data tuples by conducting ex-
periments on the physical network (target domain). We as-
sume Ns�N p due to the significant data collection overhead
on the physical network (See Section 4.4). We assume that
the source and target domains are characterized by different
probability distribution q1 and q2, respectively. Our goal is
to construct a deep learning model that can learn transferable
features that bridge the cross-domain discrepancy and build
a classifier y = fθ(x), which can maximize the target domain
accuracy ( fs→ fp) by using a small amount of physical data
(N p). The detailed design of our teacher-student neural net-
work will be discussed in Section 5.

5 Teacher-Student Neural Network

In this section, we present our teacher-student neural net-
work for domain adaptation. Our goal is to build a classifier
that can maximize the target domain (physical network) ac-

curacy by using a small amount of physical data (N p) and
adequate simulation data (Ns) where Ns � N p due to the
significant data collection overhead (See Section 4.4) on the
physical network. The teacher and student use independent
parameters and the teacher generates the soft labels [4, 34]
to transfer its knowledge to the student. Figure 4 shows our
teacher-student neural network. The first stream (teacher)
operates on the simulation data and the second stream (stu-
dent) operates on the physical data. Classification loss, distil-
lation loss, and domain-consistent loss are used in the train-
ing process for the student.

5.1 Teacher Neural Network
The teacher takes advantage of the large amount of simula-
tion data for training and the training data (Ds) consists of
a total number of Ns data tuples. We follow Multilayer Per-
ceptron (MLP) [71] to design the architecture of three layers:
120 and 84 neurons in the first two hidden layers, and 88
neurons in the output layer to represent the totally 88 distinct
configuration categories. Rectified linear unit (ReLU) and
softmax are employed to activate the hidden and output lay-
ers, respectively. The teacher’s parameters (θ1) are learned
by minimizing the cross-entropy loss:

L(θ1) =− E
x∼Ds

ylog( fθ1(x)), (1)

where Ds denotes the training data generated from simula-
tions, θ1 denotes the teacher’s parameters, y denotes the one-
hot label, and fθ1(x) is the prediction made by the teacher.
We use the Adam optimizer [41] with a learning rate of 0.01
to optimize the parameters of the teacher. A total number of
100 training epochs with a batch size of 128 have been used
to train the neural network.

5.2 Student Neural Network
We train the student based on the N p physical data with the
help of the teacher. The student can be quickly learned us-
ing only a few shots of physical data (N p� Ns). To achieve
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this, we leverage the teacher to facilitate the training of the
student where knowledge is transferred from the simulation
domain to the physical domain. The student shares the same
architecture with the teacher but uses independent param-
eters. ReLU and softmax are employed to activate the hid-
den and output layers, respectively. The student’s parameters
(θ2) are learned by minimizing the following loss:

L(θ2) = Lcls +αLdis +βLmmd (2)

where α, and β are weights. We empirically set α = 1, and
β = 0.2 which can provide good performance.

Classification loss Lcls: This loss function allows the stu-
dent to learn from the limited (N p) physical data through
employing the cross-entropy loss:

Lcls =− E
x∼D p

ylog( fθ2(x)), (3)

where y is the one-hot label and fθ2(x) is the prediction made
by the student.

Distillation loss Ldis: This loss function allows the teacher
to transfer its knowledge to the student. The generalization
ability of the student can be enhanced by the loss generated
by the soft labels, which carry the information of probability
distribution for each class [4, 34]. To compute Ldis with soft
labels, we use the following formula:

Ldis =− E
x∼Ds

qlog( fθ2(x)), (4)

where fθ2(x) is the prediction made by the student and q is
the tempered softmax probability generated by the teacher.
q is computed by:

q =
exp(zi/T )

∑
k
j exp(z j/T )

(5)

where T is the temperature [34] and zi is the pre-softmax
output of the teacher. When T increases, the soft label q
approaches a uniform distribution and the probability dis-
tribution generated by the softmax function becomes softer,
which provides more information as to which class the
teacher finds more similar to the predicted class, instead of
giving a hard prediction that indicates which class is correct.
We set T = 10 to generate soft labels for the student.

Domain-consistent loss Lmmd: This loss function is em-
ployed to achieve domain-consistent representations be-
tween the source and target domains. Matching the distri-
butions in the original input feature space is not suitable
because some features may have been distorted by the do-
main shift. The key idea of domain-consistent regularization
is to align two domains, the target (physical data) and the
source (simulation data), in a latent embedding space. Our
method uses the MMD [21] to achieve this goal. MMD is a

Table 3: Training and testing setups of different methods.

Method Training Testing

Physical Data Simulation Data Physical Data Simulation Data

TPTP
√

×
√

×
TSTP ×

√ √
×

FT
√ √ √

×
CCSA

√ √ √
×

DaNN
√ √ √

×
RSM

√ √ √
×

Kriging
√ √ √

×
Ours

√ √ √
×

hypothesis test that tests whether two samples are from the
same distribution by comparing the means of the features
after mapping them to a Reproducing Kernel Hilbert Space
(RKHS) [68]. We calculate the loss as:

Lmmd = || E
x∼Ds

fθ1(x)− E
x∼D p

fθ2(x)|| (6)

where fθ1(·) and fθ2(·) denote the pre-softmax output of the
teacher and the student, respectively. We use a learning rate
of 0.01 with the stochastic gradient descent (SGD) optimizer
to train the student. The momentum is set to 0.05 and the
weight decay parameter is set to 0.003, which governs the
regularization term of the student. A total number of 500
epochs have been trained on the student.

6 Evaluation

We perform a series of experiments to validate the effi-
ciency of our method to identify good network configura-
tions. We first evaluate the capability of our method to ef-
fectively improve the modeling accuracy and compare our
method against seven baselines, which include five machine
learning based methods: (i) Using the physical data for both
training and testing (TPTP); (ii) Using the simulation data
for training and the physical data for testing (TSTP) [75,76];
(iii) Fine-tuning (FT) method [83]; (iv) CCSA: Unified deep
supervised domain adaptation and generalization [58]; and
(v) Domain adaptive neural network (DaNN) [28], and two
non-machine learning methods: (vi) RSM method [9,87] and
(vii) Kriging method [11, 78]. Table 3 summarizes the train-
ing and testing data used by each method. All methods use
L, B, and E as their input features. We then apply the net-
work configurations selected by our method on our testbed
and measure the network performance. We repeat our exper-
iments with different network setups under various wireless
conditions. Finally, we evaluate the effects of our method
on closing the gap when employing different simulators and
radio models.

6.1 Experimental Setup
As presented in Section 4.1, we configure six data flows on
our testbed. On each data flow, sensor data is generated by
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Figure 5: Modeling accuracy of our method and baselines
when different number of shots of physical data are added
into simulation data (3,960 data samples in total) for training.
One shot includes 88 data samples (one data sample under
each network configuration).

the source node and forwarded to the access points (uplink)
and then a corresponding control command is sent to the
destination node (downlink). We calculate the latency, en-
ergy consumption, and reliability every 50s. We employ the
same DNN architecture for the teacher and the student in our
method with independent weights (see Section 5). Each neu-
ral network has 120 and 84 neurons in the first two hidden
layers, and 88 neurons in the output layer. The weight β

of MMD is 0.2 and the temperature T is 10. The learning
rate is 0.01 with the SGD optimizer for the student. CCSA
uses the cross-entropy loss and the semantic alignment loss
between the source and target domains with the Siamese ar-
chitecture. DaNN uses the standard classification loss and
the MMD regularization for classification and domain adap-
tation. FT first uses the simulation data to train the initial
model and then fine-tunes the neural network parameters to
fit the target domain using a small amount of physical data.
FT uses the learning rate of 0.001 to tune the parameters of
the last layer in the DNN with the physical data. RSM and
Kriging methods use simulation data and different amount
of physical data to build RSM and Kriging models and use
them to predict network configurations. Specifically, RSM is
a black-box modeling technique and uses polynomial func-
tions to approximate the model functions between the inputs
and the outputs [9], while Kriging leverages spatial interpo-
lation that uses complex mathematical formulas to estimate
values at unknown points based on the values, which are al-
ready sampled [78].

6.2 Performance of Our Method

We first evaluate the modeling accuracy of our method and
compare its performance against seven baselines using the
data traces presented in Section 4.1. 3,960 data samples from
the simulation data are used for training under all methods
except TPTP, which uses only the physical data for training.
Figure 5 plots the modeling accuracy of all methods when
different number of shots of physical data are added into the

Figure 6: Time and energy consumption to collect different
number of shots of data from a physical network. Using only
physical data to train the model is infeasible due to unaccept-
able time and energy overhead.

simulation data for training. As Figure 6 plots, collecting
one shot of physical data (one data sample under each of
88 network configurations) takes 1.22 hours and consumes
310.61J of energy. Please note that TSTP uses only the sim-
ulation data for training (see Table 3) and provides the lowest
accuracy (30.10%) due to the simulation-to-reality gap. The
results clearly show that the model trained with the simu-
lation data does not work well on the physical data. RSM
and Kriging also provide poor performance with the max-
imum accuracy of 35.06% and 46.87%, respectively. Our
method achieves the best performance. With only one shot
of physical data (88 data samples), our method provides an
accuracy of 50.12%. With four more shots of physical data,
our method hits 70.24% accuracy. Using a small amount of
physical data to provide a good model represents an impor-
tant feature of our method because the data collection from
a physical network is very time and energy consuming. As
a comparison, without using the simulation data, TPTP pro-
vides only an accuracy of 19.39% and 41.21% at one shot
and five shots, respectively. This highlights the importance
of learning knowledge from simulations and transferring it
to a physical network for network configurations.

We also observe that the accuracy improves slowly from
70.24% to 78.25% when the number of shots increases from
5 to 15. However, collecting 10 more shots of physical data
from a physical network takes a long time and consumes
much energy. As Figure 6 plots, the collection of five shots
of physical data takes 6.11hours and consumes 1,502.88J of
energy, while collecting 15 shots take 18.33hours and con-
sumes 4,758.70J of energy. The improvement on the mod-
eling accuracy is largely shadowed by the significantly in-
creased data collection overhead. Therefore, we use five
shots in the rest of our evaluation. Figure 5 and 6 also show
that only using physical data to train the model is inefficient.
It takes 18.33hours to collect enough data from a physi-
cal network, which allows TPTP to provide an accuracy of
60.95%. By comparing the accuracy provided by our method
and TPTP, we can clearly see the effectiveness of our method
on reducing the data collection time for training good mod-
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Table 4: Six example network configurations selected by our method and TSTP. Figure 7 and 8 show the network performance
after applying the configurations selected by our method and TSTP on our testbed, respectively. Our method can meet all
performance requirements. The performance requirements that TSTP fails to meet are highlighted.

ID # Input Output (our method / TSTP)

Latency (ms) Battery lifetime (days) Reliability (%) PRR threshold (%) # of Channel # of Tx Attempts

1 170 210 98 84 / 82 4 / 7 3 / 3
2 225 214 97 90 / 88 5 / 1 3 / 3
3 130 220 95 84 / 78 4 / 8 2 / 3
4 165 224 95 90 / 89 4 / 6 2 / 2
5 130 200 98 87 / 72 2 / 1 3 / 2

(a) Boxplot of latency. (b) Boxplot of battery lifetime. (c) Boxplot of reliability.

Figure 7: Network performance when employing the network configurations selected by our method (listed in Table 4). Central
mark in box indicates median; bottom and top of box represent the 25th percentile (q1) and 75th percentile (q2); red dots
indicate outliers (x > q2 +1.5∗ (q2−q1) or x < q1−1.5∗ (q2−q1)); whiskers indicate the range that excludes outliers.

els for network configuration prediction. Our method con-
sistently outperforms those two existing domain adaptation
methods (DaNN and CCSA), which use the Siamese DNN
model with different distance loss functions. For example,
our method provides an accuracy of 70.24% when it uses five
shots of physical data for training, while CCSA and DaNN
provide 47.46% and 61.07% accuracy, respectively. The ac-
curacy provided by FT increases from 32.73%, to 33.42%,
and then to 56.40% when the number of shots increases from
1, to 2, and to 15 shots.

Our method can consistently outperform the baselines be-
cause it not only uses two different neural networks to learn
two specific models for different but highly related domains
with the soft labels but also employs the MMD regulariza-
tion, while both DaNN and CCSA use same weights between
the source and target domains for domain adaptation. More-
over, the distillation loss Ldis of our method provides a set of
candidate network configurations for the student to choose
and the student can quickly adapt to the target domain. The
results also show that the domain-consistent loss, as a distri-
bution distance measure, is effective for eliminating domain
divergence between the source domain (simulated network)
and the target domain (physical network). Our method also
significantly outperforms FT. The low accuracy provided by
FT shows that changing only the weight of the last layer in
the DNN cannot produce a good adapted model.

We further validate the network configurations selected by

our method on our testbed by examining the actual network
performance. Specifically, we feed different network per-
formance requirements to our method, employ the selected
network configurations, and then measure the network per-
formance. We repeat the experiments under each network
configuration 108 times. Table 4 lists six example network
configurations selected by our method and TSTP when fac-
ing different network performance requirements. Figure 7
plots the boxplots of latency, battery lifetime6, and reliabil-
ity when employing six network configurations selected by
our method. As Figure 7 shows, our method always helps
the network meet the network performance requirements
posed by the application (listed in Table 4). For instance,
the latency, battery lifetime, and reliability requirements are
170ms, 210days, and 98% in the first example (ID = 1).
When employing the network configuration selected by our
method (84% as PRR threshold, four channels, three trans-
mission attempts for each packet), the network achieves a
median latency of 161.00ms, a median battery lifetime of
213.76days, and a median reliability of 100%, which meet
all given requirements. Similarly, the latency, battery life-
time, and reliability requirements are 165ms, 224days, and
95% in the fourth example (ID = 4). When employing the

6To compute the battery lifetime, we assume that each field device is
powered by two Lithium Iron AA batteries with a total capacity of 42,700J.
We compute the radio energy consumption based on the timestamps of radio
activities and the radio’s power consumption in each state according to the
radio chip data sheet.
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(a) Boxplot of latency. (b) Boxplot of battery lifetime. (c) Boxplot of reliability.

Figure 8: Network performance when employing the network configurations selected by TSTP (listed in Table 4). The dotted
boxes highlight the network performance that fails to meet the requirements. Compared to Figure 7, our method always provides
better network configurations than TSTR and help the network meet the application performance requirements.

network configuration selected by our method (90% as PRR
threshold, four channels, two transmission attempts for each
packet), the network achieves a median latency of 163.33ms,
a median battery lifetime of 224.28days, and a median re-
liability of 98%, which meet all given requirements. Larger
variations on latency are observed when the number of trans-
mission attempts for each packet is small, which confirms the
observations reported in our previous study [75, 76]

As a comparison, we also employ the network config-
urations selected by TSTP when facing the same network
performance requirements. Table 4 lists the network con-
figurations selected by TSTP and Figure 8 plots the result-
ing network performance. Due to the simulation-to-reality
gap, the network configurations selected by TSTP cannot al-
ways meet all network performance requirements. The dot-
ted boxes in Figure 8 highlight the network performance that
fails to meet the application requirements listed in Table 4.
For instance, the latency, battery lifetime, and reliability re-
quirements are 130ms, 200days, and 98% in the fifth exam-
ple (ID = 5). When employing the network configuration
selected by TSTP (72% as PRR threshold, one channel, two
transmission attempts for each packet), the network achieves
a median latency of 191.40ms, a median battery lifetime of
204.74days, and a median reliability of 94.00%, which fail
to meet the latency and reliability requirements.

6.3 Performance with Different Network
Topologies under Various Wireless Con-
ditions

To examine the applicability of our method, we repeat our
experiments with different network topologies under various
wireless conditions. We first vary the number of data flows,
the number of devices in the network, and the locations of
source nodes, destination nodes, and access points and mea-
sure the performance of our method. Figure 9 plots the ac-
curacy comparisons between our method and seven base-
lines under four example network topologies. Our method
consistently provides the highest accuracy. For instance,
our method achieves an accuracy of 67.09% under the third

Figure 9: Accuracy comparison among different methods
with different network topologies. All methods use five shots
of physical data. Topology 1 is used for Figure 5.

Figure 10: Accuracy comparison among different methods
under different wireless conditions.

network topology, while CCSA and DaNN provide 44.23%
and 59.37% accuracy, respectively. TPTP, TSTP, FT, RSM,
and Kriging achieve 39.72%, 25.78%, 41.90%, 32.56%, and
34.26% accuracy, respectively. The results confirm the im-
provements presented in Section 6.2 and show our method
can consistently outperform the state of the art.

We also examine the performance of our method under
different wireless conditions. We set up three jammers on
our testbed (ID 116, 131, and 134 in Figure 1) and run
Jamlab [10] on them to generate controlled WiFi interfer-
ence with various strengths. We create three wireless condi-
tions: a clean environment without controlled interference,
a noisy environment with moderate controlled interference,
and a stress-testing environment with strong controlled in-
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terference. We train the model again with different physi-
cal data under different wireless conditions. Figure 10 plots
the modeling accuracy under three wireless conditions when
employing our method and seven baselines. As Figure 10
shows, the accuracy provided by our method decreases from
68.89%, to 64.99%, and then to 62.20% when stronger in-
terference is introduced. We observe similar trends when
employing other methods.

This exposes a limitation of current wireless simulators,
which cannot precisely simulate the effects of external inter-
ference and environmental dynamics. To better understand
the physical data distribution, we visualize the data distri-
bution of (L,B,E) collected from the physical data (D p)
using the t-Distributed Stochastic Neighbor Embedding (t-
SNE) algorithm [88], a dimension reduction tool for data vi-
sualization. Figure 11 shows the network performance vi-
sualization provided by t-SNE where different colors stand
for different network configurations. Figure 11(a) and Fig-
ure 11(b) plot the data distributions when the network oper-
ates with and without the presence of strong controlled in-
terference, respectively. Please note that those two figures
include the same amount of data points. Many data points
in Figure 11(b) overlap each other. These larger variations,
result from the interference, significantly increases the dif-
ficulty on transferring knowledge learned from simulations
to a physical network. With the presence of interference,
our method still consistently outperforms all baselines. For
instance, in the stress-testing environment, our method pro-
vides an accuracy of 62.20%, while other methods provide
up to 53.21% accuracy.

To illustrate the differences between physical data and
simulation data, Figure 12 plots the reliability measured
from the physical network and simulated by TOSSIM under
four network configurations. Because of the simulation-to-
reality gap, the measured reliability is different from the sim-
ulated one. More importantly, the variations of the measured
reliability values are much larger than the simulated ones.
Such differences highlight the important of our method,
which effectively closes the gap and increases the accuracy
of predicting a good network configuration that allows the
network to meet performance requirements.

6.4 Effects of Different Losses

To study the effects of different losses on the performance of
our method, we repeat the experiments by disabling one or
two losses among the classification loss Lcls, the distillation
loss Ldis, and the domain-consistent loss Lmmd . We conduct
our experiments using Topology 1 in Figure 9 in a clean envi-
ronment. Figure 13 plots the accuracy when our method uses
different combination of loss functions. As Figure 13 shows,
our method with a single loss provides very low classification
accuracy (Ldis: 28.22%, Lmmd : 26.81%, and Lcls:41.21%).
The accuracy is also very low (36.84%) when our method

(a) In the stress-testing environment. (b) In the clean environment.

Figure 11: Data visualization provided by t-SNE [88].
Larger variations are observed in stress-testing environment,
which significantly increase the difficulty on transferring
knowledge learned from simulations to a physical network.

uses Ldis and Lmmd due to the critical need of the classifi-
cation loss on the target domain. The accuracy increases to
64.60% when our method combines Lcls with Ldis, because
the distillation loss Ldis provides a set of candidate network
configurations for the student to choose and the student can
quickly adapt to the target domain by combining the knowl-
edge distillation loss and classification loss. The accuracy
further increases to 70.24% when our method uses all three
losses. The results show that the domain-consistent loss, as
a distribution distance measure, is effective for eliminating
domain divergence between the source domain (simulated
network) and the target domain (physical network).

6.5 Effects of Simulators and Radio Models

Finally, we study the effects of different simulators and radio
models on the performance of our method. Unit Disk Graph
Medium (UDGM) [55] and Directed Graph Radio Medium
(DGRM) [55] are the two most popular radio models sup-
ported by Cooja [17, 65]. UDGM in Cooja uses the disk
communication model and assumes that the receiver inside
the communication range of the sender can successfully re-
ceive its packets with a constant PRR (i.e., 90%). DGRM
in Cooja allows its user to specify the PRR of each link and
use it together with a random number to determine whether
each packet can be delivered successfully. Closest-fit pat-
tern matching (CPM) in TOSSIM allows its user to input
ambient noise traces and specify the gain value (propaga-
tion strength) between each pair of devices on every channel
and then generates statistical models based on the CPM al-
gorithm to compute the packet delivery ratio for each pair
of devices [43]. We create DGRM-E by extending DGRM
by allowing an user to specify different PRRs on different
channels for each link, and then integrate it with TOSSIM.
DISTANCE in NS-3 allow its user to specify the locations
of all wireless devices and use the shadowing model to de-
termine packet receptions [62]. OMNET++ allows its user
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Figure 12: Reliability measured from
the physical network and simulated by
TOSSIM under four network configu-
rations.

Figure 13: Accuracy when our method
uses different loss functions.

Figure 14: Accuracy comparison when
using different simulators and radio
models.

to specify device locations and background noise levels and
uses the signal propagation model (path loss model) to com-
pute the RSS values for packet reception prediction [64].

Figure 14 plots the accuracy of our method and our base-
lines when they use the simulation data generated from dif-
ferent simulators with various radio models. As Figure 14
shows, all methods achieve better performance when they
use a more realistic model, which benefits from a smaller
domain discrepancy. For instance, our method achieves
70.24% and 68.32% accuracy when it employs CPM and
DEGRM-E in TOSSIM, respectively. The high accuracy
results from the use of real-world noise or PRR traces in
simulations. Our method provides a slightly lower accuracy
(63.95%) when it uses DGRM in Cooja, which makes an
unrealistic assumption that the PRRs of a link are the same
on all channels. The worse performance (60.83%) appears
when our method uses the simple disk model (UDGM) in
Cooja. Similarly, the accuracy provided by TSTP decreases
from 30.10% to 19.13% when it uses a less realistic radio
model. More importantly, our method consistently provides
the best performance and makes better use of more realistic
simulations compared to other methods. The accuracy in-
creases from 60.83% to 70.24% (a 9.41% increase) when our
method uses CPM in TOSSIM instead of UDGM in Cooja,
while the accuracy improvement offered by DaNN is 4.77%
when making the same change.

The consistent low accuracy provided by TSTP shows that
the simulation-to-reality gap is not tie up with a particular
simulator or radio model. Although the theoretical models
adopted by those simulators work satisfactorily in general,
they cannot capture all real-world performance-related fac-
tors. For instance, the CPM approach in TOSSIM allows its
user to input noise traces collected from a physical network
and specify the gain value (propagation strength) between
each pair of devices on every channel and then generates
statistical models to predict packet receptions during simu-
lations based on the CPM algorithm. Such an approach may
introduce simulation inaccuracies because it has to use pre-
recorded noise traces and predefined gain values to simulate
packet failures, and the probability-based prediction cannot
precisely capture the effects of packet failures caused by ex-

tensive uncertainties, variations, and dynamics in real-world
wireless deployments.

7 Conclusions

Over the past decade, WMNs have been widely used for in-
dustrial automation, military operations, smart energy, etc.
Due to years of research, WMNs work satisfactorily most of
the time. However, they are often difficult to configure as
configuring a WMN is a complex process, involving theoret-
ical computation, simulation, and field testing, among other
tasks. Relying on field testing to identify good network con-
figurations is impractical in many cases because running ex-
periments on a physical network is often costly and time-
consuming. Simulating the network performance under dif-
ferent network parameters provides distinct advantages when
it comes to identifying a good network configuration, be-
cause a simulation can be set up in less time, introduce less
overhead, and allow for different configurations to be tested
under exactly the same condition. Unfortunately, out study
shows that many network configurations identified in simula-
tions cannot help physical networks achieve desirable perfor-
mance because of the simulation-to-reality gap. To close the
gap, We leverage a teacher-student deep neural network for
efficient domain adaptation, which transfers network config-
uration knowledge learned from simulation to a physical net-
work. Our method first uses the simulation data to learn a
teacher neural network, which is then used to teach a student
neural network to learn from a few shots of the physical data.
Our experimental results show that our method consistently
outperforms seven baselines and achieves a modeling accu-
racy of 70.24% with only 440 data samples collected from
the physical network.
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Practical Null Steering in Millimeter Wave Networks
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Abstract – Millimeter wave (mmWave) is playing a central
role in pushing the performance and scalability of wireless
networks by offering huge bandwidth and extremely high data
rates. Millimeter wave radios use phased array technology
to modify the antenna beam pattern and focus their power
towards the transmitter or receiver. In this paper, we explore
the practicality of modifying the beam pattern to suppress
interference by creating nulls, i.e. directions in the beam pat-
tern where almost no power is received. Creating nulls in
practice, however, is challenging due to the fact that practical
mmWave phased arrays offer very limited control in setting
the parameters of the beam pattern and suffer from hardware
imperfections which prevent us from nulling interference.

We introduce Nulli-Fi, the first practical mmWave null
steering system. Nulli-Fi combines a novel theoretically op-
timal algorithm that accounts for limitations in practical
phased arrays with a discrete optimization framework that
overcomes hardware imperfections. Nulli-Fi also introduces
a fast null steering protocol to quickly null new unforeseen
interferers. We implement and extensively evaluate Nulli-Fi
using commercial off-the-shelf 60 GHz mmWave radios with
16-element phased arrays transmitting IEEE 802.11ad pack-
ets [33] . Our results show that Nulli-Fi can create nulls that
reduce interference by up to 18 dB even when the phased ar-
ray offers only 4 bits of control. In a network with 10 links (20
nodes), Nulli-Fi’s ability to null interference enables 2.68×
higher total network throughput compared to recent past work.

1 Introduction

Millimeter wave (mmWave) networks introduced a major leap
in data rates and scalability for 5G cellular networks, next
generation wireless LANs, and IoT devices [10, 41, 46]. At
the heart of millimeter wave technology are phased arrays
which can focus the power of the antenna beam pattern in
real-time towards the client to compensate for the large atten-
uation of mmWave signals. At mmWave frequencies (≥ 24
GHz), phased arrays can fit many antennas into a small area
due to the mm-scale wavelength of the signal [63], enabling
very narrow directional beams as shown in Fig. 1. Ideally,
using narrow beams would shield a mmWave device from
interference outside the main direction (main lobe) of its
beam. However, phased arrays suffer from side-lobe leakage
as shown in Fig. 1(a). Hence, they still receive interfering
signals even if these signals come from directions outside
the main lobe. Past work has shown that side-lobes can lead
to a significant amount of interference which can degrade
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Figure 1: Directional beams in mmWave networks

the data rate and in dense networks reduce the total network
throughput to half (by up to 18 Gbps) [14, 27, 44, 55, 61].

To address the above problem, we leverage the fact that
phased array beam patterns exhibit nulls, directions in the
beam pattern where the transmitted or received power is sup-
pressed as shown in Fig. 2(b). Thus, we can substantially
reduce interference by having a null in the direction of the
interferer. However, simply shifting the beam pattern to align
the null with the interferer can misalign the main lobe and
lead to worse performance as we show in section 6. Hence, we
must create a new beam pattern to introduce a null in the di-
rection of the interferer while preserving the alignment of the
main lobe as shown in Fig. 1(b). This problem is commonly
referred to as null steering.

Past mmWave systems research has mainly focused on
beam alignment and steering [13, 17, 20, 40, 51, 56, 65], i.e.
creating and steering the main lobe of the beam. Creating
and steering nulls, however, while ensuring the main lobe is
preserved is significantly harder. To better understand why,
consider the phased array diagram shown in Fig. 2(a). The
beam pattern of the array is created by modifying complex
weights applied to each antenna element of the phased array.
These complex weights alter the magnitude and phase of
the signal received on each antenna. We can adjust these
weights to align signals on the antennas coming from a certain
direction to sum constructively creating a main lobe as shown
in Fig. 2(d). In contrast, to create a null, we must ensure that
the signals sum up destructively to cancel each other.

Setting the complex weights to ensure the signals from the
direction of the interferer cancel each other while signals from
the main lobe direction continue to sum up constructively is
challenging in practice for several reasons. First, commercial
mmWave phased arrays only allow us to change the phase
of the complex weight but do not offer any control over the
amplitude [11, 64]. While it is sufficient to rotate the phase
of the signals to ensure they sum up constructively, it is hard
to ensure signals cancel each other without modifying their

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    903



0 20 40 60 80 100 120 140 160 180
-40

-30

-20

-10

0

B
e

a
m

 P
a

tt
e

rn
 i
n
 d

B

main lobe (75°) 

Create null (100°)

At Main Lobe (75°) 

. . . 

. . . 

𝛼0𝑒𝑗𝜙0
𝑠0 𝛼1𝑒𝑗𝜙1

𝑠1 𝛼2𝑒𝑗𝜙2𝑠2 𝛼𝑛−1𝑒𝑗𝜙𝑛−1𝑠𝑛−1

RX Chain

=𝑖𝑛 𝑠𝑖𝛼𝑖𝑒𝑗𝜙𝑖
v0 v1 v2 v𝑛−1

At Null Point (100°) 

0 20 40 60 80 100 120 140 160 180

Angular Direction in degrees

-40

-30

-20

-10

0

B
e

a
m

 P
a

tt
e

rn
 i
n
 d

B

A
ft

e
r 

N
u

ll
in

g

v0 v1 v2 v𝑛−1

v0 v1
v2 v𝑛−1

v0v1
v2

𝑷v𝑛−1v𝑛−2v𝑛−3B
e

fo
re

 

N
u

ll
in

g

(a) Phased Array

(b)

(c)

(f)

(g)

(d)

(e)=𝑖𝑛 v𝑖 Null (100°)
𝑷𝑷

−𝑷
Figure 2: (a) phased arrays weight combination, (b-g) Nulli-Fi’s Nulling Algorithm

amplitude. This is further complicated by the fact that phase
control in practical arrays is highly quantized using at most
2 to 5 bits to control the phase shifts.1 Moreover, practical
phased arrays suffer from hardware imperfections [38] which
have little impact on the main lobe but can limit the ability
to null [38, 43]. For example, in an array with 8 antennas,
if the phase on one antenna is off by 5◦, the received signal
along the main lobe degrades by only 0.004 dB whereas the
interference signal along a null increases by 10 dB as we
describe in more details in section 4.1.

Furthermore, unlike the main lobe which is naturally wide
and, hence, can tolerate small errors in the direction of com-
munication, nulls are narrow as shown in Fig. 2. As a result,
any small error in the direction of the interferer will misalign
the null and prevent us from effectively eliminating interfer-
ence. To address this, we must create wider nulls rather than
point nulls as shown in Fig. 1(c). In addition, in dense net-
works, we would need to null multiple different directions
to account for multiple interferers or multipath reflections.
Creating multiple nulls and wider nulls impose even more
requirements that are hard to meet given the constraints and
hardware imperfections of practical phased arrays.

Due to the above challenges, past work on null steering
remains simulation based [5, 32, 53] and has not been imple-
mented on practical mmWave phased arrays. Furthermore,
most past work focuses on creating a single point null and
none of the past work accounts for hardware imperfections.

This paper presents Nulli-Fi, the first practical mmWave
null steering system that is able to null interference on com-
mercial off-the-shelf phased arrays while preserving the main
lobe. Nulli-Fi addresses the above practical challenges by
combining a new theoretically optimal algorithm that ac-
counts for limitations in practical phased arrays with a novel
discrete optimization framework that overcomes hardware
imperfections and enables multiple and wider nulls.

Nulli-Fi’s optimal algorithm is able to create a single null
within the constraints of practical phased arrays. To under-
stand how this algorithm works, consider the example shown
in Fig. 2. The goal is to have the main lobe at 75◦ and create a
null at 100◦. Each vector in Fig. 2(d)-(g) represents the signal

1For example, 802.11ad compliant consumer-grade devices use only 2
bit phase shifters, i.e. we can set the phase only to 0◦,90◦,180◦, or 270◦.

received on a given antenna element. For signals received
along 75◦, Nulli-Fi sets the phase shifters to rotate the phase
of each of these signals to sum up constructively as shown
in Fig. 2(d). For signals received along 100◦, the signals will
have different phases and the vectors will sum up to some
vector ~P as shown in Fig. 2(f). Our goal is to rotate these
vectors by changing the phase on the phase shifters in order to
null ~P while preserving the main lobe. To do so, Nulli-Fi re-
stricts further phase-shifts on each antenna to a limited range.
For example, if we restrict it to ±15◦ on all antennas, the
main lobe does not change by more than 0.3 dB, as shown in
Fig. 2(e). Nulli-Fi then leverages the insight that the vectors
are symmetric around ~P as shown in Fig 2(f).2 By rotating
pairs of symmetric vectors towards −~P, as shown in Fig 2(g),
we reduce the amplitude of ~P. We iteratively rotate the vectors
until we null ~P or achieve the best possible reduction which
we prove is optimal given the restrictions on the phase shifts.

The above algorithm provides a simple, optimal way to
create nulls under limited phase control but it does not ac-
count for hardware imperfections, nor can it create nulls in
more than one direction. To address this, we introduce a dis-
crete optimization framework customized to null steering.
The framework is inspired by genetic algorithms which have
proven effective in discrete optimizations [19, 60]. However,
genetic algorithms are very slow and can take thousands of
iterations to converge [60] which prevents practical realtime
null steering as we discuss in detail in section 7. Like many
other optimization techniques, the initialization and stopping
criterion are among the most contributing factors to the algo-
rithm’s convergence speed [48, 62]. To address this, Nulli-Fi
uses the solution to its optimal algorithm. First, it initializes
the optimization framework using the solution from the above
algorithm which gives Nulli-Fi a significant head-start and
helps it converge faster as we show in section 6. Second, since
Nulli-Fi’s algorithm is optimal, it can serve as a stopping crite-
rion to the optimization framework (i.e., the algorithm knows
if it has reached a reasonable solution). Combining the two
methods gives Nulli-Fi a powerful framework that is both fast
and is able to handle hardware imperfections.

Finally, to enable a practical system, Nulli-Fi develops a

2We prove this in lemma 4.2 to be true for any directions of the main lobe
and the null for even number of antennas.
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Past Work Analog Beamforming? Phase only? Discrete Phase? Implemented? HW Imperfections? Wide Nulls?

[49] × × × × × ×
[52] × X × × × ×

[6, 25, 29, 53] X × × × × X

[5, 9, 30, 58] X × × × × ×
[32] X × X (1◦ Res.) × × ×

[12, 21, 39, 50, 54, 57] X X × × × ×
[22, 23, 35] X X X (6 bits) × × ×

[8] X X X (9 bits) X (at 4.5 GHz) × ×
[15] X X × X (at 2.5 GHz) × ×

Nulli-Fi X X X (2-4 bits) X (at 60 GHz) X X

Table 1: Summary of Related Work on Phased Array Nulling

fast null steering protocol that is able to quickly find the di-
rection in which to create a null whenever a new unforeseen
interferer appears. The protocol leverages the intuition that the
interferer direction is more likely to be at the large side-lobes
shown in Fig. 2(b). Hence, instead of searching all possible
directions, Nulli-Fi starts with a large side-lobe where it cre-
ates a wide null and iterates through the side-lobes until the
interferer is nulled.

We have implemented and extensively evaluated Nulli-Fi
using commercial 60 GHz, 16 element phased arrays trans-
mitting IEEE 802.11ad packets [33]. Our results show that for
4 bit phase shifters, Nulli-Fi is able to create 3◦ narrow nulls
that suppress interference by 18 dB and 10◦ wide nulls that
supress interference by 10.5 dB while maintaining the main
lobe within 1 dB. For 2 bit phase shifters, Nulli-Fi is still able
to null interference by 12.6 dB. Nulli-Fi is also able null up
to 5 different directions. We further compare Nulli-Fi with
past null forming algorithms and demonstrate up to 10 dB
better nulling and 37× faster convergence. We also evaluate
NullFi’s fast null steering protocol on top of the mm-Flex
platform [33] to show that Nulli-Fi can find the direction of
an unknown interference and null it within 290 ns. Finally, to
demonstrate the effectiveness of Nulli-Fi in dense mmWave
networks, we compare Nulli-Fi to past work that leverages the
directionality of mmWave radios to enable many concurrent
transmissions [27]. By nulling interference from side lobes,
Nulli-Fi is able to achieve 2.6× higher data rate when 10
mmWave links (20 nodes) are transmitting concurrently.

Contributions: The paper has the following contributions:

• The paper presents the first practical system that can create
nulls on mmWave phased arrays.

• The paper introduces a theoretically optimal algorithm for
creating nulls and a novel discrete optimization framework
that account for practical challenges in mmWave systems.

• The paper develops a fast null steering protocol to deliver a
practical system.

• The system is built and evaluated on real phased arrays to
demonstrate significant gains in suppressing interference.

• We have open sourced implementations of our algorithms
and baselines on our git repository [36].

2 Related Work

There is a significant literature on millimeter wave beam shap-
ing and steering. Past mmWave systems research, however,
has mainly focused on beam alignment, i.e. developing proto-
cols to quickly find the best direction to align the beams of a
transmitter and receiver or to switch the beam to a different
path to avoid blockage [17,20,27,40,56,65,66]. Some works
also explore the problem of beam pattern synthesis [13,42,51].
However, these works focus on shaping the main lobe of the
beam to achieve good antenna gain along the direction of com-
munication. In contrast, we focus on forming and steering
nulls to suppress interference.

Past work on mmWave networks proposes leveraging the
directionality of mmWave links to enable dense spatial reuse
and maximize the number links that can transmit simultane-
ously [27,28]. However, the work shows that side lobe leakage
from practical mmWave phased arrays limits the ability to
enable spatial reuse. In section 6, we compare with this work
to show that Nulli-Fi can enable 2.43× higher throughput
than [27] when 10 links are transmitting concurrently. An-
other work [59] mitigates interference by aligning the natural
nulls in the beam pattern toward the interferer. This, however,
comes at the cost misaligning the mainlobe [59]. In section 6,
we show that this can reduce the SNR by up to 10 dB. In
contrast, Nulli-Fi creates new nulls that suppress interference
while preserving the main lobe alignment.

Previous work on null forming in phased arrays is simu-
lation based and to the best of our knowledge has not been
implemented on practical mmWave phased arrays. Most of the
past work ignores many of the practical limitations. Table 1
summarizes past work. Specifically, most methods assume
that it is possible to arbitrarily set the phase and amplitude of
the complex weights. Others do not require amplitude control
but assume phase control is continuous and can be set arbi-
trary. However, mmWave phased control is highly quantized
offering only 2 to 5 bits to control the phase [2, 11, 47]. Two
works [49, 52] assume a digital phased array, i.e. each an-
tenna is connected to a district transmitter or receiver and the
complex weights can be set arbitrary in digital. Commercial
mmWave phased arrays are mostly analog and have a single
digital transmitter or receiver as shown in Fig. 2(a) [2–4, 33].
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The closest to our work are [22, 23, 35] which use genetic al-
gorithms to create nulls in case of discrete phase only control
with 6 bits of quantization. However, these systems are not
implemented in practice, ignore hardware imperfections, take
many iterations to converge and can only create a point null
for which Nulli-Fi has a closed-form solution. In section 6,
we implement and compare with these methods to show that
even if they account for hardware imperferections, Nulli-Fi
still achieves 10 dB better nulling with the same running time,
and is 37× faster with the same performance.

Authors in [8, 15] implement nulling on custom built
phased arrays. However, they operate in the sub-6 GHz fre-
quency range where it is significantly easier to build phased
arrays with flexible control. In particular, [8] works at 4.5
GHz and uses phase shifters with a 9-bit control, i.e. it is pos-
sible to set the phase at a resolution of 0.7◦. They first solve
the nulling problem in the continuous phase domain using gra-
dient descent and then round off the continuous values to the
9-bit discrete space. Millimeter wave phase shifters, however,
typically support 2 to 5 bits phase shifters for which the quan-
tization error become too large. In section 6, we implement
and compare with this work and show that its performance sig-
nificantly degrades as the number of bits decreases. Another
work [15] operates at 2.4 GHz and use deep neural networks
to create the nulls. However, the DNN architecture can only
output continuous values and can suffer from over-fitting.3

In contrast, this paper presents and extensively evaluates a
solution that works for highly quantized phase on practical
mmWave phased array.

Some works propose changing the positions of the anten-
nas to create nulls in the beam pattern or reduce the side
lobes [7, 24, 26, 31]. However, these techniques require new
custom built hardware and are only suitable only for static
applications with a fixed beam pattern and null locations.
Finally, there is a large body of work that proposes inter-
ference nulling using MIMO techniques at sub 6 GHz fre-
quencies [16, 18, 34, 37, 45]. These works are complementary
to Nulli-Fi as they require multiple digital transmitters or
receivers to perform digital beamforming and set arbitrary
complex weights in digital to null the signals.

3 Primer

In this section, we provide a primer on phased arrays as well
as genetic algorithms on which we base our optimization.

1. Phased Arrays: In analog phased arrays, an array of anten-
nas is connected to a single transmitter or receiver through a
single chain. The signal on each antenna n is multiplied with
a complex weight an = |an|e

jαn as shown in Fig. 2(a). By
changing these weights, we can change the beam pattern and
steer the main lobe of the beam in any direction. The beam

3Specifically, the paper mostly provides simulation results and only shows
three examples of nulls created on real hardware.
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Figure 3: Overview of genetic algorithm

pattern along a direction φ can be written as:

P(φ) =
N−1

∑
n=0

ane2π j d
λ

ncos(φ) (1)

where N is the number of antennas, λ is the wavelength of the
signal, and d is the separation between adjacent antennas. We
can steer the main lobe towards the direction φ by setting the

complex weights to an = e−2π j d
λ

ncos(φ) which will cause the
signals coming from direction φ to sum up constructively. For
example, by setting φ = 75◦, we get the beam pattern shown
in Fig. 2(b). The beam pattern exhibits natural nulls where
P(φ) = 0 and no signal is received along that direction. In
practice, however, such perfect nulls are not possible. Hence,
we define a null as a point in the beam pattern where P(φ) is
extremely small (e.g. −25 dB relative to the main lobe). The
deeper the null, the more effective it is at suppressing interfer-
ence. Our goal is to find a setting of the complex weights to
create a null along a certain angle φnull while maintaining the
amplitude level of the pattern at φmain lobe.

If we are able to control both amplitude and phase of the
complex weights in a continuous manner, then we can easily
create any beam pattern. In particular, we can transform Eq. 1
into a Fourier Transform by setting f = −d/λ cos(φ). We
can then construct any desired pattern and take its inverse
Fourier transform to find the set of complex weights that we
should use. Most practical phased arrays, however, do not
support controlling the amplitude of the complex weights
especially since modifying the phase is sufficient to steer the
main lobe of the beam. These phased arrays use a component
called a phase shifter to shift the phase of the signal on each
antenna element. Hence, the problem is restricted to having
|an|= 1, i.e. an = e jαn . Unfortunately, the problem becomes
even harder when we are limited to a quantized set of phase
shifts, especially when the number of control bits used to set
the phase shifter is small as the problem becomes non-convex
and the search space is exponentially large. For example, for
a 16 element array, and 4 bits (= 16 values) of resolution in
phase-shifters, we get 1616 ≈ 1.8e19 possible patterns.

2. Genetic Algorithms: Genetic Algorithms (GAs) are a fam-
ily of evolution-inspired algorithms designed to solve opti-
mization problems. They are particularly useful when the
search space is discrete and has many local maxima [60]. A
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high-level overview of the algorithm structure is depicted in
Fig. 3. The algorithm starts by considering a set of initial

chromosomes referred to as the population. Each chromo-
some represents one possible solution of the problem e.g. a
setting of complex weights (a0,a1, · · · ,an−1). The first stage
of the algorithm is natural selection where the chromosomes
are ranked using a fitness function that evaluates how well
each chromosome solves the problem e.g. how good of a null
it creates. Fraction of chromosomes that are most fit to solve
the problem are then selected and the rest are discarded. The
remaining chromosomes give rise to new potentially fitter,
chromosomes, which repopulate the population via mutation

and crossover. In mutation, random bits used to represent
the chromosomes are flipped to create new chromosomes
whereas in crossover, two random parents give birth to two
new chromosomes as shown in Fig. 3. Once the population
reaches its original size, the fitness of the chromosomes is
re-evaluated and the best chromosome is selected. The en-
tire process keeps repeating until the algorithm converges,
i.e. reaches some stopping criteria. While genetic algorithms
work surprisingly well, they are completely arbitrary and do
not exploit the underlying structure of the problem. As a result
they take a long time to converge and can give sub-optimal
results. Nulli-Fi builds on the high-level structure of such al-
gorithms to design a new optimization framework customized
to the problem of null steering.

4 Nulli-Fi

4.1 Nulling Algorithm

Assumptions: To begin, we state the set of assumptions un-
der which we optimally solve the nulling problem. We will
assume that the number of antenna elements, N, is even, and
that the physical distance of adjacent antenna elements is
d ≤ λ/2, where λ is the wavelength. We further assume that
we only have phase control over antenna elements, and before
nulling, all the antenna elements are beamforming towards
some direction φ0, i.e. the phase shifts αn =−2πnd/λ cosφ0

as descirbed in Eq. 1 4.

Preserving the Main Lobe: In order to preserve the main
lobe of the beam directed towards φ0, we limit any additional
phase-shifts on each antenna element to±α∗, i.e. |∆αn| ≤ α∗

for all n. We show that this limits the loss in the main lobe to
at most sin2(α∗). In particular, we prove the following lemma
in Appendix A.5:

Lemma 4.1 If α∗ ≤ 90◦, a maximum phase shift restricted

to ±α∗ for each antenna element will result in a loss of at

most sin2(α∗) in the main lobe.

This would mean that for α∗ = 15◦ (or 30◦ of freedom), the
main lobe changes by at most 0.3 dB.

4In a discrete phase scenario, aligning towards any angle φ0 is not possible
and we must set all elements to the closest discrete value to φ0.
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Figure 4: Example Nulli-Fi’s nulling algorithm for N = 6 antenna
elements with the main lobe at 90◦ an nulling at 73◦.

Problem Formulation: Given the restrictions on the phase
shifts to preserve the main lobe and the above assumptions,
our problem becomes: Given an angle φ , find a set of addi-

tional phase-shifts ∆αn, such that |P(φ)| is zero (or as close

to zero as possible), subject to |∆αn|< α∗.

Algorithm: Our algorithm works by representing the signal
on each antenna as a vector in the complex plane. This repre-
sentation is particularly useful since applying a phase shift is
equivalent to rotating these vectors. Thus, our goal is to rotate
these vectors to null the signal in the direction of φ . To bet-
ter understand how this works, consider the example shown
in Fig. 4. In this example, we have N = 6 antenna elements
beamforming towards φ0 = 90◦. The vectors ~vn representing
the signal on each element are indexed by: 0,1, · · · ,5, and our
goal is to create a null at φ = 73◦.

Initially, the vectors are aligned to sum up constructively
to ~Pφ0 along 90◦ as shown in Fig. 4(a1). 5 However, they are
aligned differently along 73◦ and sum up to ~Pφ as the sig-
nals come with a different phase at that direction as shown
in Fig. 4(b1). To create a null along 73◦, we will rotate each
vector by an additional ∆αn to minimize the ~Pφ . The restric-
tion |∆αn| ≤ α∗ will ensure that ~Pφ0 along the main lobe is
preserved as shown in Fig. 4(a2–a4). However, it will prevent
us from arbitrarily rotating the vectors along 73◦. To address
this, we leverage the following key observation: At any direc-

tion φ , all the vectors summing up to the pattern ~Pφ come in

pairs symmetrically located around the pattern. For example,
in Fig. 4(b1), the following pairs: {0,5}, {1,4} and {2,3} are
symmetrically located around ~Pφ .

The following lemma formalizes this observation. The
proof of the lemma can be found in Appendix A.5.

Lemma 4.2 At any direction φ , if ∆αn = 0 for all n, then

~vn and~vN−1−n are symmetrical around ~Pφ for all n. That is,
1
2 (∠~vn +∠~vN−1−n) is the same as ∠~Pφ or ∠~Pφ +π .

Given this observation, the algorithm proceeds as follows.
Choose a pair of symmetrical vectors around the pattern ~Pφ

and symmetrically rotate them towards −~Pφ as much as pos-
sible (i.e. until α∗ degrees, or until a null is achieved). This

5In fact, ~P = 6e j0 but we have downscaled it by 6 for better visualization.
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will reduce the beam pattern amplitude along φ as shown in
Fig. 4 (b2) but it will not change its angle. This means that
all the vectors remain symmetrical around the ~Pφ . If a null is
achieved, we stop. If not, we repeat with another symmetrical
pair as shown in Fig. 4 (b3,b4). Note that the same rotations
are also applied at the main lobe in Fig. 4 (a2-a4). While these
rotations result in a null at 73◦, they cause only a 0.2 dB loss
at 90◦.

A pseudocode of the algorithm can be found in Alg. 1 in
Appendix A.1. We also prove the following theorem regarding
the optimality of our algorithm in Appendix A.5.

Theorem 4.3 Given the constraint |∆αn|< α∗, Alg. 1 gives

the best nulling performance at any angle φ .

It is worth noting that given the constraints, it is not always
possible to achieve a perfect null i.e. ~Pφ =~0. In such cases,
the above algorithm yields the deepest possible null. This
also allows the algorithm to identify directions that can be
perfectly nulled from those that cannot. In Appendix A.4,
we provide further analysis and closed form solutions for the
bounds of achievable nulling performance as a function of the
direction of the null.

4.2 Optimization Framework

In this section, we show how to account for hardware imper-
fections and achieve multiple and wider nulls. We extend our
definition of a null to be an interval 2β degrees wide around φ
i.e., [φ −β ,φ +β ] where the magnitude of the beam pattern
is lower than a certain threshold. The input to our optimiza-
tion are multiple such intervals ([φi−βi,φi +βi]) where we
wish to null interference. A pseudocode of our optimization
framework can be found in Alg. 3.

Encoding: We will encode the solution i.e. the setting of
the phase shifts αn into chromosomes that form the basis
of the genetic algorithm. Suppose the phase shifts are quan-
tized using q bits, then each αn can be represented as a bit
string (bn,1, · · · ,bn,q) where bn,i is the ith most significant bit
of αn. A chromosome A can then be encoded as a concate-
nation of the N binary representations of the phase shifts:
A = (b0,1, · · · ,b0,q,b1,1, · · · ,b1,q,bN−1,1, · · · ,bN−1,q). We de-
fine PA as the beam pattern associated with chromosome A.

Initialization: While genetic algorithms generally start from
a set of randomly generated chromosomes, we use the output
of Alg. 1 to initialize our genetic algorithm. Specifically, for
each null region ([φi−βi,φi +βi]), we run Alg. 1 and find the
optimal setting of αn to create a null along φi. Each solution
will give us a single initial chromosome. We then slightly
perturb the values of the phase shifts to create a larger pop-
ulation of initial chromosomes. This dramatically improves
the optimization’s performance as we show in section 6.2.

Fitness function F(A): This function evaluates the perfor-
mance of any given chromosome A. In our problem setup, we
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Figure 5: Nulli-Fi’s crossover operation using buckets

define the fitness function as

F(A) = min
i = {1, ...,L}

φ ∈ [φi−βi,φi +βi]

−10log10

(

|PA(φ)|
2) ,

where PA(φ) can be calculated from Eq. 1 by setting the
complex weights to e jαn . This fitness function F(A) opti-
mizes for the worst nulling performance in dB across all
the regions we wish to null. In particular, the min point
of −10log10

(

|PA(φ)|
2
)

is the max point in |PA(φ)|
2 which

is the least nulled point. Hence, the fittest chromosome,
A∗ = argmaxA F(A), will give the best nulling performance
across all directions since we optimized for the worst case.

Natural Selection: At each iteration, we evaluate the fitness
function for every chromosome and keep the ones with the
best performance.In our implementation, we typically keep
the top 50% of the chromosomes.

Cross-over. Recall from section 3, this operation is meant to
combine two parent chromosomes A1 and A2, to give birth to
a new, potentially fitter chromosome, A3. Typically, the two
parents A1 and A2 are chosen randomly. However, Nulli-Fi
employs a more intelligent selection criteria. For simplicity,
let us consider a single null point and use the same vector
representation we used in section 4.1 to explain Nulli-Fi’s
cross-over operation.

To begin, we first group chromosomes into different buck-
ets 1, · · · ,2B. Bucket i contains all chromosomes A with
(i−1)π

B
≤ ∠~PA < i π

B
. Fig. 5 (a) shows an example of these

buckets for B= 4, where buckets on the opposite sides of each
other have the same color. In our cross-over operation, two
parents A1 and A2 are then chosen at random, under the con-
straint that ~PA1 and ~PA2 are in opposing buckets (for example,
B3 and B7). Then, a new chromosome A3 is created by averag-
ing the phase shifts of A1 and A2, as shown in Fig. 5 (b). The
intuition behind this is that by taking the average phase shift
of the two parents, the new chromosome will approximately
have a pattern vector equal to the sum of its parents. Since the
parents come from opposing buckets, the summation of their
patterns will likely result in a smaller vector. This is depicted
in Fig. 5 (a) where the red vector corresponding to the child
chromosome A3, is smaller than the pattern of either parent
(depicted black and blue vectors). By exploiting the struc-
ture of the problem, Nulli-Fi is able to quickly generate fitter
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Figure 6: Non uniform radiation patterns of antenna elements

chromosomes with smaller |PA(φ)| i.e. deeper nulls which
improves the results as we show in section 6.2.

Mutation. In this step, we randomly flip bits in the parent
chromosome with some probability to give rise to a new chro-
mosome. Note that we preserve the current best chromosome
A∗ which remains unchanged during mutation.

Convergence. The algorithm converges once the best perform-
ing chromosome reaches a fitness threshold, or a maximum
number of iterations has been reached. In the case of a sin-
gle null, this threshold is directly governed by the output of
Alg. 1. For multiple nulls, as one would expect, the perfor-
mance usually does not reach the theoretical performance of
a single null. In our implementation, we reduce the threshold
by around 1 dB for every extra null region.

Preserving the main lobe. Similar to the optimal algorithm,
we maintain |∆αn| ≤ α∗ to preserve the main lobe. This can
be done by simply fixing the q− log2(π/α∗) most significant
bits of αn and not changing them throughout the optimiza-
tion. However, in cases where q is very small, e.g. 2 bit phase
shifters, such an approach does not hold. To address this,
Nulli-Fi sets aside a subset of the antenna elements and does
not change their phase shift throughout the entire optimiza-
tion. This subset will contribute to the main lobe whereas the
remaining antennas will contribute to create the null. Nulli-Fi
dynamically chooses the antenna elements that are contribut-
ing the most to the main lobe to be in this subset and allows
phase shifts for the ones that are contributing the least to the
main lobe. A pseudocode for this process can be found in
Alg. 2 in section A.1 of the appendix.

Accounting for Hardware Imperfections: There are two
types of hardware imperfections: (1) phase offsets due to
different wire lengths or paths that the signals traverse, and
(2) non-uniform antenna element radiation patterns. In par-
ticular, the signal on each antenna incurs an additional δn

and signals coming from a direction φ incur an additional
attenuation of Rn(φ). Fig. 6 shows the radiation patterns of
two antenna elements on our hardware setup described in
section 5. As can be seen, antennas do not receive the signal
uniformly across all directions. While these factors do not
severely affect the quality of the main lobe, they have a more
significant impact on the nulling performance of the phased
array, as we show in section 6. This is because the beam pat-
tern computed using Eq. 1 and used for evaluating the fitness
function is no longer valid in practice. We can measure these
imperfections using a simple calibration procedure outlined in
detail in appendix A.2. Once measured we can modify Eq. 1

S
ig
n
a
l

In
te
rf
e
re
n
ce

…

…

signal interference

side lobe nulled side lobe

Figure 7: Illustration of Nulli-Fi’s nulling alignment and interfer-
ence suppression.

as follows:

P(φ) =
N−1

∑
n=0

anRn(φ)e
jδn e−2π j d

λ
ncos(φ), (2)

We observe these imperfections to be stable and, hence, can
be measured once. By modifying the fitness function to ac-
count for these hardware imperfections, we can generate beam
patterns that achieve good nulling performance in practice.

4.3 Fast Null Steering Protocol

Now that we have a framework to form nulls at any desired
direction, we need to find a practical way to align and suppress
nulls in a real network. In this section, we present a simple
yet fast and practical protocol to do so. The protocol finds and
suppresses interferers in succession, by enforcing wide nulls
at the high-level side-lobes of the pattern.

We begin with a simple example, where there is only one
interferer. Consider the pattern in Fig. 7. As can be seen, the
pattern has a number of significant side lobes, denoted by
upwards brown arrows, which are the most likely to receive
interference from other links in the network. Nulli-Fi finds
these side-lobes, and computes corresponding patterns that
have nulls at each side lobe as shown on the second row in Fig.
7, while keeping the main lobe. The hardware then quickly
sweeps through these patterns, computing the Received Signal
Strength (RSS) corresponding to each pattern. If the RSS
drops for one of these patterns, it means that the interference
was suppressed. This way, we can eliminate the interferer.
To make the algorithm even faster, Nulli-Fi checks the SINR
value at after each beam switch, and stops if the SINR is
within a threshold of its original value.

Following this example in case of multiple interferers, we
first suppress the one with the highest power. Once this in-
terferer is nulled, we keep a null at its direction at all times,
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Figure 8: Hardware used in Nulli-fi.
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and search for the next interferer with the highest power. We
repeat this process until all interferers are suppressed. We
note that since our protocol only looks for interferences at
high-level side lobes of the pattern, it will be much faster than
a full scan, while remaining effective in improving the SINR,
as we show in section 6.4.

5 Implementation

Nulli-Fi’s Setup. Nulli-Fi is implemented using the off-the-
shelf Sivers IMA EVK06002 platform [3], equipped with a
60 GHz 16-element linear phased array shown in Fig. 8(b).
In order to measure the beam patterns, we mount the phased
array radios on a steerable platform controlled through an
Arduino as shown in Fig. 8(a). Our testbed also includes a
60 GHz Pasternack PEM009-KIT [1] equipped with a di-
rectional 3-degree horn antenna (Fig. 8(c)) which we use
to transmit signals in order to measure the generated beam
patterns. All hardware devices were connected to a machine
running Ubuntu 18.04 through USRP N210 software defined
radios. The center frequency in all experiments was 60.48
GHz. We run our experiments in 4 different rooms in 8 dif-
ferent locations, and in each location, we test 125 distinct
combinations of directions of communication and interfer-
ence. The EVK06002 platform offers flexible phase control
for each of the antenna element weights which allows us to
experiment using different number of bits. We evaluate Nulli-
Fi using at most 4 bits of phase resolution, i.e. 16 distinct
phase shift values per antenna element. We also show Nulli-
Fi’s performance for more coarse-grained control on phase,
specifically 2 bit and 3 bit phase resolution. We also calibrate
the array as described in Appendix A.2.

Nulli-Fi + mm-Flex Setup. We also implemented Nulli-Fi
on top of the mm-Flex platform [33], to evaluate our null steer-
ing protocol. We transmitted IEEE 802.11ad control frames,
where we use 10 Golay sequences to switch beam patterns.
Our setup can switch between beam patterns once every 54.5
nanoseconds, during which we are able to measure RSS val-
ues corresponding to that pattern. This way, sweeping through
10 beam patterns takes less than 0.55µs. Further details of
this setup can be found in Appendix A.3.

6 Results

6.1 Evaluation Metrics

We start by describing the evaluation metrics used to quantify
Nulli-Fi’s performance. Fig. 9 illustrates some of the metrics
on an example beam pattern created by Nulli-Fi.

• Null Width: Since we create wide nulls, we define the null
width as the region of directions nulled in the beam pattern.
• Worst-point nulling performance: Minimum amount of
nulling in the target null region, measured as the difference
between the peak of the main lobe and maximum point in the
null region as shown in Fig. 9.
• Median nulling performance: Median amount of nulling in
the target nulling region measured as the difference between
the peak of the main lobe and median point in the null region.
• SINR Gain: Gain in Signal-to-Interfernce plus Noise Ratio
before and after nulling the interferer.
• Main Lobe Loss: Loss in the main lobe power compared to
a beam pattern without the imposed nulls.
• Number of Nulls: Number of different directions in which
nulls are created.
• Quantization Level: Number of control bits used to set the
phase on the phase shifters.
• Number Iterations: Number of iterations it takes for the
optimization to converge.
• Null Steering Latency: Time it takes to steer the null towards
an interferer once the interferer appears.

6.2 Baselines

We compare Nulli-Fi to the following baselines:

(1) Quantize-Continuous [8] – This baseline solves the prob-
lem in the continuous domain and then quantizes the phase
solution to the nearest available discrete phase values.

(2) Genetic-Algorithms [22] – We compare Nulli-Fi to past
work that uses genetic algorithms to create nulls.

(3) Shift-Pattern [59] – This baseline steers the main lobe
a bit away from the direction of communication in order to
align the natural nulls in the signal with the interferer.

(4) BounceNet [27] – This work aims to enable dense spatial
reuse in mmWave networks by leveraging the directionality
of mmWave beam patterns.
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Figure 11: Examples of nulls created in hardware with different null with, number of nulls, direction of the null, and direction of the main lobe.
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Figure 12: Nulli-Fi’s performance using fewer bits.

6.3 Nulling Performance

We start by evaluating Nulli-Fi’s ability to create nulls and
compare it with past work.

1. Nulli-Fi’s Nulling Performance: Fig. 11 shows a few ex-
amples of beam patterns with nulls created by Nulli-Fi on our
phased array for different null directions, main lobe directions,
null widths, and number of nulls using 4-bit phase shifters. As
can be seen in Fig. 11(e, h), Nulli-Fi can create nulls as deep
as −20 dB and −35 dB (40 dB and 55 dB below the main
lobe respectively). Nulli-Fi can also create nulls that are as
wide as 20◦ while maintaining a median nulling performance
that is 20 to 25 dB below the main lobe as shown in Fig. 11(b,
g). It can create up to 5 different nulls as shown in Fig. 11(d).

Fig. 12 shows a CDF of the median and worst-point nulling
performance in more than 1000 experiments. Nulli-Fi’s 50th

percentile is about 29 dB for the median nulling and 25 dB for
the worst-point nulling. Since commercial 802.11ad hardware
today, like laptops and tablets, comes equipped with only 2
bit phase control in the phased arrays [2, 11], we evaluate
Nulli-Fi’s performance using fewer bits of phase resolution.
Fig. 12 also plots the CDF of the nulling performance with
Nulli-Fi using 2 and 3 bits of phase control. While the nulling
performance degrades with fewer bits, Nulli-Fi is still able
to achieve a 24.1 dB median and 21.1 dB worst-point perfor-
mance using only 2 bits, and 26.2 dB median and 24.3 dB
worst-point performance using 3 bits of phase resolution.

Finally, we measure the main lobe loss suffered due to

creating nulls, and plot the empirical CDF in Fig. 10. As can
be seen, the median and the 90th percentile values of the main
lobe power loss are only 0.58 dB and 1.46 dB respectively,
demonstrating Nulli-Fi’s ability to preserve the main lobe
while creating nulls.

2. Nulling Performance vs. Null Width: There is a natural
trade-off between the width of the null created and its median
(or worst-point) performance. To examine this, we evaluate
Nulli-Fi’s ability to create very narrow nulls like the ones
shown in Fig. 11 (a, h) as well as very wide null regions like
the ones shown in Fig. 11 (b, c). We run experiments where
we create nulls of different widths ranging from 1◦ to 50◦, and
plot the median and worst-point performance in Fig. 13(a).

While the median nulling performance remains more than
25 dB even for nulls as wide as 50◦, the worst-point perfor-
mance deteriorates much more quickly. This point becomes
clear when we consider the fact that the total radiated power
in the beam pattern has to be conserved, implying that nulling
one region will cause other regions to have an amplification
in power. Therefore, while it may be possible to keep the
median point in the target null region low for wide nulls, it
becomes increasingly difficult to ensure that the worst-point
in the target null region remains low as well.

It is worth noting that such overly wide nulls might not be
needed in practice and nulls with width of 5◦ to 10◦ might be
more than enough to account for inaccuracy in the estimating
the direction of interferer. One could, however, use very wide
null to preemptively supress less powerful interferers.

