
17 Short Topics in
System Administration
Jane-Ellen Long, Series Editor

17

Paul Anderson

LCFG
: A Practical Tool for System

 Configuration

LCFG:
A Practical Tool
for System Configuration
Paul Anderson

Paul Anderson (http://www.homepages.inf.ed.ac.uk/dcspaul/) is the original author of
LCFG. He has worked in system administration for over 20 years, both as a practitioner
and as a researcher. Paul currently works for the School of Informatics at Edinburgh
University, was programme chair for the LISA 2007 Conference, and is the author of the
SAGE booklet System Configuration.

About the AuthorBooklets in the Series

#17: LCFG: A Practical Tool for System Configuration
Paul Anderson

#16: A System Engineer’s Guide to Host Configuration and Maintenance Using Cfengine
Mark Burgess and Æleen Frisch

#15: Internet Postmaster: Duties and Responsibilities
Nick Christenson and Brad Knowles

#14: System Configuration
Paul Anderson

#13: The Sysadmin’s Guide to Oracle
Ben Rockwood

#12: Building a Logging Infrastructure
Abe Singer and Tina Bird

#11: Documentation Writing for System Administrators
Mark C. Langston

#10: Budgeting for SysAdmins
Adam Moskowitz

#9: Backups and Recovery
W. Curtis Preston and Hal Skelly

#8: Job Descriptions for System Administrators, Revised and Expanded Edition
Edited by Tina Darmohray

#7: System and Network Administration for Higher Reliability
John Sellens

#6: A System Administrator’s Guide to Auditing
Geoff Halprin

#5: Hiring System Administrators
Gretchen Phillips

#4: Educating and Training System Administrators: A Survey
David Kuncicky and Bruce Alan Wynn

#3: System Security: A Management Perspective
David Oppenheimer, David Wagner, and Michele D. Crabb
Edited by Dan Geer

#2: A Guide to Developing Computing Policy Documents
Edited by Barbara L. Dijker

17 Short Topics in
System Administration
Jane-Ellen Long, Series Editor

LCFG: A Practical Tool for
System Configuration

Paul Anderson

Published by the USENIX Association
2008

About SAGE

SAGE is a Special Interest Group of the USENIX Association. Its goal is to serve the
system administration community by:

Offering conferences and training to enhance the technical and managerial ❖

capabilities of members of the profession

Promoting activities that advance the state of the art or the community ❖

Providing tools, information, and services to assist system administrators and ❖

their organizations

Establishing standards of professional excellence and recognizing those who ❖

attain them

SAGE offers its members professional and technical information through a variety of
programs. Please see http://www.sage.org for more information.

© Copyright 2008 by the USENIX Association. All rights reserved.

ISBN 978-1-931971-61-4

To purchase additional copies, see http://www.sage.org/pubs/short_topics.html.

The USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA USA 94710

http://www.usenix.org/

First Printing 2008

USENIX is a registered trademark of the USENIX Association.

USENIX acknowledges all trademarks herein.

Contents

Acknowledgements v

1. Introduction 1
1.1 This Booklet 1
1.2 Approaches to System Configuration 2
1.3 What Exactly Is LCFG? 4
1.4 Is LCFG for You? 5
1.5 The LCFG Software 7

2. A Quickstart Tutorial 8
2.1 Installing LCFG (Or Not) 8
2.2 Trying It Out 9
2.3 Beyond the File Component 11
2.4 Writing Custom Components 13
2.5 Where Next? 16

3. Writing and Compiling Configurations 17
3.1 LCFG Configuration Files 18
3.2 The LCFG Language 20
3.3 The LCFG Server 29

4. LCFG Components 34
4.1 The Anatomy of a Component 34
4.2 Some Common Components 37
4.3 More Components 40
4.4 Updating Software 41

5. Managing a Site with LCFG 44
5.1 How Much to Automate? 44
5.2 Who Manages What? 45
5.3 Managing Change 46
5.4 Installing from Bare Metal 47

6. Writing Components 49
6.1 Schema Files 50
6.2 The Component Framework 57
6.3 Testing 70
6.4 Packaging and Installation 72

7. Finally . . . 74
7.1 LCFG Developments 74
7.2 The Future 74

Appendix A. Bootstrapping an LCFG Installation 76

Appendix B. Buildtools 78

Appendix C. The Linux Installroot 82

Index 85

About the Author 89

Figures

1.1. The LCFG Architecture 4

3.1. Standard Mutation Macros 23

3.2. Summary Page 32

3.3. Individual Client Display 32

4.1. Logserver Display 40

6.1. Standard Validation Macros 51

LCFG has been around for over 10 years now, and very many people have been involved
in the development, either with code, associated research projects, or just useful ideas
and feedback. Alastair Scobie, George Ross, Kenny MacDonald, Stephen Quinney, and
Simon Wilkinson have all made significant contributions to the code, and many more
people have contributed to various components.

I am particularly grateful to Stephen Quinney and Kenny MacDonald for allowing me
to use their tutorial examples in this booklet, and for their advice on presenting LCFG
to new users. Thanks also to Jane-Ellen Long for editing and to everyone else who read
draft copies and provided such helpful suggestions.

Acknowledgements

1. Introduction

Even a site with a small network of computers is likely to have hundreds of configura-
tion files.1 The content of these files determines how the overall system works and what
it does; this is what makes the difference between a lab of student machines and the
same set of hardware providing a Web service.

Working out what to put in the configuration files takes a lot of skill and experience.
Any mistakes are likely to cause some kind of failure or security breach. A system ad-
ministrator will usually be responsible for setting these files up correctly and updating
them as the system and the requirements change. This is system configuration.

For a site of any significant size, this is usually too difficult or hazardous to do com-
pletely by hand. LCFG is one of several tools which have been developed specifically to
help automate the configuration process.

LCFG is not for everybody. It takes a lot of commitment and effort to adopt. It requires
an ongoing maintenance effort, and it works best where there is a particularly disci-
plined approach to site management. However, the rewards can be huge; your configu-
rations are much more likely to be correct (and hence secure) and up-to-date. Maintain-
ing them will take less effort, and that effort can be less skilled. Even extreme changes
to the site configuration will be much easier: people often find that LCFG-managed
configurations are in a constant state of flux, but this is simply because LCFG is able to
respond instantly and reliably to changes in requirements.

1.1 This Booklet
This booklet is a practical guide to using LCFG for managing real-world site configura-
tions. The rest of this chapter talks about the architecture of LCFG and explains some
general principles to help you decide whether it is appropriate for your situation. If you
are impatient to see what LCFG feels like in practice, you can go straight to Chapter 2
for a basic demonstration (but you will probably want to come back and read this later).
The remaining chapters go into more detail about LCFG and its use:

Chapter 2 is a “quickstart” tutorial which uses an image pre-installed with ❖

LCFG to provide a hands-on introduction.

1. I tend to talk about “configuration files” because these are the most common way of storing configura-
tion information on UNIX systems—but the the problems are the same even when this information is stored
in databases or behind GUIs.

2 / Introduction

Chapter 3 describes the simple format used to specify configuration param- ❖

eters and talks about how these parameters are manipulated by the LCFG
compiler.
Chapter 4 explains the concept of LCFG ❖ components and introduces some
common examples. These are the small scripts that take the configuration
descriptions and turn them into specific OS configuration files.
Chapter 5 covers the practical issues of using LCFG to manage a real site. ❖

Chapter 6 describes how to write custom LCFG components. ❖

Chapter 7 presents a few concluding thoughts. ❖

LCFG is still evolving, and the details of the implementation will certainly change. The
main features described in this booklet are likely to remain stable, but full documenta-
tion is included with the latest software, which is available from http://www.lcfg.org.
This site also contains slides and recordings of live LCFG tutorials, as well as some re-
search papers and a pointer to the LCFG mailing list.

This booklet does not include any in-depth discussion of the system configuration
principles behind the software. If you are interested in this—and it does help to explain
why LCFG does things in certain ways—then you might like to read my SAGE booklet
System Configuration.2

A Word About Terminology

The machine running the LCFG server code is often just called the server, but I have
tried to use LCFG server whenever there is any ambiguity, to distinguish it from a ma-
chine running some arbitrary service. The term LCFG server is also used to refer to the
code itself, but whether code or machine is meant should be clear from the context;
similarly for the term client.

1.2 Approaches to System Configuration
Unfortunately, system configuration is still a developing subject, and there aren’t any
clear standards or widely recognised approaches; most people start by gradually evolving
their own scripts and tools, based on their original manual procedures.

This approach has a lot of advantages; people can gradually adopt an automated solu-
tion, learning the tools and principles as they go along. There is no “big bang,” and
every one can be reasonably confident that the system is going to continue to work in
the same way as before. The sorts of tools best suited to this approach are usually based
on familiar principles (e.g., UNIX shell programming)—or at least, they specify con-
figurations in terms of familiar concepts such as processes and configuration files (e.g.,
Cfengine3). These tools don’t involve a radical change in the way people need to think
about their systems, and they don’t involve a steep learning curve.

2. http://www.sage.org/pubs/14_sysconfig/.
3. http://www.sage.org/pubs/16_cfengine/16_cfengine.html.

Introduction / 3

There is a problem, however, with this incremental approach. Once the mass of con-
figuration details has been tamed, the higher-level conceptual problems start to become
more apparent: How can you smoothly manage constantly changing configurations so
that services are not disrupted? How can you make sure that different people can work
together on the configuration of a site without conflicting with one another? How can
you be certain that your configuration is always consistent—that clients are always
configured in a way that matches their servers? Can you automatically analyse your con-
figuration to identify any unexpected interactions that might allow an attacker to com-
promise the system? Can you support “autonomic” recovery so that things reconfigure
themselves automatically in the event of a failure?

The types of tools mentioned above are difficult to use in a way that supports this kind
of higher-level thinking. For example, most people who write Cfengine (or shell) scripts
to configure their firewall and their Web server don’t naturally write them in a con-
nected way so that the firewall is automatically updated when the Web server is moved
to a different machine. Other tasks, such as extracting explicit information about service
dependencies, would be even harder (this is very useful if you want to automatically
analyse single points of failure, for example).

