
26 Short Topics in
System Administration

Modern Infrastructure Engineering
with CFEngine 3
Mark Burgess and Diego Zamboni

 26

M
ark Burgess and Diego Zam

boni
M

odern Infrastructure Engineering w
ith CFEngine 3

26 Short Topics in
System Administration

Modern Infrastructure Engineering
with CFEngine 3

Mark Burgess and Diego Zamboni

Published by the USENIX Association
2012

© Copyright 2012 by the USENIX Association. All rights reserved.

ISBN 978-1-931971-98-0

To purchase additional copies, see www.usenix.org/lisa/books.

The USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA USA 94710

www.usenix.org

USENIX is a registered trademark of the USENIX Association.

USENIX acknowledges all trademarks herein.

Contents
1. Introducing CFEngine 1
 1.1 Fundamental Concepts 3
 1.2 CFEngine Components 7
 1.3 Getting Started 8
 1.4 CFEngine Architecture 10

2. CFEngine Language 11
 2.1 General Notes about the Language 12
 2.2 Example of Using Templates 13
 2.3 Promise Types 15
 2.4 Promise Bodies and the Standard Library 16
 2.5 Creating Your Own Library 17
 2.6 Basic Policy Orchestration 18
 2.7 Using Lists to Compress Policy 20
 2.8 An Access Control Paradigm for Policy 20
 2.9 CFEngine Classes, Contexts and Decisions 21
 2.10 Policy Ordering and Execution 25
 2.11 Knowledge and Your Declarative Policy 25

3. Services and Methods 29
 3.1 The Method Abstraction 29
 3.2 The Service Abstraction 30
 3.3 Customizing Non-Standard Services 31

4. CFEngine Design Center 33
 4.1 Getting Started with the Design Center 33
 4.2 Getting Started with cf-sketch 34
 4.3 The Role of the Design Center in Your IT Infrastructure 39
 4.4 The Future of the Design Center 40

5. Building a CFEngine Infrastructure 41
 5.1 Roadmap for Centralized Policy 41
 5.2 Federation of Control 41
 5.3 Staging Environments 43
 5.4 Test Environments Using Vagrant 44
 5.5 Using the cf-runagent Command 46
 5.6 Dealing with Firewalls 46

6. From Simple to Advanced 51
 6.1 Name Service Configuration 51
 6.2 Phased Deployment—Inter-host Orchestration 52

7. Monitoring, Reporting and Security 69
 7.1 Autonomic Computing and Knowledge 69
 7.2 Reports Promises 69
 7.3 The cf-monitord Daemon 70
 7.4 Measurement Promises 72
 7.5 The mon Variable Context 75
 7.6 Security-Related Scanning 76
 7.7 Patterns and Anomalies 78
 7.8 The Enterprise Mission Portal 78
 7.9 Vital Signs from the cf-monitord 79

8. The CFEngine Management Process 81
 8.1 Process Requirements 81
 8.2 Revision Control and Rollback 82
 8.3 DevOps and BizOps 83
 8.4 The Role of Knowledge 84
 Epilogue 85

1. Introducing CFEngine

As technology becomes more sophisticated,
the cost of introducing variations declines.

—Alvin Toffler, Future Shock, 1970

CFEngine 3 is a third-generation infrastructure automation framework, with self-
healing capabilities and a desired-state, model-oriented approach. It is licensed under
the GPL version 3, in an open source Community edition, and there is a commercially
licensed Enterprise edition with extended verification, reporting and scalability fea-
tures. CFEngine is suitable for managing systems composed of everything from a single
host to hundreds of thousands of hosts, because it is designed to bring consistency
and knowledge of implementation. That applies to the smallest of systems where the
temptation is to make changes ad hoc, and to the largest, where it would be impossible
to implement without machine assistance. CFEngine scales because it has a fundamen-
tally decentralized and knowledge-oriented design. We say that CFEngine manages
hosts “from within,” because each host takes responsibility for its own state by running
the CFEngine agent.

To scale systems, without losing control, you need not only efficiency but a strong
knowledge of the system, which engages human understanding and participation. As
of this writing, the smallest installations of CFEngine are on mobile phones, and the
largest installations we know of regulate around 200,000 machines under a common
administration. CFEngine can manage a great many aspects of system configuration
and maintenance, including:

❖ Application management
❖ Storage management
❖ Service management
❖ Operating system management

It does this, from the bottom up, through the use of a powerful configuration engine
(hence the name), steered by policy written in a Domain Specific Language for specify-
ing self-healing change operations. Some capabilities include

❖	 Installing and maintaining software
❖	 Setting up and maintaining IT services
❖ Editing system configuration files and other files
❖ Creating symbolic links and aliases
❖ Checking and correcting file permissions, ownership and security attributes
❖	 Deleting unwanted files and rotating logs (garbage collection)
❖	 Compressing selected files

2 / Introducing CFEngine

❖	 Distributing files within a network
❖	 Automatically mounting remote file systems
❖	 Verifying the presence and integrity of important files and file systems
❖	 Executing commands and scripts
❖	 Applying security-related patches and similar system corrections
❖	 Managing system server processes

By combining primitives like these into a self-maintaining model, we can build up
greater predictability about our systems, and take the step towards mission-critical
infrastructure.

CFEngine’s purpose is to implement such a knowledge-based infrastructure through
configuration management. In practical terms, this means that CFEngine greatly
simplifies the tasks of system configuration and maintenance. For example, to custom-
ize a particular system, it is no longer necessary to write a program that performs each
required action in a procedural language like Perl or your favorite shell. Instead, you
write a much simpler policy description that documents how you want your hosts to
be configured. The CFEngine software determines what needs to be done in terms of
implementation and/or remediation from this specification. Such policy descriptions
are also used to ensure that the system remains configured as the system administrator
wishes over time.

Here is a brief example of such a policy description, which we have annotated:

Sample Policy Example 1: Introducing CFEngine configuration
bundle agent copy_and_cleanup
{
 vars:
 “tmpdirs” slist => { “tmp”, “scratch1”, “scratch2” }; Define a list variable.

 files: File specifications.
 “/usr/local/bin”
 comment => “Permission governance on locally compiled software”,
 perms => mog(“755”, “root”, “bin”), File ownership and permission settings.
 depth_search => recurse(“inf”); Fix this and all its subdirectories.

 “/$(tmpdirs)” Clean up temporary directories.
 $(tmpdirs) will loop over all the values declared above.
 comment => “Policy for preventing crippling disk fill”,
 delete => tidy, Delete everything in the directory.
 file_select => days_old(“7”), Select things that are 7 days or older.
 depth_search => recurse(“inf”);

 solaris:: The following applies only to Solaris systems.
 “/etc/pam.d” => “security@example.com”,
 comment => “PAM settings are set globally by security team”,
 copy_from => remote_cp(“/config/pam/solaris”, “pammaster”),
 Copy files to the local system from the “pammaster” server.
 depth_search => recurse(“inf”);

 linux:: The following applies only to Linux systems.
 “/etc/pam.d/common-auth” => “security@example.com”,
 comment => “PAM settings are set globally by security team”,
 copy_from => remote_cp(“/config/pam/common-auth”, “pammaster”);

}

Introducing CFEngine / 3

The first files promise specifies that all of the files in the directory /usr/local/bin should
be owned by user root and group bin and have the file mode 755. When CFEngine
runs with this configuration description it will correct any ownership and/or permis-
sions which deviate from these specifications. Thus, this promise serves to express a
policy about the proper ownerships and permissions for the executables in the local
binaries directory.

The copy_from promises prescribe different configurations for Linux and Solaris
systems. On Solaris systems, files in /etc/pam.d will be updated with those in the direc-
tory /config/pam/solaris on a master server when the latter are newer. On Linux systems,
only the file /etc/pam.d/common-auth is updated from the PAM master configuration.
Note, however, that both of these specifications implement the same underlying system
configuration maintenance policy: update the relevant PAM configuration files from
the master server if necessary.

The delete promise illustrates the use of implicit looping in CFEngine. The single
directive in the example applies to each of the directories in the tmpdirs list. For each
directory, CFEngine will delete all items in the directory or any of its subdirectories
which have not been accessed in seven days (including ones where the filename begins
with a period). Like the other directives in this sample configuration file, this stanza
implements a policy: items in temporary directories which have not been used within a
week will be deleted.

All CFEngine configuration descriptions are variations on these and similar themes,
albeit more elaborate ones. Before turning to more details about the technical aspects
of using CFEngine, a brief consideration of the most important underlying and guiding
theoretical concepts is in order.

1.1 Fundamental Concepts
As we’ve stated, CFEngine operates on hosts in order to bring their configurations in
line with their specified promises. Here are formal definitions of what we mean by
these key terms:

Definition 1: Host. Generally, a host is a single computer that runs an operat-
ing system like Unix, Linux or Windows. We will sometimes talk about machines
too, and a host can also be a virtual machine supported by an environment such as
VMware or Xen/Linux.

Definition 2: Policy and promises. Policy is a specification of what we want
a host to be like, i.e., its desired state. Rather than being any sort of computer
program, a policy is essentially a piece of documentation that describes techni-
cal details and characteristics. Each statement in CFEngine is called a promise
because, once documented, the agent will try to keep it as a promise for as long as
it is defined, not just once during a build process. A CFEngine policy is a collection
of promises.

Definition 3: Configuration. The configuration of a host is the actual state of
its resources, e.g., the permissions and contents of files, the inventory of software
installed, and the like. It is the state of affairs on a particular host at a given time.

What are we aiming for with CFEngine? The answer is policy-conformant configuration.
If we can promise the desired state, we can claim a host will behave predictably. We

4 / Introducing CFEngine

want to formulate a specification for one or more hosts describing their characteristics
and how they all interact (perhaps to solve a business problem); then we want to leave
the details, implementation and maintenance to a robot agent: cf-agent.

Humans are good at understanding input and thinking up solutions but not very
reliable at implementation: doing. Machines and software agents are good at carrying
out tasks reliably, but are not good at understanding or finding actual solutions. With
CFEngine, you let the distinct parts of your human-computer organization concentrate
on what they are each good at doing. This is a manifesto for re-humanizing IT manage-
ment, so that machines work for humans, not the other way around.

1.1.1 Promises and Repairs
A CFEngine policy can be thought of as a list of promises which the system itself
makes to you, or an imaginary auditor, about its configuration state. Don’t think of
CFEngine’s language as a programming language, but rather as a documentation
language. Most promises involve the possibility of change to the system, if the desired
state is not initially met. The ability to change allows the agent to fulfill its promises
continuously over time. We call such changes actions or operations. As you probably
already guessed, the auditor in this scenario is part of CFEngine itself. Cf-agent is also
the mechanic or surgeon that performs the operations on the system, if it does not meet
its promises.

By describing its operation in this manner, we can think of configuration management
as a service that is provided, a service that is intimately connected with monitoring and
maintenance, and which can be “bought” on demand without necessarily subordinat-
ing a system to a central authority.

Definition 4: Operation. A unit of change is called an operation. CFEngine
deals with changes to a system implicitly: operations are embedded into the basic
sentences only by the implication of keeping a promise about system state.

For example, here is a promise about the attributes of a file:
files:
 “/etc/passwd”
 perms => mog(“a+r,go-w”,”root”,”root”;

There are implicit operations (actions) in this declaration: specifically, the operations
that will change the attributes if/when they do not conform to this specification.

Definition 5: Outcome. The outcome of a promise is how we can assess its state
after CFEngine has attempted to verify it. The outcome of any promise can be one
of three possibilities:

• Promise kept (was and is ok)
• Promise not kept (not ok)
• Promise repaired (was not but now ok)

CFEngine 3 uses these categories very consistently when reporting on the state of the
system. Clearly, having a promise kept is closely related to the concept of system compli-
ance, measured in relation to a specification. Thus it is very easy to create compliance
frameworks written as CFEngine promises.

Introducing CFEngine / 5

1.1.2 Convergence
A key property of CFEngine is convergence. This is an important characteristic that
distinguishes it from general computer languages. It is a property that helps to prevent
systems from diverging: running away in an uncontrollable fashion.

Definition 6: Convergence. An operation is convergent if it always brings the
configuration of a host closer to its promised state, and has no effect if the host is
already in that state. We can summarize this in functional terms by the following
meta-rules:

 CFEngine(any state) -> desired state

 CFEngine(desired state) -> desired state

We shall sometimes call a “desired state” a “healthy state,” using the metaphor that
a badly configured host is suffering from a kind of sickness.

Here is an example used during the editing of an ASCII file:
 “/path/myfile”.
 edit_line => append_if_no_line(“Important configuration line”);

This operation tells CFEngine to append the given text to the end of a file, only if it
is not already there. The policy-conformant configuration is therefore that the line is
 present, and once that is achieved nothing more will be done. We say that the operation
append_if_no_line is convergent.

Don’t underestimate the value of convergence. It provides you with stability and thus
predictable knowledge about your system. Because CFEngine’s language interface
strongly discourages you from doing anything non-convergent, it also helps to prevent
mistakes. The price is that you will have to learn to think in a convergent way—and
that is new for most people who come to CFEngine for the first time.

1.1.3 Classes, Contexts and Declarations: From One to Many Hosts
One of the features that makes CFEngine policies readable is the ability to hide away
all of the complex decision-making that needs to be performed by the agent. To realize
this ambition, CFEngine uses a declarative language to express policy.

A declarative language is not like a flow-chart; it is more like an inventory of intent. In
an imperative language, one focuses on the procedure. In a declarative language, one
focuses on the intention, or the presumed result.

One example of this is the use of classes, or context expressions, in CFEngine. Classes
and contexts are a way of making decisions, without writing many “if-then-else”
clauses. A class is an identifier which has the value “true” when a particular test is
true. It is a kind of Boolean variable; if you like, it caches the result of an “if” test
whose value was discovered by probing the system. A class is used to limit the scope of
 CFEngine actions to the appropriate system(s) and/or under the appropriate conditions,
i.e., to say when and where promises should be kept.

The benefit of classes is that all of the testing can be hidden away in the bowels of
CFEngine, and only the results need be visible if or when they are needed.

Definition 7: Classes. A class is a way of slicing up and mapping out the com-
plex environment of one or more hosts into regions that can then be referred to by a
symbol or name. They describe scope: where something is to be constrained.

6 / Introducing CFEngine

For example, the class debian is true if and only if cf-agent is running on a host that
has Debian GNU/Linux as its operating system.

1.1.4 Voluntary Cooperation
Another fundamental property of CFEngine components is that every host retains its
individual autonomy. A host can always opt out of CFEngine-based governance if its
administrator wants to. This principle leads to a fundamental design and implementa-
tion decision:

Definition 8: Autonomy. No CFEngine component is capable of receiving infor-
mation that it has not explicitly asked for itself.

It is important to understand what this means. It does not mean that centralized con-
trol of hosts cannot be achieved. Centralized control is the way that most users choose
to use CFEngine. Indeed, all you have to do to achieve centralized control is to make a
policy decision for all your hosts to fetch policy specifications from a central authority.

Autonomy does mean that if your environment has some small groups or sub-cultures
with special needs, it is possible for them to retain their special identity. No one
claiming to be their own self-appointed authority can ride roughshod over their local
decisions.

Where does policy come from then? Each host works from a policy specification that
CFEngine expects to find in a local directory (usually /var/cfengine/inputs on a Unix-like
host). If you want your host to be controlled from some central manager or authority,
then your policy must contain bootstrapping specifications that say: “It is my deci-
sion that I should download and follow the policy specification located at the central
manager.”

Each host can turn this policy decision off at any time. This is a key part of the CFEn-
gine security model.

1.1.5 Scalability
CFEngine is designed to be scalable at a low cost. Its scalability is at least as good as
any other system, because it allows for maximal distribution of workload. Moreover,
because it is very lightweight and has few dependencies, very little hardware or software
is required to grow a system to thousands of hosts.

Definition 9: Scalable distributed action. Each host is responsible for carrying
out checks and maintenance on/for itself, based on its local copy of policy.

Being designed for scaling does not mean that you are immune from making bad deci-
sions. For example, network services can always be a bottleneck if you ask 10,000 hosts
to fetch something from one place at the same time.

The fact that each CFEngine agent keeps a local copy of policy (regardless of whether
it was written locally or inherited from a central authority) means that CFEngine will
continue to function even if network communications are down.

Introducing CFEngine / 7

1.2 CFEngine Components
The CFEngine software consists of a number of components: separate programs that
work together (see Figure 1.1).

The components of CFEngine are:

❖	 cf-agent: Interprets policy promises and implements them in a convergent
manner. The agent can use data generated by the statistical monitoring engine
cf-monitord and it can fetch data from cf-serverd running on local or remote
hosts.

❖	 cf-execd: Executes cf-agent and logs its output (optionally sending a summary
via email). It can be run in daemon (stand-alone) mode, or it can be run from
cron on a Unix-like system.

❖	 cf-serverd: Monitors the CFEngine port: serves file data and starts cf-agent on
receipt of a connection from cf-runagent. Note that no data can be passed to this
daemon.

❖	 cf-runagent: Contacts remote hosts and requests that they run cf-agent.
❖	 cf-monitord: Collects statistics about resource usage on each host for monitor-

ing and for anomaly detection purposes. The information is made available to
the agent in the form of CFEngine classes so that the agent can check for and
respond to anomalies dynamically.

❖	 cf-key: Generates public-private key pairs on a host. You normally run this pro-
gram only once, as part of the CFEngine software installation process.

❖	 cf-report: Dumps the cf-agent database contents in various formats, should you
become interested in its internal memory.

Figure 1.1 illustrates the relationships among CFEngine components on different hosts.
On a given system, cf-agent may be started by the cf-execd daemon; the latter also
handles logging during cf-agent runs. In addition, operations such as file copying
between hosts are initiated by cf-agent on the local system, and they rely on the cf-
serverd daemon on the remote system to obtain remote data.

Figure 1.1: CFEngine Components and the Connections Between Them

8 / Introducing CFEngine

1.3 Getting Started
In this section, we’ll get CFEngine installed and running. You should get the CFEngine
components working with a trivial policy before trying to understand the details of
the language, just to get the engine ticking over. Later, when you have understood its
operation, you can build up your policy step by step.

1.3.1 Setting Up Your First CFEngine Host
You should start from a blank system. If you have been using CFEngine Community
Edition and you have already developed a policy; set aside this policy during the instal-
lation process. You will be able to integrate it back later.

For performing these exercises, you can get a free license for CFEngine Enterprise, for
managing up to 25 hosts, from http://cfengine.com/25free.

The Enterprise edition is provided in two packages: the main software package must be
installed on every host (including the policy-server or hub). The expansion package is
only installed on the policy hub. You should install and set up the hub first.

Verify that the machine’s network connection is working. On the hub, verify that
the package manager for your system is working (e.g., apt-get update) and install the
package.

 cfengine-3.xxx.[rpm | deb | etc]

Red Hat or SuSE families:

 host# rpm -ihv packages

Debian family:

 host# dpkg --install packages

On the hub, a public key has now been created in /var/cfengine/ppkeys/localhost.pub as
part of the package installation. As a commercial customer, you should send this public
key to CFEngine Support as an attachment in the ticket system to obtain a license file
license.dat. You do not need to do this for using the 25free license, as it is automatically
enabled.