3. Nulling Performance vs. Number of Nulls: As men-
tioned previously, in practical networks there could be mul-
tiple sources of interference (separate signals or multipath),
each occurring at a different angle. Thus, we test Nulli-Fi’s
ability to create l simultaneous null regions for 1≤ l ≤ 5. We
run 200 experiments for each l by randomly assigning the null
regions. We constrain all null regions to be at most 10◦ wide,
and in the case of multiple nulls, any two null regions should
be at least 10◦ apart (otherwise, we observe that the two nulls
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Figure 14: performance of Nulli-Fi’s algorithm against baselines

merge into one wider null). Fig. 13(b) shows the median and
worst-point nulling performance for different numbers of null
regions. Note that for multiple null regions, we present the
median and worst-point performance numbers for the poorest
performing null in the beam pattern. As can be seen in Fig.
13(b), even with 5 null regions, Nulli-Fi is able to achieve 25.8
dB median and 19.1 dB worst-point performance. Fig. 11(d)
shows an example of 5 null regions generated by Nulli-Fi.

4. Nulling Performance vs. Baselines: We run more than
1000 experiments for creating nulls at different angles, with
different main lobe directions and null widths. Our nulling
angles and main lobe directions range from the 30◦ to 150◦

region, and null widths range from 5◦ to 20◦ width. In all
of the experiments, the target null region does overlap with
the ±10◦ region around the main lobe direction. In these
experiments, we focus on the performance for creating a sin-
gle null. In Fig. 13(c), we compare Nulli-Fi’s performance
against the Quantize-Continuous baseline. The continuous
solutions are quantized to b = 5,6, · · · ,9 bits of phase resolu-
tion, whereas Nulli-Fi is implemented on real hardware with
4 bits of phase resolution. Nulli-Fi’s performance exceeds
Quantize-Continuous even with 9 bits of phase resolution
compared to Nulli-Fi’s 4 bits. This shows that simply quan-
tizing the continuous phase solution (especially quantizing to
less than 7 bits) does not work for practical phased arrays.

We also compare Nulli-Fi with genetic algorithm [22] (Ge-

netic) as well as with Nulli-Fi’s optimization framework with-
out initializing it with the solution of our optimal algorithm
(Nulli-Fi No optimal). We run experiments where each al-
gorithm is required to create single nulls at 200 different
directions. We fix a target nulling performance of −20 dB
and record the number of iterations required to achieve the
desired nulling. Fig. 14(a) plots a CDF of the No. of iterations,
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Figure 15: Importance of accounting for hardware imperfections
and sensitivity to calibration errors.

showing that Nulli-Fi converges almost two orders of magni-
tude faster than Genetic. The figure also shows that Nulli-Fi’s
optimal algorithm enables much faster convergence and in
many cases already gives a nulling performance of −20 dB.
Hence, Nulli-Fi converges in a single iteration.6 Moreover,
By comparing the 99th percentile of Genetic and Nulli-Fi(No

optimal), which comprises cases where it is more difficult
to create nulls, we can see that Nulli-Fi’s novel crossover
scheme helps in pushing the algorithm faster towards the
desired nulling performance. Next, we fix the number of it-
erations to 10 for all three algorithms and plot the CDF of
the nulling gain achieved by Nulli-Fi over each algorithm
in Fig. 14(a). Nulli-Fi achieves a median gain in nulling of
10 dB over Genetic and 4 dB over Nulli-Fi (No optimal).

5. Sensitivity to Calibration & Hardware Imperfections

To show the significance of accounting for hardware imper-
fections, we run experiments to evaluate nulling performance
using coarse and absent calibration on the phased array front-
end. We also run experiments without accounting for non-
uniform antenna radiation patterns discussed in Section 4. As
mentioned previously, such imperfections have little effect
on the location and power of the main lobe, but will lead to
significant errors in null forming [43]. Fig. 15a, shows a CDF
of the nulling performance. Without accounting for hardware
imperfections, the median nulling is only 10 dB which is 17
dB worse than Nulli-Fi. With simple coarse calibration, the
performance already improves by 7 dB. The figure also shows
that while ignoring the non-uniform radiation patterns is not
as severe, it still reduces the median nulling performance by 3
dB compared to Nulli-Fi. Finally, Fig. 15b shows the sensitiv-

6The baselines might also converge in a single iteration if the desired null
happens to align with a natural null in the beam pattern.
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ity of Nulli-Fi’s performance to errors in calibration. While
the performance degrades as the calibration error increases,
the figure shows that Nulli-Fi is robust to calibration errors
less than 5◦ and can still null even if the calibration errors are
30◦. It is worth noting that the degradation is less sharp in the
case of 2 bit phase shifters. This is likely due to the fact that
the phase is highly quantized and hence any calibration error
is within the quantization errors.

6.4 Suppressing Interference & Improving

Throughput

In this section, we present results for Nulli-Fi’s ability to steer
the null to suppress interference.

1. Null Steering Algorithm: Here we show the performance
of Nulli-Fi’s ability to suppress new, unforeseen interferences.
To this end, we implemented Nulli-Fi on mm-Flex [33], and
we ran close to 700 experiments with different relative lo-
cations, power levels for the interference. The experimental
setup of this part was explained in section 5.

Fig. 16(b) shows the CDF of Signal to Interference plus
Noise (SINR) ratio under four different conditions. As re-
vealed by the figure, throughout all experiments, we set the
SINR for when there is no interference to around 21 dB. By
introducing the interference (shown by the maroon curve)
whose location and power is unknown to the system, the
SINR drops to as low as < 1 dB. Then, by running Nulli-Fi’s
null steering algorithm as described in section 4.3, Nulli-Fi
chose and suppressed the side lobes one by one in order to
restore the original SINR. The algorithm would stop once it
reached within 1 dB of the original SINR, or it suppressed
each side-lobe once (up to 10 side lobes).

We did this experiment in two regimes of narrow (2◦) and
wide (10◦) nulls, shown by green and dark blue curves re-
spectively. As seen in both curves, Nulli-Fi can improve the
SINR by a median of 13 dB and 15 dB for narrow and wide
nulls respectively 7. We therefore see that Nulli-Fi is able to
bring the SINR very close to its original value in the absence

7These experiments were run in the IMDEA networks lab. We found that
the SINR gains of Nulli-Fi + mm-Flex is around 3-5 dB larger than Nulli-Fi
alone due to a slightly different hardware setup and a lower noise floor

of the interferer in all cases. This shows that it is sufficient
to look for interference only at the side lobes, as opposed to
performing a full scan.

We mention a trade-off between using narrow (2◦) and wide
(10◦) nulls. We expect wide nulls to have a higher chance
of capturing the interference, albeit with lower suppressing
power as we showed in section 6.3. We see here that this is
indeed the case: Compared to narrow nulls, wide nulls have
a higher chance of capturing the interference, while narrow
nulls suppress the interference better. This is also reflected
by the tails of the green and the dark blue curves in Fig. 16
(b). We also compare the runtime of Nulli-Fi’s algorithm
against the baseline of fully scanning all angles. The numbers
are reported using the fast beam switching and RSS measure-
ment technique implemented in [33]. We see that Nulli-Fi’s
algorithm run on average in 290 nano-seconds, with a stan-
dard deviation of 115ns, which is more than 10× faster than
a full search scheme, whose average and standard deviation
for running time are 3.280 and 1.616 µs, respectively.

Finally, we compare Nulli-Fi’s performance in gaining
SINR with the Shift-Pattern baseline. We fix the signal and
the interference power, and we move the interferer to different
angles, and run 100 experiments to measure the gain in SINR.
We compare Nulli-Fi with this baseline in two cases. In the
first case, Shift-Pattern (perfect), we assume perfect knowl-
edge of the beam pattern, in which case Shift-Pattern chooses
the best (deepest) null direction out of all direction within an
interval of 10 degrees around the current pattern. We note that
although this always reduces the power at the desired null
location, it may lead to significant losses in the mainlobe, as
we can see in Fig. 16(a). Things get even worse once we use
the theoretical beam pattern to predict the optimum shifting
amount (Shift-Pattern), which almost always results in a loss
of SINR, due to inaccuracy of the theoretical beam pattern in
predicting the real one. Nulli-Fi, on the other hand, always
gives at least 8dB improvement in SINR, outperforming both
versions of the baselines in almost all cases. This shows that
simply shifting the pattern does not work in a practical system,
since by shifting towards a null, we also shift the main lobe
away from the direction of communication.

2. Throughput in Dense Networks: Fig. 16(c) demonstrates
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No. of Max 90th Perc. Median
Links Gain Gain Gain

1 1× 1× 1×
2 2× 2× 1.58×
3 3× 3× 1.8×
4 4× 2.86× 2.12×
5 4.16× 2.81× 2.27×

No. of Max 90th Perc. Median
Links Gain Gain Gain

6 3.60× 2.83× 2.33×
7 3.50× 2.72× 2.38×
8 3.38× 2.94× 2.41×
9 2.97× 2.77× 2.44×

10 3.09× 2.68× 2.43×

Table 2: Gains in Total Network Data Rate from Nulli-Fi

Nulli-Fi’s performance gains in dense networks. To do so,
we implement and compare with BounceNet [27] which ex-
ploits the directionality of mmWave phased arrays to enable
dense spatial resuse. We incorporate Nulli-Fi’s nulling into
BounceNet. Fig. 16(c) plots the total network data rate as the
number of links in the network increases from 1 to 10. We
compare Nulli-Fi against a regular phased array testbed using
standard codebook-based beam patterns without interference
nulling. As seen in the figure, due to significant interference
in dense networks caused by side lobe leakages and multipath,
a regular phased array equipped testbed can achieve only up
to 11.31 Gbps network data rate for 10 links. Nulli-Fi, on the
other hand, can effectively null out interference at each link
and can increase the total data rate for the same phased array
testbed to 29.1 Gbps, providing a gain of 2.6×.

In Table 2, we present further statistics on the gains in total
data rate achieved by Nulli-Fi over a regular phased array
testbed for different number of links n in the network. For
each n we perform 100 different experiments by randomizing
the client and AP positions. The result shows that for up to n=
4 communication links, Nulli-Fi can achieve the maximum
possible gain of n× over the vanilla phased array testbed.
Thus, in certain experiments Nulli-Fi was able to get all 4 links
to communicate simultaneously by nulling out interferences,
whereas the regular phased arrays were not able to exploit
any spatial reuse whatsoever due to side lobe leakages and
interference. Note that this gain saturates and begins to fall as
the number of links increases due to increased interference.
Nonetheless, Nulli-Fi is still able to achieve gains as high as
3.09× in network data rate for 10 links in the network. Table 2
also shows results for 90th percentile and median gains.

7 Discussion and Limitations

In this paper, we introduced novel algorithms that signifi-
cantly boost the convergence speed and improved the nulling
performance compared to past work. Furthermore, the system
enabled the first practical implementation of null steering by
accounting for hardware restrictions, incorporating hardware
imperfections and achieving wide and multiple nulls.

Importance of Convergence Speed: One might wonder,
however, why having a faster algorithm is important in practi-
cal network deployments. The reason has to do with today’s
commercial phased array hardware. In particular, the hard-
ware typically stores a codebook of different beam patterns
in the on-board memory, and the mmWave radio beams to-
wards different directions by reading the precomputed phase
shift values from the codebook. As such, it is not possible

to store precomputed beam patterns for all combinations of
main-lobes and nulling directions. For instance, if we consider
beam patterns with just one null, we would need to store a
beam pattern corresponding to each main-lobe direction and
each null direction, so a total of 180×180 beam patterns to
achieve a null accuracy of 1 degree. This requirement grows
exponentially with the number of nulls and would require
gigabytes of memory for more than 2 nulls. Compare this
to today’s millimeter wave phase array that can store 16 to
256 codebooks. Hence, pre-computing and storing the beam
patterns is not feasible. This is precisely why it is important
to have an efficient algorithm that can converge quickly and
compute the required beam patterns in real-time operation.
This can allow even further optimization of the beam pattern
at run-time which was not possible earlier in the codebook
approach. Therefore, the speed of convergence is an important
metric in evaluating the different nulling algorithms.

Limitations. We point out a few matters worth considering.

• In this paper, Nulli-Fi enables nulling the interference at
the receiver. This is because it is easy for receivers to sense
the direction of interference and change their beam pattern
to suppress it. That said, there is an opportunity to perform
nulling from the transmitter side where the transmitter cre-
ates a null in its beam pattern to suppress its own signal in
direction of other receivers. This, however, would require an
efficient protocol that allows the transmitter to discover the
direction of those other receivers at which it is creating inter-
ference. Performing nulling from both transmitter and receive
side would further improve the performance of the network.
However, we leave that for future work.

• Once Nulli-Fi successfully nulls an interferer, it may not
sense when it disappears. As a result, if new interferers appear,
Nulli-Fi may not know whether to create more nulls or to
switch the direction of the null. This can potentially be solved
by periodically checking each nulled region for the presence
of interference when it is not receiving packets.

• Nulli-Fi’s framework is designed for phase shifters that use
analog beamforming, which is common for commercial, prac-
tical phased arrays. While digital beamforming introduces a
substantial overhead in terms of cost and power consumption,
the in-between class of hybrid beamforming allows for more
flexibility in terms of nulling. Exploring nulling in hybrid
beamforming is left for future work.
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A Appendix

A.1 Pseudocode

Here we present pseudo codes to Nulli-Fi’s algorithms dis-
cussed in section 4.

Algorithm 1: OPTIMALNULLING(N,φ ,φ0,d,λ ,α
∗)

θ ← 2π d
λ

(

cos(φ)− cos(φ0)
)

;
vP← exp( j N−1

2 θ);
for n in range(N):

vn← exp( j nθ);
∆αn← 0;

for n in range( N
2 ):

if |∠(vP,vn)−π|< α∗:
∆αn = π−∠(vP,vn);

∆αN−n−1 = ∠(vP,vn)−π;
elseif ∠(vP,vn)< π−α∗:

∆αn = α∗; ∆αN−n−1 =−α∗;
elseif ∠(vP,vn)> π +α∗:

∆αn =−α∗; ∆αN−n−1 = α∗;
if ∠(vP,∑

N−1
n=0 vn exp( j∆αn)) 6= 0:

return 0;
return |∑N−1

n=0 vn exp( j∆αn)|;

Algorithm 2: CHOOSESUBSET(N,q)

S← /0;
(α0, · · · ,αN−1)← ideal phase shifts for main lobe;
for n from 0 to N−1:

if αn is within t degs of an available phase shift:
add n to S;

return S;

A.2 Phase Calibration

Here we explain Nulli-Fi’s phase calibration in detail. In
order to calibrate for the difference in the lengths of the wires
coming out of each antenna element, we pick one reference
antenna element i∗, and calibrate the remaining antennas with
respect to this reference. Note that, the process of calibration
is finding the additional phase shift one has to apply to
antenna j in order to bring it in phase with the reference
antenna i∗. To do so, we run a series of simple experiments as
follows. We note that throughout the all of these experiments,
transmitter and receiver are directly facing each other.

• First, for a fixed i, 0≤ i≤ 15, we turn off all antenna ele-
ments except i. We then apply phase shifts to the weight of
antenna element i over time to cover all the possible phase

Algorithm 3: NULLI-FI-GENETIC

Initialize A = {A1, · · · ,AM} using
OPTIMALNULLING(N,φ ,φ0,d,λ ,α

∗);
if q≤ 3:

S← CHOOSESUBSET(N,q);
else:

S←{1,2, · · · ,N};
Limit the adaptive elements to S;
while not converged:

for i from 1 to M:
fi← F(Ai);

sort Ai according to fi;
keep A = {A1, · · · ,AηM} and discard others;

while |A |< M:
Randomly choose two chromosomes Ai, A j;
perform CROSSOVER(Ai,A j);
Randomly mutate some A’s with prob. pm;

output A1.
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Figure 17: Expected versus measured power of two antenna
elements before and after calibration.

values, and capture the received power over time. For an-
tenna element i and its nth phase shift αi[n], we denote the
received signal amplitude by ai[n].
We repeat this for all i from 0 to 15.

• We repeat the previous phase for all antennas i save for
a chosen reference, i∗. Throughout these experiments, we
keep element i∗ turned on with a constant amplitude a0, and
for the experiment with element i and nth phase shift, we
call the corresponding received amplitude bi[n]. Now bi[n]
is the sum of the signals received from i∗ and i. If there is
a αi,i∗ phase shift between the two elements, then we must
have

bi(t) = |ai(t)+ eαi,i∗ a0|,

Therefore we can find αi,i∗ by performing a simple binary
search over all possible values in [0,360] degrees. An ex-
ample of the two normalized curves, before and after cali-
bration, is shown in Figure 17.
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Figure 18: Different locations where we ran our experiments.

A.3 Experimental Setup

Experiment Locations. We ran our experiments in 4 differ-
ent rooms shown in Fig. 18. Two locations (a, c) were inside a
lab environment with many metal cabinets that contributed to
multi path reflections. The other 2 locations (b, d) were differ-
ent rooms inside apartments with many indoor objects. In all
rooms, there were human subjects in the background during
the experiment, thus constituting dynamic environments.
Nulli-Fi + mm-Flex. One transmitter/receiver pair are imple-
mented using a single FPGA device in a full-duplex manner,
i.e. transmitter and receiver functionalities are used at the
same time. This pair corresponds to the transmitter and the
receiver implementing Nulli-Fi.

We use a second FPGA (mounted on the same hosting
chassis) which serves as the interferer. Since both FPGAs are
mounted on the same chassis, long cables (5m) are used to
carry the baseband signals to the corresponding transmitting
antennas (the one transmitting the packets of interest and the
one from the interferer). Therefore, with this setup, we are
able to easily cover indoor scenarios.

Both FPGAs are managed from a control and management
processor integrated in the same hosting chassis. This is used
to send/receive frames to/from each baseband processor, con-
figure ADCs/DACs, IP blocks, as well as the setup for the
60GHz Siversima RF-frontends.

A.4 Further Analysis of Nulling Performance

Closed Form Solutions. Alg. 1 offers a step by step solution
to find nulls. It is also possible to find closed form solutions
for bounds of achievable nulling performance as a function
using the algorithm. This can be done by going thorough
the algorithm with by keeping the symbol φ as opposed to

setting it to a specific value. Doing so will result in explicit
formulas for the angles for which perfect nulling is possible.
For the angles that perfect nulling is not possible, we can find
explicit formulas that determine the deepest possible nulls as
a Piecewise-defined function of the angle φ . Different cases of
this piecewise-defined function are separated by the naturally
occurring nulls in the original beam pattern. An example of
this for N = 8 antennas is shown in Fig. 19(a) where there are
four cases separated by natural nulls, with each case having its
own piecewise formula. For example, Theorems A.1 and A.2
show examples of closed form solutions for nulling around
the main lobe as a function of number of elements N, angle
of nulling φ , the main lobe angle φ0, and the maximum phase
shift allowed on each antenna α∗:

Theorem A.1 The two closest perfect nulls to the main lobe

given a maximum phase shift of α∗ for each element are given

by φ ∗ = arccos
(

cos(φ0)±
λ

Nd
(1− 2α∗

π )
)

.

Theorem A.2 For the area around the main lobe that perfect

nulling is not possible, the deepest possible null at direction φ
is given by N cos(N

4 θ +α∗), where θ = 2d
λ
(cos(φ)−cos(φ0)).

Specifically, Theorem A.1 determines the areas where per-
fect nulling is possible, and Theorem A.2 determines the
deepest possible nulls for angles where perfect nulling cannot
be achieved. For N = 8, these formulas correspond to the
case 1 in Fig. 19(a). Following similar methods demonstrated
in the proofs of these theorems in section A.5 we can find
explicit formulas for other cases too.

Using the closed form formulas, we have plotted the best
achievable nulling performance (i.e., the lowest possible value
of the pattern P for each angle) for N = 8 antennas, and
α∗ = 10,15 and 25 degrees in Fig. 19(b). As revealed by
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Figure 19: (a) The closed form solutions for the single null problem are piecewise-defined functions, with the cases separated by the nulls
naturally occurring in the original pattern. Here there are four color-coded cases each corresponding to their own explicit formulas. For instance,
Theorems A.1 and A.2 determine the best possible nulling for case 1. (b) Best achievable nulling performance for N = 8 elements are depicted
for different angles and values of α∗. when a curve is not present at an angle, perfect null ( i.e. P = 0) is achievable there.

the figure, there is a trade-off between how much we lose in
the main lobe, and how strongly we can null different angles.
For instance, while α∗ = 15◦ ensures a maximum main lobe
loss of 0.3 dB, there are certain regions depicted by the green
curve that cannot be nulled. As can be seen, for lower α∗

(orange curve) there are more regions that cannot be nulled,
while a higher α∗ (blue) shows only an area around the main
lobe that cannot be nulled. Since Alg. 1 is optimal, we believe
it can help decide the degree of trade-off in different appli-
cations. This is especially useful as these curves also define
as a stopping criterion for our algorithms especially when
we lump in the hardware imperfections into the optimization
problem. For example if we know that it is not possible to
get a nulls stronger than 20 dB in the ideal case (i.e., without
hardware imperfections), we can expect that with hardware
imperfections the nulling performance cannot get far beyond
20 dB, as we explain in section 4.2.
Alternative Algorithms. In the walk-through example with 6
antennas in section 4.1, the final configuration of the antennas
is shown in Fig. 4 (b4). As can be seen from the figure, pairs
{0,3}, {1,4} and {2,5} are perfectly canceling each other,
yielding a null. Looking at this configuration, one might won-
der if we can always try and create pairs of opposing vectors,
such that the sum of every pair is zero. However, it is possible
to construct examples where this solution does not work, but
Alg. 1 achieves a perfect null. In fact, for larger values of N,
it is possible to construct examples in which no set of K < N

vectors sum to zero while the sum of all N vectors is still zero.
For further information, we refer the interested reader to our
git repository where we have implement and compare these
algorithms.

A.5 Proofs

Proof of lemma 4.1. We align the main lobe toward some
angle φ0, and therefore the signal coming from that angle will

sum up coherently. Specifically,

|P|2 =

∣

∣

∣

∣

∣

N−1

∑
n=0

e−2π j d
λ

ncos(φ0)e jαn

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

N−1

∑
n=0

1

∣

∣

∣

∣

∣

2

= N2.

Imposing additional phase shifts ∆αn in order to enable
nulling would give us:

|P′|2 =

∣

∣

∣

∣

∣

N−1

∑
n=0

e j∆αn

∣

∣

∣

∣

∣

2

=

(

N−1

∑
n=0

cos(∆αn)

)2

+

(

N−1

∑
n=0

sin(∆αn)

)2

≥

(

N−1

∑
n=0

cos(α∗)

)2

+0 = N2 cos2(α∗)

since |∆αn| ≤ α∗ ≤ 90◦. Hence, |P′|2 ≥ |P|2 cos2(α∗) and
the loss in the main lobe power is at most 1− cos2(α∗) =
sin2(α∗).

Proof of lemma 4.2. Replacing θ , we get vn = e jnθ . Since
they are unit vectors, vk and vN−1−k are symmetric around
their sum. Further, we have

∠(vk + vN−i−k) = ∠(e jnθ + e j(N−1−n)θ )

= ∠

(

e j N−1
2 θ ×2cos(

N−1−2n

4
)
)

= ∠e j N−1
2 θ +∠cos(

N−1−2n

4
θ)

=
N−1

2
θ ±π,

(3)

where the last line follows from the fact that the phase of a
real number is either 0 or π . Since the phase of these vector
pair sums are the same (up to ±π), so is the sum of all of
them, P. This concludes the proof of the lemma.
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Proof of Theorem 4.3. For a given nulling angle φ , we iden-
tify two possible cases. First, if it is not possible to create
a perfect null at φ , and second, if it is possible to create a
perfect null at φ .

• In the first case, Alg. 1 does not stop until all vectors
v0, · · · ,vN−1 have rotated by ±α∗. In this case, follow-
ing the exact same argument in the proof of Theorem
4.4, Eq. 6 hold with equality, which means that the best
nulling performance is achieved.

• In the second case Alg. 1 where nulling is
possible, at some point in the algorithm, ν =
∠(vP,∑

N−1
n=0 vn exp( j∆αn)) 6= 0 should at some point re-

turn π . Otherwise, it remains 0 until the end, in which
case nulling should not be possible, contradicting our
assumption. Therefore, a some point in the algorithm,
ν 6= 0, so the output of the algorithm will be 0, meaning
it predicts a perfect null.

In both cases, the output of the algorithm gives the best
nulling performance, proving that the Alg. 1 is optimal.

Proof of theorem A.1. For a given φ , assume an x-y coor-
dinate for the complex plane, such that ∠P(φ) = 0. In this
coordinate, let each vector vk have the representation (xk,yk).
We are looking for the first possible φ for which there exists
a set of additional phase shifts, ∆αk, such that P(φ) = (0,0).
In its general form, P is expressed as

P(φ) = ∑
n

vne j∆αn

=
(

∑
n

cos((n−
N−1

2
)θ +∆αn),∑

n

sin((n−
N−1

2
)θ +∆αn)

)

=
(

∑
n

xn,∑
n

yn

)

,

(4)
where θ is defined according to section 4.1. Note that

x∗n := min{cos((n−
N−1

2
)θ +∆αn) |−α∗ ≤ ∆αn ≤ α∗}

∈ {−1,cos((n−
N−1

2
)θ ±α∗)}.

(5)

Further, we can bound the absolute value of the pattern P as
follows.

|P(φ)|2 =
(

∑
n

xn

)2
+
(

∑
n

yn

)2

≥
(

∑
n

x∗n
)2
,

(6)

where we have bounded the second term with zero. This
inequality holds as long as ∑n x∗n is positive, which is true
around the main lobe, before the first possible null.

Let us rotate each vector vn to get x∗n as its x component.
Using lemma 1, vn rotates by ±α if and only if vN−1−n is
rotated by ∓α . This means that the two vectors remain sym-
metrical around the x axis. Therefore, we will necessarily
have ∑n yn = 0, bringing equation 6 to an equality. Hence, as
long as ∑n x∗n > 0, nulling is not possible.

The first point at which nulling becomes possible can there-
fore be derived by finding the solution to ∑n x∗n = 0. Using
equation 5 combined with lemma 1, we get

N−1

∑
n=0

x∗n = 2

N
2 −1

∑
n=0

cos((n−
N−1

2
)θ +α∗) = 0, (7)

The solution to which is θ =± 2
N
(π−α∗), or its correspond-

ing φ value given in the theorem.

Proof of Theorem A.2. Using Theorem 4.3, we have to run
the output of the algorithm for the assumptions in this theorem.
Since nulling is not possible, the algorithm will run from 0 to
N−1, yielding vectors cos(nθ +α∗) for 0≤ n≤ N

2 +1, and
cos(nθ −α∗) for N

2 +1≤ n≤ N−1. Summing them up, we
get the result in stated in the theorem.
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Abstract
WiFi backscattering can enable direct connectivity of IoT de-
vices with commodity WiFi hardware at low power. However,
most existing work in this area has overlooked the importance
of synchronization and, as a result, accepted either limited
range between the transmitter and the IoT device, reduced
throughput via bit repetition, or both. In this paper, we present
SyncScatter, which achieves accurate synchronization with
incident signals at the IoT device level while realizing maxi-
mum possible sensitivity afforded by a backscatter link budget.
SyncScatter creates a novel modeling framework and derives
the maximal optimal range and synchronization error that the
receiver can tolerate without significant performance compro-
mises. Next, SyncScatter builds a novel hierarchical wake-up
protocol, which, together with a custom ASIC, achieves a
range of 30+ meters and the peak throughput of 500Kbps,
with an average power consumption of 30µW.

1 Introduction
Ubiquitous wireless network coverage is required to enable

the next-generation of Internet of Things(IoT) devices. In
smart homes, offices, industrial environments, and more, WiFi
is by far the most ubiquitous form of connectivity. However,
enabling WiFi connectivity at the IoT device level requires
high power consumption - to the point where most such IoT
devices must be either plugged into wall power, must use large
and frequently re-charged batteries, or simply cannot afford
to transmit data at high average throughput [13, 22].

Recent work has proposed using backscatter communica-
tion techniques to reduce power, which forgoes direct WiFi
signal generation by instead modulating data on top of ambi-
ent WiFi transmissions generated by existing access points
(APs) [10, 40]. There are three components to backscattering
systems: 1) the transmitting radio which generates the exci-
tation signal; 2) the IoT device which reflects the incoming
signal by encoding its information, and 3) a receiving radio
(WiFi-compatible) which receives the packets and decodes
the data from the IoT device. By avoiding any signal genera-
tion or amplification directly at RF, the power consumption
of backscatter communication can be low - on the order of
microwatts - such that small energy harvesters or batteries
can directly power the IoT devices.

Existing work on WiFi-backscattering can be broadly
classified into two major categories: the first set of WiFi-
backscattering is inspired by the RFID style of backscatter

communication systems [8, 21], wherein a tone-generator is
deployed as the excitation radio. This gives the IoT device
the freedom to begin backscattering at any time it likes, along
with the freedom to create any backscattered waveform like
WiFi to encode its information. This tone-based backscat-
tering approach requires additional custom hardware - the
tone generator - beyond commodity WiFi hardware, and thus
deployment timelines and costs can be appreciable [21].

In contrast, the second set of works [40, 42] leverage exist-
ing WiFi infrastructure for both the excitation and receiving
radios, therefore requiring no additional infrastructure deploy-
ment. In this approach, an existing WiFi radio’s transmission
is used as excitation signal, and the IoT device modulates the
underlying data in the excitation signal in a specific manner
according to the IoT device’s data which is then reflected back
to the environment. Properly backscatter modulated signals
will retain a WiFi-compatible form, and therefore can be de-
coded by another WiFi radio. Ideally, the IoT device should
synchronize itself to the incident signal, such that it knows
precisely when to perform backscatter modulation. To ensure
the superimposed data (i.e., the data from the incident source
and the IoT device data) is readable by a commodity WiFi
receiver, this synchronization should be down to the sym-
bol level. Unfortunately, no prior work in WiFi backscatter
synchronizes down to the symbol level [20, 21, 40].

Synchronizing to the symbol level with high-accuracy is
challenging, as all ISM, including WiFi transmissions, are
made up of complex digital waveforms at fairly high data rates.
A large literature has worked on optimizing the power con-
sumption of the synchronization routines in WiFi transceivers,
which still takes considerable power [5]. Furthermore, the
power consumption of synchronization increases exponen-
tially to make it work at lower incoming signal power. There-
fore, prior WiFi backscattering work such as Hitchhike [40]
employs a very simply energy-detecting synchronization
scheme that consumes low power but can only synchronize to
an accuracy of 2µsec at an input power of−20dBm. Since the
symbol rate in 802.11b WiFi is 1µsec, this means Hitchhike
will effectively begin backscatter modulation at a random lo-
cation within a symbol, which ultimately limits its achievable
distance to be no more than 6m from the transmitter. Unfortu-
nately, this comes directly at the cost of decreased achievable
throughput, increased inter-symbol interference(ISI), and ulti-
mately reduced communication range.

In this paper, we present SyncScatter, which is the first
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Figure 1: Shows a traditional tag form [40] which backscatter signal
without accurate synchronization, leading to higher BER. In contrast
the SyncScatter tag accurately synchronizes to the incoming signal.

integrated circuit-based backscattering platform that can en-
able symbol-level synchronization through a hierarchical
wakeup and synchronization protocol, shown in Fig. 1, which
works up to theoretical sensitivity levels. Such symbol syn-
chronization enables longer range, higher-throughput, and
more reliable backscatter communication than prior art for
all forms of communication (not just WiFi). Here, we specif-
ically built and prototyped SyncScatter to demonstrate the
first fully-WiFi-compatible symbol-level synchronized, long-
distance, extremely low-powered backscatter system. Fur-
thermore, SyncScatter can support multiple IoT devices to
co-exist without interfering with each other. SyncScatter is
designed on a custom ASIC, enabling ultra-low-power con-
sumption.

In order to bound the design space, we begin the paper by
asking some fundamental questions: how accurate does the
synchronization need to be? How far away from the transmit-
ter can we work? What sensitivity level should we target at
that range? How do we do all of this while keeping power low?
To answer the first question, we present analysis wherein we
add increasing amount of synchronization error and observe
the performance (SNR vs BER), and choose point where the
gains are incremental beyond it. Then, we leverage FCC spec-
ifications on maximum available transmit power along with
the minimum SNR required to decode a certain ISM backscat-
ter, accounting for loss in backscattering and the noise figure
of the corresponding receiver, to derive the maximum path
loss, and therefore distance, a backscatter system could po-
tentially work at. This analysis also gives us the sensitivity
level needed at the backscattering tag, which as we will show
turns out to be−35dBm. Importantly, we discuss how improv-
ing sensitivity beyond this level is wasteful. This is the first
analysis of its kind that combines path loss, synchronization
accuracy, and sensitivity.

The next natural question for SyncScatter is how to achieve
the required tight synchronization accuracy and desired high
sensitivity while consuming microwatts of power? To keep
power low, a direct envelope-detector (ED) approach is typ-
ically used; however, such a system’s sensitivity typically
reduces with increasing bandwidth. Since achieving a high
synchronization accuracy requires high bandwidth, this poses
a direct trade-off between accuracy and sensitivity. The only

way to break this trade-off is to add RF amplification before
the ED. However, this can cost significant power - upwards
of 100s of microwatts.

To break this trade-off, our key insight is to create a two-
stage, hierarchical wake-up and synchronization protocol,
wherein a first stage (the wake-up receiver) is designed with
single-digit microwatt power and leverages low-bandwidth
energy detection to simply wake-up the tag at approximately
the right time, at which point a second stage (the synchroniza-
tion receiver) uses higher-power active RF amplification to
enable the desired sensitivity at the desired bandwidth, but is
turned on only for a short time to synchronize, and is powered
down immediately post synchronization. SyncScatter creates
a new protocol where two packets with controlled length are
sent apriori to backscattering. The time duration of the two
packets encodes the tag’s identity, which results in an enable
signal from the first stage wake-up receiver. The second stage
turns on just before the start of the backscatter payload packet,
samples the incoming signal at high bandwidth, looking for
the beginning of the packet and the symbol boundary, and
then promptly goes to sleep. Once symbol-level synchroniza-
tion is achieved, the backscatter modulation logic reflects
the incoming signal by overlaying its data in a synchronized
fashion.

SyncScatter specifically builds an RF integrated circuit and
hardware design for the entire hierarchical wake-up protocol,
along with single-sideband backscattering circuits, which can
backscatter any ISM 2.4 GHz signals. SyncScatter’s WiFi
transmitter and receiver are implemented using open-wrt [25]
on TP-Link devices. SyncScatter is evaluated in indoor office
environments to achieve the following results:
• SyncScatter achieves a sensitivity of up to -35 dBm via the

custom integrated circuit, with a synchronization accuracy
of 150 ns, which enables a 30+ meter link operation as
measured in a regular office environment. As a result, the
longer wake-up distance offered by SyncScatter allows the
use of WiFi APs deployed in a typical home or office envi-
ronment without requiring additional smartphones, unlike
in HitchHike [40].

• SyncScatter tag enables symbol-level synchronization at
very low power consumption by utilizing a hierarchical
wake-up receiver with a false negative rate of 10−3.
• SyncScatter tag supports backscatter communication over

a wide range of the transmitter(Tx) to tag and receiver(Rx)
to tag distances whose product is ≤ 169 m2, i.e., 13m from
Tx and 13m from Rx or 33m from Tx and 5m from Rx.
• SyncScatter supports multiple tags running concurrently

and supports 802.11b waveforms, modulating at symbol
level providing peak bit-rates of 500 Kbps.

2 Synchronization & Sensitivity Require-
ments

This section introduces a model that helps scope out re-
quirements for the custom IC designed for WiFi backscatter-
ing. The methodology presented herein could also be used to
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design any ISM backscatter systems.

2.1 Synchronization Requirements for WiFi
Synchronization is at the heart of all communication

systems, and must be thought through carefully, even for
backscatter systems (at least, ones that do not use tone genera-
tors, like fully WiFi-compatible systems). In this sub-section,
we specifically discuss the need for synchronization and estab-
lish the minimum required synchronization accuracy, which
is needed for minimal performance reduction in a fully WiFi-
compatible backscatter system.

To describe the synchronization problem we are solving,
we will start with a brief discussion of the problem with
a figure, specifically on a representative 802.11b signal in
Fig. 2. To backscatter a valid 802.11b signal, the tag performs
code-word translation on the ambient 802.11b packets, similar
to [40]. The tag embeds its data on the ambient 802.11b
WiFi packet by changing the phase of each of the 802.11b
symbols in the packet. The resulting backscattered signal is a
product of the incident signal and the tag’s phase modulation.
Therefore, changing each symbol’s phase ensures that the chip
sequence on each symbol retains the 11-bit barker code and
backscatters a valid 802.11b signal, which is then decodable
by the WiFi receiver without inter-symbol interference shown
on the right.

As observed in [40], the HitchHike tag, and in fact all
past work that backscatters ambient signals, do not accurately
synchronize with the incoming transmitter signal and there-
fore applies code-word translation with incorrect boundaries
shown in the Fig. 2 left. Misalignment between the backscat-
ter symbol timing and the original symbols in the 11b packet
will start to change the barker code, which hurts the signal to
interference ratio and, therefore, hurts the receiver’s ability to
decode the backscatter packet and can result in errors.

To quantitatively understand the impact of synchronization,
we emulate the backscatter system wherein we transmit the
reflected packet using an SDR while intentionally adding an
increasing amount of synchronization error from 0 ns to 625
ns as shown in Fig. 3a. The synchronization errors are added
after the header of the transmission, as the backscattered pay-
load is applied only after the header. The transmission is
received using an off-the-shelf WiFi AP. We measure 10000
packets with backscatter payload in a total of 1 million bits to
generate the SNR to BER plot. As we can observe, synchro-
nization errors up to 150ns do not lead to significant BER
degradation. However, errors beyond this can lead to 7dB or
more degradation.

A natural question is how did past work resolve this issue.
Due to power-related issues that we will discuss shortly, prior
work such as [40] achieved synchronization accuracies of
anywhere from 1 to 10 µsec, which is well beyond the symbol
period. This means that the backscattered signal modulated
on top of the existing WiFi packet will have a random phase
offset for each packet. To combat this problem, [40] uses a

WiFi Tx

Unsynchronized

HitchHike Tag SyncScatter Tag

Synchronized

Erroneous Chip 
Sequence

Valid Chip 
Sequence

WiFi Rx 1
High BER

WiFi Rx 2
Low BER

Figure 2: Impact of in-accurate synchronization, and resulting loss
in signal quality at the receiver.

preamble to help the receiver find the start of backscatter data
in the packet and decode the tag data. Further, to ensure proper
decoding of tag data, each tag data bit is repeated multiple
times(repetition coding), reducing the available throughput.
Said differently, it would lose significant SNR gain due to
lack of synchronization. A more severe consequence is that
the CRC(cyclic redundancy check) of the packet often fails
with past work. Instead, we can ensure CRC checks can be
met with proper synchronization, enabling more WiFi cards
as receivers while simultaneously enabling higher average
channel throughput.

Generalization of Synchronization requirements to
other wireless standards: An obvious next step is to know
the synchronization requirements for backscatter systems
based on different wireless standards like BLE(Bluetooth
low energy) and 802.11g WiFi. In BLE transmissions, a data
bit 0/1 is encoded as different frequency modulated sine tone
signals. Backscatter tag modifies the frequency of sine tones
present in the BLE symbols to encode backscatter data on
top of BLE packets. The backscatter encoder must know the
symbol boundaries to ensure that backscattering is successful.
Otherwise, the backscatter data is spread on two consecutive
symbols, and the receiver fails to decode the packet. Simi-
larly, 802.11g WiFi backscatter systems encode data on top
of an OFDM symbol by changing the signal phase. Hence
the backscatter encoder must be aware of the OFDM symbol
boundaries. To understand the synchronization delay’s im-
pact, we perform Matlab simulations of backscattering BLE
and 20MHz standard OFDM signals as given in [42] and in-
troduce synchronization(sync) delay while finding symbol
boundaries. Our simulations reveal that BLE backscatter loses
4 dB SNR at 10−3 BER for 100 ns sync delay and can tolerate
up to 50 ns sync delay(More details in Appendix 9). On the
other hand, OFDM backscatter can handle up to 1000 ns sync
delay and lose more than 10 dB SNR at 10−3 BER for 1200
ns sync delay. These observations suggest that symbol-level
synchronization is essential for backscatter systems based on
other protocols as well.
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2.2 Sensitivity of the backscatter tags
For an IoT device to backscatter its data, it needs to detect

the incoming signal from the excitation radio. Prior work
has shown very short distance backscatter from excitation
radio to the tag, for example, less than 6 meters for WiFi
backscattering [20, 40]. Given the flexibility in the design
parameters with integrated circuit design, we would like to
understand better the sensitivity for which the backscatter tag
should be designed to optimize for range while minimizing
power consumption.

At the outset, the above question looks ill-posed. To sim-
plify the above question and perhaps get a more coherent
answer, let us take an example of the same 11b signals trans-
mitted at 1 Mbps. To simplify the above analysis, we would
assume the worst-case mono-static backscatter communica-
tion scenario, i.e., the transmitting radio and the receiving
radio are co-located. The challenge with the backscatter sys-
tem is that it suffers from two-way path loss. Specifically, the
transmitter to the tag suffers a path loss of 1

d2 . Then the signal
is re-radiated back from tag to the receiver, which suffers a
multiplicative path loss of 1

d2 , which implies 1
d4 path loss (or

additive in dB). Said differently, it would suffer the same loss
as traveling quadratic distance.

With that analysis in place, we can leverage the maximum
possible dynamic range by operating at the highest possible
transmit power and minimum receiver sensitivity at which we
can decode the packet. For WiFi at 2.4GHz, the maximum
average transmit power is 24 dBm (11b has a peak power of
30 dBm and 6 dB of PAPR), while a receiver sensitivity to
decode 1 Mbps is at -97 dBm as shown in Fig. 3b. Given
a tag can have ideal insertion loss of 3dB, this provides a
dynamic range of 24 dBm −(−97 dBm)− 3 dB = 118 dB
for decode-ability. Assuming a worst-case range condition
where the tag communicates with a co-located transmitter and
receiver AP, this suggests operation with 59 dB of one-way
path loss, for a worst-case incident signal power 24 dBm−59
dB =−35 dBm.

To find the path loss in indoor environments, we measure
the received signal strength with increasing distance between
the transmitter and IoT device, up to a point where the re-
ceived signal strength at the IoT device goes below the thresh-
old of −35 dBm, providing us the range up to which we
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Figure 4: Design Overview of SyncScatter.

expect the backscatter to work. Fig. 3c plots the received
power with increasing distance, and received power or sensi-
tivity of−35 dBm would provide the maximum range benefit,
i.e., from 15 – 21 meters, one-sided range. Note that prior
systems have achieved −15 dBm sensitivity, with 6 meters
working range [40].

In summary, we need to achieve a sensitivity of −35 dBm
beyond which the gains are incremental and concurrently
achieve synchronization accuracy of 150 ns, all while keeping
low power. Achieving this specification at the micro-watt
level is extremely challenging.

3 SyncScatter Tag Design Overview
In this section, we describe the architecture of SyncScat-

ter’s tag and show how it can wake-up to properly-designed
incident WiFi signals, perform symbol-level synchronization
to said incident WiFi signals, and then perform backscatter
modulation. This is accomplished by three separate subsys-
tems: a wake-up receiver, a sync stage edge-detector, and a
backscatter modulator as shown in Fig. 4.

In most prior works [40,42], the wake-up receiver and sync
stage are combined into a single circuit. i.e., a single circuit
is responsible for determining if an appropriate WiFi signal
is incident on the tag and then indicating to the tag when to
begin backscatter modulation. This is, however, a problematic
approach if the tag desires low-power and sufficient sensitivity
and synchronization accuracy, as these items all trade-off di-
rectly with one another. Thus, breaking wake-up functionality
apart from synchronization functionality via the proposed hi-
erarchical approach can serve to break this trade-off, enabling
a low-power yet sufficiently sensitive and accurate design.
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3.1 Sync Stage Receiver
As aforementioned, the best we can do given FCC WiFi

transmitter power limitations and the best achievable WiFi
receiver noise figure is to achieve a sensitivity at the tag of
approximately −35 dBm. Achieving a sensitivity better than
this does not improve the system’s performance or range in
any meaningful manner and is thus just wasteful. At the same
time, we need to detect the symbol boundary of an incident
WiFi packet with an accuracy of at least 150 ns. Again, doing
better than this does not meaningfully improve performance.
Thus, the design space here is: achieve these sensitivity and
synchronization accuracy specifications while consuming as
little power as possible.

To find the accurate symbol boundaries, we can use the fact
that multiple symbols together constitute a packet. If we can
somehow find the exact time instant at which the packet starts,
we can determine the symbol boundaries by keeping track
of the time elapsed from the beginning of the packet. The
packet boundary is indicated by a change in the signal power
received, and it can be used to find the start of the packet.
Assuming we have already woken-up to a pre-specified WiFi
signature (as described in the following section), we can then
measure the instantaneous signal amplitude by passing the
signal through an envelope detector (ED) and monitoring its
envelope for a strong rising edge representing the beginning
of the packet that will be backscatter modulated.

Before we present how we can perform necessary synchro-
nization, it is first instructive to provide a brief overview of
very low-power energy-detecting radio receivers. The sim-
plest and lowest power receiver directly connects an antenna
to an ED, whose output is low-pass filtered and then sampled.
Fig. 5. shows a simplified block diagram of this approach.
This approach’s main benefit is that the ED can be passive
and thus consumes zero power; this circuit’s only power con-
sumption is due to the sampler/comparator, which can be in
the low single-digit microwatt regime. Note that this approach
energy-detects everything at its input, and thus there is usually
a filter at the input to ensure out-of-band interferers do not
get demodulated.

The main design parameter in such a receiver is the base-
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band bandwidth, BWBB, set by the combination of the effective
resistance of the ED itself and its load capacitance as a simple
first-order RC filter. The larger the baseband bandwidth, the
more precise an ED will be able to detect a rising packet edge,
and therefore the better the synchronization accuracy will be.
To first order, this is a one-to-one trade-off, as shown in Fig. 5,
assuming that the comparator is sampling at the Nyquist rate
(i.e., 2× the baseband bandwidth). To achieve a synchroniza-
tion accuracy of 150 ns, we would need a baseband bandwidth
of at least 6.7 MHz.

However, the complication here is that the larger the base-
band bandwidth, the larger the noise bandwidth becomes. As
described in [18, 34], with no gain in front of the ED, the
receiver’s sensitivity is typically dominated by the noise of
the ED itself. Interestingly, RF noise is immaterial in such a
scenario because a passive ED’s noise is so much larger than
all downconverted RF noise. As a result, increasing the base-
band bandwidth directly increases the noise, which degrades
the sensitivity with a 5log(BWBB) trade-off (where 5 log() in-
stead of 10log() is used to account for the squaring function
of the ED). Specifically, the sensitivity of a direct-ED receiver
is given by equation 1.

Psensitivity =
20

kED ∗A2
V

√
BWBB ∗PSD0 ∗SNRMIN (1)

where kED is the scaling factor of envelope detector, AV is the
front-end voltage gain (equals to 1 for a direct-ED receiver),
PSD0 is the output-referred baseband noise, and SNRMIN is
the required minimum signal-to-noise ratio. The result of
this equation is plotted in Fig. 6 for representative values of
kED, PSD0, and SNRMIN to be 250/V, 300 nV2/Hz and 6 dB,
respectively. Achieving a synchronization accuracy of 150ns
requires a baseband bandwidth of 6.7MHz, which, as shown
per these numbers, permits a sensitivity of at best −20 dBm.
This is obviously unacceptable.

Since we cannot further reduce the noise floor of a passive
ED, the only recourse is to either provide more voltage gain
before the ED or build an active ED to reduce its noise floor. It
turns out that building an active ED with sufficiently low noise
is not only not easy but also only helps with a 5log() benefit.
On the other hand, providing voltage gain before the ED helps
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with a 20log() benefit and is thus far more attractive.
In fact, it is possible, even at 2.4 GHz, to provide some

amount of voltage gain completely passively through an
impedance transformation network. For example, the π net-
work (shown in Fig. 8a later) can take the 50 Ω antenna
impedance and transform it to a 300 Ω impedance, theoret-
ically giving 20log(

√
Zo/Zi) = 8 dB of "free" voltage gain

without consuming power. As shown in Fig. 6, adding 8 dB
of voltage gain improves the sensitivity by 8 dB for a net
sensitivity of -28 dBm. This is still not good enough. Consid-
ering that the detector’s impedance is of the order of 100kΩ,
can we get more voltage gain if we build a better matching
network? Unfortunately, the ability to do this is limited by the
low-quality factor of components at high frequencies, along
with parasitics - where for example, even 0.1 pF of parasitic
capacitance presents as 600 Ω of impedance. Likewise, a 0.8
nH high-Q inductor from Coilcraft (0402DC-N80XR, Coil-
craft, Illinois, USA) has Q = 110, which at 2.4 GHz is a series
resistance of 25 mΩ, which limits Zo to 300 Ω. Thus, it is
very difficult to get much more than ∼8 dB of passive voltage
gain at these frequencies.

As a result, the only remaining way to improve sensitiv-
ity is to add active RF gain. This is typically undesired by
designers of backscatter tags, as the main purpose of doing
backscatter modulation is to avoid having to build active cir-
cuits operating at RF since they tend to consume significant
power. For example, in this work, we have built a custom RF
amplifier into the integrated circuit, which provides a gain of
12dB for a power consumption of 240 µW. With the matching
network, the provided gain improves the sensitivity by 20dB,
which now meets the desired -40 dBm sensitivity specifica-
tion (with some margin). However, while still significantly
lower than the 10’s to 100’s of mW a typical WiFi transceiver
would consume, the power consumption is still higher than
desired.

We can now get to the key insight provided by SyncScatter:
the high bandwidth needed for synchronization only needs
to occur when we know we are about to backscatter - that is
after we have already woken up. As a result, we only need to
turn this RF amplifier on for a short amount of time to detect
the rising edge of the packet to be backscatter modulated. We
can shut-off the RF amplifier before and after this event. By
duty-cycling the amplifier in this manner, we can cut down its
average power consumption significantly. For example, the
sync receiver needs to be turned on only for 50us throughout
the 500 µs wakeup + 2000 µs data packet duration. The duty-
cycled power, in this case, turns out to be 50

2500 × 240µW =
4.8µW.

Again, the key insight in SyncScatter is that we can de-
couple the precise symbol level synchronization from the
wake-up functionality, so that we can spend high power mo-
mentarily during symbol synchronization to achieve the de-
sired bandwidth and sensitivity, while duty-cycling this down
to low average power at times when we are not expecting
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Figure 7: Timing Digram of SyncScatter.

the packet edge. Unlike other works which combine wake-up
and synchronization in a single circuit, this work proposes a
hierarchical method - where a low-power wake-up receiver is
used to detect a WiFi compliant signature that indicates the
next incident packet should be backscatter modulated, which
then hierarchically turns on a sync stage receiver to provide
the necessary high-bandwidth synchronization accuracy. This
hierarchical approach, of course, only helps if we can design
a wake-up path with low power and sufficient sensitivity, as
will be described next.

3.2 Wake-up Receiver – First Stage
The wake-up stage’s goal is to monitor the RF spectrum for

a pre-specified set of packets that indicate the next packet is
the one to be backscatter modulated. This should occur with
the same sensitivity as the sync stage receiver, but ideally at
much lower power since it must be on for potentially long
durations of time while waiting to be triggered by a WiFi
AP. If the wake-up stage is sufficiently low power, and the
sync stage only needs to operate over a small duty-cycle, then
the overall hierarchical approach can consume low average
power.

The logical question is then: how can the wake-up path
consume lower power and yet achieve the same sensitivity
as the sync stage receiver? The answer is that the wake-up
stage does not require the same amount of bandwidth since
it is not being used to perform symbol-level synchronization.
Reduced baseband bandwidth enables a reduction in the re-
quired amount of pre-ED RF gain to the point where no active
RF amplification is needed, all while still meeting the desired
−35dBm sensitivity level (with margin).

The wake-up pattern is constructed as follows. A WiFi-
compatible identifier is transmitted by a WiFi AP first con-
sisting of a CTS-to-self to temporarily reserve the channel,
followed by the transmission of two packets, T0 and T1, with
pre-determined lengths corresponding to the IoT tag that is
supposed to be woken up. This sequence is illustrated in
Fig. 7. Multiple tags can then be uniquely woken up by choos-
ing different T0 and T1 packet lengths. At the tag level, the
wake-up stage uses an 8 dB passive voltage gain network
that is directly connected to an ED. The ED energy detects
the entire packets and samples the energy with a comparator.
Since the packet lengths are restricted to a minimum 50 µs,
the required ED baseband bandwidth is 20 kHz. As shown
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previously in Fig. 6, with 8 dB of passive voltage gain, this
results in a sensitivity of −40 dBm - which is the desired
level (with margin). The comparator’s output passes into a
counter that counts the number of logic ’1’s, given by the
presence of a packet (vs. a logic ’0’, which would occur in
the inter-packet interval), at a sampling rate of 40 kHz. If
the expected number of 1’s and 0’s occur in the right order,
the wake-up stage’s output triggers the sync stage receiver.
Importantly, this wake-stage is achieved with a purely passive
ED that consumes zero power. As a result, the only power
here is that of the comparator, correlator, and clock generator
(Fig. 4), which consumes only 2.8 µW during active mode.

3.3 Backscatter Communication
Once the tag has woken up and the sync stage identifies the

exact packet start instant, the system starts backscattering with
zero data. This ensures that the incident WiFi packet’s header
is backscattered to a different WiFi channel for reception by
another WiFi AP without any modification using a Single side-
band (SSB) modulation technique similar to [40]. While this
is occurring, the tag counts the number of clock cycles until
the header is complete, after which it can begin to introduce
its data into the backscatter modulator. The backscatter data
is XORed with the incident 11b symbol data, also known as
code-word translation similar to [40]. The backscatter data is
recovered at the receiving AP by XORing the received data
again with the original 11b symbol data.

3.4 Putting it all Together
In the subsection, we discuss the end-to-end life-cycle of

data packet exchange from an IoT device to the WiFi AP. A
WiFi AP with the firmware support to transmit an excitation
signal transmits a CTS-to-self packet to reserve a slot of 5
milli-second. Next, the transmitting AP transmits the two
packets T0 and T1, whose lengths are a multiple of 25µsec.
The tag notices a special pattern of three packets using the
wake-up stage receiver by measuring the duration of CTS-to-
self, T0, and T1 packets.

Downlink to a Specific Tag: Each IoT device is pre-coded
with the lengths for T0 and T1 (akin to a destination address),
which is the tag’s identity. The finite state machine (Figure 4)
at the tag continuously runs the wake-up receiver to look and
match the three packet durations consuming 3 µW, with the
trigger level of the reference voltage for ED set to -40 dBm.
Whenever the three measured lengths match with the precoded
sequences, it enables the specific IoT device to receive the
downlink data.

A fixed number of bits are allocated for downlink in the fi-
nite state machine. The AP transmits the packets with varying
lengths to encode the downlink data with 25 µsec granularity.
The wake-up receiver at the IoT device uses the packet length
to decode the downlink message. Therefore, the downlink
data-rate supported is 40 Kbps. We reserve 3 bits for down-
link in our implementation, which are used to set the reflection
side-band upper or lower.

Uplink from the Tag: Upon completing the downlink, the
tag fires up the sync receiver at the IoT device to acquire
synchronization to uplink the data. The AP transmits a longer
packet which we use to uplink the data. The tag synchronizes
to the receiving packet with 150 ns accuracy, assuming incom-
ing power is higher than -40 dBm. The tag starts backscat-
tering at 50 MHz without any data, as soon as it receives a
trigger from the sync receiver. Back-scattering with no-data
ensures the incoming packet is reflected on channel 11, as-
suming transmission was on channel 1. The receiving AP on
channel 11 starts receiving the packet. It successfully receives
the PHY and MAC header of a total of 432 µsec. Upon com-
pletion of 432 µsec, the IoT device starts backscattering data,
which is compliant to WiFi standards, as discussed in the next
section. The receiving AP decodes the packets successfully,
with CRC matching ensuring the packet is reported to the
higher layers. The receiving AP XORs its data with the trans-
mitted data in the cloud to recover data from the IoT device,
thus connecting the IoT device to the AP.

3.5 Working with COTS WiFi
In the previous sub-section, we assumed certain capabilities

for COTS WiFi. We will present how our system is compati-
ble with using commercial WiFi transceivers. Specifically, we
explain our test setup to receive the backscatter packets and
decode them. We also discuss how the physical layer mod-
ulation schemes in the 802.11b protocol affect the bit-data
processing at the backscatter IC and the receiver end.

Generating the wakeup pattern: The wakeup pattern is
an On/Off pattern made up of WiFi compliant packets. It
contains two WiFi packets separated by a DCF interframe
spacing(DIFS) gap between two successive packets. The WiFi
packets are broadcast packets that are of 107us duration, each
separated by 50us corresponding to the DIFS gap. We note
that typical 802.11b data packet sizes are of the order of
few milliseconds, and 500us (CTS-to-self + wakeup pattern)
duration do not add significant overhead for the backscatter
communication.

Scrambling and Differential encoding: 802.11b WiFi
APs randomize the data by scrambling it before transmission.
At the receiver end, a de-scrambler is used to de-randomize
the data and obtain the original bits. So, the backscatter data
bits have to be scrambled before they are transmitted. The
backscatter bits are scrambled using a 7th order polynomial
implemented as a feedback shift register initialized with a
fixed seed [3]. Since the seed is fixed in 11b transmissions, all
the tags can be programmed with this seed to facilitate data
scrambling. Following the scrambling operation, the bits have
to be encoded in a differential manner following the 802.11b
PHY differential modulation scheme so that the receiver can
decode the backscatter bits correctly.

4 Hardware and IC Design
Each SyncScatter tag is built upon a custom integrated cir-

cuit that was fabricated in TSMC’s 65nm GP process. Our
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chip design is inspired by previous works [35, 36], which
like other works HitchHike [40] lacks synchronization at the
necessary sensitivity levels. Our IC design includes the pro-
posed wake-up, sync receiver, and SSB backscatter modulator.
The remainder of this section describes the chip design and
operation, along with board-level integration efforts.

IoT Device: Daughterboard: The 65 nm die is directly
mounted onto a custom printed circuit board, hereafter re-
ferred to as the daughterboard. The daughterboard(Figure 9b)
routes all power and digital control traces to headers, which
interface with a larger motherboard. Although not strictly
necessary, the daughterboard is fabricated to utilize two RF
antennas for ease of initial design: one for the wake-up path
and one for the backscatter-path. However, we can use a sim-
ple switch to include both these paths to interact with a single
antenna. The chip is clocked primarily from a 16 MHz crystal
oscillator, with the oscillator circuit integrated on the chip,
and the crystal soldered onto the daughterboard.

4.1 Wake-up receiver:
The wake up receiver consists of passive voltage gain di-

rectly feeding an ED and then to comparator which is sampled
at 40kHz sampling rate as shown in Fig. 4.

Passive Voltage gain: At power levels of−40 to−30 dBm,
the voltage seen at the antenna port are on the order of 5-20
mV. A passive voltage gain network is included to boost this
according to the benefits outlined in the previous section. In
this design, an CLC-based π matching network is employed,
as shown in Fig. 8a, which provides 8 dB of voltage gain.
The maximum achievable gain is limited by the quality factor,
Q, of the constituent components at 2.4 GHz, along with the
input impedance of the ED. In the current implementation,
the employed inductor’s Q is 110.

Envelope detector and comparator: Since the antenna
is single-ended, it’s easier to achieve high passive voltage
gain with a single-ended matching network. Thus, the ED
should also be single-ended. However, in general, it is better
to perform baseband signal processing in a differential man-
ner. Considering that the input impedance, output referred
noise, and conversion gain are all important parameters to
optimize in ED design, a multi-stage fully passive ED de-
sign is employed. In particular, a single-ended-to-differential
Dickson-based topology is selected, thus acting as a pseudo-
balun.

The ED’s output bandwidth is controlled in part by the body
bias voltage, which controls the ED’s effective resistance,
along with a variable capacitor. For the stage one design, a
bandwidth of 200 kHz is targeted, which is sufficient to enable
detection of the presence of T0 and T1 packets and their
lengths, though without precise synchronization accuracy.

The pseudo-differential outputs of the stage one ED then
feed into a differential comparator based on a Strong-ARM
regenerative latch topology. This comparator effectively acts
as a 1-bit analog-to-digital converter (ADC), and thus to ex-
tract useful timing information, it must be oversampled. As a

result, it is clocked at 40 kHz. This clock is derived directly
from the on-board crystal, after an on-chip division by a factor
of 400. The comparison threshold voltage is tuned by exter-
nally controlling the bulk voltages of the input pair of the
preamplifier implemented by a gmC integrator.

4.2 Sync Receiver
Once the first stage has determined that packets T0 and

T1 have been transmitted, we turn on the sync receiver, and
its purpose is to look for the rising edge of the subsequently
transmitted packet header. It must do so with a bandwidth
and sampling frequency greater than 6.67 MHz to meet the
150 nsec timing accuracy requirements. Since increasing the
envelope detector’s bandwidth will, without any other action,
decrease sensitivity, this is countered by adding some active
gain in front of the envelope detector.

The schematic of the sync receiver is shown in Fig. 4. Here,
the stage two design shares the same antenna and passive
voltage gain network as the first stage. But, instead of going
directly into an envelope detector, it first goes into a low-noise
amplifier (LNA). The LNA is designed to support a gain of
11 dB and an active-mode power consumption of 240 µW.
If this second stage were on all of the time, this would be
a significant power burden to the entire system. This is the
beauty of the hierarchical wake-up feature: the LNA only
needs to be turned on after the first stage wake-up receiver
triggers reception of the appropriate signature. Otherwise, the
LNA is nominally in a low-power sleep state. As a result, its
average power consumption is extremely low - limited by the
frequency of activation by stage one.

A schematic of the LNA is shown in Fig. 8c. A current
reuse common source amplifier is implemented to achieve the
desired gain with sufficiently low noise. Its output then feeds
into a second envelope detector, optimized in a similar man-
ner to wake-up receiver, though in this case for a bandwidth
of 32 MHz to ensure a highly accurate rising edge timing.
To compensate for the higher bandwidth, an active ED with
decreased noise and increased conversion gain is employed
in place of the passive ED in the wake-up receiver. A similar
comparator as in the wake-up receiver with externally tunable
reference voltage is used after the envelope detector, though
in this case sampled at 8 MHz, which is sufficient to achieve
a 150 ns synchronization time.

4.3 Clock generation:
The 16 MHz crystal oscillator clock is divided on chip into

8 MHz, 2 MHz and 40 kHz to be used by sampling clocks
for sync receiver, PLL reference clock and sampling clock for
wake up receiver, respectively. To drive the backscatter mod-
ulator, an integer-N PLL is adopted with a 2 MHz reference
frequency and a dividing ratio of 25. The voltage controlled
oscillator is implemented via a current starved ring oscillator
with tunable current to ensure stable clock generation against
PVT variations and it consumes 1.5 µW power.
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4.4 Backscatter circuit:
Single-side-band QPSK modulation is achieved by the

backscatter circuit via the approach shown in Fig. 8d. Here, a
power splitter/combiner breaks incident wireless power into
two separate paths. The first path meets one of two possi-
ble termination conditions: 50 Ω or ZL,0, depending on the
state of IFOUT,I. If it meets 50 Ω, then all of the incident RF
energy is absorbed by this resistor, and no reflection is gen-
erated. However, if it meets ZL,0, which is designed to be an
open circuit in this implementation, then all of the incident
RF power will be reflected back through the power combiner
and to the antenna for re-radiation purposes. A similar situa-
tion occurs on the other path of the power splitter/combiner,
which is terminated by either 50Ω or ZL,90, depending on the
status of IFOUT,Q. If ZL,90 = − j× 50, then all the signal is
reflected, though in this case with a 90◦ phase shift. If I/Q
mixers drive the two paths with 90◦ separated IF clocks, most
of the energy will result in a single sideband, in the same way
that a single-side-band mixer operates. Importantly, this ap-
proach only requires ZL,90 to be a 1.2 pF capacitor - which is
very easy to design on chip. This is in contrast to prior work,
which required a transmission line to generate the requisite
90◦ phase shift [40].

