
19 Short Topics in
System Administration
Jane-Ellen Long, Series Editor

	
19

	
N

arayan D
esai and Cory Lueninghoener	

Configuration M
anagem

ent w
ith Bcfg2

Configuration Management
with Bcfg2
Narayan Desai and
Cory Lueninghoener

Booklets in the Series

#19: �Configuration Management with Bcfg2, by Narayan Desai
and Cory Lueninghoener

#18: �Deploying the VMware Infrastructure, by John Arrasjid, Karthik Balachandran,
Daniel Conde, Gary Lamb, and Steve Kaplan

#17: �LCFG: A Practical Tool for System Configuration, by Paul Anderson

#16: �A System Engineer’s Guide to Host Configuration and Maintenance
Using Cfengine, by Mark Burgess and Æleen Frisch

#15: �Internet Postmaster: Duties and Responsibilities, by Nick Christenson
and Brad Knowles

#14: �System Configuration, by Paul Anderson

#13: �The Sysadmin’s Guide to Oracle, by Ben Rockwood

#12: �Building a Logging Infrastructure, by Abe Singer and Tina Bird

#11: �Documentation Writing for System Administrators, by Mark C. Langston

#10: �Budgeting for SysAdmins, by Adam Moskowitz

#9: �Backups and Recovery, by W. Curtis Preston and Hal Skelly

#8: �Job Descriptions for System Administrators, Revised and Expanded Edition,
edited by Tina Darmohray

#7: �System and Network Administration for Higher Reliability, by John Sellens

#6: �A System Administrator’s Guide to Auditing, by Geoff Halprin

#5: �Hiring System Administrators, by Gretchen Phillips

#4: �Educating and Training System Administrators: A Survey, by David Kuncicky
and Bruce Alan Wynn

#3: �System Security: A Management Perspective, by David Oppenheimer,
David Wagner, and Michele D. Crabb, and edited by Dan Geer

#2: �A Guide to Developing Computing Policy Documents, edited by
 Barbara L. Dijker

19 Short Topics in
System Administration
Jane-Ellen Long, Series Editor

Configuration Management
with Bcfg2

Narayan Desai and Cory Lueninghoener

Published by the USENIX Association
2008

About SAGE

SAGE is a Special Interest Group of the USENIX Association. Its goal is to serve the
system administration community by:

Offering conferences and training to enhance the technical and managerial ❖❖

capabilities of members of the profession

Promoting activities that advance the state of the art or the community❖❖

Providing tools, information, and services to assist system administrators and ❖❖

their organizations

Establishing standards of professional excellence and recognizing those who ❖❖

attain them

SAGE offers its members professional and technical information through a variety of
programs. Please see http://www.sage.org for more information.

© Copyright 2008 by the USENIX Association. All rights reserved.

ISBN 978-1-931971-64-5

To purchase additional copies, see http://www.sage.org/pubs/short_topics.html.

The USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA USA 94710

http://www.usenix.org/

First Printing 2008

USENIX is a registered trademark of the USENIX Association.

USENIX acknowledges all trademarks herein.

Contents

Acknowledgments  v

1.	 Configuration and You  1
1.1	 The Configuration Problem  1
1.2	 Toward a Solution  3
1.3	 Deploying Configuration Management  4
1.4	 How to Read This Booklet  5

2.	 The Bcfg2 Architecture  6
2.1	 Design Goals  6
2.2	 Bcfg2 Architecture  7
2.3	 Moving Ahead  18

3.	 Getting Started  19
3.1	 The Server  19
3.2	 The Client  20
3.3	 Making Changes with Bcfg2  21
3.4	 The Next Steps  24

4.	 Task Examples  25
4.1	 Message of the Day  25
4.2	 An NTP Client  27
4.3	 Managing the Base Configuration  28
4.4	 An NTP Client and Server  28
4.5	 Managing an SSH Infrastructure  29
4.6	 Using Actions  31

5.	 Troubleshooting  33
5.1	 Logging  33
5.2	 bcfg2-info  35
5.3	 Client Debugging  36

6.	 Advanced Task Examples  38
6.1	 Templates: Setting a Hostname  38
6.2	 Probes  40
6.3	 Structure Templates  41
6.4	 Complex Templates  42

7.	 The Bcfg2 Reporting System  47
7.1	 Reporting System Architecture  47
7.2	 Use Cases  49

8.	 What Next?  50
8.1	 Deployment Tips  50
8.2	 Further Reading  51

Appendix A.	 Bcfg2 XML Options  53
A.1	 Configuration Processing  53
A.2	 Goal Types  54
A.3	 Plugins  57

Appendix B.	 Client Identification  60

About the Authors  61

Figures and Tables

Figures

	 2.1	 Information flow in Bcfg2  8
	 2.2	 Basic set of group definitions  14
	 2.3	 A typical top-level Bcfg2 repository  17
	 4.1	 A simple clients.xml  25
	 4.2	 A simple groups.xml  26
	 4.3	 A message-of-the-day Bundle, from Bundler/motd.xml  26
	 4.4	 An NTP Bundle  27
	 4.5	 A simple services.xml  27
	 4.6	 A simple Base file  28
	 4.7	 A group-specific ntp.conf file  29
	 4.8	 An update to groups.xml  29
	 4.9	 An SSH Bundle  30
	 4.10	 A Postfix Bundle using Actions  31
	 4.11	 An Actions file  31
	 6.1	 The HOSTNAME template  38
	 6.2	 A rather silly HOSTNAME template  39
	 6.3	 A HOSTNAME ConfigFile entry  39
	 6.4	 A disk-counting Probe  40
	 6.5	 A template making use of Probe data  40
	 6.6	 An SGenshi template  42
	 6.7	� Some SLES network configuration file names (applies to other distributions as

well)  43
	 6.8	 Using the altsrc tag option  43
	 6.9	 A Probe to collect MAC addresses  44
	 6.10	 The Network Structure template  44
	 6.11	 The TCheetah/etc/sysconfig/network/ifcfg-eth-id-MAC template  45
	 6.12	 The network interface configuration file  45
	 7.1	 The Bcfg2 Web reporting front end  48

Tables

	 6.1	 Metadata available to templates  39
	 A.1	 Action attributes  54
	 A.2	 ConfigFile attributes  55
	 A.3	 Package attributes  56
	 A.4	 Instance attributes  56
	 A.5	 Permissions attributes  56
	 A.6	 Directory attributes  57
	 A.7	 Symlink attributes  57
	 A.8	 PackageList attributes  58

Acknowledgments

Narayan would like to thank his wife, Helen, for her support and encouragement
throughout this project. Cory would like to thank his wife, Lis, and his cats, Gypsy and
Sophie, for their support, companionship while writing, and introduction of typographi-
cal errors (respectively).

The authors also thank all of the technical reviewers for their help. Ti Leggett, Rick Brad-
shaw, and Jason Hedden provided useful organizational suggestions based on an early
manuscript. Thomas Delaet and Sol Jerome each performed a complete technical review,
resulting in several major improvements. In addition to a technical review, Daniel Clark
also tested each of the examples included in this book.

Finally, the Bcfg2 community has greatly refined our understanding of the problem of
configuration management and the design of Bcfg2 itself. Scores of intricate discussions
have informed the viewpoints presented here.

1. Configuration and You

Configuration is the medium in which system administrators work. Ranging from the
most sweeping decisions to minor troubleshooting of software problems, the act of help-
ing people use computers necessitates a stream of decisions that result in the configura-
tion and software infrastructures that each of us uses on a daily basis. Configuration
management is a process whereby administrator interactions with configuration are
streamlined and simplified. As the scale of infrastructures grows and the complexity of
software systems increases, the cost of system administration rises rapidly. Automation
techniques, such as configuration management, can reduce these costs by streamlining
common tasks. Automation also implements rigorous processes; automated processes are
usually performed more consistently than manual ones.

Our intention is to enable you to understand the basics of configuration management
and how to use Bcfg2 to achieve common configuration goals. With this booklet, you
will be able both to design appropriate configuration processes and policies for your site
and to analyze configuration processes to assess their effectiveness.

1.1 The Configuration Problem
In this booklet, we define configuration as the union of software factors that influence
the behavior and performance of computer systems. This is a fairly expansive definition
of configuration.

When administrators work with software systems, their activities fall into two major
categories. The first uses domain-specific software information. These activities require
a high level of knowledge about the capabilities of particular software and the semantics
of their configuration files. The tasks are common and may involve the configuration of
packages such as the Linux kernel, the Apache Web server, or any of myriad other soft-
ware packages. This area involves understanding the ways to properly activate and use
given software packages.

The second category is what we consider to be configuration. These tasks involve build-
ing coherent services from the software components described earlier. Here, high-level
requirements become relevant; these may be technical or nontechnical. Operational
requirements figure into these systems as well; correctness, security, and robustness are
frequent goals of the configuration process.

Activities in both of these categories are required in order to achieve results; the second
is clearly dependent on the first. At the same time, we find that the second category
poses a much larger and more persistent set of problems for administrators. Hence, these
activities are the explicit targets of configuration management, and specifically the archi-
tecture of Bcfg2.

2 / Configuration and You

1.1.1 Interacting with Configuration
Interacting with configuration is unwieldy for several reasons. Traditional configuration
is distributed, potentially existing on every device in a network. For example, firewall
configurations on network devices contribute to the operational state of services as much
as any configuration located on the server itself. Configuration itself is frequently disor-
ganized and inconsistent, making it hard to troubleshoot systems.

Moreover, interaction with traditional configuration scales poorly along several different
axes. As the number of devices grows, so does the sheer quantity of configuration. The
amount of configuration diversity present also increases the cost of configuration, as it
reduces the amount of commonality between systems. Additionally, administrator count
causes scalability problems in a counterintuitive fashion. As more administrators con-
tribute to the operation of systems, more coordination is required. Traditional configura-
tion is poorly suited to aid in this coordination.

1.1.2 The Configuration Process
Configuration itself isn’t a monolithic process. Administrators interact with configura-
tion in a number of different ways:

Creation: Administrators create new configuration whenever new services or ❖❖

systems are deployed.
Modification: Administrators modify existing configuration as service require-❖❖

ments change or as new software is released. Security updates frequently pro-
vide an urgent example of this category.
Analysis: Administrators need to analyze existing configuration in order to ac-❖❖

climate themselves to unfamiliar surroundings. Also, administrators frequently
need to reacquaint themselves with configurations during troubleshooting.
Validation: Administrators need to convince themselves or others that the over-❖❖

all configuration adheres to organizational policies.

Each of these tasks can be greatly eased through new configuration-based functions. For
example, configuration creation becomes considerably simpler if existing configuration
can be reused. Likewise, modifications can be automated with a machine-consumable
definition of configuration state. Modifications can be further streamlined if the specifi-
cation format is one that can be generated robustly; this allows the construction of pro-
grams that generate configuration updates in response to external events.

Analysis poses one of the most pressing issues facing organizations. The combination
of staff turnover with a lack of sufficient cross-training and up-to-date documentation
requires administrators to work in situations where they need to discover how systems
are configured. This requirement leads to a large spin-up time for new employees and a
higher time to solution when troubleshooting.

Exacerbating this situation is the need for configuration validation by external entities,
be they management, funding sources, or regulators. Anyone who has been through an
audit understands the sheer volume of data that must be collected and presented. Tradi-
tional configurations are simply difficult to audit.

Together, all of these issues suggest that a different approach is needed.

Configuration and You / 3

1.2 Toward a Solution
Manipulation of traditional configuration is so fault-prone that an alternative approach
is required. Usually, configuration systems focus on easing the performance of configura-
tion changes, without addressing the other areas of the configuration problem. Much
more expansive than those typically held by configuration management systems, the
Bcfg2 approach is to build a useful representation of configuration goals that can be
correlated with current configuration state. This representation needs to be accurate,
compact, verifiable, and centralized. Moreover, these goals must be reconcilable with the
current state of systems in a flexible, efficient, and intuitive manner. These requirements
are much more expansive than those of most configuration management systems.

Following the requirements that form the basis for Bcfg2’s architecture and approach, we
have attempted to streamline the four aspects of configuration described in the previous
section.

Bcfg2’s model stores two bodies of information: the configuration state of managed sys-
tems and a series of configuration goals, describing the desired configuration state. These
goals have three important characteristics: they are verifiable, installable, and discover-
able. The definition of goals makes them directly comparable with current system state.
Whenever this comparison finds inconsistencies, reconciliation is needed.

Depending on the environment, inconsistencies can imply one of two situations. Either
new goals have been specified and should be enforced on clients, or new configuration
has been introduced on managed systems and should be reflected in the goals. In many
cases, inconsistencies can be resolved by convention (i.e., “No one should make con-
figuration changes directly on servers”), but exceptions frequently occur for legitimate
reasons. Therefore, Bcfg2 supports bidirectional flow of configuration data between the
manager and managed systems. This is a key, and unique, feature of Bcfg2.

The isolation of goals from state also makes the configuration process transparent. This
added information makes it possible to make more effective and informed decisions
about management policy.

1.2.1 What Is Bcfg2?
Bcfg2 provides a mechanism for describing system configurations for large, hetero-
geneous environments of systems. More important, it collects data to streamline the
configuration discovery process. Most environments are pre-existing; the introduction
of a new configuration tool does not reduce the importance of existing infrastructure.
Indeed, it is not always feasible to rebuild all client systems in order to properly manage
them.

As a tool, Bcfg2 has been designed to work in a noninvasive manner. Although it can be
used as a proscriptive and assertive tool, with complete control over client configurations
directed from a central location, it can also be used to selectively manage parts of client
configurations and track configuration changes performed on clients. This architecture
imposes no deployment strategy on administrators, leaving them free to deploy Bcfg2 in
the role that makes sense in a particular environment. In pre-existing environments, this
means busy administrators can start by managing their most important configuration
elements while working their way toward a more complete configuration state.

4 / Configuration and You

Bcfg2 is designed to help administrators get their machines under configuration man-
agement quickly. It doesn’t require complex modeling and administration paradigm
shifts to use effectively, which means it is very accessible to all administrators and envi-
ronments. Used correctly, it offers administrators benefits that become clear very early in
the deployment process.

1.3 Deploying Configuration Management
Effective use of software requires understanding the software itself and determining a
strategy that is appropriate for a given situation. In this, Bcfg2 is not an exception.

Most system administrators do not have the luxury of deploying a new infrastructure
from scratch. The cost of rebuilding all currently existing services and resources is often
prohibitively high. Given this limitation, configuration management processes must be
layered on top of existing infrastructure, which may be disorganized, pathological, or not
well understood.

The deployment of configuration management processes has two main benefits. The
first is simple: decreasing the cost of the configuration process. The driving need for this
improvement is clear: administrators are expected to manage increasing numbers of sys-
tems with fixed or decreasing staffing. The second benefit is a side effect of performing
the first: the resulting configuration specification provides a central point of information
about systems, their roles, and their required configurations.

Centralized configuration knowledge provides a number of benefits to administrators,
particularly in groups. It provides a shared repository of institutional knowledge that
administrators can readily use. It functions as a configuration plan of record for systems.
Moreover, it injects visibility into the configuration process. Previously, this process was
performed in relative darkness. This new information can be used both to assess the per-
formance of the configuration process and to better understand the costs associated with
system management.

All of these benefits combine to provide a safety mechanism for system administrators.
Configuration management is a potent tool for positive change in system administration
environments. However, it has an unparalleled destructive capacity. For this reason, ad-
ministrators must be provided sufficient information to make informed decisions. Using
this information effectively can minimize the danger of having administrators with an
incomplete understanding of deployed configurations.