Save the returned license file to /var/cfengine/masterfiles/license.dat on the hub before
continuing.

Decide on the hostname and IP address of your hub (policy server); here we assume
“10.10.10.1” is the address.

 hub # /var/cfengine/bin/cf-agent --bootstrap --policy-server 10.10.10.1

Use the same command on all hosts, i.e., do not bootstrap the policy server with a
localhost address. If you mistype the address of the hub, we recommend doing the
following steps to re-bootstrap.
 hub # /var/cfengine/bin/cf-agent --bootstrap --policy-server 10.10.10.1
 hub # killall cf-execd cf-serverd cf-monitord cf-hub
 hub # rm -rf /var/cfengine/inputs/*
 hub # rm -f /var/cfengine/policy_server.dat
 hub # /var/cfengine/bin/cf-agent --bootstrap --policy-server 10.10.10.1

Introducing CFEngine / 9

CFEngine will output diagnostic information upon bootstrap. Error messages will be
displayed if bootstrapping failed: pursue these to get an indication of what went wrong
and correct accordingly. If all is well you should see the following in the output:
 -> Bootstrap to 10.10.10.1 completed successfully

CFEngine should now be up and running on your system. It will copy its default policy
files into /var/cfengine/masterfiles on the hub (policy server). When the clients are boot-
strapped, they will contact the hub and copy them to their inputs directories. Because
the policy server is a client of itself, those files will also be copied to /var/cfengine/inputs/
on the policy server.

1.3.2 Simple Policy Test
You continue by editing policy for hosts in the root file promises.cf in the masterfiles
directory on the policy server.

Before doing this, let’s just make sure that the software is working by executing a
manually created, self-contained “hello world” promise. Create a file with the following
content called, say, test.cf in your current directory.

Policy Example 2: Trivial policy for initial testing
body common control
{
bundlesequence => { “test” };
}
bundle agent test
{
reports:
 cfengine_3::
 “Danger, Will Robinson!”;
}

Now try, as root, the command:
/var/cfengine/bin/cf-agent -f ./test.cf

You should see:
R: Danger, Will Robinson!

This is all you need to test CFEngine. The policy is a simple one: it simply promises to
print out a message on any host running any version of cfengine_3. Test this now by
running the agent. The agent will look for the promises.cf file by default, i.e., if you don’t
use the -f option on the command line.

You will not normally need to activate cf-agent manually. The background service
cf-execd automatically schedules cf-agent to wake up and run every five minutes.
However, you are always free to do so, without causing harm to the system. This is very
useful for testing new policies during development.

Congratulations, you have now successfully used CFEngine.

Keep this in mind: Everything you do in CFEngine 3 is about making and keeping
promises.

10 / Introducing CFEngine

1.3.3 What’s Next?
Starting from this simple policy being enforced on a single host, you can build up your
CFEngine implementation, expanding it both to include more hosts and to place more
aspects of system configuration and maintenance under CFEngine control. We will
consider these two activities separately in the chapters that follow.

1.4 CFEngine Architecture
CFEngine does not have one and only one possible architecture. You are free to build
any kind of architecture you like. Most users follow the same basic patterns, however,
and build small enclaves of governance around “central” hubs. They may or may not
then federate these hubs, or try to build a single framework for everything.

By standardizing around the idea of hubs, we can simplify the deployment of infra-
structure, and we expect certain components to be in place:

❖		There is a single place where policy is written (usually around a version control
system).

❖		There is a place where policy is tested.
❖		There is a place where new policies are dropped to be deployed to production.

In the default CFEngine model, policy is written around some kind of version control
repository that is outside of your production system. You should never change the
promises that are in “live” production without offline review. To do so would be to
connect the possibility of human error directly to your production environment.

Subversion or git are fine possibilities for version control. Version control repositories
provide access control to change policy too, so you can authorize only certain people to
make changes.

To write a new policy, you edit a copy of the master policy and test if using the
cf-promises syntax checker. Typing cf-promises –inform will also give you help in
identifying possible errors that go beyond mere syntax, e.g., conflicting promises.

Once a policy is approved for deployment, you would drop it into the policy distribu-
tion point on the policy server:
 /var/cfengine/masterfiles

This then gets copied by CFEngine itself to the policy cache
 /var/cfengine/inputs

on each client, where the policy is kept until any update can be detected at the distri-
bution point. CFEngine maintains binaries in /var/cfengine/bin and policy under /var/
cfengine/inputs, and this makes it as robust as possible against network failures.

2. CFEngine Language

In this chapter, we’ll consider what making promises for CFEngine looks like in more
detail.

CFEngine’s “API” or application programming interface is its promise language. You
can’t call CFEngine functions, like a library, as with typical programming languages,
because CFEngine is not a “do it once” scripting language, but a self-maintaining de-
sign specification for your infrastructure. Think of it more as active documentation than
as a programmed algorithm.

Only cf-agent can really keep promises in the way CFEngine is designed to work. The
CFEngine agents have to be running as a service on each host to maintain these self-
healing properties.

To use CFEngine, you write promises about the “desired state” you intend for your
infrastructure, in the CFEngine language, and the agents do their best to implement it,
without human intervention.

As a user of CFEngine, you naturally want to move beyond repeating copied “recipes”
to a state of maximal understanding, since mastering tools is a prerequisite for ensuring
the predictability—and therefore the security—of your site.

Everything in CFEngine has a very consistent grammar, because everything you ex-
press in CFEngine is considered to be a promise, and promises follow a generic pattern.
At the highest level, the CFEngine grammar consists of multiple declarations of the
following simple form:
bundle agent-name user-defined-name
{
...
promise-type:
 class-expression:: Classes are optional, defaulting to the “any” class.
 “affected object” -> { list of stakeholders or promisees },
 attribute_group_1 => value1,
 attribute_group_2 => value2,
 …..
 attribute_group_1n=> value;
...
}

CFEngine has several component-agents, and each can have bundles of promises to
keep, enclosed by curly braces. The bundle types are named: common, agent, server,
monitor, executor, etc. Not all promise-types can be used in all bundles. Bundles for
server, monitor and knowledge agent have their own capabilities and hence their own
types of promises that only make sense there.

12 / CFEngine Language

At the lower level, most rules follow this general pattern:
 target option => value, option => value ...

where the various options control when and how the target item is validated and/or
modified. You can also write at a higher level, and hide the details of object attributes
under layers of abstraction.

2.1 General Notes about the Language
The following are the most important characteristics of the CFEngine policy language:

❖ It is a free-format language. Rules can extend over as many lines as is necessary or
desired. Indentation is conventionally used for readability.

❖	 Variables and lists are de-referenced using the following syntax: ${name} or
$(name).

❖	 Comments use the shell syntax; a # sign marks the remainder of the line as a
comment.

❖	 There is a lot of provision for adding metadata around promises, that is not
directly functional, but which aids in the management of knowledge.

The default input file that CFEngine looks for is called promises.cf and is located in the
current-users work-directory. For users other than root, the work-directory is a special
directory called .cf-agent in your home directory. For the root user, the work directory
is /var/cfengine. Every cf-agent input file must have a part that explains what promises
the agent will keep, and where to find the necessary descriptions.
body common control
{
 bundlesequence => { “some_promises”, “another” };
 inputs => { “otherfile.cf”, “/special/directory/file.cf” };
}
definitions of promise-bundles
bundle agent some_promises
{
…
}

Here is a simple, high-level excerpt of CFEngine language:
bundle agent service_catalogue
{
services:
 webservers::
 “www”;
 “mysql”;
 any::
 “name_resolution”;
 “ntp”;
}

And here is a brief low-level excerpt, which illustrates how high-level concepts can be broken
down into patterns of elementary promise primitives. It contains some initial settings and
definitions and two policy rules: one of type files and one of type packages.

CFEngine Language / 13

bundle agent some_promises
{
vars:
 “match_package” slist => { Define a list variable
 “apache2”,
 “php5”
 };
files:

 webservers.redhat::
 “/etc/sysconfig/apache2”, Edit a file
 comment => “Main web-site config is imported here”,
 edit_line => append_if_no_line
 (
 “APACHE_CONF_INCLUDE_FILES=\”/repo/local.conf\””
),
 edit_defaults => std_defs;

packages:
 webservers.redhat::
 “$(packages)” For all packages in the list, ensure installed
 package_policy => “add”,
 package_method => yum,
 action => if_elapsed(“360”); Check only if 360 minutes since last check
}

This bundle is “executed” by cf-agent, if it is included in the bundlesequence mean-
ing that cf-agent looks at the declarations and tries to keep the promises it finds.

The files section illustrates the use of comments and of a compound class expression:
in this case, two classes joined by logical AND, denoted by a period. It is also allowed
to use the less-readable ampersand (&). The promiser in this section is /etc/sysconfig/
apache2. This file is ensured to contain a line that imports some local Apache config-
uration definitions contained in the file /repo/local.conf. It also computes an MD5
checksum for each file and compares it to a stored value in /var/ verifies that the Apache
configuration file imports some local definitions contained in another file /repo/local.conf.

2.2 Example of Using Templates
Templating files is a relatively primitive approach to adapting configurations to a con-
text, but if that approach works for you, there is no reason to make it more complicated
than that. File templating is easy in CFEngine 3. It starts with a files promise. Let’s
maintain a file called file_based_on_template by basing it on a template. We start by
making a promise that the file will be based on a template.
bundle agent templating
{
files:
 “/home/mark/tmp/file_based_on_template”
 create => “true”,
 edit_template => “/tmp/source_template”;
}

Then we need to create the input file. This file can contain CFEngine variables. Sup-
pose, for example, the source template file looked like this, with embedded CFEngine
variables:

14 / CFEngine Language

mail_relay = $(sys.fqhost)
important_user = $(mybundle.variable)
#...

These variables will be filled in by CFEngine if they are defined within your configura-
tion scope.

The result will be something like this:
mail_relay = cfhost-104
important_user = Contents of variable

If you use the edit_template promise, you can embed directives to CFEngine context-
classes and mark out regions of a file to be treated as an iterable block.
#This is a template file /templates/input.tmpl

These lines apply to anyone

[%CFEngine solaris.Monday:: %]
Everything after here applies only to solaris on Mondays
until overridden...

[%CFEngine linux:: %]
Everything after here now applies now to linux only.

[%CFEngine BEGIN %]
This is a block of text
That contains list variables: $(some.list)
With text before and after.
[%CFEngine END %]

nameserver $(some.list)

For example: if we use this template in a promise:
bundle agent test
{
vars:
 “var” slist => { “1”, “2”, “3”};
files:
 “/tmp/expander”
 create => “true”,
 edit_template => “/templates/input.tmpl”;
}

The result would look like this, on a Linux host:
#This is a template file /templates/input.tmpl

These lines apply to anyone
Everything after here now applies to Linux only.
This is a block of text
That contains list variables: 1
With text before and after.
This is a block of text
That contains list variables: 2
With text before and after.
This is a block of text
That contains list variables: 3
With text before and after.
nameserver 1
nameserver 2
nameserver 3

CFEngine Language / 15

You can imagine using this in a less artificial example, to add hosts to a web server
configuration:
[%CFEngine any:: %]
<VirtualHost $(sys.ipv4[eth0]):80>
 ServerAdmin $(stage_file.params[apache_mail_address]
[1])
 DocumentRoot /var/www/htdocs
 ServerName $(stage_file.params[apache_server_name][1])
 AddHandler cgi-script cgi
 ErrorLog /var/log/httpd/error.log
 AddType application/x-x509-ca-cert .crt
 AddType application/x-pkcs7-crl .crl
 SSLEngine off
 CustomLog /var/log/httpd/access.log
</VirtualHost>

[%CFEngine webservers_prod:: %]
[%CFEngine BEGIN %]
<VirtualHost $(sys.ipv4[$(bundle.interfaces)]):443>
 ServerAdmin $(stage_file.params[apache_mail_address][1])
 DocumentRoot /var/www/htdocs
 ServerName $(stage_file.params[apache_server_name][1])
 AddHandler cgi-script cgi
 ErrorLog /var/log/httpd/error.log
 AddType application/x-x509-ca-cert .crt
 AddType application/x-pkcs7-crl .crl
 SSLEngine on
 SSLCertificateFile $(stage_file.params[apache_ssl_crt][1])
 SSLCertificateKeyFile $(stage_file.params[apache_ssl_key][1])
 CustomLog /var/log/httpd/access.log
</VirtualHost>
[%CFEngine END %]

2.3 Promise Types
We’ve already introduced several of the promise types supported by cf-agent configu-
ration files (e.g., promises.cf). In this section, we will discuss the most widely used of
these in some detail. Table 2.1 briefly describes the rule types that appear in the follow-
ing subsections.

Type Purpose
access Grant access to remotely accessible files (server).
commands Execute external shell commands.
classes Define classes or contexts, e.g., web servers.
files Verify/correct the attributes of files.
methods Call another (parameterized) bundle as a subroutine.
packages Verify the presence of/Install software packages.
processes Monitor and manage processes.
services Encapsulate a managed service.
storage Check or mount storage devices.
vars Define variables for use elsewhere.

Table 2.1: Some CFEngine Promise Types

16 / CFEngine Language

Unfortunately, space limitations do not allow us to cover all of the available rule types
here. Consult the CFEngine reference manual for complete information about all rules
types and options.

2.4 Promise Bodies and the Standard Library
We’ll begin by discussing some options that are available for many different prom-
ise types. To fully specify a promise we have to think about its body. The body of a
promise is that part that contains the specification of how a promise will be kept (think
“body” in the sense of “body of a contract” or “HTML body”). The body of a promise
consists of a list of “constraints” that describe what limits will be placed on the affected
object, and contraints have the form

 body-subtype => value

where attribute is something like “perms” (for file permissions) or “signals” (for process
termination), etc. A constraint assigns a value or range of allowed values for the body
type, which becomes a part of the promise to keep. The right-hand side values can
either be direct scalars or lists of data, or body-templates that are defined elsewhere. For
example:
files:
 “/affected/file”
 create => “true”, scalar value
 perms => mo(“644”,”root”); body-template called “mo”

The create constraint has a true/false value which can easily be entered in-line, but
some constraints naturally consist of many detailed specifications that suggest hiding
the details behind a simpler representation. The reusable body-template “mo” is such
a case, as file permissions can have many complex attributes on different file systems.
Thus we make a named object that will be declared outside of any promise bundle
block as a separate syntax object. Here is a rather trivial example implementation
body perms mo(p,o)
{
mode => “$(p)”;
owners => { “$(o)”, “administrator”, “wheel” };
}

In this simple case, using a template offers little extra benefit, except to reduce the over-
all amount of typing for command usage, but in cases like copy_from, the saving and
contribution to clarity can be very large. More important than the saving of space is the
clarity of intent that can be expressed by a judicious choice of words.

CFEngine provides a standard library of these body-templates in an effort to make code
as readable and concise as possible, and without overloading the reader with details.
If you don’t like the standard library, however, you can make your own with the basic
language. Being able to customize the language to local culture is part of the knowl-
edge strategy for CFEngine. This includes whether or not parameters are exposed or
hidden. So, for example, the case above could also be written:
files:
 “/affected/file”
 create => “true”, scalar value
 perms => system_settings; body-template called “system_settings”

CFEngine Language / 17

with definition:
body perms system_settings
{
mode => “644”;
owners => { “root”, “administrator”, “wheel” };
}

The decision whether to use parameters, or not, is a didactic one. Do you want to
see the data values in-line for clarity, or do you want to not see them for clarity? This
is your choice. And if you don’t like making these choices, simply use the standard
library.

The standard library is included with the CFEngine distribution. To use it, you simply
have to include it in your policy’s inputs attribute, in the body common control struc-
ture. For example:
body common control
{
 inputs => { “cfengine_stdlib.cf” };
 bundlesequence => { ... };
}

2.4.1 Some Common Attributes
Most body-types are specific to a particular type of promise, because the attributes
they describe only exist for those objects. Some body-types can be used in any promise,
however, because they refer to constraints on the way in which promises in general are
kept.

Action Constraints taken to keep the promise
classes Whether to set any class-context information about what happened
comment A documentation of why we are making the promise
depends_on A list of promise handles this promise depends on
handle A short identifier by which to refer to the promise
ifvarclass An optional class-context limiter
meta Other user-defined metadata associated with the promise

Table 2.2

2.5 Creating Your Own Library
There are plenty of good reasons to use the CFEngine standard library: it offers a lingua
franca for sharing simplified patterns with other users, and it helps you to communicate
with other users in the same language. The downside of any standardization is that it
becomes a straitjacket if it fails to match your needs or expectations. In that case, the
CFEngine language was designed to make as few decisions for you as possible: you are
free to make your own set of body-templates and/or bundles of promises.

Today, the standard library has become part of a larger body of standard solutions
called the CFEngine Design Center, hosted on GitHub. There you will find a wealth
of pre-defined data-driven methods and templates for immediate use, or for use as
examples for local modification. We’ll return to the Design Center in chapter 4.

18 / CFEngine Language

2.6 Basic Policy Orchestration
The bundlesequence is just a master list; it does not have the sophistication of expres-
sion to truly organize the flow of your policy. It is more akin to a list of chapters in a
book, or the movements in a symphony—it provides a convenient framework around
the major parts of the story, but not all the details. To fully orchestrate your policy, we
recommend using one or more of the bundles in your bundlesequence to promise
methods and services abstractions that sketch out your desired infrastructure. This allows
you the full power of the CFEngine promise syntax to orchestrate your checks and
changes.

To illustrate this, consider the following partial example. Here we show how to set up a
kind of “score” for your policy. In this more substantial excerpt of CFEngine code, you
can see how the major flow structures can be organized. The code above is not com-
plete, because it is missing a number of definitions that explain what “STIGs” means,
for example. We can assume that such definitions exist and are defined elsewhere.

Let’s comment on some of the features of this code as we go.

All code begins with the a control body of type common (meaning that it applies to all
the agents). Like other body-templates, a control body template consists of attributes
that explain the details being promised. Unlike user-defined templates, this refers to
promises that are hardcoded into the CFEngine software itself.
body common control
{
bundlesequence => { “overture”, “orchestrator”, “finale” };
inputs => { “cfengine_stdlib.cf” };
}

The inputs attribute tells the agent which additional files to import, as these will con-
tain definitions to be used in making promises. The bundlesequence tells the agent
the major order in which to execute top-level bundles.

In this case, we have invented three top-level bundles called “overture,” “orchestrator,”
and “finale” to win over your imagination in thinking about the orchestration of policy.
bundle agent overture
{
methods:
 “name resolution” usebundle => name_services;
 “security hardening” usebundle => STIGs;
 “security hardening” usebundle => PCI_DSS;
 “security hardening” usebundle => tripwires;
 “security hardening” usebundle => secure_applications;
 user_machines::
 “user management” usebundle => regular_users;
 “user management” usebundle => root_passwords;
 cloud_controllers::
 “private cloud” usebundle => check_fixed_VMs;
}

In the first of these bundles, we use only “methods” promises. By using methods, like
subroutines, we can defer the details of what to do with a layer of naming and abstrac-
tion that describes the major themes.