4.5 Mother board
The prototype motherboard contains various voltage reg-

ulators for the chip and an ultra-low-power microcontroller
for generating the data sequence with the correct timing. The
voltage regulators generate all the different supply voltages
required for the chip. To tune the LNA sensitivity and com-
parator thresholds, DACs are used to generate the variable
voltages, which are controlled by the microcontroller through
I2C/SPI buses. The chip’s backscatter data input, wake-up
signal, and synchronization signals are connected to the mi-
crocontroller(MCU) as well. The MCU turns on the sync
receiver circuits once the wake-up pattern is detected, and
it starts sending the data to the chip after an appropriate de-
lay when the synchronization signal is asserted. The delay
ensures the PHY header of the frame is preserved and stays
valid. In a practical design, all the regulators and the micro-
controller can be integrated onto the same chip, which would
greatly reduce size and power consumption.

5 Evaluation
In this section, we first present micro-benchmarks to

demonstrate the working of the individual modules in the
SyncScatter tag. Then we evaluate the end-to-end perfor-
mance of the SyncScatter in terms of Bit Error Rate (BER)
and goodput by placing the tag in a large indoor environment
(30m x 15m) as shown in Fig. 9a. We conduct the experi-
ments by placing the Transmitter AP, Tag, and the receiver
AP in both line of sight and non-line of sight conditions to
demonstrate that SyncScatter tag is suitable for deployment
in an office environment. We also conduct experiments to find
SyncScatter’s maximum range by co-locating the transmitter
and receiver AP. To understand the impact of the co-existence
of multiple tags, we perform goodput measurements by keep-
ing two multiple tags in the same environment.

5.1 Micro-benchmarks
Here we verify the tag’s functionality with micro-benchmarks
to explain wake-up, synchronization, backscattering modules,
and overall system design.

Tag Wake-up Accuracy: To test the robustness of the
wake-up receiver, we measure the accuracy of wake-up with
varying input power levels. To evaluate this, we conduct a
wireless experiment to send a wake-up packet at different
power levels. If the tag has woken up to the T0 and T1 packet,
then it generates a trigger signal at the end of the wake-up
packet. We send 1000 wake-up packets at varying power
levels at the tag from -38 dBm to -30 dBm and monitor the
number of triggers generated by the tag. The wake-up error
rate is calculated as the number of successful triggers divided
by the number of wake-up packets sent. Fig. 10a shows the
wake-up accuracy for different power levels. SyncScatter’s
sensitivity is approximately -34 dBm, and for power levels
above -34 dBm, the wake-up rate is very close to 1. Hence
the tag responds well up to power levels of -34dBm, and
SyncScatter will thus be able to wake up at a distance of up
to 30 m.

Synchronization Jitter: The synchronization stage is
prone to have some timing jitter in detecting the variation
of power level. Here we quantify the jitter at different input
power levels by doing a wireless experiment similar to the pre-
vious setup. To measure the jitter, we send an 802.11b packet
from an RF signal generator and monitor the output of the syn-
chronization stage. Then, we measure the time elapsed from

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    931



5m

30 m

9m

28m

1
5

 m

NLOS Rx

Tx LOS 
Rx

NLOS 
Tag

LOS Tag

LOS Tag

13m
13m

(a) Experiment floor plan

Top: 
Daughter 

Board
Bottom: 
Mother 
Board

Backscatter 
Antenna

Wakeup 
Antenna

Backscatter IC

(b) SyncScatter tag

Figure 9: (a) The floor plan shows our deployment of the transmitter, the backscatter tag and the receiver AP at eight different locations in an
office environment. (b) The mother board and the daughter board with the wire-bonded backscatter IC.

-40 -35 -30
Power Level (dBm)

0

0.2

0.4

0.6

0.8

1

S
ta

g
e
1

 W
a
ke

u
p
 R

a
te

(a)

-40 -39 -38 -37 -36 -35 -34 -33
Power Level (dBm)

0

100

200

300

S
ta

g
e
2

 W
a
ke

u
p
 J
it

te
r 

(n
s)

(b)

2.4 2.42 2.44 2.46 2.48
Frequency (GHz)

-90

-80

-70

-60

Po
w

e
r 

(d
B

m
)

C
h
a
n

n
e
l 
1

C
h
a
n

n
e
l 
1

1

16 dB

(c)

0 0.2 0.4 0.6 0.8
Fraction of bit errors in a packet

0

0.2

0.4

0.6

0.8

1

C
D

F

Stage2
Stage1

(d)

Figure 10: (a) Wakeup rate (b) Sync Jitter (c) SSB Backscattering (d) CDF of Bit error rates.

the moment the RF signal is applied and the instant at which
the rising edge appears at the synchronization stage’s output.
We repeat this experiment by sending a thousand packets at
different power levels and report the standard deviation of all
the measurements at each power level. Figure 10b shows the
synchronization jitter is below 150ns at -35 dBm power level
and beyond, achieving desired optimal spec.
SSB Backscatter: Here we evaluate the performance of the
single sideband backscatter in terms of the image rejection of
SyncScatter tag. To measure the image rejection, we configure
the tag to shift by 25MHz to the upper sideband and send a
Wi-Fi signal on channel 6. Figure 10c shows the backscattered
signal on channel 1 and channel 11. We observe that the left
sideband signal i.e on channel 1, is ∼16 dB lower than the
channel 11 signal.

5.2 Chip power consumption
Here we evaluate the power consumption of the wake-up

receiver, sync receiver, and backscatter stages of the chip. We
report each stage’s power consumption as the product of the
supply voltage and the current drawn from the supply. The
chip is powered from a 0.5v supply, and we use a source
measurement unit [2] that can measure the current drawn
by the circuit with a precision of 1µA. We observe that the
on-board 16MHz oscillator and the wake-up receiver draw a
current of 5.6 µA consuming 2.8µW. Since the chip spends
most of its time in the wake-up state looking for the right time
to backscatter, its average power consumption is dominated
by the stage one wake-up receiver. Once the wake-up receiver
detects T0 and T1 packets, then sync receiver is turned on,

which draws 480 µA current and thus consumes 240µW, but
only for an average of 50µs, to account for 40kHz sampling
rate error. For a nominal wake-up duration of 500µs and data
packet duration of 2ms, the duty-cycled power of the sync
receiver is 50

2500 ×240µW = 4.8 µW. Thus, the sync receiver
is controlled by a power switch and duty-cycled to conserve
power. When the circuit is actually backscattering, the chip
draws 56µA current consuming 28µW of power. The power
consumption of the backscatter stage is dominated by the PLL
to generate the 50MHz clock. Since the backscatter stage is
powered on only during the data packet duration, the duty-
cycled power turns out to be 2000

2500 × 28µW = 22.4µW. So,
the total average power from the three stages throughout the
communication duration is 2.8 + 4.8 + 22.4 = 30µW, which is
in the same range of Hitchhike [40] tag’s power consumption.

5.3 End-to-End Results
Here we use WiFi radios as both the transmitter and the

receiver. The transmitter transmits 802.11b signals at a peak
power of +30dBm on WiFi channel 1, and the tag is configured
to backscatter to channel 11. The receiver AP is set to monitor
channel 11 using Wireshark [4], a packet capture software
that allows us to collect the backscatter packets and compute
bit error rate (BER) and the goodput.

5.3.1 Impact of synchronization stage on BER
To understand the impact of synchronization on BER, we

keep the transmitter, SyncScatter tag, and the receiver AP
at 20m away from each other and capture the backscattered
packets on channel 11. We perform this experiment in two
ways, both with and without using the synchronization stage.
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Figure 11: Goodput and BER performance with various Tx-tag and tag-Rx distances for separated case and co-located case.
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Figure 13: Backscatter range plots.

We transmit 1000 data packets and plot the CDF of the bit
error rates of the captured packets. As shown in Figure 10d,
when the synchronization receiver is not used, more than 80
percent of the packets have BER higher than 0.1. But when
the synchronization receiver is used to find the packet start,
70 percent of the packets have BER less than 10−3, which is
a substantial improvement over the other case.

5.3.2 Goodput/BER for a Single Tag
Here we compute the Goodput and the bit error rates by

placing the transmitter, tag, and the AP in different Line of
Sight(LoS) as well as non-line of sight(nLoS) configurations.
We calculate goodput by taking into consideration the MAC
and PHY layer overheads which account for approximately
40 percent of the packet data.
Line of Sight: We perform LoS experiments by placing the
Tx, tag, and the Rx in a long corridor. We vary both the Tx
to Tag distance and Tag to Rx distance while measuring the
performance of SyncScatter tag. Figure 11a shows that when
Tx to Tag distance is 2.3m, SyncScatter tag gives an average
goodput of 450kbps at up to 30m from the tag. As expected,
when we increase the transmitter to tag separation, we observe
that the range of backscatter tag decreases due to higher path
loss. For example, when tag and transmitter are separated by
10m, SyncScatter tag provides 400kbps goodput only until

9m tag to receiver separation. As shown in Figure 11b, the
BER remains to be 10−2 over the whole range. We note that
although the BER remains low over a wide range of Tx to
tag and tag to Rx separations, there is a drop in the goodput
values at certain locations. This could be attributed to the
multipath nature of wireless channel causing deep fades at
certain locations, impacting the number of successful packets
decoded which in turn influences the goodput.
Non Line of Sight: In a real-world deployment, true line
of sight conditions do not necessarily occur. So, we test our
tag setup in a non-line of sight(nLoS) condition where the
transmitter and tag are blocked by a wall between them. We
vary the transmitter to tag separation and compute the bit
error rate and goodput for various tag to receiver separations
as plotted in Figure12a and Figure12b. Measurements show
that the SyncScatter tag is able to be wake-up successfully
even when blocked by a wall and has a backscatter range of
9m. Blockage due to the wall attenuates the signal, resulting
in the throughput and BER being worse when compared to
the line of sight case. When the Tx to tag separation is 3m,
the tag offers an average goodput of 400kbps, and it falls to
100kbps when the Tx to tag separation is increased to 8m.

5.3.3 Co-located Tx and Rx set up
We also evaluate SyncScatter by placing the Transmitter

and Receiver at the same location in both LoS and nLoS
conditions. In LoS case, the backscatter range is limited to
13m which is smaller than the 30m range observed in the
previous experiments where the Tx and Rx are at different
separations from the tag. When the Tx and Rx are co-located,
the backscatter signal suffers from the path loss twice due to
the back and forth travel from the AP to the tag and back to the
same location, impacting the maximum range. This argument
also supports our observation that the rate of decrease in the
goodput with separation is high as shown in Fig.11d and
Fig. 11c. In the nLoS scenario, the tag offers an average
throughput of 200kbps, with the maximum backscatter range
reducing to 8m because of the wall blockage between the Tx
and the tag.

5.3.4 Range of the SyncScatter Tag
Now we describe the maximum range until which Sync-

Scatter tag works. In the co-located experimental setup, we
observed that the backscatter packet decoding is successful up
to 13m AP to tag Line of sight separation. Since the backscat-
ter communication range is determined by the product of
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Tx-tag (d1), Tag-Rx separations(d2). Any tag location sat-
isfying the relation d1 × d2 ≤ 13× 13 = 169m2 and d1 ≤
maximum wake-up distance should be within the backscatter
range. Fig. 13a shows the feasible backscatter range, which
goes up to 30m in either direction.

5.3.5 Co-existence of Multiple Tags
Finally, we find out if multiple SyncScatter tags can exist

together, specifically we want to know if the two tags wake-
up simultaneously and cause interference to each other. In
this experiment, we place the Tx and Receiver separated by
20m. The two tags are placed in line of sight(LoS) with the
Tx and Rx and approximately at the same location. Fig. 13b
shows the network goodput when both the tags are present
and compare it against goodput when only one tag is present.
We note that the concurrent goodput is slightly less than the
averaged goodput of individual tags.

6 Related Work
SyncScatter is related to prior backscatter based network-

ing with ambient signals [13, 22] that provides low-cost and
energy-efficient communication [24, 31]. However, none of
the past literature has shown the ability to synchronize at ex-
tremely low power with incoming WiFi signals. Furthermore,
SyncScatter for the first time analyses the fundamental range
limitation for WiFi backscattering, and provides a necessary
synchronization specification to maximize the range. Using
the analysis and a custom IC hardware design, SyncScatter
improves the range, data-rate, and scales to multiple tags over
existing literature, even prior IC implementations [35]. Sync-
Scatter is related to the following topics:
Tone based WiFi backscatter communication: SyncScat-
ter synchronizes with ambient commodity WiFi signals,
therefore do not require deployment of new tone genera-
tors. In contrast, traditional backscatter system like RFID
[12, 15, 16, 27, 29, 33, 39, 41] require reader device which act
as both tone-generator and receiver. Recent work has shown
the ability to backscatter WiFi from an incoming tone sig-
nal [19–21, 28, 32], which requires an excitation radio that
can generate sine tone. For example, [19] uses a Bluetooth
radio to generate a tone, but with the standards-limiting the
maximum transmit power, the backscatter range is limited
to smaller distances. In contrast, since SyncScatter leverages
existing WiFi infrastructure for both excitation and receiving
radio, it simplifies the deployment while improving range.
Backscatter communication with Ambient signals: Re-
cently, there have been multiple works on backscattering
ambient signals, wherein the excitation radio and receiv-
ing radio use existing infrastructure like WiFi [21, 40]. In
general, the infrastructure-based backscatter that leverages
WiFi [11, 20, 23, 38], LTE [13], Bluetooth [14, 19], Zig-
Bee [22,43], LoRa [17,26,28] or even visible light signal [37]
can all benefit from SyncScatter’s hierarchical protocol to
improve the transmitter-to-tag range and throughput. For ex-
ample, recent work which backscatters LTE signals [13]

tag uses a preamble while backscattering due to the lack of
synchronization with incident signals. In such scenarios, the
hierarchical wake-up receiver can enable synchronization and
improve the tag’s performance.

Prior WiFi-based backscatter works focus on the core-
principle of codeword translation: changing one OFDM sym-
bol to another valid OFDM symbol [42] and [6] extends
backscatter communication to leverage features of the MAC
layer. Multi-hop backscatter [45] builds a mesh network of
tags, and a few other works [9, 23, 44, 46] propose to leverage
spatial multiplexing on the backscatter tag. However, none
of the existing works provide extended coverage due to their
fundamental inability to synchronize with the ambient signals.

7 Discussion and Future Work
SyncScatter presents a first integrated circuit to achieve syn-
chronized backscatter communication with ambient signals.
802.11b and Beyond: Although 802.11b is an old technol-
ogy, most modern APs come with dual-band radios supporting
both 2.4GHz and 5 GHz radios. The recent 802.11ax standard
is designed to be backward compatible with 11b/g devices
and hence backscattering on 802.11b signals is still very ap-
plicable. Moreover, all the symbol-based backscatter systems
such as FreeRider [42] which use 802.11g signals, requires
synchronization making our design suitable for modern WiFi
standards as well.
Adapting WakeUp Receivers to different protocols: Our
hierarchical wake-up receiver design can be extended to
backscatter systems based on BLE, OFDM, and LoRA pro-
tocols with some minor modifications. We observe that BLE
and LoRA signals have a constant signal envelope similar to
11b signals, and they would work with our design. However,
since LoRA networks demand long-range, the wake-up re-
ceiver has to be designed with more sensitivity at the expense
of more power consumption on the tag. In the case of OFDM
signals, the wake-up packets have to be engineered to have a
small peak to average power ratio (PAPR) so that they appear
like a constant envelope signal to the envelope detectors.
Integrated Power Management and Energy Harvesting:
In the current implementation, we design the integrated circuit
without integrated power management solutions, leading to
higher power consumption. In future work, we would integrate
the power management circuits such as voltage regulators,
power switches within the integrated circuit itself. We note
that our chip can be powered using a rechargeable coin cell
such as CR2032 [1] and can have a continuous operation
for more than 3 years. We can further enhance its life by
exploring RF energy harvesting [7,30] techniques to replenish
the battery and integrate them onto the fabricated chip.
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9 Appendix
9.1 BLE synchronization requirement

To find the synchronization requirement for BLE(Bluetooth
low energy) backscatter communication, we perform Matlab
simulations for different synchronization delays. BLE signals
encode the data bits using two different sine tones located
250kHz on either side of the center frequency, where each
symbol in the BLE packet occupies a duration of 1µs. To
encode tag data on a BLE packet, the frequency of the sine
tone present in a BLE symbol is modified by the backscatter
tag. In our simulation, we consider incident data packets that
are modulated using FSK(frequency shift keying) technique.
The tag’s modulation signal is also generated from the tag bits
using the FSK technique. To incorporate the synchronization
delay while backscattering, we delay the tag modulation by a
fixed duration (given by the synchronization delay) beginning
from the packet start instant. The resulting backscattered sig-
nal is also an FSK signal and is decoded by an FSK receiver.
Fig 14 plots the BER vs SNR curve for different values of
synchronization delay. As can be seen, the BLE backscatter
loses 4 dB of SNR at 10−3 BER due to a synchronization de-
lay of 100 ns. For 150ns synchronization delay, it loses more
than 8 dB SNR. To not degrade the SNR, BLE backscatter
requires a synchronization accuracy better than 100 ns which
is equal to 1

10 th of the symbol duration.

9.2 OFDM Synchronization requirement
To simulate OFDM backscatter synchronization require-

ments, here we consider the standard 20MHz OFDM signals.
A WiFi packet contains many OFDM symbols, with each sym-
bol containing 64 sub-carriers. Each OFDM symbol occupies
3.2 us duration and is preceded by a cyclic prefix of 0.8us du-
ration. To encode data onto a WiFi packet, the backscatter tag
changes the phase of an OFDM symbol. For instance, to con-
vey tag data 1, the tag induces an additional phase of π radians
on all the sub-carriers. Similarly, to encode bit 0, the phase of
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Figure 14: BER vs SNR curve for different synchronization delays
in BLE backscatter

the sub-carriers is left unchanged. In this way, a sequence of
tag bits is encoded on a WiFi packet by modifying the phase
of each OFDM symbol in the packet. At the receiver, these
phases are extracted to decode the tag data. If the backscatter
tag is not aware of the OFDM symbol boundary, the tag bits
will not be appropriately encoded on the WiFi packet, and
the WiFi packet suffers from loss of SNR. The BER vs SNR
curves for different synchronization delays are plotted in Fig
15. We note that the OFDM backscatter is able to tolerate
a large synchronization delay of up to 1000ns. The primary
reason the tolerance is very large is that every OFDM symbol
has a cyclic prefix of length 800ns discarded while decoding
the packet at the receiver. So, if the signal that is part of a
cyclic prefix is corrupted, it will not impact the bit error rate.
Another reason is that the same tag bit is encoded on every
sub-carrier of the OFDM symbol, implying if the majority of
the sub-carriers are decoded correctly, the BER would not be
impacted much. From Fig 15, we notice that the BER floors,
although the SNR increases and it loses more than 10 dB SNR
to achieve 10−3 BER. This suggests synchronization delay
plays a major role in reducing the bit error rate.
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Figure 15: BER vs SNR curve for different synchronization delays
in OFDM backscatter
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Abstract
Orthogonal frequency-division multiplexing (OFDM) has

been widely used in WiFi, LTE, and adopted in 5G. Re-
cently, researchers have proposed multiple OFDM-based
WiFi backscatter systems [33, 35, 36] that use the same un-
derlying design principle (i.e., codeword translation) at the
OFDM symbol-level to transmit the tag data. However, since
the phase error correction in WiFi receivers can eliminate
the phase offset created by a tag, the codeword translation
requires specific WiFi receivers that can disable the phase
error correction. As a result, phase error is introduced into the
decoding procedure of the codeword translation, which signif-
icantly increases the tag data decoding error. To address this
issue, we designed a novel OFDM backscatter called TScat-
ter, which uses high-granularity sample-level modulation to
avoid the phase offset created by a tag being eliminated by
phase error correction. Moreover, by taking advantage of the
phase error correction, our system is able to work in more
dynamic environments. Our design also has two advantages:
much lower BER and higher throughput. We conducted exten-
sive evaluations under different scenarios. The experimental
results show that TScatter has i) three to four orders of mag-
nitude lower BER when its throughput is similar to the latest
OFDM backscatter system MOXcatter [36]; or ii) more than
212 times higher throughput when its BER is similar to MOX-
catter. Our design is generic and has the potential to be applied
to backscatter other OFDM signals (e.g., LTE and 5G).

1 Introduction
By reflecting ambient signals, backscatter systems conduct
passive communication which can provide low power con-
sumption, low cost, and ubiquitous connectivity for Internet
of Things (IoT) devices to support various applications (e.g.,
smart buildings and smart health) [4]. To achieve ubiquitous
connectivity and leverage the advantages of the ambient sig-
nals, researchers have developed various backscatter systems
that reflect ambient signals from TV or frequency modulation
∗Both authors contributed equally to the paper.
†Ting Zhu is the corresponding author.
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Figure 1: A general architecture of OFDM-based WiFi backscatter
systems [33, 35, 36]. Different from existing systems that modulate
the tag data at the symbol-level, our backscatter system uses the
sample-level modulation (highlighted in a red color).

(FM) radio towers, LoRa, or WiFi [7, 12, 16, 27]. Therefore,
these backscatter systems are complimentary to each other
and have their own unique advantages in terms of energy
efficiency, throughput, deployment cost, etc.

In this paper, we mainly focus on the design of the WiFi
backscatter due to i) pervasively available WiFi signals inside
buildings; ii) numerous WiFi devices; and iii) abundant ap-
plications supported by WiFi. All of these can significantly
increase the adoption of our developed techniques. The pi-
oneer work on WiFi backscatter [11] achieved up to 1 kbps
throughput and 2.1 meters range. Follow up works improved
the performance of WiFi backscatter by using customized
full-duplex WiFi access points [6] or standard 802.11 b/g/n
WiFi devices [33, 35, 36]. Since the majority of the WiFi sig-
nals in buildings are using an advanced modulation scheme
– orthogonal frequency-division multiplexing (OFDM), re-
searchers recently proposed a general architecture of OFDM-
based WiFi backscatter systems (shown in Fig. 1) to leverage
productive WiFi data communication from the surrounding
WiFi devices. This architecture has demonstrated to be effec-
tive in supporting the smart offices application, in which WiFi
receivers can be connected by Ethernet backhaul to decode
the tag data [33, 35, 36].

However, these systems [33, 35, 36] require specific WiFi
receivers that can disable the phase error correction. This is
because the phase error correction can eliminate the phase off-
set created by the tag, and cause incorrect tag data decoding.
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On the other hand, the phase error correction is very important
for the WiFi demodulation because phase errors in the WiFi
systems may be dynamically changing due to the changes
of environment (e.g., temperature of the oscillators and ob-
ject movement). Therefore, WiFi protocols always arrange a
certain number of pilot subcarriers in each OFDM symbol to
track and correct phase errors. Without the phase error cor-
rection, the WiFi demodulation error will increase. Similarly,
disabling the phase error correction will also introduce the
phase error into the demodulation procedure of the codeword
translation, which will increase the tag decoding error.

To demonstrate the limitation of these OFDM-based WiFi
backscatter systems, we rebuilt these systems using USRPs
that ran the standard 802.11g stack which contains the phase
error correction. We identified the high bit error rate (BER)
which happens even when the signal to noise ratio (SNR) is
high (shown in Fig. 2). By using an energy detector (which
is a low-power component to measure the signal strength in
the air) as introduced in previous systems, the tag is synchro-
nized with the WiFi sender at the packet-level. From the result
(Fig. 2(a)), we can observe that the total BER is around 50%
even with a high SNR. Since a tag embeds the tag data by
inverting the phase of the incoming signal, the inversion point
can settle anywhere in a symbol with packet-level synchro-
nization. After conducting a thorough analysis, we found that
one portion of the inversion points (in blue) settle in cyclic
prefixes (used to prevent inter symbol interference), which
causes decoding failures because the cyclic prefix is removed
at the receiver. The other portion of the inversion points (in
gray) settle in useful symbols (used to carry real WiFi data),
however, this portion will also cause the bit error. We also
conducted symbol-level synchronization and found that the
blue part can be eliminated with a precise synchronization
(results shown in Fig. 2(b)). However, the BER is still very
high across different SNRs.

To address this issue, we conducted comprehensive studies
and designed a new OFDM backscatter system called TScatter
to achieve higher reliability (lower BER) and higher through-
put. We propose a sample-level modulation scheme, in which
the phase offsets on pilot subcarriers are very different from
that on the data subcarriers. Thus, the phase offsets on the data
subcarriers cannot be eliminated by the phase error correction.

Therefore, we can extract the tag data while the phase error
correction is present. Moreover, since the phase error correc-
tion is present, our system is able to work in more dynamic
environments and achieve much lower BER.

Our sample-level backscatter system has a lot of benefits.
On one hand, the system provides high reliability (low BER)
allowing tags to work in various scenarios, such as non-line-
of-sight or underground. On the other hand, our TScatter
can be configured in high throughput mode with Mbps level
throughput to support IoT edge computing applications such
as ubiquitous surveillance in smart buildings. Further more,
high throughput provides high energy efficiency (bit/joule).
Given the same amount of harvested energy, our backscatter
system can transmit more data than existing ambient WiFi
backscatter systems. Moreover, higher energy efficiency also
provides another benefit – given the same amount of data to be
transmitted, our backscatter system needs much less energy.
Therefore, our backscatter system can be deployed in places
that are further away from the wireless energy transferring
sources than the latest WiFi backscatter systems [33, 35, 36].

The main contributions of this paper are as follows:
•We verified existing OFDM-based WiFi backscatter systems
and redesigned the system with a novel sample-level modula-
tion technique, which can retrieve tag data from the process of
phase error correction in modern OFDM-based wireless com-
munication system. Potentially, this technique can be applied
to LTE and 5G which also use OFDM modulation schemes.
• To demodulate the high granularity modulated data, we built
demodulation models that capture the WiFi demodulation pro-
cedure and derive a minimization function to estimate the tag
data. We further enhanced our modulation and demodulation
design to support different WiFi modulation schemes (e.g.,
BPSK, QPSK, 16QAM, and 64QAM). Our evaluation results
demonstrate the effectiveness of our design.
•We built a hardware prototype of our proposed backscatter
system that contains a low power FPGA and a simple RF
switch. We also designed a tag IC for estimating the power
consumption. Our empirical results show that TScatter has
i) three to four orders of magnitude lower BER when its
throughput is similar to the latest OFDM backscatter system
MOXcatter [36]; or ii) more than 212 times higher throughput
when its BER is similar to MOXcatter.

2 Background of Existing OFDM Backscatter
To fully reveal the impact of phase error correction on the
codeword translation technique, it is necessary to first under-
stand how the technique works. Generally, current OFDM
backscatter techniques mainly consist of three parts: (i) the
excitation OFDM signal generation on the sender side; (ii)
the phase modulation on the tag side; and (iii) the codeword
decoding on the receiver side.
The Sender: To produce the OFDM symbol, the sender con-
ducts an Inverse Discrete Fourier Transform (IDFT) on its
subcarriers in the frequency domain. The output samples of
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the corresponding IDFT will form a single OFDM symbol
S(t) in the time domain, which can be represented as:

S(t) = IDFT [ Xk ] (1)
where {Xk} are the subcarriers. Multiple symbols are concate-
nated to create the final excitation OFDM signal.
The Tag: Existing OFDM-based WiFi backscatter systems
allow a tag to convey information by inverting the phase of
OFDM symbols in the time domain [33, 35, 36]. An example
is shown in Fig. 3, the backscatter tag uses zero phase offset
to transmit data zero and a phase inversion to transmit data
one. Then, the backscattered symbol B(t) is given by:

B(t) =

{
S(t)e j0 Tag data 0
S(t)e jπ Tag data 1 (2)

To improve the data rate, the tag can create additional phase
offsets to covey more information, which is shown below:

B(t) =


S(t)e j0 Tag data 00
S(t)e j π

2 Tag data 01
S(t)e jπ Tag data 10
S(t)e j 3π

2 Tag data 11

(3)

We note that to achieve above codeword translations
(Eqn. 2 and 3), the tag needs to synchronize the tag data
with the symbol. Formally, we define the point that concate-
nates two different tag data as the tag data inversion point.
As shown in Fig. 3, the tag data inversion point (from 0 to 1)
is aligned with the beginning of the OFDM symbol m.
The Receiver: A Discrete Fourier Transform (DFT) is per-
formed to convert the backscattered symbols to the frequency-
domain backscattered subcarriers. Because of the linearity of
the DFT, the operation of the phase change in the time domain
corresponds to the frequency multiplication. Therefore, the
backscattered subcarriers can be represented as:

Xke jδ = DFT [ B(t) ] (4)

where δ is the phase offset. Then, we can decode the tag data
by computing the XOR operation of backscattered subcarriers
and original subcarriers:

Xke jδ ⊕ Xk =

{
Tag data 0 δ = 0
Tag data 1 δ = π

(5)

3 Why Existing OFDM Backscatter Systems
Disable Phase Error Correction?

The underlying assumption in the codeword translation is
that backscatter systems can be free of the effect of the phase
error. However, we point out that failure to consider the effect

Symbol n Symbol m
Original Symbols

Symbol n Symbol m

Phase Offset (Tag Data)

0 0

XOR Decoder

0  (0) π (1)

,

Symbol n Symbol m

Error
Corrected Symbols

Pilot Tracking

Backscattered Symbols 0  (0) 0 (0)

Phase Error Correction

Figure 4: The phase offset π is eliminated by phase error correction,
which causes tag data 1 to be mistakenly decoded as tag data 0.

of phase error will significantly increase the BER of OFDM
backscatter systems. Therefore, in this section, we first inves-
tigate influences of the phase error correction on codeword
translation. Then, we extensively analyze all the scenarios
that will affect the BER of the codeword translation. At last,
we outline the desired properties to reduce the BER of OFDM
backscatter systems.

3.1 Tag Data is Eliminated
In real-world scenarios, due to the changes of environment
(e.g., temperature of the oscillators and object movement),
the OFDM receiver is required to perform the phase error
correction to eliminate the phase error on the signal. This
process also eliminates the phase offset created by the tag.

Specifically, the phase error correction is to use available
pilot subcarriers {Xp} to track the phase error. Since the phase
error can be simply modeled as a constant multiplicative com-
ponent across a symbol (e.g., e jφ [25]), the backscattered
subcarrier in Eqn. 4 should be Xke j(δ+φ) while the backscat-
tered pilot subcarrier should be Xpe j(δ+φ). Then, the phase
error H can be computed by comparing backscattered pilot
subcarriers and original pilot subcarriers:

H =
∑Xpe j(δ+φ)

∑Xp
= e j(δ+φ) (6)

Finally, the backscattered subcarriers can be corrected as:

Xke j(δ+φ) ·H −1 = Xk (7)
The key observation from the above expression is that the

phase error e jφ, as well as the phase offsets e jδ from the code-
word translation, are eliminated from subcarriers. In other
words, as shown in Fig. 4, if the tag transmits arbitrary data,
the XOR decoder may never output data 1. This is because
the codeword translation makes the pilot subcarriers have the
same phase offset as other subcarriers, which makes it feasi-
ble to eliminate phase offsets by the phase error correction.
As a result, since phase offsets are eliminated, tag data 1 will
be mistakenly decoded as tag data 0 (i.e., zero phase offset
in Eqn. 2). The effect of phase error correction will become
more severe when the tag increases its data rate. As shown in
Eqn. 3, the tag uses four phase offsets to double the data rate.
However, due to the phase error correction, the receiver may
not extract these phases offsets correctly. In this case, the tag
data 01, 10, 11 will be mistakenly decoded as tag data 00.

The above analysis mainly focuses on the scenario that the
inversion point is perfectly aligned with the beginning of the
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offset π representing tag data 1 can still be eliminated.

Figure 6: Experiments demonstrate that if the inversion point is
within the cyclic prefix zone, the decoded tag data are all zeros
regardless whatever data is sent by the backscatter tag.

symbol. In following sections, we will show that even when
the inversion point is not perfectly aligned with the beginning
of the symbol (i.e., the inversion point is in the cyclic prefix
or the inversion point is in the useful symbol), the receiver
may still face high bit error rate.

3.2 Inversion Point in Cyclic Prefix
The XOR decoder cannot extract the tag data correctly when
the tag data inversion point is located in the cyclic prefix (CP).
Because the OFDM receiver will first remove CP to prevent
intersymbol interference introduced by the multipath effect,
the inversion point in the CP is removed as well. As shown
in Fig. 5, after the CP removal, although the useful symbol
Sm still has the phase offset π, the phase error correction will
eliminate the phase offset, which causes the decoding error.

We conduct an experiment to show the effect of the inver-
sion point in the cyclic prefix. In this experiment, an 802.11g
OFDM-based WiFi physical layer is implemented on the
USRP B210 [1]. In order to precisely control the synchro-
nization between the OFDM symbol and the tag data, the tag
is connected to the USRP using two wires: one for common
ground and another for signal. When the USRP transmits the
WiFi signal to the air, it will also transmit the starting signal
through the wire to tell the tag to embed tag data in the WiFi
signal. By modifying the delay after the starting signal, we
can synchronize the tag data inversion point with the different
timings in the OFDM symbol duration (4µs). The original tag
data is an arbitrary data stream. However, as shown in Fig. 6,
when the inversion points are within the cyclic prefix zone
(i.e., the inversion point delay is less than 0.7 µs), the decoded
tag data are all zeros, because the phase offsets of the tag
data 1 are eliminated. When the inversion points are within
the useful symbol zone, the decoded tag data is not all zeros.
However, as we will discuss in Section 3.3, it may still have a
high BER. When the inversion point delay is between 0.7 µs

CP Sn

CP Sn

0
Tag Data

Sm

1

TX

Tag

RX

0Modulation

𝒙, 𝒙Error
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CP Sm

Sn Sm

Sn Sm

1
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Point 𝜹𝑘 + π 

𝜹𝑘 𝜹𝑘Decoder
XOROriginal Symbols

Phase Offset (Tag Data)
π (1)π (1)

Figure 7: When the inversion point is located in the useful symbol,
the decoding result is the same and thus causes the decoding error.

and 0.8 µs, although it is theoretically within the cyclic prefix
zone, the decoded tag data is not all zeros. This is because of
the multipath effect in the real-world, so the inversion point
may be moved to the useful symbol zone.

3.3 Inversion Point in Useful Symbol
In this section, we analyze the scenario that the inversion
point is located in the useful symbol. As shown in Fig. 7,
since the phase offsets introduced in the symbols of Sn and
Sm are opposite, the subcarriers of Sn and Sm have the opposite
phase offsets δk and δk +π after the CP removal, where k is
the subcarrier index. Obviously, the subcarriers of Sm have
a common phase offset π, which can be eliminated by the
phase error correction. Therefore, the final phase offsets on Sn
and Sm are almost the same, which causes the same decoding
result and corresponding errors. We note that δk on each
subcarrier is different and determined by the inversion point
position. Hence, the decoding result x might be 1 or 0.

3.4 Desired Properties and Our Solution
From the analysis in Sec. 3.2 and 3.3, the OFDM backscat-
ter should satisfy the following two properties to avoid the
decoding error caused by the phase error correction:

1. The tag data inversion point should fall into the useful
symbol.

2. The tag data should be represented by phase offsets that
cannot be eliminated.

Since the backscatter tag is a low power device, we cannot
use a high power circuit to conduct precise synchronization
between the inversion point and the useful symbol. To over-
come this challenge, we explore a high granularity modulation
scheme, sample-level modulation. By doing this, the phase
offsets on the pilot subcarriers are different from that on the
data subcarriers. Thus, the phase offsets on the data subcarri-
ers cannot be eliminated by the phase error correction.

To satisfy the second property, we utilize orthogonal coding
technique for reliable data transfer. Specifically, to reduce
the bit error rate and achieve high reliability, we propose
orthogonal pseudo-random noise (PN) sequences to represent
the tag data. With the help of the sample-level modulation,
each data bit in the PN sequence can represent a phase offset.
As a result, the sequences of phase offsets are also orthogonal
and the tag data can avoid being eliminated.
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By satisfying the two properties, compared to prior
works [33, 35, 36], our backscatter system can take advan-
tage of the phase error correction on the demodulation side
and is able to achieve much lower BER. On the modulation
side, since multiple tag data bits can be transmitted within one
symbol by using our sample-level modulation, more robust
coding methods (such as orthogonal code or convolutional
code) than codeword translation can be utilized to further
improve the BER.

4 Sample-Level Modulation

Our sample-level modulation has two design goals: i) embed-
ding the tag data in the OFDM signal at the sample-level, and
ii) minimizing the interference from the original band channel.
In order to achieve the first design goal, we propose to use the
tag to change the phase of any sample in the OFDM symbol.
To achieve the second design goal, the tag needs to shift the
center frequency of the backscattered samples to the adja-
cent band channel. Fig. 8 shows how TScatter leverages the
switching action to change the phase of the sample. For the
sake of simplicity, we first assume that the on and off edges
of switching actions are aligned with the samples. We discuss
the situation that the switching actions and the samples are
not edge-aligned in Sec. 6.1.

A fundamental basis for our sample-level modulation is
that the OFDM symbol can be divided into the sample-level,
whose duration is much shorter than the symbol-level. When
802.11g OFDM generates a symbol in the transmitter, the
IDFT converts the 64 subcarriers into a 64-sample sequence.
The samples can be represented by rewriting Eqn. 1 with the
definition of IDFT:

Sn = IDFT [ Xk ] =
1
64

63

∑
k=0

Xke j2πkn/64 (8)

Where, n ∈ {0, ...,63}, Sn denotes the n′th sample and Xk de-
notes the k′th subcarrier. To prevent inter-symbol interference,
the last 16 samples [S48, . . . ,S63] are replicated in front of the
64 samples. Thus, a symbol consists of a total of 80 samples.

When the tag toggles its RF switch to backscatter the
OFDM signals, it essentially uses square waves to modu-
late the phases of the samples. We use θn to represent the
initial phase of the n′th square wave Wn. Then, Wn can be
represented using a Fourier series as follows [9]:

Wn( fs,θn) = 0.5+
2
π

∞

∑
m=1,3,5,...

1
m

cos(2πm fst +θn) (9)

Original

Tag Data

Backscatte-
red Symbol

Cyclic Prefix Useful Symbol{
<latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit>

{
<latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit>
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<latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit>

{
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Figure 9: In (a), the tag data embedded in the CP are lost due to
the CP removal. In (b), the tag embeds 40 bits of data twice in the
symbol. A copy of data can survive after the CP removal.

Where, fs is the toggling frequency of the switch.
Since each symbol is 4 µs long and contains 80 samples,

when the tag toggles its switch at fs = 20MHz, the switching
cycle (0.05 µs = 1

20MHz ) will be equal to the sample dura-
tion (0.05 µs = 4 µs

80 ). Therefore, the switching action can
appropriately modulate the phase of the sample. The n′th
backscattered sample can be calculated by multiplying the
n′th sample and the 1st harmonic of the n′th square wave:

SnW m=1
n =

2
π

Sncos(2π fst +θn)

=
1
π
{Sne jθne j2π fst +Sne− jθne− j2π fst}

(10)

Summary: From Eqn. 10, one can observe that our two
design goals are achieved. First, there are two backscattered
samples Sne jθn and Sne− jθn . They are formed by changing the
phase of the original sample Sn by θn and −θn, respectively.
If we change θn according to the tag data, the tag data is
embedded into the sample. For example, if the tag wants to
use the 4-phase scheme (0, π/2, π and 3π/2) to transmit the
tag data, we can define the tag data ‘00’ as θn = 0, ‘01’ as
θn = π/2, ‘10’ as θn = π and ‘11’ as θn = 3π/2. Second,
the two backscattered samples are multiplied by e j2π fst and
e− j2π fst , respectively, which means the backscattered samples
are shifted by fs =±20MHz into the adjacent band channels
and thus isolated from the original band channel. Therefore, a
OFDM receiver can obtain the backscattered samples without
the interference from the original band channel [34]. For
these two sidebands, one is desired and the other is unwanted
and wasted. The unwanted sideband can be easily eliminated
by making the signal have a negative copy on the unwanted
sideband as introduced in HitchHike [32].

5 Tag Coding Scheme

In this section, we discuss the coding methods on the tag,
which aim to avoid the tag data inversion point being re-
moved by the cyclic prefix removal and the phase offset being
eliminated by the phase error correction, and make TScatter
achieve highly reliable backscatter communication.

5.1 Surviving from Cyclic Prefix
Since the receiver removes the cyclic prefix (i.e., the first 16
samples of each symbol) directly prior to the procedures in
the OFDM module, a portion of the tag data may be removed
as well because the tag may embed this data in the cyclic
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Figure 10: TScatter uses PN sequences to represent the tag data.

prefix. Fig. 9(a) shows an example that the tag data d1 to d16
are lost due to the CP removal.

A naive solution is to utilize an envelope detector to detect
the start of the cyclic prefix and embed the tag data in the
useful symbol. However, it is unlikely to obtain an accurate
CP detection using a packet-level detection on the envelope
detector. Instead, TScatter simply embeds 40 bits of tag data
twice on 80 samples in a symbol (shown in Fig. 9(b)). By
doing this, there still exits a 40-sample sequence which stores
a copy of 40 bits of tag data after the CP removal. Hence, the
tag does not have to rely on the synchronization accuracy of
the envelope detector to avoid the cyclic prefix. This approach
can be easily implemented on the tag without extra energy
cost or computing resources.

At the receiver side, to decode the 40 bits of tag data in
each symbol, we need to know which sample in the symbol
is the starting sample of the 40-sample sequence. To find the
starting sample, we designed a backscatter header (shown in
Appendix B) with a duration of two symbols. The backscat-
ter header is predefined as a flag sequence. Even though a
portion of the flag sequence is removed due to the CP re-
moval, there still exits a backscattered symbol whose samples
are modulated only by the flag sequence. We add a sliding-
window-based algorithm to the decoding algorithm (detailed
in Sec. 6.3) to search which part of the flag sequence is the
best matching decoding result of this symbol . Then we can
obtain the position of the starting sample. When the decoding
result matches the two-symbol long predefined backscatter
trailer, it signifies the end of the tag data.

5.2 Coding Scheme for Low BER
To avoid the phase offsets being eliminated, TScatter uses
predefined nearly orthogonal pseudo-random noise (PN) se-
quences to represent the tag data (Appendix A lists the PN
sequence table). As shown in Fig. 10, the tag data is divided
into multiple groups. Each group will be spread to a special
40-bit long PN sequence. Then each bit in the PN sequence
is transmitted by using the sample-level modulation. With
the help of the sample-level modulation, each bit in the PN
sequence can represent a phase offset. As a result, the se-
quences of phase offsets are orthogonal to each other and the
tag data can avoid being eliminated. As described in Sec. 5.1,
to avoid being removed by the CP removal, each sequence
is transmitted twice. To reduce the coding complexity on the
tag, we implant a lookup table of the sequences to map the

tag data to the corresponding PN sequence.
Using orthogonal PN sequences to represent the tag data

has three benefits. First, since the sequences are orthogonal
to each other, the effective signal-to-noise ratio (SNR) of
backscattered signals is improved at the receiver side. Second,
since the sequences are predefined, the receiver can solve the
decoding algorithm by directly finding which sequence is the
best-match rather than estimating the sequence, which lowers
the computational complexity (detailed in Sec. 6.3). Third,
TScatter can be used in lower order modulation schemes of
OFDM, such as BPSK or QPSK.

5.3 Coding Scheme for High Throughput
The coding scheme for high throughput is a combination
of convolutional code and predefined data when the OFDM
sender utilizes higher order modulation schemes, such as
64QAM or 16QAM. The convolutional code is a rate 2/3
feedforward encoder. The predefined data is to increase the
estimation accuracy by constricting the estimation result to a
smaller range of values during the decoding process (detailed
in Sec. 6.3). For 64QAM, in the 40-sample sequence, we use
32 samples to embed the convolutional coded tag data. The
remaining 8 samples are modulated by the predefined data.
For 16QAM, we use 18 samples to embed the convolutional
coded tag data and 22 samples to embed the predefined data.

6 Decoding of Tag Data
One benefit of our sample-level modulation is that it does not
require an accurate synchronization with the OFDM sender
because the phase offset caused by a lack of accurate synchro-
nization can be corrected by the phase error correction. In this
section, we first analyze the phase offset, then describe the
OFDM demodulation model and mathematically demonstrate
how the phase offset is corrected by the OFDM receiver. In
the end, we describe how to decode the tag data.

6.1 Phase Offset Analysis
The phase offset can be characterized by three factors:
• Envelope Detection Delay. The tag leverages an envelope
detector to identify the WiFi transmission. However, due to
an uncertain delayed response, the detector cannot accurately
identify when the sample starts. Then it always occurs that
the switching actions and the samples are not edge-aligned.
We can consider a time delay τ that exists between them and
causes a phase offset β = 2π fsτ.
• Wireless Channel. The wireless channel introduces a phase
offset of φ to the samples.
• Frequency Offset. The frequency offset causes two phenom-
enas: carrier frequency offset (CFO) and sampling frequency
offset (SFO). In Appendix B and C , we demonstrate the
CFO and SFO can be estimated and corrected.

Thus, a backscattered sample can be expressed as follows:

R n = e j(β+φ)e jθn Sn (11)
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from the backscattered samples to the corrected subcarriers.

In Sec. 6.2.2, we demonstrate that the phase offset caused
by the envelope detection delay and wireless channel can be
eliminated and do not affect the values of data subcarriers.

6.2 Demodulation Model

The objective of TScatter’s demodulation is to decode the
tag data on OFDM subcarriers. To achieve this objective,
we need to understand how the OFDM receiver converts the
backscattered samples to the subcarriers. To do so, we divide
the workflow of an 802.11g receiver into 3 parts (shown in
Fig. 11), and build models for these parts.

6.2.1 Modeling OFDM

The 80 backscattered samples of each symbol first go through
the CP removal module, where the first 16 samples are re-
moved. Then the remaining 64 samples are applied to the
DFT to generate the complex values of OFDM subcarriers.
The subcarrier’s value can be derived as:

Yk = DFT [ R n ] = e j(β+φ)
63

∑
n=0

e jθn Sne− j2πnk/64 (12)

Where, k ∈ {0, ...,63} and Yk is the complex value of the
k′th OFDM subcarrier. Eqn. 12 shows that the tag data is
transfered from the backscattered samples in time domain to
the subcarriers in frequency domain by OFDM.

6.2.2 Modeling Phase Error Correction

While the tag data is transfered into the subcarriers, the phase
offset β+φ is also transfered into the subcarriers (shown in
Eqn. 12), which may increase the tag data decoding error. We
had an important observation that the OFDM receiver can
leverage pilot subcarriers to eliminate the phase offset. In
this section, we mathematically demonstrate the procedure of
phase error correction.

The phase error estimation is performed by calculating
the rotating phase of the four pilot subcarriers. In the sender,
the four pilot subcarriers are {X11,X25,X39,X53} and their
initial values are {1,1,1,−1} [2]. In the receiver, we use
{Y11,Y25,Y39,Y53} (shown in in Eqn. 12) to represent the four
pilot subcarriers. The rotating phase of the pilot subcarriers
can be estimated as:

Ψ = ∠(Y11+Y25+Y39−Y53)−∠(X11+X25+X39−X53)

= β+φ+∠Γ (13)

Where,
Γ =

63

∑
n=0

e jθn Sn(∑
k=11,25,39

e− j2πnk/64−e− j2πn 53
64 ) (14)

From Eqn. 13 and 14, we observe that a new phase offset
∠Γ is introduced which is caused by the backscatter modu-
lation on the pilot subcarriers. Eqn. 13 also illustrates that
although the backscatter modulation change the pilot subcar-
riers, the phase offset β+φ is isolated from the tag data.

Since 48 out of the 64 subcarriers are used to carry the
payload data (k ∈ {6, ...,58} and 6∈ {11,25,32,39,53}), the
OFDM receiver multiplies 48 data subcarriers by e− jΨ to
correct the phase offset:

Y k = e− jΨ Yk (15)

= e− j∠Γ XXXXe− j(β+φ)XXXe j(β+φ)
63

∑
n=0

e jθn Sne− j2πnk/64

Where,
e− j∠Γ =

Re{Γ}− j ∗ Im{Γ}√
Re{Γ}2 + Im{Γ}2

(16)

Eqn. 15 demonstrates that the phase offset β+φ is elimi-
nated and does not affect the tag data decoding. On the other
hand, Eqn. 15 also demonstrates that the values of data sub-
carriers were affected twice: The first one happens during the
backscatter modulation stage, when the values of the data sub-
carriers were changed according to the tag data; the second
one happens during the phase error correction stage, when
the values of data subcarriers were corrected by the phase
offset calculated from pilot subcarriers. Although Γ exists in
Eqn. 15, Eqn. 14 shows that the only unknown value in Γ is
the tag data. Therefore, we can leverage Eqn. 15 to decode
the tag data without being affected by the phase offset β+φ.

6.3 Decoding Tag Data
Eqn. 15 shows that the phase change on each subcarrier is
different and determined by all 64 backscattered samples. If
the tag data on any backscattered sample change, the phase
change on each subcarrier changes. Therefore, we must use
all subcarriers’ information to decode each tag data.

We observe that the inputs of Eqn. 15 are the tag data
θn and the original OFDM sample Sn, while the outputs of
Eqn. 15 are the corrected data subcarrier Y k. Hence, if we
obtain the values of Sn and Y k, we can decode θn.

The values of original OFDM sample Sn can be calculated
by using Eqn. 8. However, the challenge is that we cannot
obtain the real value of Y k. Normally, OFDM backscatter uses
the coded data linear transform technique in [33, 35, 36] to
track the phase change on the subcarriers. If we follow the
same technique to get the subcarrier values, we find that the
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subcarrier values deviate from Y k. This is because the OFDM
receiver maps Y k to the nearest QAM points (we assume

−→
Y k).

Since
−→
Y k are the nearest QAM points of Y k, we can esti-

mate the tag data θn by calculating the minimum Euclidean
distance between the corrected data subcarrier values Y k and
their mapped points

−→
Y k: θ̃0

...
θ̃63

= arg min
[θ0,...,θ63]

58

∑
k=6

k 6=11,25,32,39,53

||−→Y k−Y k||2 (17)

= arg min
[θ0,...,θ63]

58

∑
k=6

k 6=11,25,32,39,53

||−→Y k− e− j∠Γ
63

∑
n=0

e jθn Sne− j2πnk/64||2

Where, k are the indexes of the data subcarriers,
−→
Y k are pro-

vided by the receiver and Γ can be represented using Eqn. 14.
The only unknown value in Eqn. 17 is the tag data θn. There-
fore, we can leverage Eqn. 17 to decode the tag data.

Since each tag data θn has limited values (i.e., either 0
or π), Eqn. 17 is a constrained linear least-squares problem.
We note that the left side of Eqn. 17 is 64 unknown values
(θ̃0, . . . , θ̃63), while we only have 48 data subcarrier values

−→
Y k

(k ∈ {6, ...,58} and 6∈ {11,25,32,39,53}) on the right side.
That means Eqn. 17 is not full row-rank. Mathematically,
to determine a unique solution using Eqn. 17, we need to
minimize the number of unknown values on left side to 48.
A simple way to do this is that the number of unknown tag
data in each symbol is no more than 48 and the remaining tag
data are predefined. For example, we predefine e jθ48,...,63 =
e j0 = 1 and calculate the unknown data e jθ0,...,47 . Therefore,
the left side (the unknown tag data) and the right side (the
data subcarrier values) have the same size, and Eqn. 17 is now
full row-rank. In fact, Eqn. 17 illustrates that the maximum
number of samples used to store the unknown tag data in each
symbol is 48. This is because we rely on the data subcarriers’
values to calculate the unknown tag data and each symbol
provides only 48 data subcarriers. The coding scheme in
Sec. 5.1 requires that the number of the tag data embedded in
each symbol is no more than 40, which is also less than 48.

Eqn. 17 is solved by using the matrix decomposition, whose
computational complexity is O(n3) [3], where n is the number
of the unknown tag data. When n gets to the maximum value
(i.e., 48), there are n3 = 110592 floating-point operations. A
low power edge computing platform Jetson Nano [21] (only
cost $99) implemented on an ARM A57 processor with 472G
floating-point operations per second, can solve the problem in
110592
472∗109 = 0.25µs, which is less than a symbol duration 4µs.

7 Lite Version of TScatter

In prior works [33, 35, 36], the codeword translation works
only when the phase error correction is disabled. In this sec-
tion, we demonstrate that TScatter can also use the codeword

translation at the symbol level without disabling the phase
error correction and introduce the lite version of TScatter.

Prior works use the symbol-level modulation (i.e., phase
change once per symbol) to realize the codeword translation.
Based on our observation from Sec. 3.3, when the inversion
point settles in the useful symbol, the corrected subcarriers
are different from the original ones. Since the symbol-level
modulation is essentially a special case of the sample-level
modulation (i.e., multiple phase changes per symbol) by set-
ting the number of phase changes as 1 within one symbol, it is
possible to use the codeword translation to achieve the basic
idea of TScatter without disabling the phase error correction.
We call this approach Lite TScatter because its design princi-
ple is derived from our sample-level modulation by setting all
the tag data values inside a symbol to be all-one or all-zero.

Specifically, the whole procedure of Lite TScatter is as
follows: before the tag transmits the data, it first transmits a
long all-one (or all- zero) sequence to reflect the preamble
and several symbols. Since there is no phase change in the
long sequence, the corrected subcarriers are the same as the
original ones. Then, the tag transmits the first data. The first
data is predefined, and its value should be different from that
of the long sequence. For example, if the long sequence is all-
one, the first data should be defined as zero. Since there is a
phase change between the long sequence and the first data, we
can find the first symbol which is different from the original
one. Next, the tag can transmit arbitrary data. If the corrected
subcarriers are the same as the original ones, it implies there
is no phase change and the tag data should be equal to the last
one. If the corrected subcarriers are different from the original
ones, it implies there is a phase change and the data should
be different from the last one. Therefore, we can decode the
tag data one by one. By modifying the codeword translation
decoder in Eqn. 5, the decoding function of Lite TScatter is
as follows:

Tag data dn =

 dn−1 Xke jδk ⊕ Xk = 0
1−dn−1 Xke jδk ⊕ Xk 6= 0
Predefined n = 1

(18)

Eqn. 18 provides a lite version of TScatter, which enables
codeword translation work with WiFi protocols that enable the
phase error corrections. However, Lite TScatter’s throughput
is relatively low because the tag data is modulated at the
symbol level instead of the sample level.

8 Evaluation

In this section, we present the implementation of TScatter and
show the experimental results of our extensive evaluation.

8.1 Implementation
TScatter (shown in Fig. 12) is implemented on an open-source
backscatter platform [29], which mainly consists of two com-
ponents: a Microsemi AGLN250 low power FPGA and an
ADG902 RF reflective switch. To compare different levels of
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coding and modulation schemes, we implemented both the
coding schemes of binary and nibble (i.e., 4-bit) (shown in
Appendix A) and the modulation schemes of 2-phase and
4-phase (introduced in Sec. 4) in the FPGA.

To conduct fair comparisons, the distance between the WiFi
transmitter and the backscatter tag is 1 meter (i.e., 3.28 feet),
which is the same as the one in FreeRider [33]. The WiFi
transmitter is implemented on a ThinkPad T420s laptop which
transmits the IEEE 802.11g compatible signals. The WiFi
transmitter utilizes 64QAM as its modulation scheme by de-
fault. In Sec. 8.6, we evaluate TScatter’s performance with
different WiFi modulation schemes.

To extensively evaluate TScatter’s performance, the ex-
periments were conducted in three different scenarios: Li-
brary (Fig. 13), Hallway (Fig. 14), and Stadium. The WiFi
receivers are implemented using DELL XPS 9550 laptop and
USRP-B210 with 802.11g PHY layer. WiFi receiver 1 is used
to obtain the original WiFi information. WiFi receiver 2 lis-
tens for the backscattered WiFi signal. To assess the system
performance, we use the following two metrics:
Throughput: The throughput is defined as correctly demod-
ulated data bits at PHY layer.
Bit error rate (BER): The BER is defined as the number of
bit errors divided by the total number of transmitted bits.

8.2 Comparing with State-of-the-art
We first compare the performance of TScatter with the re-
ported best results produced by recent OFDM-based WiFi
backscatter systems (i.e., X-Tandem [35], MOXcatter [36]
and FreeRider [33]). Fig. 15 shows BER results when TScat-
ter and state-of-the-art solutions have similar level of through-
put. As we can observe from this figure, the BERs of TScat-
ter are much lower than that of the state-of-the-art solu-
tions. Fig. 16(a) shows the comparison of throughput. We
can observe that, with 4-phase modulation scheme, TScatter
achieves 10.61 Mbps. The main reason TScatter achieves or-
ders of magnitude better performance is that it takes advantage
of the phase error correction. State-of-the-art solutions require
specific commodity NICs that can disable the phase error cor-
rection. However, the phase error correction is very important
for the OFDM demodulation because the phase error may
be dynamically changing due to the changes of environment
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(e.g., temperature of the oscillators and object movement).
Without the phase error correction, the OFDM demodulation
error will increase. Similarly, disabling phase error correction
will also introduce phase error into the decoding procedure
of the codeword translation, which will increase the tag data
decoding error. In contrast, TScatter takes the phase error cor-
rection into consideration. On the demodulation side, TScatter
builds the demodulation model from the backscattered sam-
ples to the corrected subcarriers that can not only correct the
phase error due to the dynamic environments but also decode
the tag data by estimating the minimal Euclidean distance
rather than by using XOR. On the modulation side, TScatter
leverages the sample-level modulation to apply more robust
coding methods to further improve the BER or throughput.
As a result, the BERs of TScatter are around 102, 103 and 104

times as low as that of FreeRider, MOXcatter and X-Tandem,
respectively. The throughputs of TScatter are 53,050, 212, and
176 times higher than X-Tandem, MOXcatter, and FreeRider,
respectively.

8.3 Library
To understand how TScatter works in a multipath rich envi-
ronment, we conducted the experiments in a library (shown
in Fig. 13). Since there are a lot of shelves, tables, and chairs
in the library, these obstacles not only block the direct line-of-
sight transmission path but create more multipath effects as
well. In this setting, the backscatter tag and WiFi transmitter
are deployed on the shelves. We move the WiFi receiver from
shelves to tables to vary the multipath environment.

Fig. 17 and Fig. 18 show the throughput and BER over
different communication distances, respectively. As we can
observe from these figures, the throughput of TScatter is sim-
ilar over the change of distances while the BER increases
slowly. When the communication distance reaches 120 feet,
the average BERs of TScatter are still around 10−3 and 10−4

for Nibble and Binary, respectively. Since the multipath ef-
fect will become more severe as the distance increases in the
library scenario, we can conclude that TScatter is resistant to
the wireless channel interference. Because the demodulation
process (described in Sec. 6.1) takes the phase error intro-
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duced by the wireless channel into consideration, TScatter
shows great advantages in this scenario.

8.4 Hallway
In this section, we evaluate TScatter in the hallway scenario.
As shown in Fig. 14, the hallway is on the second floor of
an academic building. This scenario is selected to reflect
TScatter’s real-world performance with less environmental
impact because the hallway is relatively spacious. In this
scenario, the backscatter tag and the WiFi receiver were kept
in line-of-sight. The distance between the tag and the receiver
is changing from one foot to 120 feet.

Fig. 19 shows the throughput of our TScatter system us-
ing different modulation schemes (i.e., 2-phase and 4-phase).
Overall, TScatter can achieve a maximum of 10.61 Mbps and
the throughput is stable over different communication dis-
tances because it has a high granularity modulation scheme.
Fig. 20 shows the BER under different communication dis-
tances. We can observe that the BER for the 2-phase modula-
tion scheme is very low. The average BER is lower than 1%
when the distance increases to 70 feet. Even when the distance
increases to 120 feet, the average BER is still around 1%. This
is because our demodulation model captures the impact of the
phase error correction on the received subcarriers.

8.5 Outdoor Stadium
To understand the performance of TScatter with different
modes (i.e., low BER, high throughput, and lite version) in
the same scenario, we conduct experiments in an outdoor
stadium. The distance between the tag and the receiver is
changing from one foot to 160 feet.

Fig. 21 shows the throughput over different communication
distances. The high throughput mode (2-phase) outperforms
the low BER mode (binary) and Lite TScatter because it has
a high granularity modulation scheme. When the receiver
is 160 feet away from the tag, the throughput of binary, 2-
phase, and Lite TScatter are around 62.5 Kbps, 5.26 Mbps and
62.3 Kbps, respectively. Fig. 22 shows the BERs at different
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distances. The BER of low BER mode and Lite TScatter is
more stable than that of high throughput mode despite the fact
that the signal strength degrades across distance. Specifically,
the BER of low BER mode is much less than that of the other
two modes. Therefore, the low BER mode has the significant
advantage on providing reliable backscatter communications.
When the distance reaches 160 feet, the average BERs of
binary, 2-phase, and Lite TScatter are still around 10−5, 10−2

and 10−3, respectively.

8.6 Impact of OFDM Modulation Scheme
In Sec. 5.2 and 5.3, we introduced how TScatter deals with
lower and higher level WiFi OFDM modulation schemes re-
spectively. In this section, we compare sample-level modu-
lation TScatter’s performance (in terms of throughput and
BER with low BER or high throughput coding scheme) with
Lite TScatter (which uses symbol level modulation) under dif-
ferent WiFi OFDM modulation schemes (i.e., BPSK, QPSK,
16QAM, and 64QAM). Fig. 23 shows the throughput result.
We observe that the throughput of Lite TScatter is almost the
same under different OFDM modulation schemes because
one bit of data is embedded in per symbol no matter what the
OFDM modulation scheme is. For TScatter, the throughput
increases while the OFDM modulation scheme changes from
the lowest level (i.e., BPSK) to the highest level (i.e., 64QAM).
At 64QAM, the throughput reaches 5.33 Mbps. The reason
of this growing trend is that higher level OFDM modulation
schemes can provide higher resolution to decode the tag data,
which can accommodate more tag data per symbol.

Fig. 24 shows the result of BER versus OFDM modulation
scheme. We can observe that TScatter’s BER is lower than
Lite TScatter’s across all kinds of modulation schemes even
when the OFDM transmitter utilizes BPSK. This is because
the demodulation model captures the impact of the phase error
correction on the received subcarriers. Moreover, TScatter
leverages the sample-level modulation to apply more robust
coding methods to further improve the BER.
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8.7 Impact of Tag Coding Scheme
In Sec. 5.3, we have described TScatter’s coding schemes for
high throughput. Fig. 25 and 26 show TScatter’s performance
with different code rates. “W/o" denotes the results without
using coding scheme. “Pre" denotes the results that TScatter
only uses predefined data without coding. “3/4", “2/3", and
“1/2" denote the results that TScatter uses both predefined
data and coding with a code rate at 3/4, 2/3, and 1/2, respec-
tively. Since the experiments show similar trends, we show
the results with the 2-phase modulation scheme in the hallway
scenario. The WiFi transmitter utilizes 64QAM.

When no coding scheme is utilized, the whole 40-sample
sequence is used to store the unknown tag data (described
in Sec. 5.1). Consequently, TScatter has the highest through-
put (shown in Fig. 25) as well as the highest BER (shown
in Fig. 26) among all coding schemes. The reason of the
high BER is that the corrected data subcarrier values devi-
ate from their mapping points, which cause estimation errors
in Eqn. 17. To reduce the estimation errors, we replace 8
unknown tag data with the predefined data to constrict the
estimation result to a smaller range of values. Fig. 26 shows
that the BER decreases to below 1%. To achieve a more re-
liable communication, we combine the predefined data and
the convolutional code to generate the tag data. When the
code rate is up to 2/3, the BER is lower than 0.1% and the
throughput is as high as 5.33 Mbps, which provides a reliable
high throughput communication.

8.8 Energy Consumption Analysis
We designed an integrated circuit for TScatter’s digital pro-
cessing module and conducted a simulation using Cadence
Spectre for TSMC 65nm process. In the power consumption
simulation, multiple factors are considered including Vdd
(1.6V ∼ 2V), temperature (25◦C), system clock frequency,
and power mode.