In view of this setting, configuration management processes must first focus on safety,
before any other considerations. By safety, we mean that both the configuration manage-
ment system and processes are designed to ease configuration discovery and build robust,
configuration-sensitive control processes. Bcfg2 has been designed to provide these facili-
ties; they are discussed in Section 3.3.

Configuration and You / 5

1.4 How to Read This Booklet
This booklet has eight chapters. They are topically split between conceptual overviews
and hands-on examples. Chapter 2 provides a high-level architectural overview of Bcfg2.
We describe each of the major components of Bcfg2 in turn, noting their roles and
interaction points, and highlighting important design features. This chapter provides
the big picture; readers who wish to begin by understanding the high-level architecture
should start here.

Alternatively, readers wanting to dive in can begin with Chapter 3. This chapter demon-
strates how the architecture is used in practice. Here, we provide concrete details show-
ing how Bcfg2 works and how to use it effectively.

Chapter 4 describes how Bcfg2 can be used to accomplish a series of common tasks.
Each task highlights several important aspects of working with Bcfg2. Chapter 5 ex-
plains the mechanisms that can be used to troubleshoot Bcfg2. Chapter 6 provides an
advanced set of examples that use a wide range of Bcfg2 features to achieve sophisticated
goals. Chapter 7 offers an overview of how Bcfg2 records system-wide status informa-
tion and detects any deviation from, or inability to reach, the desired state after the
system has been modified. Finally, Chapter 8 provides tips on how to deploy Bcfg2 after
configuration policies have been put in place and configuration tasks have been fully
automated, along with some additional resources.

Detailed information about low-level formats and processes is provided in two appen-
dices; Appendix A describes the file formats used by the Bcfg2 server, while Appendix B
describes the methods used for client identification and authentication.

2. The Bcfg2 Architecture

In this chapter we discuss the design and architecture of Bcfg2. We begin with an over-
view of the goals, moving on from there to the system architecture. We then explain the
implementation of Bcfg2, describing each component of the system in detail. This in-
cludes details on the operation of the Bcfg2 server, client, plugins, and reporting system.

This chapter is most useful for those who want to fully understand the design and op-
eration of the entire Bcfg2 system. Users who want to dive straight in and start installing
and using the system can skim through this chapter to gain an overall understanding of
the system and then move on to the next chapter, which begins by installing the client
and server. We do recommend fully reading through this chapter at some point, though,
because it yields a much better understanding of the entire system than task-specific use
of the tool can provide.

2.1 Design Goals
As we have emphasized, traditional configuration has a number of drawbacks. This real-
ization drove the design of Bcfg2. Our main concerns were:

Uncertainty: Traditional configuration is distributed and difficult to examine. ❖❖

In some cases it is not wholly available at any point in time. We became wor-
ried about our loosely coordinated configuration processes because we didn’t
have sufficient visibility to ensure that they were working properly.
Inefficiency: The distributed nature of traditional configuration makes it dif-❖❖

ficult to efficiently deploy similar changes to large numbers of clients. The de-
ployment of configuration changes was likewise costly and error-prone.
Inconsistency: The distributed nature of traditional configuration, in conjunc-❖❖

tion with ad hoc administration, introduces a large number of unintended
differences into configurations. These small differences, while usually harmless,
caused behavior differences that were frequently time-consuming to repair.
Disorganization: Traditional configuration is unstructured, which makes it ❖❖

hard to analyze and troubleshoot. Any commonality must be divined from
manual examination. Troubleshooting frequently took longer than it would
have in a more organized environment.
Poor scalability: Administrators are facing scalability problems in every direc-❖❖

tion. Not only is the ratio of systems to administrator growing, but the amount
of configuration diversity present in common networks is quickly growing as
well. Moreover, in the lucky cases where staffing is increased, organizational
problems stemming from institutional knowledge become an issue. Traditional
configuration is poorly structured to ease the burden of these increases.

The Bcfg2 Architecture / 7

2.1.1 Operational Goals
While these high-level concerns motivated many aspects of the Bcfg2 architecture, sev-
eral environmental factors and operational goals fed into the process as well.

We work in a computer science research environment. It consists of a typical server in-
frastructure and workstation environment, several large high-performance computing
clusters, and a variety of experimental systems. From the configuration perspective, it has
several important characteristics. We support a large number of resources for computer
science systems research; in some of these cases, users share root privileges with the ad-
ministrative staff on a transient basis. In other cases, where users need to build services as
a part of their research, root privileges must be permanently shared. And because these
services have external users, standard robustness, serviceability, and security issues apply.
Sharing responsibility for user-visible services made us keenly aware of many organiza-
tion and consistency issues.

These considerations led to a set of functional requirements for Bcfg2:

Provide a coordination point for administration on systems with shared root ❖❖

access.
Maintain current administration methods. ❖❖

Accelerate the creation of ❖❖ one-off configurations.
Scale to large client counts. ❖❖

Collect reliable and up-to-date information about the configuration states of ❖❖

clients, including the results of unexpected administration activities.
Improve efficiency of common configuration operations. ❖❖

Enable appropriate management of legacy systems.❖❖

In addition to these functional requirements, usability requirements were featured
prominently in early discussions. Usability discussions tend to be difficult because of the
lack of consensus about administrative techniques. Eventually, we decided that adminis-
trator comfort is largely a matter of personal choice. Hence, Bcfg2 needed to support as
wide a range of administration methodologies as possible, including completely manual
administration.

2.2 Bcfg2 Architecture
The Bcfg2 architecture is built to explicitly model administrator goals, system configura-
tion state, and the process that merges them. Administrator goals describe the state that
administrators want system configurations to be in. At any given time, these goals may
or may not be satisfied. It is Bcfg2’s job to enumerate these goals, compare them with
the current state, and determine which goals have not been satisfied. Information about
these inconsistencies is gathered and stored on a central Bcfg2 server. When one is pre-
sented with an inconsistency, several courses of action are possible. In one case, the goal
state can assert authority over the current state, resulting in a reconfiguration operation
on a client. This is a frequent outcome. In some cases, however, it is preferable for the
current client state to win out over goals. This occurs in a variety of distributed adminis-
tration situations. In this case, information about the current state of the client must be
integrated into the explicit goals.

8 / The Bcfg2 Architecture

This analysis of requirements led us to Bcfg2’s software architecture. Early in the pro-
cess, we decided that the system needed to be centralized in order to allow administra-
tors to effectively manage large numbers of clients in a uniform manner. All control
flows from the central server out to clients.

Bcfg2 uses a client-server architecture. The bcfg2-server process runs on a central sys-
tem. It uses a collection of configuration rules to render client-specific configuration
goals on demand. By the time the repository is rendered into a client configuration spec-
ification, all ambiguity has been removed; no client-side processing is required in order
to determine the desired configuration. These goals are passed to clients, where they are
validated against local state and reconfiguration operations can be performed. Once all
operations are complete, the client uploads transaction and state information into the
reporting system, where it can readily be examined and analyzed. Figure 2.1 shows the
flow of information through the system.

Figure 2.1: Information flow in Bcfg2

Bcfg2 has been designed to perform complicated processing centrally. Central configura-
tion processing contains complicated processes on the server, where they can be readily
examined and supervised. When goals pass from the server to clients, they are detailed
and literal; this strategy minimizes the amount of processing that clients must perform.

2.2.1 Configuration Goals
Configuration goals provide a snapshot of the desired state of client systems at a point
in time. Goals are collections of configuration entries that describe particular aspects
of configuration state. These entries correspond to all of the common configuration
entities with which system administrators frequently interact. Packages, configuration
files, services, and a variety of POSIX filesystem objects can all be represented by using
Bcfg2 configuration entries. These entries are described in detail in Appendix A. They
have been chosen to have common, simple definitions, shared by nearly everyone. En-
tries describe the desired end-state of the configuration item, as opposed to the process
needed to implement them. Goal entries include all information needed to both verify
and install them on clients. For example, package entries include name and version in-
formation, as well as source information, if needed. Configuration file entries contain
file contents and all ownership information. Service entries contain status information.
All entries have idempotent semantics, which means they produce stable results upon
repeated verification and installation.

The Bcfg2 Architecture / 9

Goals also contain grouping data for entries. These groupings, called Bundles, describe
the relationships between entries. Bundles can be used to relate configuration file en-
tries to the software packages they affect. Similarly, services can be associated with these
groupings as well. Bundle associations cause two changes in semantics. Entries contained
in the same Bundle are validated collectively; that is, all entries get reverified whenever
any entry is modified. Also, services included in a Bundle are restarted whenever any
member entry is modified.

By convention, Bcfg2 assumes goals are comprehensive. This means that goals describe
all aspects of software configuration on the client. If a configuration entity is not includ-
ed in goals, then it is assumed to be unintended. This assumption, while not mandating
any client behavior, allows robust detection of subtle goal mismatches. Configuration
goals can range greatly in size; the smallest complete configuration goals typically con-
tain around two hundred entries, while larger desktop configurations may contain three
thousand or more.

The semantics of configuration goals provide the foundation for Bcfg2’s architecture.
Not only can individual entries be constructed from the inspection of client system state,
but the relationships between entries can be discovered. This ability allows Bcfg2 to be
much more tolerant of user error and to streamline recovery in such cases. Moreover,
because these types are functionally universal, the client can pass to the server data that
can be directly used to refine and correct the server-side configuration specification. The
model is unique to Bcfg2 among configuration tools. It allows Bcfg2 to be useful in
more situations than traditional configuration management tools.

2.2.2 The Bcfg2 Client
The primary consumer of configuration goals is the Bcfg2 client. It is responsible for
downloading configuration goals from the server, comparing the local system configura-
tion state to goals, determining and performing appropriate configuration actions, and
collecting summary information to send to the reporting system.

Transparency and robustness are the two main goals of the Bcfg2 client implementation.
Because the Bcfg2 client is the only distributed part of the system, robustness is the sin-
gle most important characteristic. To this end, configuration goals are completely speci-
fied before they are sent to the client; this approach minimizes the amount of processing
that must be performed on the client side. Transparency is also critical, but in a different
way. Because the Bcfg2 client can perform all system reconfigurations, administrators
need to understand its operation during all manual interactions.

Three main aspects of the Bcfg2 client warrant description here: the basic operation of
the Bcfg2 client; tool drivers, which provide all of the change performance functionality
for the client; and mechanisms used to trigger client reconfigurations. Each of these top-
ics is described in some detail below.

basic operation

As we mentioned earlier, the Bcfg2 client interacts with the server, using the resulting in-
formation to coordinate its operations. Seven main actions are taken by the Bcfg2 client.

10 / The Bcfg2 Architecture

The client: (1) downloads and executes probes, uploading the results to the server; (2)
downloads its configuration specification from the server; (3) loads and instantiates tool
drivers, giving the client the ability to probe and alter the configuration state of the local
system; (4) collects an inventory and compares it with the configuration goals provided
by the server, resulting in a set of candidate configuration operations; (5) decides on ap-
propriate actions; (6) takes those actions; and (7) uploads a detailed description of its
state and actions to the reporting system. We describe here each of these steps in detail:

Execute probes: The client downloads a set of probes to be executed locally. ❖❖

These probes allow the detection of client characteristics. The results of these
probes are uploaded to the server for use in the generation of the client’s goals.
For example, client video hardware can be detected, allowing the automatic
generation of a tailored X configuration for clients. While this data could be
tracked on the server, it is only a reflection of the state of the client and could
easily become inaccurate. The use of a client-side probe enables the use of ca-
nonical data at all times.
Download configuration goals: The client downloads its configuration goals ❖❖

from the Bcfg2 server. Goals are completely literal at this point; the client does
not need to do any further processing in order to either verify or install them.
Load tool drivers: Next, the Bcfg2 client attempts to load and instantiate all ❖❖

tool drivers. Each driver has a list of prerequisites for its operation and will load
only if they are met. This means that drivers are automatically available when
they will operate. For example, if RPM is installed on a Debian system, the
RPMng driver will load properly. If running in verbose mode, the Bcfg2 client
will display a list of successfully activated drivers. A complete list of tool drivers
is included below.
Inventory local state: Once the Bcfg2 client has instantiated all tool drivers ❖❖

and has a copy of the configuration goals, it compares its local state to the state
described in the specification. This process is performed in two parts. First, the
state of each entry included in the configuration specification is validated. This
step produces a list of incorrect entries. Second, client tool drivers use heuris-
tics to discover configuration entries that are not included in the configuration
specification. These entries, called extra entries, can cause as much of a problem
as any incorrect entry. This stage detects how well a system conforms to the
goals provided by the server and what unspecified configuration exists on it.
Decide which changes to apply: After the inventory stage, the Bcfg2 client has ❖❖

produced a list of incorrect and extra entries. Depending on its mode, it will
decide to correct all, some, or none of these items. A list of available modes and
their behavior is included below.

Regular mode: Attempts to correct all incorrect entries. May be combined ❖❖

with removal and central decision modes.
Dry-run mode (❖❖ -n): Performs no operations of any sort. Will not make any
changes to the client, but will send updated report data back to the server.
Interactive mode (❖❖ -I): Prompts the user for each incorrect or extra entry,
providing detailed information about the proposed operation. May be com-
bined with removal mode.

The Bcfg2 Architecture / 11

Removal mode (❖❖ -r): Removes extra entries of the type specified, either all or
packages. Controls only operations pertaining to extra entries, and may be
combined with normal or interactive modes.

Apply configuration changes: The completed decision phase provides the client ❖❖

with a comprehensive list of operations to undertake. It then performs all entry
removal operations followed by all entry modification or installation operations.
These steps are repeated while there are still pending (or failed) operations;
thus, the number of pending operations decreases per pass. This allows the cli-
ent to remove packages that conflict with packages that need to be installed.
Report on final state: Once all operations that can be performed successfully ❖❖

have finished, the client uploads a set of configuration statistics to the server.
This data includes a list of all still-incorrect entries, all extra entries, and all en-
tries modified during execution. This information forms the basis for the Bcfg2
reporting system, described in Section 2.2.3.

tool drivers

The activities described in the previous section are implemented as the core logic of
the Bcfg2 client. All verification and installation operations are implemented through
a plugin mechanism. These tool drivers provide the glue needed to interact with un-
derlying system management tools. Each of these drivers is relatively simple; the small-
est is fewer than 50 lines of code. The following is a list of the drivers included with
Bcfg2-0.9.6:

Action: The Action driver provides logic pertaining to pre- and post-installa-❖❖

tion actions. This driver is also available on all systems.
APT: The APT driver provides integration with the APT package manager. It ❖❖

is available on systems where it is used, typically Debian, Ubuntu, and Nexenta
systems.
Blast: The Blast driver provides integration with Blastwave packages and is used ❖❖

on Solaris.
ChkConfig:The ChkConfig driver provides integration with the chkconfig ser-❖❖

vice management system used on Red Hat–like systems.
DebInit: The DebInit driver provides integration with the service management ❖❖

system used on Debian and Ubuntu systems.
Encap: The Encap driver provides integration with the Encap packaging sys-❖❖

tem.
FreeBSDPackage: The FreeBSDPackage driver provides integration with the ❖❖

FreeBSD packaging system.
Portage: The Portage driver provides integration with the Portage package man-❖❖

ager used on Gentoo systems.
POSIX: The POSIX driver provides logic pertaining to POSIX filesystem en-❖❖

tries, handling ConfigFile, SymLink, and Directory entries. This driver is avail-
able on all systems.