The definitions of these themes must be given as separate bundles elsewhere.

CFEngine Language / 19

bundle agent orchestrator
{
services:
 backend_webservers::
 “www” comment => “This is the standard web module”;
 “web_main_site” comment => “This is the core business site config”;
 dbservers::
 “mysql” comment => “Migrating to postgres on 2nd Feb”;
 # “postgres” comment => “Postgres initiative, talk to Fred Smith”;
 any::
 “ntp”;
storage:
 user_machines::
 “/home” mount => nfs(“/export/home”,”storage_server.example.com”);
 any::
 “/mnt/common” mount => nfs(“/export/common”,”storage_server.example.
com”);
}

In the middle section, which we call “orchestrator,” we use a different abstraction, namely
one based in services, to start key services in our infrastructure. In fact, services are no
different than methods promises, but the semantic distinction is helpful— services are
something that everyone understands are relevant to business operations.

The storage promises also expose an aspect of system management that makes high
level sense. In fact, we are free to get as high- or low-level as we like in these bundles.
For the purposes of communication, however, we recommend a layer of high-level
abstraction like this:
bundle agent finale
{
reports:
 www_in_anomaly::
 “Web traffic on $(sys.host) is abnormally high”;
}

For the finale of our infrastructure symphony, we chose some simple reporting. Reports
promises allow you to print messages, access variables, pipe data to log files, etc. The
final section could be about summarizing some important details about what happened
for all the promises. In general, we are not interested in hearing back from our hosts: if
they are 10,000 in number, but if there are exceptional circumstances, we might be.

The example shown here uses a class-context www_in_anomaly which CFEngine
defines automatically, if the level of incoming web traffic is more than two standard
deviations above normal. You must be running the cf-monitord agent for this to be
defined.

The purpose of this section was to show you that it can pay to not jump headfirst into
low-level details. Instead, give some thought to how you want to communicate your
infrastructure promises. The more understandable they are, the easier it will be to work
across different silos of your organization, e.g., from business to IT, from development
to operations.

20 / CFEngine Language

2.7 Using Lists to Compress Policy
Separating promise patterns from data is a good way to minimize the amount of stuff
you are writing down, and to make it easier for readers of your infrastructure design to
see general patterns in what can easily become a chaos of details. For this purpose, list
variables are your friends, as they make it very easy to apply a consistent standard or
behaviour to a set of objects. For example, to install a list of packages, we only need a
single promise unless there are specific version numbers to specify:
vars:

 “packages” slist => { “apache2”, “php5” }; Data

packages:

 “$(packages)” Promise pattern
 package_policy => “add”,
 package_method => apt;

Similarly, to start a number of virtual machines, all the same except for a name:
vars:

 “vm_list” slist => { “vm1”, “vm2”, “wm3”, “vm4”, “vm5 }; Data

guest_environments:

 host_system::
 “$(vm_list) on $(sys.host)” Promise pattern
 environment_resources => std_kvm(“$(vm_list)”),
 environment_type => “kvm”,
 environment_state => “create”,
 environment_host => “$(sys.host)”;

2.8 An Access Control Paradigm for Policy
We can take this idea even further and say that most configuration issues can be di-
vided into two cases, very much analogous to access control lists, where there are things
we want (grant, add, install), things we don’t want (deny, delete, remove) and every-
thing else we don’t care about (no micro-management of systems). Thus, many tasks
can be framed as two lists: a whitelist and a blacklist.

For example, in an edit_line bundle to manage the Apache module list, we can make a
list of what we do and don’t want, and CFEngine will convergently maintain this state:
vars:
 “add_modules” slist => {
 “dav”,
 “dav_fs”,
 “ssl”,
 “php5”,
 “dav_svn”
 };
 “del_modules” slist => {
 “php3”,
 “jk”,
 “userdir”,
 “imagemap”
 };

CFEngine Language / 21

Generic promises below here

field_edits:
 “APACHE_MODULES=.*”
 edit_column => quotedvar(“$(add_modules)”,”append”);
 “APACHE_MODULES=.*”
 edit_column => quotedvar(“$(del_modules)”,”delete”);

Alternatively, given the two lists above, defined externally, we could pass these to a
generic method as arguments:
bundle agent xyz
{
vars:
 “add_modules” slist => {
 “dav”,
 “dav_fs”,
 “ssl”,
 “php5”,
 “dav_svn”
 };
 “del_modules” slist => {
 “php3”,
 “jk”,
 “userdir”,
 “imagemap”
 };

methods:
 “web servers”
 usebundle => fix_modules(“@(xyz.add_modules)”, “@(xyz.del_
modules)”);
}

Hide everything below this line in a library
bundle agent fix_modules(allow,deny)
{
files:
 “/etc/sysconfig/apache2”
 edit_line => apache_list(“@(allow)”, “@(deny)”);
}
bundle edit_line apache_list(add,del)
{
field_edits:
 “APACHE_MODULES=.*”
 edit_column => quotedvar(“$(add)”,”append”);
 “APACHE_MODULES=.*”
 edit_column => quotedvar(“$(del)”,”delete”);
}

2.9 CFEngine Classes, Contexts and Decisions
Promises describe what objects will be configured and how they will be maintained. To
describe where and when such promises apply, CFEngine uses the concept of contexts,
which in turn are built from classes.

Historically, the term class was chosen for CFEngine’s classification of environment
properties before object orientation became very popular, so the term has become
slightly overloaded with different meanings today. We have begun to refer to the them
as contexts or class-contexts to avoid this confusion—but the name has stuck for most

22 / CFEngine Language

CFEngine users. Class contexts refer to CFEngine’s effort to discover or express facts
and properties about host environments that classify them in different ways. We use
class expressions to describe the context in which promises apply.

Classes or contexts are the discovered and cached results of tests that CFEngine makes
about properties of the system. They are evaluated just before an agent starts execut-
ing. For example:
files:
 linux|solaris::
 “/etc/nsswitch.conf”
 comment => “Use a standard template for name services”,
 edit_template => “/masterfiles/my_ns_template.in”;

Context classifications can be:

❖	 Detected at runtime about the host environment.
❖	 Defined by you in a policy file, based on probes, tests or list data.
❖	 Based on the results of special functions.
❖	 Defined as a result of actions taken (or not taken) during promise-keeping.
❖	 Based on measurements/observations taken by cf-monitord.
❖	 Used in complex logical expressions to enable the conditional application of rules.

Classes of the first type (often called hard classes) include immutable characteristics
of the operating system environment, the network environment, and the date and
time of the cf-agent run. To see which classes are detected in your environment, run
cf-promises with the -v option.

Here is an example of the output from one of our systems. We have reorganized and
annotated the output for pedagogical purposes.
$ cf-promises -v
Defined Classes = (
snow snow_white_com white_com Hostname & domain variations
192_168_1_101 192_168_1 192_168 19 IP address components
May Day26 Saturday Yr2012 Date components
Hr12 Hr12_Q3 Min35 Min35_40 Q3 Time of day components
linux linux_2_6_11_4_21_10_default OS and kernel version
SuSE SuSE_9 SuSE_9_3 Operating system specifics
64_bit i686 Hardware characteristics
fe80__20e_35ff_fe52_5b03 net_iface_eth0 MAC address & interface name
CFEngine_3 CFEngine_3_3 CFEngine version variations
UserProcs_high_dev1 DiskFree_high_dev2 System resource usage levels
…etc.
)

Classes, like other identifiers, can only consist of the characters a-z, A-Z, 0-9 or the
underscore. When cf-agent converts data containing other characters such as dots
or hyphens into classes, it converts all illegal characters to underscores. Hence fully
qualified domain names such as host.domain.tld, when represented as classes, become
host_domain_tld.

Most of these classes are self-explanatory. However, those relating to the time of day
may be a bit opaque at first. First of all, these times always refer to when the current cf-
agent run began, and not to the exact time when any specific rule is actually processed.
The Hrnn and Minnn forms refer to specific hours of the day and minutes after the
hour. The Qn classes refer to the four 15-minute “quarters” of each hour: i.e., Q3 refers

CFEngine Language / 23

to the period from 30 to 44 minutes after the hour. Similarly, the form Minmm_nn
refers to the specified five-minute interval: e.g., Min20_25 refers to the five minutes
starting at twenty minutes past the hour.

Note that, because each agent detects its own private environment, the classes it experi-
ences are local and are not seen by any other hosts on the network.

Definition 10: Autonomy and locality. By default, CFEngine does not give
you an overview of the state of all the hosts running it. Each host is a closed and
independent box. (CFEngine Enterprise edition includes a Mission Portal for this
purpose.)

If you are used to thinking in terms of centralized management, you might find this
surprising or even a weakness, but how should CFEngine know the boundaries of your
system? No one would want a system that automatically opened every host to knowl-
edge about every other host. Since CFEngine allows every possible model from central-
ization to independence, it defaults to maximum privacy, and maximum scalability.

2.9.1 How Do I Define My Own Contexts?
CFEngine defines classes that cover generic aspects of systems. These are called hard
classes because they are indisputable properties of the environment in which cf-agent
is operating. In addition to these you might want to other define classes of your own
(known as soft classes) based on abstract customizations of the local environment, such
as group membership, geography or the existence of certain files or processes.

The classes section of promises.cf may be used to define classes. Here are some example
class definitions:
classes:
 “WinXP”
 or => { “pc121”, “pc122”, “pc123_CFEngine_org” };
 “TheTouched”
 expression => fileexists(“/usr/local/etc/touch_me”);

The identifier name on the left-hand side becomes defined (logically true) if any of the
classes on the right-hand side is defined. In the first case, the class name WinXP is a
shorthand for the three specifically named hosts on the right-hand side. (CFEngine
automatically defines classes based on the hostname, as well as on the FQDN of the
machine in which it is running, so those classes would be defined if the current host-
name is pc121, pc122, or if its FQDN is pc123.cfengine.org.)

In the second example, the class TheTouched becomes defined if the function evaluates
to true: i.e., if the file /usr/local/etc/mark exists. The fileexists() function is one of many
predefined functions in the CFEngine policy language.

Once classes are defined, they can be used to label policy rules using the double colon
notation:
files:
 TheTouched::
 “/usr/local/etc/mark”
 edit_line => append_if_no_line(“Mark woz ere”);.

24 / CFEngine Language

2.9.2 Combining Classes
Classes are effectively Boolean variables—you make “if-then-else”-like decisions with
them by making them label promises. For precise customization, you need to combine
them like Boolean expressions. Classes are combined with the basic operators:

Logical Operation Symbol Alternative Symbol
NOT !
AND . (dot) &
OR |
Grouping ()

Table 2.3

Operator precedence is the usual one, as ordered in this table. We recommend us-
ing parentheses for grouping in complex expressions to avoid ambiguity as well as to
improve configuration file readability.

Here are some examples of class expressions:

Class Expression When True
solaris.Monday.Hr01:: Solaris systems on Monday during the 1 AM hour.
aix|hpux:: AIX or HP-UX systems.
aix.!vader:: AIX systems other than system named vader
December.Day31.Friday:: New Year’s Eve when a Friday
Day13.!Friday:: The 13th of the month when not a Friday
solaris|aix.Monday:: Solaris systems, or AIX systems on Monday
(solaris|aix).Monday:: Solaris or AIX systems, on Monday
something:: A class “something.” has been defined

Table 2.4

Classes remain in effect within a stanza until another class expression is encountered.
However, they do not carry across stanza boundaries. Note that the any class may
always be used to remove any class-based restrictions in effect. For example:
reports:
 solaris::
 “This message prints only on Solaris systems.”;
 aix::
 “This message prints only on AIX systems.”;
 any::
 “This message prints everywhere.”;

2.9.3 Defining Classes with Functions
Classes can also be defined conditionally based on the return value of a variety of built-
in functions or of an external command. Here is an example:
classes:
 “have_mark” expression => userexists(“mark”);

2.9.4 Outcome Classes Like Return Codes
CFEngine is not a script language with return codes from sub-shells, but you can still
base certain promises on the outcome of others. Class contexts are also the generic

CFEngine Language / 25

mechanism for doing this. After all, the success or failure of one part of an infrastruc-
ture just becomes part of the current context in which we operate. Outcome classes can
be attached to any kind of promise through the classes => body-template syntax.

The CFEngine reference manual details powerful possibilities for working with out-
comes, but a simplified interface is provided by the standard library, as illustrated in
these examples:
files:
 “/tmp/important_file_1”
 create => “true”,
 classes => if_ok(“nothing_to_do”);

 “/tmp/important_file_2”
 create => “true”,
 classes => if_repaired(“I_was_repaired”);

 “/tmp/important_file_3”
 create => “true”,
 classes => not_kept(“not_repaired”);

 “/tmp/important_file_4”
 create => “true”,
 classes => if_else(“nothing_to_do”,“not_repaired”);

reports:
 nothing_to_do::
 “All quiet on the Western front”;
 I_was_repaired::
 “Alert! System was repaired, and is now as desired!”
 not_repaired::
 “Wake the sysadmin, repairs failed!”;

If you want to go beyond these simple cases, you are free to make your own body-
templates to keep the syntax clear and uncluttered. You can look at the definitions of
if_ok(), if_repaired() and not_kept() in the cfengine_stdlib.cf library, to understand how
they work.

2.10 Policy Ordering and Execution
CFEngine can make huge savings on execution time by taking charge of the order in
which certain operations take place, grouping together similar items and avoiding con-
tention. The order in which declarations are made is not necessarily related to the order
in which promises are kept. CFEngine determines its own ordering, which is called
normal ordering. We refer you to the reference manual to learn more on this.

You can override the order of operations in CFEngine to suit special needs (using
classes, or the depends_on constraint with promise handles), but you should try to
avoid thinking sequentially like a flow-chart. CFEngine’s strength lies in taking away
the worry of thinking algorithmically—we should think documentation.

2.11 Knowledge and Your Declarative Policy
As infrastructure becomes more ubiquitous and more complex, understanding it is in-
creasingly a challenge, especially for new or inexperienced system engineers. CFEngine
3 was designed, more than ever, to invest in knowledge about infrastructure, not merely
to build it. Although we are revisiting a period of focus on “Build,” once technologies

26 / CFEngine Language

for virtualization mature, the knowledge deficit will be even greater than before unless
we take the time to document structures properly.

Each promise in a CFEngine policy may be wrapped in a wealth of metadata as part of
the general promise model. This not only improves the general overview of infrastruc-
ture, but also the contextual information provided by CFEngine at runtime.

In the Enterprise edition of CFEngine, knowledge instrumentation takes on a whole
different level of significance, with additional features. Even at the community level,
it is worth knowing how to use the metadata to give improved error reporting and
diagnostics.

2.11.1 Syntax for Encoding Knowledge
bundle component name(parameters) A container with a name/theme
{
what_type: Promise type
 where_when:: Classes/context
 # Traditional comment Throw-away comment for designers
 “what/affected object” -> { “promisee”, “stakeholder” },
 comment => “The intention ...”, Comment for observers
 handle => “unique_id_label”, A way for refer to this whole promise
 attribute_1 => body_or_value1, The body of the promise
 attribute_2 => body_or_value2;
}

How much instrumentation you add will depend on your local culture and the per-
manence of your infrastructure. There is a fine balance between “less is more” and
“metadata are empowering.” This can be organization-dependent.

Consider the following example of how a promise, instrumented with metadata, can
lead to a an easier diagnostic experience for users. Let’s add a promisee, a handle and a
comment to a silly mistake:
commands:

 “exoijdsfkn” -> { “mark@cfengine”, “officer plod” },

 handle => “mojito”,
 comment => “I was drunk when I wrote this”;

The command clearly does not exist and does nothing. The output from this piece of
nonsense would be the following:
Proposed executable file “exoijdsfkn” doesn’t exist
exoijdsfkn promises to be executable but isn’t
I: Report relates to a promise with handle “mojito”
I: Made in version ‘not specified’ of “./test.cf” near line 12
I: The promise was made to (stakeholders): {‘mark@cfengine’,‘officer
plod’}
I: Comment: I was drunk when I wrote this

By adding metadata, we allow CFEngine to help supply meaningful error messages
with real diagnostic potential. In the Enterprise edition of CFEngine, the possibilities
go much further, enabling integration with a semantic web of system information.

CFEngine Language / 27

2.11.2 Example of Knowledge Instrumentation
body common control
{
bundlesequence => { “overture”, “orchestrator”, “finale” };
inputs => { “cfengine_stdlib.cf” };
}
###
bundle agent overture
{
methods:
 “name resolution” promise category wrt infrastructure
 handle => “name_resolution” handy identifier
 comment => “Ensure basic NIS/LDAP/DNS services are ok”, why
 usebundle => name_services; what

 webservers_payment::
 “security hardening” -> {“mr.security@example.com”,
 “business@cfengine,com”} ,
 handle => “infosec_pci”,
 comment => “Auditors need to see this in place”,
 usebundle => PCI_DSS;

 “security hardening” -> “mr.security@example.com”,
 handle => “infosec_tripwire”,
 comment => “Monitor unauthorized changes”,
 usebundle => tripwires;

 “security hardening” -> “mr.security@example.com”,
 handle => “infosec_apps”,
 comment => “Local application security documented here”,
 usebundle => secure_applications;

 user_machines::
 “user management”
 handle => “users_regular”,
 comment => “Configure login environment for non-priv users”,
 usebundle => regular_users;

 “user management”
 handle => “users_root_passwd”,
 comment => “Enforce root password policy and change”,
 usebundle => roor_passwords;

 cloud_controllers::
 “private cloud”
 handle => “vms_permanent”,
 comment => “Spawn and monitor permanent VMs”,
 usebundle => check_fixed_VMs;
}
###
bundle agent orchestrator
{
services:
 webservers_backend::
 “www”
 handle => “www_basic”,
 comment => “This is the standard web module”;
 “web_main_site”
 depends_on => { “www_basic” },
 comment => “This is the core business site config”;

28 / CFEngine Language

 dbservers::
 “mysql” comment => “Migrating to postgres on 2nd Feb”;
 # “postgres” comment => “Migrating to postgres on 2nd Feb”;
 any::
 “ntp”;
storage:
 user_machines::
 “/home” mount => nfs(“/export/home”,”storage_server.example.
com”);
 any::
 “/mnt/common” mount => nfs(“/export/common”,”storage_server.
example.com”);
}
##
bundle agent finale
{

reports:
 www_in_anomaly::
 “Web traffic on $(sys.host) is abnormally high”;
}

3. Services and Methods

Making your infrastructure description easy to understand is a major goal if you are
going to succeed in dealing with complexity and scale. Abstraction is the basic tool for
hiding complexity without avoiding it—to model the true needs of an environment,
and not try to suppress them because we have failed to comprehend the problem.