Our own in-house installation consists of about 1200 machines (200 of which are
servers of some kind) with very diverse configurations. For a long time, the configura-
tion has been fully automated and “prescriptive”4—we make no manual configuration
changes on production machines, and we like to think of our configurations as extreme-
ly reliable and consistent. Recently, we have been interested in tools and procedures to
help manage these kinds of higher-level concerns; this has spawned a few research proj-
ects, as well as a lot of practical discussion and experimentation.

LCFG5 is the configuration tool we developed to support this environment. It has
evolved over 15 years and currently goes further towards addressing some of the high-
level issues than any other tool that we know of. LCFG uses a very simple and consis-
tent format for writing down configuration parameters, and the complete configuration
of all the machines is usually held centrally on one LCFG server. This means that we
can easily use other programs to analyse the configuration of the whole site, or even gen-
erate some aspects automatically. This is what allows us to check the consistency of con-
figurations between clients and servers, make staged releases of configurations across the
whole site, or quickly reconfigure new machines as replacement servers when one fails.

4. Prescriptive means “of, or relating to the imposition or enforcement of a rule or method.” In the past,
we have sometimes mistakenly used the term proscriptive, which has a different meaning.

5. The name LCFG was originally derived from “Local ConFiGuration system.”

4 / Introduction

1.3 What Exactly Is LCFG?

Figure 1.1: The LCFG Architecture

There are three main parts to the LCFG software (see Figure 1.1):

The LCFG ❖ server. This collates all of the confi guration information from the
source fi les and creates a single XML fi le (the profile) for each machine. The
profi le contains all of the confi guration parameters (resources) for that machine.
The profi le is exported to the LCFG client using a standard Web server such as
Apache.
The LCFG ❖ client. This runs on every machine. It downloads a new profi le for
the machine whenever the confi guration changes.6 The LCFG client works
out which components are affected by the change and calls the corresponding
script for each one. The client can be confi gured to return a simple acknowl-
edgment to the server so that it can keep track of any systems that fail to re-
confi gure correctly.
The LCFG ❖ components. Each machine includes a collection of scripts called
components. These are responsible for translating the LCFG resources into
machine-specifi c confi guration fi les. Each component is responsible for a self-
 contained subsystem—for example, the password fi le or the Apache server.
The component generates the confi guration fi le and takes care of other low-
level details such as restarting any associated daemons.

All of the interesting work happens in the LCFG server. There is no one-to-one corre-
spondence between the source fi les and the profi les; the profi le for a machine is created
by assembling information from many source fi les according to the classes assigned
to that machine. For example, a particular machine may be a “Dell GX250” running
a “Web server” in “building X.” The LCFG server collates and merges all of these re-
sources, managing any confl icts and prioritisation. This is what allows these different
aspects to be managed by different people.

In addition to simply merging resources, the LCFG server can perform some more
complex operations. For example, it can collate parameters from many machines and
present them as part of the confi guration for some other machine; this could be used to

Source

Files

LCFG

Server

XML

Clients

Profile
Client

Components

XML XMLXML

LCFG

client

6. The LCFG server sends a short notification to the LCFG client when a change occurs. The client also
polls the server regularly in case it misses a notification.

Introduction / 5

collect the IP addresses of all the Web servers to include as part of the configuration for
the firewall machine (this is called a spanning map).

The LCFG configuration is truly declarative. This means that it specifies what the con-
figuration should look like rather than specifying what changes to make. The SAGE
System Configuration booklet explains why this is a very important property. For ex-
ample, it allows an LCFG client safely to miss configuration changes or receive the same
changes multiple times—the configuration is simply synchronised with the most recent
profile, and it is always correct.

In addition to maintaining the configuration of an existing system, LCFG supports a
number of techniques for installing new systems from bare metal, preconfigured accord-
ing to their LCFG specification.

1.4 Is LCFG for You?
Configuring a modern computing installation is complicated. Good configuration
tools are like compilers in that they will help you translate your overview into a detailed
implementation. But the real work lies in developing the specifications for your installa-
tion. It is not possible to take LCFG (or any other tool) out of the box and expect it to
create a complete, functional site; it needs careful thought and effort to develop specifi-
cations appropriate to your needs and to express them in the appropriate language.

Adopting or changing the configuration tool for a large site is also a big commitment;
people need to learn new technologies and procedures. They need to gain sufficient
confidence in the system to trust it with vital services, and any new system is likely to
remain in place for a long time.

Unfortunately, most sites probably develop their configuration strategies gradually,
without ever making any conscious decisions based on the kind of high-level issues we
have been discussing. By the time the site configuration is mature enough for these
problems to become apparent, there is usually a huge investment in the existing systems.

If you are thinking about adopting a new configuration technology, you should prob-
ably spend some time evaluating the available tools against your own particular require-
ments. The SAGE System Configuration booklet provides a good background to the fac-
tors you may want to consider. Here are a few key points about LCFG:

LCFG is designed to separate the configuration problem into two main lay- ❖

ers. The configuration of the site is represented in a simple, uniform language.
This forms a solid foundation for other processes (manual or automatic) to
manipulate the whole site configuration. The components translate this into
the appropriate details for particular configuration files.
LCFG is not simply for managing desktop machines (although it is very good ❖

at this). That work often just involves slight variations on similar configura-
tions (such as different sets of software packages). The advantages of LCFG

6 / Introduction

 become more obvious when managing servers, which tend to have more
diverse configurations with complex relationships among them. We manage
over 200 servers running interrelated services such as DHCP, DNS, NFS,
AFS, SMB, NTP, IMAP, SMTP, SSH, and HTTP. This is fairly typical for a
large site.
LCFG is particularly effective for larger sites where there is a mixture of skills ❖

and specialists collaborating on the management of the whole fabric. It breaks
down the configuration task into at least three levels: domain specialists (e.g.,
Mr. Networking), who write component code and perhaps Web forms; more
general system administrators, who write macros encapsulating configuration
options for various services; and technicians, who assign these sets of con-
figuration parameters to specific machines. LCFG helps these people to work
together without conflicting.
This LCFG model is different from the traditional one, in which individual ❖

system administrators often have responsibility for all aspects of a particular
machine; our devolved approach becomes necessary as soon as configurations
reach sufficiently specialisation that one person can no longer be expected to
understand all of the implications.
LCFG ships with a large number of standard components for common sub- ❖

systems such as Apache, DNS, and Kerberos. These components translate the
LCFG parameters into the corresponding configuration files. This means that
a lot of things can be configured simply by providing parameters to standard
components. Almost every site will have some special requirements, though,
and some editing or creation of local components will almost certainly be nec-
essary. The amount of work is usually small, but it does require coding ability,
and it takes time to understand the framework.
The components are written within a simple, standard framework. This means ❖

that they can be shared between sites much more easily than arbitrary scripts.
LCFG can be used as a prescriptive tool, i.e., to manage every aspect of a ❖

machine so that there is no manual intervention (or configuration by other
tools). There are lots of advantages to doing this, and the SAGE configura-
tion booklet covers the topic in some depth. But this does not have to be the
case—LCFG can easily be used to manage just a few configuration files. The
rest of the system can be managed manually or configured using other tools.
What is important is to avoid a conflict between these approaches. If LCFG ❖

is being used to manage some aspect of the system, administrators must trust
the tool and not fight it by making manual changes. This sometimes requires
discipline and education.
LCFG configuration parameters are specified in a uniform format so that they ❖

can easily be interpreted and generated. These parameters are translated (by
components) into machine-specific configuration files. In one sense, the LCFG
specification is higher-level: it represents more information than the configura-
tion files themselves. This means that it is not really practical to take an exist-

Introduction / 7

ing system and automatically generate an LCFG configuration for it. To do
this, you need to understand the configuration of the machine (the “why” as
well as the “what”) and manually create an equivalent LCFG configuration.
A tool which interfaces to so many system components is naturally sensitive ❖

to updates and variations between OS versions. Our own site is based largely
on Red Hat/Fedora/Scientific Linux, and these are well supported; tested ver-
sions of many components are available for various releases of these operating
systems. With a good understanding of the framework, porting the core and
relevant components to other UNIX-based systems should be fairly straight-
forward; we are running production systems based on Solaris and Mac OS X,
for example. But these are not so well supported or packaged for export, and
more commitment would be required to manage these platforms.
There is no technical reason why LCFG should not be used under other op- ❖

erating systems A demonstration LCFG client has been created for Microsoft
Windows, together with components for Windows-specific applications such
as Registry modification. However, Microsoft and the Windows world have
their own approaches to configuration, and we have never had strong enough
need to develop this platform.7

1.5 The LCFG Software
A lot of software is available on the LCFG Web site, which can be confusing. This is
largely because the Web site includes all of the components that we have developed
for various subsystems. You will probably find an existing component for many of the
things you want to manage. The software is continually evolving, and we continue to
export all of the regular releases. This means that you can continue to download soft-
ware compatible with the version you are currently running without being forced to
upgrade. Finally, LCFG components are often tied closely to the version of the operat-
ing system, and we export packages and tested versions for several different operating
systems.

The packages are available individually or in bundles:

The “core” bundle contains the libraries and shared code, the LCFG server ❖

and client, and a few basic components. This is a reasonable starting point for
experimenting with the system (but see Chapter 2 for the easiest way to get
started).
The “standard” bundle contains the most common components. ❖

The “optional” and “contributed” bundles contain additional components. ❖

There are also sets of prerequisite packages (e.g., Perl modules) which are not part of
LCFG and not normally shipped as part of the OS. Various disk images (e.g., a demon-
stration system as a VM image) and sets of sample configuration files are also available.

The pre-packaged software is shipped in the native format for the OS, usually RPM.
Direct access to the CVS repository is available for building on other platforms.

7. In particular, we run very few Windows servers.

For those who like to experiment and learn by doing, it can be difficult to get started
with LCFG—it is a large system with a lot of documentation. This chapter is a practical
introduction to the tool, using a pre-prepared image. This provides an instant LCFG en-
vironment for experimentation, without all the issues of compatibility and installation.

The examples in this chapter are based on tutorials which are available as slides and au-
dio files on the LCFG Web site.

2.1 Installing LCFG (Or Not)
Once LCFG is running, it can update itself without manual intervention, and it can
automatically install new machines with LCFG already present. If we want to use LCFG
at a new site, though, there is a “bootstrapping” problem: how do we get an initial ver-
sion up and running?