12 / The Bcfg2 Architecture

RcUpdate: The RcUpdate driver provides integration with the service manage-❖❖

ment system used on Gentoo systems.
RPMng: The RPMng driver provides the ability to interact with the RPM ❖❖

package system. It handles Package entries of type rpm. It is typically used on
systems that use RPM as their native packaging system, but it is available on
others if RPM is installed.
SMF: The SMF driver provides the ability to interact with Solaris’s Service ❖❖

Management Facility. It is available on Solaris and Nexenta systems.
SYSV: The SYSV driver provides the ability to interact with Solaris SysV pack-❖❖

ages. This driver is used only on Solaris systems.
YUMng: The YUMng driver provides analogous functionality to RPMng, but ❖❖

it uses the yum utility to install packages. It is typically available on Red Hat
and Fedora systems.

scheduling client execution

The Bcfg2 client is typically triggered in one of four ways, depending on site require-
ments. First, execution at boot-time is used to apply updates that have occurred while
a host is offline. This mechanism is used nearly universally. The second and also nearly
universal mechanism used to run the Bcfg2 client is cron. We recommend that each
Bcfg2 client run at least once per day, but some sites run it hourly.

High-performance computing clusters have a different set of constraints because tran-
sient tasks can cause serious performance problems for applications. In these cases, sites
typically run the Bcfg2 client from job prologue or epilogue scripts. This strategy ensures
that the Bcfg2 client is run only while nodes are idle.

Finally, the Bcfg2 client can run as a daemon that waits for connection from the Bcfg2
server in order to initiate client executions. This mechanism can be used as frequently or
infrequently as circumstances dictate.

Each of these mechanisms is configured in a common fashion. Operation of each mech-
anism is controlled by the file /etc/default/bcfg2. Each mode can be individually enabled
and configured, allowing the use of distinct client options in different modes.

2.2.3 Reporting System
The reporting system acts as the primary user interface into the configuration manage-
ment process implemented by Bcfg2. From this view, administrators can easily deter-
mine the overall configuration state of all managed systems. The reporting system offers
an integrated view of high-level summary statistics that can be used to drill down to
detailed per-entry information about misconfigurations or extra entries. In addition to
summary and detailed information, the reporting system provides correlations between
detailed misconfigurations. This allows additional insight into the effectiveness of the
configuration process and class information in cases where it is working poorly.

The reporting system is structured as a database with Web and command-line front
ends. Both of these interfaces give access to the same data, for different purposes. The

The Bcfg2 Architecture / 13

Web interface is useful for human consumption, while the command-line front ends are
more useful for scripting.

The reporting system presents a view of the state of the configuration system as a whole.
The new idea here is that the reporting system supplies concrete metrics of how well
configuration management is being used. Hence, administrators can see how well con-
figuration management corresponds to the current state of systems. Any differences are a
sign of a problem; either the configuration specification is incorrect, or the client hasn’t
applied updates properly. These differences also represent what would happen if a system
was rebuilt directly from Bcfg2, for example in the event of a system disk failure.

2.2.4 The Bcfg2 Server
We have described configuration goals, including their contents and uses, and have pre-
sented the operation of the Bcfg2 client and reporting system. The only remaining piece
of the Bcfg2 system to be discussed is the server. The Bcfg2 server acts as a repository of
configuration rules. When a client requests its configuration, the Bcfg2 server renders
these rules into a set of configuration goals for that client, with all ambiguity removed.

The Bcfg2 server is implemented as a Python daemon that speaks XML-RPC over se-
cure HTTP. It runs on a central system (or systems) and is frequently co-located with
the reporting system. The server process, called bcfg2-server, caches all rules in memory
and uses file monitoring to ensure cache coherency. It stores all rules in a central reposi-
tory, typically /var/lib/bcfg2.

Many of the design goals of Bcfg2 center on the ability to effectively interact with a con-
venient and useful representation of configuration. The result of this process is the con-
figuration rules used by the server. These rules have been designed to be compact, easily
reusable, and extensible. Each rule is associated with a particular group of clients. In this
section, we will describe the role and function of client metadata and the structure of
configuration rules. After we have explained these building blocks, we will describe the
process whereby the server generates a client’s configuration goals. Finally, we will show
how to use the Bcfg2 repository.

client metadata

At a high level, server-side configuration rules describe a configuration goal for a given
set of clients. This set can consist of a single client, a subset of clients, or all clients. Con-
figuration rules use client metadata to scope configuration rules. In effect, client meta-
data is used to describe which rules apply to which clients. When a client connects to the
Bcfg2 server, the server daemon identifies and authenticates it. This process is described
in detail in Appendix B.

Each client has a unique metadata instance. This metadata comprises three pieces of
data. The first is the client’s name, usually the client’s hostname. The second piece of
data is a set of group memberships. A client can be a member of an arbitrary number of
groups. These groups frequently correspond to some aspect of configuration similarity
between clients. For example, client architecture and base operating system versions are

14 / The Bcfg2 Architecture

frequently represented by using groups. Client roles are also frequently represented with
groups. Because groups can contain as large or small a set of clients as needed for a con-
figuration rule, the number of configuration rules is minimized; the same configuration
rule usually does not need to be specified more than once.

Many groups describe independent functional characteristics of clients. These groups are
similar to virtual base classes in object-oriented systems. They convey some amount of
information about commonality about clients but do not contain enough information
to be directly instantiated. A concrete example is a group corresponding to the X86_64
architecture. While this detail can imply substantial configuration similarity among a
large number of clients, this group does not provide enough data to build a complete set
of client goals; after all, an X86_64 Web server is much different from an X86_64 desk-
top. Indeed, clients sharing an architecture may not even share an operating system.

Another use of groups is to aggregate clients into classes based on like software configu-
ration. For example, clients in the desktop group might include additional software and
services for X Windows. These groups may still be incomplete; that is, they describe only
certain aspects of configuration, as opposed to a complete view of client configuration.

The final use of groups is to compose these feature groups into a complete set of aspects.
These groups, called profiles, contain a large number of groups and combine architec-
ture, operating system version, and system role-based groups to provide a complete view
of all aspects of system configuration. Profiles are special groups; a client can be set as an
instance of a profile. Profiles are the final element of client metadata.

Figure 2.2: Basic set of group definitions

Figure 2.2 shows a diagram of a simple Bcfg2 group hierarchy. This diagram was gener-
ated by the bcfg2-admin viz command. This example contains several feature groups
and several composition groups, as well as four profiles. The four profiles—desktop,
login-server, web-server, and wiki-server—are highlighted with a bold outline in the
diagram. In addition to the profiles, which are clearly composition groups, the groups
base and server also compose lower-level groups. The terminal groups x86, x86_64, and
ubuntu-gutsy are basic feature groups. This setup, even in the absence of configuration
rules, describes several patterns of configuration in this fictional network. The relation-
ship between the wiki-server and web-server groups enables the reuse of configuration
rules. Instances of the wiki-server are identical to instances of the web-server group, with

The Bcfg2 Architecture / 15

the addition of a membership in the wiki-server group. Rules associated with this group
differentiate wiki-server instances from web-server instances:

All client systems are members of the ubuntu-gutsy group. ❖❖

The network consists of a combination of x86 and x86_64 clients. ❖❖

All servers are members of the x86_64 group. ❖❖

All desktops are members of the x86 group. ❖❖

All configuration rules intended for all clients apply to the base group. ❖❖

All configuration rules applicable to servers, regardless of type, are associated ❖❖

with the server group.
All configuration rules common to all Web servers, regardless of the eventual ❖❖

application, are associated with the web-server group.

This example is extremely simplistic. Typical environments use larger numbers of
groups, particularly as Bcfg2 grows to manage most of the configuration on clients.

Group diagrams are quite useful in several cases, because they provide a quick overview
of the configuration structure of the whole network. We have found them invaluable
for training new personnel. They are also useful when administrators are called upon to
work in unfamiliar areas.

configuration rules

Rules contain three important pieces of information: (1) the type of contribution that
the rule makes, either entry assertion or entry description; (2) the client group that the
rule applies to, whether it’s an individual client or all clients; and (3) the priority of the
rule. When a client is a member of multiple groups, each of which has a rule pertaining
to the same entry, priorities are used to choose which rule should be used. These three
pieces of data provide the ability to specify configuration goals for all clients in a com-
pact and efficient fashion.

Configuration rules can contribute to client configuration goals in two ways. First, they
can assert that a configuration entry should appear in a client’s goals. Second, they can
assert that configuration goals should include a particular version of an entry. In concrete
terms, one rule may state that client goals should include a goal for the configuration file
/etc/passwd, while another may state that members of the web-server group should get a
particular version of /etc/passwd, with the associated file contents and metadata.

The scope of a rule is determined through a Boolean expression, with group member-
ships as terms. For example, a group may apply to clients in groups a and b, either group
a or b, or group a and not b.

Rule priorities are another mechanism that ensures the compactness of configuration
rules. Using rule priorities, one can specify a rule that applies to all clients and a second,
more specific rule that applies to a particular group at a higher priority. The result of this
arrangement is that the low-priority default rule applies in all cases where there is not a
more specific, and hence higher-priority, version of the entry.

16 / The Bcfg2 Architecture

When the Bcfg2 server builds client configuration goals, it first processes all rules that
assert entry presence. The result of this step is a list of entries that form the basis for
the goals. Each of these entries implies only the presence of the entry, no more. At this
point, the server iterates through each entry in the configuration goals and, for each
entry, determines which content rules apply to the client. At this stage, rule priorities
are used to choose the highest-priority content rule for the entry; this rule is used to
construct the full goal entry. After this process is completed, each entry included in the
client’s configuration goals has all of the information the client needs to verify its state
and take corrective action.

server plugins

Despite the abstract simplicity of the rule model, building a good user interface to rules
is difficult. Different types of entries have different management tradeoffs and pain
points. Similarly, the management of some rules has underlying structure that can lead
to simpler user interfaces. Recognizing the difficulty in designing a single language to
describe all configuration tasks, we have implemented the Bcfg2 server around a plugin
architecture.

Each plugin is able to provide both assertion and description rules. The use of each
plugin for these purposes is governed by the structure and generator entries in /etc/
bcfg2.conf. Plugins included in the structures line can assert entry membership in client
configuration goals. Plugins included in the generators line can provide content rules for
entries. Any plugin can be listed in either line, or both, but each of the plugins included
with the base distribution of Bcfg2 functions solely in one category or the other. Also,
content rules can be provided only by a single plugin per goal entry. Thus, only one
plugin can provide content rules for the configuration file /etc/passwd at any time.

A series of plugins is provided with Bcfg2. The following list comprises structure plug
ins, that is, plugins that provide assertion rules:

Bundler: The Bundler plugin provides a mechanism that can be used to de-❖❖

scribe goal entry Bundles. Each Bundle includes a series of global and condi-
tional entries. When the server generates client goals, the Bundler returns sev-
eral Bundles based on the client’s group metadata. Each Bundle includes a set
of interdependent entries. Frequently, Bundles correspond to services. Bundles
need to be explicitly enabled by including a Bundle reference inside a group
definition in Metadata/groups.xml.
Base: Base provides a mechanism for describing unrelated entries. Because in-❖❖

ternal group differentiation is all that is needed to describe the mapping of en-
tries to clients, no external assignment of base groups to clients is needed. The
file format used by the base plugin includes lists of goal entries enclosed within
group predicates. All entries included within a predicate matching the client
will be included as goal entries.
SGenshi: SGenshi provides a templating mechanism for dependent and inde-❖❖

pendent groups of goal entries. The input template is processed in conjunction
with client metadata to produce XML similar to that used by Bundler and
Base. While SGenshi is a proper functional superset of Bundler and Base, it is

The Bcfg2 Architecture / 17

more complicated to use. It is frequently used in cases where entry assertion
adheres to more sophisticated patterns than can easily be represented with
Bundler and Base. Several examples of SGenshi use are included in Chapters
4 and 6.
Generators: Generator plugins provide content rules for goal entries. Genera-❖❖

tors tend to be purpose-built; that is, they are designed for either the manage-
ment of a particular type of entry or a particular range of entry instances relat-
ed to a single administrative task. Most generators are generically useful when
managing particular types of configuration entries; however, one task-centric
generator is included with the base distribution of Bcfg2.
Rules: The Rules plugin corresponds to the abstract ideal of configuration ❖❖

rules. Each rule used by this plugin is labeled with a priority and scope and
includes a set of entry contents. Service and POSIX entries are typically man-
aged by using this plugin.
Pkgmgr: The Pkgmgr plugin is a slight refinement of the Rules plugin, tailored ❖❖

to handle features needed for handling package version and architecture data.
Pkgmgr can handle only Package entries.
Cfg: The Cfg plugin is purpose-built to manage rules governing configura-❖❖

tion file contents. Each file managed by Cfg has a discrete directory, in which
all versions of that configuration file are stored, including group and priority
labels.
SSHbase: The SSHbase plugin is the only task-driven plugin included with ❖❖

Bcfg2. Its sole function is to manage client ssh keys and build a correct ssh_
known_hosts file. This plugin is able to retain ssh keys across client rebuilds,
revoke ssh keys from ssh_known_hosts files network-wide, and ensure the
correct and complete generation of ssh_known_hosts files, including proper
localhost lines.
TCheetah: TCheetah is a plugin that provides a mechanism for generating con-❖❖

figuration file contents based on a combination of client metadata and static
templates. It uses the Cheetah templating system. It is useful for building dy-
namic configurations based on sophisticated rules or the interpolation of client
probes.
TGenshi: TGenshi, like TCheetah, is a configuration file templating mecha-❖❖

nism. TGenshi is based on the Genshi templating language. It has roughly the
same uses, features, and interface as TCheetah.

Figure 2.3: A typical top-level Bcfg2 repository

As we mentioned previously, the Bcfg2 server has a single repository that contains all
data needed to operate. This repository is usually located in /var/lib/bcfg2. Figure 2.3
shows a top-level view of a typical repository. In the repository, each plugin controls
the subdirectory with the same name. The Bundler plugin controls the /var/lib/bcfg2/

Metadata/ Rules/ Svcmgr/ etc/

Pkgmgr/ SGenshi/ TCheetah/

Probes/ SSHbase/ TGenshi/

18 / The Bcfg2 Architecture

Bundler repository subdirectory, and so forth. Three of these directories are special: the
Metadata and Probes directories are used by the Metadata module, and the etc directory
is used by the reporting system. Each plugin determines the semantics of the files in-
cluded in its subdirectory, and each of these directories will be examined in more detail
as they come up in later chapters.

2.3 Moving Ahead
In this chapter we’ve taken a high-level look at all of the pieces that make up the Bcfg2
system, which is important for understanding the mindset in which the tool was written.
In the next chapter we will look at actually installing the Bcfg2 server and client, setting
up a simple repository, and beginning to perform real work on real machines. The chap-
ters after that will then look at numerous real-world tasks that have been performed with
Bcfg2 in a cookbook-like style that should help both the new and seasoned configura-
tion management user become productive quickly.

3. Getting Started

3.1 The Server
The first step to getting started with Bcfg2 is to install the server package. While the
Bcfg2 server is available as a default package for several GNU/Linux distributions, and
packages for several other distributions and operating systems can be found on the Bcfg2
Web site, it can be installed on any operating system that can support its prerequisites.
In general, it is pretty certain to work on any modern UNIX-like operating system. See
the packages and documentation at http://www.bcfg2.org for more details.