CFEngine has been written by engineers for engineers; it takes a bottom-up point of
view: giving powerful primitives that can be combined into an intuitive and appealing
model of infrastructure.

3.1 The Method Abstraction
In section 2.6, we showed how methods can be used to divide up the orchestration
of policy into a high level menu-like structure. Now let’s look at what the details of a
bundle might look like in one of these cases.

Principles for writing bundles:

❖ Each bundle should handle special cases internally.
❖ Each bundle should be self-healing.
❖ Data for the bundle may be either local (bespoke method) or passed as a param-

eter (reusable method).
Here is an example of what a web server module might look like for a PHP-enabled
web server. This makes implicit use of the standard library body-templates, and it
handles just two special cases: CentOS and Ubuntu. All of the data about package
names on different operating systems are contained in the bundle so that this does not
cloud the application of the method at the menu level.
bundle agent app_web_phpapache
{
vars:
 centos:: “php_pkgs” slist => { “httpd”, “php” };
 ubuntu:: “php_pkgs” slist => { “apache2”, “php5” };

packages:
 “$(php_pkgs)”
 comment => “Install Apache webserver with PHP”,
 package_policy => “add”,
 package_method => generic,
 classes => if_ok(“ensure_php_apache_running”);

processes:
 centos.ensure_php_apache_running::
 “.*httpd.*” restart_class => “start_httpd”;
 ubuntu.ensure_php_apache_running::
 “.*apache2.*” restart_class => “start_apache”;

30 / Services and Methods

commands:
 start_httpd:: “/etc/init.d/httpd start”;
 start_apache:: “/etc/init.d/apache2 start”;
}

This bundle takes no parameters. It is merely a block of code, grouped for convenience,
like a simple container. This should not be seen as a weakness: the aim, after all, is
to have clear active documentation about intent, not to dazzle with programming
acumen.

3.2 The Service Abstraction
Service orientation is a highly desirable and modern approach to organizing infrastruc-
ture. Almost anything can be turned into a service, if we want to think in that way—
from web services to “compute” farms to storage arrays. In CFEngine 3 you are free to
choose a method or a service abstraction for your major items; we only encourage you
to make a clear interface to these for readability.

The services promise type has a special meaning on Windows systems, as Windows
services are distinct from processes. On Unix, you can decide for yourself what you
want the definition of a service to be: unless otherwise specified, CFEngine will look
for a default bundle, e.g., in the standard library called
bundle agent standard_services(service,state)

This is assumed to contain promises that flesh out what starting and stopping services
means. The defaults are hardwired to make it very easy to start services:
services:
 “www”;

This would be enough to start a web service, assuming it had been defined in the
standard_services bundle.
bundle agent orchestrator
{
vars:
 “mail” slist => { “milter”, “spamassassin”, “postfix” };
services:
 “www” service_policy => “start”;
 “$(mail)” service_policy => “stop”;
}

The services bundle is assumed to be in your standard library file, included as part of
the common control body. It might look something like this:
bundle agent standard_services(service,state)
{
vars:
 suse|redhat::
 “startcommand[www]” string => “/etc/init.d/apache2 stop”;
 “stopcommand[www]” string => “/etc/init.d/apache2 stop”;
 debian|ubuntu::
 “startcommand[www]” string => “/etc/init.d/httpd stop”;
 “stopcommand[www]” string => “/etc/init.d/httpd stop”;
 linux::
 “startcommand[postfix]” string => “/etc/init.d/postfix stop”;
 “stopcommand[postfix]” string => “/etc/init.d/postfix stop”;

Services and Methods / 31

classes:
 “start” expression => strcmp(“start”,”$(state)”);
 “stop” expression => strcmp(“stop”,”$(state)”);

processes:
 start::
 “.*$(service).*”
 comment => “Verify that the service appears in the process
table”,
 restart_class => “restart_$(service)”;
 stop::
 “.*$(service).*”
 comment => “Verify that the service does not appear in the process”,
 process_stop => “$(stopcommand[$(service)])”,
 signals => { “term”, “kill”};

 commands:
 “$(startcommand[$(service)])”
 comment => “Execute command to restart the $(service)
service”,
 ifvarclass => “restart_$(service)”;
}

The services bundle does not have to be limited to process control. You could just as
easily include the installation of the prerequisite packages in the same bundle. As you
can see, there is great flexibility and power of control in the system through simple
documentational interfaces.

3.3 Customizing Non-Standard Services
If you don’t want to use a standard service description, of course, CFEngine allows you
to customize the way you use the service abstraction.
bundle agent orchestrator
{
vars:
 “mail” slist => { “milter”, “spamassassin”, “postfix” };
services:
 “www” service_policy => “start”,
 service_method => bespoke;

 “$(mail)” service_policy => “stop”,
 service_method => bespoke;
}

##

body service_method bespoke
{
service_bundle =>
 non_standard_services(“$(this.promiser)”,”$(this.service_
policy)”);
}

bundle agent non_standard_services(service,state)
{
reports:
 !done::
 “Test service promise for \”$(service)\” -> $(state)”;
}

4. CFEngine Design Center

The Design Center is a public repository of reusable CFEngine configuration com-
ponents, tools and examples, currently hosted on GitHub. It covers a broad range of
different themes and contexts, and encourages a data-driven approach to infrastructure
configuration, separating reusable knowledge from the specific parameters of usage.

The packaged methods in the Design Center are called infrastructure sketches, or more
commonly, sketches. You will be able to use many of the sketches stored there “as is”
to generate a good-enough level of automation for your specific needs. Other users will
want to edit them as examples of good-practice and how others have solved similar
problems, but customize them into locally perfected designs. Users are encouraged to
contribute their code to the Design Center, so that it becomes a growing community
resource.

The Design Center will play an increasingly large role in the use of CFEngine for most
users. In most organizations, the task of designing the infrastructure and the task of
implementing it will fall on different people. Implementers will not need to have the
same knowledge as designers.

The Design Center and its tools are in the early stages of development—we are still
researching the changes taking place in infrastructure engineering to make the best
possible tools. Trends like DevOps play into the designs as a new generation of engi-
neers grapple with new scale and complexity and a much more integrated IT infrastruc-
ture. This chapter offers a brief glimpse of what is going on, but some of the details are
bound to change.

4.1 Getting Started with the Design Center
The Design Center contains three main types of content:

❖	 Sketches are ready-to-use components that can be directly installed and used on a
system. Sketches are managed using the cf-sketch utility.

❖	 Policy examples are examples uploaded by CFEngine users. They are not meant
to be ready to use but are simply to illustrate certain aspects of CFEngine policy
writing, and to serve as starting points for your own policies.

❖	 Tools that help in miscellaneous aspects of managing and interacting with
CFEngine.

34 / CFEngine Design Center

You can view these top-level categories of contents when you look at the repository on
GitHub at https://github.com/cfengine/design-center:

Figure 4.1

As a first step, you may want to check out the entire repository so that you can explore
it at leisure. For this you need to use git:
$ git clone git://github.com/cfengine/design-center.git
$ cd design-center
$ ls -F
README.markdown examples/ sketches/ tools/

Feel free to explore its contents. You can simply copy and use whatever you need from
the examples and tools directories. For now we will focus on sketches, which are the
most complex and useful part of its contents.

4.2 Getting Started with cf-sketch
cf-sketch is the main tool you will use for setting up sketches from the Design Center
in your own systems. It allows you to search for, list, install, configure, activate and
deactivate sketches. Here we will explore how to install and start using it. For a full
reference manual, please refer to the documentation at https://github.com/cfengine/
design-center/wiki.

Once you have checked out the Design Center repository as described above, you will
find cf-sketch under the tools/cf-sketch/ directory. Before using it, you need to make
sure the following Perl modules are installed:

❖	 LWP
❖	 LWP::Protocol::https
❖	 Term::ReadLine::Gnu

Depending on your system, these modules may already be installed, or may be available
as packages in your operating system repository. Alternatively, you can use the cpan
utility included with Perl to install them.

Once the dependencies are installed, you can install cf-sketch on your system, from
the checked-out copy of the Design Center repository:
$ cd tools/cf-sketch
$ make install

You can now run cf-sketch help to see a summary of all the available options.

CFEngine Design Center / 35

To better understand how cf-sketch works, it helps to understand the typical workflow
for working with sketches:

1. Browse or search the Design Center repository for the sketch you need.

2. Install the sketch. This step downloads the sketch and installs the files locally,
under /var/cfengine/masterfiles/sketches/ (this location may vary depending on
your system and your user account).

3. Configure and activate a sketch. In this step you indicate the parameters to use
with a sketch during its execution.

4. Generate a CFEngine “run file” that contains the actual CFEngine code needed
to execute the activated sketches with the appropriate parameters.

5. Deactivate or uninstall sketches if necessary.

Let us now illustrate this workflow with an example. To start, run cf-sketch, which
will put you in an interactive command mode:
cf-sketch
Welcome to cf-sketch version 2.0.1.
CFEngine AS, 2012.

Enter any command to cf-sketch, use ‘help’ for help, or ‘quit’ or ‘^D’
to quit.

cf-sketch>

From this prompt you have access to all the commands needed to manage sketches. To
view them, you can type the help command. Note that all the commands can also be
run directly from the shell, without entering the interactive command mode, by typing
the command you want to execute as arguments to the cf-sketch script.

First, we will find a sketch to install, by finding all sketches in the “utilities” category:
cf-sketch> search utilities

The following sketches match your query:

Monitoring::nagios_plugin_agent Run Nagios plugins and optionally take
action
Utilities::abortclasses Abort execution if a certain file exists, aka
‘Cowboy mode’
Utilities::ipverify Execute a bundle if reachable ip has known MAC
address
Utilities::ping_report Report on pingability of hosts
VCS::vcs_mirror Check out and update a VCS repository.

Each sketch lists its name (e.g., VCS::vcs_mirror) and a short description of its
functionality.

The VCS::vcs_mirror sketch allows us to use CFEngine to check out a copy of a git
repository. We can get more detailed information about it using the info command.
cf-sketch> info VCS::vcs_mirror

The following sketches match your query:

Sketch VCS::vcs_mirror
Description: Check out and update a VCS repository.
Authors: Nick Anderson <nick@cmdln.org>, Ted Zlatanov <tzz@lifelogs.com>
Version: 1.11

36 / CFEngine Design Center

License: MIT
Tags: cfdc
Installed: No

Once we know this is the sketch we want to install, we can install it.
cf-sketch> install VCS::vcs_mirror

Installing VCS::vcs_mirror
Unsatisfied dependencies: CFEngine::stdlib
Trying to find CFEngine::stdlib dependency
Found CFEngine::stdlib dependency, trying to install it
Installing CFEngine::stdlib
Checking and installing sketch files.
Done installing CFEngine::stdlib
Checking and installing sketch files.
Done installing VCS::vcs_mirror

Note that the CFEngine::stdlib sketch was installed automatically, as a dependency
of VCS::vcs_mirror. The info command will now tell you where the sketch has been
installed.
cf-sketch> info VCS::vcs_mirror

The following sketches match your query:

Sketch VCS::vcs_mirror
Description: Check out and update a VCS repository.
Authors: Nick Anderson <nick@cmdln.org>, Ted Zlatanov <tzz@lifelogs.
com>
Version: 1.11
License: MIT
Tags: cfdc
Installed: Yes, under /var/cfengine/masterfiles/sketches/VCS/vcs_
mirror
Activated: No

On a CFEngine policy hub, the sketches are installed under /var/cfengine/masterfiles/
sketches (substitute with /var/cfengine/inputs/sketches if running on a CFEngine client, or
with $HOME/.cfagent/inputs/sketches if running as a regular user instead of root). You
can use the list command to show the installed sketches.
cf-sketch> list

The following sketches are installed:

1. CFEngine::stdlib (library)
2. VCS::vcs_mirror (not configured)

Note that the output says “not configured,” which means that the sketch is installed,
but it’s not doing anything. We need to configure and activate it by providing the
parameters the sketch needs for its execution. You can view these parameters and their
types using the info command with the –v option.
cf-sketch> info -v VCS::vcs_mirror

The following sketches match your query:

Sketch VCS::vcs_mirror
Description: Check out and update a VCS repository.
Authors: Nick Anderson <nick@cmdln.org>, Ted Zlatanov <tzz@lifelogs.com>
Version: 1.11

CFEngine Design Center / 37

License: MIT
Tags: cfdc
Installed: Yes, under /var/cfengine/masterfiles/sketches/VCS/vcs_mirror
Activated: No
Parameters:
 vcs: PATH
 path: PATH
 origin: HTTP_URL|PATH
 branch: NON_EMPTY_STRING (default: master)
 runas: NON_EMPTY_STRING (default: getenv(“USER”, “128”))
 umask: OCTAL (default: 022)
 activated: CONTEXT (default: any)
 nowipe: CONTEXT (default: !any)

You use the configure command to enter the interactive configuration mode, in which
cf-sketch will prompt you for all the parameters necessary for the sketch. For our
example, let’s configure the sketch to check out a copy of the CFEngine core repository
under /tmp/cfengine-core.
cf-sketch> configure VCS::vcs_mirror

Entering interactive configuration for sketch VCS::vcs_mirror.
Please enter the requested parameters (enter STOP to abort):

Parameter ‘vcs’ must be a PATH.
Please enter vcs: /usr/bin/git

Parameter ‘path’ must be a PATH.
Please enter path: /tmp/cfengine-core

Parameter ‘origin’ must be a HTTP_URL|PATH.
Please enter origin: https://github.com/cfengine/core.git

Parameter ‘branch’ must be a NON_EMPTY_STRING.
Please enter branch [master]: master

Parameter ‘runas’ must be a NON_EMPTY_STRING.
Please enter runas [getenv(“USER”, “128”)]: root

Parameter ‘umask’ must be a OCTAL.
Please enter umask [022]: 022

Parameter ‘activated’ must be a CONTEXT.
Please enter activated [any]: any

Parameter ‘nowipe’ must be a CONTEXT.
Please enter nowipe [!any]: !any

Note that you can also provide a second argument to the configure command to
indicate a JSON file from where the configuration parameters should be loaded instead
of prompting for them. Most sketches include a params/ directory with some sample
parameter files.
cat /var/cfengine/masterfiles/sketches/VCS/vcs_mirror/params/
cfengine-core.json
{
 “activated”: true,
 “path”: “/tmp/cfengine-core”,
 “origin”:”https://github.com/cfengine/core.git”,
 “branch”: “master”,
 “vcs”: “/usr/bin/git”
}

38 / CFEngine Design Center

We can verify that the sketch has been activated using the list command, with the –v
option to show the parameter values:
cf-sketch> list -v

The following sketches are installed:

1. CFEngine::stdlib (library)
2. VCS::vcs_mirror (configured)
 Instance #1: (Activated on ‘any’)
 branch: master
 nowipe: !any
 origin: https://github.com/cfengine/core.git
 path: /tmp/cfengine-core
 runas: root
 umask: 022
 vcs: /usr/bin/git

A single sketch may be configured multiple times with different sets of parameters. The
“activated” parameter must be a CFEngine class expression that determines where that
configuration instance will be executed, so you can have the same sketch running with
different parameters on different machines, differentiated by their activation condition.

We can now run the sketch by using the run command.
cf-sketch> run

Generated standalone run file /var/cfengine/masterfiles/standalone-cf-
sketch-runfile.cf

Now executing the runfile with: /var/cfengine/bin/cf-agent -f /var/
cfengine/masterfiles/standalone-cf-sketch-runfile.cf

File /tmp/cfengine-core/.git/config was marked for editing but could not
be opened
I: Made in version ‘not specified’ of ‘/var/cfengine/masterfiles/
sketches/VCS/vcs_mirror/main.cf’ near line 145
I: Comment: Expand Git config file from variable

Q: “...sr/bin/git clon”: Cloning into ‘/tmp/cfengine-core’...
I: Last 1 quoted lines were generated by promiser “/usr/bin/git clone
-b master https://github.com/cfengine/core.git /tmp/cfengine-core”

This will write to a run file the CFEngine policy code necessary to execute all the active
sketches with the appropriate parameters, and automatically execute it.

The run file generated by the run command contains a body common control declaration,
to make it possible to execute it as a standalone policy. If you want to integrate the gener-
ated run file into your existing policy files (for example, by loading and running it from
your promises.cf file), you can use the deploy command to generate the run file without the
standalone bits.
cf-sketch> deploy

Generated non-standalone run file /var/cfengine/masterfiles/cf-sketch-
runfile.cf
This run file will be automatically executed from promises.cf

If you want to deactivate a sketch, you can use the remove command to remove a par-
ticular configuration instance or the entire sketch from your system.

CFEngine Design Center / 39

cf-sketch> list -v

The following sketches are installed:

1. CFEngine::stdlib (library)
2. VCS::vcs_mirror (configured)
 Instance #1: (Activated on ‘any’)
 branch: master
 nowipe: !any
 origin: https://github.com/cfengine/core.git
 path: /tmp/cfengine-core
 runas: root
 umask: 022
 vcs: /usr/bin/git

cf-sketch> remove config VCS::vcs_mirror#1

Deactivated: VCS::vcs_mirror activation #1

cf-sketch> list -v

The following sketches are installed:

1. CFEngine::stdlib (library)
2. VCS::vcs_mirror (not configured)

cf-sketch> remove sketch VCS::vcs_mirror

Deactivated: all VCS::vcs_mirror activations
Successfully removed VCS::vcs_mirror from /var/cfengine/masterfiles/
sketches/VCS/vcs_mirror

cf-sketch> list

The following sketches are installed:

1. CFEngine::stdlib (library)

We encourage you to explore the documentation at https://github.com/cfengine/
design-center/wiki/ for complete details and reference for using cf-sketch, and also for
information about writing and contributing new sketches to the Design Center.

4.3 The Role of the Design Center in Your IT Infrastructure
The primary goal of the Design Center sketches is to make it very easy to reuse code
written by others, and to promote sharing of CFEngine code within its community.
However, another very important goal of the Design Center is to make it extremely
easy for different sets of people to write and use the sketches. A sysadmin need not
know the CFEngine language in detail (or at all) to be able to make use of Design
Center sketches, as shown in the previous section. This makes it easy for sysadmins
in your organization to use CFEngine effectively to manage IT infrastructure, while
reusing the CFEngine knowledge from the community and from their colleagues. The
cf-sketch tool allows you to easily draw sketches from multiple repositories, making it
possible to have internal repositories in addition to the public one.

40 / CFEngine Design Center

4.4 The Future of the Design Center
As of this writing, the main mechanism for accessing the Design Center is through
the cf-sketch utility, which means a certain familiarity with the command line and
with CFEngine is still needed. However, this is only the beginning! There is active
work as of this moment to make it much easier to both develop and use Design Center
sketches. These are some of the areas being explored, and which may be available even
as you read this:

❖	 Better sketch development tools, to aid experienced CFEngine users to create and
share new sketches, and to convert their existing code to the appropriate sketch
format.