The IC design consists of four modules: clock, energy de-
tector, control module and RF transistor. TScatter first detects
the WiFi packet by using the energy detector. When the WiFi
packet is detected, the clock synthesizes a 20MHz frequency
for the control module. Then the control module reads the
data from the sensor, latches and codes the sensor data, and
toggles the RF transistor according to the coded data. Since
the power consumption of the energy detector and the RF tran-
sistor is very low (around 0.3µW ), we mainly introduce the
implementation details of the clock and the control module:

(a) Front (b) Back
Figure 27: EMG connected TScatter tag

Clock. The bottleneck of the power consumption of the TScat-
ter system is the clock. We use a ring oscillator to synthesize a
20MHz frequency. The frequency accuracy is sensitive to tem-
perature change. We add a thermistor to design a temperature
compensation circuit to compensate for the frequency drift.
Moreover, we add a trimming pad to correct the frequency.
The simulation result shows that the power consumption of
the ring oscillator is 23.7µW .
Control module. The control module contains a cache cir-
cuit to store the sensor data, a code circuit to code the sensor
data, and an inverter to toggle the RF transistor as a fan-out.
The cache is constructed by the basic cache cell. The cache
cell is composed of one D latch and one transmission gate.
Through connecting the output of D latch to the input of the
transmission gate, a cache cell with simultaneous read and
write capability is created. The reason we use the latches
rather than flash to store the sensor data is that the power con-
sumption of latches is very low even when they are working
at 20MHz. The code circuit contains a lookup table for low
BER mode, which is composed of 32 PN sequences (shown in
Appendix B), and a convolutional encoder for high throughput
mode, which is composed of 7 latches and 3 XOR gates. The
lookup table is also constructed by basic logic gates. The in-
verter is minimum sized. The simulation result shows that the
power consumption of the control module is around 6.2µW .

From the above analysis, the overall power consumption of
TScatter is 30.2µW, which is similar to that of other OFDM
backscatter systems. This is mainly because the most power-
hungry part of the backscatter tag is the clock. No matter
the sample-level modulation or the symbol-level modulation,
they all need to shift the incoming WiFi signal to the adjacent
band channel to minimize the interference from the original
band channel, which can be done by toggling the RF switch
at a specific frequency. The minimum value of the frequency
equals a WiFi channel bandwidth, i.e., 20MHz. Consequently,
to toggle the RF switch at 20MHz, the logic control modules
of the symbol-level modulation and the sample-level modula-
tion are all operating at 20MHz. Although TScatter performs
the convolutional coding in high throughput mode, the en-
coder which is constructed by 7 D latches and 3 XOR gates
has a very low power consumption even when it works at
20MHz. Therefore, the energy consumptions of TScatter and
other OFDM backscatter systems are similar.

9 Application
In this section, we show that biometric measurements (such
as EMG and EKG) can be wirelessly transmitted in real-
time by using TScatter. Fig. 27(a) (front side) and Fig. 27(b)
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Figure 28: (a) shows the EMG data while the system is attached to
arm muscle and the participate is doing dumbbell lifting. Each peak
corresponds to a muscle contraction. (b) shows the average update
rate when the system is connected with 1-channel EMG (sleeping
monitoring), 2-channel EMG (fitness monitoring), and 12-channel
EKG.

(back side) show a prototype that an EMG sensor that is con-
nected to the TScatter tag. By using foam electrodes, the tag
and sensor can be attached to a muscle to record the electri-
cal activity produced by the muscle. Fig. 28(a) shows one
set of data while the system is monitoring arm activities. In
this figure, each peak corresponds to a muscle contraction.
Fig. 28(b) shows the average update rate under different con-
figurations: i) EMG-1, 1-channel EMG is attached to a leg
muscle for monitoring sleep abnormalities [5]; ii) EMG-2,
2-channel EMG is attached to upper and lower arm for fitness
monitoring; and iii) EKG-12 , 12-channel EKG is generated
to test how TScatter works with multi-channel EKG. With
a typical sampling rate at 1 KHz and 24-bit resolution, the
required bit rate for 12-channel EKG is 288 Kbps. With dif-
ferent modulation schemes, our TScatter can provide around
5 ∼10 Mbps throughput at the physical layer. Even after
deducting the performance loss due to the wireless signal
attenuation caused by the human body and upper layer over-
heads (e.g., ACKs), TScatter’s throughput should be sufficient
for 12-channel EKG measurements.

10 Related Work
Recently, backscatter has played an attractive role in the pas-
sive communication field because of its significant perfor-
mance on power consumption. Researchers have proposed
various kinds of novel techniques [8, 10, 17–20, 26, 30, 31] to
support various applications. For example, ReMix [26] en-
ables backscattering of deep tissue devices by overcoming
interference from the surface of a human body and localizing
the in-body backscatter device. Living IoT [8] enables smart
farming applications by placing backscatter devices on live
insects. NICscatter [31] introduces a backscatter communica-
tion method on commercial Wi-Fi NICs that enables malware
to covertly convey information. PAB [10] enables long-term
ocean applications by backscattering acoustic signals in un-
derwater environments.

To leverage existing infrastructures, such as TV band [16,
22], FM radio [27], LoRa [7, 23, 24], Bluetooth [9], Zig-
Bee [13], and WiFi [6, 11, 12, 32–37], researchers have also
explored various solutions. Specifically, in the WiFi backscat-
ter field, Passive WiFi [12] demonstrates for the first time that
the backscatter can generate 802.11b transmissions. Interscat-

ter [9] shows that Bluetooth transmissions can be used to cre-
ate 802.11b transmissions using backscatter communication.
HitchHike [32] allows a tag to backscatter existing 802.11b
transmissions from a commodity WiFi transmitter. To further
support more complex WiFi structures, such as OFDM, WiFi
Backscatter [11] conveys information by modulating the CSI
and RSSI measurements at the OFDM receivers. BackFi [6]
uses customized full-duplex devices to clean out the effect
during backscattering OFDM signals. FS-Backscatter [34]
minimizes the interference from the original band by shift-
ing the backscattered OFDM signals to an adjacent band.
FreeRider [33] proposes the OFDM-based codeword trans-
lation technique, which piggybacks the tag data by chang-
ing the phase of backscattered OFDM symbols. Built on top
of FreeRider, MOXcatter [36] and X-Tandem [35] realize a
MIMO OFDM backscatter system and a multi-hop OFDM
backscatter system, respectively. However, FreeRider, MOX-
catter, and X-Tandem require specific WiFi receivers that can
disable the phase error correction.

Different from the above backscatter systems, TScatter
is the first work that conducts sample-level coding and
subcarrier-level decoding based on OFDM waveforms. More
importantly, it is able to achieve orders of magnitude lower bit
error rate or much higher throughput than existing approaches.

11 Discussion & Conclusion
Although our system was tested using USRPs, we believe that
our Lite TScatter can potentially be deployed on commodity
WiFi devices with little modification because it is a natural
extension of FreeRider and MOXcatter. Based on the descrip-
tion of prior works and WiFi specification [2,14,33,35,36], to
implement the full version of TScatter on commodity devices,
we expect to address the following engineering problems: 1)
Since the backscattered WiFi packets have been modified,
commodity WiFi receivers may drop these packets due to
their failure to pass the cyclic redundancy check (CRC). To
address this problem, we need to use a WiFi card that can be
configured into monitor mode which can obtain packets with
bad checksums [33]; 2) we need to know the scrambling seed
(i.e., the initial state of shift register) to decode the tag data.
For different WiFi cards, we need to take different approaches.
For example, in ath5k supported WiFi cards (e.g., Atheros
AR5112 and AR2425), the scrambling seed can be derived
by setting the register of the driver [14].

We note that the main contribution of this paper is a novel
backscatter design principle (i.e., sample-level modulation)
for OFDM backscatter. We extensively evaluated the perfor-
mance of TScatter in various real-world scenarios. Evaluation
results demonstrate that TScatter is able to achieve orders of
magnitude lower bit error rate or much higher throughput than
existing approaches [33, 35, 36].
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Appendix A Map Tag Data to PN Sequence

No. Tag Data PN Sequence
1 0000 0110100111111011101100110011110101001010
2 0001 1001011011011101000100000101111110001010
3 0010 1000101101010011011010011111001010011000
4 0011 1111000001000111010111101010000010001111
5 0100 0010100001000100100011011001111011110111
6 0101 1101011101101000110001111000011001100001
7 0110 0101110011101010011010000100100101110101
8 0111 0010011111110100101101100110000100110100
9 1000 0101001101110100011100000101011101011100

10 1001 1100110011010010110100110011000110011100
11 1010 1011000111011100101010101001100010001110
12 1011 1110101111001001100111011100111010011001
13 1100 0001001011001011010011101111010011100001
14 1101 1000110101100111000001001110100001110111
15 1110 0110011001100101101010110010001101100011
16 1111 0011110001111010011101010000111100100010

Appendix B Synchronization Between Sender
and Receiver & CFO Correction

In this section, we build a mathematical model for the synchroniza-
tion and carrier frequency offset (CFO) correction (i.e., part (i) in
Fig. 11). Once the WiFi transmission is identified, the WiFi receiver
first leverages the preamble to synchronize the symbol timing and
then correct the CFO. Therefore, we start with an analysis of how
the tag performs the synchronization between the WiFi sender and
the WiFi receiver.

Fig. 29 shows our synchronization solution. The preamble in-
cludes two long training (LT) sample sequences. Each sequence is
composed of 64 samples. By identifying where the two peak values
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Figure 30: By obtaining the indexes of two peak values, the WiFi
receiver can achieve a precise synchronization.

of the correlation between the received samples and training pattern
occur, the WiFi receiver can find where the symbol starts [15]. There-
fore, to avoid changing the training sample’s value, when TScatter
detects the WiFi transmission by using the RF energy detector, it
first uses continuous square waves to only reflect the preamble and
does not embed any data into the preamble. After the square waves,
TScatter starts to modulate the WiFi samples.

One may ask whether the phase offset (described in Sec. 6.1) will
change the preamble value, therefore affects the synchronization.
We note that TScatter does not change the preamble sample’s value.
Without loss of generality, let us assume the phases of continuous
square waves are θn = 0 and the training pattern value is LT i. Then,
the positions of two peak values of the correlation between the
received samples Rl (described in Eqn. 8) and the training pattern
LT i are:

(l1, l2) =argmax2
l
||

63

∑
i=0

(Rl+i ∗LT i)||2

=argmax2
l
||e j[β+φ]e j∗0

63

∑
i=0

(Sl+i ∗LT i)||2

=argmax2
l
||

63

∑
i=0

(Sl+i ∗LT i)||2 (19)

Where, argmax2 provides the two sample numbers (l1, l2) for two
peak correlation values.

Eqn. 19 proves that the positions of two peak correlation values
are only related to the original sample values Sl and are not affected
by the phase offset. Therefore, the phase offset will not affect the
synchronization. Our experimental result (shown in Fig. 30) also
illustrates that when the tag uses continuous square waves to re-
flect the WiFi signals, it does not interfere with the positions of
two peak correlation values, and the receiver can achieve a precise
synchronization.

In the WiFi receiver, the received sample at frequency fc is down-
converted to baseband with a local carrier frequency (1+ ε) fc. At
the receiver side, the frequency offset ε fc causes two phenomenas:
carrier frequency offset (CFO) and sampling frequency offset (SFO).
The CFO introduces an extra phase offset of α = 2πε

fc
fs

on the
samples during each down-conversion procedure. When the l′th
sample of the frame is down-converted, the phase offset applied to
the sample is accumulated to lα.

Rl,n = e j(β+φ)e j(lα)e jθn Sn (20)

Where l and n point to the same sample. Since a WiFi frame contains
multiple symbols, l is the sample number in the frame, while n is
the sample number in the symbol.
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Since the tag does not affect the synchronization, the CFO can
be estimated accurately. An estimation of the CFO can be obtained
simultaneously when the synchronization is achieved. According
to the WiFi specification [2], the WiFi receiver uses LT samples to
estimate the CFO. The starting LT sample number is computed as
l1. Let us denote the t ′th LT sample as Rl1+t . The CFO estimator is
given by:

α =
1
64

∠(
63

∑
t=0

R ∗l1+t Rl1+t+64) (21)

To correct the CFO, the received sample Rl,n is multiplied by
e− jlα. Through the synchronization, the WiFi receiver learns the
sample number l. Thus, the received sample can be updated to the
corrected sample Sn:

Rn = Rl,n ∗ e− jlα = e j(β+φ)e jθn xn
ZZe jlαHHHe− jlα (22)

Eqn. 22 shows that the impact of CFO is canceled by the CFO
correction module in the WiFi receiver.

Appendix C SFO Correction

Like the CFO, an SFO also exists, which causes a phase offset to
OFDM subcarriers after the DFT [28]:

αs f o =−2πεrk
N +Ng

N
(23)

Where, N = 64 is the DFT size, Ng = 16 is the cyclic prefix length, r
is the symbol number which is learned through the synchronization,
k is the subcarrier number and ε can be calculated from the estimated
CFO (ε = α fs

2π fc
, described in Sec. 6.1). The OFDM subcarriers are

corrupted as Yke jαs f o .
From Eqn. 23, we know the key to correct the SFO is to estimate

CFO accurately. In Appendix B, we have demonstrated the tag does
not change the preamble value so that the receiver can achieve a
precise CFO estimation. The output subcarriers are multiplied by
e− jαs f o (i.e., Yk = Yk

XXXe jαs f oXXXe− jαs f o ) to correct the offset.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    953





Simplifying Backscatter Deployment: Full-Duplex LoRa Backscatter

Mohamad Katanbaf1,2∗, Anthony Weinand1, and Vamsi Talla1

1Jeeva Wireless
2University of Washington

Abstract
Due to the practical challenges in the deployment of exist-

ing half-duplex systems, the promise of ubiquitous backscatter
connectivity has eluded us. To address this, we design the first
long-range full-duplex LoRa backscatter reader. We leverage
existing LoRa chipsets as transceivers and use a microcon-
troller in combination with inexpensive passive elements in-
cluding a hybrid coupler, inductors, tunable capacitors, and
resistors to achieve 78 dB of self-interference cancellation
and build a low-cost, long-range, and small-form-factor Full-
Duplex LoRa Backscatter reader.

We evaluate our system in various deployments and show
that we can successfully communicate with a backscatter tag
at distances of up to 300 ft in line of sight, and through obsta-
cles, such as walls and cubicles, in a 4,000 ft2 office area. We
reconfigure our reader to conform to the size and power re-
quirements of a smartphone, and demonstrate communication
with a contact-lens-form-factor prototype device. Finally, we
attach our reader to a drone and demonstrate backscatter sens-
ing for precision agriculture with an instantaneous coverage
of 7,850 ft2.

1 Introduction

Recent advances [47, 56, 66, 73, 84, 88] have demonstrated
the potential of backscatter to replace power-hungry, large,
expensive radios 1 with an orders of magnitude lower power,
smaller-size, cheaper, potentially battery-free connectivity so-
lution. This promise, however, has run into practical limi-
tations in regard to existing backscatter infrastructure. Full-
duplex (FD) RFID readers [18, 22] and other proprietary full-
duplex systems [30, 35], in which a single reader communi-
cates with tags are easy to deploy, but these existing readers
are large, complex, expensive, and have limited range.

To address this, recent half-duplex (HD) backscatter sys-
tems have leveraged the economies of scales and ubiquity

∗Work was done while the author was at Jeeva Wireless.
1active RFIDs are also radios

100 meters separation

30 dBm -50 dBm

-134 dBm
LoRa Tag

Carrier Source Receiver
(a) Half-Duplex deployment. The carrier source and receiver are separated

by 100m to mitigate carrier interference.

30 dBm

-134 dBm

CW Carrier

LoRa 
Backscatter packet

Co-located 
Carrier Source 
and Receiver

LoRa Tag

(b) Full-Duplex deployment. The carrier source and receiver are co-located
and need 78 dB interference cancellation.

Figure 1: Overview of HD and FD Backscatter Deployments.

of industry-standard protocols such as WiFi [56, 88], Blue-
tooth [43, 53, 89], ZigBee [64, 89], and LoRa [73, 84] to re-
duce the cost, size, and complexity of reader infrastructure
and achieve longer range. However, these systems suffer from
deployment issues, as the half-duplex topology requires two
physically-separated radio devices: one for transmitting the
carrier, and another for receiving the backscattered data packet.
The need to deploy multiple devices in different locations sig-
nificantly limits the use cases for backscatter.

We present the first Full-Duplex LoRa Backscatter reader
which combines the low-cost, long-range, and small-form-
factor benefits of a standard-protocols-compliant backscatter
system with the simple deployment of a full-duplex system.
This addresses one of the remaining pain points of backscatter
and opens backscatter to a plethora of applications. A low-
cost, long-range, small-form-factor full-duplex reader could
be easily integrated into existing devices. This would enable
peripheral, wearable, and medical devices such as pill bot-
tles [33, 70], insulin pens [45, 60], smart glasses [59, 75], and
contact lenses [36, 48] to use backscatter to directly commu-
nicate with a cellphone, tablet, or laptop. Similarly, in agri-
culture, aerial surveillance drones could be equipped with
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a backscatter reader to collect data from sensors distributed
throughout a field.

To understand the challenge in building an FD LoRa
Backscatter reader, consider the traditional HD LoRa
backscatter system, shown in Fig. 1(a). The first radio trans-
mits a single-tone carrier at power levels up to 30 dBm. A
tag uses subcarrier modulation to backscatter a packet at an
offset frequency, which is then received by the second radio,
100 m from the transmitter. The physical separation is nec-
essary to attenuate the out-of-band carrier at the receiver to
a level where it does not impact the sensitivity [84]. This
illustrates the fundamental challenge in a FD LoRa Backscat-
ter system, as shown in Fig. 1(b): The single-tone carrier
needs at least 78 dB of suppression, a 63-million × reduction
in signal strength, between the transmitter and a commod-
ity LoRa receiver chipset, both integrated on the same PCB.
This suppression must be implemented in the analog RF do-
main without substantially increasing the cost, complexity,
or power consumption of the system. Furthermore, unlike
path-loss attenuation, which is wide-band, typical cancella-
tion techniques have a trade-off between cancellation depth
and bandwidth [31, 61, 65]. If the cancellation bandwidth is
insufficient, the carrier phase noise will show up as in-band
noise at the receiver. Therefore, a second requirement is to
bring the phase noise of the carrier at the offset frequency to
below the receiver’s input noise level.

Existing FD cancellation techniques, including analog, dig-
ital, and hybrid designs used in full-duplex radios have differ-
ent or more relaxed requirements and, as a consequence, are
insufficient to meet the needs of our system. Analog and hy-
brid cancellation techniques require bulky and expensive RF
components such as circulators [9], vector modulators [21],
and phase shifters [23] to achieve sufficient cancellation, each
of which increases cost and size. Digital cancellation tech-
niques require access to IQ samples, which are unavailable
on commodity radios, and instead use SDRs [28, 31, 35, 83],
FPGAs [85], or DSPs [29], which are all prohibitively expen-
sive. For a detailed analysis of why existing techniques are
insufficient, see §8.

Our key idea is to leverage the ubiquity and economies
of scale of existing LoRa transceivers and microcontrollers
and add inexpensive passive components to fulfill the two
requirements of full-duplex operation. This enables us to
build a low-cost, long-range, small-form-factor, Full-Duplex
LoRa Backscatter reader. We use a single-antenna topology
with a hybrid coupler to interface the transmitter and the
receiver with the antenna. The leakage from the transmit-
ter to the receiver, i.e. self-interference, is a function of the
impedance at the coupled port. A microcontroller adaptively
tunes an impedance network, tracking variations in the an-
tenna impedance and environmental reflections with the ob-
jective of minimizing interference at the receiver.

We introduce a novel, two-stage, tunable impedance net-
work to achieve 78 dB suppression of carrier signal. The

extent to which a carrier is suppressed is a function of how
closely the tunable impedance can track the variations in an-
tenna impedance, which in turn depends on the resolution
of the impedance network. A single-stage network is lim-
ited by the step size of its digital capacitors and does not
have a high enough resolution to reliably achieve 78 dB can-
cellation [38, 50, 54, 65]. Our two-stage network is built by
cascading two stages, each consisting of four, 5-bit tunable
capacitors and two fixed inductors with an attenuating resistor
network between the stages. The two-stage design provides
the fine-grain control and coverage necessary to meet the
78 dB carrier cancellation target across the expected range
of variation in antenna impedance. To achieve the second ob-
jective of bringing the phase noise of the carrier at the offset
frequency below the noise floor of the receiver, while simulta-
neously obtaining 78 dB cancellation at the carrier frequency,
is very challenging. There is a fundamental trade-off between
the cancellation depth and bandwidth [31, 61, 65], and we
prioritize the 78 dB cancellation requirement at the carrier
frequency. We use a COTS synthesizer with low phase noise
to relax the cancellation requirement at the offset frequency.

We implement the Full-Duplex LoRa Backscatter system
using only COTS components, for a total cost of $27.54 at
low volumes, only 10% more than the cost of two HD units.
Our evaluation shows that the two-stage impedance network
achieves >78 dB carrier cancellation and >46 dB of offset
cancellation in practical scenarios with a tuning time overhead
of less than 2.7%. Results are summarized below:

• The FD reader can communicate with tags at distances
of up to 300 ft in line of sight. When placed in the corner
of a 4,000 ft2 office space with concrete, glass, and wood
structures and walls, tags can operate within the entire space.
• We integrate a low-power configuration of the FD reader
into portable devices. We attach the prototype to the back
of a smartphone and show that the tags can communicate at
distances beyond 50 ft at 20 dBm, 25 ft at 10 dBm, and up to
20 ft at 4 dBm.
• We build two proof-of-concept applications. We prototype
a contact-lens-form-factor antenna tag and show that it can
communicate with FD reader attached to a smartphone at
distances of up to 22 ft and when the reader is inside a user’s
pocket. We also attach the FD reader to a quadcopter and fly it
to 60 ft above a field. The reader is able to communicate with
tags placed on the ground at a lateral distance of up to 50 ft,
corresponding to an instantaneous coverage of 7,850 ft2.

2 Background

Our work brings full-duplex operation to a LoRa Backscatter
system. We start with a background on LoRa backscatter,
followed by a primer on the full-duplex operation.
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2.1 LoRa Backscatter Primer
Backscatter communication eliminates RF carrier genera-
tion at the tag and, instead, uses switches to reflect existing,
ambient RF signals for data transmission. This drastically
reduces the cost, size, and power consumption of wireless
communication [30, 56, 84]. In HD backscatter deployment,
as shown in Fig. 1(a), a radio source generates the single-
tone carrier, a backscatter tag reflects the carrier to synthe-
size LoRa packets, then a receiver decodes the backscat-
tered packets. However, the carrier signal also ends up as
a strong source of interference at the receiver, which de-
grades the receiver’s ability to decode packets. Backscatter
systems use two key techniques to mitigate carrier interfer-
ence [26, 43, 46, 47, 49, 56, 64, 73, 78, 81, 84, 89, 92, 93]. First,
the tag uses subcarrier modulation to synthesize packets at
a frequency offset from the carrier frequency. The receiver
operates at the offset frequency, pushing the interference, i.e.
the carrier signal, out of band at the receiver. Since receivers
are designed to operate in the presence of out-of-band inter-
ference, the receiver can decode the backscattered packets
with minimal loss in sensitivity. Second, the transmitter and
receiver are physically separated to attenuate that carrier to a
level where it does not affect the receiver’s sensitivity. How-
ever, in full-duplex systems, by definition, the transmitter and
receiver cannot be physically separated.

LoRa receivers have low sensitivity and high blocker toler-
ance, making them ideal candidates for long-range backscat-
ter connectivity, as demonstrated by prior HD backscatter
designs [73, 84]. LoRa has two key protocol parameters that
can be used to trade off data rate with receive sensitivity:
spreading factor and bandwidth. Since our system transmits
up to 30 dBm, the FCC mandates frequency hoppingand a
maximum channel dwell time of 400 ms [17]. So, we limit
our system to protocols with packet lengths shorter than this
limit, which corresponds to a sensitivity of -134dBm. Longer
packet lengths are incompatible with frequency hopping un-
less we implement intra-packet frequency hopping. Doing so
would require tuning in the middle of packet reception, which
is not feasible on commodity radio receivers.

2.2 Full-Duplex Primer
FD radios transmit and receive at the same time on a single de-
vice, allowing simultaneous communication between devices
without delay. The main obstacle in achieving FD functional-
ity is self-interference; the strong transmit signal leaks to the
sensitive receiver and appears as interference, degrading its
performance. Hence, the key is to suppress the interference
before it reaches the receiver. Broadly speaking, there are two
approaches to FD operation: out-of-band and in-band.

Cellular standards such as WCDMA and LTE implement
out-of-band full-duplexing by using Frequency Division Du-
plexing (FDD), where two distinct fixed frequency bands are
used for uplink and downlink. In FDD systems, the operating

frequency and frequency offset are fixed, and a frequency
selective duplexer is used to suppress the transmitter leak-
age in the receive band. At first glance, it may look like FD
backscatter is similar, as the tag backscatters the data packet
at a frequency offset, however, FDD systems use much higher
offset frequencies, at least 40 MHz for WCDMA and LTE
bands above 800 MHz [20], in line with the requirements of
practical frequency duplexers and passive filters. Backscat-
ter systems, in contrast, transmit the carrier and receive the
packet within the same frequency band, keeping the frequency
offset low to minimize the power consumption of the tag. For
example, the LoRa backscatter system operating in the 902-
928MHz ISM band uses an offset frequency of 2-4 MHz.
With such a small offset, we cannot leverage passive filters or
frequency duplexers used in FDD systems.

In recent years, researchers have demonstrated success with
In-Band Full-Duplex (IBFD) radios [31, 35, 41, 61], where
radios transmit and receive simultaneously on the same fre-
quency. IBFD radios suppress self-interference by using a
combination of analog and digital cancellation techniques to
bring the signal strength of the typically-wideband carrier
below the noise floor of the receiver over the entire receive
bandwidth. IBFD radios use isolation and analog cancellation
techniques in the RF domain to first bring the carrier signal be-
low the saturation level of the receiver front end. Next, digital
cancellation techniques are used in the baseband to suppress
the signal below the noise floor across the receiver bandwidth.
Since the frequency offset in a backscatter system is small,
an FD backscatter system can leverage SI suppression tech-
niques similar to IBFD devices, such as isolation and analog
cancellation. However, there are two key differences. First,
the FD LoRa Backscatter system uses a single-tone signal
as the carrier, so we need to suppress a very narrow-band
signal. Second, unlike IBFD radios, the FD LoRa Backscatter
system uses existing COTS radios, which do not provide ac-
cess to signals in the digital baseband of the receiver. Hence,
unlike IBFD systems, which use digital cancellation in addi-
tion to analog cancellation, we need to achieve 78 dB of SI
cancellation entirely within the analog domain.

3 FD LoRa Backscatter Requirements

In this work, we focus on the cancellation requirements for
a LoRa backscatter system, but the design techniques and
architecture are not LoRa specific. They can be extended to
build FD backscatter systems for other wireless standards
such as WiFi, Zigbee, Bluetooth, SigFox, or NB-IoT that use
a single-tone carrier and subcarrier modulation to synthesize
backscatter packets [43,47,56]. However, these techniques are
not directly applicable to systems which do not use sub-carrier
modulation [30] or use wide-band Wi-Fi or LoRa packets as
carrier [64, 73, 89].

We divide the cancellation requirements into two cate-
gories: carrier cancellation and offset cancellation.
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Figure 2: Carrier Cancellation. The 30 dBm single-tone
carrier needs 78 dB of attenuation to meet the Rx blocker
tolerance and ensure packet reception down to Rx sensitivity.

3.1 Carrier Cancellation
We define carrier cancellation (CANCR) as the required cancel-
lation of the carrier signal (the source of self-interference) at
the center frequency. The carrier acts as a blocker i.e. a strong
signal in the vicinity of the desired signal that can affect a
receiver’s performance and reduce its sensitivity. A strong
blocker can saturate the LNA, forcing it to reduce gain and in-
crease the noise floor. Secondly, post LNA, a blocker can mix
with the receiver local-oscillator phase-noise and contribute to
in-band noise. Finally, baseband filters have limited stopband
attenuation, and even a small portion of the blocker passing
through the filter reduces the signal-to-noise and -interference
ratio.

We compute the minimum required carrier cancellation as
CANCR > PCR−RxSen−RxBT (1)

where PCR is the carrier power, RxSen is the receiver sensitivity,
and RxBT is the receiver blocker tolerance.

For example, as per the SX1276 datasheet, the blocker
tolerance at a 2 MHz offset for BW = 125 kHz, SF = 12,
-137 dBm sensitivity protocol is 94 dB [19]. Based on equa-
tion 1, for PCR = 30 dBm, at least 73 dB of SI cancellation
is required. However, the datasheet blocker specification as-
sumes a 3 dB degradation in sensitivity, which is substantial
for backscatter systems. Additionally, the datasheet provides
blocker specifications for only a subset of frequency offsets
and protocol parameters. To get a more comprehensive set of
requirements, we perform our own blocker experiments for
a range of frequency offsets (2, 3, and 4 MHz) and protocol
parameters (366 bps - 13.6 kbps data rates). We connect a
LoRa transmitter and a single-tone generator to two variable
attenuators and combine their outputs at a LoRa receiver. First,
we get a baseline sensitivity by turning off the single tone
and increase the LoRa transmitter attenuation till we reach
receiver sensitivity, defined by PER < 10%. Next, we turn
on the single-tone generator with maximum attenuation and
reduce the attenuation, thereby increasing blocker power, un-
til the PER exceeds 10%. We record the maximum tolerable
interference power for different frequency offsets, receiver
bandwidths, and spreading factors to achieve different data
rates and conclude that 78 dB is the most stringent carrier-
cancellation specification. As mentioned prior, the blocker
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Figure 3: Offset Cancellation. The phase noise of the single-
tone carrier at the frequency offset after cancellation should
be less than the noise floor of the receiver.

performance of a receiver depends on both the RF front end
and digital baseband. Our analysis shows that the SX1276
baseband has sufficient digital baseband filtering to suppress
the blocker at the offset frequency, and additional filtering
would not help in this specific case.

Fig. 2 illustrates the carrier cancellation requirement. Be-
fore cancellation, the carrier signal is much stronger, but after
cancellation, the SI is dropped to a level that the receiver can
tolerate. The difference between these levels is CANCR. Note
that a lower cancellation may suffice for some data rates and
frequency offsets, but our design supports all configurations.

3.2 Offset Cancellation
We define offset cancellation (CANOFS) as cancellation of the
carrier signal at the offset frequency. We use a single-tone
signal as the carrier. An ideal oscillator generates a pure sine
wave, with the entire signal power concentrated at a single fre-
quency. However, practical oscillators have phase-modulated
noise components, which spreads the power to adjacent fre-
quencies. This results in noise side bands [76] and is charac-
terized by the source’s phase noise, i.e. power spectral density
(dBc/Hz) of the noise at a frequency offset from the center
frequency. Since the receiver operates at a frequency offset
from the carrier, the carrier phase noise shows up as in-band
noise to the receiver. For optimal receiver performance, the
SI signal after cancellation at the offset frequency should be
less than the receiver noise floor. We compute the minimum
required offset cancellation as

PCR +LCR(∆ f )+10Log(B)−CANOFS < 10Log(KT B)+RxNF

CANOFS−LCR(∆ f ) > PCR−10Log(KT )−RxNF (2)
where LCR(∆ f ) is the carrier phase noise at the offset frequency
(∆ f ), B is the receiver bandwidth, K is the Boltzmann con-
stant, T is temperature, and RxNF is receiver noise figure.
We show this requirement in Fig. 3. Before cancellation, the
backscattered signal is buried under the carrier phase noise,
but, after cancellation, the carrier phase noise is pushed below
the receiver noise floor.

As per the SX1276 datasheet RxNF = 4.5 dB, so for PCR =
30 dBm, CANOFS−LCR(∆ f ) > 199.5 dB. The offset cancel-
lation depends on transmit power, carrier phase noise, and
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Figure 4: System Architecture. We use a single-
antenna hybrid-coupler architecture with a two-stage tunable
impedance network for cancellation. A microcontroller con-
trols all components and implements the tuning algorithm.

receiver noise figure. Interestingly, since the channel band-
width appears on both sides of equation 2, offset cancellation
is independent of the receiver channel bandwidth. In other
words, we can use the carrier phase noise per unit bandwidth
and receiver noise floor per unit bandwidth instead of the
aggregate noise over the entire bandwidth.

In an HD system, the transmitter and receiver are physi-
cally separated, and the carrier attenuation via RF propagation
does not significantly change with frequency. So, if the 78 dB
carrier cancellation requirement is met, the phase noise at
the offset frequency would also be attenuated by the same
amount. However, cancellation networks do not have the same
wide-band frequency characteristics [38, 40, 54, 65, 77]. The
inequality shows that satisfying the offset cancellation re-
quirement for an FD system requires a joint design of the
carrier source and the cancellation network. If we use a high-
phase-noise carrier, we would need high offset cancellation,
whereas if we lower the phase noise of the carrier source,
we can relax the offset cancellation requirements. Carrier
and offset SI cancellation are functions of offset frequency,
and both typically relax with an increase in offset frequency.
However, an increase in offset frequency increases the tag
power consumption. Thus, the frequency offset presents a
trade-off between tag power consumption and SI cancellation
requirements. 2-4 MHz is a reasonable compromise; we use
a 3 MHz offset frequency in this work.

4 FD LoRa Backscatter Reader Design

The FD LoRa Backscatter system uses a single antenna and a
hybrid coupler with a two-stage tunable impedance network
to achieve carrier and offset cancellation. The cancellation
network uses only passive components, minimizing cost, com-
plexity, power consumption, and noise. Fig. 4 shows the block
diagram of our design. The antenna is connected to the trans-
mit and receive paths via a hybrid coupler. The fourth port
of the coupler is connected to a tunable impedance network
that tracks the antenna impedance to reflect and phase shift a

portion of the single-tone carrier, suppressing the SI that flows
to the receiver. The carrier signal is generated by a frequency
synthesizer and fed to a power amplifier (PA) to transmit up
to 30 dBm. An on-board microcontroller controls the syn-
thesizer, PA, receiver radio, and digital tunable impedance
network using a SPI interface. We use RSSI readings from
the receiver to measure the SI there.

Below, we describe the principle of operation for the hybrid
coupler. This is followed by the two-stage tunable impedance
network design and the choice of carrier source to meet the
carrier and offset cancellation requirements. Finally, we de-
scribe the tuning algorithm.

4.1 Coupler: Principle of Operation

Couplers are four-port devices that divide an incident sig-
nal between the output and coupled port while keeping the
fourth port isolated [72, 74]; we use this property to isolate
the transmitter and receiver. We connect the transmitter to the
input port (1), the receiver to the isolated port (3), the antenna
to the output port (2), and the tunable impedance network
to the coupled port (4). The carrier signal is split between
the antenna and coupled ports, leaving the receiver isolated.
The received signal at the antenna port is split between the
receiver and the transmitter, leaving the tunable impedance
isolated. Couplers are reciprocal elements, meaning that the
signal split described above is symmetrical. Ideally, we would
want the entire PA output to go to the antenna (low TX inser-
tion loss) and the entire received signal from the antenna to
go to the receiver (low RX insertion loss). A higher coupling
factor would direct more of the PA output to the antenna at the
cost of reducing signal transmission from the antenna to the
receiver. Since our goal is to maximize the communication
range, we must minimize the sum of the transmit and receive
insertion losses. A hybrid, or 3 dB coupler, equally divides
the input power between the output and coupled ports and
minimizes total loss to 6 dB.

Two factors limit the practical SI cancellation of a hybrid
coupler. First, every coupler has leakage: a typical COTS cou-
pler provides ∼ 25 dB of isolation between the transmit and
receive ports [16], far lower than our requirement. Second,
and more important, is the effect of the antenna. Typical an-
tennas, including low-cost PIFAs, are characterized by -10 dB
return loss, and any reflection from the antenna port would
couple to the receiver and further contribute to the SI.

Antenna Impedance Variation. Environmental variations
affect antenna impedance, i.e. nearby objects can detune the
antenna or create additional reflections that contribute to vari-
ation in its reflection coefficient. Since SI cancellation is
dependent on antenna impedance, it is essential to charac-
terize the expected variation. We design a 1.9 in × 0.8 in
PIFA for our implementation and use this antenna to quan-
tify impedance variation. We connect the PIFA to an Agilent
8753ES VNA [3] and subject it to environmental variations
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Figure 5: Two stage tunable impedance network used for SI cancellation and its simulation results.
by placing the antenna upright on a table, and measure S11 as
a hand and other objects approach it from different directions.
Our results show that the magnitude of the reflection coeffi-
cient, |Γ|, reaches a maximum of 0.38, and we set expected
|Γ| < 0.4 for the antenna.

4.2 Two-Stage Tunable Impedance Network
We use a tunable impedance at the coupled port [50, 54, 65]
to negate SI leakage due to variation in antenna impedance.
However, the cancellation depth is a function of how precisely
we can tune this impedance. To achieve 78 dB carrier cancella-
tion, we need a very fine resolution for the tunable impedance,
which is not available in COTS digital capacitors. To solve
this, we introduce a novel two-stage tunable impedance net-
work that allows us to achieve deep cancellation, using only
passive components.

To understand how the tunable impedance network im-
proves the SI suppression from the coupler, follow the flow of
signals in Fig. 4. The carrier (red) splits between the antenna
port and the coupled port. The impedance at the coupled port
is tuned such that the reflection from this port (green) cancels
out both the leakage of the coupler and the reflection from
the antenna port (purple) to achieve deep cancellation at the
receive port (blue). In the worst case of a significantly detuned
antenna, reflection from the antenna is much stronger than the
leakage, and this should be canceled by the reflection from
the tunable impedance.

We use a topology of two fixed inductors and four digi-
tally tunable capacitors terminated with a resistor to cover the
range of expected impedance values required to cancel strong
reflections from the antenna [65]. We observe that in a tuning
network terminated with a resistor, only a small portion of the
signal is reflected, and most of it is dissipated. We replace the
termination resistor with a resistive signal divider, followed
by a second tunable impedance, as shown in Fig. 5(a). The
signal reflected by the second stage flows through the resistive
divider twice, effectively lowering the impact of impedance
changes in the second stage on the overall reflected signal.
This allows us to use the second stage to make much more
fine changes in impedance, increasing the tuning resolution

and enabling deep cancellation. However, the first stage still
determines the tuning range and offset cancellation. The sec-
ond stage provides the fine resolution to accurately match
the reflection from the balanced port with the leakage and
reflection from the antenna port. To eliminate dead zones, we
choose the resistive divider such that the fine tuning network
covers the step size of the coarse tuning network. This coarse
and fine tuning approach is similar to using a hybrid cou-
pler combined with an analog feed-forward path. The second
stage effectively provides the functionality of a feed-forward
path, but without additional noise and at a lower cost, lower
complexity, and lower power.

We simulate the behavior of our tunable impedance net-
work to demonstrate the efficacy of our approach. We plot the
tuning network reflection coefficient at 915 MHz in Fig. 5 (c)
for a step size of six LSBs for each capacitor in the first stage.
For visibility, the plot only shows 1,296 impedance states out
of more than 1 million first-stage impedance states and more
than 1 trillion total states. The plot demonstrates that our de-
sign can cover the impedances corresponding to the antenna
reflection coefficient circle of |Γ| < 0.4. Next, we show the
fine tuning of the second stage in Fig. 5 (d). We select an ini-
tial state (the large, red square in the center) and change each
capacitor in the first stage by one LSB to get the other eight
red dots. Without the second stage, we would not be able to
achieve any impedance between these dots. For each of these
nine states, we use a step size of 10 LSBs for each capacitor
in the second stage and show the resulting impedances in blue.
The blue cloud shows the fine resolution control covering the
dead zone between the first-stage steps. Finally, we simulate
SI cancellation for 400 random points of antenna impedance
inside the |Γ| < 0.4 circle and plot the cancellation CDF in
Fig. 5 (b). Cancellation of > 80 dB is achieved for the 1st
percentile, which satisfies our requirement.

4.3 Carrier Source Selection
The phase noise of the carrier source determines the required
cancellation at the offset frequency, as shown in equation 2.
In order to understand the requirements of the carrier source,
we first simulate SI cancellation at different frequency offsets.
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We tune the capacitors to achieve a minimum of 78 dB carrier
cancellation and then sweep the operating frequency. Our re-
sults show that at 3 MHz frequency offset, 47 dB cancellation
or more is achieved in 90% of the simulated cases. If we use
SX1276 with a phase noise of -130 dBc at 3 MHz offset as our
transmitter, then 47 dB of offset cancellation is insufficient.

The tuning network has multiple poles that can be opti-
mized to increase cancellation bandwidth [57, 65]. However,
doing so reduces the cancellation at the center frequency. This
approach would also require a wide-band receiver to provide
feedback on the SI power over the entire bandwidth to tune
the capacitors, which is unavailable on the SX1276 (max. BW
= 500 kHz). We need > 78 dB of SI cancellation at the carrier
frequency and prioritize this requirement. Instead of SX1276,
we use ADF4351 [10] frequency synthesizer to generate the
single tone carrier, which has a lower phase noise of -153 dBc
at 3 MHz offset. Although the ADF4351 is slightly more
expensive, it relaxes the offset cancellation requirement to
46.5 dB and eliminates the need for an additional wide-band
receiver or a power detector, justifying the design choice.

4.4 Tuning Algorithm
Our design uses a two-stage impedance network with eight
digital capacitors, each with five control bits; a total of 40
bits resulting in 240 (∼ 1-trillion) states for the impedance
network. Multiple capacitor states can result in the impedance
required for 78 dB cancellation, and any one of those is accept-
able. As it is impossible to search across such a vast space in
real-time, there is a need for an efficient tuning algorithm that
can run on a commodity ARM Cortex-M4 microcontroller.

We use a simulated annealing algorithm to tune the ca-
pacitors in each stage separately [86]. Simulated annealing
is based on the physical process of heating, and then slowly
cooling, a material to minimize defects in its structure. For
every temperature value, we take ten steps. At each step, we
add a random value bounded by a maximum step size to each
capacitor and measure the SI using receiver RSSI measure-
ment. We accept the new capacitor values if the SI decreases,
or with a temperature-dependent probability when the SI in-
creases. We start with a temperature equal to 512 and divide it
by two each round until it reaches one. We set predefined can-
cellation thresholds for each stage and stop the tuning once
the thresholds are met. If the first stage reaches the threshold
(set to 50 dB), but the second stage fails to do so, we repeat
the tuning until either it converges or reaches a timeout.

5 Implementation

We implement the FD LoRa Backscatter reader for operation
in 902-928 MHz on a 3.8 in × 1.9 in, 4-layer, FR4 PCB.
We place the RF components, including antenna, transmit-
ter, receiver, and cancellation network, on the top side of the
PCB, and microcontroller and power management on the bot-

tom. We use the SX1276 as the LoRa receiver [19]. The
cancellation circuit consists of the X3C09P1 90° hybrid cou-
pler [16] and a two-stage tunable impedance network,shown
in Fig. 5 (a). Variable capacitors C1-C8 are implemented by
pSemi PE64906 tunable capacitors, with 32 linear steps from
0.9 pF - 4.6 pF [11]. We set inductors L1, L3 to 3.9 nH and L2,
L4 to 3.6 nH. We set resistors R1, R2, and R3 to 62 Ω, 240 Ω,
and 50 Ω respectively. We use the ADF4351 synthesizer to
generate the single-tone carrier, which has 23 dB better phase
noise at 3 MHz offset compared to the SX1276. The output
power of the carrier can be amplified up to 30 dBm using the
SKY65313-21 power amplifier [12]. Our cancellation tech-
nique has an expected loss of 7-8 dB; 6 dB of which is the
theoretical loss due to hybrid coupler architecture, the rest is
due to component non-idealities.

We design a custom coplanar inverted-F PCB antenna. The
radiating element of the antenna measures 1.9 in × 0.8 in
and leverages the existing ground plane for omnidirectional
radiation. We measure the performance of the antenna in an
anechoic chamber, and results show a peak gain of 1.2 dB,
half-power beam-width of 80°, and cumulative efficiency of
78%. The transmitter, receiver, and cancellation network are
controlled using a SPI interface by an on-board ARM Cortex-
M4 STM32F4 microcontroller [13]. The microcontroller im-
plements a state machine in C to transition between tuning,
downlink, and uplink operating modes. In the tuning mode,
the microcontroller first configures the center frequency and
power of the carrier and then tunes the impedance network
to minimize SI using the simulated annealing algorithm de-
scribed in §4.4. After the tuning phase, the MCU sends the
downlink OOK message to wake up the backscatter tag. Then,
it transitions to the uplink mode where it configures the re-
ceiver with the appropriate LoRa protocol parameters to de-
code backscattered packets. The MCU then repeats this cycle
for the next frequency.

5.1 FD Reader Configurations
We configure the FD LoRa Backscatter reader for two dif-
ferent use cases; a ‘base-station’ setup and a ‘mobile’ setup.
Below we describe each configuration.

Base-Station Configuration: The base-station configuration
of the FD LoRa Backscatter reader uses a 8 dBc high gain
patch antenna [25]. The synthesizer and PA are set to trans-
mit at 30 dBm. These settings maximize operating range and
we use this configuration for the line-of-sight and non-line-
of-sight range testing. In the base-station setup method, the
power amplifier, synthesizer, receiver, and MCU consume
2,580 mW, 380 mW, 40 mW, and 40 mW, respectively, result-
ing in total power consumption of 3.04 W. 3.04 W is not a
limitation for a plugged-in device such as a smart speaker or
WiFi router, but is too high for a portable device.

Mobile Configuration: For applications with lower power
consumption and smaller size requirements, we configured the
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system as a ‘mobile’ version. We use the on-board antenna
and configure the synthesizer and PA to transmit at lower
power levels of 4 dBm, 10 dBm, and 20 dBm. Since the
PA and synthesizer dominate power consumption, reducing
transmit power greatly reduces power consumption. In this
mobile configuration, power consumption is low enough to
draw from conventional portable power sources like a USB
battery or a laptop. It is also small enough that, if desired, we
are able to attach it to an iPhone 11 Pro without increasing
the phone’s footprint, shown in Fig. 11(a).

Lower transmit powers relax cancellation requirements (see
§3.2), which can be leveraged to further reduce the power
consumption of the synthesizer and the power amplifier. For
20 dBm output power, we can instead use an LMX2571 [8] as
the synthesizer which has higher phase noise, but lower power
consumption. We can also use a CC1910 [4] as the PA which
operates efficiently at 20 dBm output power. Similarly, for out-
put powers of 4 dBm and 10 dBm, we can use a CC1310 [14]
as the synthesizer and eliminate the PA. These optimizations
would reduce power consumption to levels shown in Table 1.
Since we built our system for maximum output power and
range, we did not make these hardware changes in this work,
but we wish to outline the available design choices for use-
cases demanding lower power consumption.

5.2 Cost Analysis

The FD LoRa Backscatter reader is designed with the goal
of simplifying the deployment of backscatter technology to
unleash the untapped potential of backscatter. Cost plays a
critical role in achieving this objective. Table 2 outlines the
cost structure of the different components of the system and
compares it with a legacy HD LoRa backscatter reader. Our
analysis using pricing data from Octopart [1] shows that at low
volumes of 1,000 units, the FD reader costs $27.54, only 10%
more than the cost of two HD readers. We believe that further
optimization and leveraging economies of scale, coupled with
the reuse of radios and processing power upon integration
with existing devices such as IoT gateways, smartphones, and
tablets, can further reduce the solution cost.

5.3 LoRa Backscatter Tag

The LoRa backscatter tag used in this work is based on the
design proposed in [84]. The LoRa baseband and subcarrier
chirp-spread-spectrum-modulated packets are generated us-
ing Direct Digital Synthesis (DDS) on an AGLN250 Igloo
Nano FPGA [5]. The output of the FPGA is connected to
SP4T ADG904 RF switch [6] to synthesize single-side-band
backscatter packets. The backscatter tag design also incor-
porates an On-Off Keying (OOK) based wake-on radio with
sensitivity down to -55 dBm and an ADG919 [7] SPDT switch
to multiplex a 0 dBi omnidirectional PIFA between the re-
ceiver and the backscatter switching network. The total loss
in the RF path (SPDT + SP4T) for backscatter is ∼ 5 dB.

Table 1: Estimated Power Consumption of FD LoRa
Backscatter Reader

TX Power Applications Peak Power
30 dBm Plugged-in devices 3,040 mW+

20 dBm Laptops, Tablets 675 mW
10 dBm Phones, Battery Packs 149 mW

4 dBm Phones, Battery Packs 112 mW
+ Measured result.

Table 2: Cost Analysis of FD & HD Backscatter Hardware
Components FD Cost (2×) HD Cost
Transceiver $4.16 (2×) $4.16
Synthesizer $7.15 N/A

Power Amplifier $1.33 (2×) $1.33
Cancellation Network $5.78 N/A

MCU $1.70 (2×) $1.30
Power Management $2.25 (2×) $1.95

Passives $2.52 (2×) $1.54
PCB fabrication [2] $1.07 (2×) $0.79

Assembly [2] $1.58 (2×) $1.38
Total $27.54 $24.90

6 Evaluation

First, we validate our cancellation approach by measuring
the carrier and offset cancellation of our novel two-stage
impedance tuning network. Then, we measure the time over-
head incurred by our tuning approach. Next, we evaluate the
FD LoRa Backscatter system performance in a wired setup
to neutralize multi-path effects, followed by line-of-sight and
non-line-of-sight wireless deployments. Finally, we measure
the performance of the mobile version of our system.

Unless mentioned otherwise, we set the subcarrier mod-
ulation frequency to 3 MHz, and configure the tag to trans-
mit 1,000 packets with SF = 12, BW = 250kHz, (8,4) Ham-
ming Code with an 8-byte payload, a sequence number for
calculating PER, and a 2-byte CRC. Additionally, we initi-
ate uplink by sending a downlink OOK-modulated packet
at 2 kbps to wake up the tag and align the tag’s backscatter
operation to the carrier. Downlink also enables channel ar-
bitration between multiple tags, sending acknowledgments,
packet re-transmissions, and other functionalities [56,84]. The
evaluation of these features is beyond the scope of this work.

6.1 Cancellation Network

The cancellation network performance depends on the an-
tenna impedance, which is sensitive to environmental varia-
tions (see §3.2). To demonstrate that our system can achieve
the required cancellation across a range of expected antenna
impedances, we simulate antenna impedances with custom
circuit boards with an 0402 footprint and an SMA connector.
We populate the pads with discrete passives to represent an-
tenna impedances with 0 ≤ |Γ| ≤ 0.4. We test seven antenna
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Figure 6: SI cancellation as a function of variation in antenna impedance.
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Figure 7: Tuning algorithm overhead. We measure the over-
head for different thresholds over 10000 packets.

impedances, as shown on the smith chart in Fig. 6 (a).
To measure cancellation, we attach a board representing

an antenna impedance to the antenna port of our FD LoRa
Backscatter reader with a Murata measurement probe [15].
We disconnect the receiver and attach the receiver input to a
spectrum analyzer using another RF probe. We set the trans-
mitter to 915 MHz and 30 dBm output power. Since the re-
ceiver is disconnected, we cannot measure RSSI and, there-
fore, cannot utilize the tuning algorithm. We manually set
the capacitor states in a two-step process similar to the tun-
ing algorithm. First, we fix the second-stage capacitors and
manually tune the first stage for the best SI cancellation, then,
we manually tune the second stage. Fig. 6(b) shows the SI
carrier cancellation results for one- and two-stage tunable
impedance networks. Results show that a single stage is in-
sufficient to achieve 78 dB carrier cancellation, whereas the
two-stage design meets the specification. Next, we measure
offset cancellation by keeping the same capacitor configura-
tion and sweeping the carrier source between 905 - 925 MHz
in 100 kHz frequency increments. Fig.6(c) shows the offset
cancellation for different antenna impedances at 3 MHz offset.
Our results show that we achieve our target of 46.5 dB offset
cancellation for all antenna impedances.

6.2 Tuning Overhead

To measure the performance of our tuning algorithm, we place
the FD LoRa Backscatter reader with the PIFA on a table in a
typical office environment. We collect 10,000 packets from a
tag placed 20 ft away over the course of 80 minutes with mul-
tiple people sitting nearby and walking in the vicinity of the
system. We modify the target SI cancellation threshold in the
tuning algorithm to 70, 75, 80, and 85 dB and run experiments
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Figure 8: Receiver Sensitivity Analysis. We plot the PER as
a function of path loss for different data rates.

to measure the time required for tuning. The tuning algorithm
was able to achieve the target SI in 99% cases. We plot the
CDF of tuning overhead for different cancellation thresholds
in Fig. 7. As expected, the tuning duration increases with
the target threshold. For a threshold of 80 dB, the average
tuning duration is 8.3 ms, corresponding to an overhead of
2.7%. The RSSI measurements from the SX1276 chipset are
noisy, and we take the mean over 8 readings for each tuning
step, which is the key limitation. Each tuning step takes about
0.5 ms, dominated by the SPI transactions and settling time
of the receiver. An RF power detector, which is beyond the
scope of this work, can be used to provide faster feedback at
the expense of increased cost.

6.3 Receiver Sensitivity Analysis
To evaluate the receive sensitivity of the FD LoRa Backscatter
system without the effect of multi-path signal propagation,
we create an equivalent wired setup. We use RF cables and
a variable attenuator to connect the antenna port of the FD
LoRa Backscatter reader to a LoRa backscatter tag. We vary
the in-line attenuator to simulate path loss, corresponding
to different operating distances between the reader and the
tag. We start with an attenuator value at which we receive
all packets and then slowly increase the attenuation until no
packets are received. We configure the SF and BW parameters
to cover a range of sensitivity and data rates.

Fig. 8 plots PER as a function of path loss in a wired
setup for different data rates. Since sensitivity is inversely
proportional to data rate, lower data rates can operate at higher
path loss, which translates to longer operating distances. For
a PER ≤ 10%, the expected LOS range at the lowest data-
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Figure 9: Line-of-Sight Wireless Tests. We move the
backscatter tag away from the reader in line of sight.

rate of 366 bps (SF = 12,BW = 250 KHz) is 340 ft, with the
range decreasing successively for higher bit rates, down to
110 ft for 13.6 kbps (SF = 7,BW = 500 KHz).

6.4 Line-of-Sight (LOS) Wireless Testing
We deploy the FD LoRa Backscatter system in a nearby park
to measure LOS performance. For best performance, we con-
figure the reader as a base-station (see §5) by connecting an
8 dBiC circularly polarized patch antenna [25], placed on a
5 ft tall stand, to the antenna port and set transmit power to
30 dBm. We place the tag at the same height and move it
away in 25 ft increments. Fig. 9 plots PER and RSSI as a
function of distance for four different data rates. Our results
show that, for PER < 10%, at the lowest data rate, the system
can operate at a distance of up to 300 ft with a reported RSSI
of -134 dBm. For the highest data rate, the operating distance
was 150 ft at -112 dBm RSSI.

A prior HD LoRa backscatter system reported a range of
475 m between the two radios [84]; this corresponds to a range
of 780 ft for an FD system. Our FD system achieves a shorter
range and this can be attributed to two factors. First, the HD
system evaluation uses a -143 dBm sensitivity protocol at
45 bps versus the -134 dBm sensitivity at 366 bps used in
this work. The 45 bps packets are 2.4 sec long, 6 × the FCC
maximum channel dwell time (see §2.1). Additionally, the FD
system uses a hybrid coupler architecture. This reduces cost,
but incurs a 7 dB loss (see §5). So, in total, our link budget is
reduced by 16 dB. This translates to a 2.5 × range reduction,
close to the 300 ft range of our system.

6.5 Non-Line-of-Sight (NLOS) Wireless Tests
Next, we set up in a 100 ft × 40 ft office building to evaluate
performance in a more realistic NLOS scenario. We place the
base-station reader in one corner of the building and move
the tag to ten locations to measure performance through cu-
bicles,multiple concrete and glass walls, and down hallways.

100 ft

40 ft

Full-duplex 
Reader

(a) Floor plan of the 4,000 f t2 office space.
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Figure 10: Non-Line-of-Sight Wireless Tests. We place the
backscatter tag at 10 locations shown as red dots.

The floor plan of the building is shown in Fig.10(a). The blue
star in the lower-right corner indicates the position of the FD
reader, and the red dots indicate the different locations of
the tag throughout the office space. We transmit 1,000 pack-
ets at each location, and a CDF of the aggregated RSSI data
from the test is shown in Fig.10(b). We observed a median
RSSI of -120 dBm and PER of less than 10% at all the loca-
tions demonstrating that the FD LoRa Backscatter system is
fully operational in the office space with a coverage area of
4,000 ft2.

6.6 Integration with Mobile Devices

Finally, we evaluate the performance of the mobile version
(see §5) of the FD reader. We attach the mobile reader to the
back of an iPhone 11 Pro, as shown in Fig. 11(a) and config-
ure the reader to transmit at 4 dBm, 10 dBm, and 20 dBm to
resemble the transmit power of mobile devices. We move a
backscatter tag away from the reader in 5 ft increments until
PER > 10%. Fig. 11(b) plots the RSSI of the received packets
as a function of distance. The plots show that at 4 dBm, the
mobile reader operates up to 20 ft and the range increases
beyond 50 ft (the length of the room and limit of our test-
ing) for a transmit power of 20 dBm. These distances are
sufficient for connecting peripheral, wearable, and medical
devices to a smartphone using backscatter at extremely low
cost, small size, and low power consumption. These experi-
ments were done in an uncontrolled wireless environment and
the variation in signal strength at different locations is due
to multi-path effects, which is typical of practical wireless
testing.

To demonstrate that our system can adapt to variations in
environment and antenna impedance, we place the FD LoRa
Backscatter enabled smartphone in a subject’s pocket and set
the transmit power to 4 dBm. We place a tag at the center of an
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of a smartphone.
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Figure 11: Integration with Mobile Devices.

11 ft× 6 ft table, and the subject walks around the perimeter of
the table, receiving more than 1,000 packets. The performance
is reliable with PER < 10%, which demonstrates the efficacy
of our tuning algorithm. Fig. 11(c) plots the CDF of RSSI for
all the packets. The backscatter tag measures 2 in × 1 1

2 in,
resembling the size of a pill bottle. This demonstrates that a
mobile smartphone can use backscatter to communicate with
a prescription pill bottle or insulin pen, allowing tracking of
medication and drug delivery.

7 Applications

We demonstrate two applications for our FD system. First,
we show how a mobile reader can collect data from a smart
contact lens, a particularly challenging RF environment. Next,
we demonstrate a precision agriculture application by mount-
ing the reader to the bottom of a drone, which can be flown
over farms and use backscatter to collect data from sensors
distributed in a field. The use of a single reader coupled with a
highly sensitive long-range backscatter protocol enables these
applications, even in these challenging deployments.

7.1 Contact Lens
We use the mobile FD LoRa Backscatter system mounted on
the back of a smartphone to communicate with a backscatter
tag equipped with a smart-contact-lens-form-factor antenna.
We use the same backscatter endpoint as with other tests, but
we cut off the original PIFA and replace it with a small loop
antenna of 1 cm diameter made with 30 AWG enameled wire.
The antenna is encapsulated in two contact lenses and filled
with contact lens solution to simulate the RF environment
of an eye-ball, as shown in Fig. 12(a). Due to its small size
and the ionic environment of the contact solution, the loop
antenna has an expected loss of 15 - 20 dB.

We place the smartphone on a table and configure the mo-
bile reader to transmit at 4, 10, and 20 dBm and move the
contact lens backscatter prototype away from the smartphone.
Fig. 12(b) shows the RSSI as a function of distance for various
transmit powers. We show that the mobile reader at 10 dBm
and 20 dBm transmit power can communicate with the contact
lens at distances of 12 ft and 22 ft respectively for PER < 10%.
Next, we put the mobile reader transmitting at 4 dBm in a 6 ft
tall subject’s pocket and hold the contact lens prototype near

the subject’s eye to simulate a realistic use case. Fig. 12(b)
plots the CDF of the RSSI of decoded packets when the user
was standing and sitting on a chair. The plot shows reliable
performance with PER < 10% and a mean RSSI of -125 dBm.
This demonstrates the feasibility of using backscatter to pro-
vide continuous connectivity between a user’s phone and a
smart contact lens. This RF-challenged application was made
possible even at such a low transmit power due to the high
receive sensitivity of the system.

7.2 Drone with an FD Backscatter Reader

Drones are extensively used for aerial surveillance in preci-
sion agriculture [87]. We demonstrate how one can augment
a drone’s functionality by adding a FD LoRa Backscatter
reader to communicate with sensors distributed in a field us-
ing backscatter. We attach the mobile version of our reader
to the bottom of a low-cost, commercially-available Parrot
AR.Drone 2.0 quadcopter (<$80) [24], as shown in Fig.13(a).
We power the reader from the drone’s battery using a USB
connector to demonstrate the ease of integrating our system.
We set the transmit power to 20 dBm to reduce the burden
on 7.5 Whr battery of the cheap drone. We place the tag on
the ground simulating an agriculture sensor and fly the drone
at a height of 60 ft. Due to practical challenges in accurately
positioning the drone, we allow the drone to fly laterally dur-
ing the test up to 50 ft from the center, which results in 80 ft
maximum separation from the tag. This corresponds to an
instantaneous coverage area of 7,850 ft2. We collect more
than 400 packets over 4 minutes with the drone flying around
the coverage zone while keeping its altitude constant.

Fig.13(b) plots CDF of the RSSI of the packets received by
the drone over the entire duration of the test for a PER <10%.
With a minimum of -136 dBm and median of -128 dBm, this
demonstrates good performance for the area tested. With a
flight time of 15 min and a top speed of 11 m/s, our cheap
drone could, in theory, cover an area greater than 60 acres
on a single charge. With a more powerful drone with higher
payload capacity and longer flight time, one could integrate a
higher gain antenna and transmit at higher power. This would
result in a greater instantaneous coverage area and, with longer
flight time, could achieve many times greater coverage on a
single charge.
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(a) Contact lens antenna prototype.
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Figure 12: A mobile FD LoRa Backscatter reader communicating with a contact lens prototype.

(a) Reader mounted on the
drone.
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Figure 13: Backscatter enabled Low-Cost Drone.

8 Related Work

Our work is related to prior efforts in HD backscatter, FD
backscatter, and in-band FD communication.

Half-Duplex Backscatter. Our work builds on recent efforts
in developing backscatter solutions that are compatible with
existing wireless standards such as Bluetooth [43, 47, 53, 89],
WiFi [26, 47, 56, 89, 90, 92], Zigbee [64], and LoRa [73, 84]
using half-duplex architectures. The backscatter endpoint is
based on prior LoRa backscatter design [84], but we take
the next step of integrating the single-tone carrier source and
LoRa receiver into a single device.

In addition to standards-compliant backscatter, proprietary-
protocol communications [46, 78, 79, 93] (to improve data
rates and throughput), applications such as wireless video
streaming [49,81], indoor localization [67,68,71], and human
activity recognition [27, 34, 80] have been realized with HD
deployments. The techniques presented in this work can be
extended to build an FD version of these systems.

Full-Duplex Backscatter. A BLE monostatic/FD backscatter
system was introduced in [42] that uses a 20 dB coupler, phase
shifter, and variable attenuator for SI cancellation. However,
due to additional losses in the coupler and limited cancellation
depth, the communication range was limited to 3 m, even with
33 dBm of output power. In [30], an FD backscatter system
using an SDR platform with analog and digital cancellation
was introduced where WiFi packets are used as the carrier and
the tag backscatters proprietary BPSK, QPSK, and 16-PSK
modulated packets which were decoded by the SDR up to a
distance of 7 m. Due to the wide-band nature of WiFi carrier
signals, [30] needs wide-band SI cancellation. A circulator
and a 10 cm× 10 cm custom PCB with 16 variable-gain delay
lines are added to the SDR platform for wide-band analog

cancellation, increasing both the solution cost and size. In
contrast, the FD LoRa Backscatter system uses commodity
LoRa radios and passive components for cancellation and can
receive standard LoRa packets up to a distance of 300 ft.

RFID readers are also full-duplex devices that transmit a
single-tone carrier and receive backscattered packets from
RFID tags. However, EPC Gen2 readers are bulky, expen-
sive [18, 22], and cannot compete with economies of scale
of standard protocols. The operating range of passive RFID
readers is determined by the power-harvesting sensitivity, not
by the backscatter communication link. RFID readers oper-
ate at relatively short distances, even if the tag is powered
from an alternative energy source [51], due to poor receive
sensitivity (−90 dBm) [18, 22]. In contrast, our FD LoRa
Backscatter system achieves much longer operating distances
at significantly lower cost by leveraging a highly sensitive
commodity LoRa receiver, cheap passive components, and
a microcontroller for deep SI cancellation. Low-cost RFID
readers based on directional couplers have also been investi-
gated [50,54], but they suffer from high Rx insertion loss and
lower SI cancellation depth, which reduces range. In [69], a
full-duplex drone relay is presented to extend the range of a
fixed RFID reader. The topology requires an additional relay
on a drone to extend the fixed RFID reader range to 50 m. In
contrast, our FD reader can be mounted on a flying drone to
cover a significantly larger area.