The examples in this section were conducted on a system running Ubuntu Hardy Her-
on, using Bcfg2-0.9.6. Previous versions of Bcfg2 may not work precisely with this series
of steps; at least one feature needed is not available from the command line (-F, used
in Section 3.2.1), while several other processes (including bcfg2-admin init) have been
refined in 0.9.6.

3.1.1 Initial Setup
Once the server software is installed, it is time to set up an initial repository. The first
step is to run the Bcfg2 initialization script on the server machine:

> bcfg2-admin init

This interactive command will set up a skeleton repository, build an initial /etc/bcfg2.
conf file, set up an SSL certificate, and perform any other actions needed to bootstrap
the Bcfg2 server. This script will prompt for the answers to several questions; default
answers are fine for most users. Moreover, any settings can be changed afterward quite
easily.

Once the initialization is complete, you will have a barebones repository layout:

Base Bundler Cfg Metadata Pkgmgr Rules SSHbase etc

Many of these directories start out empty; the main exception is the Metadata direc-
tory. It includes two files metadata.xml, which describes groups, and clients.xml, which
includes client data. At this point you can start the Bcfg2 server. The server process will
begin processing filesystem events, reporting either gamin or fam events depending on
which file monitoring system is in use. All example logs quoted here were generated on a
system using gamin for file monitoring.

> /usr/sbin/bcfg2-server
Bound to port 6789
Failed to read properties file; TGenshi properties disabled
Suppressing event for file python-mysql.xml~

20 / Getting Started

Suppressing event for file x11-dev.xml~
Processed 109 gamin events in 0.422 seconds. 0 collapsed
Suppressing event for file converted.xml~
Processed 1861 gamin events in 19.829 seconds. 0 collapsed
Processed 121 gamin events in 0.240 seconds. 0 collapsed
Processed 26 gamin events in 0.148 seconds. 0 collapsed

The server logs to both standard out and syslog by default. The same messages are repli-
cated in both locations. As we mentioned in the previous chapter, the Bcfg2 server uses
file monitoring to maintain a coherent cache of file contents in memory for performance
reasons. It maintains an internal set of file name patterns that are ignored; these typically
correspond to editor temp files and the like. Whenever an event is ignored, the server
will describe it.

When new events are available, bcfg2-server wakes up and processes them,
rereading files if needed. Upon server startup, all files need to be read. On a
system with a medium to large repository, startup can take 30 to 40 seconds;
however, with an initial repository such as the one we just created, start up should
be instantaneous. Once no events have been reported for a few seconds, the
server becomes available to clients. Subsequent repository modifications result in
additional file change events. For example, the command:

> touch /var/lib/bcfg2/Metadata/clients.xml

results in the server message:

Processed 1 gamin events in 0.118 seconds. 0 collapsed

At this point, the server is ready to serve configuration goals to clients.

3.2 The Client
The Bcfg2 client package is installed in the same way as the server package, only it usu-
ally has fewer dependencies. It is a good idea to install the client on the same machine as
the server package, since you are eventually going to want to manage it using Bcfg2 as
well.

The initialization process done above will set you up with one client machine: the ma-
chine on which the Bcfg2 server is running. The default distro group chosen during the
initialization process is also set up as the default profile for new clients.

3.2.1 Bootstrapping New Clients
Bcfg2 clients are able to bootstrap themselves through command line arguments without
using a configuration file. In the following example, the Bcfg2 client connects to the
server that we have set up entirely using arguments:

> bcfg2 -x <password> -S https://<server>:<port> -F <fingerprint> -v -n

This command runs the client, manually specifying communication parameters: pass-
word, a server URL, and an SSL certificate fingerprint. The password and server URL

Getting Started / 21

were chosen as a part of the repository initialization. The fingerprint is used to validate
that the client is talking to the expected server. It can be generated from the server cer-
tificate by running the following command on the server:

> bcfg2-admin fingerprint
e91f419beba103ae6bed7ad98673f4fddc59dda1

As we mentioned previously, the -F flag is not implemented in versions of Bcfg2 prior to
0.9.6; it can be omitted, but server fingerprint verification will not occur. In these ver-
sions, the server fingerprint can still be specified as a configuration file option.

Note that the use of the -x flag exposes the password to other users through the use of
ps. Likewise, commands can be saved in shells’ history files. Certainly, care in the use of
this feature is a good idea.

In addition to the communication parameters, this invocation of the Bcfg2 client speci-
fies two operational options: -v enables verbose mode, which displays a large amount of
information about the operations of the client, and -n specifies dry-run mode. This is
one of the most frequently used Bcfg2 client options. It runs the server through the en-
tire configuration generation process, examines the configuration it gets back, and up-
loads a comparison of its state with the goals to the server. In verbose mode, it displays
summary statistics as well. In dry-run mode, the Bcfg2 client performs exactly the same
analysis steps as it would in regular mode, with the exception of making any changes to
the client system. Because it updates the central reporting database with current state
information, dry-run mode is useful for cases even where administrator supervision is
desired; it detects when goals have diverged from current system state.

Once the client has been run, it will produce output that looks much like the following:

Loaded tool drivers:
APT	 Action	 DebInit	 POSIX

Phase: final
Correct entries: 	 0
Incorrect entries: 	 0
Total managed entries: 	 0
Unmanaged entries: 	 2308

This display summarizes the current state of the client and the tool drivers available to
the client. Correct entries are entries that conform to goals. At this point, the number of
the goals (“Total managed entries”) is 0, so 0 correct entries are expected. Likewise, no
goals do not conform. The final number, unmanaged entries, are entries that exist on the
client (and can be detected), but were not included in goals. Over time, we will reduce
this number and increase the above three.

3.3 Making Changes with Bcfg2
Up to this point, the processes described have been entirely passive; no changes have
been made to client configurations. That is all about to change.

22 / Getting Started

3.3.1 Managing Configuration with Bcfg2
Managing configuration with Bcfg2 consists of specifying server-side configuration rules
that describe configuration goals for clients. The formulation of these rules has three
basic steps. These steps are the same, whether the changes will affect configuration files,
packages, or services and regardless of the number of clients involved in the operation;
rules that apply to one client are specified in the same way as rules that apply to one
thousand clients.

Target group isolation: When undertaking any configuration task, you must ❖❖

first determine which clients should be affected by this change. Is it all clients,
or clients in a particular group? If the answer is no to both of these questions,
you might need to define a new group and add it to the group hierarchy. The
chosen group will be needed to formulate configuration rules.
Entry addition: Next, you must determine which, if any, configuration entries ❖❖

will be added to client configurations. If additions are needed, they must be
described in a configuration rule.
Entry contents: Finally, in any configuration change, there will be one or more ❖❖

content rules changing the goal entry contents for the target client group.
These rules must be specified.

3.3.2 Managing /etc/bcfg2.conf
Although the manual specification of all communication parameters from the command
line is perfectly functional, it is inconvenient. As a first example of configuration man-
agement, we will begin to manage /etc/bcfg2.conf using Bcfg2.

Following the three steps described in the last section, first we determine which clients
should be affected by this operation. We want all clients to receive an instance of /etc/
bcfg2.conf that includes all of the communication parameters specified in the command
line. So, these rules will apply to all clients.

Next, we need to determine if any entries will be added to the configuration goals be-
cause of these new rules. Because the goals are currently empty, the answer is clearly yes.
We want to add the configuration file /etc/bcfg2.conf to all client goals. To accomplish
this, create a new file called /var/lib/bcfg2/Base/basic.xml with the following contents:

<Base>
	 <ConfigFile name=’/etc/bcfg2.conf’/>
</Base>

Bcfg2 includes a repository validator. After any modification of XML files in the Bcfg2
repository, the following command should be run to ensure that the repository is well-
formed:

> bcfg2-repo-validate -v
/var/lib/bcfg2/Metadata/clients.xml checks out
/var/lib/bcfg2/Base/basic.xml checks out
/var/lib/bcfg2/Metadata/groups.xml checks out

Getting Started / 23

At this point, if the client is run again, the server will correctly add /etc/bcfg2.conf to
the client goals but will be unable to bind contents to the goal. It will produce an error
message:

Failed to bind entry: ConfigFile /etc/bcfg2.conf
Generated config for ubik in 0.00308299064636 seconds

Likewise, the client will detect that the configuration is not properly formed and will
issue an error message as well:

Incomplete information for entry ConfigFile:/etc/bcfg2.conf; cannot verify
	 ... due to absence of owner:group:perms attribute(s)

In dryrun mode: suppressing entry installation for:
	 ConfigFile:/etc/bcfg2.conf

Phase: final
Correct entries: 	 0
Incorrect entries: 	 1
	 ConfigFile:/etc/bcfg2.conf
Total managed entries: 	 1
Unmanaged entries:	 2308

RecvStats completed successfully

Finally, we will add a rule that describes the contents of /etc/bcfg2.conf. The following
commands create an area to manage the configuration file using the Cfg plugin, create a
default version of the file, and set the file permissions to be owner-read-write only. Cre-
ate a file /var/lib/bcfg2/Cfg/etc/bcfg2.conf/bcfg2.conf with the following contents:

[communication]
protocol = xmlrpc/ssl
password = <password>
fingerprint = <fingerprint>

[components]
bcfg2 = <server URL>

To control file installation metadata, create a second file called /var/lib/bcfg2/Cfg/etc/
bcfg2.conf/:info with the following contents:

owner: root
group: root perms: 600

At this point, we can run the Bcfg2 client again, with the same options, still in dry-run
mode, and it detects that there is an entry that should be updated. In the statistics mes-
sage, one entry is now incorrect and one entry is managed. The Bcfg2 client includes an
interactive mode that provides information about changes that will be performed. This
can be activated by changing -n to -I. It steps through each change, providing detailed
information, and allows the administrator to choose changes individually for installa-
tion. Interactive output will include the following text:

ConfigFile /etc/bcfg2.conf does not exist
Failed to read /etc/bcfg2.conf: No such file or directory

24 / Getting Started

...

Install ConfigFile: /etc/bcfg2.conf? (y/N):

After answering y to the question, the Bcfg2 client will install /etc/bcfg2.conf. Once this
is done, the -F, -x, and -S options can be removed from the command line when calling
Bcfg2.

3.3.3 Further Refinement
Configuration goals change over time, usually due to either new information or a wider
perspective. The rules specified in the last subsection manage the case described quite
well; all clients get an identical version of /etc/bcfg2.conf. However, the clients that we
already have don’t correspond to that goal. The Bcfg2 server needs a more complicated
version of /etc/bcfg2.conf, describing various server options such as repository location
and which plugins should be enabled.

If the Bcfg2 client is run on the server host, it will attempt to replace /etc/bcfg2.conf.
We can now demonstrate the ability of Bcfg2 to pull configuration content rules from
clients, in this case the Bcfg2 server itself. If we run the Bcfg2 client on the server host
in dry-run mode, it will upload statistics to the server describing the current state of the
client. These statistics contain detailed information about all incorrect entries, in this
case /etc/bcfg2.conf. After running the client, the server has all information to refine
configuration rules appropriately.

> bcfg2-admin pull ubik ConfigFile /etc/bcfg2.conf
Found 4 entries for ubik:ConfigFile:/etc/bcfg2.conf
Found entry from Thu Feb 28 20:01:57 2008 Located diff:
...
Should this change apply to all hosts affected by file
	 /var/lib/bcfg2/Cfg/etc/bcfg2.conf/bcfg2.conf? (N/y): n
This file will be installed as file
	 /var/lib/bcfg2/Cfg/etc/bcfg2.conf/bcfg2.conf.H_ubik
Should it be installed? (N/y): y
writing file, /var/lib/bcfg2/Cfg/etc/bcfg2.conf/bcfg2.conf.H_ubik

This step has added a new rule to the repository governing the contents of /etc/bcfg2.
conf. This rule applies only to the host “ubik” and overrides the default rule. At this
point, all clients, including the Bcfg2 server host, will report one managed and correct
entry.

3.4 The Next Steps
This chapter has given a general overview of using the Bcfg2 tools from beginning to
end. In the next couple of chapters we will take a closer look at specific tasks and how
to implement them using Bcfg2 semantics. These tasks start out simple, making them
perfect starting points to tackle during a few free minutes during the day. They then
quickly progress to more complex tasks that can be used as a basis for powering your
entire organization.

4. Task Examples

One of the most difficult aspects of using a new tool productively is getting past the
initial learning curve; this chapter is specifically aimed at easing that problem. Each of
the following sections describes a task that will help you use Bcfg2 to bring a network of
machines under configuration management control. We will describe the thought pro-
cess and considerations needed to complete each task, in a way that’s specific enough to
act as a recipe for getting the task done.

This chapter is meant to be both a learning tool and a reference tool. When first learning
Bcfg2, the chapter serves as “Learn Bcfg2 in an Hour a Day,” with each task acting as a
single lesson that builds on the previous one. At the same time, each example is chosen
for its flexibility: the skills learned from one task are immediately applicable to similar
ones, and so are able to serve as both inspiration and guide when trying something new.
For example, Section 4.1 can apply to any independent file that needs management,
while Section 4.4 is a great general-purpose starting-point for almost any nontrivial task.

During our discussions of tasks, we will refer to the example clients.xml and groups.xml
files shown in Figures 4.1 (below) and 4.2 (next page), respectively.

4.1 Message of the Day
Our first task is simple: to manage a uniform /etc/motd file across all of our machines.
This file is often used to state site policy, warn users of upcoming outages, or remind us-
ers of useful commands that they may need. Managing its contents in a central location
prevents mistakes or omissions when deploying this file across the network and makes
updates easy. It is also a relatively harmless file to modify, and is therefore a great place to
start exploring configuration management. We’ll make use of the decision steps in Sec-
tion 3.3.1 while planning and making the changes.

First, identifying which clients will be affected by this change should be easy: we want
all of our machines to have a managed message of the day. Note that the message doesn’t
necessarily need to be the same for all of the machines; however, we do want to manage
the file on all of them.

<Clients version=”3.0”>
	 <Client name=”www.example.com” profile=”web-server” />
	 <Client name=”mail.example.com” profile=”mail-server” />
	 <Client name=”gromit.example.com” profile=”desktop” />
	 <Client name=”max.example.com” profile=”desktop” />
	 <Client name=”victor.example.com” profile=”desktop” />
</Clients>

Figure 4.1: A simple clients.xml

26 / Task Examples

Next, we need to add the motd configuration element to the server’s repository of
known configuration elements. We’ll do this by creating a very simple motd Bundle,
which can be seen in Figure 4.3.

This Bundle was already included in the base group in Figure 4.2, so by just dropping
the Bundle into Bundler/motd.xml and the file itself in Cfg/etc/motd/motd, we’ve be-
gun managing a uniform system-wide message of the day file. The client will put this file
in place on each client machine the next time it runs.

Finally, let’s consider the contents of the entry. Since /etc/motd is a static configuration
file, we’ll make use of the Cfg plugin to install it. By default the Cfg plugin stores its
repository of files in /var/lib/bcfg2/Cfg/. While this directory starts out empty in a new
server installation, a populated Cfg repository mimics the root (/) directory of our man-
aged machines. Thus, our standard motd file will be kept in Cfg/etc/motd/motd. Note
that the file is actually stored in a directory of its same name. We will see in future tasks
how to use this structure to store group- and machine-specific configuration files, as well
as other data.