❖	 Design Center integration into the CFEngine Mission Portal interface, so that
sketches can be managed directly and in conjunction with the other management
and monitoring features provided by the Mission Portal.

❖	 Alternative or improved front-ends to the Design Center, both command-line
and graphical interfaces.

❖	 Integration of Design Center into other tools that interact with CFEngine, such
as the Vagrant CFEngine provisioner.

5. Building a CFEngine Infrastructure

In this chapter, we provide a quick roadmap for thinking about distributed
management using CFEngine. If you are new to infrastructure automation, you will
almost certainly be thinking about some form of centralized management. This is
where most people start.

As IT systems and organizational complexity grow, centralization does not scale
gracefully, either from a technical or a human perspective. At this point some form of
federated management has to take over to cope with the challenge.

5.1 Roadmap for Centralized Policy
We shall assume that you have a central location for the definition of your policy. This
is by no means necessary. Federated control is by far a preferable strategy in a large
organization. If you don’t, then you can repeat this procedure multiple times for each
decentralized point of control.

There are several steps to be performed. The following order is recommended:

1. Set up policy source host first. We call this a policy server, and in the Enterprise
edition this is also a reporting “hub” where status reports and inventory
information are collated. A policy server is the computer that will store the
master policy files that are used on every host running CFEngine. The default
settings assume a policy dispatch point of /var/cfengine/masterfiles on the policy
server. In other words, this is where you drop approved changes to policy that
will be collected.

2. Set up clients to install and update themselves.

This is a standard part of the default policy that comes with CFEngine 3, so unless you
have any special needs, this should take care of itself.

Deciding policy is clearly a big task, but you can start simply, by getting a small policy
running across your network and then build on this foundation. To get started, you
need only to have a working prototype.

5.2 Federation of Control
The traditional view of network management is to apply a control over a network
from some centralized, authoritative location: a master host. You can easily create
this kind of architecture using CFEngine, but you are not limited by it. CFEngine’s
principle of autonomy makes it plausible to divide authority into regions, or have every
host managed individually if that suits your needs. There is no compulsion to have
centralized management, but it is easily implemented if that’s what makes sense for you.

Figure 5.1

42 / Building a CFEngine Infrastructure

What are the advantages of centralized management?

❖	 Having a single point of decision aids consistency.
❖	 Changes of policy are easiest to implement from one place.
❖	 Backup and version control of policy is convenient when policy is centralized.

What are the disadvantages?

❖	 Central services are somewhat old-fashioned, making one think of marching
armies rather than free market business.

❖	 Local customization becomes awkward by forcing local knowledge to pass
upward through a central authority.

❖	 Centralization is inappropriate for security and privacy if you have completely
independent departments or businesses that merely coexist and work together.

You can probably think of other reasons, and indeed you should think about this
carefully. The key to sound management is in calculating the correct force to apply. Too
much and you will bludgeon your departments into inappropriate conformity, but too
little and they might run away to a place that you no longer understand. CFEngine’s
view is one of voluntary cooperation and hence voluntary consensus.

Federation of control is not only desirable but might actually be regulated in some
industries. For example, in financial sectors, trading and banking are strictly separated
by federal regulation, even if both activities are maintained in the same company.
In this case, access to the different policies and infrastructure designs must be kept
separate too.

This separation can be handled by a kind of staging (see section 5.3), but ideally, by
complete physical separation.

5.2.1 Starbursts and Constellations
The most common architecture for management is the star network, i.e., a single
central server (manager) surrounded by a number of clients (see figure below).

Building a CFEngine Infrastructure / 43

To federate this structure we can simply replicate it into a constellation of star
networks. Using CFEngine, you can couple these weakly or keep them separate.
CFEngine Enterprise allows you to go even further and obtain restricted reports
at a very high level so that a few privileged monitors (without the power to change
anything) could overlook the various parts of the network.

The large circles in this picture represent “observatories” from which privileged
observers could, in principle, gain read-only access to a federated infrastructure. Note,
once again, a key principle of autonomy in CFEngine forbids any external source from
having authority over an agent. The way to view the constellation scenario is to imagine
a collection of independently governed worlds, watched over by curious auditors. The
power to change and grant access comes from below, not from above.

5.3 Staging Environments
In agile environments, it is common to have versioned stages of infrastructure, based
on different policies. The different versions are run, either in separate environments,
or mingled together in production by picking candidates to upgrade (so-called A-B
testing).

We can create multiple environments with partitioned policies, just by keeping them
in separate directories under /var/cfengine/inputs. This can be achieved in a number of
different ways.

The simplest way is to arrange for different hosts to collect their policies from different
source files that are kept completely separate.

A variation on this is to use a class-determined variable to select the input specification
like a switch:
body common control
{
 bundlesequence => { “environments” };
 inputs => { “environment_$(environments.active)/promises.cf” };
}

Here, the variable $(environments.active) can be defined in a common bundle called
environments that uses class context to discover a host’s membership in the different
stages; CFEngine then inputs the relevant promises.cf file.
bundle common environments
{
 classes:

 “environment_development” or => {
 “hostname1_example_com”,
 “ipv4_256_256_256_256”,
 };

 “environment_testing” or => {
 “hostname2_example_com”,
 “ipv4_256_256_257”, # subnet
 };

 “environment_production” or => {
 “hostname3_example_com”,
 “ipv4_256_256_258”, # subnet
 };

44 / Building a CFEngine Infrastructure

 vars:

 environment_development::

 “active” string => “development”;

 environment_testing::

 “active” string => “testing”;

 environment_production::

 “active” string => “production”;

}

A final approach might be to define the execution of cf-execd differently for different
variables, once again effectively reading in a different policy for each class of host.
body executor control
{
exec_command => “$(sys.workdir)/bin/cf-agent -f
$(environments.active)_failsafe.cf && $(sys.workdir)/bin/cf-agent”;
}

5.4 Test Environments Using Vagrant
As you are developing CFEngine policy, it is common to need to test it before full
deployment. Apart from designating testing and staging environments as described
in the previous section, you can do local testing using Vagrant (http://vagrantup.
com/), a tool that allows repeatable, consistent creation and management of virtual
machines. As of Vagrant 1.1, support for CFEngine is included. For Vagrant 1.0,
you can download the CFEngine provisioner from https://github.com/cfengine/
vagrant-cfengine-provisioner, which is the version we will use in this description.

The centerpiece of a Vagrant-managed environment is the Vagrantfile, which contains
the instructions for creating and configuring VMs. A full description of the Vagrantfile
syntax is outside the scope of this document, but you can find it at http://vagrantup.
com/.

Using CFEngine on a Vagrant VM is as easy as indicating in the Vagrantfile that we
want to provision the VM using the CFEngine provisioner, by adding this line inside
the corresponding config.vm.define block:
 config.vm.define :cfhub do |hub_config|
 ...
 hub_config.vm.provision CFEngineProvisioner
 ...
 end

By adding this line, the default behaviour of the CFEngine provisioner is to ensure
CFEngine is installed, and then configure CFEngine as a policy hub, bootstrapping to
the VM’s own IP address. When you run the vagrant up command, you will see the
messages corresponding to the installation (if needed) and configuration of CFEngine
on the VM:
$ vagrant up
...
[cfhub] Running provisioner: CFEngineProvisioner...
...

Building a CFEngine Infrastructure / 45

[cfhub] I am a CFEngine policy hub, bootstrapping to policy server at
10.0.2.15.
** CFEngine BOOTSTRAP probe initiated
...
[cfhub] CFEngine policy hub bootstrapped successfully.
[cfhub] Because I am a hub, I’m running cf-agent manually for the
first time to finish initialization.

Once the VM is running, you can log into it and verify that CFEngine is running:
$ vagrant ssh
...
$ ps ax | grep cf
 1198 ? Ss 0:00 /var/cfengine/bin/cf-execd
 1201 ? Ss 0:00 /var/cfengine/bin/cf-serverd
 1214 ? Ss 0:00 /var/cfengine/bin/cf-monitord
$ ls /var/cfengine/
bin cf-serverd.pid performance.tcdb.lock
cf3.lucid32.runlog document_root.dat policy_server.dat
cfagent.lucid32.log inputs ppkeys
cf_classes.tcdb lastseen promise_summary.log
cf_classes.tcdb.lock lib randseed
cf-execd.pid masterfiles reports
cf_lastseen.tcdb modules share
cf_lastseen.tcdb.lock outputs state
cf-monitord.pid performance.tcdb

Of course, this is just the basics. Using the CFEngine provisioner, you can install
custom policy files into the VM, instantiate multiple VMs in hub/client combinations,
and even install and use the CFEngine Enterprise edition. For example, to create a hub/
client pair, and make sure certain local files (contained in the cf_files directory) are
copied to the hub for distribution to all the clients, you can use something like this:
 config.vm.define :cfhub do |hub_config|
 hub_config.vm.box = “lucid32”
 hub_config.vm.network :hostonly, “10.1.1.10”

 hub_config.vm.provision CFEngineProvisioner do |cf3|
 cf3.policy_server = “10.1.1.10”
 cf3.files_path = ‘cf_files’
 end
 end

 config.vm.define :cfclient do |hub_config|
 hub_config.vm.box = “lucid32”
 hub_config.vm.network :hostonly, “10.1.1.11”

 hub_config.vm.provision CFEngineProvisioner do |cf3|
 cf3.policy_server = “10.1.1.10”
 end
 end

You can find complete Vagrantfile examples for different setups in the repository at
https://github.com/cfengine/vagrant-cfengine-provisioner.

46 / Building a CFEngine Infrastructure

5.5 Using the cf-runagent Command
The cf-runagent command connects to a remote cf-serverd with a simple signal
asking the server to initiate an immediate execution of cf-agent to verify its current
promises. It is not permitted to send new policy to the remote host, for security reasons;
however, the remote host might opt (as part of its ordinary policy) to update its policy
from a command location. This command is useful for testing and for running
cf-agent without having to log onto the host.

With the help of roles promises in cf-serverd, it is possible to make a Clark-Wilson-
like model for Role Based Access Control of simple commands through this interface,
trusting the public key identity of users rather than a login shell.

Since cf-runagent addresses remote hosts from a local host, there is an ambiguity in
whether options are intended for the cf-runagent command itself, or whether they are
meant to be passed on to the agent on the remote hosts. It is not possible to send the -f
option to the remote agent, to ask it to run a different policy file. This option is stripped
by the server on receipt to prevent an unauthorized attempt to change policy.

Remote classes are processed by the remote cf-serverd service, and specify classes
which must be satisfied by the remote host in order to invoke the remote command.

Here are some examples, all of which use the host list in cf-runagent.hosts:
--background, -b value - Parallelize connections (50 by default).
--define-class, -D value - Define a list of comma-separated classes to be sent to a remote agent.
--select-class, -s value - Define a list of classes to be used to select remote agents by constraint.
--remote-options, -o value - Pass options to a remote server process.
--diagnostic, -x - Activate internal diagnostics (developers only).
--hail, -H value - Hail the following comma-lists of hosts, overriding default list.

For example, to run cf-agent on all Solaris hosts in the background:
cf-runagent --background --select-class solaris

To connect to a single host and execute promise checks in verbose, dry-run mode:
cf-runagent –hail myhost.example.com –remote-options “–dry-run --verbose”

5.6 Dealing with Firewalls
Some users want to use CFEngine’s remote copying mechanism through a firewall,
in particular to update the CFEngine policy on hosts inside a DMZ (so-called
demilitarized zone). Firewalls are often shrouded in myth and mystery: magical
force fields that protect us against Klingon torpedoes. It is important to see the
firewall security model together with the CFEngine security model. Amongst the
difficulties one faces, the firewall administrator is not often the same as the CFEngine
administrator and does not trust anyone or anything. You might have to convince
this person to make changes that help you out, so it is important to understand the
consequences of your security strategy.

Any piece of software that traverses a firewall can, in principle, weaken the security of
the barrier. On the other hand, a strong piece of software might have better security
than the firewall itself. Consider the example in Figure 5.1.

Building a CFEngine Infrastructure / 47

Figure 5.2: A CFEngine Host Outside a Firewall

We label the regions inside and outside of the firewall as the “secure area” and
“demilitarized zone” for convenience. It should be understood that the area inside
a firewall is not necessarily secure in any sense of the word unless the firewall
configuration is understood together with all other security measures.

Our problem is to copy files from the “secure” source machine to hosts in the DMZ in
order to send them their configuration policy updates. There are two ways of getting
files through the firewall:

❖	 An automated CFEngine solution, i.e., a pull operation generated outside with a
target inside the secure area.

❖	 A manual push to the outside of the wall from the inside.

One of the main aims of a firewall is to prevent hosts outside the secure area from
opening connections to hosts in the secure area. If we want cf-agent processes on
the outside of the firewall to receive updated policies from the inside of the firewall,
information has to traverse the firewall.

Definition 11: Conflicting trust models. CFEngine’s trust model is fundamentally
at odds with the external firewall concept. CFEngine says: “I am my own boss. I
don’t trust anyone to push me data.” The firewall says: “I only trust things that are
behind me.” The firewall thinks it is being secure if it pushes data from behind
itself to the DMZ. CFEngine thinks it is being secure if it makes the decision to
pull the data autonomously, without any orders from some potentially unknown
machine. One of these mechanisms has to give if firewalls are to co-exist with
CFEngine.

From the firewall’s viewpoint, push and pull are different: a push requires only
an outgoing connection from a trusted source to an untrusted destination; a pull
necessarily requires an untrusted connection being opened to a trusted server within
the secure area. For some firewall administrators, the latter is simply unacceptable
(because they are conditioned to trust their firewall). But it is important to evaluate the
actual risk. We have a few observations on this score to offer at this point:

❖	 It is not the aim of this note to advocate any one method of update. You must
decide for yourself. The aim here is only to evaluate the security implications.
Exporting data from the secure area to the DMZ automatically downgrades the
privacy of the information.

48 / Building a CFEngine Infrastructure

❖	 The CFEngine security model assumes that the security of every host will be
taken seriously. A firewall should never be used as a substitute for host security.

❖	 Knowing about CFEngine but not your firewall or your secure network, it is
only possible to say here that it seems, to us, safe to open a hole in a firewall to
download data from a host of our choice, but we would not accept data from just
any host on your company network on trust. It would be ludicrous to suggest that
an arbitrary employee’s machine is more secure than an inaccessible host in the
DMZ.

5.6.1 Option: A Policy Mirror in the DMZ
You can compromise by creating a policy mirror in the DMZ. This is the recommended
way to copy files, so that normal CFEngine pull methods can then be used by all other
hosts in the DMZ, using the mirror as their source. The policy mirror host should be
as secure as possible, with preferably few or no other services running that might allow
an attacker to compromise it. In this configuration, you are using the mirror host as an
envoi of the secure region in the DMZ.

Any method of pushing a new version of policy can be chosen in principle: CVS, FTP,
RSYNC, SCP. The security disadvantage of the push method is that it opens a port on
the policy mirror, and therefore the same vulnerability is now present on the mirror,
except that now you have to trust the security of another piece of software too. Since
this is not a CFEngine port, no guarantees can be made about what access attackers
will get to the mirror host.

5.6.2 Option: Pulling through a Wormhole
Suppose you are allowed to open a hole in your firewall to a single policy host on the
inside. To distribute files to hosts that are outside the firewall it is only necessary to
open a single tunnel through the firewall from the policy mirror to the CFEngine
service port on the source machine. Connections from any other host will still be
denied by the firewall. This minimizes the risk of any problems caused by attackers.

To open a tunnel through the firewall, you need to alter the filter rules. A firewall
blocks access at the network level. Configuring the opening of a single port is
straightforward. We present some sample rules below, but make sure you seek the
guidance of an expert if necessary.

Cisco IOS rules look like this:
ip access-group 100 in
access-list 100 permit tcp mirror host source eq 5308
access-list 100 deny ip any any

Linux iptables rules might look something like this:
iptables -N newchain
iptables -A newchain -p tcp -s mirror-ip 5308 -j ACCEPT
iptables -A newchain -j DENY

Once a new copy of the policy is downloaded by CFEngine to the policy mirror, other
clients in the DMZ can download that copy from the mirror. The security of other
hosts in the DMZ is dependent on the security of the policy mirror.

Building a CFEngine Infrastructure / 49

5.6.3 Frequently Asked Questions about the Pull Method
❖	 Doesn’t opening a port on a machine on the inside of the firewall make it vulnerable

to both denial-of-service and buffer overflow attacks?
Buffer overflow attacks are extremely unlikely in CFEngine by design. The
likelihood of a bug in CFEngine should be compared to the likelihood of a bug
existing in the firewall itself.

Denial-of-service attacks can be mitigated by careful configuration (see separate
FAQ item). cf-serverd reads a fixed number of bytes from the input stream
before deciding whether to drop a connection from a remote host, so it is not
possible to buffer overflow attack before rejection of an invalid host IP.

Another possibility is to use a standard VPN to the inside of the firewall. That
way one is concerned first and foremost with the vulnerabilities of the VPN
software.

❖	 Doesn’t opening the firewall compromise the integrity of the policy information by
allowing an attacker the chance to alter it?
The CFEngine security model, as well as the design of the server, disallows the
uploading of information. No message sent over the CFEngine channel can alter
data on the server. (This assumes that buffer overflows are impossible.)

❖	 Couldn’t an IP spoofer manage to gain access to data from the policy server that it
should not be able to access?
Assuming that buffer overflow attacks and DOS attacks are highly improbable,
the main worry with opening a port is that intruders will be able to gain access
to unauthorized data. If the firewall is configured to open only connections from
the policy mirror, then an attacker must spoof the IP of the policy attacker. This
requires access to another host in the DMZ and is non-trivial. However, if the
attacker succeeds, the worst he/she can do is to download information that is
available to the policy mirror. But that information is already available in the
DMZ since the data have been exported as part of the policy, thus there is no
breach of security. (Security must be understood to be a breach of the terms of
predefined policy.)

❖	 What happens if the policy mirror is invaded by an attacker?
If an attacker gains root access to the mirror, he/she will be able to affect the
policy distributed to any host in the DMZ. The policy mirror has no access to
alter any information on the policy source host. Note that this is consistent with
the firewall security model of trusted/untrusted regions. The firewall does not
mitigate the responsibility of securing every host in a network regardless of which
side of the firewall it is connected.

Unfortunately, these decisions are often made as a matter of principle rather than
considered judgment.

6. From Simple to Advanced

In this chapter, we present a brief gallery of example configurations for a few different
scenarios. We begin with a simple case, and then move on to harder cases. What you’ll
see is that, unlike in an imperative language, the complexity of the policy is unrelated
to the complexity or power of the behaviour.