Appendix A describes how to do this manually—a number of packages and an initial
set of configuration sources need to be installed. But if there is no distribution of LCFG
built specifically for your target platform, binaries will need to be built and configured,
and there may be some compatibility issues. This effort is worthwhile for a committed
production site, but probably not if you are simply interested in evaluating the system.

By far the easiest way to get started is to use a virtual machine image. The LCFG Web
site contains a VMware image which has been prebuilt to include a minimal set of
LCFG software and configuration files. You can use this image immediately with VM-
ware Player to work through the following examples. You can then use it as an LCFG
server to bootstrap other physical machines, including new LCFG servers.

You will need about 2.5 GB of disk space to download the complete OS image:

$ rsync -av rsync.lcfg.org::vmplayer/lcfgfc6 .

In the following examples, you will be making some persistent changes to this image, so
you may want to make a backup copy to avoid having to download it again if you later
want a clean copy.

VMware Player is available from http://www.vmware.com. Under Mac OS X, you will
need VMware Fusion. Currently, VMware Player is free and VMware Fusion is available
at small cost.

2. A Quickstart Tutorial

A Quickstart Tutorial / 9

2.2 Trying It Out
If you run the starter image, it should boot a copy of Fedora Core 6 with the core LCFG
software already installed and the necessary daemons automatically started. You should
be able to log in as the user lcfgfc6 with the password lcfgfc6. Typing startx will start
the window system, and you should be able to obtain a root shell in one of the windows
using sudo (use the same password).

The virtual machine is configured to run both an LCFG server and a client, so it is using
LCFG to configure itself. If we edit the source file for the local machine’s configuration,
the LCFG server will recompile the configuration and pass it to the LCFG client. The
machine will then reconfigure itself to match the new specification:

Change directory to /var/lcfg/conf/server/source and look at the file localhost. This is
the configuration description for the local machine. It is a plain-text file and supports
the same syntax as the C preprocessor—you can use C-style comments (not C++) and
directives to include other “header” files. The example includes some standard header
files with default configuration information—we won’t go into details of their contents
at this stage. What we are going to do is to change this file to add some additional con-
figuration information:

/* lcfg example host source profile */

#include <local/site.h>
#include <lcfg/os/minimal.h>
#include <lcfg/hw/vmware_ws5.h>
#include <lcfg/options/lcfg-server.h>

/* eof */

As a simple example, let’s use LCFG to manage the contents of the file /etc/motd. This
is the “message of the day” file which is displayed when a user logs in. Notice that this
file is initially empty. We need to add some configuration “resources” to the source
file. Copy the file /root/workshop/part1/example1 to replace localhost in the source
directory. This file is heavily commented, but there are only four new lines of real
 configuration:

!file.files mADD(example)
file.file_example /etc/motd
file.type_example literal
file.tmpl_example Welcome to the LCFG tutorial.

This probably seems rather cryptic at this stage, but we are not interested in the details
for now. You can read the comments and manual pages later to see exactly what these
resources mean. Simply note the uniform syntax, which includes the name of the com-
ponent and the name of the resource, separated by a period. This is followed by the
value for the resource. In this case, we are asking the file component to manage the file
/etc/motd (in addition to any other files it is managing) and to place the literal string
Welcome to the LCFG tutorial. into the file.

Now look again at the file /etc/motd. It should contain the string Welcome to the
LCFG tutorial. Notice that this has been reconfigured without running any explicit com-
mands—all we did was to edit the source file!

10 / A Quickstart Tutorial

So What’s Going On?

Behind the scenes, this simple file change has involved quite a long sequence of events.
We are going to follow the process step by step. These internals are going to seem rather
complicated at this stage, but the reasons for them will become clear later. Of course, as
you have just seen, you don’t need to be aware of all these details when configuring ma-
chines in practice.

The LCFG server daemon continually polls the source files and recompiles them when
they change. The logfile for the LCFG server is /var/lcfg/log/server. If you look at this
file, you will see the LCFG server noticing the changes you made to the localhost file
and recompiling the configuration.

The result of the compilation is an XML file that contains the complete configuration
of the machine (or as much of the configuration as we are managing with LCFG). This
XML file is /var/lcfg/conf/server/web/profiles/localdomain/localhost/XML/profile.xml.
Of course, you can look at this file, but it is not intended for human consumption.
The XML file is exported by a standard Apache Web server at the URL http://localhost/
profiles/localdomain/localhost/XML/profile.xml.

The LCFG client gets a short notification from the server when the profile changes (it
also polls for changes occasionally. in case it misses the notification). When it sees a
change in the profile, it downloads the new profile from the above URL. You can see this
happening in the client logfile /var/lcfg/log/client:

new profile: http://localhost.localdomain/profiles/
 localdomain/localhost/XML/profile.xml
last modified Fri Jan 25 11:50:07 2008
profile accepted: 93d11c922e99b5d0d26b7c1a8397e4ce

The LCFG client then compares the new configuration with the existing configuration.
If any parts of the configuration have changed, it calls the corresponding components to
implement the change. You can see from the client log that that it has detected a change
in the file resources and called the corresponding component:

reconfiguring component: file.configure
[OK] file: configure

The log for the file component (/var/lcfg/log/file) finally shows the component making
the modifications to the motd file:

>> configure
configuration changed: /etc/motd

The client component normally returns a short acknowledgement to the LCFG server,
which keeps a status page. This shows which LCFG clients are up-to-date and displays
any configuration errors. You can see this using a standard Web browser (in the supplied
image, it’s Firefox) at http://localhost/cgi/. Clicking on the localhost link will provide
details of the individual components.

The command qxprof can be used to inspect the resource values currently in use on
any machine. For example, qxprof file will display the resources for the file component.
Notice that there are far more resources than those which you explicitly set in the source
file. The values for these may have been set as defaults for the component, or they may

A Quickstart Tutorial / 11

have been set in the header files we included in our source file. The -v option can be
used with qxprof to display the provenance of all the values.

You might like to spend some time experimenting before reading further. There are a
few more example source files (in the same location as the first) which illustrate some
other features of the file component:

example2 ❖ shows how the file component can also manage file attributes.
example3 ❖ shows variable substitution.
example4 ❖ shows directory and symbolic link creation.

You might also find it useful to deliberately create some syntax errors in the source file
and see how these are reported on the status page. Example 6 contains a deliberate error
which is not just a syntax error. You may like to experiment with this and see whether
you can locate the problem using the tools above (the answer appears below).

Why Is This So Complicated?

We have installed a lot of software and configuration files. We are running two daemon
processes and a Web server. We have written some configuration in a strange language.
And the end result is a simple message in one file. Why is this so complicated?

We have only demonstrated with a very simple example, but we are using the full LCFG
system. This means that we are now in a position to do much more powerful things with
very little additional effort. Here are some examples:

The LCFG client and server are themselves configured from LCFG resources. ❖

This means that we can change their configuration just by adding appropriate
resources to the source file.
By changing one resource, we can run the LCFG client and server on separate ❖

machines.
By simply copying the existing source file, we can configure as many LCFG ❖

clients as we like.
By factoring common resources into shared header files, we can instantly ❖

change the configuration of all the LCFG clients (or any subgroup) just by
 editing the shared header file.
We can easily add more standard components to manage more of the client ❖

configuration.
We can easily create code to read or write these header files. This could be used ❖

to provide a simple Web interface, validate configurations, or generate them
automatically.
We can use an ❖ install mechanism to automatically create new machines from
scratch. These would be built directly with the specified configuration. We
could use this to rebuild replicas of failed machines or to clone machines for a
cluster, for example.

2.3 Beyond the File Component
LCFG includes a templating mechanism, which is extremely useful when a few values in
a configuration file vary between different machines, but the bulk of the configuration

12 / A Quickstart Tutorial

files remains the same. A common template can be installed on all the machines, and the
profiles need only contain the values for the “variable” parts. Since the template itself is
the same for all machines, it can be distributed in the same way as the software packages
(see section 4.4).

The file component can make use of this template processor automatically. Example 6
uses it to set a specified port number for inbound ssh connections:

!file.files mADD(example)
file.file_example /etc/ssh/sshd_config
file.type_example template
file.tmpl_example /root/sshd_config.tmpl
file.owner_example root
file.group_example root
file.mode_example 0600
!file.variables mADD(port)
file.v_port 222

As was mentioned earlier, this example contains an error. When you install this configu-
ration, the log from the file component shows that the specified template file does not
exist. The file is actually in /root/workshop/part1. Look at this template file and notice
the syntax used to substitute the port number from the resources.

Now change the source file to correct the error in the template location and verify that
the sshd file is correctly reconfigured.

If we were using this in a real environment, we would probably include all of these re-
sources in a separate header file. This would allow us to add them to any profile with a
single statement. Individual machines could override specific values—for example, some
machines may want to specify a different port number, which they could do by just
overriding the one resource.

Assuming that the sshd configuration file has now changed correctly, try running
ssh -p 222 localhost. You should find that this does not work, because the ssh daemon
has not been restarted. If you restart the daemon manually with /etc/init.d/sshd reload,
you should be able to log in with the command above.

This illustrates one reason why we might want to use a custom component rather than
just using the file component: when the configuration changes, we need to do more than
simply change a configuration file. The sshd component is customised for managing
sshd. It starts and stops the daemon, as well as restarting it whenever the configuration
changes:

Copy the configuration file /root/workshop/part2/example7a to the localhost ❖

source file.
Look at the status page and note that this example has added three new com- ❖

ponents to the profile—nsswitch, logserver, and openssh (it may take a
few seconds for the status page to update). Notice also that the icon for the
openssh component shows that it has not yet started.
Look at the sshd configuration file and notice that it has not changed. ❖

A Quickstart Tutorial / 13

Start the component with ❖ om openssh start. When the status page refreshes,
it should show that the component has now started (again, there may be a few
seconds of delay here).
Look at the sshd configuration file and notice that it has now been recreated. ❖

Once the component is started (which would normally happen at boot time), it will
track configuration changes by rewriting the configuration file and restarting the
daemon whenever the openssh resources change. Example 7b contains the necessary
openssh resources to set the port number to 222. Install this configuration and you
should be able to log in on this port as soon as the reconfiguration occurs (without
manually restarting the daemon). You might want to look at the process ID of the ssh
daemon before and after the reconfiguration to verify that it really is being restarted.
The logfile for the ssh component also records these operations.