In-Band Full-Duplex Radios. In-band full-duplex (IBFD)
radios simultaneously transmit and receive at the same fre-
quency. Recent works have used a combination of isolation,
analog cancellation, and digital cancellation techniques to
suppress SI below the receiver noise floor [31, 35, 41, 62].

Existing isolation techniques use two or more physically-
separated antennas [40, 41, 44, 63], discrete circulators [31,
35, 57, 62, 91], integrated circulators [39, 77], or hybrid junc-
tions [38, 65] to isolate transmitter and receiver. The use of
multiple antennas increases form factor while achieving lim-
ited isolation. Discrete circulators [9] are bulky and expensive.
While recent advances in integrated circulators [39, 77] are
promising, these devices are unable to handle the 30 dBm
output-power requirement. Hybrid junctions, realized using
couplers [50, 54] (such as the 3 dB coupler used in this
work) or electrical balance duplexers (EBD) [38, 65], incur a
loss, but result in small-form-factor and inexpensive solutions.
However, existing solutions with COTS components cannot
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Table 3: Comparison of State of the Art Analog SI Cancellation Techniques

Reference Cancellation Technique
TX

Signal
RX

Signal
Analog

Can.
TX

Power
Active
Comp.+ Size Cost

[41]
Multiple antenna +
auxiliary can. path

WiFi
Packet

WiFi
Packet 65 dB 8 dBm Yes

37 cm Ant.
Separation High

[35]
Circulator + 2 tap

freq. domain equalization
WiFi

Packet
WiFi

Packet 52 dB 10 dBm Yes 1.5 × 4.0 cm2 High

[62]
Circulator + 3 complex-

tap analog FIR filter
WiFi

Packet
WiFi

Packet 68 dB 8 dBm Yes N.A. High

[38]
EBD + Double

RF adaptive filter General General 72 dB 12 dBm Yes Custom ASIC*

[77]
Magnetic-free N-path
filter-based Circulator General General 40 dB 8 dBm No Custom ASIC*

[65]
EBD + passive
tuning network General General 75 dB 27 dBm No Custom ASIC*

[30]
Circulator +

16 tap analog FIR filter
WiFi

Packet
WiFi

Backscatter 60 dB 20 dBm No 10 × 10 cm2 High

[42]
20dB Coupler +

Active tuning network CW
BLE

Backscatter 50 dB 33 dBm Yes N.A. High

[55]
10dB Coupler + Atten.

+ passive tuning network CW
EPC

Gen 2 60 dB 26 dBm No 2.7 × 2.0 cm2 Low

This Work
Hybrid Coupler +

passive tuning network CW
LoRa

Backscatter 78 dB 30 dBm No 2.5 × 0.8 cm2 Low

+ Active components include phase shifters, vector modulators, amplifiers and transconductance amplifiers which can contribute additional noise.
* Custom ASICs are incompatible with COTS transceivers and are only viable and cost-efficient at scale.

achieve 78 dB of SI cancellation [42, 50, 54], whereas our
proposed two-stage impedance tuning network can be used to
achieve this deep cancellation required for building a cheap,
low-complexity, long-range FD reader. Furthermore, [38, 65]
show a path towards further reducing the cost and size at high
volumes by integrating the hybrid junction in silicon.

Analog feed-forward cancellers can be combined with iso-
lation techniques to enhance SI cancellation depth and band-
width. Various feed-forward PCB and ASIC implementations
based on vector modulation [32], finite impulse response fil-
ters [31, 38, 62, 91], frequency domain equalization based RF
filters [35], N-path filters [94], and Hilbert transform equal-
ization [82] have been proposed. However, these techniques
require additional active circuitry, which has a limited power-
handling capability and generates noise that increases the re-
ceiver noise floor [37]. Furthermore, COTS phase shifters [23]
and vector modulators [21] are bulky and expensive, which
substantially increases cost, complexity, and form factor. In
this work, we utilize the two-stage tunable impedance network
architecture to achieve the required 78 dB cancellation depth.
Since the transmitter carrier signal is only single-tone, we do
not need the feed-forward paths to improve the bandwidth.

In Table 3, we summarize the state-of-the-art techniques
used for analog SI cancellation and compare them with our
approach in terms of cancellation depth, transmit power-
handling capability, size, and cost.

Finally, digital cancellers are often used to further sup-
press the SI below the receiver noise floor [31, 35, 58, 61]

using both linear and non-linear cancellation techniques [52].
Digital cancellation requires access to baseband IQ samples.
This function is not available on commodity radio chipsets
and is typically implemented on SDRs [28, 31, 35, 83], FP-
GAs [85], or DSPs [29], which are prohibitively expensive.
Instead, since our interference is a single-tone at a frequency
offset from the receive channel, we leverage the inherent
baseband filtering capabilities of the commodity receiver to
suppress the SI at the offset frequency.

9 Conclusion

We present the first low-cost, long-range, small-form-factor
Full-Duplex LoRa Backscatter design. We use a single-
antenna, hybrid-coupler-based architecture and introduce a
novel two-stage tunable impedance network to meet the strin-
gent SI-cancellation requirements using only passive compo-
nents and a microcontroller. We build hardware using COTS
components and prototype proof-of-concept applications for
a smart contact lens and backscatter enabled drone.
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Abstract– Wireless Network-on-Chip (NoC) has emerged
as a promising solution to scale chip multi-core processors
to hundreds and thousands of cores. The broadcast nature
of a wireless network allows it to significantly reduce the
latency and overhead of many-to-many multicast and broad-
cast communication on NoC processors. Unfortunately, the
traffic patterns on wireless NoCs tend to be very dynamic and
can change drastically across different cores, different time
intervals and different applications. New medium access pro-
tocols that can learn and adapt to the highly dynamic traffic in
wireless NoCs are needed to ensure low latency and efficient
network utilization.

Towards this goal, we present NeuMAC, a unified approach
that combines networking, architecture and deep learning to
generate highly adaptive medium access protocols for wire-
less NoC architectures. NeuMAC leverages a deep reinforce-
ment learning framework to create new policies that can learn
the structure, correlations, and statistics of the traffic patterns
and adapt quickly to optimize performance. Our results show
that NeuMAC can quickly adapt to NoC traffic to provide
significant gains in terms of latency, throughput, and overall
execution time. In particular, for applications with highly dy-
namic traffic patterns, NeuMAC can speed up the execution
time by 1.37×−3.74× as compared to 6 baselines.

1 Introduction
Recently, there has been an increasing interest from both
industry and academia to scale network-on-chip (NoC) mul-
ticore processors to hundreds and thousands of cores [11,
21, 25, 49]. To enable such massive networks on chip, com-
puter architects have proposed to augment NoC multicore
processors with wireless links for communication between
the cores [7, 9, 54, 65, 91]. The broadcast nature of wireless
networks enables the NoC to significantly reduce the num-
ber of packets that the cores need to communicate to each
other as well as the latency of packet delivery [1, 38]. Both
aspects play a central role in scaling the number of cores on
an NoC multicore processor (See Background Section 3 for
details) [1, 8, 38, 50, 56]. These benefits have motivated RF
circuits designers to build and test wireless NoC transceivers
and antennas that can deliver multi-Gbps links while impos-
ing a modest overhead (0.4–5.6%) on the area and power
consumption of a chip multiprocessor [31, 93, 99, 100].

While the use of wireless can significantly benefit NoCs, it
brings on new challenges. In particular, the wireless medium
is shared and can suffer from packet collisions. Design-
ing efficient medium access protocols for wireless NoCs

is, however, difficult. The traffic patterns in NoCs tend to
change drastically across applications. Even during the exe-
cution of a single application the traffic pattern can change
as fast as tens of microseconds [4, 38]. As a result static
MAC protocols such as TDMA, FDMA and CSMA perform
poorly [17, 33, 35, 61, 70, 71, 89]. Further, due to thread syn-
chronization primitives likes barriers and locks in parallel
programming, the wireless NoC exhibits complex hard-to-
model dependencies between packet delivery on the network
and execution time. As a result, even adaptive protocols that
try to switch between TDMA and CSMA or optimize for long-
term throughput [40, 65, 66], perform poorly in the context
of wireless NoCs since they remain agnostic to these domain
specific and intricate dependencies. Hence, the design of ef-
ficient medium access protocols has been identified as a key
bottleneck for realizing the full potential of a wireless NoC
multiprocessor [6, 12].

In this paper, we present NeuMAC, a unified approach
that combines networking, architecture and deep learning
to generate highly adaptive medium access protocols for a
wireless network on chip architecture. NeuMAC leverages a
reinforcement learning framework with deep neural networks
to generate new MAC protocols that can learn traffic patterns
and dynamically adapt the protocol to handle different appli-
cations running on the multi-core processor. Reinforcement
Learning (RL) has proved to be a very powerful tool in AI for
generating strategies and policies that can optimize for com-
plex objectives [68, 81]. RL allows NeuMAC to make better
decisions by learning from experience. In particular, many
basic functions, like FFT, graph search, sorting, shortest path,
etc., tend to repeatedly appear in many applications. Past work
also shows that a number of unique periodic traffic patterns
emerge in multiple different programs, and as the number
of cores increases, the traffic patterns show increasingly pre-
dictable spatiotemporal correlations and dependencies [3, 4].
NeuMAC learns these statistics and correlations in the traf-
fic patterns, to be able to both predict future traffic patterns
based on traffic history and adapt its MAC protocol to best
suit the predicted future traffic. Furthermore, RL enables Neu-
MAC to account for hard-to-model complex dependencies
between execution time and delivery of packets. In particular,
we carefully engineer the reward function in RL to optimize
for execution time rather than to simply improve the latency
and throughput of the network.

Indeed, RL has been leveraged for wireless MAC protocols
in the context of heterogenous wireless networks [43, 101],
sensor networks [41], and IoT networks [62]. However, bring-
ing these benefits to wireless networks on chip faces a num-
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ber of unique challenges. First, past work runs RL inference
for every packet at each time step, which is not feasible for
WNoCs since the time scale of operation in a multicore pro-
cessor is in the order of nanoseconds. Hence, per time-slot
inference would significantly delay every packet transmission.
Second, due to compute resource constraints, it is also not
feasible to run RL inference at every core of the wireless
NoC. While the second challenge can be addressed using a
centralized controller for the RL model, it would still incur
significant communication overhead and latency to collect the
states from the nodes (e.g. traffic injections or buffer occu-
pancy) and to inform the nodes when to transmit.

NeuMAC addresses these challenges by designing a frame-
work where the controller is trained to generate high-level
MAC policies simply by listening to on-going transmissions
on the wireless medium. This allows NeuMAC to eliminate
any communication from the cores to the controllers. More-
over, to amortize the overhead of inference and policy updates,
NeuMAC only updates the cores with a new MAC policy once
every interval spanning many execution cycles (e.g. ten thou-
sand cycles). We also train NeuMAC to learn policies that are
highly adaptive and simple to update, to reduce communica-
tion overhead from the controller to cores.

Finally, NeuMAC also needs to operate within the strict
timing and resource constraints of the multicore processor.
Modern deep neural networks, however, are designed with up
to a billion tunable parameters and operate on high dimen-
sional input spaces [47, 80]. Consequently, they require large
amounts of memory and computational resources, and also
suffer high inference latencies (tens of milliseconds) [46, 63].
To address this, we design NeuMAC’s RL framework such
that the input and output of the neural network scale linearly
with the number of cores. This ensures that NeuMAC is ex-
pressive enough to service the highly dynamic network traffic
while at the same time operate under the limited memory
and computational resources. Specifically, NeuMAC’s neural
network requires three orders of magnitude less parameters,
and adds a small area overhead to the multicore processor. It
also has an inference latency that is small enough to meet the
strict timing constraints of the multicore during run-time as
we show in detail in Appendix A.

We evaluate NeuMAC by integrating it with a cycle-level
architectural simulator for CPU-GPU heterogeneous com-
puting that faithfully models the intricacies of multi-core
processors [87]. We augmented the simulator with an on-
chip wireless network that accurately models transmissions,
collision handling and packet losses. We test NeuMAC’s per-
formance on real applications chosen from diverse domains
such as graph analytics, vision and numerical simulations. We
compare NeuMAC against six baselines including wired NoC,
standard CSMA, TDMA, optimal CSMA protocols [79], adap-
tive protocols [38, 65], and an optimal oracle. Our evaluation
reveals the following:
• For a 64-core NoC, NeuMAC is capable of learning traffic

patterns and adapting the medium access protocol at a
granularity of 10µs to achieve a median gain of 2.56×
−9.18× in packet latency and 1.3×−17.3× in network
throughput over different wireless NoC baselines.

• NeuMAC’s throughput and latency gains translate into an
average of 10%−47% speedup in execution time over wire-
less NoC baselines which goes up to 1.37×−3.74× for
certain applications. The results also show a 3.4× speedup
on average over a purely wired NoC.

• NeuMAC’s gains in execution time are close to the upper
bound that can be achieved by a wireless network with
infinite capacity and zero latency.

• As the number of cores scale up to 1024 cores, NeuMAC’s
performance gain increases to 3 orders of magnitude lower
latency and up to 64× higher throughput over baseline
protocols.

• NeuMAC is robust to lossy channels, and sees minimal
degradation in performance with upto 10% packet losses.
We also test NeuMAC’s sensitivity to noise in the observed
state and show almost no loss in performance.

Contributions: We make the following contributions:

• We introduce the first MAC protocol that can learn and
adapt to the highly dynamic traffic at very fine granularity
in a wireless NoC processor. The protocol also accounts
for non-trivial dependencies between packet delivery and
computation speedups by optimizing for execution time.

• We design a lightweight deep reinforcement learning frame-
work that introduces little overhead to the multi-core pro-
cessor and can operate within tight timing, power and area
constraints of chip multicore processors.

• We extensively evaluate our design and demonstrate signif-
icant improvement in network performance and reduction
in the overall execution time on the multicore processor.

2 Motivation and Insights
The wireless traffic patterns on a multicore processor have
been shown to vary significantly across different applications.
Even for a single application, the traffic can vary across dif-
ferent cores (spatially) and across different time intervals
(temporally) [4, 6, 12, 38, 83].

Fig. 1(a) shows examples of traffic traces captured from a
cycle-level architectural simulator for three different common
benchmark applications on a 16-core multiprocessor. The
x-axis shows the time in clock cycles, the y-axis shows the
core ID, and the scatter points show the injection of traffic at
each core. For clarity, we only show a portion of the execu-
tion spanning ten thousand cycles. Some applications, like
PageRank shown in Fig. 1(a)(i), have almost constant traffic
on all cores and can benefit from a contention-free protocol
like TDMA. Other applications, like computing the Short-
est Path in a Graph shown in Fig. 1(a)(ii), have very bursty
traffic and can benefit from a contention-based protocol like
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Figure 1: Illustrative Examples: (a) Traffic Pattern on a 16-core multiprocessor for different applications. The X-axis shows clock cycles, and the Y-axis
corresponds to each of the 16 cores. The figures depict the scatter plots representing the packet injections into the buffer of each core. The different colors for
packet injections are used for different cores. (b) NeuMAC can quickly adapt to fast changing traffic thus ensuring efficient network utilization throughout the
application’s execution. In the generated protocol, high probability values (closer to yellow in colormap) represent a CSMA-like protocol whereas low probability
values (closer to blue) represent a TDMA-like protocol. (c) NeuMAC can learn and optimize for the intricate dependencies between the executions on different
cores, and in turn optimize directly for end-to-end execution.

CSMA. Moreover, in most applications, the traffic pattern
changes within the execution of the application. For example,
Fig. 1(a)(iii)-(iv) show the traffic patterns at different times
in the execution of BodyTrack, a computer vision application
for tracking body pose. In the first time interval, since there is
steady injection of packets into the network on the 10 active
cores, a contention-free scheme will be optimal to minimize
collisions, whereas in the second time interval, a CSMA-like
based scheme for all 16 cores will perform better due to the
sparse traffic injection. Next, we present concrete examples
showcasing the range of protocols that NeuMAC can generate
for different traffic patterns.

A. Adapting to Dynamic Traffic Patterns: To further ap-
preciate the spatial and temporal changes across the execution
of an entire application, we show the traffic trace for the ap-
plication CC (Connected Components of a graph), running on
a 64-core processor in Fig. 1(b)(i). Here we can see that the
traffic varies significantly across the application’s execution.

Fig. 1(b)(ii) presents the protocol generated by NeuMAC.
At a very high level, NeuMAC’s protocol is simple. Each core
gets its own dedicated time slot where it can transmit with
probability 1 if it has traffic. Additionally, core i can also
transmit in time slots assigned to the other cores with some
contention probability pi. By setting these probability values
pi for each core, NeuMAC dictates the MAC protocol on the
wireless NoC. The figure shows these contention probabili-
ties pi’s for each core generated by NeuMAC. We present
NeuMAC’s protocol design in more detail in Section 4.3.

From Fig. 1(b)(ii), we can see that NeuMAC is able to
adapt quickly to the changes in the traffic patterns, becom-
ing more TDMA-like when the traffic is dense (contention
probabilities pi’s are 0 and everyone transmits only in their

assigned slot), and becoming more CSMA-like with sparse
traffic (contention probabilities pi’s are high and cores can
start transmitting in other’s assigned time slots). In the case
of CC, we can see that initially the traffic pattern is extremely
sparse and structured such that a simple “Aloha” protocol
would suffice. As a result, in the beginning the cores contend
for the channel aggressively under NeuMAC’s protocol. How-
ever, once the traffic pattern becomes more dense, NeuMAC
adapts the protocol to be more TDMA-like, thus ensuring
high network utilization. Finally, once the traffic pattern be-
comes less dense after 18∗104 cycles, the cores again start to
contend for the channel with higher probability, thus emulat-
ing a CSMA-like protocol. Note that, while NeuMAC is able
to quickly detect traffic changes from dense to sparse at time
steps 11 and 18 (From Fig. 1(b)(ii)), it does not immediately
increase contention probabilities for the cores. Instead the
change is gradual, and this is because of the outstanding pack-
ets remaining in the buffers immediately after the phase with
dense traffic injection. As a result, immediately switching the
probabilities would lead to large number of collisions.

The above example demonstrates that NeuMAC is able to
learn fine-grained highly dynamic MAC protocols that can
quickly adapt to support different kinds of traffic patterns,
while accounting for subtle characteristics of network opera-
tions such as buffer build-ups even though this information
is not explicitly fed into NeuMAC’s RL model. While there
has been a lot of work on adaptive and optimal CSMA pro-
tocols [51, 73, 77, 102], these works are theoretical and make
unrealistic assumptions. In particular, they optimize for long
term throughput and assume that the protocol can reach a
steady-state operation much faster than the variation in traffic
patterns, which does not hold for wireless NoCs. As a result,
these protocols perform poorly as we show in section 6.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    975



B. Optimizing for Synchronization Primitives: Another
challenge in designing efficient protocols stems from syn-
chronization primitives. These primitives impose intricate
dependencies between the execution of threads on different
cores, leading to a non-trivial relationship between the deliv-
ery time of packets on the NoC and the progress of execution
on each core. For example, in parallel computing it is com-
mon practice for software developers to use barriers for
synchronization. These barriers are placed throughout the
code of a multithreaded application in order to force each
thread to stop at a certain point, blocking its execution until
all participating threads catch up. Most standard libraries for
parallel programming use barriers in many of its primitive
routines in order to ensure the correctness of the program,
such as OpenMP’s For loop [23], or MPI’s Send/Recv [45].
Therefore, there is complex but predictable structure in the
traffic patterns caused by these synchronization primitives
that can be exploited to improve parallel speedup and scalabil-
ity of high performance applications. Hand tuning protocols
to account for these dependencies is non-trivial. For exam-
ple, the cores themselves do not explicitly know that they are
involved in a barrier before they actually reach the barrier
and execution halts. [28, 82]. Past work on designing MAC
protocols mainly optimizes for throughput and latency, and is
agnostic to such dependencies.

As a concrete example, consider the multiapplication jobset
comprising of three concurrent applications, namely a 4-core
BFS, a 4-core CC and a 8-core Pagerank, running on a 16-core
multiprocessor as shown in Fig. 1(c)(i). In the traffic trace,
one can observe two sets of barrier packets in the execution
of BFS, denoted by black squares. The other two applications
have no barriers in this portion of their executions. Here,
note that core 16 has significantly more packets to transmit
before arriving at its barrier, whereas core 13, 14 and 15 arrive
at their barriers sooner. As a result, the execution on cores
13, 14 and 15 is blocked until core 16 clears its barrier, thus
rendering the compute resources of these three cores useless
as they idly wait for core 16. Additionally, at the same time
core 16 also has to contend for the channel with traffic from
CC, which itself has a lot of ongoing communication. Ideally,
the MAC protocol in this case should prioritize traffic of the
core that is falling behind, so that it arrives to the barrier and
clears it as soon as possible, allowing the blocked cores to
proceed execution and thus optimizing overall execution time.
In Fig. 1(c)(ii), we can see that NeuMAC can learn to account
and optimize for such dependencies. At the start, NeuMAC
assigns high contention probabilities to cores 13 to 16 so that
it can clear the barrier point at the earliest, while assigning
low contention probabilities to cores 9 to 12. Once the barrier
is cleared, NeuMAC increases the contention probabilities
for the CC cores, so that it can transmit on the channel while
the other applications go through low communication periods,
thereby ensuring high network utilization.

Protocols like CSMA, TDMA and even adaptive protocols
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Figure 2: NoC Architecture with Wireless Links

cannot optimize for such situations as they would treat every
packet in the network as equally important, thus sharing the
channel equally between BFS and CC here. This would result
in core 16 clearing its barrier much later, thus harming end-
to-end execution time. However, since NeuMAC is trained
to directly optimize the high-level objective of end-to-end
execution time instead of network metrics like latency, it is
able to learn to prioritize the packets of some cores over
others. In this example, with NeuMAC’s protocol, core 16
arrives at its barrier 2.4× faster as compared to CSMA, and
3.75× faster as compared to TDMA. This in turn leads to an
overall improvement in execution time of 43% and 81% over
CSMA and TDMA respectively.

3 Background

3.1 Wireless Network on Chip
Network-on-Chip (NoC) architectures have played a funda-
mental role in scaling the number of processing cores on
a single chip which led to unprecedented parallelism and
speedups in execution time [30,75,88,94]. Prior to NoC, mul-
ticore processors used a shared bus architecture which had
very poor scalability. As the core count increases, the power
required to drive the bus grows quickly due to the increase
in the capacitance of the bus wires [15]. The bus also starts
to suffer from large latency [74]. As a result, shared buses
become impractical for designs beyond 16 cores [59].

Unlike a shared bus, wired NoCs use packet-switched com-
munication with every core connected to a router as shown in
Fig. 2 [78]. As the packet moves from source to destination,
it is buffered, decoded, processed, encoded, and retransmit-
ted by each router along the multi-hop path. However, as
we scale the number of cores, computation slows down due
to the high communication latency and overhead of the net-
work [10, 57, 97]. This problem is known as the “Coherency
Wall” [58], where the execution on each core is faster than the
NoC’s ability to ensure that the memory caches of the cores
are coherent. Hence, the speedup gained by parallelism and
multithreading is outweighed by the network’s communica-
tion cost for keeping the caches coherent [5, 8, 58].

Recent work proposes to augment NoC multicore pro-
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cessors with wireless links for communication between the
cores [7, 9, 54, 65, 91]. Wireless links benefit chip multicore
processors in two important aspects:1

• Lower Latency: Wireless enables every core to reach ev-
ery other core in just a single hop. In contrast, in a purely
wired NoC, a packet must go through multiple NoC routers,
incur queuing, transmission, and processing delay at every
hop which ends up taking multiple execution cycles [1].
Hence, as the number of cores increase, wireless can de-
liver packets with significantly lower latency and within
the tight timing requirements of execution on the cores [1].

• Broadcast: Since wireless is a broadcast medium, trans-
mitted packets are directly heard at all other cores which
significantly simplifies the NoC’s ability to ensure the co-
herency of the memory caches. In particular, any local
changes in the memory cache of a core can instantaneously
be replicated at all other cores through a single packet trans-
mission [38]. In contrast, today’s wired NoCs must send
multiple parallel unicast/multicast transmissions to syn-
chronize the caches, which leads to a large overhead that
scales poorly as the number of cores increases [8, 50, 56].

Several wireless NoC transceivers and antennas have been
built and shown to deliver 10 to 50-Gbps links while im-
posing modest overhead (0.4–5.6%) on the area and power
consumption of a chip multiprocessor [31,39,93,99,100]. The
wireless transceivers typically operate in the millimeter-wave
and sub-THz spectrum which enables miniaturizing the anten-
nas and avoids antenna coupling. Antennas are either planar
integrated dipoles or vertical monopoles drilled through the
silicon die [24, 86]. The wireless signals propagate through
the enclosed chip packaging and attenuate by few tens of
dBs [85, 86]. On-Off Keying (OOK) is the choice of modula-
tion since it requires significantly lower powerand achieves
a very low Bit Error Rate (BER) for on-chip wireless links
[39, 60, 99]. We adopt the collision and packet loss handling
protocols from past work [1, 38].

3.2 Deep Reinforcement Learning

We provide a brief primer on RL based on [84]. In RL, an
agent interacts with an environment, and learns to generate a
policy directly from experience as shown in Fig. 3. In our case,
NeuMAC is the agent, the multiprocessor is the environment,
and the generated MAC protocol is the policy.

• Agent & Environment: The agent starts with no apriori
knowledge. Then, at each time step t, the agent observes the
state st of the environment, and takes an action at . Following
the action, the environment transitions to state st+1, and the
agent receives a reward rt . The state transitions and the re-
wards are stochastic and assumed to have the Markov property.

1Note that other technologies such as optical links have poor perfor-
mance [2, 9, 37].

Learning 
Update

Policy DNN

Π"($%, '%)

Action at

Reward rt
State st

)
Agent

Environment
St+1 rt+1

Figure 3: Deep Reinforcement Learning Framework.

During training, the agent gains experience by taking actions
and observing the state transitions and rewards in response to
these actions. The actions the agent takes aim to maximize
an objection function known as the expected cumulative dis-
counted reward: E

[
∑

∞
t=0 γtrt

]
, where γ ∈ (0,1] is the discount

factor for future rewards.

• Policy: The action at picked by the agent is dictated by a
policy π, where π represents a probability distribution over the
space of actions and states : π(s,a)→ [0,1]. That is, π(s,a)
is the probability that action a is taken in state s by the agent
following policy π. For most large-scale practical problems,
the policy π is modeled with a Deep Neural Network (DNN),
as they are very powerful function approximators. The DNN
is parameterized by θ, which are the learnable parameters of
the model, and we represent the policy as πθ(s,a). θ is also
referred to as the policy parameters.

• Training: The objective of training in RL is to learn the
policy parameters θ so as to maximize the expected cumu-
lative reward received from the environment. Towards this
end, we focus on a class of RL algorithms called policy gradi-
ent algorithms, where the learning takes place by performing
gradient descent on the policy parameters. In practice, the
training methodology follows the Monte Carlo method where
the agent samples multiple trajectories obtained by following
the policy πθ, and uses the empirically computed cumulative
discounted reward as an unbiased estimator of the expected
value. This empirical value is then used to update the pol-
icy parameters via the gradient descent step. The result is a
known algorithm: REINFORCE which we use in this paper.
For more details, we refer the reader to [84].

4 NeuMAC Design

4.1 Overview

NeuMAC consists of two components. (1) A standard NoC
multicore processor with N cores where each core has been
augmented with a wireless transceiver as shown in Fig. 2. (2)
A NeuMAC agent that periodically generates new medium
access policies based on the traffic patterns it sees on the wire-
less NoC. The agent is housed in a simple neural accelerator
that resides on the same chip with a small area and power
overhead (See Appendix A for hardware details).

Fig. 4 shows the working of NeuMAC. The NeuMAC agent
is equipped with a wireless transceiver through which it can
listen on the channel, and also send protocol updates to the
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cores. The NeuMAC agent listens on the wireless channel
for a period called the “Listening Interval” where it collects
traffic data about core transmissions, collisions and idle slots.
It, then, feeds this data to a trained RL neural network that im-
plicitly predicts the future traffic patterns and generates a new
policy to be used as the medium access protocol during the
next Listening Interval. NeuMAC updates the policies at the
cores by sending an update message with the policy parame-
ters. Each Listening Interval and Update Interval constitute a
single step in the RL framework.

One point to note is that, although the cores share a com-
mon clock for their normal CPU operation2, it is infeasible
to coordinate medium access for each clock cycle through a
shared centralized scheduler, since the exchange of control
messages between the cores and the scheduler would itself
incur latencies of multiple clock cycles. [6]

4.2 Design Challenges

The above design is governed by several strict timing and
resource constraints of wireless NoC. In particular, it must
address the below challenges while at the same time ensur-
ing NeuMAC’s ability to generate versatile and expressive
medium access protocols to service the dynamic and fast-
varying traffic patterns.

C1. Centralized Agent: Ideally, we would have wanted Neu-
MAC to adopt a distributed design where every core is
equipped with its own NeuMAC agent that dictates its own
MAC protocol. However, introducing a neural accelerator at
every core would be prohibitively expensive in terms of area
and power. Hence, NeuMAC is constrained to a centralized
approach with a single agent.

C2. Cores to Agent Communication Overhead: To obtain an
accurate view of traffic patterns, NeuMAC must obtain the
packet injection rate and buffer occupancy across time at
each core in the network. However, relaying this information
from every core back to the centralized agent would result in
huge communication overhead. Instead, NeuMAC leverages
the broadcast nature of wireless networks to collect traffic
patterns simply by listening for transmissions on the wireless
medium. While the collected information is less expressive
than the history of packet injection and buffer occupancy at
each core, it retains sufficient information to allow NeuMAC

2 Unlike a distributed system of machines, a shared clock for a manycore
system is feasible since all cores are housed on the same silicon die.

to predict traffic patterns while at the same time completely
eliminating communication overhead from the cores to the
centralized agent.

C3. Agent to Cores Communication Overhead: One option
is to have the agent tell each core whether to transmit or
not at every CPU clock cycle. However, this would require
running inference and relaying information to each core at
every clock cycle which would lead to prohibitively large
communication overhead. To address this, NeuMAC amor-
tizes the communication overhead (Update Interval) from
the agent to the cores by performing inference once every
Listening Interval spanning thousands of clock cycles. In
our implementation, we use an interval of L =10,000 clock
cycles (10µs) which is large enough to reduce the overhead
to less than 6% and small enough to ensure that the traffic
patterns remain stable and can be learned by the RL agent.

C4. Complexity of the MAC Policy: NeuMAC generates a
policy that dictates the MAC protocol of each core for the
following Listening Interval. Ideally, NeuMAC would gen-
erate a deterministic transmission schedule for every core to
follow. Such a design is extremely expressive since it could
allow NeuMAC to generate any possible schedule. However,
such a design would require the RL deep neural network
to output an action space with N×L dimensions where N
is the number of cores and L is the number of clock cycles
(e.g. 10,000). Such a neural network would be unsuitable
for a resource-constraint setting like NoC. To address this,
we carefully design a parameterized MAC policy that can
support a flexible range of medium access protocols while
ensuring that the neural network only needs to output a few
parameters to dictate the desired policy.

C5. Reward engineering: The reward during training needs
to be designed so as to guide NeuMAC towards the high-
level objective. While most past work on learning link-layer
and network-layer protocols only use network-level metrics
such as throughput and latency for the reward signal, in our
case we need to choose domain specific rewards so as to
optimize for the end goal, which is application execution
speedup on the multicore.

C6. Low Footprint Neural Network: NeuMAC’s neural net-
work must adhere to strict timing, power and area constraints
of a chip multiprocessor. Thus, our design cannot simply
adapt a known RL model as it would require large amounts
of memory and computational resources, and would also suf-
fer high inference latencies (tens of milliseconds) [46, 63].
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To address this, we design NeuMAC’s RL framework such
that the state space (input to the neural network) and action
space (output) scale linearly with the number of cores. Our
design ensures that NeuMAC is expressive enough while at
the same time can operate under NoC’s resource constraints.

4.3 NeuMAC’s MAC Policy
As discussed above, the MAC policy that the agent dictates
to the cores should have the following properties:

1. The policy should span a wide range of protocols, all the
way from TDMA to CSMA.

2. It should be possible to describe the policy with few pa-
rameters to reduce the communication overhead and the
output of the neural network.

3. It should allow for a simple neural network architecture to
learn a mapping from observed traffic patterns to the most
efficient MAC protocol.

In order to achieve these properties, we adopt a two-layer
protocol design. The first layer consists of a deterministic
underlying TDMA schedule, where each core is assigned a
unique time slot for transmission in a round-robin fashion. For
example, for time slots j ∈ [1, · · · ,L], core i is assigned the
slots { j | j mod N = i}where N is the number of cores. The
second layer consists of a probabilistic transmission sched-
ule like CSMA, where each core is assigned a contention
probability. Specifically, during its assigned time slot, core i
transmits on the channel with probability 1 if it has an out-
standing packet in its buffer. During other cores’ assigned
time slots, core i can transmit with probability pi. In the event
of a collision, exponential backoff is implemented by halving
pi of the colliding cores similar to CSMA. On the other hand,
if a transmission is successful, pi is reset to it’s initial value.

To generate this policy for an NoC with N cores, the RL
neural network needs to output an action space that can be de-
fined as at = [a1,t ,a2,t , . . . ,aN,t ] where ai,t ∈ [0,1] represents
the initial contention probability of core i during “Listening
Interval” t (i.e., time step t in the RL framework). The con-
tention probability of core i is then initialized as pi = ai,t .
Different choices of at result in different protocols on the
multicore. For instance, setting ai,t = 0 for all i results in
a simple TDMA protocol since every core only transmits
on the channel during its assigned slot. On the other hand,
ai,t = c > 0 for all i mimics a CSMA-like protocol with vary-
ing degrees of aggressiveness on the channel. The pseudo
code for NeuMAC’s protocol is presented in Alg. 1.

The above formulation satisfies our design objectives. First,
it enables NeuMAC to gracefully shift between a pure TDMA
and a CSMA scheme, while supporting all intermediate pro-
tocols. The design also gives the flexibility to control each
core individually, so that the NeuMAC can potentially in-
crease contention probabilities for cores that observe high
traffic intensity. Second, since the MAC protocol at core i is

Algorithm 1 NeuMAC Protocol
L← Number of Clock Cycles in Listening Interval
[a1,t ,a2,t , . . . ,aN,t ]← Action space generated by RL agent at time stept
[p1, p2, . . . , pN ]← [a1,t ,a2,t , . . . ,aN,t ]

At core i:
for j ∈ {1, · · · ,L} do

Bu f f eri( j)← Outstanding packet in the buffer for core i
if Bu f f eri( j) 6= /0 then

if j mod N = i then . TDMA Slot Assigned to Core i
Transmit with probability 1

else
Transmit with probability pi

if Transmission from Core i collides then
pi = pi/2

else
pi = ai,t

characterized by only one number (the contention probability
ai,t ), there is very small communication overhead during the
Update Interval, where the NeuMAC agent has to transmit a
single broadcast packet with N numbers. Each core, receives
the packet and extracts it own contention probability. Finally,
the design keeps the action space constrained and linear in
the number of cores which allows for a simple neural network
that can be easily trained and is more likely to converge.

4.4 RL Formulation and Training
Given the above design, we now formalize the state space,
reward, policy and training of NeuMAC’s RL framework.

• State Space Design: The NeuMAC agent takes state infor-
mation st as input and generates a MAC policy characterized
by the action space at described above. The state informa-
tion is generated purely by listening to ongoing transmissions
on the channel. As described earlier, this allows us to elim-
inate all communication overhead from the cores to the RL
agent. However, it only provides information about the ac-
tivity on the channel rather than the traffic injection into the
network. Moreover, in the event of a collision, NeuMAC can-
not know which cores attempted to transmit. Despite these
limitations, NeuMAC’s state space retains enough informa-
tion to infer traffic patterns. In particular, during each CPU
cycle, NeuMAC will either detect an idle channel, a collision,
or a successful transmission from some core i. We define our
state at time step t, st , as an (N+1)×1 vector that keeps track
of the number of successful transmissions from each core and
the number of collisions observed during the cycles in the RL
time step (Listening Interval). Specifically, the ith element of
st counts the number of successful packet transmissions by
core i, and the N + 1th element counts the number of colli-
sions. The number of idle slots is implicitly encoded in the
state since it is equal to L−∑

N+1
i=1 si,t where L is the number

of cycles in a Listening Interval. The state st is then used by
the NeuMAC agent to generate the MAC protocol policy for
the next time step.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    979



• Reward Engineering: The reward signal is designed to
guide the agent towards policies that optimize for the desired
objective. Most past work that uses RL for learning network-
ing protocols employs network-level metrics like throughput
or latency as the reward signal. However, in our case, we need
the reward signal to directly represent our end goal, which is
to optimize for speedups in application execution time on the
multicore. While network-level metrics like throughput are
correlated to the execution time, they do not always capture
the intricate dependencies between the execution on threads
and packet delivery on the network. In Section 6, we see that
there are instances where a protocol performs significantly
worse in terms of average network throughput, but still has
better end-to-end application execution time.

As a result, we design our reward signal to reflect our
high level objective of minimizing application execution time.
Specifically, for each time step t, the reward is set to −Lt
where Lt represents the number of clock cycles where the
application was executing. Hence, for all but the last time
step, the reward signal rt is set to −L. For the last time step,
reward is set to −k, where k is the number of clock cycles
at which the application terminates execution. The intuition
behind this choice for the reward signal is as follows. Recall
that the objective of reinforcement learning is to maximize
the cumulative reward, i.e. −∑t Lt . This is equivalent to mini-
mizing ∑t Lt , which ultimately means the application utilizing
fewer CPU clock cycles for execution. While this choice of
reward signal does correlate with improving network-level
metrics such as packet latency and throughput, it is not the
central objective and thus it is possible that sometimes the
NeuMAC agent compromises on network performance for
improvement in execution time. Note that in our formulation,
we set the discount factor γ = 1.

• Policy: We represent our policy π as a deep neural network
(also called policy network) which takes as input the state st ,
and maps it to at in the action space. Note that in our problem,
the action space is continuous. In such cases it is common
to discretize the continuous action space a ∈ [0,1]N similar
to [52], and convert the problem into a classification problem
where the agent now chooses which combination of ai’s to
pick. However, an obvious issue with this approach is the
curse of dimensionality. Even with 2 quantization levels for
each ai, the total number of discretized actions in a ∈ [0,1]N

becomes 2N . Thus the neural network architecture needs to
have an output dimension of 2N which becomes infeasible for
our resource constrained environment.

Therefore, we avoid discretizing the action space and, in-
stead, model the actions as following a Gaussian distribution
with mean µ and variance σ. The deep learning model is now
trained to output the parameters of this Gaussian distribution,
as described in [84]. The NeuMAC agent picks the action for
the next time step simply by sampling from the distribution
N (µ,σ). In NeuMAC, the policy network outputs N param-
eters µi corresponding to N distributions, one for each core

i. The variance σ is set to 1 at the start of training to encour-
age exploration, and annealed down to 0.05 as NeuMAC’s
policy improves. Finally, during inference, the variance σ is
set to 0.05, the action ai,t for core i is sampled from the cor-
responding distribution N (µi,σ), and clipped to ensure that
ai,t ∈ [0,1].

• Training Algorithm: We train our policy network end-to-
end in an episodic setting. In each episode, an instance of
an application is executed on the multicore, and the wireless
network on chip follows the MAC protocol as dictated by the
NeuMAC’s policy network. The episode terminates when the
application completes execution. In order to learn a policy that
generalizes well, we train the network for multiple episodes
with each episode observing a different application trace. For
every episode, we run M separate Monte Carlo simulations to
explore the probabilistic space of possible actions using the
current policy, and use the resulting data to improve the policy
for all applications. Specifically, we record the state, action,
and reward information for all time steps of each episode.
We then use this data to train our policy using the popular
REINFORCE algorithm along with a baseline subtraction
step, as described in [67].

4.5 Neural Network Architecture
Our network is composed of three fully connected layers with
128, 128 and 64 neurons respectively. The first two layers are
followed by ReLU activation units, whereas the final layer
is followed by a sigmoid unit to output the probability val-
ues ai’s between 0 and 1. During training, the weights use
16 bit floating points. Once trained, the learned weights are
quantized to 8 bit fixed points for the inference stage. This is
standard for run-time optimization in deep learning [53], and
does not adversely affect performance.

The proposed fully connected network architecture here is
simple and ties in very well with our design objectives. Recall
that NeuMAC performs one inference step every 10,000 CPU
clock cycles, and we require the inference step to add little
overhead. The architecture here is composed of 32,000 learn-
able parameters, and at 8-bit quantization, it can be stored in a
32 KB on-chip SRAM cache to ensure fast memory accesses.
Since inference latencies in most neural network architectures
tend to be memory bound (including Fully connected and
CNN architectures) [26, 53], improving memory access laten-
cies plays a big role in speeding up overall inference time.
Further, the simple structure of a fully connected network
allows for straightforward memory access patterns, since the
inference step is a straightforward computation amounting
to consecutive matrix multiplications. In Appendix A we
provide energy-delay characterization of this architecture.

One point to note is that NeuMAC’s deep RL agent is
trained offline, and does not undergo any training during run-
time since training is resource intensive. However, retraining
can be triggered periodically depending on performance re-
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Name Description
BFS [13] Breadth-first search
Bodytrack [20] Tracking a body-pose through images
Canneal [20] Compute optimal routing for gates on a chip
CC [13] Compute connected components of a graph
Pagerank [13] Compute pagerank for nodes in a graph
SSSP [13] Single source shortest path
Volrend [96] Rendering of 3D objects
StreamCluster [20] Cluster streams of points
Community [13] Compute modularity of a graph

Table 1: Summary of Applications

quirements and this retraining will be performed offline. The
updated model parameters can then be migrated to the neural
hardware accelerator by simply rewriting the SRAM memory
blocks on the accelerator corresponding to the neural net-
work’s model parameters. This update can happen through
the multicore’s wireless NoC communication channel and
won’t add much overhead since our model is restricted to just
32,000 parameters, each of 8 bits.

5 Implementation
Evaluation Environment: We evaluate NeuMAC on a cycle-
level execution-driven architectural simulator, Multi2sim [87].
Multi2sim is a popular end-to-end heterogenous system sim-
ulator tool used in the architecture community to test and
validate new hardware designs with standard benchmarks. We
evaluate NeuMAC for multicores with core count n = 64 at
22nm technology running at 1GHz. We use the same archi-
tecture parameters as [38]. We augment Multi2sim with an
on-chip wireless network that accurately models transmis-
sions, collision handling and packet losses.

While NeuMAC could be potentially trained directly us-
ing multi2sim, it is extremely slow and would result in pro-
hibitively large training times. Therefore, for NeuMAC’s
training phase, we use a light-weight custom-built Wireless
Network-on-Chip simulator along with traffic traces captured
from Multi2sim. Our custom simulator models the data de-
pendencies and synchronization primitives (such as locks and
barriers) in the applications, so as to faithfully mimic the
behavior of multi-threaded applications.

In order to evaluate NeuMAC’s generalizability and effec-
tiveness for a broad use case, we test NeuMAC on 9 differ-
ent applications chosen from diverse domains such as graph
analytics, vision, and numerical simulations (Summary in
Table 1). Additionally, we also test with multi-application
jobsets where different groups of cores are executing different
multithreaded applications. While training is performed using
our custom simulator, we evaluate NeuMAC using Multi2sim.
We integrate Multi2sim with NeuMAC’s trained RL agent,
and our evaluations account for the RL agent’s DNN inference
latency and communication latency between the multicore
and RL agent.

Training and Evaluation Details: For each application, we

collect 500 different traces, each generated with different in-
puts to the applications in order to capture the variations
between different runs. We evaluate NeuMAC using k-fold
cross validation, where we train the model on 8 applications
and test performance on the ninth application. Thus, we en-
sure that the NeuMAC agent is never explicitly trained on
the application it is being evaluated on, and our results show
that NeuMAC can generalize well to different applications.
We train NeuMAC for a total of 4000 episodes, and for each
episode we run M = 16 Monte Carlo simulations in parallel.
The policy network is trained using ADAM optimizer [55]
with a learning rate of 0.001.

6 Evaluation Results

6.1 Baselines

We compare with the following baselines:

(1) CSMA with Exponential Backoff: CSMA/CA protocol
from 802.11 networks, with backoff window ranging from 1
to 1024. [1, 71] use CSMA MAC in the context of WNoCs.

(2) TDMA: Cores are allocated fixed slots for transmission
in round-robin fashion. [5, 34] evaluate TDMA for WNoCs.

(3) Switch-thresh: [38, 65] propose a protocol that switches
between a static CSMA and a static TDMA protocol based on
per-core preset thresholds for channel activity and buffer occu-
pancy. The optimal threshold values vary across applications
and we choose values that are best in the average case.

(4) Optimal CSMA Algorithm: There is a large body of
work that designs throughput optimal CSMA algorithms.
However, most of these works are theoretical, and make sim-
plifying assumptions like ignoring collisions or static traffic
arrival rates, due to which they perform significantly worse
than even regular CSMA protocols in practice. Among the
optimal CSMA algorithms we tested, we found queue-based
algorithms to perform best. We implement an extension of the
popular Q-CSMA algorithm [79], where each node uses its
buffer queue buildup to infer its transmission aggressiveness
on the channel. While this algorithm is not truly distributed
in nature, we ignore the global communication overheads in
evaluations to favor the baseline performance.

(5) Wired Baseline: We also compare performance against
a purely wired baseline, where all cache coherency traffic is
serviced through the wired network-on-chip.

(6) Infinite Capacity Channel: We also compare Neu-
MAC’s performance against an oracle with infinite channel
capacity where the wireless medium can support multiple con-
current transmissions without suffering collisions, and every
packet can be transmitted immediately without any channel
contention delays. This baseline gives us an upper bound
on how much improvement in end-to-end execution time is
possible from improving the wireless NoC performance.
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Figure 5: Gains in Wireless Network Throughput. (y axis in logscale)

6.2 Quantitative Results

We first evaluate NeuMAC’s performance against baselines on
single application executions, followed by evaluations on the
more realistic scenarios where multiple applications are run-
ning on the multicore. We also test NeuMAC’s performance
under lossy network conditions, and conclude by presenting
scaling results where we demonstrate that NeuMAC’s gains
increase as the multicore scales to thousands of cores.

A. Single Application Wireless Network Performance:
We begin by evaluating the wireless network performance
against baselines along three metrics – (i) Wireless network
throughput, (ii) Packet latency on the wireless network, and
(iii) Number of collisions on the channel. We note that while
NeuMAC is not explicitly trained to optimize for network
metrics, their performance is correlated to faster execution
times on the NoC.

(i) Network Throughput: In Fig. 5, we plot the gains in
average network throughput achieved by NeuMAC against
the baselines. Compared to CSMA and TDMA, NeuMAC
achieves a mean improvement of 1.8× and 9.63× respectively
across the benchmarks, and a maximum improvement of 3.3×
and 32.1× respectively. TDMA has poor performance for av-
erage network throughput since cores have to wait for their
turn to transmit even when the traffic is sparse, which leads
to underutilization of channel.

Compared to Switch-thresh and Q-CSMA, NeuMAC
achieves a mean improvement of 1.2× and 1.33×, and a max-
imum improvement of 1.7× and 1.9× respectively. While
these protocols are improve over CSMA and TDMA, they
still cannot react and adapt quickly enough to accommodate
the fast changing traffic patterns on the multicore.

(ii) Packet Latency: In Fig. 6, we plot the CDF of packet
latency due to queuing in the Wireless Network-on-Chip
across all applications. It is interesting to note that while
at the tail TDMA performs better than CSMA, in the me-
dian case TDMA performs significantly worse than CSMA.
This is because the high packet latencies at the tail are due
to dense traffic in the network which TDMA is better suited
for, whereas at the median where traffic is less dense, TDMA
leads to much higher packet latencies. NeuMAC, on the other
hand, is able to adapt to all these different scenarios and pro-
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Figure 6: CDF of packet latency

Apps CSMA Switch-thresh Q-CSMA NeuMAC
CC 75.30% 55.58% 76.24% 8.72%
BFS 50.42% 28.28% 49.57% 3.81%
Pagernk 77.36% 11.26% 77.79% 2.19%
SSSP 11.08% 9.48% 9.44% 8.88%
Volrend 44.17% 7.93% 46.11% 2.49%
Strmclstr 62.57% 19.21% 62.69% 31.24%
Canneal 2.55% 2.87% 2.09% 2.04%
Bdytrck 30.5% 29.06% 29.8% 28.87%
Cmmnty 46.76% 32.02% 49.24% 5.8%

Table 2: % of Collisions

vides an improvement in packet latency across all baselines.
Over CSMA and TDMA, NeuMAC improves median packet
latency by 4.11× and 9.18×, and improves 90th percentile
latency by 3.89× and 1.92× respectively. Over Switch-thresh
and Q-CSMA, the gains respectively are 4.66× and 2.56× at
the median, and 1.47× and 2.13× at 90th percentile.

(iii) Collisions on Wireless Channel: In Table 2 we show %
of collisions on the wireless channel across different bench-
marks. We omit TDMA here since TDMA by design does
not suffer from collisions. As observed, NeuMAC has signifi-
cantly fewer collisions than the CSMA algorithms. Switch-
thresh is the next best performing protocol, but NeuMAC in
most cases still has fewer collisions.

B. Single Application End-to-End Execution Speedup:
(i) Speedups over Purely Wired Network-on-Chip: In Table 3,
we show application speed-ups achieved by NeuMAC and
the Infinite Capacity baseline respectively, over the purely
wired NoC. NeuMAC can speed up benchmarks by up to
9.7× for StreamCluster and 6.53× for BFS, and on average
provides a speedup of 3.42× across benchmarks. Addition-
ally, we see that NeuMAC gets very close to the upper bound
of the speedup value, achieving up to 99.5% of the maximum
speedup possible in the case of BFS, and 98% of the maxi-
mum speedup possible on average. This result demonstrates
that NeuMAC is able to fully exploit the potential offered by
the wireless NoC.

(ii) Speedups over Baselines: Fig. 7 shows execution time
gains of NeuMAC over the baselines on the wireless NoC.
As can be observed, there is no one baseline protocol that
performs well across all applications. While in applications
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Figure 7: Execution Time Results (y axis in logscale)

Apps NeuMAC Inf. Cap. baseline % Achieved
CC 1.96x 2.06x 95%
BFS 6.53x 6.56x 99.5%
Pagerank 1.07x 1.11x 96.4%
SSSP 2.24x 2.25x 99.5%
Volrend 1.32x 1.33x 99.2%
Strmclstr 9.70x 9.77x 99.28%
Canneal 1.14x 1.15x 99.13%
Bodytrack 1.37x 1.38x 99.3%
Community 3.77x 3.82x 98.6%

Table 3: Speedups over Purely Wired Network-on-Chip.

like Pagerank, TDMA performs the best, in other applications
such as BFS it is significantly worse. NeuMAC, on the other
hand, performs well across all benchmarks. In Table 4, we
see that NeuMAC achieves a maximum of 69.18% speedup
over CSMA for CC and 274.56% speedup over TDMA for
Community, and compared to Switch-thresh and Q-CSMA,
NeuMAC offers speedups up to 37.09%-55.94%.

C. Multi-Application Jobs: In Table. 5, we present execu-
tion time speedup results for multiapplication runs on the
multicore. For each run, we randomly choose one application
among the 9, and execute it using either 4, 16 or 32 threads.
We choose a sufficient number of applications such that all
64 cores are utilized, and in total we test on 100 different
multiapplication jobsets. Note that the NeuMAC agent was
never explicitly trained on such multiapplication traffic traces.
From Table. 5, we can see that NeuMAC’s gains increase over
the baselines compared to single benchmark experiments (Ta-
ble. 4), and goes as high as 6.15× (515.04%) speedup over
TDMA. These higher gains in multiapplication jobsets can be
attributed to the more complex nature of packet dependencies
between threads, which NeuMAC can exploit to further speed
up execution time as illustrated in Section 2.

C. Lossy Networks: To evaluate NeuMAC’s robustness to
varying channel conditions, we conduct experiments in lossy
network settings. We vary the packet loss rates in the wireless
NoC from 0% up to 10%, and in the event of a loss, the
packet is retransmitted. In Fig. 9, we compare the average
application speedup achieved over the baselines as the loss
rate increases. We observe that NeuMAC is able to generalize
very well to varying channel conditions and loss rates, and

Speedups CSMA TDMA Switch-thresh Q-CSMA
Max 69.18% 274.56% 37.09% 55.94%
Min 1.26% 4.88% 0.63% 1.12%

Mean 18.21% 46.90% 9.73% 11.94%

Table 4: Summary of Execution Time Speedups by NeuMAC. The per-
application speedups are shown in Fig. 7.

Speedups CSMA TDMA Switch-thresh Q-CSMA
Max 93.18% 515.04% 48.16% 26.78%
Min 13.3% 24.72% 4.41% 5.82%

Mean 33.93% 166.32% 19.97% 17.48%

Table 5: Summary of Execution Time Speedups by NeuMAC for Multiap-
plication runs
can maintain the same gains over the baselines throughout.
Note that NeuMAC was never trained explicitly for lossy
network settings. Despite this, it is able to generalize since it
can implicitly infer the channel conditions from the channel
activity like increased number of collisions.

We also test NeuMAC’s sensitivity to errors in the ob-
served state caused by packet losses at the NeuMAC agent’s
transceiver during the "Listening Interval". We conduct ex-
periments where we vary the packet loss rate from 0% to 2%
in order to introduce noise in the observed state. We find that
even under 2% loss rate, NeuMAC’s suffers a median per-
formance degradation of only 0.85% across all benchmarks
compared to its performance with perfect state information.

D. Scaling Trends: We believe that a learning based approach
like NeuMAC can greatly benefit the wireless NoC perfor-
mance as the number of cores scale to thousands of cores. To
demonstrate this we show the gains that NeuMAC achieves
over baseline protocols for different metrics as the cores vary
from 4 to 1024 in Fig. 8. Since multi2sim and other archi-
tectural simulators cannot scale beyond a hundred cores, we
evaluate these results in our custom simulator by training a
separate NeuMAC model for each core count. From Fig. 8,
we can see that NeuMAC’s gains over the baselines scale
favorably with the number of cores. This is because NeuMAC
is able to generate fine-grained MAC protocols by controlling
the actions of each core individually, and thus can generate
highly optimized protocols that improve substantially upon
the baselines at high core counts.

7 Related Work
A. Wireless Network-on-Chip Protocols: The majority of
past networking research on wireless NoC does not leverage
the broadcast nature of wireless to enable instantaneous cache
synchronization and instead focuses on using wireless only
between far apart cores to reduce the latency. These comple-
mentary works focus on problems related to optimizing net-
work topology [32,35,105], packet routing [61,90,106], flow
control [18,42] and improving the reliability of the PHY layer
for far apart cores [76, 85, 86]. However, such designs have
limited gains over wired NoCs [4]. More recent work in archi-
tecture research exploits the broadcast nature of wireless to
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Figure 8: Scaling Trends in NeuMAC’s Gains for (a) Wireless Network Throughput (b) Median Packet Latency and (c) 90th Percentile Packet Latency
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Figure 9: Effect of Packet losses on NeuMAC’s application speedup per-
formance compared to Baselines.

boost the performance of wireless enable NoCs [34,38,65,71].
These systems either use contention-free mechanisms such
as token passing [34] or contention-based mechanisms such
as carrier sense with exponential backoff [29, 71]. The clos-
est to our work are [38, 65] which attempt to adapt to traffic
patterns by switching between a CSMA or a token passing
protocol based on a preset threshold. However, hand tuning
the threshold values is a challenging task and does not pro-
vide the flexibility and expressibility of NeuMAC to support
complex and highly variable traffic patterns.
B. Network-on-Chip Technologies: Past work on wired
NoCs proposes the use of deep learning and RL to learn
efficient packet routing protocols [98], learn memory access
patterns to reduce cache misses [103], and reduce static and
dynamic power consumption on an NoC [36]. To the best of
our knowledge, ours is the first work that attempts to exploit
deep reinforcement learning techniques to generate medium
access protocols for Wireless NoCs.
C. Deep Learning in Wireless Networks: Deep RL has re-
cently been applied in wireless networks to optimize duty
cycling in sensor networks [64], resource allocation in cel-
lular networks [22, 27], dynamic spectrum access [72, 92],
rate adaptation in CSMA networks [69],and control policies
at the PHY layer [52]. [104] provides an extensive survey of
deep learning in wireless networks. The closest to our work
are [14,16,19,101] which use reinforcement learning to mod-
ify the backoff parameters in CSMA or decide whether to
transmit or not for every packet at every time step. However,
such designs are not applicable in the context of wireless
NoCs owing to the unique set of constraints imposed by the
NoC, such as the much smaller time-scale of operation render-
ing neural network inference per transmission slot infeasible,
the limited SRAM memory to store model parameters and the
enormous action space to explore. These constraints require

significant redesign to NeuMAC’s deep RL framework where
it has to now generate high-level, versatile and adaptable pro-
tocols that can be deployed for thousands of clock cycles,
and generating such protocols cannot be reduced to a simple
classification task per transmission-slot (e.g. transmit or not).

8 Limitations and Discussion
Some points are worth noting: First, given the enormous costs
and engineering efforts involved in prototyping a full chip
with integrated processors, memory, and NoC, it is outside the
scope of this work to implement NeuMAC in hardware. As a
result, we evaluate NeuMAC on a full-system cycle-accurate
architectural simulator, as is the norm among computer archi-
tecture researchers. These full-system simulators exhaustively
model all components of a CPU and also ensure that all timing
dependencies are simulated accurately [87]. As a result, the
trends and insights obtained from such architectural simula-
tions often carry over to full fledged prototypes. Moreover,
the wireless channel in this WNoC application domain is in
fact very stable as opposed to WLAN channels which are
extremely dynamic. This is because the multicore is isolated
in a chip package, and the wireless channel can be precisely
measured and characterized, thus allowing compensation for
multipath fading and other artifacts. As a result, the wire-
less BER in these environments can be as low as 10−16 [33],
making such a simulation based evaluation representative.

Second, in parallel programming for multicore processors,
programmers today try hard to avoid broadcast transmissions
as the overhead of running the cache coherency protocol is
high. With wireless NoC, the overhead of broadcast traffic is
now limited which opens the door to rewriting applications
in a manner that embraces broadcast, and can in turn benefit
even more from an adaptive protocol like NeuMAC.

Lastly, in this paper we focus on the MAC layer since it is
considered a roadblock to realize the full potential of wireless
NoCs. However, studying the challenges and opportunities at
the other layers such as PHY remains exciting and promising
avenue which we leave for future work.
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A Energy and Latency Overhead Characteri-
zation

It is widely acknowledged that deep learning inference has
high latency and energy overheads. However, since NeuMAC
needs to optimize the performance of a multicore CPU, it
needs to operate at very small time scales. As a result, it is
imperative that NeuMAC’s inference step be efficient in time
and energy. In this appendix, we characterize the overheads
of running inference on NeuMAC’s Deep RL agent.

Towards this end, we design an illustrative hardware macro
for NeuMAC’s neural accelerator (shown in Fig. 10). The
trained quantized weights of NeuMAC’s network are stored
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in the 32 KB on-chip SRAM. The primary compute elements
in the macro are the (i) 128 element 8-bit multiplier, that can
perform 128 parallel multiplications of 8-bit numbers, (ii)
followed by a 7-layer carry save adder tree, which can add up
to 128 8-bit numbers. Thus, the multiplier block and adder
tree block together can implement either one 128 dimensional
dot product, or two 64 dimensional dot products in a one iter-
ation. The ReLU non-linear activation is implemented using
comparators, which finally writes the result into an output
buffer. It is important to note that this hardware macro is sig-
nificantly simpler than a full scale neural network accelerator,
such as [53].

Next, we elaborate on the pipeline for computing one infer-
ence step on NeuMAC’s RL agent. Note that computing the
value of one element in the first hidden layer of NeuMAC’s
neural network requires one 64 dimensional dot product3.
Therefore, computing the values of all elements in the first
hidden layer requires a total of 128 counts of 64 dimensional
dot products. Similarly, computing the values at the second
hidden layer requires 128 counts of 128 dimensional dot prod-
ucts, and computing the final layer requires 64 counts of 128
dimensional dot products. Hence, to compute one inference
step in NeuMAC’s deep network, we need to perform a total
of 192 counts of 128-element dot products, and 128 counts
of 64-element dot products. Further, since we can implement
two 64-element dot products in parallel, one inference step
requires an equivalent of 256 counts of 128 dimensional dot
products to compute the output. Using this above macro de-
sign along with conservative and widely accepted hardware
estimates, we next show that the design of NeuMAC’s neural
network architecture adds only marginal overheads, allow-
ing it to operate under the resource constrained setting of a
wireless NoC.

Latency Overhead: Here we estimate the latency of comput-
ing one inference step on NeuMAC’s RL agent. The memory
array is organized as 16 blocks of 64 by 256 memory elements,
making a total of 32 KB storage. For 45nm technology, read
access time from such memory sizes can be conservatively
estimated to be around 2 ns [95]. Similarly, a 32-dimensional
dot product can be computed within 2 ns [44]. Hence, we
pipeline the data flow in three stages, first after the memory
read, second after adding the outputs of 32 multipliers, and
third at the output of the comparator bank. Hence, each stage

3Although NeuMAC’s input has 65 elements, for simplicity sake we
perform calculations with 64 element input.

4Our CPU clock is 1 GHz.

has a maximum latency of 2 ns. As a result of such pipelining,
one 128 element dot product is computed every 2 ns, that is,
every 2 clock cycles4. As noted previously, one inference step
requires 256 counts of 128 dimensional dot products. Hence,
the total latency for one inference step is 256× 2 = 512 ns
(512 clock cycles). This inference latency of 512 cycles re-
sults in a small overhead of less than 6% per time step in
our RL formulation. One point to note is that, the final deep
network output is quantized to 8 bits. Hence, the sigmoid fil-
ter after the last layer can be implemented via a 256 element
look-up table at a negligible latency overhead.

Energy Overhead: Next, we estimate energy consumption
of the hardware macro. We use the energy values from the
widely-cited paper [48], which approximately characterizes
energy consumption of various compute elements and mem-
ory accesses. The dominant energy consumption steps are the
reads from the memory array and the computations on the
MAC (Multiply-ACcumulate) unit. From [48], 8 bit multi-
plies consume 0.2 pJ, and 8-bit additions consume 0.03 pJ.
One 128 dimensional dot product on the MAC unit involves
128 multiplications and 127 additions. Thus the total energy
comes to 29.41 pJ. Memory reads of 64 bits from 2 KB mem-
ory blocks requires 5 pJ. Thus, the 128 bit memory reads for
each dot product requires 10 pJ. As a result, one 128 element
dot product on the hardware accelerator requires 39.41 pJ, and
with 256 counts, the energy consumed for a single inference
step is 10088.96 pJ. Given that we require one inference ev-
ery 10,000 ns, the neural accelerator consumes approximately
only 1 mW of power on average. In comparison, a single
transceiver on the multicore consumes 16 mW [38]. Lastly,
note that the numbers in [48] are at 45 nm technology, so 1
mW is a conservative estimate.

Area Overhead: Lastly, the area overhead of the hardware
macro is small. Since area is dominated by memory, the 32
KB of SRAM and few registers in the hardware accelerator
impose a small overhead in comparison to the 512 KB of
cache memory at each of the 64 cores. Thus we envision that
such a hardware macro can reside on the same die and share
the same clock as the multicore processor.

Thus, even a simple accelerator like the one demonstrated
in Fig. 10 can enable NeuMAC’s agent to operate under the
resource constrained setting of a wireless NoC. Note that we
do not employ any other advanced hardware optimization
techniques and rely on reported hardware numbers that are
widely accepted rather than the state-of-the-art today.
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Abstract
1 Network traffic measurement is central to successful net-
work operations, especially for today’s hyper-scale networks.
Although existing works have made great contributions, they
fail to achieve the following three criteria simultaneously:
1) full-visibility, which refers to the ability to acquire any
desired per-hop flow-level information for all flows; 2) low
overhead in terms of computation, memory, and bandwidth;
and 3) robustness, meaning the system can survive partial
network failures. We design LightGuardian to meet these
three criteria. Our key innovation is a (small) constant-sized
data structure, called sketchlet, which can be embedded in
packet headers. Specifically, we design a novel SuMax sketch
to accurately capture flow-level information. SuMax can be
divided into sketchlets, which are carried in-band by pass-
ing packets to the end-hosts for aggregation, reconstruction,
and analysis. We have fully implemented a LightGuardian
prototype on a testbed with 10 programmable switches and
8 end-hosts in a FatTree topology, and conduct extensive
experiments and evaluations. Experimental results show that
LightGuardian can obtain per-flow per-hop flow-level informa-
tion within 1.0∼ 1.5 seconds with consistently low overhead,
using only 0.07% total bandwidth capacity of the network.
We believe LightGuardian is the first system to collect per-
flow per-hop information for all flows in the network with
negligible overhead.