6.1 Name Service Configuration
As a simple example, let’s look at setting up the system resolver. This is a text editing
problem. It could be handled by templating, but many sites have complicated require-
ments for host resolution that require special options and selection of nameserver based
on network location and other criteria.
bundle agent name_services

{
vars:

 # data, can be kept here locally in this bundle

 “searchlist” slist => {
 “search example.com”,
 “search cfengine.com”
 };

 !am_name_server::

 “nameservers” slist => {
 “10.0.0.35”,
 “192.168.2.16”,
 “192.168.3.103”
 0 },
 policy => “overridable”;

 am_name_server::

 # This will make the policy automatically adapt

 “nameservers” slist => {
 “127.0.0.1”,
 },
 policy => “overridable”;

classes:

 “am_name_server”

 # This is basically a grep to know if we are a nameserver
 expression => reglist(“@(nameservers)”,”$(sys.ipv4)”);

52 / Chapter Title

files:

 # This is where the actual editing is done, using stdlib

 “/tmp/resolv.conf” # “$(sys.resolv)”
 comment => “Customize the resolver config to point to an
efficient nameserver”,
 create => “true”,
 edit_line => resolvconf(“@(this.searchlist)”,”@(this.
nameservers)”);

}

The output for a host that is not in the list of nameservers is thus:
search search iu.hio.no
search search cfengine.com
nameserver 10.0.0.351
nameserver 192.168.2.16
nameserver 192.168.3.103

The output for a host in the list of nameservers is thus:
search search iu.hio.no
search search cfengine.com
nameserver 127.0.0.1

If we examine the definition of the resolvconf bundle in the standard library:
bundle edit_line resolvconf(search,list)

 # search is the search domains with space
 # list is an slist of nameserver addresses

{
delete_lines:

 “search.*” comment => “Reset search lines from resolver”;
 “nameserver.*” comment => “Reset nameservers in resolver”;

insert_lines:

 “search $(search)” comment => “Add search domains to resolver”;
 “nameserver $(list)” comment => “Add name servers to resolver”;
}

we see that resolvconf does not remove lines that a user has added by hand, unless
they are nameservers or searchlist directives. This shows how we can manage “just
enough” without being too heavy-handed. A template solution here would overwrite
any local settings, which might not be desirable.

6.2 Phased Deployment—Inter-host Orchestration
As a more complex example of CFEngine, the following shows how the distributed sys-
tem allows very powerful workflows to be orchestrated, without much more complex-
ity than the simple cases. Orchestrating ordered sequences of bulk change is a major
headache in many systems, and one often has to hack around an imperative approach.

We can make wrappers to handle the distributed ordering of workflows using CFEngine’s
client-server capabilities. This can be done peer-to-peer for simple cases, and with some
Enterprise hub aggregation, we can also define multi-host waves of tasks.

Chapter Title / 53

6.2.1 Basic Communication Methods for Orchestration
The example below illustrates the basic syntax constructions for communication using
systems. We can pass class data and variable data between systems in a peer-to-peer
fashion, or through an Enterprise hub. You can run this with a server and an agent just
on localhost to illustrate the principles.

In this example, we pass variable data between hosts. The generic peer function
remotescalar can address any other host running cf-serverd. The abbreviated interface
hubknowledge assumes that it should get data from a hub.

Both these functions ask for an identifier; it is up to the server to interpret what this
means and to return a value of its choosing. If the identifier matches a persistent scalar
variable (such as is used to count distributed processes in CFEngine Enterprise) then
this will be returned preferentially. If no such variable is found, then the server will
look for a literal string in a server bundle with a handle that matches the requested
object.
body common control
{
bundlesequence => { “overture” };
inputs => { “cfengine_stdlib.cf” };
}

body server control

{
allowconnects => { “127.0.0.1” , “::1”,};
allowallconnects => { “127.0.0.1” , “::1”, };
trustkeysfrom => { “127.0.0.1” , “::1”,};
}

###

bundle agent overture
{
vars:

 “remote” string => remotescalar(“test_scalar”,”127.0.0.1”,”yes”);

 “know” string => hubknowledge(“test_scalar”);

 “count_getty” string => hubknowledge(“count_getty”);

processes:

 # Use the enumerated library body to count hosts running getty

 “getty”

 comment => “Count this host if a job is matched”,
 classes => enumerate(“count_getty”);

reports:

 !elsewhere::

 “GOT remote scalar $(remote)”;
 “GOT knowledge scalar $(know)”;
 “GOT persistent scalar $(xyz)”;

}

54 / Chapter Title

###

bundle server access_rules()
{
access:

 “value of my test_scalar - $(sys.host)”
 handle => “test_scalar”,
 comment => “Grant access to contents of test_scalar VAR”,
 resource_type => “literal”,
 admit => { “127.0.0.1” };

 “XYZ”
 resource_type => “variable”,
 handle => “XYZ”,
 admit => { “127.0.0.1” };

}

You can run this example on a single host, running the server, the agent and the hub (if
you have Enterprise CFEngine). The output will be something like this:
host$./cf-agent -f ~/test.cf -K
R: GOT remote scalar value of my test_scalar - myhost
R: GOT knowledge scalar value of my test_scalar - myhost
R: GOT persistent scalar 1

Run job or reboot only if n out m systems are running. The self-healing chain - inverse
Dominoes, Basic communication methods for orchestration, Distributed Orchestration
between hosts with CFEngine Enterprise

6.2.2 Run Job or Reboot Only if N Out M Systems Are Running
The ability to base local promises on global knowledge seems superficially attractive
in some cases. As a strategy, this way of thinking requires a lot of caution. We have to
assume that all knowledge gathered about an environment is subject to errors, latencies
and a dozen other uncertainties that make any snapshot of remotely assessed current
state subject to considerable healthy suspicion. This is not a weakness of CFEngine—
in fact CFEngine has mechanisms that make it as reliable as you are likely to find in
any technology—rather it is a fundamental limitation of distributed systems, and it is
strongly dependent on the architectures you build.

In the following example, we show how you can make certain decisions based on
global, uncertain knowledge, allowing for the fact that the information is uncertain.
In other words, we aim to err on the safe side. In this case we ask how could we reboot
systems after an upgrade only if doing so would not jeopardize a Service Level Agree-
ment to have at least 20 machines running at all times. Since the globally counted
instances of a running process cannot be greater than the actual number, this particu-
lar problem satisfies the constraint of erring on the side of caution.
##
#
Keep a special promise only if at least n or m hosts
keep a specific promise
#
This method works with Enterprise CFEngine
#
If you want to test this on localhost, just edit /etc/hosts

Chapter Title / 55

to add host1 host2 host3 host4 as aliases to localhost
#
##

body common control
{
bundlesequence => { “n_of_m_symphony” };
inputs => { “cfengine_stdlib.cf” };
}

##

bundle agent n_of_m_symphony
{
vars:

 “count_compliant_hosts” string => hubknowledge(“running_
myprocess”);

classes:

 “reboot” expression => isgreaterthan(“$(count_compliant_
hosts)”,”20”);

processes:

 “myprocess”

 comment => “Count this host if a job is matched”,
 classes => enumerate(“running_myprocess”);

commands:

 reboot::

 “/bin/shutdown now”;
}

###

bundle server access_rules()
{
access:

 “value of my test_scalar, can expand variables here - $(sys.host)”
 handle => “test_scalar”,
 comment => “Grant access to contents of test_scalar VAR”,
 resource_type => “literal”,
 admit => { “127.0.0.1” };

 “running_myprocess”
 resource_type => “variable”,
 admit => { “127.0.0.1” };

}

The code for this is surprisingly simple, but effective nonetheless. A generalization of
this approach can be used to make phased deployments across waves of hosts contain-
ing minimum numbers of hosts.

6.2.3 The Self-Healing Chain—Inverse Dominoes
A self-healing chain is the opposite of a domino event. If a part of the chain is broken
or “down,” it will be revived. If these events depend on one another, then the resuscita-

56 / Chapter Title

tion of this part causes all of the subsequent parts to be repaired too.

Let’s start with the more common case of the independently repairable services, such as
one might find in a multi-tier architecture: database, web servers, applications, etc.

The following example can be run on multiple hosts or on a single host, using the
aliases described in the example. It illustrates coordination through the use of CFEn-
gine’s remoteclasses function in the Enterprise edition to get confirmation of the self-
healing structure. In fact, the verification of the self-healing is optional if one trusts the
underlying system.

The first section defines the workflow:
##
#
The self-healing tower: Anti-Dominoes
#
This method works with CFEngine Enterprise
#
If you want to test this on localhost, just edit /etc/hosts
to add host1 host2 host3 host4 as aliases to localhost
#
##

body common control
{
bundlesequence => { “weak_dependency_symphony” };
inputs => { “cfengine_stdlib.cf” };
}

body server control
{
allowconnects => { “127.0.0.1” , “::1”, @(def.acl) };
allowallconnects => { “127.0.0.1” , “::1”, @(def.acl) };
}

##

bundle agent weak_dependency_symphony
{
methods:

 # We have to seed the beginning by creating the tower
 # /tmp/tower_localhost

 host1::
 “tower” usebundle => tier1,
 classes => publish_ok(“ok_O”);

 host2::
 “tower” usebundle => tier2,
 classes => publish_ok(“ok_1”);

 host3::
 “tower” usebundle => tier3,
 classes => publish_ok(“ok_2”);

 host4::
 “tower” usebundle => tier4,
 classes => publish_ok(“ok_f”);

Chapter Title / 57

classes:

 ok_O:: # Wait for the methods, report on host1 only

 “check1” expression => remoteclassesmatching(“ok.*”,”host2”,”yes”,
”a”);
 “check2” expression => remoteclassesmatching(“ok.*”,”host3”,”yes”,
”a”);
 “check3” expression => remoteclassesmatching(“ok.*”,”host4”,”yes”,
”a”);

reports:

 ok_O::
 “tier 1 is ok”;
 a_ok_1::
 “tier 2 is ok”;
 a_ok_2::
 “tier 3 is ok”;
 a_ok_f::
 “tier 4 is ok”;

 ok_O&a_ok_1&a_ok_2&a_ok_f::
 “The Tower is standing”;

 !(ok_O&a_ok_1&a_ok_2&a_ok_f)::
 “The Tower is down”;

}

The second part defines the content of the phases:
bundle agent tier1
{
files:

 “/tmp/something_to_do_1”
 create => “true”;
}

bundle agent tier2
{
files:

 “/tmp/something_to_do_2”
 create => “true”;
}

bundle agent tier3
{
files:

 “/tmp/something_to_do_3”
 create => “true”;

}

bundle agent tier4
{
files:

 “/tmp/something_to_do_4”
 create => “true”;
}

58 / Chapter Title

Finally, there is a little overhead:
bundle server access_rules()
{
access:

 “ok.*”
 resource_type => “context”,
 admit => { “127.0.0.1” };

}

##

body classes publish_ok(x)
{
promise_repaired => { “$(x)” };
promise_kept => { “$(x)” };
cancel_notkept => { “$(x)” };
persist_time => “2”;
}

If we execute this simple test on a single host, or allow it to be executed on distributed
hosts, the chain forms and quickly stands up the system into a tower of dependencies.
host$ ~/LapTop/cfengine/core/src/cf-agent -f ~/orchestrate/self-
healing-chain.cf -K
R: tier 1 is ok
R: tier 2 is ok
R: tier 3 is ok
R: tier 4 is ok
R: The Tower is standing

If we break the tower, by giving it an impossible promise to keep, e.g., changing the
name of the directory in tier 3 to something that cannot be created (for this illustra-
tion, we run in non-privileged mode and choose a directory name we do not have
permission to create), then tier 3 will fail and the output looks like this:
host$ ~/LapTop/cfengine/core/src/cf-agent -f ~/orchestrate/self-
healing-chain.cf -K
Unable to make directories to /xtmp/something_to_do_3
 !!! System reports error for cf_mkdir: “Permission denied”
R: tier 1 is ok
R: tier 2 is ok
R: tier 4 is ok
R: The Tower is down

Clearly, whatever tier 3 is really supposed to do, any promise failure would result in the
same behaviour. If we then correct the policy to make it repairable, the output heals
quickly:
host$ ~/LapTop/cfengine/core/src/cf-agent -f ~/orchestrate/self-
healing-chain.cf -K
R: tier 1 is ok
R: tier 2 is ok
R: tier 4 is ok
R: The Tower is down
R: tier 3 is ok
R: The Tower is standing

Chapter Title / 59

6.2.4 A Domino Sequence
A different kind of orchestration is a domino cascade, which starts from some initial
trigger and causes a change in one host that causes a change in the next, etc. These
examples show how this can easily be carried out by CFEngine. Domino cascades can
be done with Community or Enterprise editions, but are limited to single machines in
each step.

The basic principle is shown below. This example has deliberately been made general
enough to demonstrate on a single host with several aliases. If each host can be guaran-
teed to have a unique name and address, we could simplify the hand_over wrapper.

Note: to simulate this on a single host, start the server and agent with this same file as
input, and make aliases to localhost in /etc/hosts as described in the example.
##
#
Dominoes
#
This method works with either Community or Enterprise
#
If you want to test this on localhost, just edit /etc/hosts
to add host1 host2 host3 host4 as aliases to localhost
#
##

body common control
{
bundlesequence => { “dominoes_symphony” };
inputs => { “cfengine_stdlib.cf” };
}

##

bundle agent dominoes_symphony
{
methods:

 # We have to seed the beginning by creating the dominoes
 # /tmp/dominoes_localhost

 host1::
 “dominoes” usebundle => hand_over(“localhost”,”host1”,”overtu
re”);

 host2::
 “dominoes” usebundle => hand_over(“host1”,”host2”,”first_
movement”);

 host3::
 “dominoes” usebundle => hand_over(“host2”,”host3”,”second_
movement”);

 host4::
 “dominoes” usebundle => hand_over(“host3”,”host4”,”final_
movement”),
 classes => if_ok(“finale”);

reports:

 finale::

60 / Chapter Title

 “The visitors book of the Dominoes method”
 printfile => visitors_book(“/tmp/dominoes_host4”);

}

The wrapper which handles the inter-process communication for the methods is:

bundle agent hand_over(predecessor,myalias,method)
{

 # This is a wrapper for the orchestration

files:

 “/tmp/tip_the_dominoes”

 comment => “Wait for our cue or relay/conductor baton”,
 copy_from => secure_cp(“/tmp/dominoes_$(predecessor)”,”$(predec
essor)”),
 classes => if_repaired(“cue_action”);

methods:

 cue_action::

 “the music happens”

 comment => “One off activity”,
 usebundle => $(method),
 classes => if_ok(“pass_the_stick”);

files:

 pass_the_stick::

 “/tmp/tip_the_dominoes”
 comment => “Add our signature to the dominoes’ tail”,
 edit_line => append_if_no_line(“Knocked over $(myalias) and did:
$(method)”);

 “/tmp/dominoes_$(myalias)”

 comment => “Dominoes in position to be beamed up by next agent”,
 copy_from => local_cp(“/tmp/tip_the_dominoes”);

}

Finally, the methods themselves are defined:
bundle agent overture
{
reports:

 cfengine_3::

 “Singing the overture...”;
}

bundle agent first_movement
{
reports:

 cfengine_3::

 “Singing the first adagio...”;
}

Chapter Title / 61

bundle agent second_movement
{
reports:

 cfengine_3::

 “Singing second allegro...”;

}

bundle agent final_movement
{
reports:

 cfengine_3::

 “Trumpets for the finale”;

}

##

bundle server access_rules()
{
access:

 “/tmp”

 admit => { “127.0.0.1” };

 “did.*”
 resource_type => “context”,
 admit => { “127.0.0.1” };

}

body printfile visitors_book(file)
{
file_to_print => “$(file)”;
number_of_lines => “10”;
}

When executed, this produces output only on the final host in the chain, showing the
correct ordering out operations. The sequence also passes a file from host to host as a
coordination token, like a baton in a relay race, and each host signs this so that the final
host has a log of every host involved in the cascade.
R: Singing the overture...
R: Singing the first adagio...
R: Singing second allegro...
R: Trumpets for the finale

R: The visitors book of the Dominoes method
R: Knocked over host1 and did: overture
R: Knocked over host2 and did: first_movement
R: Knocked over host3 and did: second_movement
R: Knocked over host4 and did: final_movement

The average time for such a cascade to complete will be half the length of the chain
multiplied by the run-interval, if normal cf-execd splaytime is used. Without any
splaying, the average time will be the run interval multiplied by the chain length. The
completion time could be increased by using cf-runagent.

62 / Chapter Title

6.2.5 A Chinese Dragon Star Pattern
The Chinese dragon darts back and forth between different hosts, forming a chain
of events and leaving a trail behind it. This pattern is much like the Domino pattern,
except that it follows a star pattern with a hub at the centre. The orchestrated sequence
of events follows the dragon from its lair to the first satellite host, then back to its lair
to record the journey, then out to the next satellite, then back to its lair, etc.

A prototypical application for this kind of pattern is taking servers, one by one, off a
load balancer (in the dragon’s lair), and then upgrading them before reinstating them
and moving on to the next host.

The pattern can be divided up into specific user-promises and generic library methods.
We’ll show both for completeness on the understanding that you would not need to
write the library code each time. The basic orchestration is like the previous examples,
with methods to be executed for each phase. Each of these has to be specified. Here, we
make trivial methods that just print out a message for the purpose of illustration.

Also, as the methods execute, a logfile is collected, and is actually passed around be-
tween the hosts (the dragon), picking up entries as it goes. So the result is a summary of
the execution to be printed as a file at the end.
##
#
Chinese Dragon Dancing
#
This method works with either Community or Enterprise
and uses named signals
#
If you want to test this on localhost, just edit /etc/hosts
to add host1 host2 host3 host4 as aliases to localhost
#
##

body common control
{
bundlesequence => { “dragon_symphony” };
inputs => { “cfengine_stdlib.cf” };
}

##

bundle agent dragon_symphony
{
methods:

 # We have to seed the beginning by creating the dragon
 # /tmp/dragon_localhost

 “dragon” usebundle => visit(“localhost”,”host1”,”chapter1”);

 “dragon” usebundle => visit(“host1”,”host2”,”chapter2”);

 “dragon” usebundle => visit(“host2”,”host3”,”chapter3”);

 “dragon” usebundle => visit(“host3”,”host4”,”chapter4”),
 classes => if_ok(“finale”);

Chapter Title / 63

reports:

 finale::

 “The dragon is slain:”
 printfile => visitors_book(“/tmp/shoo_dragon_host4”);
}

The next parts define the phases themselves, as CFEngine methods:
Define the phases

bundle agent chapter1(x)
{
Do something significant here

reports:

 host1::
 “ ----> Breathing fire on $(x)”;
}

################################

bundle agent chapter2(x)
{
Do something significant here

reports:

 host2::
 “ ----> Breathing fire on $(x)”;

}

################################

bundle agent chapter3(x)
{
Do something significant here

reports:

 host3::
 “ ----> Breathing fire on $(x)”;

}

################################

bundle agent chapter4(x)
{
Do something significant here

reports:

 host4::
 “ ----> Breathing fire on $(x)”;

}

Finally, there is the library of wrappers which can be reused and needn’t be altered. We
include this here so you can see how CFEngine uses simple peer-to-peer file copying
to pass messages between the hosts, and generate a runlog as it goes. This is a highly
elegant solution to the problem of distributed orchestration.