The openssh component needs to restart the daemon whenever the configuration chang-
es. This is one reason why you might want to write a custom component (Chapter 6 lists
some other reasons).

2.4 Writing Custom Components
LCFG provides a lot of support for writing new components, so it can take a while to
become familiar with the framework. Chapter 6 covers this in some depth. But people
are often surprised at how little work is required to create a new component from
scratch. This section works through a simple example. If you are not interested in under-
standing how to write your own components at this stage, you can skip this section for
now.

#!/bin/sh

The message comes from the command line argument
message=$1

Save the PID of the daemon so we can find it
echo $$ >/var/lcfg/tmp/chatterd.pid

Log the fact that we are starting
echo ‘date‘ : chatterd starting >>/var/log/chatterd

Chatter away—write message to log every 2 seconds
while true ; do
 echo ‘date‘ : $message >>/var/log/chatterd
 sleep 2
done

This script is a very simple daemon called chatterd—it writes a message to a logfile every
two seconds. The message is supplied on the command line. The process ID is saved in a
file so that we can find the appropriate process to kill when we want to stop the daemon.
It is included on the demonstration image, and you can try it out manually:

Run, as root, ❖ /usr/lib/chatterd “hello world”.
In another window, watch the logfile with ❖ tail -f /var/log/chatterd.
Stop it (in another window) with ❖ kill ‘cat /var/lcfg/tmp/chatterd.pid‘.

14 / A Quickstart Tutorial

Creating a Component Skeleton

If we wanted to manage chatterd with LCFG, we would probably want to supply the
message as an LCFG resource. And we would need to stop and restart the daemon
whenever this message was changed. Let’s look at what is involved in writing a compo-
nent to do this.

The command lcfg-skeleton generates “starter versions” of all the files we need for a new
component. Try this:

$ lcfg-skeleton
Name of component [mycomp] ? chatter
One line description [] ? Example component
Add to CVS (yes/no) [no] ? no
Perl (pl) or Shell (sh) [sh] ? sh
Component author [] ? Joe Smith
Author email [lcfgfc6@localdomain] ? Joe@foo.com
Platforms [Fedora3, ..., Scientific5] ? Scientific5
Include regression test files (yes/no) [yes] ? no
Restart component on RPM update (yes/no) [yes] ? yes
file: ChangeLog
.....
lcfg-chatter not added to cvs

This creates a directory called lcfg-chatter with a number of files. We are only interested
in three of these for now:

chatter.def.cin ❖ : A skeleton for the schema defining the resources.
chatter.cin ❖ : A skeleton for the component code.
config.mk ❖ : Build-time configuration variables.

Normally, we would create and package the component for production. But we are go-
ing to run it directly, so you must delete the file test.mk. If you do not do this, the com-
ponent will be built with test-time pathnames and will not work. Delete this file now.

The LCFG buildtools package includes a script to take the variables in config.mk and
substitute them in the .cin file. Type make and then compare the files chatter.cin and
chatter to see the substitutions. Type make clean to delete the generated files.

Creating the Schema

First, we need to create a schema file (defaults file) which defines the resources our com-
ponent is going to use. If we want to try out the component, we then need to install the
schema file and include it in the profile for our machine.

Edit the file chatter.def.cin (not chatter.def !) to add these lines:

message undefined
@message %string(message): !/^undefined$/

A Quickstart Tutorial / 15

The first line defines a new (string) resource with the name message and the default
value undefined. The second line is a validation condition which will raise an error if the
final value of the resource for any particular machine is left undefined.

Type make install to install the schema file. Notice that this substitutes the variables
from config.mk and installs a copy of the schema file in /usr/lib/lcfg/defaults.

We are now ready to add the component resources to our profile. Before you do this,
you might want to monitor the LCFG server and client logfiles (in two separate
windows):

$ tail -f /var/lcfg/log/server
$ tail -f /var/lcfg/log/client

Now edit the localhost profile to add the following resources:

!profile.components mADD(chatter)
profile.version_chatter 1
chatter.message Hello World

The LCFG server will notice the change to the source file and recompile it. You might
want to watch the logfiles and check the status page. Once this has compiled, you can
inspect the value of the new resource on the LCFG client using qxprof chatter. You
might like to try removing the chatter.message resource—notice how the validation
condition that we included will flag this as an error.

Now we are ready to write the component code.

The Component Code

The file chatter.cin is a skeleton for the component code. This includes a small amount
of code to invoke the framework routines, and three skeleton functions:

Start() ❖ is called when the component is started.
Stop() ❖ is called when the component is stopped.
Configure() ❖ is called when the configuration is changed.

Fill in the body of the functions as follows (take care to copy the quoting correctly):

Start()
 Daemon ”/usr/lib/chatterd ‘$LCFG_chatter_message’”
 return

Stop()
 PID=‘cat /var/lcfg/tmp/chatterd.pid‘
 kill $PID
 return

Configure()
 IsStarted && Stop && Start
 return

16 / A Quickstart Tutorial

This makes use of a number of utility functions which are described in Chapter 6. The
Start() function starts the chatterd daemon in the background. The Stop() function kills
the daemon using the process ID that is stored in the file. The Configure() function sim-
ply restarts the daemon to pick up the new value for the message resource. Notice how
the value of the LCFG resource is automatically made available as a shell variable.

The component can now be installed just by typing make install. Before starting the
component, you might like to monitor the following logfiles (in separate windows
again):

$ tail -f /var/lcfg/log/chatter
$ tail -f /var/log/chatterd

You can now start the component with om chatter start and stop it with om chatter
stop. Most important, if you simply change the message resource in the source file, it
should propagate through the profile and the component should restart automatically so
that the daemon picks up the new message with no manual intervention.

Although we have glossed over a lot of background, you should notice how little code
we have had to write to create this custom component (seven lines, apart from the skel-
eton creation). You might find it worth experimenting with the example a little more
before continuing—for instance, you might extend it so that the time interval could be
set from a resource rather than being fixed at two seconds.

2.5 Where Next?
We have talked a lot about the LCFG components—how to create new ones, and how
they translate the resources into real machine configurations. The real power of LCFG
comes from the way that the LCFG server can manipulate the resources to control the
configuration of the whole site. The next chapter goes into a lot of detail about the
LCFG server and the facilities it provides. Chapter 4 describes some of the standard
components that are available.

You can continue to use the VM techniques that we used in this chapter to experiment
with all of these new features. For example, you might:

Create additional virtual machines (either on the same or different physical ❖

machines). By changing the LCFG client resource, you could use one LCFG
server to configure all of these virtual clients.1 This would allow you to experi-
ment with a whole simulated site.
Add additional components to the virtual machines, simply by installing the ❖

RPMs off the LCFG Web site. This would allow you to try out all of the
LCFG components.
Write new components to configure an application of your own. ❖

Beyond this, it is necessary to start thinking about how you might use LCFG to manage
the overall configuration of your own site. Chapter 5 covers some of these issues.

1. It may be necessary to reconfigure the networking used by the virtual machines to provide the appro-
priate external access.

The LCFG server compiles the source files describing the configuration of a whole
group of machines and generates an individual profile for each one. The term compile
is rather too grand—the LCFG server and the source language are really quite simple.
But it provides several ways of manipulating the resources, letting us think in terms of
groups of machines and their relationships, rather than just individual machines.

For example, a very simple mechanism for “including” files lets us factor out groups
of resources that define a particular feature. We can then add this feature to a specific
machine just by including the appropriate header file. There may be a header file which
would turn a machine into a Web server or one which would configure its authorisation
files as a student lab machine. The source files in the quickstart tutorial include a header
file to configure the machine as an LCFG server.

The header files can be included hierarchically, so we can create header files for higher-
level concepts such as “student lab machine.” These will probably include separate
headers for things such as authorisation, software packages, and services. But these dif-
ferent aspects are not always completely independent: each header file may contain some
resources for several different components. Often, the values for these resources will
conflict when the header files are combined. One important feature of the LCFG server
is the ability to specify how conflicting resources are handled: one value may take prior-
ity, or the final result may be a combination of the two values. For example, two values
for the same resource may be combined in a list, or numerically added, depending on
the meaning of the resource. This mutation is an important feature of LCFG which al-
lows different aspects to be created by different authors without having to resolve every
apparent conflict manually.

Another feature of the LCFG server is the ability to create spanning maps. These al-
low the value of a resource to be determined automatically by collating the values of
some other resource from a whole set of machines. For example, the IP address of every
machine that is configured as a Web server may be automatically added to a particular
spanning map. The firewall machine would then be able to use this spanning map to get
a list of IP addresses for all the Web servers and automatically use these to configure the
HTTP access.

This chapter describes the features of the LCFG server. It starts with a description of the
various types of configuration file and explains the configuration language. It finishes
with some practical aspects of running an LCFG server, such as monitoring and access
control.

3. Writing and Compiling Configurations

18 / Writing and Compiling Configurations

3.1 LCFG Configuration Files
All the configuration information for LCFG is stored in plain-text files on the LCFG
server. You can back up the configuration of the entire site just by saving this set of files.
If you use CVS or some other version-control system (which we recommend), you can
roll back the configuration of your entire site to any point in the past. You can automati-
cally generate some aspects of your configuration by writing programs to create or edit
these files (a Web interface, perhaps).

In a live production environment, you will probably want to control access to these files
and manage the release of changes. Chapter 5 talks about some of these issues.

There are four different types of configuration file: source files, header files, schema files,
and package lists.

Source Files

A source file contains the configuration description for one machine.1 Every machine
being managed by LCFG must have its own source file. In practice, source files usually
contain only those configuration parameters that are unique to that particular machine;
common parameters are factored out into header files. It is easy to create source files
automatically from scripts or GUIs if you have too many to create by hand. A typical
source file may look something like this:

#include <lcfg/os/redhat71.h>
#include <lcfg/hwbase/dell_optiplex_gx240.h>
#include <inf/sitedefs.h>

dhclient.mac 00:06:5B:BF:87:2E

You can use the command qxprof server.srcpath to find the location of the source files.
The tutorial image uses /var/lcfg/conf/server/source, which is typical.