<Groups version=”3.0”>
	 <Group name=”web-server” profile=”true”>
		 <Group name=”server”/>
		 <Bundle name=”apache”/>

	 </Group>
	 <Group name=”mail-server” profile=”true”>
		 <Group name=”server”/>
		 <Bundle name=”postfix”/>
	 </Group>
	 <Group name=”desktop” profile=”true”>
		 <Group name=”basic”/>
		 <Bundle name=”X11”/>
		 <Bundle name=”gnome”/>
	 </Group>
	 <Group name=”server”>
		 <Bundle name=”tripwire”/>
	 </Group>
	 <Group name=”basic”>
		 <Bundle name=”ssh”/>
		 <Bundle name=”ntp”/>
		 <Bundle name=”motd”/>
	 </Group>
</Groups>

Figure 4.2: A simple groups.xml

<Bundle name=”motd”>
	 <ConfigFile name=”/etc/motd”/>
</Bundle>

Figure 4.3: A message-of-the-day Bundle, from Bundler/motd.xml

Task Examples / 27

Once this is set up, the Bcfg2 client can be used to install the new /etc/motd file. The -I
flag prompts for each entry to be modified, adding details about the change:

/usr/sbin/bcfg2 -I
Failed to read /etc/motd: No such file or directory
Install ConfigFile: /etc/motd? (y/N): y

4.2 An NTP Client
A slightly more complex task is to manage a network time protocol client. In this case
we have three configuration elements to worry about: a package (ntp), a configuration
file (/etc/ntp.conf), and a service (ntpd). The Bundle for these three items is shown in
Figure 4.4. By placing these three elements together in a Bundle, we gain two notable
benefits over treating them as independent items. First, we have created a simple build-
ing block that can be applied to almost any system. There’s no need to list all three items
for any new classes of machines; instead the new classes just need to include the NTP
Bundle. Secondly, this gives the Bcfg2 client a hint to treat these three elements as a
group. In this case, when it installs a new version of the ntp package or an updated ver-
sion of ntp.conf it will deduce that it should also restart the ntpd service so the changes
take effect.

Since we have a service included in this Bundle, we have to take one extra step—specify-
ing which types of machines we want the service to actually run on. In the Svcmgr direc-
tory in the Bcfg2 repository, we’ll create a services.xml file as seen in Figure 4.5.

Since we want to run NTP on all of our machines and since we included the base group
in all other groups in Figure 4.2, placing the service definition in the base group causes
all clients to turn on the NTP service.

Assuming you have a working Pkgmgr setup, the final step needed to fully manage NTP
clients is to place your ntp.conf in Cfg/etc/ntp.conf/ntp.conf. The next time each client
runs they will install the NTP package (if needed), put the managed ntp.conf in place,
and turn on the ntpd service. If you switch to a different NTP server in the future, up-
dating all of your machines is as simple as updating the ntp.conf file in the Bcfg2 reposi-
tory and running the Bcfg2 client on all machines (which can be done nightly via cron).
When the new file is installed the service will be restarted, taking the guesswork out

<Bundle name=”ntp”>
	 <Package name=”ntp”/>
	 <ConfigFile name=”/etc/ntp.conf”/>
	 <Service name=”ntpd”/>
</Bundle>

Figure 4.4: An NTP Bundle

<Services priority=”0”>
	 <Group name=”base”>
		 <Service name=”ntpd” type=”chkconfig” status=”on”/>
	 </Group>
</Services>

Figure 4.5: A simple services.xml

28 / Task Examples

of which machines are updated and which ones might still be pointing at an outdated
server.

4.3 Managing the Base Configuration
Sections 4.1 and 4.2 showed examples of Bcfg2’s basic building block, the Bundle.
Bundles are used to collect similar or interdependent configuration elements together
to make managing and reusing those elements painless. However, on modern operating
systems there is often a very long list of packages that don’t need to be wrapped together
in Bundles, usually because they are part of the base operating system install and are
definitely going to exist on all machines. On a current SLES 10 system, for example,
this includes such packages as aaa_base, bash, and rpm. We use Bcfg2’s Base to manage
these sorts of independent configuration elements.

Figure 4.6 shows a very simple Base file containing these packages and a couple of extra
entries. Its contents look similar to the Bundles in Figures 4.3 and 4.4, but with differ-
ent surrounding tags. As mentioned in Section 4.2, grouping configuration elements
together in a Bundle gives the client hints that it should check for interdependencies
between all of the elements in the Bundle. Base is for all of those independent elements
that aren’t really related to other elements. The elements listed in Figure 4.6 are all such
elements: they’re needed on every system, and when one of them changes there’s no need
to recheck any of the others.

So what goes in Base? When you are setting up Bcfg2 for the first time, generating a
complete list of every package on your first system is a great place to start. By putting all
of these Package entries in a Base file, you’ve made a huge jump toward managing your
system—on typical current machines, this can be hundreds of packages. From that start-
ing point, it is then much easier to compare this specific-to-one-machine Base to others,
paring down packages that don’t match up between all of the machines in your network.
These can then be left in Base and installed on all machines, leading to consistency;
pulled out into Bundles along with their dependencies; or put into group-specific sec-
tions in Base. Whatever their final location, starting with a complete package list in Base
is a useful first step in the incremental configuration-building process.

4.4 An NTP Client and Server
In Section 4.2 we created a complete Bundle for managing NTP clients, but we can easi-
ly extend this work to manage an NTP server, too. The only difference between an NTP
client and an NTP server is its configuration file. Both use the same ntp package, run the

<Base>
	 <Package name=”aaa_base” />
	 <Package name=”bash” />
	 <Package name=”rpm” />
	 <Directory name=”/sandbox” />
	 <ConfigFile name=”/etc/raidtab” />

</Base>
Figure 4.6: A simple Base file

Task Examples / 29

same ntpd daemon, and read from an ntp.conf configuration file, but the NTP server
needs a different version of that configuration file from that of all of the clients. We can
easily set up a server-specific NTP configuration file by creating a new ntp-server group,
associating our NTP server machine with that group, and then placing a group-specific
file in the Cfg repository.

The first thing to do is to create an NTP server ntp.conf configuration file. To create
group-specific config files for Bcfg2, you append .GNN_groupname to the filename,
where NN is a two-digit numeric priority and groupname is the group to which this file
is specific.

Figure 4.7 shows the contents of our Cfg/etc/ntp.conf/ directory after this file is created.
The priority of 90 was chosen rather arbitrarily: if a client matches multiple group-
specific files in the directory, then the one with the highest priority number is handed
down to the client. In this example, if there was also an ntp.conf.G80_mail-server file
in the directory, then our new priority 90 file would trump that one for the client mail.
example.com.

Looking back at our clients.xml file in Figure 4.1, we only have two machines on which
we would want to run our local NTP server: either www.example.com or mail.example.
com. Let’s choose to run it on mail.example.com.

Figure 4.8 shows an updated mail-server group section from Figure 4.2. Since the mail-
server group already gets the ntp Bundle (through the server group, which in turn gets
it through the base group), all we need to do is add the ntp-server group to the mix.

With the new file in place and the update made to groups.xml, the next time mail
.example.com runs the Bcfg2 client it will get its group-specific configuration file,
while all other clients will be given the default, non-specific file. Any number of group-
specific files can be created in this same way, but recall that each client will always only
receive the most specific, highest-priority file it matches.

4.5 Managing an SSH Infrastructure
SSH host keys are an obvious set of files that can benefit from being managed by a cen-
tralized system. This is especially apparent to anybody who has been presented with the
familiar remote host identification has changed message after rebuilding a machine and
using SSH to log in to it again. This happens because the SSH server generates a new

Cfg/etc/ntp.conf/
	 ntp.conf
	 ntp.conf.G90_ntp-server

Figure 4.7: A group-specific ntp.conf file

<Group name=”mail-server” profile=”true”>
	 <Group name=”server”/>
	 <Group name=”ntp-server”/>
	 <Bundle name=”postfix”/>
</Group>

Figure 4.8: An update to groups.xml

30 / Task Examples

key on the newly rebuilt machine, causing your SSH client to doubt the authenticity
of the machine to which it is connecting. The easy way to fix this problem is to import
each key into Bcfg2 as a host-specific file. Then when a machine is rebuilt, running
Bcfg2 on it the first time will put the old key right back where it belongs. But it turns
out we can do even better than that.

Bcfg2 ships with a plugin named SSHbase, named after its role: an SSH key database. It
extends Bcfg2’s normal abilities to handle all aspects of SSH key management:

If a machine’s keys are already stored in SSHbase, they are handed out in the ❖❖

configuration as the canonical versions.
If a machine’s keys are not in SSHbase, it is assumed that the machine is a ❖❖

new build. New keys are generated, automatically placed in the database, and
treated as canonical for that machine from then on.
If desired, a complete ssh_known_hosts file can be generated for each machine, ❖❖

containing the public keys of all hosts SSHbase knows about. This greatly sim-
plifies setting up SSH host-based authentication.

To begin using the SSHbase plugin, we first need an SSH Bundle. An example is shown
in Figure 4.9.
As with any Bundle, the example contains all of the pieces that are needed for an SSH

service to act correctly: host keys, configuration files, SSH service, and SSH package. By
default, all ConfigFile entries are handled by the Cfg plugin, in which case we would
need to place all of the ConfigFile entries mentioned in the SSH Bundle in their proper
places in the Cfg/ directory in the Bcfg2 repository. Instead, however, we will use the
SSHbase plugin to manage these files. To turn on this plugin, we simply add SSHbase
to the generators list in our server’s bcfg2.conf file. Make sure to make this change in
the version of this file in the Cfg repository, or this change might be overwritten.

With the SSHbase generator enabled, the Bcfg2 server treats the ConfigFile entries
marked in Figure 4.9 differently. When a client contacts the Bcfg2 server for the first
time, the server checks whether or not a complete set of public and private keys exists

<Bundle name=”ssh”>
	 <ConfigFile name=”/etc/ssh/sshd_config”/>
	 <ConfigFile name=”/etc/ssh/ssh_config”/>
	 <Package name=”openssh”/>
	 <Service name=”sshd”/>
	 <!-- The below are handled by SSHbase -->
	 <ConfigFile name=”/etc/ssh/ssh_host_dsa_key”/>
	 <ConfigFile name=”/etc/ssh/ssh_host_dsa_key.pub”/>
	 <ConfigFile name=”/etc/ssh/ssh_host_rsa_key”/>
	 <ConfigFile name=”/etc/ssh/ssh_host_rsa_key.pub”/>
	 <ConfigFile name=”/etc/ssh/ssh_host_key”/>
	 <ConfigFile name=”/etc/ssh/ssh_host_key.pub”/>
	 <ConfigFile name=”/etc/ssh/ssh_known_hosts”/>
</Bundle>

Figure 4.9: An SSH Bundle

Task Examples / 31

for it. If not, it generates a set, saves them to the repository, and includes them in the
initial configuration passed back to the client. This is especially useful for dynamic sets
of machines, such as desktop workstations, which then have their unique SSH keys
managed from their very first boot without any manual intervention. Meanwhile, the
ssh_known_hosts file is always kept up-to-date with the latest set of keys for all known
machines. This keeps anything that relies on that file, such as host-based authentication,
working smoothly even in a highly dynamic environment.

When deploying SSHbase, acquisition of pre-existing keys is a good idea. bcfg2-admin
pull can be used to install these keys into the SSHbase repository, based on client statis-
tics uploads:

for file in ssh_host_dsa_key ssh_host_rsa_key ; do
	 for suffix in “” .pub ; do
		 bcfg2-admin pull -f \<client\> /etc/ssh/${file}${suffix}
	 done
done

4.6 Using Actions
Some configuration changes require actions to take place on a client after the related files
or packages are installed. For example, after a new aliases file is installed for the Postfix
mail server, it is necessary to run the newaliases (or similar) command to generate the
new aliases database. Bcfg2 supports this need through the use of Actions.

Figure 4.10 shows a Postfix Bundle that uses an Action to perform the needed local
change.
This Bundle contains many of the elements we have already seen: a Package entry, a

Service entry, a ConfigFile entry, and a group-specific section. It also contains an Action
tag, which only contains an Action name. The Action itself is defined in a separate file,
located in Rules/actions.xml in the Bcfg2 repository’s top-level directory.

In Figure 4.11 we see what the actual Action definition looks like.

<Bundle name=”postfix” version=’2.0’>
	 <Package name=”postfix”/>
	 <Service name=”postfix”/>
	 <ConfigFile name=”/etc/postfix/main.cf”/>
	 <Group name=”mail-server”>
		 <ConfigFile name=”/etc/postfix/virtual”/>
		 <Action name=”postmap”/> <
	 /Group>
</Bundle>

Figure 4.10: A Postfix Bundle using Actions

<Rules priority=”0”>
	 <Action name=”postmap” command=”/usr/sbin/newaliases” \
		 when=”modified” timing=”post” status=”ignore”/>
</Rules>

Figure 4.11: An Actions file

32 / Task Examples

In this case our action is named postmap, its name in the Postfix Bundle, and the com-
mand it runs is /usr/sbin/newaliases. The next three options fine-tune the Action for
the specific need at hand. Here we’re running the action whenever a Bundle element is
modified (when=”modified”), having the Bundle run after all its elements are installed
(timing=”post”), and not reporting the exit status of the action to the reporting system
(status=”ignore”).

With these two pieces in place—the Action tag in the Bundle and its definition in the
Rules directory—our task is done. In this case, when a client runs it will examine all of
the member elements of the Bundle and install any updates that are needed. If some-
thing changes, it will run the Action after all update configuration elements have been
installed. Note that the Action will run regardless of what element has changed. In this
case, that’s fine, but in some cases we might want to do sanity checks within the Action
command to make sure we really want it to run.

5. Troubleshooting

Any sufficiently sophisticated tool occasionally behaves unexpectedly; Bcfg2 is no differ-
ent. For such occurrences, we have built several mechanisms to make Bcfg2’s operations
transparent. At a basic level, the server process logs to syslog; we will provide an over-
view of the data included. bcfg2-info, a diagnostic framework around the bcfg2-server
code, has the ability to inspect the state of the server and its rules to produce partial or
complete configuration goals without involving client systems. Finally, we describe the
information made available by the Bcfg2 client. Each of these topics is discussed in turn,
highlighting their major uses and capabilities. As one implements sophisticated configu-
ration patterns, these capabilities quickly become indispensable. We will highlight their
use in Chapter 6.

5.1 Logging
During ordinary operations, the bcfg2-server process produces log messages correspond-
ing to a variety of normal events:

Binding to the server port: After the server process has successfully bound to ❖❖

the IP port, it produces a message saying so.
Processing file events: The server is notified whenever a file in the repository ❖❖

is modified. After processing these events, it produces a message telling how
many events were processed. It also reports how many events were coalesced.
Event coalescing occurs when the same event occurs repeatedly. For example,
when a large file is written, several file-changed events may be created during
the same write. These events will be coalesced and only processed once.
Generating client configuration goals: When a client requests its configuration ❖❖

goals, the server reports this event, including the client’s name and the elapsed
time, upon completion.
Client state reports: When the server receives statistics upload from clients, it ❖❖

reports the client’s state (either clean or dirty) in a log message.
Ignoring files matching the backup file pattern: The Bcfg2 server ignores files ❖❖

that end in ~ or .swp. Whenever it encounters and ignores an event for these
files, it reports this occurrence.