64 / Chapter Title

##
Orchestration wrappers
##

bundle agent visit(predecessor,satellite,method)
{

 # This is a wrapper for the orchestration will be acted on
 # first by the dragon’s lair and then by the satellite

vars:

 “dragon’s_lair” string => “host0”;

files:

 # We start in the dragon’s lair ..

 “/tmp/unleash_dragon”

 comment => “Unleash the dragon”,
 rename => to(“/tmp/enter_the_dragon”),
 classes => if_repaired(“dispatch_dragon_$(satellite)”),
 ifvarclass => “$(dragons_lair)”;

 # if we are the dragon’s lair, welcome the dragon back, shooed from
the satellite

 “/tmp/enter_the_dragon”

 comment => “Returning from a visit to a satellite”,
 copy_from => secure_cp(“/tmp/shoo_dragon_$(predecessor)”,”$(pre
decessor)”),
 classes => if_repaired(“dispatch_dragon_$(satellite)”),
 ifvarclass => “$(dragons_lair)”;

 # If we are a satellite, receive the dragon from its lair

 “/tmp/enter_the_dragon”
 comment => “Wait for our cue or relay/conductor baton”,
 copy_from => secure_cp(“/tmp/dragon_$(satellite)”,”$(dragons_
lair)”),
 classes => if_repaired(“cue_action_on_$(satellite)”),
 ifvarclass => “$(satellite)”;

methods:

 “check in at home”
 comment => “Edit the load balancer?”,
 usebundle => switch_satellite(“ -> Send dragon to
$(satellite)”),
 classes => if_repaired(“send_the_dragon_to_$(satellite)”),
 ifvarclass => “dispatch_dragon_$(satellite)”;

 “dragon visits”
 comment => “One off activity that the nodes carry out while
the dragon visits”,
 usebundle => $(method)(“$(satellite)”),
 classes => if_repaired(“send_the_dragon_back_
from_$(satellite)”),
 ifvarclass => “cue_action_on_$(satellite)”;

Chapter Title / 65

files:

 # hub/lair hub signs the book too and schedules the dragon for next
satellite

 “/tmp/dragon_$(satellite)”
 create => “true”,
 comment => “Add our signature to the dragon’s tail”,
 edit_line => sign_visitor_book(“Dragon returned from
$(predecessor)”),
 ifvarclass => “send_the_dragon_to_$(satellite)”;

 # Satellite signs the book and shoos dragon for hub to collect

 “/tmp/shoo_dragon_$(satellite)”
 create => “true”,
 comment => “Add our signature to the dragon’s tail”,
 edit_line => sign_visitor_book(“Dragon visited $(satellite) and
did: $(method)”),
 ifvarclass => “send_the_dragon_back_from_$(satellite)”;

reports:

 cfengine_3::

 “Done $(satellite)”;

}

##

bundle agent switch_satellite(name)
{
files:

 “/tmp/enter_the_dragon”
 comment => “Add our signature to the dragon’s tail”,
 edit_line => append_if_no_line(“Switch new dragon’s target
$(name)”);

reports:

 cfengine_3::
 “ X Switching new dragon’s target $(name)”;
}

##

bundle edit_line sign_visitor_book(s)
{
insert_lines:

 “/tmp/enter_the_dragon”
 comment => “Import the current visitor’s book”,
 insert_type => “file”;

 “$(s)” comment => “Append this string to the visitor’s book”;
}

66 / Chapter Title

##

bundle server access_rules()
{
access:

 “/tmp”

 admit => { “127.0.0.1” };

 “did.*”
 resource_type => “context”,
 admit => { “127.0.0.1” };

}

##

body printfile visitors_book(file)
{
file_to_print => “$(file)”;
number_of_lines => “100”;
}

Let’s test it on a single host, equipped with aliases to see the entire flow. Without the
trigger, this simply yields:
R: Done host1
R: Done host2
R: Done host3
R: Done host4

Now, if we create the trigger:
host$ touch /tmp/unleash_dragon

The result is:
host$ ~/LapTop/cfengine/core/src/cf-agent -f ~/orchestrate/dragon.cf
-K
R: X Switching new dragon’s target -> Send dragon to host1
R: Done host1
R: Done host2
R: Done host3
R: Done host4

host$ ~/LapTop/cfengine/core/src/cf-agent -f ~/orchestrate/dragon.cf
-K
R: ----> Breathing fire on host1
R: Done host1
R: X Switching new dragon’s target -> Send dragon to host2
R: Done host2
R: Done host3
R: Done host4
host$

host$ ~/LapTop/cfengine/core/src/cf-agent -f ~/orchestrate/dragon.cf
-K
R: ----> Breathing fire on host1
R: Done host1
R: X Switching new dragon’s target -> Send dragon to host2
R: ----> Breathing fire on host2
R: Done host2
R: X Switching new dragon’s target -> Send dragon to host3

Chapter Title / 67

R: Done host3
R: Done host4

host$ ~/LapTop/cfengine/core/src/cf-agent -f ~/orchestrate/dragon.cf
-K
R: ----> Breathing fire on host1
R: Done host1
R: X Switching new dragon’s target -> Send dragon to host2
R: ----> Breathing fire on host2
R: Done host2
R: X Switching new dragon’s target -> Send dragon to host3
R: ----> Breathing fire on host3
R: Done host3
R: X Switching new dragon’s target -> Send dragon to host4
R: Done host4
host$ ~/LapTop/cfengine/core/src/cf-agent -f ~/orchestrate/dragon.cf
-K
R: ----> Breathing fire on host1
R: Done host1
R: X Switching new dragon’s target -> Send dragon to host2
R: ----> Breathing fire on host2
R: Done host2
R: X Switching new dragon’s target -> Send dragon to host3
R: ----> Breathing fire on host3
R: Done host3
R: X Switching new dragon’s target -> Send dragon to host4
R: ----> Breathing fire on host4
R: Done host4

The output of the run log is tagged on to the end:
R: The dragon is slain:
R: Switch new dragon’s target -> Send dragon to host1
R: Dragon returned from localhost
R: Dragon visited host1 and did: chapter1
R: Switch new dragon’s target -> Send dragon to host2
R: Dragon returned from host1
R: Dragon visited host2 and did: chapter2
R: Switch new dragon’s target -> Send dragon to host3
R: Dragon returned from host2
R: Dragon visited host3 and did: chapter3
R: Switch new dragon’s target -> Send dragon to host4
R: Dragon returned from host3
R: Dragon visited host4 and did: chapter4

7. Monitoring, Reporting and Security

Traditionally, many engineers have viewed IT management as being principally about
monitoring; the goal was to present alarms about incidents to humans so that they
could file tickets and respond manually. This has been part of a long-running mind-set
of having low trust in automation, and using humans to service the needs of machines.
CFEngine is not about monitoring in the classical sense, but it is about re-humanizing
the system administration experience, so that machines work for humans.

CFEngine provides its own kind of monitoring to simplify the problem of infrastruc-
ture maintenance, mainly so that it can verify its own promises. The aim is to build
trust in the automation by building in as much of a guarantee of correctness as is pos-
sible. The monitoring it does is somewhat different from that of well-known tools like
Nagios, for example.

CFEngine’s monitoring is designed to be scalable rather than universal in nature. That
said, the Enterprise edition of CFEngine competes quite well in a number of scenarios
with several monitoring solutions that are based on much more resource expensive
technologies, thanks to an innovative lazy-evaluation approach that reduces the
amounts of data by orders of magnitude.

7.1 Autonomic Computing and Knowledge
Whatever we lack in understanding of the issues, we must make up for by trial and ex-
perience in the field. Having genuine insight into the systems we manage can help both
the experienced and the inexperienced engineer to learn about behaviour.

CFEngine uses advanced machine-learning techniques to capture the multiple behav-
iours of systems cheaply, i.e., with a minimum of resources. This information integrates
with a much larger plan to gather knowledge about systems and present that knowledge
to humans in a meaningful way. The aim is not to make humans sit and watch line-
traces of different metrics, but rather to hide such distracting information until it is
actually needed; then to offer depth of insight and semantic relevance.

CFEngine Enterprise has an extended strategy for being knowledge-oriented that
encompasses topics from how-to, through diagnostics, to causal inference. Making
maximal use of the information gathered from a system for different audiences is where
real business value can be added to the raw technology.

7.2 Reports Promises
The simplest response to an anomaly is to issue an alert. The reports section of
cf-agent’s configuration is used for this; reports simply prints messages based on class
membership, and every entry within this stanza must be preceded by an explicit class
specification. Because the class any is always defined, you are not allowed to place
an alert in this class, since it would always give rise to a message. This is probably an

70 / Monitoring, Reporting and Security

expensive mistake if you have 10,000 hosts, so cf-agent deliberately makes it a little
difficult for you.

You can test reports using some simple rules like these:
classes:
 jambalaya expression => “any”; # make a dummy class that is always
true

reports:
 jambalaya::
 “Gumbo!”

In general, reports are most useful if they are made only in unusual circumstances. For
example, let’s see what happens when a variable crosses a threshold:
bundle agent finale
{
vars:
 # Take these from the list of standard or custom measures
 “service” slist => { “www_in”, “rootprocs”, “otherprocs”, “temp0” };
classes:
 “monitoring” expression => “any”;
 “threshold_$(service)”
 comment => “Set a hard threshold of 50 units on all these”,
 expression => isgreaterthan(“$(mon.
value_$(service))”,”50”);
reports:
 monitoring::
 “Service $(service) at $(mon.value_$(service)) over threshold”
 ifvarclass => “threshold_$(service)”;
}

The output might look something like this
R: Service rootprocs at 152 over threshold
R: Service otherprocs at 68 over threshold

Whether you consider this information to be about security or merely about map-
ping out resources makes no difference. It is not necessary for CFEngine to make this
distinction—after all, this is a matter for policy.

7.3 The cf-monitord Daemon
The basis of resource monitoring is the cf-monitord daemon. cf-monitord requires no
configuration, although you can extend it with promises of its own in the CFEngine
Enterprise. cf-monitord makes efficient use of tools and resources already existing on
your system for monitoring—commands like ps and netstat. If you have tcpdump in-
stalled it can use it to monitor traffic too. It updates measurements locally on each host
every 2.5 minutes, a carefully measured balance between too often (heavy on resources)
and too seldom (missing important information). Nothing is sent over the network un-
less you have the Enterprise edition of CFEngine and have configured a reporting hub.

Using a smart-learning algorithm, cf-monitord:

❖	 Learns the behavioural trends in each computer over weeks.
❖	 Evaluates the current state of the resources against learned averages.
❖	 Classifies the current state against learned averages into a basic ontology of

 performance.

Monitoring, Reporting and Security / 71

When cf-monitord is active it records data in /var/cfengine/state on each distributed
host. Later, when cf-agent starts, it reads classes and variables about the current state
of resources from a file env_data in the same directory. These variables have names of
the form:
$(mon.value_tcp_in) Most recent measured value
$(mon.av_www_out) Weekly mean value
$(mon.dev_userprocs) Weekly standard deviation

The classes have the form:
rootprocs_high_anomaly Class related to the number of root processes.
loadavg_high_dev2 Class related to the load average.

The first two items show the use of the _in and _out suffixes with metrics that distin-
guish incoming and outgoing connections on network ports. The latter two items illus-
trate the automatic classes that are defined based on comparing current resource usage
with normal values. The second and third components of these classes, which function
syntactically as suffixes to the metric keyword, have the following meanings:
low, normal, high Current value is <, ≈ or > normal.
dev1, dev2, anomaly How far current value deviates from norm: 1, 2 or ≥3 standard deviations.

Like everything in CFEngine, reports about anomalies are subject to policy decisions.
Here is an example cf-agent configuration for alerting about unusual activity:
bundle agent anomalies
{
reports:

rootprocs_high_anomaly::
 “RootProc anomaly high 3 dev on $(sys.host) at
 $(mon.env_time) measured value $(mon.value_rootprocs)
 av $(mon.av_rootprocs) pm $(mon.dev_rootprocs)”
 showstate => { “rootprocs” };

entropy_www_in_high.anomaly_hosts.www_in_high_anomaly::

 “HIGH ENTROPY Incoming www anomaly high anomaly dev!! on $(sys.
host)
 at $(mon.env_time) measured value $(mon.value_www_in)
 av $(mon.av_www_in) pm $(mon.dev_www_in)”

 showstate => { “incoming.www” };

}

72 / Monitoring, Reporting and Security

Table 7.1 lists the available metrics tracked by cf-monitord.

Metric Description Port
_in and_out
accepted?

CFEngine CFEngine-related traffic 5308 yes
diskfree Amount of free disk space no
dns Domain nameserver-related traffic 53 yes
ftp File transfer protocol traffic 21 yes
icmp Total ICMP traffic (e.g., ping) yes
irc Internet relay chat protocol traffic 194 yes
loadavg Current load average no
netbiosdgm NetBIOS datagram service 138 yes
netbiosns NetBIOS name service 137 yes
netbiosssn NetBIOS session service traffic 139 yes
nfsd NFS daemon traffic 2049 yes
otherprocs Number of non-root process no
rootprocs Number of processes owned by root no
smtp SMTP traffic 25 yes
ssh Secure shell remote login protocol 22 yes
tcp Total TCP traffic all yes
tcpack TCP packets with ACK flag set all yes
tcpfin TCP packets with FIN flag set all yes
tcpmisc All other TCP packets all yes
tcpsyn TCP packets with SNY flag set all yes
udp Total UDP traffic all yes
users Number of logged in users no
www Web traffic (HTTP) 80 yes
wwws HTTP protocol over TLS/SSL (HTTPS) 443 yes

Table 7.1 Standard Anomaly Measures

7.4 Measurement Promises
In the Enterprise edition of CFEngine, the monitoring daemon can play an even
greater role in collecting targeted information about your environment. One of the rea-
sons that conventional monitoring systems are expensive, in terms of resources, is that
they run a lot of local scripts and probes to extract information about the environment.
On modern operating systems, a lot of information is available in files and file-like
interfaces. GNU/Linux, especially, is well equipped with data that can be read using a
regular file-open. CFEngine is able to use its text-editing and extraction technologies
to extract data with very little overhead and feed these into measurement streams and
variable values that can be used either to define policy conditions, or to inform archi-
tects about trends for future planning.

Monitoring, Reporting and Security / 73

7.4.1 Collecting Values
CFEngine can handle pipes to local programs as well as ordinary files. This allows us to
extract system data in cases where there is no simple text interface. It might be similar,
for example, to discovering the free disk on different Unix-like operating systems:
measurements:
 “/bin/df”

 handle => “free_disk_watch”,
 stream_type => “pipe”,
 data_type => “slist”,
 history_type => “static”,
 units => “device”,
 match_value => file_system;

The data aggregated in this way are turned into graphs and variables, using the identi-
fier given in the promise-handle, so that we can refer to
 $(mon.value_free_disk_watch),

and variations described below.

7.4.2 Aggregating Values
In the following example, we can make a probe to add up the total memory usage from
a process like httpd. Because CFEngine reads the process table regularly, there it caches
the value for minutes at a time, which means we don’t have to execute a bunch of shell
commands to see it. A simple regular expression to parse the data gives us what we
need. Using a match_value body, CFEngine can aggregate the multiple hits as either a
sum or an average. This is very useful for monitoring memory leaks.
measurements:

“/var/cfengine/state/cf_otherprocs”
 handle => “httpd_memory”,
stream_type => “file”,
data_type => “int”,
 history_type => “weekly”,

match_value => get_rss(“httpd”);

The body referred to here is defined as follows:
body match_value get_rss(xxx) # match RSS
{
select_line_matching => “.*$(xxx).*”;
extraction_regex => “root\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\s+\S+\
s+(\S+).*”;
#select_multiline_policy => “sum”; # sum or average over multiple
lines
}

7.4.3 Scanning Log Files
Measurement promises have many uses, not just extracting process information. For
instance, they can be used to scan local log files in a distributed way. A lot of script
kiddies will probe your site for vulnerabilities, using dictionaries of account/password
combinations, looking for unguarded accounts or accounts with default passwords.

74 / Monitoring, Reporting and Security

Most of these scans are harmless, because a well-maintained site will not use the default
passwords that these hackers seek to exploit.

CFEngine can help you find out when you are being scanned. Because “sshd” logs its
message through “syslog,” we again need to filter lines based on the service name. On
our system, authorization messages are routed to /var/log/auth.log, and we would moni-
tor it like this:
bundle monitor watch_break-in_attempts
{
measurements:
 “/var/log/auth.log”
 # This is likely what you’ll see when a script kiddie probes
 # your system
 handle => “ssh_username_probe”,
 stream_type => “file”,
 data_type => “counter”,
 match_value => scan_log(“.*sshd\[.*Invalid user.*”),
 history_type => “log”,
 action => sample_rate(“0”);

 “/var/log/auth.log”
 # As scary as this looks, it may just be because someone’s DNS
 # records are misconfigured - but you should double check!

 handle => “ssh_reverse_map_problem”,
 stream_type => “file”,
 data_type => “counter”,
 match_value => scan_log(“.*sshd\[.*POSSIBLE BREAK-IN ATTEMPT!.*”),
 history_type => “log”,
 action => sample_rate(“0”);

 “/var/log/auth.log”
 # Someone is trying to log in to an account that is locked
 # out in the sshd config file

 handle => “ssh_denygroups”,
 stream_type => “file”,
 data_type => “counter”,
 match_value => scan_log(“.*sshd\[.*group is listed in
DenyGroups.*”),
 history_type => “log”,
 action => sample_rate(“0”);

 “/var/log/auth.log”
 # This is more a configuration error in /etc/passwd than a
 # breakin attempt...

 handle => “ssh_no_shell”,
 stream_type => “file”,
 data_type => “counter”,
 match_value => scan_log(“.*sshd\[.*because shell \S+ does not
exist.*”),
 history_type => “log”,
 action => sample_rate(“0”);

 “/var/log/auth.log”
 # These errors usually indicate a problem authenticating to your
 # IMAP or POP3 server

Monitoring, Reporting and Security / 75

 handle => “ssh_pam_error”,
 stream_type => “file”,
 data_type => “counter”,
 match_value => scan_log(“.*sshd\[.*error: PAM: authentication
error.*”),
 history_type => “log”,
 action => sample_rate(“0”);

 “/var/log/auth.log”
 # These errors usually indicate that you haven’t rebuilt your
 # database after changing /etc/login.conf - maybe you should
 # include a rule to do this command: cap_mkdb /etc/login.conf

 handle => “ssh_pam_error”,
 stream_type => “file”,
 data_type => “counter”,
 match_value => scan_log(“.*sshd\[.*login_getclass: unknown class.*”),
 history_type => “log”,
 action => sample_rate(“0”);
}

7.5 The mon Variable Context
CFEngine gives you access to the measurements assembled by the monitoring daemon
from within a policy, so that you can adapt the automatic behaviour of the system to its
current and normal states. All of the information observed by the monitor about one of
your hosts is available to you as information.