Header Files

Header files have the extension “.h”. They contain common sets of configuration param-
eters which can be included by the source files or other header files.

Header files contain the same kind of information as the source files—i.e., they define
values for LCFG resources. Some header files may contain information about particular
hardware, some may contain information about specific site policies, some may contain
information about services, etc. The organisation of these header files is very important
in managing the overall configuration of a site.

You can use the command qxprof server.hdrpath to find the location of the header files.
The path may contain multiple directories which are searched in order. You may want to
look at some of the header files available on the tutorial image.

1. There are a few cases where source files may not correspond to real physical machines. This is often
useful in conjunction with spanning maps. For example, we can create a “dummy” source file for each printer.
The information about all the printers can then be collated for use by the print server, or the site inventory.

Writing and Compiling Configurations / 19

Schema Files

Schema files have the extension “.def”. These are sometimes referred to as dotdef files
or default files. There needs to be one schema file for each component. It serves two
 purposes:

It defines the resources the component uses, and possibly some validation or ❖

type information for them. This is used by the LCFG server for validating con-
figurations and generating the profile.
It defines default values for the resources. These values are used in the profile ❖

if no explicit value is provided by the source files.2

There may be several versions of a schema file for each component, which allows the
LCFG server to support clients running different versions of the component. The re-
source profile.version_component determines the version used by a particular client.

The schema version is part of the default filename. There is not always a new version of
the schema when the component is updated: the schema needs to change only when the
format of the resources is changed in an incompatible way.

The schema files are created by the authors of the corresponding components and in-
stalled on the LCFG server. Normally they should not be edited. If you wanted to create
a local variant of a schema file, you should probably copy the file and assign it a local
schema version.

The default mechanism for building components under Red Hat/Fedora Linux auto-
matically generates an RPM containing the schema file when the component is built.
These RPMs have names of the form name-defaults-schema.

You can use the command qxprof server.defpath to find the location of the schema files.
The path may contain multiple directories, which are searched in order. You may want
to look at some of the files available on the tutorial image.

Package List Files

Package lists specify the software packages to be installed on a machine. Historically,
these have been RPMs, and the package list files usually have the extension “.rpms”,
although the extension “.pkgs” is also accepted. The LCFG server passes this list to the
client, where it can be processed by a component. The component updates the installed
packages on the machine so that they conform to the supplied list.

The updaterpms component processes these lists on a RPM-based system. There is also
a component for managing Solaris packages, and it is possible to create a custom compo-
nent to support any other package format or update technology.

The source file for a machine can specify multiple package list files, as well as directly
specifying individual packages. The package list files themselves also support inclusion
of further package list files. This means that the structuring of the package lists is impor-
tant, in the same way that the structuring of the header files is important.

2. Default values provided in the schema file cannot be mutated and are “last resort” values. Working
default values (global or site-specific) are usually provided by the header files.

20 / Writing and Compiling Configurations

You can use the command qxprof server.pkgpath to find the location of the package
lists. The path may contain multiple directories. which are searched in order. Again, you
may want to look at some of the files available on the tutorial image.

3.2 The LCFG Language
The source files and header files contain resource values and various directives for ma-
nipulating them. Unfortunately, some of the syntax used in these files is not very logi-
cal, experimental additions have become permanent, and backwards compatibility with
legacy systems has left its mark over the years.

The basic elements, however, are straightforward and powerful. This is the LCFG source
language:

Resources

All configuration parameters in LCFG are represented by simple key/value pairs known
as resources. The key consists of a component name and an attribute name separated by a
dot. The value is an arbitrary string which is separated from the key by white space. For
example:

mailng.relay postbox@dcs.ed.ac.uk
kdm.greetstring School of Informatics

The documentation for the individual components describes the supported attributes.
The manual pages are normally available as lcfg-component. For example, man lcfg-
mailng displays the resources for the mailng component.

The component may also specify some constraints on the allowable values for a resource,
and these are validated by the compiler. Some common constraints are often referred to
as types (e.g., integer), although these are just syntactic constraints rather than any formal
type system.

Once a resource value is assigned (either in a source file or any included header file), it is
an error to reassign a value to the same resource. Previously assigned values can only be
changed using a mutation (see below). If no value is supplied for a resource, the default
value from the component’s schema file is used.

The profile component is a special case. There is no real code for this component; the
resources are interpreted as directives to the LCFG compiler. In particular, the resource
profile.components lists the components that are to appear in the generated profile.
Resources for any components not appearing in this list will be silently ignored. The
absolute minimal source file is:

profile.components profile
profile.version_profile 2

Of course, more components must be declared in order to specify a useful configuration.

The version resource is necessary to specify the schema version of the profile component.
This will change if a new profile component is released that has incompatible resources.

Writing and Compiling Configurations / 21

Resource Lists (“Tag Lists”)

Some resources define a list of items rather than a single value. These are specified in the
profile using a structure called a tag list. As a data structure, this has some similarity to
both the lists and the hashes often found in programming languages; the elements are
ordered, but they can also be identified by a named tag. The tag can be used to identify
individual list elements so that they can be overridden or mutated.

Tag lists are best illustrated by an example, such as this description from the kdm
 component:

menu: A list of tags for menus to appear on the menu bar
mitem_tag: The label for the menu item with the specified tag

Typical corresponding resource declarations might be:

kdm.menu file quit saveas
kdm.mitem_file File
kdm.mitem_quit Quit
kdm.mitem_saveas Save As

The tags should be unique alphanumeric identifiers.3 In some cases, the tag names
themselves are used by the component; in many cases, they are simply arbitrary identi-
fiers to indicate the resource keys holding the attributes for the list items.

Notice that a source file could override an individual list element by using the tag (the
mutation syntax is described later):

!kdm.mitem_quit mSET(Exit)

Several components make use of multi-level tag lists. For example:

fstab.disks hda hdb
fstab.partitions_hda root swap usr
fstab.size_root 100
fstab.size_swap 200
fstab.size_use free
fstab.partitions_hdb home
fstab.size_home free

The C Preprocessor

The LCFG compiler passes the source files through the C preprocessor. This allows the
familiar syntax to be used for included files, conditionals, macro definitions, and com-
ments. Take, for example, a header file local.h:

#include <dell.h>
#define ORGANIZATION ACME Configuration Co
/* Enable this for client debugging */
#undef DEBUG

3. That is, unique within a single list. N.B.: It is possible for tag names to include underscore characters,
although this can be ambiguous and is not recommended.

22 / Writing and Compiling Configurations

This header might be used in a source file as follows (the symbol HOSTNAME is pre-
defined by the compiler to be the name of the current file):

#include <local.h>
kdm.greetstring ORGANIZATION host: HOSTNAME
#ifdef DEBUG
client.debug all
#endif

Unfortunately, the C preprocessor is designed to process C source code, which does not
have the same syntax as LCFG source files. This can lead to problems, because some
character strings are mistakenly interpreted by the preprocessor. Comment characters
and string quoting are often sources of trouble. The compiler mutation features de-
scribed below provide some help with quoting awkward cases, but use of the C prepro-
cessor is another design choice that we might make differently next time!

Unlike C, line breaks are significant in LCFG source files, and it is often useful to be
able to create macros that generate multiple source lines. The special character ¢ is trans-
lated into a newline by the compiler, so multi-line macros can be created, as in the fol-
lowing example:

#define BIGDISK \\
fstab.size_root 6000 ¢\\
fstab.size_swap 2000

The key sequence Alt-Gr/C can usually be used to produce the ¢ symbol in the source
file.

Mutation

Typically, header files provide various levels of defaults for resource values. For example,
the LCFG system may ship with a default header file, but you might have a site-specific
header file that overrides that value. An individual source file may override this value yet
again for one particular machine.

To prevent accidentally overriding resources, the compiler will signal an error if a re-
source is defined more than once. If you really intend a resource to be overridden, you
must use a mutation:

!fstab.size_root mSET(40M)

In this case, a header file has probably defined the default disk partitions for all machines
of a particular hardware type, but we want to provide a different partitioning for a spe-
cific machine.

The ! prefix indicates that this is a mutation. The mSET() indicates that the provided
value is intended to replace any previously defined value. This is often what we want to
do, but Figure 3.1 shows some other possibilities. For example, we may want to add an
item to a list of values that had been defined elsewhere:

fstab.partitions_hda root swap
fstab.size_root 2000
fstab.size_swap 500

Writing and Compiling Configurations / 23

...
!fstab.partitions mADD(var)
!fstab.size_root mSET(1800)
fstab.size_var 200

This example produces the following results:

fstab.partitions = root swap var
fstab.size_root = 1800
fstab.size_swap = 500
fstab.size_var = 200

The ability to compose resource values in this way is important if we want lots of people
to collaborate on the configuration without conflicting. The standard set of muta-
tions is often sufficient, but it is possible to write custom mutations. For example, we
might want to add an extra 40M (numerically) to the size of a partition that is defined
elsewhere. Mutations are arbitrary functions (in Perl) that compute a new value for the
resource from both the previous value (in $_) and the argument. The file mutate.h is
a source of examples. The characters « and » are treated by the compiler as quotation
characters and can be used to safely quote the argument even if it contains standard Perl
quotation characters. By convention, macros ending in Q expect their arguments to be
a quoted string (in Perl syntax), which provides a way of quoting arguments that cause
problems with the C preprocessor.

mSET(A)
mSETQ(A)

Override the previous value of the resource with A.

mEXTRA(A)
mEXTRAQ(A)

Append the item A to a (space-separated) list.

mADD(A) mADDQ(A) Append the item A to a (space-separated) list if it is not already present.

mPREPEND(A)
mPREPENDQ(A)

Prepend the item A to a (space-separated) list.

mREPLACE(A,B)
mREPLACEQ(A,B)

Replace the item A in a (space-separated) list with item B.

mREMOVE(A)
mREMOVEQ(A)

Remove the item A from a (space-separated) list.

mCONCAT(A)
mCONCATQ(A)

Append the string A to the previous value of the resource.

mPRECONCAT(A)
mPRECONCATQ(A)

Prepend the string A to the previous value of the resource.

mSUBST(A,B)
mSUBSTQ(A,B)

Replace the substring A with the substring B.

mHOSTIP(L)
mHOSTIPQ(L)

Replace any hostname in the (space-separated) list L with the corresponding

IP address, by performing a DNS lookup.*

*Care is required when using the HOSTIP functions, because the DNS lookup occurs only at compile
time, and subsequent changes to the DNS will not automatically trigger re-evaluation.