Each of these indicates expected activity. The server also produces error messages in the
case of runtime errors:

Client metadata resolution problems: When a client connects, the server per-❖❖

forms a resolution process to determine its metadata. This can fail in several
cases. If a client is not already registered and no default profile is configured,

34 / Troubleshooting

the server cannot construct metadata for it. In this case, an error is reported
and the client will fail, since it cannot continue.
Entry content binding failures: When the server constructs client goals, it at-❖❖

tempts to bind contents to each entry. This can occur in several cases. If no
content rules are present, it will fail outright. In other cases, multiple content
rules might be applicable, or multiple plugins might contain rules. If the Bcfg2
server recognizes an ambiguous situation, it will refuse to bind entry contents
and will produce an error message. These errors can be associated with a client
by finding the following configuration generation message.
Communication setup errors: When the server starts up, it will produce error ❖❖

messages if it cannot successfully bind to the address requested. Similarly, if the
certificate does not exist or is not readable, the Bcfg2 server will produce an
error message.
Client communication errors: Network transactions can fail in a variety of ways ❖❖

ranging from socket errors to data corruption. Because Bcfg2 uses HTTPS for
client/server communications, transmissions are quite robust. If the server de-
tects any problems of this sort, it closes the socket and reports an error.
Filesystem I/O errors: In some cases, the server will get a filesystem event for ❖❖

a file that has been deleted between the event creation and its processing. In
this case, the Bcfg2 server will fail to read the file. These errors can usually be
ignored, but can be indicative of strange activities on the server.
XML parsing failures: Several files in the Bcfg2 repo are XML files. If written ❖❖

incorrectly, they may fail to parse. When this occurs, the server reports the
parse failure. bcfg2-repo-validate can be used to find both XML syntax errors
and schema validation errors.

5.1.1 Common Errors
During normal operations, a variety of common errors can occur. This section explains
several of them.

Suppressing event for file ssh.xml❖❖ : This error message is generated when the
name of a file in the repository is recognized as a temporary or backup file.
These messages are typically harmless.
Could not process filename /path/to/file/.#template.txt; ignoring❖❖ : This error
message means that the server was unable to process the name of a file in the
repository. In many cases, the roles of individual files are determined by their
names. This issue can occur for a variety of reasons. Editors often use files with
strange names as temporary storage; in this case, the files are often gone before
the bcfg2-server process notices them. The misnaming of files can also cause
a similar behavior. For example, when using Cfg, group-specific files must
encode a priority so that ties can be broken for clients that are members of
multiple groups. In this case, a file name of the form file.G_group will cause a
similar error message to be displayed.

Failed to bind entry: ConfigFile /path/to/file❖❖ : This error message occurs when
the configuration for a client includes an entry that is undefined for that cli-

Troubleshooting / 35

ent. For example, a Bundle might include a ConfigFile entry that has not been
defined in Cfg. Likewise, it might be defined, albeit not for the current client.
When this error occurs, ensure that the entry is defined for the current client.
This can be done by using the mappings, build, and buildfile commands pro-
vided by bcfg2-info, described in the next section.
Templating failures: Templates are effectively user-defined programs for gener-❖❖

ating structure and configuration file contents. As with any program, bugs can
occur in templates. When templates are buggy, the templating process will fail,
resulting in a message like:
NotFound: cannot find ‘variable’
TCheetah template error for /etc/diskinfo
Failed to bind entry: ConfigFile /etc/diskinfo

The first line describes the templating system error, the second describes the
context, and the third is the general entry binding error message, described in
the previous section.

5.2 bcfg2-info
bcfg2-info provides a diagnostic interface for the bcfg2-server logic. When it starts, it
produces a series of messages that are similar to those produced by bcfg2-server; the
only difference is that all communication messages are gone. Once bcfg2-info finishes
processing all pending filesystem events, it leaves you at a command prompt. A dozen
commands are available. Four describe client metadata. Four commands illuminate the
configuration goal construction process. Two commands display the internal structure
of configuration rules. Finally, two commands control the execution of bcfg2-info itself.
These commands are far more useful than reading the repository, because they demon-
strate the results of the bcfg2-server code processing the repository.

clients❖❖ : The clients command displays clients and their profiles.
groups❖❖ : The groups command builds a table of all groups, with a recursively
built list of included groups. Each group is annotated with its profile and cat-
egory status.
bundles❖❖ : The bundles command displays the list of Bundles included with
each group.
showclient❖❖ : The showclient command displays client metadata for a series of
clients, including profile and group information.
build❖❖ : The build command builds a complete set of client goals for a given cli-
ent and places it in a file. These files can be used with bcfg2-admin compare to
find goal differences.
buildall❖❖ : The buildall command builds individual client goals for each config-
ured client and places each in the specified directory. This command is fre-
quently used to test server code upgrades.

buildfile❖❖ : The buildfile command constructs a single ConfigFile entry for a
client. This command is useful for performing point-wise inspections of the
impact of new configuration rules. We frequently use this command for debug-
ging new configuration file templates.

36 / Troubleshooting

showentries❖❖ : The showentries command produces a list of goal entries for a
given client.
generators❖❖ : The generators command produces a list of plugins that can pro­
vide content rules.
mappings❖❖ : The mappings command describes which plugins provide content
rules for each goal entry.
update❖❖ : The update command causes bcfg2-info to process all pending file­
system events.
debug❖❖ : The debug command drops the user into a Python interpreter with all
of the bcfg2-server data structures and code loaded. This is typically used by
developers for low-level debugging.

The main use of bcfg2-info is understanding how configuration rules have been pro­
cessed by the repository handling code.

5.3 Client Debugging
The Bcfg2 client logs to STDOUT and ERR. The verbosity level can be controlled
through use of the -v and -d flags; these respectively increase and decrease the verbosity.
When running in debug mode, users can expect to see the steps executed by the client as
it is running, with extra information along the way. Information displayed includes:

XML-RPC calls: Each XML-RPC call executed by the server on the client’s ❖❖

behalf is displayed, with error information in event of a failure.
Entry verification results: As the client verifies its current state, it individually ❖❖

verifies each goal. Detailed information about each failing goal is displayed.
Installation steps: As goals are installed, detailed command information, out­❖❖

put, and return codes are displayed.
Statistics information: At the beginning of client execution, each step between ❖❖

goal installation, and the completion of goal installation, the Bcfg2 client de­
tails the quantities of goals in good and bad states and the number of goals that
were modified during execution. This information is a subset of the informa­
tion stored in the reporting system.

5.3.1 Common Client Errors
The client can emit a number of error messages during the course of normal operations.
These include:

no server x509 fingerprint; no server verification performed!❖❖ : This error mes­
sage occurs when the client has not specified a fingerprint for the server SSL
certificate. This error can be remedied either through the use of the -F com­
mand line options or by specifying the server fingerprint in /etc/bcfg2.conf.
The following entries are not handled by any tool:❖❖ : This error occurs when
the client detects an entry that no active tool driver handles. This problem can
occur in two cases. Either the entry includes incorrect tag or type information,
which leads the client not to be able to properly recognize it, or the appropri­
ate driver has not been loaded. If the entry is incorrectly described, it can be

Troubleshooting / 37

fixed in the server repository. If the appropriate driver has not been loaded, two
causes are most likely. If a list of drivers is being explicitly listed (using -D or
the equivalent in bcfg2.conf), then the necessary driver may not be enabled. If
the needed driver is explicitly listed, then it is possible that prerequisite tools
are not available on the system. For example, the APT driver requires the dpkg,
apt-get, and debsums commands.
Incomplete entries❖❖ : This error occurs when an entry in the client goals does
not include sufficient information to verify the entry. In this case, it will be
neither verified nor installed, and will be assumed to be incorrect. This error
usually corresponds to the Failed to bind entry server-side error.
Incomplete information for entry ConfigFile:/etc/foo.conf; cannot verify ... ❖❖

due to absence of owner:group:perms attribute(s): This error can occur in
two ways. Different amounts of information are required for verification and
installation; it is possible that an entry includes enough information for veri-
fication, but not enough for installation. Each message describes the missing
attributes.

6. Advanced Task Examples

The tasks in Chapter 4 show how to import a number of everyday configuration ele-
ments into Bcfg2’s realm of control, and these tasks cover the concepts needed for about
90% of configuration elements. However, there are always more complex elements that
require configuration management. In this chapter we will explore some more complex
tasks involving dynamic data, probing clients, and similar concepts.

6.1 Templates: Setting a Hostname
The tasks in Chapter 4 all relied on static files. While the majority of configuration files
are static, at times it is a great advantage to be able to generate files on the fly. Bcfg2 sup-
ports two templating engines for these purposes, Cheetah and Genshi, each of which
has its own merits. These two templating engines are their own full projects and their
documentation is outside the scope of this booklet, but each comes with a full set of
documentation and examples with which to get started.

Before using either template engine you will need to download and install them from
their respective project pages. After installation, adding TCheetah or TGenshi to the
generators line in your bcfg2.conf will enable the template engine plugins during the
next server restart.

Most GNU/Linux distributions use a file in /etc/ to store the machine’s hostname;
SLES, for example, uses /etc/HOSTNAME. This file is usually set at build time and can
be updated by DHCP clients or other scripts to make sure it always makes sense. In this
case, we want to make sure it is always the same name that the Bcfg2 server knows the
machine by. Since the contents of this file would be different on every machine we man-
age, keeping a giant directory full of host-specific static files in the Cfg/ directory would
quickly expand beyond control. By using templates, however, we can simply grab the
hostname that the Bcfg2 server already knows and use that as the contents of the file.

For this task we’ll use the Cheetah templating engine, as it is built more for flat text files
than Genshi. We’ll start by writing the simple template itself, the complete listing of
which is seen in Figure 6.1.

Clearly, this is a very simple template. It consists of only one line, a variable that it in-
herits from the Bcfg2 server itself (see Table 6.1 for a complete list of built-in variables

Contents of TCheetah/etc/HOSTNAME/template:
$self.metadata.hostname

Figure 6.1: The HOSTNAME template

Advanced Task Examples / 39

that are available). In practice any Cheetah constructs can be used in a template, includ-
ing blocks of Python code, but in this case we only need that one line.

When working with static files and the Cfg plugin, we put the configuration files in
a logical place in Bcfg2’s Cfg/ directory. Templates follow a similar but slightly differ-
ent layout: in this case, the file will be named TCheetah/etc/HOSTNAME/template.
Note that the named directory structure is preserved, but with templates the file itself is
named template. This reflects the fact that this file is special and not an exact, static file
as with Cfg. Another notable difference from Cfg is that templates don’t have group- or
host-specific files—all of this logic is up to the template writer using Cheetah constructs
and the server-provided variables self.metadata.hostname and self.metadata.groups. For
example, if we wanted all machines in the web-server group to think their hostname
was www.example.com (a very silly thing to do), we could use the template shown in
Figure 6.2.

The final piece we need is exactly the same as using static files with Cfg: we need to add
a ConfigFile entry to an appropriate Bundle. For completeness this entry is shown in
Figure 6.3, but it is left as an exercise for the reader to decide on a good Bundle to put it
in.

With this template in place, a fresh copy of the file’s contents will be generated each time
a client asks the server for its configuration. Since the contents are generated serverside,
to a client it will appear as just another static file in its configuration.

Name Type Description

hostname String Host name

bundles List Names of Bundles included in this machine’s
configuration

groups List Names of groups to which this machine belongs

categories List Names of categories to which this machine belongs

probes Dictionary Dictionary of probe data keyed by probe name

uuid String This machine’s UUID

password String The password this machine provided to the server

Table 6.1: Metadata available to templates

#if ‘web-server’ in $self.metadata.groups
www.example.com
#else
$self.metadata.hostname
#end if

Figure 6.2: A rather silly HOSTNAME template

<ConfigFile name=’/etc/HOSTNAME’/>

Figure 6.3: A HOSTNAME ConfigFile entry

40 / Advanced Task Examples

6.2 Probes
Templates are a great way to put server-side dynamic data into configuration files, but
sometimes you need to know something about the client before you can generate that
data. Bcfg2 uses the concept of Probes for this purpose. A Probe is a shell script that is
sent to the client and run there before the client’s configuration is generated. The results
of Probes are then passed back up to the server, where they can be accessed by templates
as a part of the client’s metadata.

Warning: This example has the potential to make your system unbootable if used incor-
rectly. During testing you should replace all instances of /etc/fstab with a safe file (e.g.,
/tmp/fstab) and ensure that its contents are 100% correct before using it on a live
system.

Imagine you have to manage a set of machines that were purchased at two different
times. Half of them have a second disk in them that is just used as scratch space and
mounted on /scratch, while the others only have one system disk in them. These systems
could be mixed all about in the infrastructure, so simple grouping won’t help to keep
track of which is which. How would you keep a sane /etc/fstab on all of them?

Figure 6.4 shows the contents of a script that counts the number of IDE devices on a
system, printing out that number on STDOUT. Depending on the hardware involved,
this can work perfectly for differentiating the two classes of machines: those with two
IDE devices (one hard drive and one CD-ROM drive) don’t need a scratch entry in /etc/
fstab; those with three do. This file lives in the Bcfg2 repository in Probes/countdisks.
The file name is the name by which the Probe’s results will be called in a template.

Figure 6.5 shows the contents of such a template, which should make sense after our
work in the previous chapter. Two things to note: first, the self.metadata.probes variable
is a dictionary that holds results from all Probes that ran and is keyed on the name of the
Probe. Second, the probe data is stored as a string, so we explicitly have to turn it into an
integer with Python’s int() function. This file, of course, goes into the Bcfg2 repository in
TCheetah/etc/fstab/template, replacing any copy we might have already had in the Cfg/
directory. Don’t forget to also add /etc/fstab to a Bundle or Base; if you don’t do that,
Bcfg2 won’t bother handing it out to any clients.

#!/bin/sh
ls /proc/ide/ | grep hd | wc -l

Figure 6.4: A disk-counting Probe

proc	 /proc	 proc	 defaults	 0	 0
/dev/hda1	 /	 ext3	 defaults	 0	 1
/dev/hda5	 none	 swap	 sw	 0	 0
/dev/hdc	 /media/cdrom0	 iso9660	 ro,user,noauto	 0	 0
#if int($self.metadata.probes[“countdisks”]) > 2
/dev/hdb1	 /scratch	 ext3	 defaults	 0	 1
#end if

Figure 6.5: A template making use of Probe data

Advanced Task Examples / 41

Once these pieces are in place, the chain of events that happens when a client runs is:

1. The client runs, contacting the server for data.
2. The server replies, handing down the list of Probes that need to run.
3. The client runs the Probes, returning the output of each to the server.
4. �The server generates the client’s configuration, running each involved template in

turn.
5. �When the /etc/fstab template runs, it checks the output of the countdisks Probe

and includes the extra fstab line as needed.
6. The server passes the full configuration down to the client.
7. The client installs its configuration as it normally would.

And with that we have a fully automated backend in place that can dynamically add in-
formation to a client’s fstab as needed.

6.3 Structure Templates
The first two sections in this chapter examine how templates dynamically generate con-
figuration files for clients, but Bcfg2 has the ability to use templates for dynamic server-
side structures too, creating, for example, dynamic Bundles that are updated by outside
information. In this task we will look at a Bundle that creates home directories for users
on machines that don’t mount home directories from a central homes server. This can
be useful on stand-alone management machines that must be accessible even if network
homes aren’t.

Bcfg2 uses the Genshi templating library and its strong XML connections for its Struc-
ture templates. Just as Cheetah templates go in Bcfg2’s TCheetah/ directory, Structure
templates go in SGenshi. However, since they are not attached to a configuration file
path, they all live in that single top-level directory. In that respect, TCheetah/ can be
looked at as the templating analog to Cfg/, while SGenshi/ can be seen as the analog to
Bundler/. Don’t forget that to be able to use SGenshi you’ll have to install the Genshi
templating engine and enable it by adding SGenshi to the structures line in /etc/bcfg2.
conf.