The data from the monitoring daemon are all in a variable context called “mon”. For
example:
 $(mon.value_users) The current value of users active
 $(mon.av_users) The average value of users at this time of day
 $(mon.dev_users) The deviation/spread around the average
 $(mon.value_rootprocs)
 $(mon.av_rootprocs)
 $(mon.dev_rootprocs)
 $(mon.value_otherprocs)
 $(mon.av_otherprocs)
 $(mon.dev_otherprocs)
 $(mon.value_diskfree)
 $(mon.av_diskfree)
 $(mon.dev_diskfree)
 $(mon.value_loadavg)
 $(mon.av_loadavg)
 $(mon.dev_loadavg)

Data from the system discovery are in the “sys” context. For example:
 $(sys.class) The main system hard classification
 $(sys.cpus) The number of CPU cores on the system
 $(sys.crontab) The location of the crontab file on this OS
 $(sys.date) The current data string
 $(sys.doc_root) The default document root of web servers on this OS
 $(sys.flavor) The exact operating system release
 $(sys.flavour) As above
 $(sys.fqhost) The fully qualified name of the host
 $(sys.fstab) The system’s fstab filename and location
 $(sys.hardware_addresses) A list of MAC addresses for this host

76 / Monitoring, Reporting and Security

 $(sys.hardware_mac[interface_name]) The MAC address for a given interface
 $(sys.interfaces) A list of active network interfaces in this host
 $(sys.ip_addresses) A list of IP addresses for this host
 $(sys.ipv4[interface_name]) The different octets of the IPv4 address
 $(sys.ipv4_1[interface_name])
 $(sys.ipv4_2[interface_name])
 $(sys.ipv4_3[interface_name])

For example, the open ports:
Port lists in mon

@listening_ports={‘80’,’5308’,’631’,’22’,’53’,’1194’}
@listening_tcp6_ports={‘631’,’22’,’53’,’80’}
@listening_tcp4_ports={‘5308’,’631’,’22’,’53’,’1194’}

Address bindings in mon

tcp6_port_addr[631]=::1
tcp6_port_addr[22]=::
tcp6_port_addr[53]=::
tcp6_port_addr[80]=::
tcp4_port_addr[5308]=0.0.0.0
tcp4_port_addr[631]=127.0.0.1
tcp4_port_addr[22]=0.0.0.0
tcp4_port_addr[53]=0.0.0.0
tcp4_port_addr[1194]=127.0.0.1

A simple way to show the open ports on a host is to make the following reports prom-
ise. This assumes that the monitoring daemon is running:
reports:
 monitoring::
 “Open tcp4 port on $(mon.listening_tcp4_ports)”;
 “Open tcp6 port on $(mon.listening_tcp6_ports)”;

Nothing else is required. The output has the form:
R: Open tcp4 port on 5308
R: Open tcp4 port on 631
R: Open tcp4 port on 22
R: Open tcp4 port on 53
R: Open tcp4 port on 1194
R: Open tcp6 port on 631
R: Open tcp6 port on 22
R: Open tcp6 port on 53
R: Open tcp6 port on 80

All of the data measures by the monitoring daemon are available through variables,
and are reported to the Mission Portal in the Enterprise edition for further knowledge
integration.

7.6 Security-Related Scanning
In addition to the port scanning and the log scanning shown earlier, file change moni-
toring is a key aspect of security management. It is about detecting when file informa-
tion on a computer system changes. You might or might not know that files are going
to change. Expected changes are not usually a problem, but unexpected change can be
problematic or even sinister.

Monitoring, Reporting and Security / 77

The bulk of information on a computer is its file data. Change detection for file systems
uses a technique made famous in the original open source program Tripwire, which
collects a snapshot of the system in the form of a database of file checksums (crypto-
graphic hashes) and then periodically rechecks the system against this database to see
what has changed. Using cryptographic hashes is an efficient way of detecting change
as it reduces file contents to a unique number, just a few bytes long, which can be
stored for later comparison to detect change.

If as much as a single bit of information changes, the file hash will change by a notice-
able amount. This is a very simple (even simplistic) view of change, but it is effective at
warning about potential incursions to the system.

A cryptographic hash (also called a digest) is an algorithm that reads (digests) a file and
computes a single number (the hash value) based on its contents. If so much as a single
bit in the file changes, then the value of the hash will change. You can compute hash
values manually—for example:
host$ openssl md5 /etc/passwd
MD5(/etc/passwd)= 1fbd82252c441d0e9539f8f7271ec2fe

There are several kinds of hash function. The most common ones are MD5 and SHA1.
Recently, both of these algorithms have been superseded by the newer SHA2 set. Note
that the FIPS 140-2 US government standard for encryption does not recognize the
MD5 hash algorithm. The default algorithm for Enterprise grade CFEngine is now
SHA256.

To use hash-based change detection we use files promises and the changes feature; first
we ask CFEngine to compute file hashes for specified files and enter them into a data-
base. Then, the same promise on subsequent runs will re-collect the data and compare
the result to show what has been stored in the database.

Here is a simple CFEngine promise that checks for changes in /usr/local:
files:
 “/usr/local”
 changes => detect_all_change,
 depth_search => recurse(“inf”);

This example uses the standard library template “detect_all_change,” which uses the
two best hashing algorithms available to cross-reference change on any aspect of a file,
including content, permissions and other metadata. This method is probably overkill
for most scenarios, and the lesser detect_content is a cheaper alternative that just uses
MD5 hashes to monitor file contents.

The first time this promise is kept, CFEngine collects data and treats all files as
unchanged. It builds a database of the checksums. The next time the rule is checked,
cf-agent recomputes the checksums and compares the new values to the “reference”
values stored in the database. If no change has occurred, the two should match. If they
differ, then the file as changed and a warning is issued either on the command line (if
you are testing manually) or by email.
cf3: !!!
cf3: SECURITY ALERT: Checksum (sha256) for /etc/passwd changed!
cf3: !!!

78 / Monitoring, Reporting and Security

7.7 Patterns and Anomalies
The patterns revealed in the graphs produced by the Mission Portal can give us humans
a gut impression of how a computer is being used by its users, and how the resources of
the system are being consumed, over a time scale of several weeks. This information is
useful for understanding performance in broad terms. If we see a large load at certain
times of day or week, for instance, we could use this information to alter the configura-
tion of resources at certain times to cope better with the load.

Let’s clear up a misconception about anomaly detection: CFEngine does not care
specifically about anomaly detection in the sense of intrusion detection. This was a
flirtation popularized in the late 1990s, largely abandoned because there is no provable
correlation between anomalies and intrusions. CFEngine is interested in the detection
of resource anomalies, regardless of their cause. It can autonomically monitor the us-
age of a configurable subset of system resources: disk, CPU, number of users, network
services, etc. Why would a tool like CFEngine bother to do this?

There are obviously advantages to monitoring such resource usage. We can better tune
and configure a system if we know how it works on a good day, and compare this to
how it fails on a bad day. On the other hand, in general, if you don’t know what you
are looking for in a system, there is little point in collecting reams of data about it, so a
compressed scalable summary, such as provided by CFEngine Enterprise is an excellent
place to start learning and building a low-cost relationship with your system.

To organize your understanding about the system, examine the following checklist on
each host in your organization:

❖	 Which measurements are predictable, i.e., which have a clear trend with small varia-
tions? These are stable and predictable features, a sign that things are efficient and
under control.

❖	 Which measurements are dominated by uncertainty, i.e., have large error bars with
no visible pattern? This occurs if the resource usage is only sporadic and irregular.
It could be because resource usage is so low that you cannot see any pattern. The
resource is not playing any role in your organization.

❖	 Which measurements have top-heavy distributions? This might signal a resource that
is being throttled by something, perhaps a performance limitation.

❖	 Which combinations of anomalies are most common in your system? This will tell you
the potential sources for instability and unpleasant surprise in the future.

7.8 The Enterprise Mission Portal
In the Enterprise edition of CFEngine, access to the wealth of information provided
by the agents around your network is simplified. The Mission Portal is a web interface
that is served by an aggregator called cf-hub. The hub process adds a highly efficient
aggregation process that can bring together five-minute updates from each managed
CFEngine node into a central database, so that the data can be presented as reports
and graphs.

Figure 7.1: An example of a vital signs graph from the Mission Portal

Monitoring, Reporting and Security / 79

7.9 Vital Signs from the cf-monitord
Part of the great untapped potential of the CFEngine Community edition is to present
an adequate visualization of the machine-learning databases that store what is known
about the behaviour and trend information over weeks and months on the agents. The
Mission Portal collates and graphs these trends in a variety of ways.

In particular, a feature that distinguishes CFEngine from other monitoring tools is that
it presents what is happening right now and compares it to what has typically happened
in the past. This is much more useful than setting arbitrary alarm thresholds, as the
patterns of behaviour on hosts are typically highly dynamic.

While the agents can respond to this information locally, without the need for any
kind of aggregation, the human insight gained from seeing these reports should not be
underestimated for capacity planning.

8. The CFEngine Management Process

Today businesses are more service oriented than before, as testified to by the increas-
ing interest in good practices such as ITIL (the IT Infrastructure Library), COBIT
(Control Objectives for Information and related Technology) and NGOSS/eTOM
(New Generation Operational Support Service/enhanced Telecom Operations Map)
as championed by the Tele-Management Forum. These process models have certain
requirements of practice. How does CFEngine fit into this kind of process scenario?

8.1 Process Requirements
ITIL describes the following practices for good management:

❖	 Manager : A service manager should be appointed to coordinate the management
of services, specifically, to oversee configuration management within the organi-
zation. The manager should determine the requirements of the “service client”—
in this case the configuration requirements of the organization. The configuration
management workforce should be competent, i.e., well trained.

❖	 Documentation: Policies should be documented. Performance towards goals
should be reported. Security controls should be documented. CFEngine accom-
plishes these in a number of ways. The configuration language itself is designed to
document the configuration policy to a large extent. You should also discuss the
interaction of configuration options between different locations, processes and
hosts. The big picture is only available to a configuration manager or engineer.
Clear documentation is a sign of good engineering—but, as we all know, know-
ing what is good documentation for future contingencies is harder than we think.

❖	 Service implementation: The service provider promises to deliver the agreed ser-
vice. It must allocate the appropriate funds and resources to make this happen. In
this case, an organization has to install CFEngine with an appropriate schedule
for configuration management.

❖	 Monitoring: The service provider promises to monitor its operation and seeks
continuous improvement of service provision. This includes testing of the service.
Monitoring here does not refer to the performance or configuration monitor-
ing of CFEngine itself, but rather the extent to which the current configuration
policy is effective in driving the larger goals of the organization.

❖	 Change and revision control: Service Level Agreements should adapt and be sub-
ject to revision control. In this case, this means that we should frequently review
the policies, expectations and CFEngine schedules. As changes are made to the
configuration policy, those changes should be documented and versioned using
a revision control system. For example, the Subversion revision control system is
both convenient and easy to use.

❖	 Continuity: ITIL requires a plan for continuity of an enterprise. Redundancy
in critical dependencies must be established in order to provide the ability to
continue to function in the absence of key dependencies and personnel. The

82 / The CFEngine Management Process

 critical dependencies in CFEngine are, by design, minimal—as long as computers
are running, CFEngine should be running. Humans who understand the policy
itself are a dependency, and one can interpret this requirement as the need for at
least two staff members who understand the CFEngine installation. The network
might also be a dependency in some cases, although CFEngine is designed to
work under unreliable, partial-communication conditions. If certain sources of
data are required, e.g., servers for file copying, then failover servers can be pro-
vided.

8.2 Revision Control and Rollback
CFEngine does not currently version configurations internally, except to retain older
versions of files that are changed during copying and editing. Tools for versioning
policy at a high level will most likely be developed in the future.

One of the ideas that frightens system administrators about autonomic computing is
that if a mistake is made (in policy or implementation), there is no clear way of “rolling
back the change” to undo the damage. If you are thinking in this way, you are trapped
by dangerous and costly preconceptions. System administrators often like to maintain
the idea of a version control on their system configurations, as they generally believe
that they are in control of every aspect of their configurations. This is false.

There is a basic conflict between the idea of policy and version control. Policy-based
configuration management is about control of final state, and the scope of the changes
involved in reaching it. This approach to the state is not versioned. Either a system is
correct or it is incorrect.

Figure 8.1: The role of Revision Control

We wish to caution readers: just because you undo the last changes you made on a
computer does not mean that you will get back to the state you were in previously,
because runtime (operational) changes and consequences are not necessarily reversed by
a reversal of configuration.

So what do we recommend?

❖	 Keep your source configuration files under a version control system like Subver-
sion or Git so that you can track changes in your own thinking.

❖	 Test new versions before rolling them out.
❖	 When tested, update the master policy source with the new version.
❖	 If, for whatever reason, the new policy has problems, either modify the policy

again or go back to a previous version. In each case, CFEngine implements

The CFEngine Management Process / 83

changes in a forward direction, converging towards its policy, even if the policy
has been rolled back.

This view of rollback and versioning might be an unfamiliar way of thinking to you,
but it avoids several problems. The approach we advocate has the following properties:

❖	 It avoids uncontrolled effects from ad hoc undo operations.
❖	 It avoids complete reinstallation, e.g., versioning from image backup.
❖	 By leaving the changes to CFEngine, you are certain that the end result is that

which you wrote in your policy.
In this approach, you are encouraged to be forward thinking rather than taking a
defensive backing off strategy. We think that anyone implementing configuration
management should have sufficient expertise to be confident about their changes after
testing.

8.3 DevOps and BizOps
The old cliché of a system administrator working in isolation to keep IT systems run-
ning is rapidly disappearing in favour of a new era of cooperation between IT services
and business as cooperating units in an organization. As the tools for operational in-
frastructure have improved, the pace of Internet commerce has accelerated to the point
where separation of these roles without meaningful cooperation becomes a hindrance:
IT companies have learned crucial lessons about aligning business goals (development,
in the case of Internet commerce) with the operations that deploy them.

The ability to manage and deploy infrastructure, including platforms and applica-
tions, in a timely fashion has been greatly accelerated by developments in configuration
management and virtualization, especially Infrastructure as a Service “cloud” (IaaS).
Still more important than the technologies themselves is the idea of an alignment of
working cultures to support the needs of business, without overriding the expertise of
IT engineers.

The term “DevOps” was coined by Patrick DeBois to express this synergy, and it was
broken down into four main aspects of cooperation by John Willis, labelled CAMS for
short:

❖	 Culture—People are the key to cooperation. Human culture lies at the heart of
integrating business processes, and this is where cooperation must begin.

❖	 Automation—Having tools that bring about the right division of labour between
humans and automation, allowing each to do what they are good at, is essential
for scaling effort for rapid growth.

❖	 Measurement—We need the insight into our progress to know whether or not
business and IT are in fact aligned.

❖	 Sharing—Sharing is a key part of knowledge management. It is how we spread
expertise and learn from the experiences of others.

This list echoes and addresses the four barriers to progress, commonly cited in business
literature:

❖	 Not knowing the goal
❖	 Not knowing how to achieve the goal
❖	 Not being able to measure progress
❖	 No responsible process or person

Figure 8.2: The knowledge ladder

84 / The CFEngine Management Process

Ultimately these issues are all about knowledge—what we know and communicate in
order to instigate change. CFEngine 3 was designed to support and invest in knowl-
edge-based approaches to infrastructure.

8.4 The Role of Knowledge
Look at the figure below. We refer to this as the knowledge ladder for organizations.
The maturity of a company in carrying out its operations is related to its internal exper-
tise, by the way in which it climbs the knowledge ladder.

If your company is young and immature, just getting started, then you are at the bot-
tom left of this diagram—playing with tools to try to make things happen. You don’t
have a clear idea of what to do about your infrastructure because you don’t know what
is possible. Eventually, as you grow in knowledge, you will focus more on what it is you
are trying to do (the how will be familiar) and even why you are trying to do it. Ulti-
mately, you would like to be driven by a sense of purpose that comes from the raison
d’etre of the organization itself: the company goals.

Now, if maturity of business grows faster than internal expertise, you will tend to out-
source to save time and cost. On the other hand, if you have strong technical expertise,
you will probably build everything yourself, as you will be able to do this cheaper in
many cases. In either case, the goal is a balance between business maturity that drives
service orientation, and a knowledge-based approach that favours keeping expertise
close and in-house. One should never forget the most important question of all, which
applies whether you are outsourcing or automating: what happens when the service fails?
Do we have the knowledge to recover?

CFEngine 3 has been designed with this knowledge ladder in mind. It does not mat-
ter how you climb the ladder in your own organization, for the approach you choose

The CFEngine Management Process / 85

should build on your own internal culture. Although the basic possibilities are pres-
ent in the Community edition of CFEngine, our aim with Enterprise CFEngine is
to enhance this journey, with sound tools, in a way that respects the principles of
 DevOps, and hence ultimately the people behind your organization. Some of the
 available features of the knowledge integration in CFEngine Enterprise include:

❖	 Source information:
❖❖ A clear description of intended state (promises)
❖❖ A clear description of actual state and estimate of uncertainty (vital signs,

compliance, etc.)
❖❖ Commentary and metadata around the above, to annotate relationships
❖❖ Context-addressable documentation that can be linked to user need
❖❖ Auto-generated manual pages and documentation at all levels

❖	 Repetitive/habitual features:
❖❖ Completely regular syntax, emphasizing one pattern for everything
❖❖ Encourage incremental change
❖❖ Allow dry-run to build trust by “looking/modelling ahead”
❖❖ Web UI, command UI

❖	 Human and machine reasoning features:
❖❖ Clear separation of intended state into “what” and “how” affected
❖❖ Model-oriented approach: promises, with a simple semantic syntax
❖❖ Semantic index explains context and meaning of references, not just names
❖❖ Story inference—tell me a narrative about something in the system and its

influences
❖❖ What questions can I ask about the system?

There are far too many things to say about CFEngine’s knowledge strategy in this short
overview. We recommend to you the Special Topics Guides on the CFEngine website
to learn more about the possibilities.

Epilogue
Infrastructure engineering, assisted by configuration management, is still develop-
ing. As the IT industry changes before our very eyes, the challenges of infrastructure
management change alongside it. CFEngine 3 was designed very much to support this
rapid evolution, based on guiding principles that respect information flow and security,
and scaling to large and complex scenarios with a minimum of cost. The story is far
from over yet, and this book merely scratches the surface. We have yet to talk about
embedded computing and the expansion of the true cloud of a society of users, express-
ing their freedoms to move around and consume services, for example. As a CFEngine
user, we ask you to remember the shadow of the future: when you build ideas today,
you are investing in principles that will have to last you for the decade to come. That
decade will bring more surprises and turmoil than ever before, but we can meet the
challenges with a new kind of expertise and cooperation. We hope that CFEngine will
bring value to you on that journey.

	cfengine3_cover
	cfengine3_frontmatter
	cfengine3_ch1
	cfengine3_ch2
	cfengine3_ch3
	cfengine3_ch4
	cfengine3_ch5
	cfengine3_ch6
	cfengine3_ch7
	cfengine3_ch8