1 Introduction

Network traffic measurement is central to successful network
operations, especially for today’s hyper-scale networks with
more than 105 devices [1–6]. Meanwhile, at end-hosts, know-
ing the traffic information in the core of the network can also
benefit application performance [7–9]. To infer application
performance and user experience, the community consensus
is to measure at flow-level granularity. Thus, an ideal mea-
surement system is expected to achieve: 1) full-visibility,
which we define as the ability to acquire any desired per-hop

1Co-primary authors: Yikai Zhao, Kaicheng Yang, and Zirui Liu. Cor-
responding authors: Tong Yang (yangtongemail@gmail.com) and Yi Wang
(wy@ieee.org).

flow-level information2 for all flows. Typical desired informa-
tion includes routing path, per-hop latency, jitters, and packet
drops. 2) lightweight in terms of computation, memory, and
bandwidth, independent of the scale of network and the traffic
dynamics; 3) robustness: the system should survive partial
network failures, including link failures, device failures, and
bandwidth depletion [6, 10–12].

Although existing works have made great contributions,
they fail to meet the above criteria simultaneously. We
coarsely characterize them into four categories:

• Partial/Sampling solutions [13–17] only sample pack-
ets or flows, or collect detailed statistics based on a pre-
configured list of conditionals [18, 19]. For instance, Ev-
erflow [20] samples each SYN packet, and Cisco switches
use the “match” keyword to specify which network flows
need to be counted. Therefore, only a subset of the network
traffic is measured with questionable accuracy.

• Probing solutions [6,21–24] measures the states of devices
or links by sending probing packets, and only these probes
are measured.

• Sketch-based solutions [25–34] collects the information
of every packet in a compact data structure, namely sketch,
on network devices. Current sketches are unable to collect
important flow-level information, such as jitters and packet
drops, and are not robust to network failures, particularly
device failures. Most prior sketches cannot be implemented
on P4-capable switches (§ 2.2).
• In-band solutions carry information in every packet header.

AM-PM [35] cannot achieve full-visibility with only one bit
per packet. Although INT [36, 37] can potentially achieve
full-visibility, its bandwidth and processing overhead grows
quickly with the scale of the network. In both the postcard
[38] (mirroring packets on each switch) or the passport [36]
mode (mirroring packets on only the sink switches), the
number of packets is at least doubled, which is a huge
burden for the network. *Flow [39] uses a cache to group
packet-level telemetry information according to the flow
IDs. But its bandwidth overhead is still proportional to the
number of packets.

2In this paper, per-hop flow-level information means per-flow per-hop
information.
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In summary, no existing work can achieve full-visibility with-
out considerable performance overhead, and none focuses on
lightweight and robust collection mechanism of network-wide
flow-level information.

We design LightGuardian to meet the above three criteria
simultaneously. Our key innovation is a (small) constant-sized
data structure, called sketchlet. A sketchlet is a fragment of
the sketch data structure on network devices (physical or
virtual), carried in-band in a packet’s header. At the end-host,
LightGuardian collects the sketchlets, reconstructs the original
sketch, and consequently obtains the accurate measurement
results of all flows.

To support and make full use of sketchlets, LightGuardian
incorporates three key techniques:
• Accurate & versatile device-local sketches: As current

sketches fail to capture important flow-level statistics (per-
hop latency and jitters), we design a novel sketch: the
SuMax sketch to support common measurement tasks, as
well as new tasks of operational importance. With our in-
sight that recording both the sum and the maximum can
accurately perform these tasks (§ 4.2), we design the sketch
with two types of cells: the sum cells and the maximum
cells. SuMax can be readily deployed on programmable
network devices, and we have fully implemented it on a
P4-capable switch (§ 7.1). Although SuMax is not the only
way to measure flow-level statistics, it can support almost
all measurement tasks thanks to its versatility.

• In-band telemetry with sketchlets: We propose a novel
approach that combines in-band telemetry and device-local
sketches. An INT-enabled device appends measurement
data to each packet. INT alone consumes an enormous
amount of bandwidth and multiplies the number of pack-
ets (§ 2.2). On the other hand, for sketch-based solutions,
although sketch is a compact coding of flow-level infor-
mation, the size of a sketch should be sufficiently large to
ensure accuracy, thus cannot be embedded in packet head-
ers. Combining the advantages of both approaches, our key
novelty is to split the sketch with flow-level information
into constant-sized sketchlets that can be embedded into
selected packet headers. Since the number of flows in the
network is much smaller than that of packets and the sketch
is a compactly coded representation of flow-level statistics,
the bandwidth overhead of sketchlets is significantly lower
than that of INT, while accurate flow-level measurement
can still be retrieved.

• Incremental network-wide aggregation: The receiving
end-hosts can either forward the sketchlets to a global ana-
lyzer, or reconstruct the sketch locally to obtain measure-
ment information of flows and devices inside the network.
The information can assist end-host applications in perfor-
mance optimization in a distributed fashion, which lessens
the burden on the centralized network control/management
plane. To guarantee robustness, we design the reconstruc-
tion algorithm to be tolerant of losses and reordering of

sketchlets. Our algorithm can approximate a sketch with
a subset of its sketchlets, and the reconstruction accuracy
is incrementally improved with more arriving sketchlets.
Our experimental results show that 80% sketchlets can
achieve an accurate estimation (§ 8.1), while collecting
80% sketchlets only needs 1.0∼ 1.5 seconds.

To the best of our knowledge, LightGuardian is the first
system to measure per-flow per-hop latency distribution and
detect abnormal jitters with high accuracy for all flows on
every participating network device, while maintaining low
overhead. It also collects useful traffic data for operations and
diagnostics previously unavailable in existing systems. Since
LightGuardian aims to measure various per-hop flow-level
information, after detecting end-to-end problems, users can
use our system to locate culprit network devices. Besides,
LightGuardian’s on-device mechanism is not limited to phys-
ical devices, and can be readily used in cloud networking
environments with virtualized network functions.

We have fully implemented a LightGuardian prototype on a
testbed with 10 Tofino switches and 8 end-hosts in a FatTree
topology. As a whole, our prototype can obtain per-flow per-
hop information within 1.0∼ 1.5 seconds with consistently
low overhead (0.07% of total bandwidth) on the network. We
also conduct large-scale simulations using mininet [40] and
P4 behavior model [41], confirming the correctness, robust-
ness, and performance of LightGuardian. We release all source
code anonymously 3.

In this paper, we make four key contributions:
We propose sketchlets and design a lightweight in-band
telemetry system. Using sketchlets, our system makes the
entirety of traffic information in the core of the network avail-
able at end-hosts for analytics and diagnostics. LightGuardian
is lightweight, which takes up negligible bandwidth, and it
can aggregate all sketchlets within 4 seconds.
We design the SuMax sketch to support common and
more important measurement tasks with high accu-
racy. For common tasks (e.g., flow size estimation), SuMax
achieves 6.78 times smaller error rate. Further, LightGuardian
can locate the culprit devices in the context of packet drops,
inflated latency, and abnormal jitters, achieving almost 100%
accuracy with less than 0.5MB memory.
We design an incremental reconstruction algorithm to
achieve robustness and failure tolerance. Our experimen-
tal results show that, even when 50% end-hosts fail, the an-
alyzer can still reconstruct 89% of all sketches. In addition,
device and link failures do not affect the reconstruction of
sketches of other devices (§ 8.3.2).
We implement a LightGuardian prototype and make it
open-source. We also build a testbed and conduct extensive
experiments, which confirms that our system can reach the
design criteria.

3 https://github.com/Light-Guardian/LightGuardian
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Table 1: Comparison with the state-of-the-arts. In this table, “Impl.” refers to implementation platforms; “P4 BM” refers to P4
behavior model [41]; “RMT” refers to Re-configurable Match Tables; and “PFPH” refers to “Per-Flow and Per-Hop”.

Measurement Tasks CM FlowRadar EverFlow INT AM-PM LightGuardian

Device-
local

Flow Size X X × X × X
Flow Size Distr. X X × X × X

Entropy X X × X × X
Cardinality X X × X × X

Network-
wide

PFPH Latency Distr. × × × X × X
PFPH Packet Drops × × × X × X

PFPH Jitters × × × X × X
Forwarding Path × X X X × X

Impl. RMT switches X × × X X X
P4 BM X X × X X X

2 Background and Related Work

2.1 Measurement Tasks
Existing measurement tasks can be classified into two cat-
egories: device-local measurement tasks and network-wide
measurement tasks. Device-local measurement tasks refer
to measuring flow-level information in a single node (an
end-host, a switch or a router), and there have been various
sketch-based solutions, such as sketches of CM [25], CU [26],
Count [27], UnivMon [28], Elastic [29], SketchLearn [30],
SketchVisor [42], and more [32–34, 43–48]. However, there
are very few sketches designed for network-wide measure-
ment tasks. This paper focuses on the following four network-
wide measurement tasks.
1) Estimating Latency: We aim to estimate per-flow per-
hop latency distribution. Existing works acquire end-to-end
latency by sending probing packets. And they monitor spe-
cific flows by tracking their packets [49]. However, these
solutions can hardly locate the victim flows and the culprit
devices simultaneously. In contrast, per-flow per-hop latency
distribution can help a lot but is more challenging.
2) Detecting Packet Drops: There are three causes of packet
drops: random drops, loops, and blackholes. For random
drops, the state-of-the-art LossRadar [50] uses a Bloom fil-
ter [51] and an Invertible Bloom Lookup Table (IBLT) [52] to
accurately find drops. LossRadar works excellently in many
cases. However, it consumes a lot of memory when a large
flow drops many packets, which frequently happens when
there are network misconfigurations [53]. For loops and black-
holes, the state-of-the-art FlowRadar [54] also uses a Bloom
filter and an IBLT, sharing the same advantages and shortcom-
ings as that of LossRadar.
3) Detecting Abnormal Jitters: Jitters refer to drastic
changes of packet inter-arrival time of a given flow. We aim to
find abnormal jitters in the per-flow per-hop manner. Jitters are
often caused by queuing, congestion, high bandwidth load, or
network attacks. It can significantly affect the performance of
streaming media (e.g., audio, video, music). To detect jitters,
end-to-end methods [55–57] have been proposed. However,
they cannot work in the per-flow per-hop manner.

4) Tracing Forwarding Path: We aim to trace the forward-
ing path of any flow. Given a flow, tracing forwarding path
can check whether the actual forwarding path is consistent
with expectation. It can help test and/or debug new network
protocols and network architectures, solutions for network
congestion, load balance, and flow scheduling. Existing works
for tracing forwarding path include FlowRadar [54], Switch-
Pointer [58], Service traceroute [59], and more [60–63].

2.2 Related Work
As shown in Table 1, compared with the state-of-the-art so-
lutions, only our system supports device-local and network-
wide measurement tasks, and it is implemented in both RMT
switches (e.g., Tofino) and P4 behavior model, achieving per-
flow per-hop measurements. In this section, we mainly in-
troduce the following four categories of measurement solu-
tions. For other measurement solutions, please refer to refer-
ences [64–72].
Partial/Sampling Solutions. Many measurement sys-
tems [14–17,20,46,73–76] are developed by sampling packets.
Sampling can significantly reduce the overhead of both time
and space, but inevitably sacrifices accuracy and misses impor-
tant events. Typical systems include NetFlow [73], sFlow [74],
OpenSketch [46], OpenSample [17], Everflow [20], NitroS-
ketch [77], and more [14–16, 76]. The state-of-the-art Univ-
Mon [28] obtains elegant theoretical guarantees using a mul-
tiple sample solution at the cost of high time complexities.
Sampling solutions probably miss many small flows, and thus
cannot achieve the ideal goal of fully-visibility.
Probing Solutions. These solutions monitor the net-
work by sending tailored packets. Typical systems include
Pingmesh [78], NetBoncer [6], NetSonar [22], NetNorad [23],
and more [24, 79–82]. Recently, AM-PM [35] gains wide
recognition in industry. AM-PM divides packet streams into
time periods, and the middle packet in each period is essen-
tially a probing packet. Therefore, it only records per-period
packet information, but is unaware of flow-level informa-
tion. Probing solutions cannot achieve the ideal goal of fully-
visibility because they cannot measure per-flow information.
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Figure 1: LightGuardian Overview and Workflow.

Sketch-based Solutions. There are a great number of sketch-
based solutions, which can be further divided into three cat-
egories. First, design and optimization of sketch algorithms.
Typical solutions include sketches of CM [25], CU [26],
Count [27], Elastic [29], and more [28, 30–32, 34]. But they
cannot measure the latency and jitters. Some are implemented
in P4 behavior model, but only a very few (BeauCoup [33],
Elastic [29]) are fully implemented in real programmable
switches . Due to the limitations of RMT (Re-configurable
Match Tables) based programmable switches, e.g., limited
concurrent memory access, single stage memory access, and
etc., the implementation in real switches is significantly more
challenging. Thus, we aim to design a new sketch to sup-
port both device-local and network-wide measurement tasks,
while can be easily implemented in RMT switches. Sec-
ond, measurement systems with dedicated sketches. Typical
solutions include FlowRadar [54], SketchLearn [30], NitroS-
ketch [77], and more [33, 46, 50]. The dedicated sketches can
barely achieve fully-visibility. Third, measurement systems
with shining features. Typical solutions include Marple [83],
Sonata [84], DREAM [85], Scream [86], and OmniMon [87].
By carefully designing the resource manager and telemetry
operator, OmniMon [87] achieves both resource efficiency
and high accuracy. Our SuMax sketch can also be applied in
OmniMon. All existing solutions do not focus on the overhead
with aggregating sketches all over the network.
In-band Telemetry Solutions. They insert packet-level in-
formation into every packet. Well-known solutions include
INT [36] and its successor PINT [88]. INT is considered as the
most promising solution for network measurement because
of two reasons. First, it can achieve fully-visibility because it
is flexible to carry any desired packet-level information. Sec-
ond, it can be implemented in RMT switches in a per-packet
manner. However, its bottleneck lies in the aggregation of
INT information. The INT information is distributed in every
network packet, and it is obviously very challenging to ag-
gregate that per-packet information. INT has two aggregation
strategies: postcard and passport, which mirror every packet

with only INT information in each switch or only the sink
switches. Although the INT information in each packet is
small (e.g., 100 bytes), the total bandwidth overhead is huge.
What is worse, the number of packets in the network will
be doubled, which is a heavy burden for packet processing.
Another in-band telemetry solution *Flow [39] uses a cache
to group packet-level telemetry information according to the
flow IDs. In this way, some information (e.g., 5-tuple flow ID)
in one group is recorded only once. However, its bandwidth
overhead is still proportional to the number of packets.

3 LightGuardian Overview
As shown in Figure 1, LightGuardian captures flow-level statis-
tics on each participating network device (physical or virtual)4

using sketches. The devices periodically split the sketches
into sketchlets and send the sketchlets to the end-hosts by
piggybacking them in headers of appropriate packets. Then
at the receiving end, the end-hosts batch the sketchlets into
groups and send them to a global analyzer when the network
load is low. Finally, the analyzer reconstructs the sketches and
perform analysis.
1) Capture flow-level statistics with novel sketches. Light-
Guardian captures flow-level statistics by deploying our
SuMax sketch on each participating device. Every packet is
processed into the sketch without sampling. Typical collected
statistics include the flow size (number of packets/bytes), per-
hop delay distribution, the arrival time of the last packet, and
the maximum inter-arrival time. The above statistics are used
for detecting packet drops and measuring per-hop latency
and maximum inter-arrival time, which are essential tasks for
industrial community. To support more tasks, we can also
include more collected statistics, e.g., the number of out-of-
order packets, the highest sequence number, and etc.
2) Split sketches into sketchlets and send them to the
end-hosts. The participating devices periodically split their

4Since most legacy switches and routers do not have programmable
dataplane capabilities, they cannot participate in LightGuardian (and their
existence in the network will not hinder the functions of LightGuardian).
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sketches into sketchlets and send them to the end-hosts.
Specifically, at the start of each measurement interval, the
devices initiate a new SuMax sketch to record the flow-level
statistics. In the end, the sketches are divided into sketchlets of
several bytes (24 bytes in our implementation). Each sketch-
let is one column5 (or several columns) of the sketch. Each
switch then attaches these sketchlets to appropriate incoming
packets. Specifically, we choose the packets that have not yet
carried a sketchlet with a fixed probability (e.g., 0.05).

3) [Optional] Batch sketchlets and forward to a global
analyzer. LightGuardian has two working modes: 1) Local
analysis mode, where each end-host uses local sketchlets to
perform analysis for local applications; 2) Global analysis
mode, where a global analyzer collects all sketchlets and per-
forms analysis for network operators. If an end-host does
not want to perform local analysis, it can choose to forward
sketchlets to a global analyzer. A system daemon process
running on each end-host strips sketchlets off the packets,
and maintains the received sketchlets. When the process has
collected enough sketchlets, it batches the received sketchlets
into groups and forward them to the global analyzer. For Light-
Guardian, more than 350 sketchlets are grouped into a UDP
packet and share 42 bytes packet header, which significantly
reduces the number of additional packets for measurement.

4) Reconstruct sketches and perform analysis. The end-
host or the global analyzer (or end-hosts) can reconstruct the
sketchlets into sketches and perform further analysis. The pro-
cess of reconstructing sketches proceeds simultaneously with
the process of collecting sketchlets. After collecting enough
sketchlets, the analyzer can perform accurate estimation using
the partially reconstructed sketch. According to our experi-
ments, after receiving 55% sketchlets, our LightGuardian re-
ports 90% valid results, while the average relative error (ARE)
is only 0.088. Further, the estimation results are incrementally
refined with more and more sketchlets collected, the ARE re-
duces to 1×10−2, 1×10−3, 2×10−4 when 80%, 90%, and
100% sketchlets are received, respectively.

In this way, LightGuardian well achieves the three mentioned
design goals. For full-visibility, LightGuardian deploys SuMax
sketch on each network device to monitor various per-flow
per-hop information for all flows. For low overhead, Light-
Guardian uses small and constant-sized sketchlets to transmit
measurement information, which makes the in-band overhead
grow sub-linearly with the network/traffic scale. For robust-
ness, the reconstruction process of LightGuardian does not
require collecting all sketchlets whereas providing desirable
accuracy. Besides, any end-host with limited computation re-
sources can play the role of the global analyzer, which makes
our system robust.

5A sketch consists of multiple bucket arrays, and a column refers to the
buckets with the same index in each array.

4 Device-local Sketch Design: SuMax

4.1 Motivation
We design the SuMax sketch to achieve accurate measurement
of flow-level information on network devices of different plat-
forms: software (CPU, or OVS [89]), P4 behavior model [41],
programmable switches. To make LightGuardian widely ap-
plicable, this paper focuses on P4 behavior model and pro-
grammable switch platforms, as the software implementation
is straightforward. Using P4 also ensures our implementation
can be compiled to available and future P4 back-ends, such
as SmartNIC, FPGA and GPU.

UnivMon [28] and HashPipe [90] are implemented in P4
behavior model, but can hardly be implemented in RMT
switches. To address these issues, Basat et al. proposed us-
ing a recirculate method [91], inevitably incurring complex-
ities and degradation of switch throughput. BeauCoup [33]
and Elastic [29] have been implemented in RMT switches
(i.e., Tofino switches) by complicated designs and programs.
Further, the above four sketches cannot be directly used for
network-wide measurement tasks, such as estimating latency
and jitters. We found CM [25] is the most friendly sketch
for programmable switches. On the one hand, we optimize
its accuracy under the constraints of programmable switches.
On the other hand, we extend its functions to support both
device-local and network-wide tasks. In the meantime, we try
to keep the designed sketches as simple as possible.

4.2 Rationale and Design Space for Sketches
We first introduce the well-known CM sketch [25]. It is a typ-
ical sketch algorithm that sums packet attributes (e.g., packet
number, bytes number). It uses d counter arrays A0, · · · ,Ad−1.
For each array, it has a hash function Hi(·) to map a flow6

uniformly and randomly into a counter. When a packet of
flow f with attribute value α arrives, CM selects the counter
Ai[Hi( f )] for each array Ai and increments these counters by
α. To query the attribute sum of flow f , CM returns the mini-
mum value among A0[H0( f )], · · · ,Ad−1[Hd−1( f )], which is
still a sum of attributes of some flows. Therefore, CM has
only over-estimation errors. Similarly, the CU sketch [26] in-
crements only the smallest counter(s), significantly improving
the accuracy but not supporting pipeline implementation.

We propose to record both of the sum value and the maxi-
mum value7 to support versatile tasks. We insist that all packet
attributes can be accurately estimated by keeping only the
sum and maximum values. We also insist that either sum or
maximum value is indispensable. For example, sketches of
CM, CU, Count, FlowRadar cannot be used to find maximum
latency or inter-arrival time and last arrival time, because they
only record the sum value without maximum value.

6A flow has many packets sharing the same flow ID, which can be any
combination of 5-tuple: source IP address, source port, destination IP address,
destination port, protocol type.

7Note that [92] also suggests that the sketch algorithm can be used to find
the maximum value in a sequence.
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Table 2: Symbols frequently used in this paper.

Symbol Meaning
f An arbitrary flow

α
An attribute that needs to be recorded in the
sum cell (e.g., packet size)

β
An attribute that needs to be recorded in the
maximum cell (e.g., arrival time)

d SuMax consists of d bucket arrays
w Each array consists of w buckets
Ai The i-th bucket array

Asum
i [·] The sum cell in a bucket

Amax
i [·] The maximum cell in a bucket
Hi A hash function from a flow to {0, · · · ,w}

4.3 Data Structure and Operations
Data Structure (Figure 2): Our SuMax consists of d
bucket arrays A0, · · · ,Ad−1. Each array Ai contains w buckets
Ai[0], · · · ,Ai[w−1]. Each bucket has two cells: a sum cell and
a maximum cell, recording the sum value and the maximum
value of attributes, respectively. Each array Ai is associated
with a hash function Hi(.) that maps a flow into one of its
buckets. To support various tasks, we may need more than
one sum value or maximum value in each bucket. For conve-
nience, we only show using one sum value and one maximum
value. Table 2 lists the frequently used symbols in this paper.
Insertion: To achieve high accuracy and support pipeline
implementation, we propose an approximate conservative
update strategy as follows. To record a packet of flow f with
attribute α and β (〈 f ,α,β〉, α will be accumulated and β will
be compared with the maximum), we first maintain a current
minimum value ω and initialize it to ∞. For each array Ai,
we select a bucket Ai[Hi( f )] by computing the hash function
Hi( f ). For each selected bucket Ai[Hi( f )], we check its sum
cell Asum

i [Hi( f )] and update it as follows:

• If Asum
i [Hi( f )]+α < ω, update the current minimum value

ω = Asum
i [Hi( f )]+α, and set the cell to ω.

• If Asum
i [Hi( f )]+α > ω, and Asum

i [Hi( f )]< ω, set the cell
to ω.

• If Asum
i [Hi( f )]> ω, we keep the cell unchanged.

For the maximum cell Amax
i [Hi( f )], we just set it to

max{Amax
i [Hi( f )],β}. The pseudo-code of the insertion op-

eration is shown in Algorithm 1 in Appendix A.
Query: Given a flow f , SuMax returns two results: one sum
value estimation and one maximum value estimation. The
sum estimation is the minimum value among Asum

0 [H0( f )]
, · · · , Asum

d−1[Hd−1( f )]. The maximum value estimation is the
minimum value among Amax

0 [H0( f )] , · · · , Amax
d−1[Hd−1( f )].

Example (Figure 2): To record a packet 〈 f ,α = 3,β = 4〉,
SuMax updates the d (d = 3) buckets A0[H0( f )], A1[H1( f )],
A2[H2( f )] as follows. For the bucket [6,3], we increase 6 to
9, set ω to 9, and set 4 to max{4,3}. For the bucket [9,7], as
9 > ω and 7 > 4, we keep this bucket unchanged. For the
bucket [3,5], as 3+α < ω, we update ω to 6 and update 3 to

!"
!#
!$

6 3
9 7

3 5new packet
%, ' = ), * = +

SuMax sketch !$[ℋ$(/)]

9 4
9 7

6 5

a bucket a sum cell a maximum cell

!#[ℋ#(/)]

Figure 2: An example of SuMax.

ω = 6; as 4 < 5, we do not change the maximum cell. After
the insertion, when query flow f , SuMax returns min{9 ,9
,6} = 6 as the sum estimation, and returns min{4 ,7 ,5} = 4
as the maximum value estimation.
Analysis: Our SuMax uses an approximate conservative up-
date strategy to achieve both accuracy and pipeline friendly.
Note that the conservative update strategy (CU) cannot be
implemented in the pipeline because it needs the traceback
operations to only increase the smallest counter(s). Our idea
is to use the current minimum value to approximate the global
minimum value. In each insertion process, with more and
more counters accessed, the current minimum value will be
closer and closer to the global minimum value, and thus the
updated counter will be closer and closer to CU. Actually, the
first array is updated following the rule of CM, and the last
array is updated following the rule of CU. Since the coun-
ters in the last few arrays tend to have smaller values, they
are more likely to be returned as query results. Therefore,
SuMax can be viewed as an intermediate between CM and
CU, and its error is also bounded between them, but closer to
CU. As there are no tracebacks in our SuMax, it can be easily
implemented in the switch pipeline.

4.4 Configuration of SuMax Sketch
In current implementation, we design each bucket as follows.
Each bucket consists of four parts:

• a flow-size cell (sum cell) recording the flow size;
• λd delay cells (sum cells) recording the per-hop delay dis-

tribution, each one of which is associated with a predefined
delay time interval;

• an interval cell (maximum cell) recording the maximum
inter-arrival time;

• a last-time cell (maximum cell) recording the arrival time
of the last packet of a flow.

All cells are initialized to zero. When the cells of a bucket are
going to update, they should be updated as follows. Let tnow
be the ingress timestamp of this packet, tlast be the value of
the last-time cell, and tinterval = tnow− tlast . When tlast = 0, we
consider the current packet as the first packet of a flow, and
set tinterval = 0. First, we increment the flow-size cell by 1.
Second, we select one cell from the λd delay cells according
to the packet delay, and increment this cell by 1. Third, we
compare the value in the interval cell with tinterval and update
it accordingly. Fourth, we update the last-time cell to tnow.
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5 Transmission of Sketchlets
In this section, we show the transmission procedure of sketch-
lets in each participating network device. First, we split
sketches into sketchlets. Second, we sample packets to carry
sketchlets. Third, we select a sketchlet to be carried using our
selection strategy and insert it into the packet.

5.1 Splitting the Sketch into Sketchlets.
LightGuardian deploys two SuMax sketches (one active and
one idle) on each device. The active sketch is used to record
flow-level information, while the idle sketch is split into
sketchlets for transmission. After a fixed time interval (e.g.,
5s), we interchange these two sketches. We use an active-bit
to indicate which sketch is active. The active-bit is flipped
periodically, and the current interval is set to 5 seconds.

We split the idle sketch column by column, so that each
sketchlet contains a column of buckets. Each sketchlet is
associated with 1) a Sketchlet ID indicating the column index;
2) a Device ID; and 3) the active-bit indicating which one
of the two sketches it belongs to. The analyzer will sort the
received sketchlets (bucket columns) according to the Device
ID, active-bit, and Sketchlet ID.

5.2 Probabilistically Carrying Sketchlets.
Given an incoming packet, the device first checks the packet
header: if it has already carried a sketchlet, no more sketch-
lets will be carried. Otherwise, the device calculates a fixed
carrying probability λc (e.g., 0.05) to determine whether this
packet should carry a sketchlet. Each device samples only a
part of the packets to carry sketchlets with λc, so that every
device has a similar opportunity for packet transmission.

The packet format is shown in Figure 1. If a packet is
selected to carry sketchlet, we insert the sketchlet between
the TCP header and the application-layer message. First, we
use a bit in the TCP header (carry-bit) to indicate whether
this TCP packet carries a sketchlet. Second, we add a field to
record the device ID (16 bits). Third, we add a field to record
the sketchlet ID and the active-bit.

5.3 Sketchlets Selection: K+chance Selection.
Once the device determines the incoming packet should carry
a sketchlet, we need an algorithm to choose a sketchlet. In-
band telemetry solutions will lose measurement information
when packet drops happen. To address this issue, we can send
a sketchlet several times at the cost of more bandwidth usage.
An effective solution is to use a counter array. Specifically,
each counter corresponds to a sketchlet, indicating the num-
ber of times this sketchlet has been carried. For the incoming
packet, we locate several counters by computing hash func-
tions, find the smallest counter among them, and choose the
corresponding sketchlet to carry. As mentioned above, simi-
lar to the CU sketch, this solution cannot be implemented in
current P4-programmable switches, and thus we propose a
new algorithm namely k+chance selection.

The k+chance selection uses k arrays, each of which is an
N-bit array. For each array, each bit corresponds to a sketchlet.
All bits are initialized to 0. Whenever we need to select one of
the N sketchlets, we access the k arrays one by one. For each
array, we randomly choose a bit: if it is zero, we choose the
corresponding sketchlet and set this bit to 1; Otherwise, we
access the next array. In the worst case, we do not find a zero
bit after accessing all the k arrays, and we randomly choose
one sketchlet to transmit. In this way, we only need to record
an array ID in each sketchlet, which just takes dlog(k+1)e
bits (2∼3 bits). By contrast, when using the simple round-
robin, we need to record the column ID (usually 32 bits) in
each sketchlet. K+chance selection is an approximately fair
selection algorithm for hardware platforms. Our experiments
show that k+chance selection works well ( § 8.1).

6 Reconstruction and Analysis
In this section, we first describe the two modules at the end-
hosts: forwarding module and reconstruction module. These
two modules can work in isolation or in parallel. Then we
elaborate on how to obtain device-local measurements and
network-wide analysis using SuMax.

6.1 End-host Modules
Reconstruction Module. This module dynamically classi-
fies the received sketchlets into groups according to their
device IDs and active-bits, and sorts the sketchlets in each
group by their sketchlet IDs. In this way, the end-host recon-
structs a sketch for each group. Note that the reconstructed
sketches might be incomplete because some sketchlets are
still in the network or missing. Fortunately, an incomplete
sketch can also be used to answer queries: each query will
access d buckets, some of which may not have been received
yet. We consider the values in these buckets as invalid, and
report the minimum value among the other valid buckets. As
long as one of the d buckets is valid, we can report a valid
result. Otherwise, we report the result of invalid. In this way,
after some sketchlets are collected, the end-host then uses
these reconstructed sketches to perform further analysis. Our
experimental results (see § 8.1) show that 55% sketchlets
can report 90% valid results and achieve accurate estimation
(ARE < 0.1). The following theorem provides theoretical
guarantees for the reconstruction process.

Theorem 6.1 After receiving sketchlets with a ratio of θ,
SuMax can report valid results with a ratio of (1− (1−θ)d).
Specifically, when the result is valid, the estimated flow size
has the following error bounds.

Pr
{
|n̂ f −n f |> ε

}
<

(mθ

wε
+1−θ

)d− (1−θ)d

1− (1−θ)d

where d and w are parameters of SuMax (see Table 2), n f and
n̂ f are the real and estimated flow size, and m is the number
of inserted packets.
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The module can reconstruct the following four widely-
studied [28, 29, 54] device-local measurements:
• Flow Size Estimation. We return the minimum value of

the d mapped flow-size cells.
• Flow Size Distribution. We use the MRAC [93] algorithm

with the first bucket array in SuMax as input.
• Entropy. We compute −∑(ni · i

m log i
m ) based on the flow

size distribution, where ni is the number of flows with size
of i, and m = ∑(i ·ni).

• Cardinality. We calculate the number of flows using the
method of linear counting [94].
We believe the main advantage of this approach is that

the measurement is done in a distributed fashion, without a
centralized control or management plane.
Forwarding Module. End-hosts use this module to forward
sketchlets to a global analyzer for network-wide analysis.
Each end-host groups the received sketchlets into batches.
The end-host will send a batch of sketchlets to the analyzer
when appropriate. 1) When the bandwidth usage is high, the
end-host does not send sketchlets. 2) When the number of the
accumulated sketchlets reaches a threshold, or the end-host
has not sent any sketchlets for a certain period, it will send
all the accumulated sketchlets to the network-wide analyzer.
The network-wide analyzer reconstructs the sketches as the
end-hosts do, and then performs the network-wide analysis.

6.2 Network-wide Analysis with SuMax
For the following four network-wide analysis tasks, we need
to access different SuMax cells for different tasks. To perform
network-wide analysis tasks, we have two steps. First, the
network operator detects abnormal end-to-end incidents (e.g.,
TCP duplicate ACKs, TCP timeout8), and report the victim
flows to the network-wide control plane analyzer. Second,
based on the network topology, the analyzer further investi-
gates the sketches on the switches in the forwarding path of
the victim flow as to locate the specific culprit device or link.
Locating Inflated Latency. Locating inflated latency refers
to finding out the culprit switch, and the victim flow when
inflated end-to-end latency occurs. First, the end-host detects
abnormal incidents of inflated end-to-end latency, and reports
the ID of the victim flow. Second, the analyzer queries the per-
hop latency distribution of this flow by accessing the delay
cells in the corresponding reconstructed sketches. In this way,
it can easily locate the culprit switches with inflated latency
(e.g., a switch on which 80% packets have > 10µs latency).
Locating Packet Drops. As mentioned above, there are three
main packet drops behaviors: random drops, loops, and black-
holes. Random drops may result from hardware failures (e.g.,
faulty interfaces in switches). Loops may result from the mis-
configuration of the forwarding table, which leads the pack-
ets of the victim flows forever loop among several switches.

8Some tools provided by the OS (e.g., ePBF [95]) can help operators to
easily detect these abnormal incidents.

Blackholes may result from forwarding entries corruption
in culprit switches. After detecting end-to-end packet drops
from TCP re-transmission, timeout, or ping probe loss, the
end-host (sender) reports the flow ID to the analyzer. To lo-
cate the culprit switch, the analyzer queries the victim flow
in every sketch on the forwarding path by accessing the flow-
size cells. 1) If the flow size suddenly drops to 0 after passing
a switch, we report the switch as a blackhole. For example,
suppose there are five switches (s1 ∼ s5) on the forward-
ing path. If the estimated flow sizes on the five switches are
100,100,100,0,0, respectively, we report s4 as a blackhole.
2) If the flow size is abnormally large on several switches, we
infer a loop happens on them. For the same example with five
switches, if the flow sizes are 100,100,5000,5000,0, respec-
tively, we infer that s3 and s4 probably be involved in a loop.
3) If the flow size slightly decreases after passing a switch,
we infer that the switch suffers random packet drops. For the
same example, if the flow sizes are 100,100,95,95,95, we
infer random packet drops happen on s3.
Locating Abnormal Jitters. After detecting end-to-end vari-
ation in the packet inter-arrival time of a flow, the end-host
reports the flow ID to the analyzer. The analyzer queries the
maximum inter-arrival time of that flow, and finds out the
culprit switches on which the result is abnormally large.
Finding Abnormal Forwarding Path. When an end-host
receives a packet which carries a sketchlet not belonging to
the switches on the expected forwarding path, we report this
packet suffers abnormal forwarding.

7 Prototype Implementation
In this section, we first describe the workflow and difficulties
we face when implementing a LightGuardian prototype on a
programmable switch (Tofino-40GbE). On each switch, we
develop SuMax and the sketchlet transmission mechanism
using P4 [96]. Then we overview the components in the end-
hosts: the kernel modules to collect and forward the sketchlets.

7.1 SuMax on Programmable Switches
All existing sketches can be implemented in the software (e.g.
middleboxes, virtual network appliances, etc.), but most of
them cannot be deployed on programmable switches, which
limits their applicability outside of cloud networking envi-
ronments. For LightGuardian, since deployability is crucial to
achieving full-visibility in all network environments, we first
show that SuMax can be deployed on programmable switches
by implementing it on a Tofino-40GbE switch.

7.1.1 Workflow
On the switch, we design the workflow (relevant to Light-
Guardian) (Figure 3) as follows: we put Decision Making
Stage in the ingress pipeline, and Sketching Stage and Sketch-
let Generation Stage are placed in the egress pipeline.

The Decision Making Stage decides the following:
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Figure 3: Workflow on an RMT switch.

• Active sketch, i.e. which sketch should be inserted into. As
mentioned in § 5.1, we deploy two SuMax sketches on each
switch, and use the active-bit to identify the active sketch.
Note that the data plane of the switch cannot periodically
update the active-bit. Therefore, we run a process in the
switch control plane to periodically flip it. As the flipping
is asynchronous, we forbid carrying sketchlets in the last
second in each measurement interval.

• Fitness for sketchlets, i.e. whether the packet should carry
a sketchlet. The fitness conditions are: 1) the packet is
not carrying a sketchlet; 2) For each packet, we use its
5-tuple and its ingress timestamp to calculate a 16-bit
hash value (CRC16), and only when the value falls within
[0,λc216), the packet is selected to carry a sketchlet. λc is
a pre-configured parameter, and the second condition is
approximately allowing a packet to carry sketchlet with a
probability of λc

• Sketchlets selection. As described in § 5.3, we use the
k+chances selection algorithm to select a sketchlet to carry.
Thus, we need to randomly select a bit for each bit array. In
Tofino switches, we can only achieve pseudo-randomness:
we still use CRC16 to generate approximately random
numbers, and choose reasonable polynomials of CRC16
to generate multiple approximately independent random
numbers. Due to limitation of Tofino switch, we set k = 1.
In the Sketching Stage, we place two sketches: one idle

and one active. Their status is periodically flipped. These
two sketches are two match-action tables placed in the egress
pipeline, so each packet will pass them sequentially. For each
packet, the sketch table checks the active-bit. If the active-bit
indicates the current sketch is active, we hash the flow ID to
update the corresponding cells to record packet information.
The update procedures of SuMax are challenging on Tofino,
and we highlight the difficulties below (§ 7.1.2).

The Sketch Generation Stage reads the selected sketchlet
and writes it into the metadata if the packet is selected.

7.1.2 Challenge of Sketching Stage
SuMax records multiple packet attributes (e.g., flow size, de-
lay distribution, last arrival time, maximum inter-arrival time).
This requires multiple cells in each bucket. In Tofino switches,
the cells in SuMax are stored in registers. A switch has 12
Match-Action Units (MAU), each of which contains up to two

!"
!#

SuMax delay part

SuMax interval part

< 100'( 100'(~1*(
1*(~10*( > 10*(
Four delay (sum) cells

sketchlet #2

register

Switch

!"

register
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sketchlet #3 An interval 
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Figure 4: Sketch implementation on an RMT switch.

256KB registers. Since 6 MAUs are used in other stages, only
6 MAUs (12 registers) can be used in the Sketching stage.
The main challenge is that, each incoming packet can only
access each register exactly once, and each access can only
read/write up to 64 consecutive bytes.

Thus, we have to assign the cells in a single bucket to
multiple registers. In other words, we need to divide SuMax
into parts. We use two examples, the measurement of latency
distribution (sum) and that of maximum packet inter-arrival
time, to illustrate our solution.
Latency distribution. We use the delay part of SuMax to
perform this task. As shown in Figure 4, this part consists
of d = 2 bucket arrays, each of which has w = 215 buckets.
Each bucket has λd = 4 sum cells (32-bit), each of which
corresponds to a predefined delay range. To make full use of
the registers, we observe that:
• The four cells in each bucket should not be assigned to a

single register. Since each 256KB register stores up to 216

32-bit cells, using a single register will limit the size of the
sketch (up to 214), which compromises the accuracy.

• Using four registers to store the four cells in each bucket
cannot be implemented on Tofino switch. As each switch
has two sketches, each of which contains at least two bucket
arrays, so we need at least 16 registers, while at most 12
registers are available in the Sketching stage.
Thus, we propose to use one register to store two cells in

each bucket, as shown in Figure 4. We divide each bucket
array into two registers, the first contains the first two cells
of each bucket, and the second contains the remaining two
cells. We group 4 cells in the same column into a sketchlet. In
this way, either the active or the idle sketch is updated, each
register is accessed only once for a packet.
Packet inter-arrival time is a task of measuring the maxi-
mum value, and its implementation is much easier. As shown
in Figure 4, we set d = 4 and w = 216. For each bucket array,
all 32-bit interval-cells are assigned to one register. We still
group the 4 interval-cells in the same column into a sketchlet.

7.2 End-host Components
LightGuardian needs to implement three functions on the end-
hosts: sending packets, receiving packets, reconstruction and
performing analysis.
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Sending packets: In the current implementation, Light-
Guardian inserts sketchlets between the Ethernet header and
the IP header. However, we should emphasize that this is
mainly due to hardware limitation: TCP checksum recalcula-
tion on Tofino is unreliable currently.

We also add the carry-bit after the Ethernet header, because
there is no space in the Ethernet header. To implement this
design, we program a Linux kernel module on the end-host,
which registers a new packet type ETH_P_SKETCHLET in the
Layer-3 protocol stack and modifies the Ethernet type of each
packet to be sent to ETH_P_SKETCHLET, and allocates extra
space for the carry-bit.
Receiving packets: We implement another Linux kernel
module to handle ETH_P_SKETCHLET packets. This module
decides whether the packet carries a sketchlet by checking
the carry-bit, and records the sketchlet in the stderr.
Reconstruction and Forwarding We implement a forward-
ing module for end-hosts to forward the sketchlets to a cen-
tralized analyzer. It reads stderr every 1 millisecond. When
the process finds the number of sketchlets in the log exceeds a
threshold (dependant on Maximum Transmission Unit (MTU)
of the network), or when a timeout is reached, the module
generates a packet containing all the received sketchlets of the
current interval, and sends it to the central analyzer. For ex-
ample, when MTU is 9KB, the threshold is set to 350 packets
(∼8.4KB). We set the timeout to 100 milliseconds.

Finally, analysis can be performed on the end-host or the
centralized analyzer with the same sketch reconstruction al-
gorithm described in § 6.1.

8 Experimental Results
We conduct extensive experiments on a testbed and using
mininet [40]. We focus on the following four key issues.
• How accurate can our SuMax sketch measure per-flow

statistics? We implement our SuMax sketch using C++,
and use the CAIDA datasets to evaluate the accuracy of
SuMax for seven measurement tasks.

• How much is the overhead of sending and aggregat-
ing sketchlets? We generate network traffic following the
widely used traffic distributions (WEB [97] and DCTCP
[98]). We evaluate the aggregation time, the bandwidth
overhead, and the impact on network performance (e.g.,
RTT, FCT).

• How accurate can LightGuardian detect network
anomalies? We use mininet to simulate a network, and
evaluate the accuracy of LightGuardian in locating black-
holes, loops, and abnormal jitters.

• Is LightGuardian resilient to network failures? We eval-
uate the performance of LightGuardian when end-hosts fail,
or some sketchlets are missing.

We conduct the experiments using the following metrics:
ARE, RR, PR, F1 Score, RE, and WMRE. We explain the
details of these metrics in Appendix C.

8.1 Experiments on SuMax
We use the anonymized IP traces collected in 2018 from
CAIDA [99]. The dataset contains 6M packets belonging to
0.9M different flows. We set d = 3 by default, which means
there are 3 bucket arrays in SuMax.
Flow size estimation (Figure 5a): We find that the accuracy
of SuMax is higher than CM and close to CU. When using
96KB of memory, the ARE of SuMax is 6.78 times lower
than CM, and 1.75 times higher than CU. We further study
how the flow sizes affect the accuracy (see Figure 11a in
Appendix D.1), and find that the results hold for both large
and small flows.
Robustness (Figure 5b-5c): We find that partially recon-
structed SuMax can provide accurate estimation. We set the
memory to 768KB and measure the valid query rate and the
ARE of the largest 1K flows. The results show that 55% re-
constructed SuMax can report >90% valid results with <0.1
ARE, and 80% reconstructed SuMax can report >99% valid
results with <0.01 ARE.
Other device-local tasks (Figure 5d-5e): We find that be-
sides flow size estimation, SuMax also achieves good per-
formance in other device-local measurement tasks, including
estimating cardinality, flow size distribution (see Figure 11c
in Appendix D.1), and entropy.
Delay distribution (Figure 5f): We find that the accuracy of
SuMax is higher than CM and close to CU. We generate the
delay of each packet according to the chi-square distribution.
We set λd = 8 and vary w from 210 to 217. For other delay
distribution, please refer to Figure 12a-12e in Appendix D.1.
Maximum inter-arrival time (Figure 5g): We find that
SuMax achieves <10 ARE when using more than 6MB of
memory, and <0.3 ARE when using more than 12MB of mem-
ory. Since when abnormal incidents happen, the maximum
inter-arrival time will rapidly increase dozens or hundreds
times, <10 ARE is accurate enough to locate problems. We
further study how the flow sizes affect the accuracy (see Fig-
ure 12h in Appendix D.1), and find that the results hold for
both large and small flows.
k+chance Selection (Figure 5h): We find that k+chance Se-
lection can effectively reduce the number of packets required
by the reconstruction process. According to the results, a
larger k goes with fewer required packets, which demonstrates
the effectiveness of our algorithm. We also find that the larger
the w, the better the optimization effect.
We further study the memory overhead of SuMax, and find
that its memory overhead grows sub-linearly with the network
scale, which guarantees the scalability of LightGuardian (see
Figure 11b and Table 3 in Appendix D.1).

8.2 Testbed Experiments
We evaluate LightGuardian on the testbed described in § 7.
Take the delay distribution measurement task as an instance,
the SuMax sketch we used contains d = 2 bucket arrays, each
of which has w = 215 buckets, and each bucket contains 4
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Figure 5: Experimental results on SuMax and the selection algorithm.

delay cells. This sketch also supports locating packet drops
and all the mentioned local measurement tasks. Similarly,
we can use another SuMax to locate abnormal jitters. By
default, we set the carrying probability λc to 1

16 , and set k = 1
for k+chance selection. We use two traffic distributions W1
(DCTCP [98]) and W2 (WEB [97]), which are widely used
in existing works [8, 100–102]. On each switch, the number
of the sketchlets is 216, and each sketchlet is 24 bytes.
Bandwidth overhead v.s. traffic load (Figure 6a): We find
that our system saves substantial bandwidth than INT. We
compare LightGuardian with a kind of INT that inserts 20-
bytes per-packet information into the packet headers at each
hop. The results show that the bandwidth overhead of Light-
Guardian ranges from 13.8Mbps to 25.7Mbps, which is only
about 0.07% of the total bandwidth. The bandwidth overhead
of INT ranges from 211Mbps to 394Mbps. Compared with
INT, our LightGuardian saves more than 93.5% bandwidth.
We also study how the carrying probability λc affects the
bandwidth usage (see Figure 13a-13c in Appendix D.3).
FCT v.s. traffic load (Figure 6b): We find that Light-
Guardian has little impact on the network. We vary the band-
width usage from 50% to 90%, and measure the average
Flow Completion Time (FCT) before and after deploying
LightGuardian. Under workload W1, after deploying Light-
Guardian, the average FCT increases by 8.3% at 50% traffic
load, and 1.8% at 90% traffic load. Under workload W2, af-
ter deploying LightGuardian, the average FCT increases by
16.3% at 50% traffic load, and 5.6% at 90% traffic load. Even
under 90% traffic load, LightGuardian still achieves <5ms
FCT. We also study the impact of the flow size on the average
FCT (see Figure 14b in Appendix D.3).
Per-hop latency v.s. traffic load (Figure 6c): We find that
LightGuardian has little impact on the network. We test the
per-hop latency before and after deploying LightGuardian in
the network. We vary the bandwidth usage from 0% to 90%,

and measure the average per-hop latency of 104 packets using
the ping -f instruction. The results show that at 0% traffic
load, after deploying LightGuardian, per-hop latency increases
1.6µs. At 90% load, per-hop latency increases at most 3.1µs.
Reconstruction rate v.s. time (Figure 6d): We find that the
sketches in LightGuardian can be quickly reconstructed. We
use 90% of the total bandwidth and measure the reconstruc-
tion rate on each switch over time. The results show that
under workload W1, the analyzer aggregates 90% sketchlets
on the edge switches, the aggregation switches, and the core
switches in 1.3, 1.7 and 2.1 seconds, respectively; and it aggre-
gates 99% sketchlets in 2.1, 2.8 and 3.6 seconds, respectively.
The results under workload W2 (as shown in Figure 14a in
Appendix D.3) are similar. Other results related to sketch
reconstruction are shown in Figure 14c-14d in Appendix D.3.

8.3 Simulations
8.3.1 Simulations on Mininet
We evaluate LightGuardian’s performance in locating black-
holes, loops, and abnormal jitters through Mininet case studies.
Our setup in Mininet consists of 16 hosts, 20 switches, and
48 links in a Fat-Tree topology. We only show the results as
F1 scores. For more specific PR and RR results, please refer
to Appendix D.2.
Locating blackholes (Figure 7a): We find that Light-
Guardian achieves high accuracy in locating blackholes. We
randomly generate 10M packets belonging to 0.1M different
flows. We create two blackholes by shutting down two links.
And we reconstruct the sketchlets in a fixed time interval (5s)
into sketches. For each flow, we query it in the reconstructed
sketches to locate the culprit switches where the ratio P

L is
below a threshold. Here, for any switch, P is the estimated
flow size, and L is the estimated flow size in the last-hop
switch. The results show that when using 0.8MB of memory
(216 buckets), F1 score can reach 0.99.
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Figure 6: Experimental results on the testbed.
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Figure 7: Simulations results on Mininet.

Locating loops (Figure 7b): We find that LightGuardian
achieves high accuracy in locating loops. We randomly gen-
erate 10M packets belonging to 0.1M different flows, and
let 10% flows loop between two randomly selected adja-
cent switches. For each flow, we query it in the reconstructed
sketches and locate the switches where P

L exceeds a threshold.
The results show that when using 0.8MB of memory, F1 score
reaches about 0.99.
Locating abnormal jitters (Figure 7c): We find that Light-
Guardian achieves high accuracy in locating abnormal jitters.
We randomly generate 10M packets belonging to 10K dif-
ferent flows. To simulate jitters on the switch, we randomly
choose two links, and split each of them into two parallel links
with different speed. In this way, the flows passing through
the slow link will suffer jitters, which leads to a sharp increase
in their inter-arrival time in the next-hop switch. The results
show that when using more than 20KB of memory, the F1
score is close to 1.

8.3.2 Simulations for Robustness
Next, we focus on the robustness of LightGuardian. The net-
work topology here is the same as Mininet. We set w = 216.
And in each experiment, we randomly select λb end-hosts and
shut them down9. Then we observe how many sketches can
be fully-reconstructed (recovered) in the global analyzer. The
metrics we used here are: 1) Full-Recovery Rate (FRR): the
probability of recovering all sketches; 2) Recovering-Sketch
Rate (RSR): the ratio of the number of recovered sketches
to the number of all sketches; From Figure 7d, we find that
our system is robust to survive several device failures. When
λb = 4, the FRR is still >60%. Even if half of the end-hosts
break down (λb = 8), the analyzer still stands a chance of

9Normal end-hosts still send packets to broken end-hosts, but broken
end-hosts cannot send packets to others.

recovering all sketches (FRR > 0). And the RSR slowly de-
creases as λb increases. When λb = 7, the analyzer can recon-
struct more than 90% sketches.

9 Conclusion and Future Work
In this paper, we present LightGuardian, a full-visibility,
lightweight, in-band network telemetry system. LightGuardian
designs the SuMax sketch to capture per-flow per-hop statis-
tics on the programmable data plane, and use the constant-
sized sketchlet to aggregate the statistics to any end-host,
which can then perform both the device-local and the network-
wide analysis. Experiments on a testbed and mininet simula-
tions show that our system is able to perform 4 local measure-
ment tasks, 3 network-wide tasks, and 3 anomalies locating
tasks with high accuracy and consistently low overhead.

In the future work, we plan to design a mechanism to au-
tomatically adjust the system parameters according to the
current traffic characteristics; we plan to conduct large-scale
simulations; we plan to design and evaluate other methods
of transferring sketches; we plan to offload the reconstruc-
tion and forwarding modules in end-host to smart NIC; we
plan to deploy our system in cloud networking; and we also
plan to use our measurement results to further improve the
performance of congestion control, load balancing, and traffic
scheduling.
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APPENDIX
A Algorithm
Algorithm 1: Insertion of SuMax sketch

Input: A new packet 〈 f ,α,β〉.
1 ω←+∞;
2 for i = 0→ d−1 do
3 if Asum

i [Hi( f )]+α < ω then
4 ω← Asum

i [Hi( f )]+α ;
5 Asum

i [Hi( f )]← ω;
6 else if Asum

i [Hi( f )]< ω then
7 Asum

i [Hi( f )]← ω;
8 end
9 Amax

i [Hi( f )]←max{β,Amax
i [Hi( f )]};

10 end

B Proof of Theorem 6.1

Theorem B.1 After receiving sketchlets with a ratio of θ,
SuMax can report valid results with a ratio of (1− (1−θ)d).
Specifically, when the result is valid, the estimated flow size
has the following error bounds.

Pr
{
|n̂ f −n f |> ε

}
<

(mθ

wε
+1−θ

)d− (1−θ)d

1− (1−θ)d ,

where d and w are parameters of SuMax (see Table 2), n f and
n̂ f are the real and estimated flow size, and m is the number
of inserted packets.

Proof B.1 Let A1[H1( f )], · · ·Ad [Hd( f )] be the values of d
mapped buckets. Let V1, · · · ,Vd be d indicating random vari-
ables, where Vi indicates whether the i-th mapped bucket is
received. Since the reported result of SuMax is valid as long
as at least one buckets is received, the probability of acquiring
a valid result is:

Pr{valid}= Pr
{

V1 = 1∨·· ·∨Vd = 1
}

= 1−
d

∏
i=1

Pr
{

Vi = 0
}
= 1− (1−θ)d

The expected number of packets mapped to each bucket is
m
w +n f . Since SuMax uses a conservative update method, not
every packet increments the value of the bucket. Thus the
value of each bucket satisfies:

E(Ai[Hi( f )])<
m
w
+n f

According to the Markov inequality, we can derive that:

Pr
{∣∣Ai[Hi( f )]−n f

∣∣> ε
}
<

E(Ai[Hi( f )]−n f )

ε
<

m
wε

According to the total probability rule, we have

Pr
{
|n̂ f −n f |> ε

}
=

d

∑
i=1

Pr{ζi} ·Pr
{
|n̂ f −n f |> ε | ζi

}
<

d

∑
i=1

(d
i

)
θi(1−θ)d−i

1− (1−θ)d ·
( m

wε

)i
=

(mθ

wε
+1−θ

)d− (1−θ)d

1− (1−θ)d

where ζi indicates that there are i valid buckets after the
reconstruction process.

C Evaluation Metrics

1) Average Relative Error (ARE): 1
|Ψ| ∑ fi∈Ψ

|ni−n̂i|
ni

, where
ni is the real statistics of flow fi, n̂i is the estimated statistics
of flow fi, and Ψ is the flow set.
2) Recall Rate (RR): The ratio of the number of correctly
reported instances to the number of all correct instances.
3) Precision Rate (PR): The ratio of the number of correctly
reported instances to the number of all reported instances.
4) F1 Score: 2×PR×RR

PR+RR .

5) Relative Error (RE): |Est.−True|
True , where Est. and True are

the estimated and true statistics, respectively.
6) Weighted Mean Relative Error (WMRE) [42, 93]:
∑

z
i=1 |ni−n̂i|

∑
z
i=1

ni+n̂i
2

, where ni and n̂i are the real and estimated event

probabilities respectively, and z is the number of events.

D Additional Experimental Results

D.1 Experiments on SuMax
Flow size estimation (Figure 11a): We find that the ARE of
SuMax is higher to CM and close to CU. When using 768KB
of memory, for the largest 500 flows, the ARE of SuMax is
17.1 times lower than CM and only 0.1 times higher than CU.
Memory overhead (Figure 11b): We find that the memory
overhead of SuMax grows sub-linearly with the number of
generated packets, which guarantees the scalability of Light-
Guardian. We conduct this experiment in the flow size es-
timation task. We vary the number of generated packets in
the network, and record how much memory SuMax needs
to achieve 0.01 ARE. Table 3 further studies the memory
overhead of SuMax in various tasks.
Delay distribution (Figure 12a-12e): We find that for differ-
ent datasets, SuMax always achieves performance similar to
CU. Figure 12a-12b show that the WMRE of SuMax is lower
than CM and close to CU, which means SuMax has a stable
performance. Figure 12c-12e show that when using 6MB of
memory and varying the top-k flows, the WMRE of SuMax
is similar to CU and lower than CM.
Last arrival time (Figure 12f-12g): We find that when using
768KB of memory, the Average Absolute Error (AAE) is less
than 12ms; and when using 3MB of memory, the AAE is
less than 1.5ms. Figure 12g further illustrated that when using
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768KB of memory, the estimated results are absolutely correct
for 87% packets.

Table 3: Memory usage of SuMax in various tasks.

Task Target error Memory (MB)
Flow size estimation 0.01 ∼ 0.1
Flow size distribution 0.05 ∼ 0.4

Cardinality 0.005 ∼ 0.2
Entropy 0.001 ∼ 0.8

Delay distribution 0.05 ∼ 0.8
Max inter-arrival 0.01 ∼ 50
Last arrival time 0.01 ∼ 0.8

D.2 Simulations on Mininet
We demonstrate the specific PR and RR experimental results
in § 8.3.
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Figure 8: Accuracy of locating blackholes.

Locating blackholes (Figure 8a-8b): We find that Light-
Guardian achieve high accuracy in locating blackholes. The
results show that higher threshold goes with lower PR and
higher RR. When using 800KB of memory (216 buckets), the
PR and RR reach 0.982 ∼ 0.997 and 0.998 ∼ 0.999 respec-
tively.
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Figure 9: Accuracy of locating loops.

Locating loops (Figure 9a-9b): We find that LightGuardian
achieve high accuracy in locating loops. The results show that
higher threshold goes with higher PR and lower RR. When
using 800KB of memory, the PR and RR reaches 0.988 ∼
0.994 and 0.993∼ 0.998 respectively.
Locating abnormal jitters (Figure 10a-10b): We find that
LightGuardian achieve high accuracy in locating jitters. The
results show that higher threshold goes with higher PR and
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Figure 10: Accuracy of locating abnormal jitters.

lower RR. When using more than 500KB of memory, both PR
and RR are close to 1.0. When using 50KB of memory (212

buckets), the PR and RR reach 0.998 ∼ 0.999 and 0.994 ∼
0.999 respectively.

D.3 Testbed Experiments
We further extend the experiments in § 8.2.
Bandwidth overhead v.s. λc (Figure 13a): We find that the
bandwidth overhead of LightGuardian can be dynamically
adjusted by the carrying probability λc. We vary the carry-
ing probability λc from 1

64 to 8
64 , and measure the bandwidth

overhead. The results show that compared with INT, Light-
Guardian only uses 1.5% to 12.4% bandwidth. When the av-
erage packet size becomes smaller (e.g., when encountering
DDos attacks) and the number of the packets increases, our
LightGuardian can adjust the bandwidth overhead by reducing
λc. INT does not have this ability.
Required time (RT) v.s. λc (Figure 13b): We find that the
time required to construct the sketches can be dynamically
adjusted by the carrying probability λc. We generate 36Gbps
traffic between two end-hosts in the same rack, and vary λc
from 1

64 to 8
64 . The results show that as λc increases, the

required time decreases.
Required packets (RP) v.s. λc (Figure 13c): We find that
the packets required to reconstruct the sketches can be dy-
namically adjusted by the carrying probability λ. The results
show that the packets required to aggregate 90% and 99%
sketchlets is negatively correlated to λc.
FCT v.s. flow size (Figure 14b): We find that LightGuardian
has little impact on the FCT for the flows of any size. We
measure the average FCT of flows of different sizes under 90%
traffic load. We divide the flows into five groups according
to their sizes: (0, 0.01MB), (0.01, 0.1MB), (0.1MB, 1MB),
(1MB, 10MB) and (10MB, 100MB), and calculate the average
FCT of each group. The results show that even for the flows
of 100MB, the average FCT is no more than 40ms.
RP/RT v.s. w (Figure 14c-14d): We find that the required
packets and the required time to reconstruct the sketches
can be dynamically adjusted by w. We vary the number of
sketchlets on the TOR switch from 212 to 216 and measure
the number of the required packets and the required time to
achieve certain reconstruction rates. The results show that
both the required time and the required packets grow linearly
with the number of sketchlets.
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Figure 11: Experimental results of the SuMax sketch in device-local tasks.
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Figure 12: Experimental results of the SuMax sketch in network-wide tasks.
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Figure 14: Experimental results on the testbed.
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Abstract
Bandwidth testing measures the access bandwidth of end

hosts, which is crucial to emerging Internet applications for
network-aware content delivery. However, today’s bandwidth
testing services (BTSes) are slow and costly—the tests take a
long time to run, consume excessive data usage at the client
side, and/or require large-scale test server deployments. The
inefficiency and high cost of BTSes root in their methodolo-
gies that use excessive temporal and spatial redundancies for
combating noises in Internet measurement.

This paper presents FastBTS to make BTS fast and cheap
while maintaining high accuracy. The key idea of FastBTS
is to accommodate and exploit the noise rather than repeti-
tively and exhaustively suppress the impact of noise. This is
achieved by a novel statistical sampling framework (termed
fuzzy rejection sampling). We build FastBTS as an end-to-
end BTS that implements fuzzy rejection sampling based on
elastic bandwidth probing and denoised sampling from high-
fidelity windows, together with server selection and multi-
homing support. Our evaluation shows that with only 30 test
servers, FastBTS achieves the same level of accuracy com-
pared to the state-of-the-art BTS (SpeedTest.net) that de-
ploys ⇠12,000 servers. Most importantly, FastBTS makes
bandwidth tests 5.6⇥ faster and 10.7⇥ more data-efficient.

1 Introduction

Access link bandwidth of Internet users commonly consti-
tutes the bottleneck of Internet content delivery, especially
for emerging applications like AR/VR. In traditional resi-
dential broadband networks, the access bandwidth is largely
stable and matches ISPs’ service plans [9, 14, 15]. In recent
years, however, it becomes less transparent and more dynamic,
driven by virtual network operators (VNOs), user mobility,
and infrastructure dynamics [21].

To effectively measure the access bandwidth, bandwidth
testing services (BTSes) have been widely developed and
deployed. BTSes serve as a core component of many appli-
cations that conduct network-aware content delivery [1, 31].
BTSes’ data are cited in government reports, trade press [37],
and ISPs’ advertisements [29]; they play a key role in ISP
customers’ decision making [39]. During COVID-19, BTSes
are top “home networking tips” to support telework [11, 12].
The following lists a few common use cases of BTSes:

⇤ Co-primary authors. Zhenhua Li is the corresponding author.

• VNO has been a popular operation model that resells net-
work services from base carrier(s). The shared nature of
VNOs and their complex interactions with the base carriers
make it challenging to ensure service qualities [69, 72, 78].
Many ISPs and VNOs today either build their own BT-
Ses [2], or recommend end users to use public BTSes. For
example, SpeedTest.net, a popular BTS, serves more than
500M unique visitors per year [4].

• Wireless access is becoming ubiquitous, exhibiting het-
erogeneous and dynamic performance. To assist users to
locate good coverage areas, cellular carriers offer “perfor-
mance maps” [16], and several commercial products (e.g.,
WiFiMaster used by 800M mobile devices [31]) employ
crowd-sourced measurements to probe bandwidth.

• Emerging bandwidth-hungry apps (e.g., UHD videos and
VR/AR), together with bandwidth-fluctuating access net-
works (e.g., 5G), make BTSes an integral component of
modern mobile platforms. For example, the newly released
Android 11 provides 5G apps with a bandwidth estima-
tion API that offers “a rough guide of the expected peak
bandwidth for the first hop of the given transport [20].”