Accounts management is outside the scope of this book, so we will make the assumption
that our organization already has a robust accounts management interface in place and
that it exports an excerpt from the password file containing just administrator accounts
to the etc/passwd.users.management file in the Bcfg2 repository. This task can easily ap-
ply to different file locations and formats with minimal changes.

So, what do we need to make this work? If the list of users were static, it would be easy:
we would just create a Bundle containing a Directory tag for each user. In this case we’ll
do the exact same thing, only using an SGenshi template.

Figure 6.6 (next page) shows the contents of one such template. The top-level tag de-
clares it to be a Bundle, but note the addition of the XML namespace option. This op-
tion doesn’t affect the way Bcfg2 itself handles the file, but it does mark it in a way that

42 / Advanced Task Examples

the Genshi engine will understand. The largest part of the actual content of the file is a
block of raw Python code that reads the file, parsing out user names and storing them
in a list. At the bottom is a Genshi for loop that generates the actual Directory entries
for each user in the list. Note the if statement that surrounds the loop—we only want
to do these actions on machines that are in the management group. Saving this file
as SGenshi/adminhomes.xml in the Bcfg2 repository completes this task. With that
in place we can treat the entire contents as a Bundle, adding it to groups in clients in
groups.xml just like any other Bundle.

6.4 Complex Templates
DHCP is the standard protocol used to dynamically configure a machine’s network
addresses, and it works well from both a usage standpoint and a configuration manage-
ment standpoint: no local state means that all clients can have the same static network
configuration files. However, some machines are too important to rely on the DHCP
service to always work (who hands out a DHCP address to the DHCP server? What if
the DHCP server can’t be rebooted because the secure admin gateway couldn’t get an
address last time it booted?), and their static configurations can become cumbersome to
maintain. The obvious answer to this problem, of course, is to generate their static net-
work configurations on the server using templates.

Some GNU/Linux distributions, such as SLES, throw a wrench into the nice simple
world of templates, though: in SLES 10, for example, the most stable way to store static
network configurations is in files that contain the MAC address of the corresponding
interface in their file names. These files are all stored in /etc/sysconfig/network/ on each
machine, as shown in Figure 6.7.

<Bundle name=’adminhomes’ xmlns:py=”http://genshi.edgewall.org/”>
	 <?python
		 if ‘management’ in metadata.groups:
			 ismgt=True
			 users = []
			 passwd = open(“/var/lib/bcfg2/etc/passwd.users.management”)
				 .readlines()
			 for line in passwd:
				 if(line.startswith(‘#’)):
					 continue
				 splitline = line.split(“:”)
				 users.append(splitline[0])
	 ?>
	 <py:if test=”ismgt”>
		 <Directory py:for=”user in users” name=’/home/${user}’ owner=’${user}’
			 group=’users’ perms=’0755’/>
	 </py:if>
</Bundle>

Figure 6.6: An SGenshi template

Advanced Task Examples / 43

Since different machines will have different file names, it is clear that a simple template
isn’t going to do the entire job. We’re going to need a Structure template, too.

But what about the file names? They’re unique on each machine, so the Structure tem-
plate needs to know the MAC addresses of the interfaces on each client to be able to
generate the correct file names. We know how to do this: using a Probe, we can query
the machine for a list of all of its MAC addresses before the Structure template gets
parsed.

So now we just have one more problem: when the client runs, the server will pass it a
Probe to run. This Probe will return a complete list of MAC addresses on the machine,
and the Structure template will use this information to generate a dynamic list of Con-
figFile entries which will then be handled by the configuration file template engine to
insert the correct IP address information. The problem is that when the ConfigFile en-
tries are created, the Bcfg2 server will start looking for a file to hand back that matches
the entire file name, including the MAC address. It would seem that we are back where
we started, needing to create a large repository of ConfigFiles, each with a unique name.
Fortunately, Bcfg2 has a way to remap configuration element names for the purpose of
data binding: the altsrc tag option.

When used with ConfigFile entries, the altsrc tag can remap any file name to a different
managed name. For example, the /etc/hosts file on Linux and the /etc/inet/hosts file on
Solaris are the same; they’re just located in different places. Managing both separately
could easily lead to variations between the two, so instead the altsrc tag can redirect re-
quests for one file to the contents of the other.

Figure 6.8 shows this option in action in a Bundle, telling the Cfg plugin to hand out
the contents of Cfg/etc/hosts/ when a client asks for /etc/inet/hosts. This option can be
used in many similar cases to keep a repository clean and manageable.

For this task, we can use the altsrc option to remap all of the unique network configu-
ration files generated by the Structure template to a single configuration file template,

> ls /etc/sysconfig/network/
ifcfg-eth-id-00:10:18:2b:53:71	 ifcfg-eth-id-00:14:5e:5a:a6:19
ifcfg-eth-id-00:10:18:30:96:1f	 ifcfg-eth-id-00:14:5e:5a:a6:1b

Figure 6.7: Some SLES network configuration file names
(applies to other distributions as well)

<Bundle name=’netinfo’>
	 <Group name=’solaris’>
		 <ConfigFile name=’/etc/inet/hosts’ altsrc=’/etc/hosts’/>
	 </Group>
	 <Group name=’linux’>
		 <ConfigFile name=’/etc/hosts’/>
	 </Group>
</Bundle>

Figure 6.8: Using the altsrc tag option

44 / Advanced Task Examples

putting the last piece of the complex puzzle in place. Figures 6.9 through 6.12 show the
details of the pieces needed. First, we have the getmacs Probe in Figure 6.9.

This simple script is stored in Probes/getmacs and will print a list of MAC addresses
when run on a GNU/Linux machine. As a probe, it will collect the list needed for the
Structure template. Figure 6.10 shows the complete Structure template for the task.

When a client including the networkinterfaces Bundle asks for its configuration, the
server will use the above Probe to generate a Bundle full of ConfigFile entries for each
client network interface. Each of these entries includes a MAC address in its file name,
and each uses the altsrc option to remap the file to the ifcfg-eth-id-MAC template. The
ifcfg-eth-id-MAC template, the final piece of the task, is shown in Figure 6.11.

The first two-thirds of this file is just a block of Python code that parses the network
interfaces.conf file, which is shown in Figure 6.12.

This template is called once for each ConfigFile produced by the above Structure tem-
plate, with the current file name available to the template in the variable self.path. Here
we just split off the MAC address portion of the file name, generate a dictionary of in-
terface information from the configuration file, and insert the correct information into
the correct lines in the template. This template file, of course, is placed in TCheetah/etc/
sysconfig/network/ifcfg-eth-id-MAC/template.

With all of these pieces in place, we are ready to examine the exact chain of events that
happens when a client requests its configuration.

1. The client runs, contacting the server for data.
2. The server replies with the getmacs Probe for the client to run.
3. The client runs the Probe, returning the output to the server.
4. The server uses the Probe data to generate the networkinterfaces Bundle.
5. For each ConfigFile entry in the networkinterfaces Bundle:

a. �The server uses the altsrc option to remap the real file name to an internal
name.

<Bundle name=’networkinterfaces’ xmlns:py=”http://genshi.edgewall.org/”>
	 <?python
		 files = metadata.probes[“getmacs”].lower().split(“\n”)
		 #if ‘login’ not in metadata.groups
		 #	 files.pop(0)
	 ?>
	 <ConfigFile py:for=”file in files” \
		 name=”/etc/sysconfig/network/ifcfg-eth-id-${file}” \	
		 altsrc=”/etc/sysconfig/network/ifcfg-eth-id-MAC”/>
</Bundle>

Figure 6.10: The Network Structure template

#!/bin/sh
/sbin/ifconfig -a | grep eth | awk ‘{print $5}’

Figure 6.9: A Probe to collect MAC addresses

Advanced Task Examples / 45

<%
mac = self.path.split(“/”)[-1].split(“-”)[-1]
macs2ips = {}
macs2masks = {}
macs2mtus = {}
tfile = open(“/var/lib/bcfg2/etc/networkinterfaces.conf”).readlines()
startmode = ‘auto’
for line in tfile:
	 if(line.startswith(‘#’)):
		 continue
	 splitline = line.lower().split()
	 if len(splitline) < 3:
		 continue
	 macs2ips[splitline[0]] = splitline[1]
	 macs2masks[splitline[0]] = splitline[2]
	 macs2mtus[splitline[0]] = splitline[3]
if not macs2ips.has_key(mac):
	 macs2ips[mac] = ‘’
	 macs2masks[mac] = ‘’
	 macs2mtus[mac] = ‘’
	 startmode = ‘off’
%>BOOTPROTO=’static’
ETHTOOL_OPTIONS=’’
IPADDR=’$macs2ips[mac]’
MTU=’$macs2mtus[mac]’
NETMASK=’$macs2masks[mac]’
NETWORK=’’
REMOTE_IPADDR=’’
STARTMODE=’$startmode’
USERCONTROL=’no’

Figure 6.11: The TCheetah/etc/sysconfig/network/ifcfg-eth-id-MAC template

# MAC	 IP	 Mask	 MTU

fileserver1.example.com
00:14:5E:5A:92:06	 10.10.1.1	 255.255.0.0	 9000
www.example.com
00:14:5E:5A:95:D5	 10.40.1.1	 255.255.0.0	 1500

Figure 6.12: The network interface configuration file

46 / Advanced Task Examples

b. �The server uses the template located at that internal name to generate a net-
work interface configuration file from the server-side configuration stored in
etc/networkinterfaces.conf.

6. The server passes the full configuration down to the client.
7. The client installs its configuration as it normally would.

After the work has been done to put this infrastructure in place, keeping it up-to-date is
a much simpler task than had we used individual static files for every machine; adding
an extra machine is as simple as adding its information to the networkinterfaces.conf
file, and, if an extra option needs to be added to all network configurations, there is just
one template file to update.

7. The Bcfg2 Reporting System

Unfortunately, many people assume that automated processes are working if they don’t
hear otherwise. This is not always the case. To combat this problem, we have imple-
mented a reporting system that describes the current operational state of each client and
higher-level views of overall deployment state.

As we described in Chapter 2, the Bcfg2 client collects a large amount of data. This data
is the basis for the Bcfg2 reporting system. In this chapter, we will describe that report-
ing system, beginning with the data collected. We follow this with a quick overview of
the bcfg2-reports tool. Finally, we describe a day in the life of an administrator using the
Bcfg2 reporting system.

7.1 Reporting System Architecture
As we discussed in Chapter 2, the Bcfg2 reporting system houses data collected by the
Bcfg2 client. When the client finishes making changes, it generates a report describing
its current state and modifications performed by the Bcfg2 client during its operation.
This data is sent to the Bcfg2 server, which, in turn, records it in the reporting system
database.

7.1.1 Data Collection
A large variety of data is stored by the Bcfg2 reporting system. All of this data is col-
lected by the Bcfg2 client and uploaded to the Bcfg2 server as a part of the normal con-
figuration process. As we mentioned earlier, this data is stored in a relational database.
The following is a list of the data stored by the reporting system.

Bad entries: Bad entries are the most important piece of data stored by the re-❖❖

porting system. Detailed information is stored for each piece of configuration
data on a client that explicitly disagrees with one of Bcfg2’s configuration goals
for that client. Each of these records includes information about the mismatch
between the configuration goal and current state. For example, if an incorrect
package version is installed, the two versions (expected and actual) are included
in the record. Similar data is stored for other entry types.
Extra entries: The Bcfg2 client discovers client configuration that is not in-❖❖

cluded in the server-specified configuration goals. For each of these, a record is
generated that includes as much data as is possible. For example, extra package
entries describe the version of package installed.
Modified entries: Each configuration entry that is modified during Bcfg2 cli-❖❖

ent operation is recorded. A description of the complete operation, including

48 / The Bcfg2 Reporting System

initial and final states, is available. This information is comparable to the data
stored for bad entries; the only difference is that the data describes initial and
final states instead of initial and desired states.

7.1.2 The bcfg2-reports Tool
bcfg2-reports is a command-line tool that queries the reporting system database. It can
be used to show all current client states, or can query clients by a variety of criteria. This
tool is a workhorse for monitoring the current state of all clients’ configuration state.
bcfg2-reports will play a major role in each of the examples later in this chapter.

bcfg2-reports can be used in two different basic modes. One returns information about
a particular client. The other finds clients based on reporting system criteria. As you
might expect, the latter mode is much more useful, because you can find unexpected
information with it. Running it with -h will print usage information. In its basic modes,
it can query all clients, clients by status (clean or dirty), or a particular client. It can also
display clients based on individual or combined bad or extra entries. These later options
enable cron jobs that check for clients that are misconfigured for particularly important
entries.

7.1.3 Web Reporting Front End
The Bcfg2 reporting system also has a Web-based front end. It provides a set of basic
views of system-wide status information, including summaries of client and dirty clients,
clients that haven’t checked in recently, and so forth. Each of these views is linked to de-
tailed per-client information.

Figure 7.1: The Bcfg2 Web reporting front end

The Bcfg2 Reporting System / 49

Figure 7.1 gives a small glance at the Web front end. The title box displays one line
with the date and time that the report was run and a large title showing the name of
the Bcfg2 system being reported on, helping administrators of several disconnected net-
works keep track of which network they are currently looking at and how old the data
is. The summary section displays a number of expandable boxes that show how many
machines are in what state. In this case we are doing all right: out of 76 machines, only
6 do not completely match up to their Bcfg2 images. Below the summary box is an in-
dividual report for every machine the server knows about, with bad machines showing
up first. This section of the report shows which exact items are wrong, making it easy to
review items that need to be updated on the client.

7.2 Use Cases
The simplest use for the reporting system is to provide an up-to-date overview of Bcfg2
and its operations. The Web reports give a nice high-level view of what the overall states
of clients are. Any environment will have a normal overall state; when this changes it is a
good sign that something unexpected is going on. For example, when a lot of clients are
in dirty state, that is a good indication that something is going wrong; either the desired
state is not reachable or the client isn’t being given the opportunity to make changes. A
rapid increase in extra entries can signal manual administration activities. All of these
activities are reactive; that is, administrators notice something that doesn’t look correct
and go figure it out.

Once this routine is established, administrators will have a set of conditions that signal
real problems. This likely corresponds to areas of either rapid configuration changes,
important configuration, or security concerns. From this list of concerns, administrators
can use bcfg2-reports to build a set of cron jobs that detect when these bad conditions
occur.

Above all, the reporting system is meant to be a tool that makes the configuration de-
ployment process much more transparent than it normally is. The reporting system
watches over what is going on in the background, making it easy to see what changes
have happened and what problems have occurred. Without it, administrators need to
either confirm on a regular basis that every file they want pushed out to a set of clients is
out there (very time-consuming and unlikely to happen often) or just assume everything
is working correctly and wait for problems to arise (dangerous). The reporting system
is one of Bcfg2’s hidden gems that makes adoption and everyday use of the tool much
easier.

8. What Next?

Having gotten this far, readers should have a good foundation from which to deploy
Bcfg2: the ability to automate common configuration tasks and provide robust enforce-
ment of configuration policies. This leaves the actual, and potentially arduous, deploy-
ment of Bcfg2. In this chapter we present some tips for easing and accelerating this pro-
cess, and we also point out additional information sources for Bcfg2.

8.1 Deployment Tips
Deploying any system management tool can be difficult in a sophisticated environment,
and Bcfg2 is no exception. The following tips will simplify your deployment and speed
the process along.