Figure 3.1: Standard Mutation Macros

24 / Writing and Compiling Configurations

References

It is very important that the components on the LCFG client are independent; generally
speaking, components should not rely on the presence of other components, and they
should not read one another’s resources directly. But it is sometimes useful for the value
of one resource to be linked with some resource from another component. The correct
way to do this is to use a reference. For example, to include the physical location of a ma-
chine in the login banner, we would write:

kdm.greetstring HOSTNAME (<%inv.location%>)

The string <%inv.location%> is replaced by the value of the inv.location resource,
which is the physical location from the inventory component. Because this happens on
the server, this works even for the inv component, which has no code on the client.

In the above case, the reference is evaluated after all the assignments and mutations. This
is known as a late reference and is useful because it always evaluates to the final value of
the referenced resource, independent of the order. For example, the value of auth.users
after the following specifications is john jane.

inv.allocated john
auth.users <%inv.allocated%>
!inv.allocated mADD(jane)

Sometimes this is not quite what is required. We might want to copy the current value
of some other resource immediately, perhaps because we want to perform a mutation on
the copy. An early reference can be specified using a double percent sign. It will then be
evaluated as soon as it occurs. For example, the value of auth.users after the following
specifications is simply john (inv.allocated will have the value john jane).

inv.allocated john
auth.users <%%inv.allocated%%>
!inv.allocated mADD(jane)

C preprocessor macros (e.g., #define) are often used to achieve a similar effect, but the
use of references is usually preferable.

Spanning Maps

References enable one resource to refer directly to the value of another resource belong-
ing to the same machine. There is no such mechanism for referencing resources from
other machines. This is very similar to programming languages preventing arbitrary ac-
cess to the local variables of a procedure.

Spanning maps provide a structured and safe way for a profile to access resource values
from other machines. The contributing machines will include a component that explic-
itly publishes certain resources to a named spanning map. Any machine can then subscribe
to the spanning map (by name), and the list of collated resource values will be made
available as a single resource.

Writing and Compiling Configurations / 25

For example, a spanning map can be used to collate the MAC addresses of a set of
LCFG clients and make them available to the DHCP server, or to collate the IP ad-
dresses of Web servers and make them available to the firewall.

The component author decides which resources will be published to a spanning map
and which resources of the subscribing components will receive the collated values (this
is described in Section 6.1). As a user of the map, you only need to supply an identifier
that provides the link between the publishers and the subscribers. This is usually speci-
fied by a resource which is often called cluster. For example, the DHCP clients might
declare:

dhclient.cluster MYMAP
dhclient.mac 00:08:74:1A:52:7D

and the DHCP server might declare:

dhcpd.cluster MYMAP

The author of the dhclient component has decided that the mac resource will be pub-
lished to the spanning map named in the cluster resource.

The author of the dhcpd component has decided that it will subscribe to the map named
in the cluster resource, that it will import the list of hosts into the host resource, and
that it will import their MAC addresses into the corresponding list resources mac_host.

The user has only to supply the map name (MYMAP). All DHCP servers specifying
this map name will then serve all the DHCP clients that specify the same map name.
By specifying different map names, it is possible to create clusters of machines served by
different servers.

Since all spanning map names belong to a single namespace, it is conventional to have
map names of the form service/cluster—for example, dhcp/inf1. Notice that clients can
be added to or removed from the cluster without changing the server source file.

It is possible for a node to be both a publisher and a subscriber to the same map. In that
case, the compiler may require several passes to perform the final evaluation, and this
will be detected automatically. Nodes that subscribe to a spanning map will have the
publication of their profile deferred until all compilations have been completed. This is
necessary to avoid advertising incorrect profiles at intermediate stages of the compila-
tion. This means that it is a good idea to avoid unnecessary spanning map subscriptions.

Package Lists

The LCFG source files may specify a list of packages to be installed on a machine. For
each package, this includes:

The package name. ❖

The version and release. ❖

An optional ❖ architecture.
An optional set of ❖ flags.

26 / Writing and Compiling Configurations

Traditionally, the packages are given as Red Hat RPM specifications which are inter-
preted by the updaterpms component, but the list can be used to represent packages in
any format, provided a suitable component is available to manage them.

The package list could be represented using normal resources, but the LCFG server and
client handle the package list as a special case. This provides some useful features and
more efficiency. The packages are defined by the profile.packages resource. The value
of this resource must be a (space-separated) list of specifications which can have one of
three different forms:

name-v-r The named package is added to the package list. If the specifi-
cation is preceded by a +, it replaces any previous specification
of the same package with a different version/release. If the
specification is preceded by a -, any previously defined version
of this package is removed from the list.

@filename A list of package specifications in the same format as above
(one per line) is read from the named file. The filename
should have an extension of “.rpms”. By default, an error is
generated if the specified file does not exist; appending a ? to
the filename will cause missing files to be silently ignored.

tag The value of the resource profile.packages_tag is used as a list
of further specifications which are interpreted recursively.

Typically, sets of common packages will be made available in separate files, and indi-
vidual nodes will select the required sets and perhaps add or subtract a few individual
packages. For example:

profile.packages dist local
profile.packages_dist @rh71.rpms @rh71updates.rpms
profile.packages_local @local.rpms @private.rpms
.....
!profile.packages mADD(special)
profile.packages_special +foo-1-2 -bar-5-6

The first few definitions might occur in a header file; the last two would be specific to an
individual node.

The updaterpms component supports a number of flags for controlling various options
of the RPM installation (see the manual page for a full list)—for example, preventing
the execution of the pre/post install scripts. These flags can be specified by appending
them to the package specification with a ::

/* Install this package only at boot time */
profile.packages_bootonly foo-3-4:b

Writing and Compiling Configurations / 27

updaterpms also allows an explicit architecture to be specified if the architecture of the
RPM is different from the default (i386). For example:

profile.packages_mp3 notlame-3.92-*/i686

Contexts

The general philosophy of LCFG is that configurations should be computed completely
on the LCFG server. This allows us to identify simple errors before the configurations
are deployed. It also means that inter-machine dependencies, such as spanning maps,
can be computed without any network communication between machines.

However, there are a few cases where it would be unreasonable (or impossible) to com-
pile a new configuration on the LCFG server every time. For example:

We might want to make a student laboratory machine available to remote users ❖

outside of opening hours (so the authorised user list might change at different
times of the day).
We might want the set of packages to be included at initial install time to be ❖

slightly different from the packages to be loaded when the client is fully in-
stalled.
The mail relay on a laptop may need to be different according to the ISP that is ❖

being used.

All of these cases could be handled by custom code in the appropriate components, but
there are some advantages in having a uniform way of supporting two common situa-
tions:

We want to switch easily between two (or more) values for a resource (although ❖

the set of values can be predetermined by the LCFG server)—for example, two
different user groups for login authorisation.
We want to override a value for some resource using data that is only available ❖

to the client—for example, the mail relay.

LCFG provides a generic context mechanism which can deal with both of these cases.
The LCFG client maintains an arbitrary set of context variables which can be set to arbi-
trary values, using the context command. For example:

$ context
dock=home
$ context stuff=foo
$ context
stuff=foo
dock=home
$ context stuff=
$ context
dock=home

28 / Writing and Compiling Configurations

The source file can specify several different values for a resource, to be used in different
contexts. For example:

mailng.relay mailhub.ed.ac.uk
mailng.relay[scheme=home] mail.myisp.com

In this example, when the context variable scheme has the value home, the mail compo-
nent will use mail.myisp.com as the relay; in all other cases, it will use mailhub.ed.ac.uk.
(Contexts are persistent, even across reboots.)

The conditional context expressions must appear in square braces immediately after the
resource attribute. They can include:

var True if the named context variable is set (non-null)

var=value True if the context variable has the specified value

var!=value True if the context variable does not have the specified
value

expr1&expr2 Logical AND

expr1|expr2 Logical OR

!expr Logical NOT

(expr) Braces

In addition to switching among a number of predefined values, it is also possible to set
the value of a resource locally (on the client). This might be necessary, for example, if we
wanted to obtain the mail relay from DHCP. The details of this are not explained here,
but the LCFG wiki shows some examples of the technique being used for debugging.

The context processing is implemented in the LCFG client. When the context changes,
the components just see a normal configuration change—they don’t need to be aware of
whether this is caused by a source configuration change or a context change. The context
changes can be initiated manually, from cron, or by any other program (simply by using
the context command).

A Warning

The context mechanism does subvert many of the advantages of LCFG, and it should be
used sparingly. If you are thinking about using a context, the following points are worth
noting.

The LCFG server cannot perform validation on context-dependent resources. ❖

Features such as mutation and spanning maps are not available. ❖

Some resources are evaluated on the LCFG server rather than the client (e.g., ❖

the profile component, the inv component). It makes no sense to attach con-
text expressions to these resources.

It is an error to specify a context-specific resource without a context-free specification of
the same resource. If there are multiple context-specific resources that match, the most

Writing and Compiling Configurations / 29

recently set context takes precedence. Conditionals that depend on multiple context
variables require careful construction to ensure that they are always disjoint, and this is
best avoided.

Since the profile resources are interpreted by the compiler, context specifications cannot
be attached to the profile.packages resources. However, as a special case, context specifi-
cations can be appended to any package specification, whether it appears inside an rpm-
cfg file or explicitly in a source file. This is often used to prevent packages being installed
during initial node installation. For example:

/* Do not install big packages at install time */
profile.packages mADD(bigstuff)
profile.packages_bigstuff bigpack-3-4[!install]

3.3 The LCFG Server
The program mkxprof is the LCFG compiler. This takes configuration descriptions in
the source language and turns them into XML profiles (one per machine). mkxprof can
be run manually to compile a single profile:

$ mkxprof host035
** conflicting package specifications: p
** p-5-6: (/TEST/src/host035:7)
** p-8-9: (/TEST/packages/packages035.rpms:4)
** unrecognised package spec: tag2 (/TEST/src/host035:6)

After a successful compilation, an XML profile will be generated in the appropriate di-
rectory (use mkxprof -V to see the default directories). This will usually be published by
the Web server to make the profile available to the client.

mkxprof can also run in daemon mode. In this case, it maintains a database of source
file dependencies and continually polls for changes. When a file is changed, it recompiles
all of the dependent profiles. It can also generate HTML status pages for each profile to
display error messages, rather than requiring them to be retrieved from the LCFG server
logfile.