Most of today’s BTSes work in three steps: (1) setup, (2)
bandwidth probing, and (3) bandwidth estimation. During the
setup process, the user client measures its latency to a num-
ber of candidate test servers and selects one or more servers
with low latency. Then, it probes the available bandwidth by
uploading and downloading large files to and from the test
server(s) and records the measured throughput as samples.
Finally, it estimates the overall downlink/uplink bandwidth.

The key challenge of BTSes is to deal with noises of Inter-
net measurements incurred by congestion control, link shar-
ing, etc. Spatially, the noise inflates as the distance (the routing
hop count) increases between the user client and test server.
Temporally, the throughput samples may be constantly fluctu-
ating over time—the shorter the test duration is, the severer
impact on throughput samples the noise can induce. An ef-
fective BTS needs to accurately and efficiently measure the
access bandwidth from noisy throughput samples.

Today’s BTSes are slow and costly. For example, a 5G
bandwidth test using SpeedTest.net for a 1.15 Gbps down-
link takes 15 seconds of time and incurs 1.94 GB of data
usage on end users in order to achieve satisfying test accuracy.
To deploy an effective BTS, hundreds to thousands of test
servers are typically needed. Such a level of cost (both at the
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client and server sides) and long test duration prevent BTSes
from being a foundational, ubiquitous Internet service for
high-speed, metered networks. Based on our measurements
and reverse engineering of 20 commercial BTSes (§2), we
find that the inefficiency and cost of these BTSes fundamen-
tally root in their methodology of relying on temporal and/or
spatial redundancy to deal with noises:

• Temporally, most BTSes rely on a flooding-based band-
width probing approach, which simply injects an excessive
number of packets to ensure that the bottleneck link is sat-
urated by test data rather than noise data. Also, their test
processes often intentionally last for a long time to ensure
the convergence of the probing algorithm.

• Spatially, many BTSes deploy dense, redundant test servers
close to the probing client, in order to avoid “long-distance”
noises. For example, FAST.com and SpeedTest.net deploy
⇠1,000 and ⇠12,000 geo-distributed servers, respectively,
while WiFiMaster controversially exploits a large Internet
content provider’s CDN server pool.

In this paper, we present FastBTS to make BTS fast and
cheap while maintaining high accuracy. Our key idea is to
accommodate and exploit the noise through a novel statisti-
cal sampling framework, which eliminates the need for long
test duration and exhaustive resource usage for suppressing
the impact of noise. Our insight is that the workflow of BTS
can be modeled as a process of acceptance-rejection sam-
pling [43] (or rejection sampling for short). During a test, a
sequence of throughput samples are generated by bandwidth
probing and exhibit a measured distribution P(x), where x
denotes the throughput value of a sample. They are filtered
by the bandwidth estimation algorithm, in the form of an
acceptance-rejection function (ARF), which retains the ac-
cepted samples and discards the rejected samples to model
the target distribution T (x) for calculating the final test result.

The key challenge of FastBTS is that T (x) cannot be known
beforehand. Hence, we cannot apply traditional rejection sam-
pling algorithm that assumes a T (x) and uses it as an input. In
practice, our extensive measurement results show that, while
the noise samples are scattered across a wide throughput in-
terval, the true samples tend to concentrate within a narrow
throughput interval (termed as a crucial interval). Therefore,
one can reasonably model T (x) using the crucial interval, as
long as T (x) is persistently covered by P(x). We name the
above-described technique fuzzy rejection sampling.

FastBTS implements fuzzy rejection sampling with the
architecture shown in Figure 1. First, it narrows down P(x)
as the boundary of T (x) to bootstrap T (x) modeling. This is
done by an Elastic Bandwidth Probing (EBP) mechanism to
tune the transport-layer data probing rate based on its devi-
ation from the currently-estimated bandwidth. Second, we
design a Crucial Interval Sampling (CIS) algorithm, acting
as the ARF, to efficiently calculate the optimal crucial inter-
val with throughput samples (i.e., performing denoised sam-
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Figure 1: An architectural overview of FastBTS. The arrows show
the workflows of a bandwidth test in FastBTS.

pling from high-fidelity throughput windows). Also, the Data-
driven Server Selection (DSS) and Adaptive Multi-Homing
(AMH) mechanisms are used to establish multiple parallel
connections with different test servers when necessary. DSS
and AMH together can help saturate the access link, so that
T (x) can be accurately modeled in a short time, even when the
access bandwidth exceeds the capability of each test server.

We have built FastBTS as an end-to-end BTS, consisting
of the FastBTS app for clients, and a Linux kernel module
for test servers. We deploy the FastBTS backend using 30
geo-distributed budget servers, and the FastBTS app on 100+
diverse client hosts. Our key evaluation results are1:
• On the same testbed, FastBTS yields 5%–72% higher aver-

age accuracy than the other BTSes under diverse network
scenarios (including 5G), while incurring 2.3–8.5⇥ shorter
test duration and 3.7–14.2⇥ less data usage.

• Employing only 30 test servers, FastBTS achieves com-
parable accuracy compared with the production system of
SpeedTest.net with ⇠12,000 test servers, while incurring
5.6⇥ shorter test duration and 10.7⇥ less data usage.

• FastBTS flows incur little (<6%) interference to concurrent
non-BTS flows—EBP only ramps up fast when the data rate
is well below the available bandwidth; it slowly grows the
data rate when it is about to hit the bottleneck bandwidth.
To benefit the community, we have released all the source

code at https://FastBTS.github.io and an online proto-
type system at http://FastBTS.thucloud.com.

2 Understanding State-of-The-Art BTSes
2.1 Methodology
We measure a BTS using the following metrics: (1) Test Ac-
curacy measures how well the result (r) reported by a BTS
matches the ground-truth bandwidth R. We calculate the ac-
curacy as r

R . In practice, we observe that all BTSes (including
FastBTS) tend to underestimate the bottleneck bandwidth due
to factors like TCP slow start and congestion control, so the
accuracy values are less than 1.0. (2) Test Duration measures

1In this work, we focus on the downlink bandwidth test due to its impor-
tance to a typical Internet user compared to the uplink.
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the time needed to perform a bandwidth test—from starting
a bandwidth test to returning the test result. (3) Data Usage
measures the consumed network traffic for a test. This metric
is of particular importance to metered LTE and 5G links.

Obtaining ground truth. Measuring test accuracy requires
ground-truth data. However, it is challenging to know all the
ground-truth bandwidths for large measurements. We use best
possible estimations for different types of access links:

• Wired LANs for in-lab experiments. We regard the (known)
physical link bandwidth, with the impact of (our injected)
cross traffic properly considered, as the ground truth.

• Commercial residential broadband and cloud networks. We
collect the bandwidth claimed by the ISPs or cloud service
providers from the service contract, denoted as TC. We
then verify TC by conducting long-lived bulk data transfers
(average value denoted as TB) before and after a bandwidth
test. In more than 90% of our experiments, TB and TC match,
with their difference being less than 5%; thus, we regard
TC as the ground truth. Otherwise, we choose to use TB.

• Cellular networks (LTE and 5G). Due to a lack of TC and
the high dynamics of cellular links, we leverage the results
provided by SpeedTest.net as a baseline reference. Being
the state-of-the-art BTS that owns a massive number of
(⇠12,000) test servers across the globe, SpeedTest.net’s
results are widely considered as a close approximation to
the ground-truth bandwidth [33, 36, 38, 41, 50, 73].

2.2 Analyzing Deployed BTSes

We study 20 deployed BTSes, including 18 widely-used, web-
based BTSes and 2 Android 11 BTS APIs.2 We run the 20
BTSes on three different PCs and four different smartphones
listed in Table 1 (WiFiMaster and Android APIs are only run
on smartphones). To understand the implementation of these
BTSes, we jointly analyze: (1) the network traffic (recorded
during each test), (2) the client-side code, and (3) vendors’
documentation. A typical analysis workflow is as follows. We
first examine the network traffic to reveal which server(s) the
client interacts with during the test, as well as their interaction
durations. We then inspect the captured HTTP(S) transactions
to interpret the client’s interactions with the server(s) such as
server selection and file transfer. We also inspect client-side
code (typically in JavaScript). However, this attempt may not
always succeed due to code obfuscation used by some BTSes
like SpeedTest. In this case, we use the Chrome developer
tool to monitor the entire test process in the debug mode.

2The 18 web-based BTSes are ATTtest [2], BWP [5], CenturyLink [6],
Cox [7], DSLReports [8], FAST [10], NYSbroadband [17], Optimum [19],
SFtest [13], SpeakEasy [22], Spectrum [23], SpeedOf [24], SpeedTest [25],
ThinkBroadband [28], Verizon [30], Xfinity [32], XYZtest [26], and WiFi-
Master [31]. They are selected based on Alexa ranks and Google
page ranks. In addition, we also study two BTS APIs in Android 11:
getLinkDownstreamBandwidthKbps and testMobileDownload.

Device Location Network Ground Truth
PC-1 U.S. Residential broadband 100 Mbps
PC-2 Germany Residential broadband 100 Mbps
PC-3 China Residential broadband 100 Mbps

Samsung GS9 U.S. LTE (60Mhz/1.9Ghz) 60–100 Mbps
Xiaomi XM8 China LTE (40Mhz/1.8Ghz) 58–89 Mbps

Samsung GS10 U.S. 5G (400Mhz/28Ghz) 0.9–1.2 Gbps
Huawei HV30 China 5G (160Mhz/2.6Ghz) 0.4–0.7 Gbps

Table 1: Client devices used for testing the 20 BTSes. The test
results are obtained from SpeedTest.net.

With the above efforts, we are able to “reverse engineer” the
implementations of all the 20 BTSes.

Our analysis shows that a bandwidth test in these BTSes
is typically done in three phases: (1) setup, (2) bandwidth
probing, and (3) bandwidth estimation. In the setup phase, the
BTS sends a list of candidate servers (based on the client’s IP
address or geo-location) to the client who then PINGs each
candidate server over HTTP(S). Next, based on the servers’
PING latency, the client selects one or more candidate servers
to perform file transfer(s) to collect throughput samples. The
BTS processes the samples and returns the result to the user.

2.3 Measurement Results
We select 9 (out of 20) representative BTSes for more in-depth
characterizations, as listed in Table 2. These 9 selected BTSes
well cover different designs (in terms of the key bandwidth
test logic) of the remaining 11 ones. We deploy a large-scale
testbed to comprehensively profile 8 representative BTSes,
except Android API-A (we will discuss it separately). Our
testbed is deployed on 108 geo-distributed VMs from multiple
public cloud services providers (CSPs, including Azure, AWS,
Ali Cloud, Digital Ocean, Vultr, and Tencent Cloud) as the
client hosts. Note that we mainly employ VMs as client hosts
because they are globally distributed and easy to deploy. Per
their service agreements, the CSPs offer three types of access
link bandwidths: 1 Mbps, 10 Mbps, and 100 Mbps (36 VMs
each). The ground truth in Figure 2c is obtained according to
the methodology in §2.1. We denote one test group as using
one VM to run back-to-back bandwidth tests across all the
8 BTSes in a random order. We perform in one day 3,240
groups of tests, i.e., 108 VMs ⇥ 3 different time-of-day (0:00,
8:00, and 16:00) ⇥ 10 repetitions.

We summarize our results in Table 2. We discover that
all but one of the BTSes adopt flooding-based approaches to
combat the test noises from a temporal perspective, leading to
enormous data usage. Meanwhile, they differ in many aspects:
(1) bandwidth probing mechanism, (2) bandwidth estimation
algorithm, (3) connection management strategy, (4) server
selection policy, and (5) server pool size.

2.4 Case Studies
We present our case studies of five major BTSes with the
largest user bases selected from Table 2.
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BTS # Servers Bandwidth Test Logic Duration Accuracy (Testbed / 5G) Data Usage (Testbed / 5G)
TBB⇤ 12 average throughput in all connections 8 s 0.59 / 0.31 42 MB / 481 MB

SpeedOf 116 average throughput in the last connection 8–230 s 0.76 / 0.22 61 MB / 256 MB
BWP 18 average throughput in the fastest connection 13 s 0.81 / 0.35 74 MB / 524 MB
SFtest 19 average throughput in all connections 20 s 0.89 / 0.81 194 MB / 2,013 MB

ATTtest 75 average throughput in all connections 15–30 s 0.86 / 0.53 122 MB / 663 MB
Xfinity 28 average all throughput samples 12 s 0.82 / 0.67 107 MB / 835 MB
FAST ⇠1,000 average stable throughput samples 8–30 s 0.80 / 0.72 45 MB / 903 MB

SpeedTest ⇠12,000 average refined throughput samples 15 s 0.96 / 0.92 150 MB / 1,972 MB
Android API-A 0 directly calculate using system configs < 10 ms NA / 0.09 0 / 0

Table 2: A brief summary of the 9 representative BTSes. “Testbed” and “5G” denote the large-scale cloud-based testbed and the 5G scenario,
respectively. ⇤ means that WiFiMaster and Andriod API-B share the similar bandwidth test logic with ThinkBroadBand (TBB).

ThinkBroadBand [28]. The ThinkBroadBand BTS first
selects a test server with the lowest latency to the client among
its server pool. Then, it starts an 8-second bandwidth test by
delivering a 20-MB file towards the client; if the file trans-
fer takes less than 8 seconds, the test is repeated to collect
more data points. After the 8 seconds, it calculates the aver-
age throughput (i.e., data transfer rate) during the whole test
process as the estimated bandwidth.

WiFiMaster [31]. WiFiMaster’s BTS is largely the same
as that of ThinkBroadBand. The main difference lies in the
test server pool. Instead of deploying a dedicated test server
pool, WiFiMaster exploits the CDN servers of a large Internet
content provider (Tencent) for frequent bandwidth tests. It
directly downloads fixed-size (⇠47 MB) software packages
as the test files and measures the average download speed as
the estimated bandwidth.

Our measurements show that the accuracy of ThinkBroad-
Band and WiFiMaster is low. The accuracy is merely 0.59,
because the single HTTP connection during the test can easily
be affected by network spikes and link congestion which lead
to significant underestimation. In addition, using the aver-
age throughput for bandwidth estimation cannot rule out the
impact of slow start and thus requires a long test duration.

Android APIs [1, 3]. To cater to the needs of bandwidth
estimation for bandwidth-hungry apps (e.g., UHD videos and
VR/AR) over 5G, Android 11 offers two “Bandwidth Estima-
tor” APIs to “make it easier to check bandwidth for uploading
and downloading content [1]”.

API-A, getLinkDownstreamBandwidthKbps, stati-
cally calculates the access bandwidth by “taking into
account link parameters (radio technology, allocated
channels, etc.) [20]”. It uses a pre-defined dictionary
(KEY_BANDWIDTH_STRING_ARRAY) to map device hardware
information to bandwidth values. For example, if the end-
user’s device is connected to the new-radio non-standalone
mmWave 5G network, API-A searches the dictionary which
records NR_NSA_MMWAVE:145000,60000, indicating that
the downlink bandwidth is 145,000 Kbps and the uplink
bandwidth is 60,000 Kbps. This API provides a static
“start-up on idle” estimation [1]. We test the performance of
API-A in a similar manner as introduced in §2.3 with the 5G
phones in Table 1. The results show that API-A bears rather

poor accuracy (0.09) in realistic scenarios.
API-B, testMobileDownload, works in a similar way as

ThinkBroadBand. It requires the app developer to provide the
test servers and the test files.

FAST [10] is an advanced BTS with a pool of about 1,000
test servers. It employs a two-step server selection process:
the client first picks five nearby servers based on its IP address,
and then PINGs these five candidates to select the latency-
wise nearest server for the bandwidth probing phase.

FAST progressively increases the concurrency according
to the client network condition during the test. The client
starts with a 25-MB file over a single connection. When the
throughput reaches 0.5 Mbps, a new connection is created
to transfer another 25-MB file. Similarly, at 1 Mbps, a third
connection is established. For each connection, when the file
transfer completes, it repeatedly requests another 25-MB file
(the concurrency level never decreases).

FAST estimates the bandwidth as follows. As shown in Fig-
ure 2a, it collects a throughput sample every 200 ms, and main-
tains a 2-second window consisting of 10 most recent sam-
ples. After 5 seconds, FAST checks whether the in-window
throughput samples are stable: Smax �Smin  3% ·Savg, where
Smax, Smin, and Savg correspond to the maximum, minimum,
and average value across all samples in the window, respec-
tively. If the above inequality holds, FAST terminates the test
and returns Savg. Otherwise, the test will continue until reach-
ing a time limit of 30 seconds; at that time, the last 2-second
window’s Savg will be returned to the user.

Unfortunately, our results show that the accuracy of FAST
is still unsatisfactory. The average accuracy is 0.80, as shown
in Table 2 and Figure 2c. We ascribe this to two reasons:
(1) Though FAST owns ⇠1,000 servers, they are mostly lo-
cated in the US and Canada. Thus, FAST can hardly assign a
nearby server to clients outside North America. In fact, FAST
achieves relatively high average accuracy (0.92) when serv-
ing the clients in North America; however, it has quite low
accuracy (0.74) when measuring the access link bandwidth of
the clients in other places around the world. (2) We observe
that FAST’s window-based mechanism for early generation of
the test result is vulnerable to throughput fluctuations. Under
unstable network conditions, FAST can only use through-
put samples in the last two seconds (rather than the entire
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Figure 2: (a) Test logic of FAST. (b) Test logic of SpeedTest. (c) Test accuracy of nine commercial BTSes.

30-second samples) to calculate the test result.

SpeedTest [25] is considered the most advanced industrial
BTS [33, 36, 41, 50, 73]. It deploys a pool of ⇠12,000 servers.
Similar to FAST, it also employs the two-step server selection
process: it identifies 10 candidate servers based on the client’s
IP address, and then selects the latency-wise nearest from
them. It also progressively increases the concurrency level:
it begins with 4 parallel connections for quickly saturating
the available bandwidth, and establishes a new connection at
25 Mbps and 35 Mbps, respectively. It uses a fixed file size of
25 MB and a fixed test duration of 15 seconds.

SpeedTest’s bandwidth estimation algorithm is different
from FAST’s. During the bandwidth probing phase, it collects
a throughput sample every 100 ms. Since the test duration is
fixed to 15 seconds, all the 150 samples are used to construct
20 slices, each covering the same traffic volume, illustrated
as the area under the throughput curve in Figure 2b. Then, 5
slices with the lowest average throughput and 2 slices with
the highest average throughput are discarded. This leaves 13
slices remaining, whose average throughput is returned as the
final test result. This method may help mitigate the impact of
throughput fluctuations, but the two fixed thresholds for noise
filtering could be deficient under diverse network conditions.

Overall, SpeedTest exhibits the highest accuracy (0.96)
among the measured BTSes. A key contributing factor is its
large server pool, as shown in §5.2.

3 Design of FastBTS

FastBTS is a fast and lightweight BTS with a fundamen-
tally new design. FastBTS accommodates and exploits noises
(instead of suppressing them) to significantly reduce the re-
source footprint and accelerate the tests, while retaining high
test accuracy. The key technique of FastBTS is fuzzy rejec-
tion sampling which automatically identifies true samples that
represent the target distribution and filters out false samples
due to measurement noises, without apriori knowledge of the
target distribution. Figure 1 shows the main components of
FastBTS and the workflow of a bandwidth test.

• Crucial Interval Sampling (CIS) implements the accep-
tance rejection function of fuzzy rejection sampling. CIS
is built upon a key observation based on our measurement
study (see §2.3 and §2.4): while the noise samples may
be widely scattered, the desired bandwidth samples tend
to concentrate within a narrow throughput interval. CIS
searches for a dense and narrow interval that covers the
majority of the desirable samples, and uses computational
geometry to drastically reduce the searching complexity.

• Elastic Bandwidth Probing (EBP) generates throughput
samples that persistently3 obey the distribution of the tar-
get bandwidth. We design EBP by optimizing BBR’s band-
width estimation algorithm [42] – different from BBR’s
static bandwidth probing policy, EBP reaches the target
bandwidth much faster, while being non-disruptive.

• Data-driven Server Selection (DSS) selects the server(s)
with the highest bandwidth estimation(s) through a data-
driven model. We show that a simple model can signif-
icantly improve server selection results compared to the
de-facto approach that ranks servers by round-trip time.

• Adaptive Multi-Homing (AMH) adaptively establishes mul-
tiple parallel connections with different test servers. AMH
is important for saturating the access link when the last-
mile access link is not the bottleneck, e.g., 5G [67].

3.1 Crucial Interval Sampling (CIS)
CIS is designed based on the key observation: while noise
samples are scattered across a wide throughput interval, the
desirable samples tend to concentrate within a narrow interval,
referred to as the crucial interval. As shown in Figure 3, in
each subfigure, although the crucial interval is narrow, it can
cover the vast majority of the desirable samples. Thus, while
the target distribution T (x) is unknown, we can approximate
T (x) with the crucial interval. Also, as more noise samples
accumulate, the test accuracy would typically increase as

3Here “persistently” means that a certain set (or range) of samples con-
stantly recur to the measurement data during the test process [45].
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randomly scattered noise samples help better “contrast” the
crucial interval, leading to its improved approximation.

Crucial Interval Algorithm. Based on the above insights,
our designed bandwidth estimation approach for FastBTS
aims at finding this crucial interval ([Vx,Vy]) that has both a
high sample density and a large sample size. Assuming there
are N throughput samples ranging from Vmin to Vmax, our aim
is formulated as maximizing the product of density and size.
We denote the size as K(Vx,Vy), i.e., the number of samples
that fall into [Vx,Vy]. The density can be calculated as the
ratio between K(Vx,Vy) and N0 = N(Vy �Vx)/(Vmax �Vmin),
where N0 is the “baseline” corresponding to the number of
samples falling into [Vx,Vy] if all N samples are uniformly dis-
tributed in [Vmin,Vmax]. To prevent a pathological case where
the density is too high, we enforce a lower bound of the in-
terval: Vy �Vx should be at least Lmin, which is empirically
set to (Vmax �Vmin)/(N �1). Given the above, the objective
function to be maximized is:

F(Vx,Vy) = Density⇥Size =C ·
K2(Vx,Vy)

Vy �Vx
, (1)

where C = (Vmax �Vmin)/N is a constant. Once the optimal
[Vx,Vy] is calculated, we can derive the bandwidth estimation
by averaging all the samples falling into this interval.

FastBTS computes the crucial interval as bandwidth prob-
ing (§3.2) is in progress, which serves as the acceptance-

rejection function (ARF) of rejection sampling. When a new
sample is available, the server computes a crucial interval by
maximizing Equation (1). It thus produces a series of inter-
vals [Vx3,Vy3], [Vx4,Vy4], · · · where [Vxi,Vyi] corresponds to the
interval generated when the i-th sample is available.

Searching Crucial Interval with Convex Hull. We now
consider how to actually solve the maximization problem in
Equation (1). To enhance the readability, we use L to denote
Vy�Vx, use K to denote K(Vx,Vy), and let the maximum value
of F(Vx,Vy) be Fmax, which lies in (0, C·N2

Lmin
].

Clearly, a naïve exhaustive search takes O(N2) time. Our
key result is that this can be done much more efficiently
in O(N logN) by strategically searching on a convex hull
dynamically constructed from the samples. Our high-level
approach is to perform a binary search for Fmax. The initial
midpoint is set to b C·N2

2·Lmin
c. In each binary search iteration,

we examine whether the inequality C·K2

L �m � 0 holds for
any interval(s), where 0 < m  Fmax is the current midpoint.
Based on the result, we adjust the midpoint and continue with
the next iteration.

We next see how each iteration is performed exactly. With-
out loss of generality, we assume that the throughput samples
are sorted in ascending order. Suppose we choose the i-th and
j-th samples (i < j) from the N sorted samples as the end-
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points of the interval [Vi,Vj]. Then the inequality C·K2

L �m� 0
can be transformed as:

C · ( j� i+1)2

Vj �Vi
�m � 0. (2)

We further rearrange it as:

i2 �2i+
m
C

Vi �2i j � m
C

Vj �2 j� j2 �1. (3)

It is not difficult to discover that the right side of the inequality
is only associated with the variable j, while the left side just
relates to the variable i except the term �2i j. Therefore, we
adopt the following coordinate conversion:

8
>>><

>>>:

k( j) = 2 j
b( j) = m

C Vj �2 j� j2 �1
x(i) = i
y(i) = i2 �2i+ m

C Vi

(4)

With the above-mentioned coordinate conversion, the in-
equality (3) can be transformed as: y(i)� k( j) · x(i) � b( j).
Then, determining whether the inequality holds for at least
one pair of (i, j) is equivalent to finding the maximum of
f (i) = y(i)� k( j) · x(i) for each 1 < j  N.

As depicted in Figure 5a, we regard {x(i)} and {y(i)} as
coordinates of N points on a two-dimensional plane (these
points do not depend on j). It can be shown using the linear
programming theory that for any given j, the largest value
of f (i) always occurs at a point that is on the convex hull
formed by (x(i),y(i)). This dictates an algorithm where for
each 1 < j  N, we check the points on the convex hull to
find the maximum of f (i).

Since i must be less than j, each time we increment j (the
outer loop), we progressively add one point (x( j�1),y( j�
1)) to the (partial) convex hull, which is shown in Figure
5b. Then among all existing points on the convex hull, we
search backward from the point with the largest x(i) value
to the smallest x(i) to find the maximum of f (i), and stops

searching when f (i) starts to decrease since the points are on
the convex hull (the inner loop).

As demonstrated in Figure 5c, an analytic geometry expla-
nation of this procedure is to determine a line with a fixed
slope y = k( j)x+B, s.t. the line intersects with a point on the
convex and the intercept B is maximized, and the maximized
intercept corresponds to the maximum of f (i).

Also, once the maximum of f (i) is found at (x(i0),y(i0))
for a given j, all points that are to the right of (x(i0),y(i0)) can
be removed from the convex hull – they must not correspond
to the maximum of f (i) for all j0 > j. This is because (1) the
slope of the convex hull’s edge decreases as i increases, and
(2) k( j) increases as j increases. Therefore, using amortized
analysis, we can show that in each binary search iteration, the
overall processing time for all points is O(N) as j grows from
1 to N. This leads to an overall complexity of O(N logN) for
the whole algorithm.

Fast Result Generation. FastBTS selects a group of sam-
ples that well fit T (x) as soon as possible while ensuring
data reliability. Given two intervals [Vxi,Vyi] and [Vx j,Vy j],
we regard their similarity as the Jaccard Coefficient [60].
FastBTS then keeps track of the similarity values of con-
secutive interval pairs i.e., S3,4,S4,5, ... If the test result stabi-
lizes, the consecutive interval pairs’ similarity value will keep
growing from a certain value b, satisfying b  Si,i+1  · · ·
Si+k,i+k+1  1. If the above sequence is observed, FastBTS
determines that the result has stabilized and reports the bot-
tleneck bandwidth as the average value of the throughput
samples belonging to the most recent interval. The param-
eters b and k pose a tradeoff between accuracy and cost in
terms of test duration and data traffic. Specifically, increasing
b and k can yield a higher test accuracy while incurring a
longer test duration and more data usage. Currently, we em-
pirically set b=0.9 and k=2, which are found to well balance
the tradeoff between the test duration and accuracy. Never-
theless, when dealing with those relatively rare cases that are
not covered by this paper, BTS providers are recommended
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to do pre-tests in order to find the suitable parameter settings
before putting CIS mechanism into actual use.

Solutions to Caveats. There do exist some “irregular” band-
width graphs in prior work [37, 48, 56] where CIS may lose
efficacy. For instance, due to in-network mechanisms like data
aggregation and multi-path scheduling, the millisecond-level
throughput samples can vary dramatically (i.e., sometimes the
throughput is about to reach the link capacity, and sometimes
the throughput approaches zero). To mitigate this issue, we
learn from some BTSes (e.g., SpeedTest) and use a relatively
large time interval (50 ms) to smooth the gathered throughput
samples. However, even with smoothed samples, it is still
possible that CIS may be inaccurate if the actual access band-
width is outside the crucial interval, or the interval becomes
too wide to give a meaningful bandwidth estimation. In our
experiences, such cases are rare (less than 4% in our measure-
ments in §2.3). However, to ensure that our tests are stable in
all scenarios, we design solutions to those pathological cases.

Figure 4 shows all types of the pathological cases of CIS we
observe, where P(x) deviates from T (x) over time. FastBTS
leverages three mechanisms to resolve these cases: (1) elastic
bandwidth probing (§3.2) reaches bottleneck bandwidth in
a short time, effectively alleviating the impact of slow-start
effect in Figure 4a; (2) data-driven server selection (§3.3)
picks the expected highest-throughput server(s) for bandwidth
tests, minimizing the requirement of additional connection(s)
in Figure 4c; (3) adaptive multi-homing (§3.4) establishes
concurrent connections with different servers, avoiding the
underestimations in Figures 4b and 4c. We will discuss these
mechanisms in §3.2 – §3.4.

3.2 Elastic Bandwidth Probing (EBP)
In rejection sampling, P(x) determines the boundary of T (x).
A bandwidth test measures P(x) using bandwidth probing
based on network conditions. It shares a similar principle as
congestion control at the test server’s transport layer—the
goal is to accommodate diverse noises over the live Internet,
while saturating the bandwidth of the access link. FastBTS
employs BBR [42], an advanced congestion control algorithm,
as a starting point for probing design. Specifically, FastBTS
uses BBR’s built-in bandwidth probing for bootstrapping.

On the other hand, bandwidth tests have different require-
ments compared with congestion control. For example, con-
gestion control emphasizes stable data transfers over a long
period, while a BTS focuses on obtaining accurate link capac-
ity as early as possible with the lowest data usage. Therefore,
we modify and optimize BBR to support bandwidth tests.

BBR Prime. BBR is featured by two key metrics: bottleneck
bandwidth BtlBw and round-trip propagation time RTprop. It
works in four phases: Startup, Drain, ProbeBW (probing the
bandwidth), and ProbeRTT. A key parameter pacing_gain
(PG) controls TCP pacing so that the capacity of a network
path can be fully utilized while the queuing delay is mini-
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Figure 6: Elastic bandwidth probing vs. BBR’s original scheme.

mized. BBR multiplies its measured throughput by PG to
determine the data sending rate in the subsequent RTT. After
a connection is established, BBR enters the Startup phase and
exponentially increases the sending rate (i.e., PG = 2

ln2 ) until
the measured throughput does not increase further, as shown
in Figure 6. At this point, the measured throughput is denoted
as B0 and a queue is already formed at the bottleneck of the
network path. Then, BBR tries to Drain it by reducing PG to
ln2
2 < 1 until there is expected to be no excess in-flight data.

Afterwards, BBR enters a (by default) 10-second ProbeBW
phase to gradually probe BtlBw in a number of cycles, each
consisting of 8 RT T s with PGs = { 5

4 ,
3
4 ,1,1,1,1,1,1}. We

plot in Figure 6 four such cycles tagged as 1� 2� 3� 4�. Fi-
nally (10 seconds later), the maximum value of the measured
throughput samples is taken as the network path’s BtlBw and
BBR enters a 200-ms ProbeRTT phase to estimate RTprop.

Limitations of BBR. Directly applying BBR’s BtlBw-based
probing method to BTSes is inefficient. First, as illustrated in
Figure 6 (where the true BtlBw is 100 Mbps), BBR’s BtlBw
probing is conservative, making the probing process unneces-
sarily slow. A straightforward idea is to remove the 6 RTTs
with PG = 1 in each cycle. Even with that, the probing pro-
cess is still inefficient when the data (sending) rate is low.
Second, when the current data rate (e.g., 95 Mbps) is close
to the true BtlBw (e.g., 100 Mbps), using the fixed PG of 5

4
causes the data rate to far overshoot its limit (e.g., to 118.75
Mbps). This may not be a severe issue for data transfers, but
may significantly slow down the convergence of BtlBw and
thus lengthen the test duration. Third, BBR takes the maxi-
mum of all throughput samples in each cycle as the estimated
BtlBw. The simple maximization operation is vulnerable to
outliers and noises (this is addressed by CIS in §3.1).

Elastic Data-rate Pacing. We design elastic pacing to make
bandwidth probing faster, more accurate, and more adaptive.
Intuitively, when the data rate is low, it ramps up quickly to
reduce the probing time; when the data rate approaches the
estimated bottleneck bandwidth, it performs fine-grained prob-
ing by reducing the step size, towards a smooth convergence.
This is in contrast to BBR’s static probing policy.
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We now detail our method. As depicted in Figure 6, once
entering the ProbeBW phase, we have recorded B0 and B
where B0 is the peak data rate measured during the Startup
phase and B is the current data rate. Let the ground-truth
bottleneck bandwidth be BT . Typically, B0 is slightly higher
than BT due to queuing at the bottleneck link in the end of
the Startup phase (otherwise it will not exit Startup); also, B
is lower than BT due to the Drain phase. We adjust the value
of B by controlling the pacing gain (PG) of the data sending
rate, but the pivotal question here is the adjustment policy, i.e.,
how to make B approach BT quickly and precisely.

Our idea is inspired by the spring system [51] in physics
where the restoring force of a helical spring is proportional to
its elongation. We thus regard PG as the restoring force, and
B’s deviation from B0 as the elongation (we do not know BT
so we approximate it using B0). Therefore, the initial PG is
expected to grow to:

PGgrow�0 = (PGm �PG0)⇥
✓

1� B
B0

◆
+PG0, (5)

where 1� B
B0

denotes the normalized distance between B0
and B, and PG0 represents the default value (1.0) of PG. We
set the upper bound of PG (PGm) as 2

ln2 that matches BBR’s
PG in the (most aggressive) Startup phase. As Equation (5)
indicates, the spring system indeed realizes our idea: it in-
creases the data rate rapidly when B is well below B0, and
cautiously reduces the probing step as B grows.

To accommodate a corner scenario where B0 is lower than
BT (< 1% cases in our experiments), we slightly modify Equa-
tion (5) to allow B to overshoot B0 marginally:

PGgrow�0=max{(PGm�PG0
0)⇥

✓
1� B

B0

◆
+PG0

0,PG0
0}, (6)

where PG0
0 equals 1+ e, with e being empirically set to 0.05.

When the data rate overshoots the bottleneck bandwidth
(i.e., the number of in-flight bytes exceeds the bandwidth-
delay product), we reduce the data rate to suppress the ex-
cessive in-flight bytes. This is realized by inverting PG to
PGdrop�0 =

1
PGgrow�0

. This process continues until no exces-
sive in-flight data is present. At that moment, B will again
drop below BT , so we start a new cycle to repeat the afore-
mentioned data rate growth process.

To put things together, in our design, the ProbeBW phase
consists of a series of cycles each consisting of only two
stages: growth and drop. Each stage has a variable number of
RTTs, and the six RTTs with PG = 1 in the original BBR al-
gorithm are removed. The transitions between the two stages
are triggered by the formation and disappearance of excessive
in-flight bytes (i.e., the queueing delay). In the i-th cycle, the
PGs for the two stages are:
8
<

:
PGgrow�i=max{(PGm�PG0

0)⇥
⇣
1� B

Bi

⌘
+PG0

0,PG0
0},

PGdrop�i=
1

PGgrow�i
,

(7)
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Figure 7: Data-driven server selection that takes both historical
latency and throughput information into account.

where B is the data rate at the beginning of a growth stage,
and Bi is the peak rate in the previous cycle’s growth stage.
Interestingly, by setting B0 =+•, we can make the growth
and drop stages identical to BBR’s Startup and Drain phases,
respectively. Our final design thus only consists of a single
phase (ProbeBW) with two stages. The ProbeRTT phase is
removed because it does not help our bandwidth probing.

Compared with traditional bandwidth probing mechanisms,
EBP can saturate available bandwidth more quickly as it
ramps up the sending rate when the current rate is much lower
than the estimated bandwidth. Meanwhile, when the sending
rate is about to reach the estimated bandwidth, EBP carefully
increases the rate in order to be less aggressive to other flows
along the path than other bandwidth probing mechanisms.

3.3 Data-driven Server Selection (DSS)
FastBTS includes a new server selection method. We find
that selecting the test server(s) with the lowest PING latency,
widely used in existing BTSes, is ineffective. Our measure-
ment shows that latency and the available bandwidth are not
highly correlated—the servers yielding the highest throughput
may not always be those with the lowest PING latency.

FastBTS takes a data-driven approach for server selection
(DSS): each test server maintains a database (model) contain-
ing {latency, throughput} pairs obtained from the setup and
bandwidth probing phases of past tests. Then in a new setup
phase, the client still PINGs the test servers, while each server
returns an expected throughput value based on the PING la-
tency by looking up the database. The client will then rank the
selected server(s) based on their expected throughput values.

As demonstrated in Figure 7, the actual DSS algorithm
is conceptually similar to CIS introduced in §3.1, whereas
we empirically observe that only considering the density can
yield decent results. Specifically, given a latency measurement
l, the server searches for a width w that maximizes the density
defined as K(l,w)/2w, where K(l,w) denotes the number of
latency samples falling in the latency interval [l �w, l +w].
The expected throughput is calculated as an average of all
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samples in [l �w, l +w]. In addition, the server also returns
the maximum throughput (using the 99-percentile value) be-
longing to [l�w, l+w] to the client. Both values will be used
in the bandwidth probing phase (§3.4). During bootstrapping
when servers have not yet accumulated enough samples, the
client can fallback to the traditional latency-based selection
strategy. To keep their databases up-to-date, servers can main-
tain only most recent samples.

3.4 Adaptive Multi-Homing (AMH)
For high-speed access networks like 5G, the last-mile access
link may not always be the bottleneck. To saturate the access
link, we design an adaptive multi-homing (AMH) mechanism
to dynamically adjust the concurrency level, i.e., the number
of concurrent connections between the servers and client.

AMH starts with a single connection to cope with possibly
low-speed access links. For this single connection C1, when
CIS (§3.1) has accomplished using the server S1 (the highest-
ranking server, see §3.3), the reported bottleneck bandwidth
is denoted as BW1. At this time, the client establishes an-
other connection C2 with the second highest-ranking server
S2 while retaining C1. C2 also works as described in §3.2.
Note we require S1 and S2 to be in different ASes to minimize
the likelihood that S1 and S2 share the same Internet-side bot-
tleneck. Moreover, we pick the server with the second highest
bandwidth estimation as S2 to saturate the client’s access
link bandwidth with the fewest test servers. After that, we
view C1 and C2 together as an “aggregated” connection, with
its throughput being BW2 = BW2,1 +BW2,2, where BW2,1 and
BW2,2 are the real-time throughput of C1 and C2 respectively.

By monitoring BW2,1, BW2,2, and BW2, FastBTS applies in-
telligent throughput sampling and fast result generation (§3.1)
to judge whether BW2 has become stable. Once BW2 stabi-
lizes, AMH determines whether the whole bandwidth test
process should be terminated based on the relationship be-
tween BW1 and BW2,1. If for C1 the bottleneck link is not the
access link, BW2,1 should have a value similar to or higher
than BW1 (assuming the unlikeliness of C1 and C2 sharing the
same Internet-side bottleneck [53]). In this case, the client
establishes another connection with the third highest-ranking
server S3 (with a different AS), and repeats the above process
(comparing BW3,1 and BW1 to decide whether to launch the
fourth connection, and so on). Otherwise, if BW2,1 exhibits
a noticeable decline (empirically set to > 5%) compared to
BW1, we regard that C1 and C2 saturate the access link and in-
cur cross-flow contention. In this case, the client stops probing
and reports the access bandwidth as max(BW1,BW2).

4 Implementation

As shown in Figure 1, we implement elastic bandwidth prob-
ing (EBP) and crucial interval sampling (CIS) on the server
side, because EBP works at the transport layer and thus re-
quires OS kernel modifications, and CIS needs to get fine-

grained throughput samples from EBP in real time. We im-
plement EBP and CIS in C and Node.js, respectively.

We implement data-driven server selection (DSS) and
adaptive multi-homing (AMH) on the client side. End users
can access the FastBTS service through REST APIs. We im-
plement DSS and AMH in JavaScript to make them easy to
integrate with web pages or mobile apps.

The test server is built on CentOS 7.6 with the Linux ker-
nel version of 5.0.1. As mentioned in §3.2, we develop EBP
by using BBR as the starting point. Specifically, we imple-
ment the calculation of pacing_gain according to Equation (7)
by modifying the bbr_update_bw function; we also modify
bbr_set_state and bbr_check_drain to alter BBR’s orig-
inal cycles in the ProbeBW phase, so as to realize EBP’s
two-stage cycles. EBP is implemented as a loadable kernel
module. CIS is a user-space program. To efficiently send
in-situ performance statistics including throughput samples,
Btlbw, and RTprop from EBP to CIS (both EBP and CIS are
implemented on the server side in C and Node.js), we use the
Linux Netlink Interface in netlink.h to add a raw socket and
a new packet structure bbr_info that carries the above perfor-
mance information. The performance statistics are also sent
to the client by piggybacking with probing traffic, allowing
users to examine the real-time bandwidth test progress.

5 Evaluation
5.1 Experiment Setup
We compare FastBTS with the 9 state-of-the-art BTSes stud-
ied in §2. For fair comparisons, we re-implement all the BT-
Ses based on our reverse engineering efforts and use the same
setup for all these re-implemented BTSes. To do so, we built
the following testbeds.

Large-scale Testbed. We deploy a total of 30 test servers
on 30 VMs across the globe (North America, South America,
Asia, Europe, Australia, and Africa) with the same configura-
tions (dual-core Intel CPU@2.5 GHz, 8-GB DDR memory,
and 1.5+ Gbps outgoing bandwidth). The size of the server
pool (30) is on par with 5 out of the 9 BTSes but is smaller
than those of FAST and SpeedTest (Table 2), which we as-
sume is a representative server pool size adopted by today’s
commercial BTSes. We deploy 100+ clients including 3 PCs,
4 smartphones, and 108 VMs (the same as those adopted
in §2). For a fair comparison with FastBTS, we replicate the 9
other popular BTSes: SpeedOf, BWP, SFtest, ATTtest, Xfinity,
FAST, SpeedTest, TBB, and Android API-A (see §2.3) and
deploy them on the 30 test servers and the 100+ clients. We
deploy API-A (Android specific) on 4 phones.

Tested Networks. We conduct extensive evaluations under
heterogeneous networks. We detail their setups below.
• Residential Broadband. We deploy three PCs located in

China, U.S., and Germany (Table 1). All the PCs’ access
links are 100 Mbps residential broadband. The three clients
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Figure 8: Duration and test accuracy of FastBTS, compared with 9 BTSes under various networks. “API-A” refers to Android API-A (§2.4).

communicate with (a subset of) the aforementioned 30 test
servers to perform bandwidth tests. We perform in one day
90 groups of tests, consisting of 3 clients ⇥ 3 different
time-of-day (0:00, 8:00, and 16:00) ⇥ 10 repetitions.

• Data Center Networks. We deploy 108 VMs belonging to
different commercial cloud providers as the clients (§2.3).
We perform a total number of 108 VMs ⇥ 3 time-of-day
⇥ 10 repetitions = 3,240 groups of tests.

• mmWave 5G experiments were conducted at a downtown
street in a large U.S. city, with a distance from the phone
(Samsung GS10, see Table 1) to the base station of 30m.
This is a typical 5G usage scenario due to the small cover-
age of 5G base stations. The phone typically has line-of-
sight to the base station unless being blocked by passing
vehicles. The typical downlink throughput is between 0.9
and 1.2 Gbps. We perform in one day 120 groups of tests,
consisting of 4 clients ⇥ 3 time-of-day ⇥ 10 repetitions.

• Sub-6Ghz 5G experiments were conducted in a Chinese
city using an HV30 phone over China Mobile. The setup is
similar to that of mmWave. We run 120 groups of tests.

• LTE experiments were conducted in both China (a univer-
sity campus) and U.S. (a large city’s downtown area) using
XM8 and GS9, respectively, each with 120 groups of tests.

• HSR Cellular Access. We also perform tests on high-speed
rail (HSR) trains. We take the Beijing-Shanghai HSR line
(peak speed of 350 km/h) with two HV30 phones. We
measure the LTE bandwidth from the train. We run 2 clients
⇥ 50 repetitions = 100 groups of tests.

• LAN. Besides the deployment of 30 VMs, we also create

an in-lab LAN testbed to perform controlled experiments,
where we can craft background traffic. The testbed consists
of two test servers (S1, S2) and two clients (C1, C2), each
equipping a 10 Gbps NIC. They are connected by a com-
modity switch with a 5 Gbps forwarding capability, thus
being the bottleneck. When running bandwidth tests on
this testbed, we maintain two parallel flows: one 1 Gbps
background flow between S1 and C1, and a bandwidth test
flow between S2 and C2.
We use the three metrics described in §2.1 to assess BTSes:

test duration, data usage, and accuracy. Also, the methodology
for obtaining the ground truth is described in §2.1.

5.2 End-to-End Performance
LAN and Residential Networks. As shown in Figure 8a
and 8b, FastBTS yields the highest accuracy (0.94 for LAN
and 0.96 for residential network) among the 9 BTSes, whose
accuracy lies within 0.44–0.89 for LAN, and 0.51–0.9 for
residential network. The average test duration of FastBTS for
LAN and residential network is 3.4 and 3.0 seconds respec-
tively, which are 2.4–7.4⇥ shorter than the other BTSes. The
average data usage of FastBTS is 0.9 GB for LAN and 27
MB for residential network, which are 3.1–10.5⇥ less than
the other BTSes. The short test duration and small data us-
age are attributed to EBP (§3.2), which allows a rapid data
rate increase when the current data rate is far lower than the
bottleneck bandwidth, as well as fast result generation, which
strategically trades off accuracy for a shorter test duration.

Data Center Networks. Figure 8c and 8d show the perfor-
mance of different BTSes in CSPs’ data center networks with
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the bandwidth of {1,100} Mbps (per the CSPs’ service agree-
ments). FastBTS outperforms the other BTSes by yielding the
highest accuracy (0.94 on average), the shortest test duration
(2.67 seconds on average), and the smallest data usage (21
MB on average for 100-Mbps network). In contrast, the other
BTSes’ accuracy ranges between 0.46 and 0.91; their test
duration is also much longer, from 6.2 to 20.8 seconds, and
they consume much more data (from 44 to 194 MB) com-
pared to FastBTS. In particular, we find that on low-speed
network (1 Mbps), some BTSes such as Xfinity and SFtest
establish too many parallel connections. This leads to poor
performance due to the excessive contention across the con-
nections. FastBTS addresses this issue through AMH (§3.4)
that adaptively adjusts the concurrency level according to the
network condition. The results of networks with 10 Mbps
bandwidth are similar to those of 100 Mbps networks.

LTE and 5G Networks. We evaluate the BTSes’ perfor-
mance on commercial LTE and 5G networks (both mmWave
and sub-6Ghz for 5G). Over LTE, as plotted in Figure 8e,
FastBTS owns the highest accuracy (0.95 on average), the
smallest data usage (28.23 MB on average), and the shortest
test duration (2.73 seconds on average). The other 9 BTSes
are far less efficient: 0.62–0.92 for average accuracy, 41.8
to 179.3 MB for data usage, and 7.1 to 20.8 seconds for test
duration. For instance, we discover that FAST bears a quite
low accuracy (0.67) because its window-based mechanism is
very vulnerable to throughput fluctuations in LTE. SpeedTest,
despite having a decent accuracy (0.92), incurs quite high data
usage (166.3 MB) since it fixes the bandwidth test duration
to 15 seconds regardless of the stability of the network.

Figure 8f shows the results for mmWave 5G. It is also
encouraging to see that FastBTS outperforms the 9 other
BTSes across all three metrics (0.94 vs. 0.07–0.87 for average
accuracy, 194.7 vs. 101–2,749 MB for data usage, and 4.0 vs.
8.9–26.2 seconds for test duration). Most of the BTSes have
low accuracy (< 0.6); Speedtest and SFtest bear relatively
high accuracy (0.81 and 0.85). However, the high data usage
issue due to their flooding nature is drastically amplified in
mmWave 5G. For example, Speedtest incurs very high data
usage—up to 2,087 MB per test. The data usage for FAST
is even as high as 2.75 GB. FastBTS addresses this issue
through the synergy of its key features for fuzzy rejection
sampling such as EBP and CIS. We observe similar results in
the sub-6Ghz 5G experiments as shown in Figure 8g.

HSR Cellular Access. We also benchmark the BTSes on
an HSR train running at a peak speed of 350km/h from Bei-
jing to Shanghai. As shown in Figure 8h, the accuracy of all
10 BTSes decreases. This is attributed to two reasons. First,
on HSR trains, the LTE bandwidth is highly fluctuating be-
cause of, e.g., frequent handovers caused by high mobility and
the contention traffic from other passengers. Second, given
such fluctuations, performing bulk transfer before and after
a bandwidth test can hardly capture the ground truth band-

width, which varies significantly during the test. Nevertheless,
compared to the other 9 BTSes, FastBTS still achieves the
best performance (0.88 vs. 0.26–0.84 for average accuracy,
20.3 vs. 16–155 MB for data usage, and 4.6 vs. 10.6–32.4
seconds for test duration). The test duration is longer than
the stationary scenarios because under high mobility, network
condition fluctuation makes crucial intervals converge slower.

5.3 Individual Components
We evaluate the benefits of each component of FastBTS by
incrementally enabling one at a time. When EBP is not en-
abled, we use BBR. When CIS is not enabled, we average
the throughput samples to calculate the test result. When
DSS is not enabled, test server(s) are selected based on PING
latency. When AMH is not enabled, we apply SpeedTest’s
(single-homing) connection management logic.

Bandwidth Probing Schemes. We compare BBR-based
FastBTS and SpeedTest under mmWave 5G. The average
data usage of BBR per test (735 MB) is 65% less than that of
our replicated SpeedTest (2,087 MB). Meanwhile, the accu-
racy of BBR slightly reduces from 0.85 to 0.81. The results
indicate that BBR’s BtlBw estimation mechanism better bal-
ances the tradeoff between accuracy and data usage compared
to flooding-based methods. We next compare BBR and EBP.
We find that our EBP brings further improvements over BBR:
under mmWave, EBP achieves an average data usage of 419
MB (compared 735 MB in BBR, a 42% reduction) and an
average accuracy of 0.87 (compared to 0.81 in BBR, a 7%
improvement). The advantages of EBP come from its elastic
PG setting mechanism that is critical for adaptive bandwidth
probing. Next, we compare BBR and EBP under data center
networks. As shown in Figure 9a, compared to BBR, EBP
reduces the average test duration by 40% (from 11.3 to 6.6
seconds) and the data usage by 38% (from 107 to 66 MB),
while improving the average accuracy by 6%.

Probing Intrusiveness. We evaluate the probing intrusive-
ness of vanilla BBR and EBP using the LAN testbed (§5.1).
Recall that we simultaneously run a 1 Gbps background flow
and the bandwidth test flow that shares a 5 Gbps bottleneck at
the switch. Ideally, a BTS should measure the bottleneck band-
width to be 4 Gbps without interfering with the background
flow, whose average/stdev throughput is thus used as a metric
to assess the intrusiveness of BBR and EBP. Our test proce-
dure is as follows. We first run the background flow alone
for 1 minute and measure its throughput as ROrigin= 1 Gbps.
We then run BBR and EBP with the background flow and
measure the average (standard deviation) of the background
flow throughput as RBBR (SBBR) and REBP (SEBP), respectively,
during the test. We demonstrate the three groups’ through-
put samples with their timestamps normalized by BBR’s test
duration in Figure 9b. EBP incurs a much smaller impact
on the background flow compared to BBR, with REBP and
RBBR measured to be 0.97 Gbps and 0.90 Gbps, respectively.
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Figure 9: (a) Impact of individual modules of FastBTS in 100-Mbps data center networks. (b) Comparing intrusiveness between EBP and
BBR. (c) Distributions of SCCgp (PING-based) and SCCgd (Data-driven) when P=20%; (d) P (portion of clients) vs. SCCgp and SCCgd .

Also, under EBP, the background flow’s throughput variation
is lower than under BBR: SEBP/REBP and SBBR/RBBR are cal-
culated to be 0.03 and 0.15, respectively. This suggests that
when probing the bandwidth, EBP is less intrusive than BBR.
We repeat the above test procedure under other settings, with
the background flow’s bandwidth varying from 0.5 to 4 Gbps,
and observe consistent results. The lower intrusiveness of
EBP compared with vanilla BBR probably lies in that when
the sending rate is about to hit the access link bandwidth, EBP
tends to carefully reclaim the available bandwidth; however,
vanilla BBR still increases the sending rate with a fixed step,
which is more aggressive than EBP in this scenario.

Crucial Interval Sampling (CIS). We further enable CIS.
As shown in Figure 9a, by strategically removing outliers,
CIS increases the average accuracy from 0.87 (EBP only) to
0.91. Due to the fast result generation mechanism, the test
duration is reduced from 6.8 seconds to 2.8 seconds and the
data usage is reduced by 2.8⇥ (compared with EBP only).

We next compare CIS with the sampling approaches used
by the other 9 BTSes (§5.1), which use a total of five band-
width sampling algorithms because SFtest, ATTtest, and Xfin-
ity employ the same trivial approach of simply averaging
the throughput samples. To fairly compare them with CIS,
we take a replay-based approach. Specifically, we select one
“template” BTS from which we collect the network traces
during the bandwidth probing phase; the time series of the
aggregated throughput across all connections is then obtained
from the traces and fed to all the sampling algorithms. We
exclude SpeedOf and BWP from this experiment because
they calculate the bandwidth based on the last or fastest con-
nection that cannot be precisely reconstructed by our replay
approach. We next show the results by using SpeedTest as the
template BTS. The simplest algorithm (averaging) bears the
lowest accuracy (0.81) because it is poor at eliminating the
noises caused by, for example, TCP congestion control; the
accuracy values of FAST, and SpeedTest are 0.82 and 0.84, re-
spectively. In contrast, CIS owns the highest accuracy (0.91).
This confirms the effectiveness of CIS’s sampling approach.
The efficiency and effectiveness of CIS lies in that, instead of
incurring much redundancy in test duration and data usage

to achieve a decent test accuracy, CIS keeps calculating the
crucial interval of the gathered throughput samples. Once the
crucial interval stabilizes, CIS immediately stops the test, thus
significantly saving test duration and data usage.

Adaptive Multi-Homing (AMH). When AMH is further
enabled, the test accuracy increases from 0.91 (EBP+CIS) to
0.93 (EBP+CIS+AMH), as shown in Figure 9a. Meanwhile,
since testing over more connections takes additional time,
AMH slightly lengthens the average test duration from 2.8
to 3.1 seconds, with the average data usage increased from
23 MB to 28 MB. We repeat the above experiments over
mmWave 5G networks where the bottleneck is more likely to
shift to the Internet side. The results show that AMH improves
the average accuracy from 0.84 to 0.91, while incurring mod-
erate overhead by increasing the average data usage from
148 MB to 206 MB and the average test duration from 3.3
to 4.1 seconds. The results suggest that AMH is essential for
high-speed networks such as mmWave 5G.

Data-driven Server Selection (DSS). We employ cross-
validation for a fair comparison between the PING-based
method and DSS in three steps: (1) We do file transfers be-
tween every server and a randomly selected portion (P) of
all clients to gather throughput samples. (2) Each client C
runs a bandwidth test towards every server. In each test, the
clients’ historical test records (excluding the record of C)
gathered in the previous step is utilized by each server to cal-
culate the expected bandwidth, which is then returned to C.
(3) Each client calculates three rankings of the servers based
on the server-returned expected bandwidth: Rankg, Rankp,
and Rankd . Rankg refers to the server ranking based on the
ground truth. Rankp is the ranking calculated based on PING
latency; and Rankd is the ranking computed by DSS. We use
the Spearman Correlation Coefficient (SCC [59]) to calculate
the similarity SCCgp between Rankg and Rankp, as well as
the similarity SCCgd between Rankg and Rankd .

The distributions of SCCgp and SCCgd when P = 20% are
shown in Figure 9c. We find that SCCgd is much higher than
SCCgp in terms of the median (0.81 vs. 0.63), average (0.80
vs. 0.50), and maximum (0.93 vs. 0.88) values. Further, Fig-
ure 9d shows that SCCgd drops as P decreases; however, even
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when P decreases to 5%, SCCgd (0.62) is still 24% larger
than SCCgp (0.5). These results show that even with limited
historical data, DSS works reasonably well. We enable DSS
in our experiments of Figure 9a with P = 20%. Compared to
EBP+CIS+AMH, enabling DSS improves the average accu-
racy from 0.93 to 0.94; the test duration slightly reduces.

Overall Runtime Overhead. The client-side overhead of
FastBTS is negligible based on our measurement on Samsung
Galaxy S9, S10, Xiaomi M8, and Huawei Honor V30. On the
server side, the incurred overhead is also low. When Btlbw is
100 Mbps, the CPU overhead is measured to be lower than 5%
(single core, tested on Intel CPU@2.5 GHz, 8-GB memory).
The CPU overhead is only 12% when Btlbw is 5 Gbps.

6 Related Work

Bandwidth Measurement. Bandwidth measurement is an
essential component for many networked systems that em-
power many important applications and use cases [46, 61,
62, 75]. Apart from the BTSes described in §2, other band-
width measurement methods mostly target specific types
of networks (e.g., datacenter [44], LTE [56, 71], and wire-
less [74, 77]) and require special support from the deployed
infrastructure. For example, AuTO [44] conducts bandwidth
estimation over DCTCP in data centers; it needs switch sup-
port to tag ECN marks on the data packets, and thus is chal-
lenging to be applied in WAN. Huang et al. [56] propose to de-
ploy monitors inside the cellular core network for bandwidth
measurement. Dischinger et al. [47] devise a bandwidth mea-
surement tool which concurrently leverages multiple packet
trains with different sending rates to measure the link band-
width of residential broadband network.

While almost all commercial BTSes employ flooding-based
methods to combat measurement noises, there exists quite a
few non-flooding methods [55, 65, 68, 70] in academia, which
indirectly infer the available bandwidth based on timing infor-
mation of crafted packets (including packet pairs and packet
trains). Unfortunately, these methods are highly sensitive to
timing information, and thus can be easily disrupted by many
factors like packet loss [54,64], queueing [54], and data/ACK
aggregation [64], especially in high-speed networks.

Designed as a generic network service for Internet users,
FastBTS differs from and complements the above work.
FastBTS targets at conducting fast and light bandwidth tests
especially for high-speed wide-area networks (e.g., 5G), sig-
nificantly reducing data usage and test duration for clients.
It does not require any hardware support at the client side.
On the server side, we show that FastBTS requires a much
smaller deployment to achieve the same level of effectiveness
of existing large-scale commercial BTSes (e.g., SpeedTest).

Congestion Control. FastBTS’s elastic bandwidth probing
is inspired by congestion control algorithms [63, 66, 79]. We
categorize congestion control algorithms based on the conges-

tion indicators: (1) Loss-based CCs (e.g., BIC-TCP [76] and
CUBIC [52]) which take packet loss as the indicator. They are
vulnerable to bufferbloat and random losses [34]. (2) Delay-
based CCs (e.g., TCP FAST [58] and TCP Vegas [40]) which
take transmission delay as the indicator. They are known to
under-utilize the available bandwidth as the Internet latency
is inherently noisy and fluctuating. (3) Rate-based CCs (e.g.,
BBR [42], PCC [48] and PCC Vivace [49]) which directly
estimate the available bandwidth and accordingly adjust data
sending rate, typically via a feedback loop. We choose to
design elastic bandwidth probing based on BBR, because
BBR is mature with large-scale deployment on WAN [18],
edge [27, 57], and cellular networks [35].

7 Concluding Remarks

We present FastBTS, a novel bandwidth testing system, to
make bandwidth testing fast and light as well as accurate.
By accommodating and exploiting the test noises, FastBTS
achieves the highest level of accuracy among commercial
BTSes, while significantly reducing data usage and test dura-
tion. Further, FastBTS only employs 30 servers, 2–3 orders
of magnitude fewer than the state of the arts.

Despite the above merits, FastBTS still bears several lim-
itations at the moment. First, when testing a client’s uplink
bandwidth, FastBTS requires extra deployment efforts (in
particular a kernel module of EBP, as demonstrated in Fig-
ure 1) at the client side. Second, the performance of the data-
driven server selection (DSS) mechanism can be affected by
its cold start phase as well as the specific deployment of test
servers. Third, when the selected test servers cannot saturate
the client’s downlink bandwidth, the adaptive multi-homing
(AMH) mechanism may need several rounds to make the
bandwidth probing process converge, thus leading to a rela-
tively long test duration. We have been exploring practical
ways to overcome these limitations.
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Abstract
Sketch algorithms have been extensively studied in the area

of network measurement, given their limited resource usage
and theoretically bounded errors. However, error bounds pro-
vided by existing algorithms remain too coarse-grained: in
practice, only a small number of flows (e.g., heavy hitters)
actually benefit from the bounds, while the remaining flows
still suffer from serious errors. In this paper, we aim to design
a nearly-zero-error sketch that achieves negligible per-flow
error for almost all flows. We base our study on a technique
named compressive sensing. We exploit compressive sensing
in two aspects. First, we incorporate the near-perfect recovery
of compressive sensing to boost sketch accuracy. Second, we
leverage compressive sensing as a novel and uniform method-
ology to analyze various design choices of sketch algorithms.
Guided by the analysis, we propose two sketch algorithms that
seamlessly embrace compressive sensing to reach nearly zero
errors. We implement our algorithms in OpenVSwitch and P4.
Experimental results show that the two algorithms incur less
than 0.1% per-flow error for more than 99.72% flows, while
preserving the resource efficiency of sketch algorithms. The
efficiency demonstrates the power of our new methodology
for sketch analysis and design.

1 Introduction

Sketch algorithms have been widely adopted in flow-level
monitoring. They maintain compact data structures that sacri-
fice a small portion of accuracy to be readily deployable in
commodity network devices. Given their limited overheads
and provable high accuracy, numerous sketch algorithms are
designed to monitor various flow statistics, such as per-flow
counting [49], heavy hitters [19, 25], denial-of-service vic-
tims [26,84] and traffic distributions [46]. These flow statistics
form essential building blocks for network management.

Despite the sound theoretical bounds on the errors, exist-
ing sketch algorithms remain far from perfect for providing
comprehensive guarantees for all flows. Ideally, it is expected
to monitor every flow with minimum errors, which empowers
various fine-grained network management operations such as
responsive diagnosis [17, 51, 67] and precise failure localiza-
tion [3, 50]. However, the bounds in existing algorithms are
designed for specific traffic statistics such as heavy hitters or
flow distributions. They are too coarse-grained when applied
to all flows. As a result, only a small portion of flows actu-

ally benefit from the provable error bounds. For instance, for
byte counting, many sketch algorithms guarantee an upper
bound of per-flow error. Heavy hitters whose size is much
larger than the bound can certainly achieve high accuracy as
the maximum possible error is limited compared to their size.
Nonetheless, such a bound is still unacceptable for most small
flows that still suffer from poor accuracy.

In this paper, our goal is to explore nearly-zero-error (NZE)
per-flow monitoring. We aim to achieve a negligibly small
error (e.g., >99.99% flows are reported, and the estimated
size of any reported flow has a <0.1% relative error compared
to the true size). We base our study on a signal processing
technique named compressive sensing. Our key insight is that:
(1) compressive sensing provides near-perfect signal recov-
ery with limited resources, which inspires us to apply it to
flow monitoring; (2) compressive sensing is built on various
matrix properties such as sparsity, which provides a power-
ful tool to study sketch algorithms, given that most sketch
algorithms exhibit the same mathematical form as compres-
sive sensing [21]. Even though some telemetry solutions also
adopt compressive sensing [7, 16, 21, 35, 44, 83], our work
addresses the design of NZE sketch, which is never studied.

In particular, we exploit compressive sensing in two lines.
In the first line, we incorporate the near-perfect recovery tech-
nique of compressive sensing by regarding flow statistics as
signals. However, our preliminary experiments show that it is
non-trivial to adopt compressive sensing directly. This moti-
vates the second line of our work that examines the suitability
of compressive sensing for sketch algorithms and then de-
signs new algorithms accordingly. Specifically, we leverage
compressive sensing to propose a novel and uniform method-
ology to study sketch techniques: we formulate various sketch
algorithms in forms of matrices and then quantitatively an-
alyze their suitability to compressive sensing. Thus, instead
of designing from scratch, we use the analysis results as a
guideline for the algorithm design.

In summary, we not only propose new algorithms but also
provide a new methodology to study sketch techniques from
a perspective of compressive sensing. We make the following
contributions:
• We investigate the feasibility of applying compressive sens-

ing to flow monitoring. We evaluate two simple methods
and show that simple utilization either suffers from poor
scalability or fails to reach the expected accuracy level.