Start small: Begin by managing limited aspects of a small number of client sys-❖❖

tems. This allows you to get used to the way that Bcfg2 works in a controlled
environment.
Start simple: Bcfg2 allows both simple and complex representations of configu-❖❖

ration. Advanced techniques such as templating are quite powerful, but intro-
duce additional levels of debugging after template development is done. Save
the more complex configurations for the second day.
Set up the reporting system early: The Bcfg2 reporting system is a potent tool ❖❖

for understanding the operations of Bcfg2 across a network. Deploy it as soon
as possible.
Master the server-side query tools early: Tools like ❖❖ bcfg2-info can provide great
insight into the functioning of the Bcfg2 server and configuration rules.
Ease into deployment using dry-run mode: Begin by deploying Bcfg2 in dry-❖❖

run mode, where changes are not automatically performed. This provides an
added opportunity to understand the results of making configuration rule
changes for the overall environment.
Follow an organized deployment plan: During the conversion from manual ❖❖

administration to centralized configuration management, someone will make
changes on a client system, only to have them overwritten by automated con-
figuration processes. Good communication about which aspects of configura-
tion are managed across clients can prevent this from occurring.
Get group buy-in early: Alterations to configuration management procedures ❖❖

impact the most basic aspects of system administration. It is well worth the
time to get everyone on board with the changes and properly trained to inter-
act with Bcfg2.

What Next? / 51

8.2 Further Reading
This booklet, while providing an overview of common areas of Bcfg2 functionality, is
necessarily incomplete. Bcfg2 is under active development and frequently incorporates
new features. There are several places where up-to-the-minute information on new
Bcfg2 features can be attained:

Web site: http://trac.mcs.anl.gov/projects/bcfg2❖❖

IRC channel: irc.freenode.net #bcfg2❖❖

Mailing list: bcfg-dev@mcs.anl.gov❖❖

Appendix A. Bcfg2 XML Options

Bcfg2 uses XML files as configuration rules. Each of the entry types used in the system
has different options, useful in different circumstances. First, in Section A.1, we describe
the overall processing model used by the Bcfg2 server. In Section A.2 we describe each of
these entry types in turn, including all required and optional attributes. In Section A.3,
we document the formats used to control XML-based server plugins. XML was chosen
specifically for its ease of generation; this chapter is particularly useful for users autogen-
erating configuration rules.

A.1 Configuration Processing
As we described in Section 2.2.4, the Bcfg2 server builds client goals using a process
broken down into three steps. The first is client metadata resolution. The second is the
construction of abstract configuration goals. Recall that these goals have entry types and
names, but no client-specific entry data is included. The result of this process is a series
of lists of abstract configuration goals. Finally, each entry in this list is “bound” using
the client’s metadata. This last step places client-specific goal information into the client
configuration. This set of literal configuration goals is served to the client system.

In general, this process is quite straightforward; when presented with an abstract config-
uration goal, the server determines which server plugin has data for that goal and routes
the bind request to that plugin, which deposits client-specific data in the abstract goal,
rendering it a “bound” goal.

Two factors can affect this process. Bound goals are goals that have been placed in the
abstract configuration with client-specific data already included. altsrc attributes modify
how the bind process works for a given goal.

A.1.1 Bound Goals
Bound goals are abstract configuration goals that include literal, client-specific data.
They are created by including an entry that has the prefix Bound added to a normal
goal. When the goal binding process encounters a bound goal, the binding process con-
sists of removing this prefix from the goal tag; no other action is taken.

Bound goals are typically useful in two cases: (1) if a goal is completely static and univer-
sal to all clients, it can be useful to specify it in one place and never process that goal; (2)
when using SGenshi to build templated abstract configuration structures. Use of SGen-
shi is discussed in Section A.3.5.

54 / Bcfg2 XML Options

A.1.2 Use of altsrc

altsrc attributes are a way to tell the Bcfg2 server to bind a goal as if it had a different
name. It is activated by adding the altsrc attribute to an abstract goal. When the server
binds the goal, it temporarily resets the goal name during binding and resets it to the
original name afterward.

This can be useful in a variety of cases. For example, some configuration files have differ-
ent names across platforms while retaining the same format. In this case, it is convenient
to manage a single repository in Cfg for that configuration file.

altsrc attributes are also useful with generic templates. In many cases, a single template
can produce several different files. Templating logic can detect both the file name being
produced and the non-altsrc name for the entry, so that the proper file contents can be
produced.

Finally, altsrc attributes are useful when interacting with Pkgmgr virtual package targets.
These are described in more detail in Section A.3.2.

A.2 Goal Types
This section describes each of the goals that can be managed by Bcfg2. The precise for-
mat described here is used in two ways by the server. Configuration goals sent to clients
contain a series of these, with many of these attributes included. These definitions guide
the behavior of the Bcfg2 client.

The other use for these goal descriptions occurs in the configuration rules specified on
the server. Recall that rules describe a potential end state for a given goal that applies to a
client or group of clients. The goals are frequently described in this format.

A.2.1 Actions
Actions are configuration entries that execute commands when the specified conditions
occur. Action prerequisites are tied to entries in a Bundle, hence actions can only be used
inside Bundles. Actions can also be used as a prerequisite to installation of entries in a
Bundle. Unless exit status is ignored, a failing pre-action will prevent modification of
entries in the enclosing Bundle to be performed; all entries included in that Bundle will
not be modified. Similarly, failing actions are reported via the reporting system, so they
can be centrally observed. All action entry attributes are described in Table A.1. Actions
are typically defined using the Rules plugin.

Name Description Values

timing When the action is run pre, post, both

name Action name String

command The full command to be run String

when Under what circumstances the action will run always, modified

status Should the return code be reported? ignore, check

Table A.1: Action attributes

Bcfg2 XML Options / 55

A.2.2 ConfigFile
ConfigFile goals describe configuration files on the filesystem. The paranoid attribute
controls client behavior; when it is specified, the client retains a backup copy of the file
whenever it is modified. All of the other attributes describe the goal state of the managed
configuration file. These attributes are described in Table A.2. File contents are included
as a text node in the XML element.

Configuration files aren’t typically managed using this XML representation. While this
format can be used either in the Rules plugin or by specifying BoundConfigFile goals in
a structure plugin, several more natural representation formats are provided by the Cfg,
TCheetah, TGenshi, and SSHbase plugins. The first three of these are general-purpose
plugins, while the latter only manages SSH keys.

A.2.3 Packages
Packages are configuration entries corresponding to installed software packages on cli-
ents. When included in Bundles, package entries perform a Bundle-aware verification.
In this case, packages ignore verification failures for any entries also contained in the
Bundle. Due to the large range of features offered by underlying package management,
package entries have the largest number of optional attributes. These are described in
Table A.3 (next page). A majority of the options control client installation and verifica-
tion. However, several of the options (file, srcs, and simplefile) control the behavior of
built-in functions of the Pkgmgr plugin, where package entries are typically described.

The name attribute describes the name of the package; likewise, the version attribute
describes the version. multiarch describes which architectures the package should be in-
stalled for on x86_64 Red Hat–like systems. reloc governs package relocation on RPM-
based systems.

The RPMng driver has the concept of package instances, as several packages of the
same name can be installed at once if they differ in version, architecture, or other attri-
butes. The options available to the instance tag are described in Table A.4 (next page).

A.2.4 Permissions
Permissions entries control the permissions of filesystem entities. These attributes are
described in Table A.5 (next page). Permissions entries are typically managed by the
Rules plugin.

Name Description Values

name Path to configuration file String

perms Permissions of the file String

owner Owner of the file String

group Group of the file String

encoding Contents encoding (ascii/base64)

paranoid Save a file copy upon installation (true/false)

Table A.2: ConfigFile attributes

56 / Bcfg2 XML Options

Name Description Values

name Package name String

version Package version or version=noverify not to do version check-
ing in the Yum driver only (temporary workaround).

String

file Package file name. Several other attributes (name, version)
can be automatically defined based on regular expressions
defined in the Pkgmgr plugin.

String

simplefile Package file name. No name parsing is performed, so no extra
fields get set.

String

verify verify=false not to do package verification String

reloc RPM relocation path String

multiarch Comma-separated list of the architectures of this package that
should be installed

String

srcs Filename creation rules for multiarch packages String

type Package type (rpm/yum/deb/encap/sysv/blast/portage/
freebsd)

String

Table A.3: Package attributes

Name Description Values

simplefile Package file name String

epoch Package epoch Numeric

version Package version String

release Package release String

arch Package architecture String

verify_flags Comma-separated list of rpm verify options. See the
rpm man page for details.

String

pkg_verify Do the rpm verify true/false

install_action Install package instance if it is not installed. install/
none

version_fail_action Upgrade package if the incorrect version is installed. upgrade/
none

verify_fail_action Reinstall package instance if the rpm verify failed. reinstall/
none

Table A.4: Instance attributes

Name Description Values

name Name of the file String

perms Permissions of the file String

owner Owner of the file String

group Group of the file String

Table A.5: Permissions attributes

Bcfg2 XML Options / 57

A.2.5 Directory
Directory entries control the permissions, contents, and ownership of directories. At-
tributes are described in Table A.6. These entries are typically managed by the Rules
plugin.

A.2.6 Symlink
Symlink entries manage filesystem symlinks. Symlink has a single attribute, to, which
describes its target (see Table A.7).

A.3 Plugins
Several plugins use XML files as input. Structure plugins uniformly produce abstract
goal entries with a tag corresponding to the goal types listed in Section A.2. As described
in Section A.1, the altsrc attribute and bound goal modification are also usable.

Most server plugins that use XML input files provide a selection mechanism for de-
scribing rules in increasing priority. This mechanism uses group and client elements to
describe the scope of enclosed goal descriptions. Group and client elements work in the
expected manner: group clauses match for clients that are members of the named group,
and client clauses match for the named client and no other. Nested group and client
clauses are conjunctive; nested scopes apply only in the case when all enclosing clauses
match. When no matching clauses are used, the scope applies to all clients. Clauses can
also be negated through use of the negate attribute.

In the Rules and Pkgmgr plugins, multiple files can define rules that overlap with one
another. Each file is labeled with a numeric priority; when this overlap condition occurs,
the file with the highest priority is used.

A.3.1 Rules
The Rules plugin can manage goals of any sort. All goals are enclosed in a Rules XML
element, which has a single priority attribute. Inside this Rules element, both scope
clauses and goals of any sort can be included.

Name Description Values

name Name of the symlink String

to File to link to String

Name Description Values

name Directory name String

perms Permissions of the directory String

owner Owner of the directory String

group Group owner of the directory String

Table A.6: Directory attributes

Table A.7: Symlink attributes

58 / Bcfg2 XML Options

A.3.2 Pkgmgr
The Pkgmgr plugin is used to manage package goals. It works in a similar fashion to the
Rules plugin; the Pkgmgr plugin adds package-specific functionality. The PackageList
tag is the root element of Pkgmgr input files. It is used to set parameters for all package
goals included within it. Download URLs, file priority, package type, and multiarch in-
formation are all specified in this way. Each is described in Table A.8.

Package descriptions, described in detail in Section A.2.3, are contained inside the Pack-
ageList element. Group or client selection clauses can also be used.

A.3.3 Base
Base is a plugin used to list all base configuration elements for your site. These are most
often the elements that are installed by default by a basic operating system installa-
tion: the libc package, the package that creates entries in /dev, and other independent
operating system packages are good examples. Note that these are independent—unlike
Bundler entries, an update to an element in Base will never affect another element. Base
is likely to hold more packages and independent configuration files than all of your Bun-
dler entries combined, since it is a good place to define any pieces that just need to be
installed without further configuration.

A.3.4 Bundler
The Bundler plugin lets you define dependent configuration elements and bundle vari-
ous elements together into discrete building blocks. An example of dependent configura-
tion elements are the NTP package, service, and configuration files: if the NTP package
or configuration files are updated, the client should restart the NTP service to make
sure the changes take effect. Similarly, if the NTP package is updated, the client should
recheck the configuration file to make sure it wasn’t overwritten by the new package.
Bundles can be very simple, as seen in Section 4.1, complex, or even generated at client
run time. Chapters 4 and 6 provide several examples of how Bundles are used.

Name Description Values

priority Priority Integer

url Download location String

file Package file name. Several other attributes (name, version)
can be automatically defined based on regular expressions
defined in the Pkgmgr plugin.

String

multiarch Comma-separated list of the architectures of this package that
should be installed

String

srcs File name creation rules for multiarch packages String

type Package type (rpm/yum/deb/encap/sysv/blast/portage/
freebsd)

String

Table A.8: PackageList attributes

Bcfg2 XML Options / 59

A.3.5 SGenshi
The SGenshi plugin is used to generate XML structures on the fly. This can include
Bundles, Pkgmgr lists, or any other XML structure that the Bcfg2 server uses. This plug
in uses the Genshi templating engine to do its heavy lifting, making it a very powerful
tool to use when static configurations don’t do everything you need. An example of us-
ing SGenshi is discussed in Section 6.3.

Appendix B. Client Identification

When a client connects to the Bcfg2 server, the server needs to identify it, so that it can
serve the appropriate configuration to the client. During this process, the server also
needs to authenticate the client, so that malicious clients cannot gain access to other
clients’ data. These topics are intertwined; client authentication is dependent on client
identification.

Before a client can be authenticated, its identity must be established. This can be done
in two ways. The Bcfg2 server’s default mechanism uses the DNS resolution to establish
a name for the client. This approach works well in most cases and requires no manual
setup. In settings where clients are mobile or behind NAT, a different approach is re-
quired.

The alternative is the use of a per-client UUID. This UUID is used as the user name in
HTTP basic authentication and is unique to the client; hence, it can be used to differen-
tiate between clients behind NAT or mobile clients.

Once a client has been identified, it must be authenticated. This can be accomplished
through any of several mechanisms. Bcfg2 can be configured with a global password.
This is convenient in cases where unattended system bootstrapping is required—clusters
and the like. Alternatively, per-client passwords can be specified as well. These mecha-
nisms can be intermixed; some clients can use a global password, while more sensitive
systems can use a unique password. Clients can also be configured with a password
but downgraded into insecure mode, where the client can authenticate with either its
password or the global password. Typically, systems will be toggled into insecure mode
for system bootstrapping; once the systems are built, they are reset into secure mode.
All transactions between the client and server occur over an SSL-encrypted socket; SSL
is used as content protection for the transaction. Finally, IP address restrictions can be
imposed on clients; clients will be denied unless they connect from an appropriate IP
address.

The authentication approach used by the Bcfg2 server has been designed to provide
maximum flexibility to administrators. In some situations, security is valued above all
else. In other cases, compromises must be struck for expediency’s sake. The mechanisms
described above provide options to system administrators to tailor authentication to site-
specific priorities.

About the Authors

Narayan Desai is a researcher in the Mathematics and Computer Science division of
Argonne National Laboratory. His work centers on the management and operations of
large-scale HPC and experimental systems. In addition to Bcfg2, he works on schedul-
ing, fault tolerance, and high-performance networking issues.

Cory Lueninghoener is a senior high-performance computing system administrator with
Argonne National Laboratory’s Leadership Computing Facility, where he helps keep very
large computers running smoothly. His interests are currently focused on methods for
running large-scale computing resources with unusually small groups of people. When
not advocating and implementing configuration management strategies, he contributes
design and code to the Bcfg2 project.

	frontmatter.pdf
	ch1
	ch2
	ch3
	ch4
	ch5
	ch6
	ch7
	ch8
	appA
	appB
	AboutAuthors