Manual compilation is useful for simple testing, but in practice, you probably want to
supply a lot of options to mkxprof. The LCFG server component manages the mkxprof
daemon and allows you to supply all of the options as LCFG resources. In production,
mkxprof is almost always run in this way.

When a profile changes, the LCFG server sends a simple UDP notification to the cli-
ent, without waiting for an acknowledgement. The client polls the LCFG server at
regular intervals in case it misses a notification. When the client sees that a new profile is
available, it fetches the XML using normal HTTP from the LCFG server. The XML is
parsed and the resources are stored in a local database.

The client component attempts to optimise profile fetches and parsing by only perform-
ing these operations when it believes that they are necessary due to a change. The install
method of the client component can be used to force a new copy of the profile to be
fetched from the LCFG server and re-parsed. The install method can also be provided

30 / Writing and Compiling Configurations

with an explicit URL as an argument; this can be used to force the client to fetch the
profile from a different LCFG server.

Any components whose resources have changed are called to perform a reconfigura-
tion. Exactly how and when the component decides to implement the reconfiguration
depends on the particular component. For example, some things can be changed im-
mediately, other things may need to wait until the user has logged out or until the node
is rebooted.

The current resource values being used by a client can be queried using qxprof. If the
client is running the logserver component (see Section 4.2), the resources can also be
inspected remotely via the links on the HTML status page.

Authorisation and Access Control

Different sites will manage the LCFG source files in different ways, and they will use
different mechanisms for controlling access. The contents of the LCFG profiles should
be considered public, though; any truly sensitive information should be encrypted at the
application level, because the profile is plainly visible on both the LCFG server and the
LCFG client.

However, the LCFG server does provide a simple mechanism for automatically generat-
ing per-profile .htaccess files to provide some degree of control. These can be created
using the resources:

profile.auth http ssl
profile.file_http .htaccess
profile.file_ssl sslaccess

and can be included in the Apache configuration with:

<VirtualHost *>
 AccessFileName .htaccess
</VirtualHost>

<VirtualHost *:443>
 SSLCertificateFile /usr/share/ssl/certs/mycert.pem
 SSLCACertificatePath /usr/share/ssl/certs
 SSLEngine on
 AccessFileName .sslaccess
</VirtualHost>

An access control string specifying permitted IP address ranges can be given for each
access control file:

profile.acl_http <%profile.node%>.<%profile.domain%>
profile.acl_ssl 129.215

Basic authorisation directives can also be specified. These apply in addition to any access
control; if the access control directives are not present or if they deny access, the user-
name and password can be used to gain access:

Writing and Compiling Configurations / 31

profile.passwd foobar
profile.pwf_http auto

The profile.passwd resource causes the LCFG server to automatically create an Apache-
compatible DB password file and make an entry for the fully qualified hostname with
the given password. The second resource permits access to any client using the HTTP
protocol and supplying the given password (with the FQDN as username).

The LCFG client will cache any password that is defined in a profile and use this pass-
word when making future requests. For example, a laptop may be initially installed on
the local network, where the access control permits the profile to be downloaded freely.
This profile contains the initial password, which is then used for subsequent requests
when the laptop is operating remotely and authorisation is required.

The LCFG server provides a mechanism for linking arbitrary directories to the exported
Web tree. By default, this is used to publish the directories holding the status CGI
scripts, the help files, and the icons:

server.linksdirs cgi help icons
server.src_cg ...
server.dst_cgi ...
...

The access control for these directories can also be set from the resources. For example:

server.auth_cgi hhtp
server.file_http .htaccess
server.acl_http 129.215
server.pwd_http auto

The Status Display

The LCFG server can provide HTML pages showing basic status information for each
client. This is not a substitute for a full monitoring system, but it does provide a good
overview of the configuration state of the site. Normally these pages are generated on the
fly by CGI scripts that read the LCFG server status (see figures 3.2 and 3.3, p. 32). They
show information from three sources:

Static information obtained by the LCFG server when compiling the profiles. ❖

This includes basic inventory information and any compilation errors.
Information returned by the client in simple UDP acknowledgement packets. ❖

This includes some simple monitoring information from the running client
(e.g., the boot time) and basic status information for each component on the
node (is it running? has it generated any errors? etc.).
The node itself may be running a ❖ logserver component. This is a small Web
server which makes the LCFG logs, and other detailed information available
directly from the client itself via HTTP. If this component is running, the sta-
tus page will provide links to the appropriate URLs.

The status page is normally available at http://lcfg-server/cgi/index.cgi.

32 / Writing and Compiling Configurations

Figure 3.2: Summary Page

Figure 3.3: Individual Client Display

LCFG: kingsbarns.inf.ed.ac.uk

profile server 2.2.49
[Help]

 lcfg.org

 client017a

 29/10/07 12:52:07 XML

 client017b

 29/10/07 12:52:07 XML

 client017c

 XML

 client017d

 29/10/07 12:52:07 XML

 client017e

 29/10/07 12:52:07 XML

 client017f

 -

 client017g

 29/10/07 12:52:07 XML

Showing 7 of 7. Last updated: 29/10/07 12:52:10

 client017a.lcfg.org [Help]

Inventory Info

Model: Type1

Location:

Serial No: 3456

Allocated: fred

Manager:

Owner:

Os:

Status

Client version: 2.0.something

XML profile published: 29/10/07 12:52:05

Last acknowledged profile: 19/04/02 15:53:35

Last acknowledgement: 29/10/07 12:52:07

Last known address: localhost (127.0.0.1)

Last booted: 30/07/02 18:08:59

No errors, no warnings

Components

 apache
 [warnings] [resources] [doc]

 inv
 [resources] [doc]

 logserver
 [resources] [doc]

 mailng
 [resources] [doc]

 nfs
 [log] [resources] [doc]

 profile
 [resources] [doc]

Last updated: 29/10/07 12:52:10

Writing and Compiling Configurations / 33

A few points worth noting about the status display:

The client normally sends acknowledgements when polling for a new profile or ❖

whenever an event change (e.g., an error) occurs. A throttle algorithm prevents
clients from sending rapid acknowledgement streams, and this introduces a
slight delay in notification.
The main display is only updated at the end of a server pass. The frequency ❖

depends on the LCFG server resources, but there may be a significant delay
(20 minutes, for example) if the LCFG server is recompiling a large number
of profiles. The main display may also be out of sync with the individual client
displays during this time.
Clients will be marked as “late” if no acknowledgement has been received ❖

within the latency time. This time is the maximum time that would normally
be expected between client acknowledgements. It is based on the sum of the
poll times of the client and server components.
Error and warning conditions can be reset by calling the ❖ Reset() method of the
offending components or by rebooting.
If client nodes have an ❖ inv component in the profile, the LCFG server will
publish the inventory fields listed in the inv.display resource on the status page.

4. LCFG Components

LCFG components are the scripts that are responsible for configuring the various applica-
tions on the client to match the resources specified in the profile. In Chapter 2, we saw
how the file component can be used to manage arbitrary configuration files. But there
are a number of reasons why we might want to use a custom component instead:

Some action needs to take place when the resources change or when the ❖

components start or stop. Typically, this involves managing a daemon such as
openssh or sendmail.
The changes to a configuration file need to be computed from the resources, ❖

but this is more complex than a simple substitution. For example, the xfree
component will automatically probe for the monitor type if the resource value
is specified as “auto.”
A resource needs to be validated in a specific format at compile time: for ex- ❖

ample, to ensure that a valid URL is provided before the profile reaches the
machine.
A spanning map is required to collate the resources from several machines and ❖

make them available to some other machine. For example, the static IP ad-
dresses of DHCP clients are collected and made available to the configuration
of the DHCP server.
A number of resources are involved, and it is simply clearer and more modular ❖

to use a separate component (e.g., nsswitch).
A small number of components have special roles and are automatically called ❖

from other parts of the system. For example, the boot component is called at
system boot time, and the updaterpms component is used to update software
packages.

In this chapter, we will look at some of the features of the component framework that is
common to all the components. Then we will look at a few important components in
more detail. (Chapter 6 explains how to write your own component.)

4.1 The Anatomy of a Component
Components are just simple scripts. But they are written using a standard framework:
they all accept a standard set of methods as arguments. All of the methods can be invoked
from the command line by using the om command, but they are often called automati-
cally by other parts of the system. Most methods are protected by locks to prevent mul-
tiple simultaneous invocations.

LCFG Components / 35

Common Methods

configure ❖ : This is the most important method. It is called by the LCFG client
whenever the component resources are changed. The component updates the
configuration files to reflect the new resource values, and it notifies any associ-
ated daemons. Usually this happens immediately, but sometimes it is more
appropriate for the component to delay the reconfiguration: for example, until
the user has logged out, the gdm component will defer updates that involve
restarting the window system.

start ❖ : This is called at boot time to “start” a component. If the component
manages a daemon, for example, the start method will physically start the
daemon. Even if the component has no specific operations to perform at start
time, the method is still important, because the framework will not issue con-
figure calls to components that are not started. This method calls configure au-
tomatically, to ensure that any configuration files generated from the resources
are up-to-date before starting any daemons.
restart ❖ : This operation is the same as start, except that the component is first
stopped if it is already running.
stop ❖ : This method is called to stop the component at system shutdown. The
component stops any running daemons.
run ❖ : This method is typically called from cron, or manually, to perform some
ad hoc operation.