• We dissect existing sketch algorithms based on compres-
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sive sensing theory. We formulate each sketch algorithm by
inducing a matrix for it. We examine a fundamental matrix
property namely orthonormality that ensures the correct-
ness of compressive sensing. We find that induced matrices
of existing algorithms fail to be orthonormal.

• We study the common approaches to build sketch algo-
rithms from a perspective of matrix analysis. We analyze
the impact of these approaches on the orthonormality of
their induced matrices. We reveal the limitations of existing
algorithms when combining with compressive sensing.

• We design two new algorithms that efficiently utilize the
common approaches to embrace compressive sensing seam-
lessly. The two algorithms target suitability to compressive
sensing to achieve nearly-zero errors, while prior algorithms
provide only coarse-grained error bounds. Further, their de-
sign choices can be interpreted by matrix analysis, while
existing algorithms are built on statistical analysis or empir-
ical observations on hash conflicts. To our best knowledge,
both the two aspects are never explored before.

• We implement our proposed algorithms atop both Open-
VSwitch [62] and P4 [63]. Our evaluation results demon-
strate that our algorithms achieve less than 0.1% relative
error for more than 99.72% flows, while incurring zero
false negatives and zero false positives, while consuming
limited resources compared to state-of-the-art algorithms.
We release our source code at https://github.com/
N2-Sys/NZE-Sketch.

2 Problem

2.1 Sketch-based Flow Monitoring
We follow the line of approximate flow-level measurement [4,
35,37,49,53,54,80,82]. Flow-level monitoring defines a flow
as a sequence of packets with the same flow ID, and computes
its flow values based on the packet sequence. We focus on
sketch algorithms that outperform sampling in accuracy [49]
and hence have been extensively used in flow monitoring.
A sketch algorithm records information of every packet in a
compact data structure, so as to achieve high accuracy yet be
readily deployed in commodity measurement points.

In a nutshell, a sketch algorithm comprises a collection of
counters. It supports two operations: update and query. The
update operation is performed in the data plane. For each
packet, it selects several counters with hash functions and
updates the selected counters to reflect the changes of flow
values. The query operation is invoked by the control plane.
The control plane periodically collects sketch structures from
each measurement point, and performs the query operation to
extract flow IDs and flow values from the structure.

Sketch algorithms allow a small but bounded accuracy drop
to reduce resource overheads. Specifically, in a sketch algo-
rithm, a counter is typically shared by multiple flows, which in-
evitably incurs some errors due to flow conflicts. Each sketch
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Figure 1: Fractions of flows that reach <10% and <50% per-
flow errors in existing sketch algorithms.

algorithm mitigates the errors with its specific algorithmic
design. Backed by sound mathematical analysis, sketch algo-
rithms usually provide theoretical bounds on the errors.

2.2 Limitation

However, the theoretical guarantees provisioned by existing
sketch algorithms are limited. Existing algorithms are typi-
cally designed to provide guarantees for specific flows (e.g.,
heavy hitters [8, 19, 25, 68] or super-spreaders [84]) and/or
aggregated flow statistics (e.g., cardinality [28] or traffic distri-
bution [46]). With regard to the specific scope, it is sufficient
for a sketch algorithm to mitigate the overall hash conflicts
only because bounding per-flow error is not a primary goal.
Nonetheless, when extending an algorithm to the entire net-
work traffic, the derived bounds are too coarse-grained to
work for all flows. This leads to a considerable gap between
theoretical analysis and practical results: only a small portion
of flows actually benefit from the theoretical bounds, while
the remaining flows still exhibit poor accuracy.

We consider an example of CountMin [20] to illustrate
it. A CountMin sketch consists of r rows, each of which
has w counters. When applying it to count per-flow bytes, it
guarantees that the per-flow counting error is at most 2U

w with
a high probability 1− 1

2r , where U is the total byte count of
all flows. Now we consider an interval with U =10 GB traffic,
and configure w = 105 and a sufficiently large r such that the
probability 1− 1

2r is close to one. In this case, the error bound
is around 210 KB. For extremely large flows, such a bound
guarantees a small error (e.g., <2% relative error for a flow of
10 MB). However, the error is awfully huge for small flows
whose byte counts are below the bound. Given the heavy-
tailed traffic distribution, most flows are small. Thus, most
flows suffer from low accuracy due to the loose bound.

We justify this observation via trace-driven experiments.
We consider 11 sketch algorithms for per-flow packet count-
ing: Counting Bloom Filter (CBF) [27], CountMin (CM) [20],
CountSketch (CS) [15], Deltoid (DT) [19], ElasticSketch
(ES) [80], FlowRadar (FR) [49], NitroSketch (NS) [53], RevS-
ketch (RS) [68], SeqHash (SH) [8], SketchLearn (SL) [37],
and UnivMon (UM) [54]. We use Caida [9] traces and parti-
tion our traces in two 2-second intervals where each interval
contains 100 K flows. We employ two configurations for each
algorithm: one with 10 MB memory that is around the maxi-
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mum available memory in commodity switches [43, 56], and
the other with 100 MB that indicates an ideal scenario that
has plenty of memory resources. We set parameters as sug-
gested in the original papers. Figure 1 presents the fractions
of flows whose per-flow error is below 10% and 50%. With
10 MB, less than half flows can reach a per-flow error below
10% in most algorithms. The low accuracy is caused by the
serious hash conflicts in these sketches. With 100 MB, the
overall accuracy is improved. However, such huge memory
consumption is not affordable in commodity switches.

3 Overview

Goals. We explore the methodology to design NZE sketch
algorithms. Specifically, we expect that: (1) flow IDs are
extracted with a negligible error probability (e.g., both false
positive rate and false negative rate are below 0.01%), and (2)
per-flow error is small (e.g., <0.1%) for almost all (e.g., >99%)
flows. At the same time, we also aim to limit the resource
usage such that the algorithms can be readily deployed.

The NZE monitoring forms the basis for various flow statis-
tics, such as flow cardinality [28], super-spreaders and DDoS
victims [30, 86], heavy hitters/changes [45], flow distribu-
tions [46], and entropy [34]. For each type of statistics, a lot
of specific algorithms have been proposed. However, to our
best knowledge, none of existing algorithms provide com-
prehensive and strict accuracy guarantees for all flows. Prior
studies advocate that: (1) it is sufficient to address large flows,
and (2) approximate monitoring is acceptable. Nevertheless,
NZE monitoring for even small flows greatly benefits net-
work management. For example, single-packet TCP flows
typically indicate unsuccessful connection attempts, caused
by DDoS attacks, service crashes, or software bugs. Without
accurate monitoring for small flows, it is difficult to rapidly re-
act to such events. On the other hand, NZE monitoring allows
administrators to deal with the reported anomalies without
concerns on false alarms or undetected events.

Key idea. Our study addresses three questions. (1) Is NZE
monitoring theoretically feasible? (2) What are the key factors
to achieve NZE monitoring? (3) How do the key factors be
efficiently realized in practice?

To answer these questions, we base our work on compres-
sive sensing [11–13, 24]. Compressive sensing is a signal
processing technique that acquires high-dimensional signals
with limited resources. Classical compressive sensing has two
procedures. The sensing procedure records a signal by multi-
plying the signal with a matrix, while the recovery procedure
reconstructs the signal with an optimization-based approach.
We exploit compressive sensing in two aspects:
• We aim to incorporate the optimization-based recovery of

compressive sensing to achieve near-zero errors. This is
motivated by the sound theoretical guarantees provisioned
by compressive sensing on its overheads and correctness.
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Figure 2: Workflow.

It has been demonstrated that the optimization-based ap-
proach can recover signals nearly perfectly in many areas
such as image compression [11, 12]. Thus, similar results
are expected if we regard flow values as signals.

• We also leverage compressive sensing to guide the design of
NZE sketch. Here, compressive sensing serves as a general
framework to study various sketch algorithms. In particular,
compressive sensing exhibits the same mathematical form
as sketch algorithms: prior works [18, 21, 55] show that
sketch algorithms can be viewed as variants of compressive
sensing. Even though each sketch algorithm exhibits its
unique design that is quite different from classical compres-
sive sensing, it can be formulated by a matrix (§4.3) and
analyzed via matrix analysis.

Assumptions. Our study makes two assumptions. First, net-
work traffic is sparse. By sparsity, we mean that even though
there are enormous possible flows (e.g., 264 possible 2-tuple
flows), the number of active flows is much smaller. This
assumption has been justified in many measurement stud-
ies [5,66] and utilized in various recent works [35,83]. Second,
we assume that a sketch algorithm contains a linear part in
which each counter is updated linearly by a packet. Previous
studies [18, 21] show that basic sketch algorithms, including
CM, CS, and CBF, are linear structures; while we observe that
many other sketches (e.g., UM, FR, ES, and SL) are built atop
these basic sketches. We discuss how to handle the non-linear
portion of a sketch in §4.3.

Workflow. Figure 2 outlines the workflow of our study.
• Feasibility analysis (§4): We investigate the feasibility

of applying compressive sensing to flow monitoring. We
consider two methods. The first method directly adopts
classical compressive sensing, including its sensing and
recovery procedures. The second method employs sketch
algorithms to record per-packet information (referred to
as sketch-based sensing). Then it formulates each sketch
algorithm as a matrix and invokes the optimization-based
recovery of classical compressive sensing. However, we
find that the first method suffers from a scalability problem,
while the second method has very low accuracy. This moti-
vates us to dive into the fundamental theory of compressive
sensing and design new algorithms.

• Root cause analysis (§5): We examine the root cause that
leads to the poor accuracy when combining sketch-based
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Figure 3: Utilization of compressive sensing for network mon-
itoring.

sensing with the optimization-based recovery. Our study
compares the matrices formulated by sketch algorithms
with those in classical compressive sensing. We address a
critical matrix property orthonormality (§1) that ensures the
correctness of classical compressive sensing. Our bench-
mark experiments show that the matrices formulated by
sketch algorithms lack sufficient orthonormality.

• Common approach analysis (§6): We identify common
approaches to improve matrix orthonormality for sketch
algorithms. Even though the approaches are also used in
existing algorithms, we revisit these approaches in a novel
methodology of matrix analysis. We group the approaches
into four classes. For each class, we theoretically analyze
the impact on matrix orthonormality. We also perform
benchmark experiments to validate our analysis. Our analy-
sis points out that the current utilization of these approaches
is not efficient to combine with the optimization-based re-
covery of compressive sensing.

• Algorithm design (§7): We propose two algorithms that
seamlessly combine sketch with the compressive sensing re-
covery. Based on the results of common approach analysis,
we select appropriate approaches and efficiently integrate
them to form the data plane of the two algorithms. Each
design choice can be fully interpreted by matrix analysis.
In the control plane, the two algorithms recover flow IDs
and flow values by solving an optimization problem.

Discussion. Some recent studies have also applied compres-
sive sensing in network measurement [7, 16, 21, 35, 44, 83].
However, they focus on recovering missing values in specific
scenarios such as traffic matrices [16, 83] or network tomog-
raphy [7]. In contrast, we utilize compressive sensing to (i)
comprehensively dissect sketch algorithms, and (ii) guide the
full design of NZE sketch.

Note that there are numerous variants of compressive sens-
ing that reconstruct signals in different manners (e.g., LASSO
[47] or using L0 norm). In this paper, we focus on the original
reconstruction approach that is based on matrix orthonormal-
ity [11, 12], given their simplicity and sound guarantees.

4 Feasibility Analysis

We introduce the fundamental concepts of compressive sens-
ing in §4.1. Then we study two methods that apply compres-
sive sensing to flow monitoring in §4.2 and §4.3, respectively.

4.1 Preliminary
Compressive sensing represents a signal as a signal vector~x
of length n. It includes two procedures to acquire~x.

Sensing procedure. The sensing procedure is responsible for
recording ~x in a lightweight manner. Since the length n is
usually a large number, compressive sensing linearly maps
~x into a measurement vector~y of length m, where m is much
smaller than n. Formally, the mapping can be represented as
an m×n sensing matrix Φ, while~y is computed as:

~y = Φ×~x (1)

Recovery procedure. The recovery procedure is to recon-
struct the signal vector~x with Φ and~y. However, Equation (1)
is an underdetermined system. It includes m linear equa-
tions for the n unknown variables in ~x: the i-th element in
~y (denoted by yi) and the i-row of Φ form a linear equation:
∑

n
j=1 Φi, j · x j = yi. Since the number of variables n is much

larger than the number of equations m, the number of possible
solutions is infinite.

Compressive sensing addresses the underdetermined prob-
lem by introducing some prior knowledge. It assumes that~x
is sparse1. Then compressive sensing formulates an optimiza-
tion problem:

minimize: ‖~x‖1,

subject to: ~y = Φ~x
(2)

Here, compressive sensing chooses to minimize the L1 norm
of ~x because L1 norm penalizes against the lack of sparsity
[11, 12]. Therefore, a sparse vector satisfying Equation (1) is
obtained. Theoretical analysis shows that the solution is close
to the true~x if some specific properties hold in Φ [11–13, 24].
We will study the properties in §5.

Utilization. Figure 3 depicts how to map the concepts of com-
pressive sensing to those in network monitoring. Let n be the
number of possible flows. For each type of flow statistic, all
flow values form a vector~x of length n. An element xi indi-
cates the value of the flow i. A measurement point maintains~y
in its memory. For each packet, it identifies the flowkey i such
that the packet can be considered as a change to ~x denoted
by ∆~x. The measurement point multiplies ∆~x with the matrix
Φ to form the update to ~y (denoted by ∆~y). Then it applies
the update to~y. The control plane collects~y and invokes the
optimization-based recovery in Equation (2) to reconstruct
~x. Note that we do not need to explicitly maintain Φ,~x, ∆~x,
and ∆~y in memory. Instead, we compute their elements on
demand. For example, we compute an element Φk,i when we
update the k-th counter in~y with flow indexed by i.

In practice, network administrators can directly utilize a
classical matrix Φ [12, 75]. They can also propose their own
method and formulate it in the form of Equation (1). We study

1For non-sparse ~x, it needs to be transformed to another sparse vector
first. We omit this case because network traffic exhibits high sparsity (§3).
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the classical methods in §4.2 and formulate sketch algorithms
using compressive sensing in §4.3.

4.2 Method 1: Classical Sensing

Accuracy. We first consider a method that direct utilizes clas-
sical sensing matrix Φ. We evaluate the accuracy of the clas-
sical sensing method via experiments with the same setup as
that in §2.2. We employ four types of commonly used sensing
matrices Φ: (1) Gaussian Matrix (GM) [75], (2) Bernoulli
Matrix (BM) [12], (3) Incoherence Matrix (IM) [12], and (4)
Fourier Matrix (FM) [12]. To reconstruct~x, we leverage two
algorithms: the L1 minimization approach that solves the opti-
mization problem with the simplex method [22], and a greedy
algorithm named Orthogonal Matching Pursuit (OMP) [64].
The four types of sensing matrices and two recovery algo-
rithms produce eight approaches in total. The results show
that all the eight approaches can recover flow IDs and flow
values perfectly: zero false positives, zero false negatives, and
zero per-flow error. Our results show that 400 KB memory is
sufficient to achieve perfect recovery, which is much smaller
than sketch algorithms (§2.2). The detailed accuracy trend
with different memory settings is in Table 3 in Appendix.

Scalability problem. However, the classical sensing method
suffers from a scalability problem. The classical sensing ma-
trices are dense matrices in which all elements are non-zero.
Thus, each packet needs to update m (above 104) counters
in ~y. This is infeasible for commodity devices. In software
switches, updating so many counters fails to keep pace with
packet streams with the slow CPUs. In hardware switches, the
updates far exceed the available computational units. Thus,
classical sensing can only accommodate limited flows.

Note that the scalability problem does not occur in other
compressive sensing applications in which ~x does not vary
(e.g., image compression). In those scenarios,~y is computed
only once using the constant~x.

4.3 Method 2: Sketch-based Sensing

Matrix formulation. Sketch algorithms incur limited per-
packet operations, which addresses the scalability problem
in §4.2. we follow prior studies [18, 21] that regard sketch
as linear mapping and formulate it in the form of ~y = Φ~x.
Let m be the number of linear counters. For~y, we index the
m counters and stack them as a vector~y of length m. For Φ,
we form Φ with m rows and n columns, where each column
represents a flow while each row represents one counter in~y.
Each element Φi, j implies that the counter yi is incremented
by Φi, j if the value x j of flow j changes by one.

Examples. We present an example of CountMin in Figure 4.
We consider four flows, i.e.,~x has its length n=4. We employ
two rows and configure three counters in each row in the
sketch. Hence,~y has length m = 6. In each row, a packet (k,v)

𝑦1
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Figure 4: Matrix formulation of CountMin.
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Figure 5: Ratio of flows that reach <50% per-flow errors in
sketch-based sensing.

selects one counter with a hash function and increments it
by v. Thus, we have Φi,k = 1 if flow k is hashed to counter
i, and Φi,k = 0 otherwise. For each more flow, we may add
a column to Φ and derive the column elements in the same
method. We present more examples in Appendix.

Nonlinear structures. Not all components in a sketch are
linear mapping. These components cannot be formulated by
matrices. For example, FlowRadar maintains a set of counters
that encode flow IDs via XOR operations [49]. We do not
incorporate such nonlinear components in the optimization
problem when reconstructing~x. Instead, we employ them to
verify the correctness of the reconstructed~x. Specifically, we
recompute these nonlinear structures with the reconstructed
~x and compare them with the original ones. For example, in
FlowRadar, we encode all recovered flow IDs via the same
XOR operations. We compare the new encoded results with
the original XOR results to validate the correctness.

Results. We evaluate the sketch-based sensing method. We
consider the sketch algorithms in §2.2. For each algorithm,
we perform both L1 minimization and OMP for the recovery.
We employ two memory configurations: one with the same
amount of memory as classical sensing, and the other with
10× memory. Figure 5 presents the ratio of flows whose error
is below 50%. We see that even with 10× memory, all algo-
rithms suffer from extremely low accuracy when using the
optimization-based recovery. The results are even worse than
those using their original query operations (see §2.2). The
reason is that the matrices derived from existing sketch algo-
rithms do not exhibit the required properties of compressive
sensing although they exhibit the same form (see 5). This sug-
gests us to explore new methods to boost sketch-based sensing
to embrace compressive sensing, provided by the extensive
study on the accuracy of compressive sensing [11–13, 24].

5 Root Causes

We examine the root cause of the poor accuracy in §4.3. Our
methodology is to examine whether key properties of classical
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Figure 6: RIP of classical and sketch-based sensing.

sensing hold in sketch-based sensing.
Key properties. Compressive sensing guarantees its correct-
ness by two properties: the sparsity of~x and the orthonormal-
ity of Φ. Specifically, any orthonormal matrix Φ preserves the
norms (and hence differences) for sparse vectors: given arbi-
trary two different sparse vectors~x1 and~x2, their mappings
under matrix Φ (i.e., Φ~x1 and Φ~x2) remain distinct. Thus,
when a sparse vector~x∗ that satisfies Φ~x∗ =~y is found, it is
must be equal to the desired~x (otherwise two different vec-
tors~x∗ and~x have the same mapping, which compromises the
property of the orthonormal matrix Φ) [12]. Since~x is already
sparse (§3), we only address whether Φ is orthonormal.
Orthonormal matrix and RIP. Unfortunately, orthonormal-
ity cannot hold in Φ, because an orthonormal matrix is re-
quires to be a square matrix, but the number of rows is smaller
than the number of columns in Φ. Compressive sensing deals
with this issue with a notion of restricted isometry property
(RIP) [10], which serves as an approximation of being fully or-
thonormal. RIP characterizes the extent to which Φ preserves
the norm of sparse signals.

At a high level, for any sparse vector~x, Φ~x is its mapping
under the matrix Φ. If Φ is highly orthonormal, the norm of
Φ~x (denoted by ‖Φ~x‖2) must be close to that of~x (denoted by
‖~x‖2). Therefore, RIP evaluates the difference between ‖~x‖2
and ‖Φ~x‖2. Since Φ should work for an arbitrary sparse vector
~x, RIP is calculated as a sequence of isometry constants {δS}.
Each δS in the sequence is the maximum relative difference
between the norms of Φ~x and~x among all S-sparse signals:

δS = sup{ |‖Φ~x‖2−‖~x‖2 |
‖~x‖2

for any S-Sparse~x} (3)

Benchmark results. We measure the RIP of both classical
sensing matrices (§4.2) and the matrices induced by sketch
algorithms (§4.3). We present RIP as δS, the isometry constant
for S-sparse vectors, where S is the number of actual flows in
each interval. Figure 6 shows that classical sensing matrices
have RIP below 0.3. In contrast, RIP is above 120 in all sketch-
induced matrices. The large RIPs degrade the efficiency of
compressive sensing reconstruction.

6 Common Approach Analysis

We examine common approaches in general sketch design.
Based on their impacts on matrix orthonormality, we catego-
rize the approaches into four classes. For each class, we ana-

Algorithm C1 C2 C3 C4

CU Sketch [25] Conservative
update

Deltoid [19] Multiple Flow
CM instances extraction

ElasticSketch [80] Traffic
splitting

FlowRadar [49] Multiple Bloom Flow
Bloom Filters Filter extraction

NitroSketch [53] Sampling Multiple HeapCS instances

RevSketch [68] Flow
extraction

SeqHash [8] Multiple Flow
CM instances extraction

SketchLearn [37] Multiple Flow
CM instances extraction

SketchVisor [35] Traffic
splitting

UnivMon [54] Multiple HeapCS instances

SeqSketch Fractional Bloom Filter Splitting
update + Controller + Controller

EmbedSketch Fractional Bloom Filter Extraction
update + controller + Controller

Table 1: Common approaches in sketch algorithms.
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Figure 7: Impact of common approaches.

lyze its matrix property and use RIP as the metric to quantify
the effectiveness. Although some approaches have been used
in existing sketch algorithms (see Table 1), we study them
from novel perspectives. First, we target the suitability of
these approaches to compressive sensing, while existing algo-
rithms study them for specific purposes. Second, we quantify
the efficiency of these approaches via matrix analysis, while
previous algorithms address probabilistic error bounds.

6.1 Class 1 (C1): Fractional Elements

Matrix analysis. We observe that elements in sketch-based
sensing matrices are integers, which leads to the norm of
matrix columns above one. However, an orthonormal matrix
requires column vectors with norm one. Thus, the first class
is to employ fractional matrix elements whose values are less
than one, such as to reduce the norm of each column.

Benchmark results. Figure 7(a) evaluates the impact of frac-
tional elements in existing sketch algorithms. For a sketch,
we replace each element with a randomized value 1/

√
t +σ,

where σ is sampled from a Gaussian distribution with its
mean equal to zero. Thus the mean of elements in the ma-
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trix is 1/
√

t. Here, t is the number of counters accessed by
a packet. Thus, the expected norm of each column vector is
one. We see that RIP is decreased by 40% in all cases.

Approaches. In existing algorithms, there are two approaches
producing fractional elements.
• Sampling: Sampling techniques [69, 70] discard some

packets. For each flow, only partial packets contribute to~y.
Thus, the elements in Φ are less than one. NitroSketch [53]
has combined an adaptive sampling in its design.

• Conservative updates: In general, a packet incurs several
updates in a sketch algorithm. Conservative update [25]
preserves only the smallest update and drops the others.
This also leads to smaller elements in Φ because not all
updates are included.

Limitation. However, sampling and conservative updates are
hard to be formulated as matrices. To obtain the exact frac-
tional elements in Φ, it needs to track exact per-flow packet
loss or update drops, which inevitably incurs excessive over-
heads and cancels out the benefit of sketch.

6.2 Class 2 (C2): Adding Rows

Matrix analysis. The second class is to add more rows to the
matrix Φ. Ideally, two columns are orthonormal if and only if
their nonzero elements occur in different positions. This im-
plies that the two flows have no conflicts in all counters. Since
each counter contributes one row in Φ (§4.3), adding rows
means to configure more counters to reduce flow conflicts.
Hence, column vectors become more orthonormal.

Approaches. In addition to simply allocating more counters
to a single sketch, a common approach is to use multiple
instances of sketch structures. For instance, FlowRadar [49]
contains two Bloom Filters; UnivMon [54] employs multiple
CS instances and filters flows for each instance; Deltoid [19]
and SketchLearn [37] maintain multiple CM instances while
each instance is updated based on the bits of flow IDs.

Benchmark results. Figure 7(b) shows RIP with respect to
various number of sketch instances. We consider three com-
monly used basic sketch algorithms: CM, CS, and CBF. We
see that the RIP decreases as the number of instances grows.
With 64 instances, RIP is reduced by nearly 75%.

Limitation. However, the resulting RIP is still much higher
than that of classical sensing matrices (§5). Although we
can further reduce RIP with more instances, adding instances
consumes more memory. It also incurs excessive usage of
computational resources to update multiple instances.

6.3 Class 3 (C3): Clearing Columns

Matrix analysis. The third class is to clear elements of some
columns. Recall that a column indicates the contribution of
an unknown variable (§4.3). Clearing one column means to

exclude a variable, which simplifies the optimization problem
and hence improves accuracy.

Approaches. Identifying columns that can be cleared is equiv-
alent to detecting flow IDs that never occur, such that dis-
carding the flows does not compromise the results. Two ap-
proaches can track flow IDs in existing algorithms.
• Heap: CountMin [20], UnivMon [54] and NitroSketch [53]

use a heap to store flow IDs whose flow values satisfy
specific conditions (e.g., above a pre-defined threshold).

• Bloom Filter: Bloom Filter records Flow IDs compactly
with bit arrays. An example is FlowRadar [49] that uses
Bloom Filter to avoid duplicate flow IDs.

Benchmark results. Figure 7(c) measures how RIP varies as
the ratio of cleared useless columns. Due to the interest of
space, we present three sketches here and put the remaining
results in Appendix. With no columns cleared, RIP is above
120 for all the three sketch algorithms. RIP significantly de-
creases as the number of cleared columns grows. It becomes
6 when all useless columns are cleared.

Limitation. However, tracking all Flow IDs with existing ap-
proaches is bounded by resource restrictions in switches. For
the heap-based approach, per-flow tracking is infeasible due
to the memory usage of heap. For BF, since it only exam-
ines the occurrence of flow IDs, extra resources are needed to
store flow IDs (e.g., XOR arrays in FlowRadar [49]). For the
controller-based approach, it needs careful design to avoid
bandwidth exhaustion.

6.4 Class 4 (C4): Matrix Decomposition

Matrix analysis. The final class decomposes Φ as the sum of
several component matrices. The decomposition distributes
non-zero elements in Φ into different components. Thus, their
conflicts are alleviated and hence each component becomes
more likely to be orthonormal.

Approaches. There are two possible approaches to distribute
flows and hence decompose matrix Φ.
• Traffic splitting: Traffic splitting employs multiple algo-

rithmic parts in the data plane and splits traffic into different
parts. Each part can produce a component matrix individu-
ally. For example, SketchVisor [35] maintains a fast path
and a normal path, and directs traffic into either path based
on real-time workloads. ElasticSketch [80] consists of a
heavy part and a light part: traffic that is evicted from the
heavy part enters the light part.

• Flow extraction: We can also form a component matrix by
extracting flows from the sketch structure. These algorithms
usually embed specific features in the sketch structures for
the extraction. For example, FlowRadar [49] estimates the
number of distinct flows in each counter (i.e., a row in Φ)
and iteratively extracts from the counters with exactly one
flow. Deltoid [19] and SketchLearn [37] extract from rows
with large corresponding flow values.

USENIX Association 18th USENIX Symposium on Networked Systems Design and Implementation    1033



Benchmark results. Figure 7(d) compares RIP before and
after the decomposition. We present the component matrices
with the minimum RIP (Min-Mat) and maximum RIP (Max-
Mat). We observe that the orthonormality is significantly
improved in each Min-Mat. For example, the original RIP of
DT is nearly 1000, but it is reduced to 2.92 in Min-Mat.

Limitation. However, Max-Mat still exhibits high RIP in all
algorithms. For some algorithms, the RIP of Max-Mat is close
to that in the original matrix. We find that the decomposed
traffic is limited because it needs extra structures to split traffic
or extract flows. When resources are bounded, limited traffic
can be decomposed.

7 New Algorithms

Motivation. §6 points out that existing algorithms fail to
produce highly orthonormal matrices. The key issue is that
they are not tailored for compressive sensing. On the one hand,
the four classes C1-C4 are not realized efficiently. On the
other hand, they do not collectively combine the approaches
for compressive sensing. Thus, we need new algorithms that
realize and combine the common approaches more efficiently.

Design choices. To better embrace compressive sensing, we
examine each class in §6 to employ appropriate approaches
to combine with compressive sensing.
• C1: As both sampling and conservative updates are hard to

formulate, we realize a novel method of fractional updates.
Specifically, for a packet (k,v), we use an additional hash
function g(·) to change its value from v to v · g(k). Here,
g(·) generates a value with its mean equal to 1√

r where r is
the number of rows in the sketch. Thus, the expected norm
of column vectors is reduced to one.

• C2: We discard C2 because of its excessive resource usage.
• C3: We employ a control-based approach to enhance Bloom

Filter. Specifically, we store flow IDs in the controller. Since
the controller has enough memory, the flow IDs can be
recorded with zero errors. To reduce bandwidth usage, we
employ a Bloom Filter to eliminate duplicate transfers.

• C4: We separate large flows as key-value pairs and small
flows in the sketch with fractional values (referred to as
fractional sketch). It has been proved that such separation
can be realized with limited overheads [35,71,80]. To make
each decomposed component matrix highly orthonormal,
we also leverage the controller to steer the traffic in key-
value pairs and the fractional sketch.
In summary, we maintain three types of components in

the data plane: (1) key-value pairs to track large flows, (2)
fractional-valued sketch to record small flows and (3) a Bloom
Filter. We propose two algorithms that combine them in dif-
ferent manners. The first algorithm SeqSketch arranges the
components sequentially, while the second algorithm Em-
bedSketch embeds the key-value table and Bloom Filter into
the sketch arrays such that key-value pairs can be extracted

Figure 8: Structure of SeqSketch.

Algorithm 1 SeqSketch Data Plane

Input: Packet (k,v)
1: procedure UPDATE(k,v)
2: j = hash(k)
3: if H[ j] is /0 then
4: H[ j]. f = k, H[ j].c = v, and H[ j].d = 0
5: else if H[ j]. f == k then
6: H[ j].c = H[ j].c+ v
7: else
8: H[ j].d = H[ j].d + v
9: if H[ j].d > H[ j].c then

10: Send (H[ j]. f ,H[ j].c) to controller
11: H[ j]. f = k, H[ j].c = v, and H[ j].d = 0
12: else
13: for all row i in FS do
14: Compute j = hi(k)
15: Increment counter (i, j) by gi(k) · v
16: if k /∈ BF then
17: Send k to controller
18: Insert k to BF

from sketch buckets. SeqSketch consumes less memory, while
EmbedSketch needs fewer computational units. Network ad-
ministrators can select the more suitable algorithm based on
their resource budget.

7.1 SeqSketch

Data structure. Figure 8 presents an overview of SeqSketch.
SeqSketch organizes its key-value pairs in a hash table H, and
employs a forwarder to connect the hash table, Bloom Filter
BF and fractional sketch FS. Every packet first enters the
hash table H. Each tuple in H has three fields to identify large
flows: apart from flow ID f , two counters c and d record flow
values belonging and not belonging to f , respectively. The
hash table evicts records of potential small flows based on the
two counters when conflicts occur. The forwarder transfers an
evicted record if it is a new flow, or sends it to the fractional
sketch. It uses the Bloom Filter to record all occurred flows
and examine new flows. The eviction is cheap because it
incurs limited operations for each evicted record. Given the
heavy-tailed distribution of network traffic, the hash table H
absorbs a large portion of traffic, which alleviates the memory
usage of BF and FS. Thus, SeqSketch is memory efficient.
Data plane. Algorithm 1 outlines how SeqSketch processes
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Figure 9: Example of SeqSketch.

a packet. When a packet (k,v) arrives, we first compute its
position in the hash table H (Line 2). If its hashed entry is
empty, a new record is created for this packet (Lines 3-4).
If the entry already exists, there are two cases. First, if the
existing entry has the same ID as the packet, the counter c is
incremented (Lines 5-6). Second, if f and k are different, we
add d by v (Line 8). At the same time, we need to evict the
flow record of f or the packet (k,v) (Lines 9-18). When d is
larger than c, we send the record to the controller (Line 10),
and insert a flow record for k (Line 11). Otherwise, we evict
(k,v) to FS (Line 13-15). In this case, the forwarder queries its
Bloom Filter to examine whether the flow ID appears before.
If it is a new flow, the ID is also forwarded to the controller
(Line 16-18). Note that we increment each counter in FS with
a fractional value instead of v (Lines 14-15).

Example. Figure 9 presents an example with two buckets
in H. H directly inserts the first two packets p1 and p2 (Fig-
ure 9(b)). For the third packet p3, H maps it to H[1] that
already records another flow f2 . To deal with the conflict,
H increments H[1].d. Since H[1].d does not exceed H[1].c,
p3 is delivered to FS and BF . FS updates its counters with
p3, while BF transfers its flow ID to the controller because it
is a new flow (Figure 9(c)). Finally, p4 enters H and is also
hashed to H[1]. Since p4 does not belong to f2, H increments
H[1].d by one. Since H[1].d exceeds H[1].c (Figure 9(d)), we
evict H[1] and insert p4 (Figure 9(e)).

Control plane. We recover flow IDs and flow values by for-
mulating an optimization problem. There are three portions
of traffic: that in the hash table H, that transferred to the con-
troller, and that in FS. Denote flow values in the three portions
by~xH ,~xC and~xS, respectively. Since~xH ,~xC can be obtained
directly, we only need to solve~xS by formulating the per-flow
update of FS as Φ and its counters as~y:

minimize: ‖~xS‖1,

subject to: ~y = Φ~xS
(4)

Algorithm 2 EmbedSketch Data Plane

Input: Packet (k,v)
1: function UPDATEBUCKET(k, v, i, j)
2: Vi, j =Vi, j +gi(k)
3: if fi, j is empty then
4: fi, j = k, ci, j = v, di, j = 0
5: else if fi, j is k then
6: ci, j = ci, j + v
7: else
8: di, j = di, j + v
9: if di, j > ci, j then

10: Send ( fi, j,ci, j) to controller
11: fi, j = k, ci, j = v, di, j = 0
12: else
13: if k /∈ BFi, j then
14: Send k to controller
15: Insert k to BF i, j

16:
17: procedure UPDATE(k,v)
18: for row i = 1,2, ...,r do
19: j = hi(k)
20: UPDATEBUCKET(k, v, i, j)

Figure 10: Structure of EmbedSketch.

7.2 EmbedSketch

Data structure. Figure 10 depicts EmbedSketch. It maintains
a sketch with r rows. Each row i has two hash functions (hi
to select counters and gi to generate fractional values) and
w buckets. A bucket (i, j) in EmbedSketch consists of: (i)
a counter Vi, j, which denotes the total values hashed to this
bucket, (ii) fi, j, which denotes the flow ID of the candidate
for the largest flow in the bucket, (iii) ci, j, which denotes
the aggregated value of f , (iv) di, j, which denotes the total
value of other flows in the bucket, and (v) a Bloom Filter Bi, j
that records flow IDs in this bucket. Essentially, EmbedSketch
distributes monitoring operations in its buckets. This mitigates
per-bucket hash conflicts. Thus, one hash function in each
bucket is sufficient (see §7.4).

Data plane. Algorithm 2 details how EmbedSketch processes
a packet (k,v). For each row i, EmbedSketch computes a
bucket with hi(k) and updates the bucket (Lines 18-20). To
update a bucket (i, j), EmbedSketch first increments Vi, j by
gi(k) · v (Line 2). If the existing candidate fi, j equals to k,
ci, j is also incremented (Lines 5-6). Otherwise, EmbedSketch
increments di, j (Line 8) and determines to evict either fi, j
(Lines 9-11) or k (Lines 13-15). If fi, j is evicted, a record
( fi, j,ci, j) is transferred to the controller (Line 10). At the
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same time, EmbedSketch uses k as the new candidate and
sets ci, j = v and di, j = 0 (Line 11). Otherwise, if k is evicted,
EmbedSketch queries its local Bloom Filter Bi, j (Line 13). If
k is a new ID, EmbedSketch forwards it to the controller and
updates Bi, j to include k (Lines 14-15).

Control plane. We form ~y with all r×w counters of Vi, j in
EmbedSketch. Traffic in Vi, j comprises three portions: (1)
each fi, j contains its value ci, j, (2) per-flow values transferred
to the controller, and the remaining traffic in Vi, j. Thus, we
denote per-flow values in the three portions by~x f ,~xC and~xR,
respectively. Since only~xR is unknown, we build the following
optimization problem:

minimize: ‖~xR‖1,

subject to: ~y = Φ(~x f +~xC +~xR)
(5)

7.3 Parameters

We need to configure the three components: the fractional
sketch (FS), the Bloom Filter (BF), and key-value pairs (KV ).

Fractional sketch. For FS, two rows are sufficient as our
optimization-based recovery does not need many rows to
alleviate hash conflicts. However, compressive sensing theory
requires a minimum amount of counters: C ·S log2(n/S) (c.f.
Equation(13) in [13]), where n is the number of possible
flows, S is the expected number of actual flows, and C is a
small positive number. In practice, we can select a proper C to
make memory usage fits the device. For example, to monitor
around S=100K 2-tuple flows (n = 264), setting C=0.1 leads
to around 472K counters. If we employ 32-bit counters, the
total memory of FS is 1888 KB.

Bloom Filter. The Bloom Filter BF determines the accuracy
of the received flow IDs in the control plane. A false flow ID
indicates 100% relative error for that flow, which seriously
compromises the recovery accuracy. Thus, we need to care-
fully configure BF . The size of BF depends on the expected
number of flows S. According to [18] (c.f. §5.2.5), the false
positive rate of Bloom Filter is (0.6185)m/S where m is the
length of Bloom Filter, if we set the number of hash func-
tions to its optimal value m

S ln2. In our case, a false positive
in Bloom Filter means wrongly clearing a column in Φ. To
achieve our goal of < 1% error probability for flow ID extrac-
tion, we need to bound the false positive rate of the Bloom
Filter below 1%. This requires m= 9.6S. For S = 100 K flows,
this leads to a Bloom Filter with 120 KB. For SeqSketch, we
employ the optimal number of hash functions: 9.6ln2 ≈ 7.
For EmbedSketch, since the Bloom Filter is distributed across
buckets, one hash suffices to achieve low error probability.

Key-value pairs. In EmbedSketch, each bucket maintains
one key-value pair by design. For SeqSketch, it can employ
the same amount for simplicity.
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Figure 11: (Experiment 1) Accuracy.

7.4 Evaluation

Setup. We implement both software version and hardware
version of the two algorithms (see Appendix). We evaluate
them via trace-driven experiments. We use the CAIDA-2018
backbone trace [9] and two data center traces [5]. We present
2-tuple flows and count their packets, while other flow defi-
nitions (e.g., 5-tuple) and statistics have similar results. We
partition each trace into equal-length intervals. Due to the in-
terest of space, we present the results with 2-second intervals,
each of which has around 100 K flows. More results are in
Appendix. We present the average results across all intervals.
Here, we omit the standard deviations because the standard
deviations are negligible. When measuring accuracy (Experi-
ments 1 and 2), we run both update and query operations in a
server with 36 CPU cores (2.6GHz each) and 128 GB memory
to process the traces. When measuring resource overheads
(Experiments 3 to 6), we build a testbed with 16 servers and
a Barefoot Tofino switch [79]. Each server has a 40Gbps NIC
for traffic transfers and a 10Gbps NIC to connect to the con-
troller. We deploy our algorithms in the switch. Each server
replays our traces and evenly sends the traces to others. We
follow §7.3 to configure key-value pairs (KV ), the Bloom
Filter BF , and the fractional sketch FS.

Experiment 1: Accuracy (Figure 11). We compare the ac-
curacy of SeqSketch (Seq) and EmbedSketch (Ebd) with 11
sketch algorithms. Every algorithm has its suggested theo-
retical configuration (see Appendix). However, they fail to
achieve NZE even when we allocate 100 MB memory (§2.2).
Thus, for a fair comparison, each algorithm is allocated with
the same amount of memory as ours for a stress test. In Fig-
ure 11(a) and Figure 11(b), we exclude CBF, CM, and CS
because they cannot extract flow IDs by design. We find that
more than half existing algorithms have nearly zero false pos-
itive rate and false negative rate. However, none of existing
algorithms achieve high accuracy for all flows. Recall §2.2,
even when we allocate more memory (10 MB) and relax the
desired per-flow error to 50%, the ratio of accurate flows in
existing algorithms is less than 85%. In contrast, EmbedS-
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Figure 12: (Experiment 2) Robustness to various memory
configurations.

Name PHV (Bytes) VLIW ALU Stage

ElasticSketch 163 (21.22%) 13 (3.39%) 9 (18.75%) 10 (83.33%)

FlowRadar 134 (21.22%) 11 (2.86%) 15 (31.25%) 10 (83.33%)

SketchLearn 156 (20.31%) 11 (2.86%) 33 (68.75%) 8 (83.33%)

UnivMon 132 (17.19%) 13 (3.39%) 33 (68.75%) 12 (100%)

SeqSketch 151 (19.66%) 12 (3.12%) 13 (27.08%) 8 (66.67%)

EmbedSketch 137 (17.84%) 10 (2.60%) 6 (12.50%) 8 (66.67%)

Table 2: (Experiment 3) Switch resource usage.

ketch bounds the error below 0.1% for more than 99.72% and
SeqSketch covers all flows. The reason is that existing algo-
rithms depend on a large amount of memory to fully resolve
hash conflicts. However, our algorithms recover flow values
by solving an optimization problem based on compressive
sensing, which is not so sensitive to hash conflicts.

Experiment 2: Robustness (Figure 12). We measure the
ratio of flows with an error less than 0.1% in different configu-
rations. To study the accuracy as memory changes, we fix two
components and vary the size of the remaining one. For SeqS-
ketch in Figure 12(a), when FS has 256KB, only 68% flows
reach the accuracy level because the memory is far smaller
than a reasonable size. However, the ratio increases to nearly
100% as the sketch size increases. Figure 12(b) shows that
the accuracy remains stable for different BF configurations.
Even with 32 KB (25% of the expected memory as §7.3),
more than 96% flows remain per-flow error below 0.1%. In
EmbedSketch, since each bucket of FS embeds one KV pair,
we either fix BF and vary FS (Figure 12(c)) or vice versa
(Figure 12(d)). We observe similar trends: the accuracy is low
with 256 KB FS but grows as the size of FS, while remaining
stable for various BF size.

We also find that SeqSketch is more memory efficient than
EmbedSketch. For SeqSketch, 832 KB memory (512 KB FS,
64 KB BF , and 256 KB KV ) is sufficient to achieve near-
zero error. In contrast, EmbedSketch requires around 2.5 MB
memory to reach the same level of accuracy, including at least
512 KB FS, 64 KB BF and 2048 KB KV . Here, the 2048 KB
KV comes from the per-bucket key-value pairs. Recall that
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Figure 13: (Experiment 4) Bandwidth usage.
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each key-value pair occupies 16 bytes, which is 4× of a FS
counter. Thus, KV consumes as 4× memory as FS. The root
cause for different memory usage is that in SeqSketch, there
are no duplicate flow IDs in the hash table, while a flow may
be tracked multiple times in EmbedSketch.
Experiment 3: Resource usage in Tofino (Table 2). We
compare SeqSketch and EmbedSketch with four state-of-the-
art sketch algorithms. We consider four types of resources:
stages, ALUs, and VLIW are used for updating sketch val-
ues, while PHV carries data across stages. We find that our
algorithms consume fewer stages, ALUs, and VLIW than FR,
SL, and UM. The reason is that the three algorithms need to
update multiple instances (Table 1), while the components
in our algorithms require only simple operations. SeqSketch
incurs more resource usage than ES because it needs to up-
date additional Bloom Filter and transfer flow records to the
controller for evicted entries. EmbedSketch requires fewer re-
sources than others because updating local structures is much
simpler (e.g., fewer hash functions for BF).
Experiment 4: Bandwidth usage (Figure 13). We measure
the ratio of incurred traffic to the traffic in a time interval.
The incurred traffic compromises two parts: the evicted flow
records and flow IDs during per-packet updates, and the trans-
fer of the sketch at the end of each interval. We see that
achieving NZE monitoring incurs less than 0.7% additional
bandwidth consumption. Note that existing sketch algorithms
only transfer the sketch structures. Although our algorithms
additionally transfer flow IDs, the overall bandwidth usage re-
mains limited for two reasons. First, the sketch structures are
quite small. Second, we only send evicted flow records that
aggregate a considerable number of packets to the controller.
When an individual packet is evicted, it will be absorbed by
FS. Further, BF avoids duplicate transfers of flow IDs.
Experiment 5: Recovery time (Figure14). We measure the
recovery time for different number of flows. Currently, we use
a single thread for recovery. The time is around 60 seconds in
the worst case, which is much worse than sketch algorithms.
We can optimize it by assigning recovery operations in differ-
ent CPU cores. Recall that the time interval containing 100 K
flows is around 2.5 seconds. Our 36-core server is sufficient
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Figure 15: (Experiment 6) RIP.

to handle all recovery operations. Further, we can speed up
with recent distributed machine learning architectures such
as TensorFlow. Since solving optimization problem is not our
focus, we leave it in the future work.

Experiment 6: RIP (Figure 15). We further examine the
RIP of the two algorithms in Figure 15(a) and Figure 15(b),
respectively. We observe that RIP remains below 3 in all cases,
which is much smaller than that in existing algorithms (§6).
The results reveal that SeqSketch and EmbedSketch produce
highly orthonormal matrices, which lead to high accuracy
when applying compressive sensing reconstruction.

More results. In Appendix, we also present the throughput
in software (Experiment 7). We also present the complete
accuracy results under different configurations.

7.5 Discussion

Correctness. The correctness of both SeqSketch and Em-
bedSketch can be derived from compressive sensing. Since
we recover per-flow values with standard compressive sens-
ing, the recovered results are close to the true values given
the orthonormal matrices produced by the two algorithms
(Experiment 3). We leave the formal proof in our future work.

Comparison to existing algorithms. Both the sequential de-
sign and embedding design have been used in prior algorithms.
For example, ElasticSketch [80] evicts records from a hash
table to a sketch; MV-Sketch [77] embeds heavy flows in
buckets. Our algorithms are different in four aspects. First,
our recovery is based on an optimization framework of com-
pressive sensing. Second, we employ a fractional sketch that
increments each counter by a fractional value. Third, we main-
tain a Bloom Filer to track all flow IDs. Finally, we leverage
the controller to reduce the overheads in the data plane. With
these design choices, our algorithms achieve near-zero errors.

8 Related Work

Measurement algorithms. Hash tables [1, 2, 52, 59] achieve
zero errors but incur excessive resource usage. Some approx-
imate techniques reduce memory usage by addressing only
heavy hitters [4,25,33,71]. Sampling techniques [14,41,69,70,
74] selectively discard a portion of traffic to improve resource
efficiency. Sketch algorithms [20, 36, 37, 49, 53, 54, 68, 80, 85]
employ a compact structure in which multiple flows share a

counter. These approximate algorithms usually provide theo-
retical guarantees to bound the incurred errors. However, the
bounds are too loose to apply to all flows, leading to poor
accuracy in practice (see §2).

Measurement systems. OpenSketch [82], SCREAM [58]
and SketchVisor [35] enhance sketch algorithms in differ-
ent aspects. Some systems boost performance with TCAM
[40, 57, 60]. PacketHistory [32] and Planck [65] mirror traffic
to the controller. EverFlow [87] and dShark [81] filter out
uninterested traffic with pre-defined rules. mOS [38] and Con-
fluo [42] address monitoring at edges. Studies on query lan-
guages [29, 31, 61, 73, 78] empower more fine-grained expres-
sions to tune measurement tasks. TPP [39], MOZART [52],
and SwitchPointer [76] combine software and hardware de-
vices to provide both flexibility and programmability for net-
work measurement. Different from these works, our work
addresses the algorithmic design for flow monitoring. It is
complementary to above system studies.

Compressive sensing for network measurement. Counter-
Braids [55] demonstrates that sketch and compressive sensing
are thematically related, but does not actually apply com-
pressive sensing. [48] applies Least Linear Square method
to reconstruct flow values from CountMin Sketch, but does
not consider other sketch techniques. [21] shows that sketch
algorithms can be formulated as a special kind of compressive
sensing. [16, 44, 83] leverage compressive sensing to restore
missing values in traffic matrices. [7] uses compressive sens-
ing for tomography. SketchVisor [35] merges its two paths
with compressive sensing. In contrast, this paper leverages
compressive sensing for NZE monitoring.

9 Conclusion

This paper revisits the theoretical bounds provided by sketch
algorithms. We observe that the bounds in existing algorithms
are too loose to achieve high accuracy for all flows. We ad-
dress this problem with compressive sensing. We formulate
sketch algorithms as matrices and study their suitability to
compressive sensing. The results guide us to design two new
algorithms accordingly. The efficiency of the two algorithms
demonstrates the power of our methodology. We expect that
more algorithms can be designed in the future.
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Figure 16: Matrix formulation of CS and CBF.

Appendix A: Sketch-based Sensing

Examples. Figure 16 presents another two examples of the
sensing matrices for CS and CBF. As §4.3, we also consider
four flows. Figure 16(a) shows a CountSketch (CS). CS has
the same structure as CM. However, a packet (k,v) incre-
ments its hashed counter in row t by gt(k) · v, where gt(k) is
another function that maps a flow ID to {−1,1}. Thus, Φi,k is
either 1 or −1 if flow k hits counter i. Figure 16(b) presents
a Bloom Filter. Note that the original Bloom Filter is not
a linear mapping, because it maintains an array of bits and
performs bitwise OR operations. We extend it to a Counting
Bloom Filter (CBF) that replaces the bit array with a counter
array. Each counter is updated by v for a packet (k,v) hashed
to it. Thus, we set Φi,k = 1 if flow k hashes to counter i.

Appendix B: Implementation

Software version. The software version integrates Open-
VSwitch (OVS) [62]. We target two implementations of OVS:
one resides in the kernel space, and the other bypasses the
kernel via DPDK [23]. In each implementation, we intercept
packets in the forwarding module. We put the packet headers
in a region of shared memory. A dedicated thread reads the
shared memory and updates the sketch (either SeqSketch or
EmbedSketch) accordingly.
Hardware version. We implement the hardware version in
P4 [63] and target PISA [6] switches. We place the data struc-
tures in switch registers, and invoke stateful ALUs to update
register values for each packet. However, the limited mem-
ory access model of PISA raises two challenges. The first
challenge is that each memory access can only manipulate
at most 64-bit variables, but in our algorithms, we need to
update more than 64 bits of data each time. Second, PISA par-
titions hardware resources into several stages, each of which
is associated with its own ALUs and registers. An ALU can
only access the registers belonging to its same stage.

To this end, we tailor SeqSketch and EmbedSketch to fit
them into PISA switches. For the first challenge, we sepa-
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Figure 17: Throughput in software.

Table 3: Compressive sensing results with different memory.
Matrix Recovery Memory (KB) (<1e-1) (<5e-2) (<1e-2) (<1e-3)

BM L1 100 2.01% 1.67% 1.52% 1.52%

BM L1 200 100% 100% 100% 100%

BM OMP 100 1.94% 1.62% 1.47% 1.46%

BM OMP 200 100% 100% 100% 100%

FM L1 100 26.25% 26.25% 26.25% 26.25%

FM L1 200 52.50% 52.50% 52.50% 52.50%

FM L1 300 78.76% 78.76% 78.76% 78.76%

FM L1 400 100% 100% 100% 100%

FM OMP 100 14.81% 14.23% 14.06% 14.04%

FM OMP 200 100% 100% 100% 100%

GM L1 100 1.94% 1.59% 1.44% 1.44%

GM L1 200 100% 100% 100% 100%

GM OMP 100 1.90% 1.60% 1.46% 1.46%

GM OMP 200 100% 100% 100% 100%

IM L1 100 1.98% 1.62% 1.48% 1.48%

IM L1 200 100% 100% 100% 100%

IM OMP 100 1.98% 1.62% 1.48% 1.48%

IM OMP 200 100% 100% 100% 100%

rate different types of variables across stages, such that the
size of accessed variables in each stage does not exceed the
64-bit limit. For the second challenge, we introduce a few
intermediate variables to break the inter-dependencies among
variables. More precisely, we store only f and c in the same
stage, but replace the variable d with a new variable d′. The
new variable d′ resides in a stage before f and c. It counts
all incoming flows (i.e. d′ = c+d) and records its value in a
metadata field such that it can be shared across stages. The
later stage (i.e., that actually maintains f and c) reads d′ from
the metadata, and determines to perform an eviction operation
based on whether d′− c > c.

Appendix C: more experiments

Experiment 7: Throughput in software switches (Fig-
ure17). We measure the throughput of the two algorithms.

We observe that both algorithms keep stable throughput. The
throughput of EmbedSketch is higher than that of SeqSketch
because its local structures are simpler (see Experiment 3).
Complete results. Table 3 provides the results of classical
compressive sensing under different memory settings. Table 4
shows the theoretical configurations of state-of-the-art algo-
rithms with 1% threshold, 1% relative error, and 5% error
probability. Table 5, Table 6 Table 7, and Table 8 show the
complete results of SeqSketch and EmbedSketch.

Table 4: Theoretical configurations of exiting algorithms.
Algorithm CU Sketch Deltoid ElasticSketch FlowRadar NitroSketch

Memory (KB) 312 32500 4438 2115 32672

Algorithm RevSketch SeqHash SketchLearn SketchVisor UnivMon

Memory (KB) 58594 32500 32500 2123 32672

Table 5: SeqSketch under different epoch lengths.
Epoch Length (s) 1s 2s 5s 10s 25s

Total Memory (KB) 672 1344 2016 3360 6720

KV Memory (KB) 128 256 384 640 1280

BF Memory (KB) 32 64 96 160 320

FS Memory (KB) 512 1024 1536 2560 5120

(<1e-1) 98.80% 99.51% 98.55% 98.13% 99.95%

(<5e-2) 98.79% 99.50% 98.51% 98.07% 99.95%

(<1e-2) 98.78% 99.50% 98.48% 98.04% 99.95%

(<1e-3) 98.77% 99.49% 98.48% 98.03% 99.95%

Precision (%) 100 100 100 100 100

Recall (%) 99 99 99 99 99

Bandwidth Overhead 0.33% 0.29% 0.20% 0.17% 0.13%

Table 6: EmbedSketch under different epoch lengths.
Epoch Length (s) 1s 2s 5s 10s 25s

Total Memory (KB) 2592 5184 7776 12960 25920

BF Memory (KB) 32 64 96 160 320

FS Memory (KB) 2560 5120 7680 12800 25600

(<1e-1) 98.62% 99.34% 98.46% 98.39% 98.31%

(<5e-2) 98.55% 99.30% 98.38% 98.30% 98.19%

(<1e-2) 98.51% 99.26% 98.32% 98.23% 98.13%

(<1e-3) 98.50% 99.25% 98.31% 98.22% 98.13%

Precision (%) 100 100 100 100 100

Recall (%) 99 99 99 99 99

Bandwidth Overhead 0.81% 0.79% 0.50% 0.41% 0.33%
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Table 7: SeqSketch configurations.
Total Memory (KB) KV Memory (KB) BF Memory (KB) FS Memory (KB) (<1e-1) (<5e-2) (<1e-2) (<1e-3) Precision (%) Recall (%) Bandwidth Overhead

544 256 32 256 37.87% 37.28% 36.81% 36.70% 100 71 0.0854%

800 256 32 512 81.46% 80.80% 80.20% 80.11% 100 92 0.115%

576 256 64 256 43.08% 42.15% 41.39% 41.24% 100 77 0.0854%

832 256 64 512 96.78% 96.66% 96.55% 96.53% 100 99 0.115%

1088 256 64 768 98.28% 98.21% 98.17% 98.16% 100 99 0.144%

1344 256 64 1024 98.89% 98.86% 98.84% 98.84% 100 99 0.173%

1600 256 64 1280 99.04% 99.01% 98.99% 98.99% 100 99 0.202%

640 256 128 256 59.61% 58.19% 57.06% 56.87% 100 87 0.0854%

896 256 128 512 99.63% 99.61% 99.60% 99.60% 100 100 0.115%

1152 256 128 768 99.83% 99.82% 99.82% 99.82% 100 100 0.144%

1408 256 128 1024 99.90% 99.90% 99.90% 99.90% 100 100 0.173%

1664 256 128 1280 99.90% 99.90% 99.90% 99.90% 100 100 0.202%

768 256 256 256 60.12% 58.72% 57.59% 57.41% 100 87 0.0854%

1024 256 256 512 99.97% 99.97% 99.97% 99.97% 100 100 0.115%

1280 256 256 768 99.98% 99.98% 99.98% 99.98% 100 100 0.144%

1536 256 256 1024 100% 100% 100% 100% 100 100 0.173%

1024 256 512 256 60.15% 58.75% 57.62% 57.44% 100 87 0.0854%

1280 256 512 512 100% 100% 100% 100% 100 100 0.115%

1280 256 768 256 60.15% 58.75% 57.62% 57.44% 100 87 0.0854%

1536 256 768 512 100% 100% 100% 100% 100 100 0.115%

1536 256 1024 256 60.15% 58.75% 57.62% 57.44% 100 87 0.0854%

1792 256 1024 512 100% 100% 100% 100% 100 100 0.115%

800 512 32 256 54.65% 53.99% 53.44% 53.34% 100 81 0.109%

1056 512 32 512 93.04% 92.84% 92.68% 92.66% 100 97 0.138%

1312 512 32 768 95.01% 94.87% 94.76% 94.74% 100 98 0.167%

832 512 64 256 67.98% 67.25% 66.69% 66.60% 100 88 0.109%

1088 512 64 512 98.92% 98.89% 98.87% 98.86% 100 100 0.138%

1344 512 64 768 99.38% 99.37% 99.35% 99.35% 100 100 0.167%

896 512 128 256 80.63% 79.98% 79.48% 79.39% 100 94 0.109%

1152 512 128 512 99.88% 99.88% 99.88% 99.88% 100 100 0.138%

1408 512 128 768 99.94% 99.94% 99.94% 99.94% 100 100 0.167%

1024 512 256 256 88.02% 87.58% 87.24% 87.19% 100 96 0.109%

1280 512 256 512 99.98% 99.98% 99.98% 99.98% 100 100 0.138%

1536 512 256 768 99.99% 99.99% 99.99% 99.99% 100 100 0.167%

1792 512 256 1024 100% 100% 100% 100% 100 100 0.196%

1280 512 512 256 100% 100% 100% 100% 100 100 0.109%

1536 512 768 256 100% 100% 100% 100% 100 100 0.109%

1792 512 1024 256 100% 100% 100% 100% 100 100 0.109%

1280 768 256 256 99.91% 99.91% 99.91% 99.91% 100 100 0.105%

1536 768 256 512 100% 100% 100% 100% 100 100 0.134%

1536 768 512 256 100% 100% 100% 100% 100 100 0.105%

1792 768 768 256 100% 100% 100% 100% 100 100 0.105%

2048 768 1024 256 100% 100% 100% 100% 100 100 0.105%

1536 1024 256 256 99.97% 99.97% 99.97% 99.97% 100 100 0.16%

1792 1024 256 512 99.99% 99.99% 99.99% 99.99% 100 100 0.189%

2048 1024 256 768 99.99% 99.99% 99.99% 99.99% 100 100 0.218%

2304 1024 256 1024 100% 100% 100% 100% 100 100 0.247

1792 1024 512 256 100% 100% 100% 100% 100 100 0.16%

2048 1024 768 256 100% 100% 100% 100% 100 100 0.16%

2304 1024 1024 256 100% 100% 100% 100% 100 100 0.16%

2048 1280 256 512 100% 100% 100% 100% 100 100 0.216%

2304 1280 512 512 100% 100% 100% 100% 100 100 0.216%
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Table 8: EmbedSketch configurations.
Total Memory (KB) BF Memory (KB) FS Memory (KB) (<1e-1) (<5e-2) (<1e-2) (<1e-3) Precision (%) Recall (%) Bandwidth Overhead

1568 32 1536 72.26% 71.70% 71.21% 71.13% 100 87 0.205%

2080 32 2048 85.62% 85.12% 84.73% 84.67% 100 94 0.259%

2592 32 2560 91.87% 91.63% 91.40% 91.35% 100 97 0.315%

4128 32 4096 97.81% 97.72% 97.64% 97.63% 100 99 0.484%

1600 64 1536 82.09% 81.34% 80.73% 80.62% 100 94 0.21%

2112 64 2048 90.61% 90.37% 90.13% 90.09% 100 96 0.264%

2624 64 2560 95.76% 95.62% 95.51% 95.49% 100 98 0.318%

4160 64 4096 98.14% 98.07% 98.00% 97.99% 100 99 0.485%

1664 128 1536 88.48% 87.80% 87.17% 87.06% 100 98 0.214%

2176 128 2048 94.95% 94.75% 94.53% 94.50% 100 98 0.266%

2688 128 2560 98.51% 98.47% 98.43% 98.41% 100 99 0.32%

4224 128 4096 99.82% 99.81% 99.81% 99.80% 100 00 0.487%

1792 256 1536 89.02% 88.35% 87.70% 87.59% 100 98 0.214%

2048 256 1792 93.83% 93.45% 93.06% 93.00% 100 99 0.24%

2304 256 2048 97.47% 97.31% 97.12% 97.10% 100 100 0.267%

2560 256 2304 99.16% 99.09% 99.03% 99.02% 100 100 0.294%

2816 256 2560 99.75% 99.74% 99.72% 99.72% 100 100 0.321%

3072 256 2816 99.97% 99.97% 99.97% 99.97% 100 100 0.348%

4352 256 4096 100% 100% 100% 100% 100 100 0.487%

2048 512 1536 88.92% 88.24% 87.59% 87.48% 100 98 0.214%

2304 512 1792 93.78% 93.40% 93.02% 92.95% 100 100 0.240%

2560 512 2048 97.54% 97.38% 97.19% 97.17% 100 100 0.267%

2816 512 2304 99.10% 99.04% 98.97% 98.96% 100 100 0.294%

3072 512 2560 99.84% 99.83% 99.82% 99.82% 100 100 0.321%

3328 512 2816 100% 99.99% 99.99% 99.99% 100 100 0.348%

4068 512 4096 100% 100% 100% 100% 100 100 0.488%

2304 768 1536 88.92% 88.24% 87.59% 87.48% 100 98 0.213%

2560 768 1792 93.78% 93.39% 93.01% 92.95% 100 99 0.24%

2816 768 2048 97.54% 97.38% 97.19% 97.17% 100 100 0.267%

3072 768 2304 99.10% 99.03% 98.96% 98.96% 100 100 0.294%

3328 768 2560 99.84% 99.83% 99.82% 99.82% 100 100 0.321%

3584 768 2816 100% 100% 100% 100% 100 100 0.348%

2560 1024 1536 88.91% 88.24% 87.58% 87.47% 100 98 0.214%

2816 1024 1792 93.78% 93.40% 93.02% 92.95% 100 99 0.24%

3072 1024 2048 97.53% 97.37% 97.18% 97.16% 100 100 0.267%

3328 1024 2304 99.10% 99.03% 98.96% 98.96% 100 100 0.294%

3584 1024 2560 99.84% 99.83% 99.82% 99.82% 100 100 0.321%

3840 1024 2816 100% 100% 100% 100% 100 100 0.348%

2816 1280 1536 88.92% 88.24% 87.58% 87.47% 100 98 0.214%

3072 1280 1792 93.78% 93.40% 93.02% 92.95% 100 100 0.24%

3328 1280 2048 97.53% 97.37% 97.18% 97.16% 100 100 0.267%

3584 1280 2304 99.10% 99.03% 98.96% 98.96% 100 100 0.294%

3840 1280 2560 99.84% 99.83% 99.82% 99.82% 100 100 0.321%

4096 1280 2816 100% 100% 100% 100% 100 100 0.348%

3072 1536 1536 88.92% 88.24% 87.58% 87.47% 100 98 0.214%

3328 1536 1792 93.78% 93.40% 93.02% 92.95% 100 100 0.24%

3584 1536 2048 97.53% 97.37% 97.18% 97.16% 100 100 0.267%

3840 1536 2304 99.10% 99.03% 98.96% 98.96% 100 100 0.294%

4096 1536 2560 99.84% 99.83% 99.82% 99.82% 100 100 0.321%

4352 1536 2816 100% 100% 100% 100% 100 100 0.348%
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