Less Common Methods

logrotate ❖ : This method is conventionally called by a logrotate script to notify
any daemons that they should release logfiles.
status ❖ : This method prints the current state of the resources being used by the
component. If an update is pending, they may not be the same as the resources
currently specified in the profile. Some components may use this method to
make other status information available, when a component-specific option is
given. There is no lock on this method.
monitor ❖ : This method is used to request that the component report monitor-
ing information. The first argument is a tag identifying the type of monitoring
information requested. This method is rarely used and is ignored unless the
component has been configured.
reset ❖ : This method clears the error and warning files that are used by the status
display to determine the icon indicating the component status.

unlock ❖ : This method forces removal of any locks.

Suspend and resume methods also exist for processing APM suspend/resume events,
although these are not currently in production use and may not be reliable.

Some components may define additional, custom methods, although this is discouraged,
and the use of custom options to standard methods (such as run) is preferred.

36 / LCFG Components

Om

Components are simple scripts. It is possible to call them directly, just by giving the
method as an argument:

$ /usr/lib/lcfg/components/logserver stop

But the command om is the preferred way of calling components:

$ om logserver stop

This provides access control for non-root users, remote execution, a standard environ-
ment, and transparency in the location of the scripts. The full syntax of the command is:

$ om [hostname] component method [options]

If the hostname is present, ssh is used to call om on the remote host.

Access control for non-root users is specified using the following (per-component) re-
sources:

om_methods: specifies the allowed methods.

om_authorization: specifies the Perl module to be used for performing the
authorisation.

om_user: specifies the username under which the component is to be run.

om_acl_method: specifies the authorisation token for the method method. The
exact meaning of this token depends on the specified authorisation module.

The default authorisation module is LCFG::Authorize, which allows the permissions to
be specified as resources in the LCFG source file. For example:

mailng.om_acl_start om/mailctl
mailng.om_acl_stop om/mailctl

om.groups admin
om.users_admin john jane
om.caps_admin om/mailctl

Larger sites may want to replace LCFG::Authorize with a module that integrates with
their own authorisation system—we use a module that interfaces with an LDAP-based
capability system.

Method Options

The standard component framework accepts a number of generic options which can be
specified following the method name:

-d: dummy. The component actions are printed but not executed. This is not
always easy to implement, and the effectiveness of this option depends on the
individual component.

-D: debug. Print debugging information.

LCFG Components / 37

-n: no strict. Certain warning and error messages are suppressed. For example,
trying to stop a component that is not started will normally generate a warning
message. If this option is used, the warning is not generated.

-q: quiet. No messages are printed.

-t timeout: set lock timeout. Normally, if a component is already executing, calls
to most methods will block until the existing instance terminates and releases
the lock. This option specifies a timeout so that the current call will terminate
after timeout seconds if the lock cannot be obtained. Certain method calls do
not lock (see the list above), and locks can be broken using the unlock method.

-v: verbose. Additional messages are printed. Holding down the shift key (on
some platforms) when a component method starts executing will also enable
this option. This is useful at boot time to enable more verbose logging on cer-
tain components.

Components sometimes define additional component- and method-specific options. If
present, these must be separated from the generic options by --. For example:

$ om updaterpms run -- -t

4.2 Some Common Components
LCFG is completely modular, and different machines will usually be running different
sets of components. But a few components are closely tied to the operation of LCFG
itself, and they will usually be present.

The manual pages for a component can be viewed with man lcfg-component_name.

The Profile Component

The profile component is not a “real” component, in the sense that there is no code on
the client. The LCFG server uses the profile resources as directives to control the com-
pilation of the client profile, including access control, the format of the profile, and the
list of other components to be included in the profile. This is the only component that is
mandatory in every profile.

The Client Component

The client component manages the rdxprof daemon. It watches for changes to the pub-
lished profile, downloads new copies, parses the profile, and calls the configure method
for any components whose resources have changed. This is necessary for any machine
that is going to be managed by LCFG.

The Boot Component

LCFG components can be started at boot time just by including them as part of the de-
fault system init process (the demonstration disk does this). However, the boot compo-
nent is a complete replacement for the native init.d mechanism, which allows the servic-

38 / LCFG Components

es and their order to be determined from the LCFG resources rather than fixed files. It
also allows services to be started or stopped dynamically when the configuration changes.

The component can manage a mixture of LCFG components and traditional System V
init scripts. For example, you could use the following resources to add the System V init
script ypbind and the LCFG component mailng to the list of services started at boot
time:

!boot.services mADD(rc_ypbind)
!boot.services mADD(lcfg_mailng)

Note the use of the prefixes rc_ and lcfg_ to distinguish the two different types of service.

The boot component can also arrange to call component run methods from a single cron
job (normally, nightly).

The File Component

You have seen the file component in action in Chapter 2. This is a general-purpose com-
ponent which can be used to easily create and customize configuration files, directories,
or links. This allows you to configure simple applications without the need to write a
special component.

Resources are used to specify a template file and values to be substituted into the tem-
plate. The template is normally installed site-wide, and the values from the profile are
used to configure the file and customize it on a per-machine basis.

For example, we could distribute a template (containing variable references) for the php.
ini configuration file (call it php.ini.tmpl):

...
engine = <%v_phpenable%>
...

We could then configure the file component to create the php.ini file from this template:

!file.components mADD(file)
!file.files mADD(php)
file.type_php template
file.file_php /etc/php.ini
file.tmpl_php /etc/php.ini.tmpl

and set the default values for the variables:

!file.variables mADD(phpenable)
file.v_phpenable On

Individual machine configurations can now control the php engine simply by setting the
value of this variable in their source files.

Very small templates can even be included in-line in the resources, which avoids
the need for a template. For example, the bluez.pin file needs to contain only a PIN
 number:

LCFG Components / 39

!file.components mADD(file)
!file.files mADD(bluez)
file.type_bluez literal
file.file_php /etc/bluez.pin
file.tmpl_php <%v_bluezpin%>
!file.variables mADD(bluezpin)
file.v_bluezpin 1234

Other uses of the file component include the creation of user home directories, arbitrary
links, and the ability to control file attributes.

If several different applications are being configured, it is often convenient to assign each
application a separate schema file so that it may use its own variable namespace. The file
component supports such managed components, still without the need for any special
component code.

The Inventory Component

The inventory “component” is really a pair of “pseudo-components.”1 This is used to
collate inventory information from all of the profiles and make it available in a single
file. This is not an important component, but it illustrates an unusual application of
spanning maps.

The inv component can be included in normal profiles and be used to define basic in-
ventory information for the machine (see the manual page for lcfg-inv for details of the
available fields). For example:

!profile.components mADD(inv)
inv.model Dell Optiplex
inv.allocated fred user
inv.manager the boss
inv.location myroom

This information is published to a spanning map. The inventory component can be in-
cluded in the source file of a dummy machine to import the spanning map:

profile.components profile inventory
profile.version_profile 2
profile.version_inventory 1
profile.format XMLInventory
profile.ng_statusdisplay false

The profile for the dummy machine now includes inventory information from all of the
subscribing machines.

This example also illustrates the use of a special profile format. The “profile” for the
dummy machine is formatted as a simple XML inventory:

<node name=”red”>

1. The term “pseudo-component” is usually used to refer to a component which has no corresponding
code on the client. The resources for a pseudo-component are read and processed by some other applica-
tion—for example, the server itself, or a different component (via a spanning map).

40 / LCFG Components

 <model>Dell Optiplex</model>
 <allocated>fred user</allocated>
 <manager>the boss</manager>
 <location>myroom</location>
 ...
</node>
<node name=”blue”>
 ...
</node>
...

Of course, this is not a real profile—it can’t be used to configure a machine. It would be
read by some application to process or search the inventory.

The Logserver Component

The logserver component makes LCFG log information available via HTTP. If this is
running, the LCFG server will display links on the status page that provide direct access
to the logfiles for all of the components.

Notice that there is no access control on the published logfiles, and the logserver resourc-
es will normally be used to restrict access to any file containing sensitive data.

Figure 4.1: Logserver Display

4.3 More Components
In addition to the components we have already seen, here are some others available from
the Web site:

lcfg-afs, lcfg-alias, lcfg-amd, lcfg-apache, lcfg-arpwatch, lcfg-auth, lcfg-client, lcfg-
condor, lcfg-cosign, lcfg-cron, lcfg-cvs, lcfg-cyrussasl, lcfg-dhcpd, lcfg-dns, lcfg-
etcservices, lcfg-example, lcfg-file, lcfg-fstab, lcfg-gdm, lcfg-gridengine,

updaterpms @ ancho.inf.ed.ac.uk : log

17/02/08 04:17:42: >> logrotate

18/02/08 03:53:03: >> run

19/02/08 03:53:04: >> run

19/02/08 03:53:22: 5 installs, 0 removals

19/02/08 03:53:22: Flagging openssh-askpass-4.3p2-4.11.ed3.renew8 for upgrading to

19/02/08 03:53:22: Flagging openssh-server-4.3p2-4.11.ed3.renew8 for upgrading to

19/02/08 03:53:22: Flagging openssh-clients-4.3p2-4.11.ed3.renew8 for upgrading to

19/02/08 03:53:22: Flagging openssh-4.3p2-4.11.ed3.renew8 for upgrading to

19/02/08 03:53:22: Flagging lcfg-autoreboot-1.0.5-1 for upgrading to

19/02/08 03:53:36: (1/5) upgrading to openssh-4.3p2-4.11.ed3.renew8

19/02/08 03:53:38: (2/5) upgrading to openssh-askpass-4.3p2-4.11.ed3.renew8

19/02/08 03:53:39: (3/5) upgrading to openssh-server-4.3p2-4.11.ed3.renew8

19/02/08 03:53:40: (4/5) upgrading to openssh-clients-4.3p2-4.11.ed3.renew8

19/02/08 03:53:41: (5/5) upgrading to lcfg-autoreboot-1.0.5-1

20/02/08 03:53:04: >> run

updaterpms @ ancho.inf.ed.ac.uk : log

LCFG Components / 41

lcfg-grub, lcfg-inventory, lcfg-iptables, lcfg-kernel, lcfg-kx509, lcfg-mailcap,
lcfg-mailng, lcfg-matlab, lcfg-mozilla, lcfg-mysql, lcfg-network, lcfg-nfs,
lcfg-nsswitch, lcfg-ntp, lcfg-openldap, lcfg-openssh, lcfg-openvpn, lcfg-pam,
lcfg-perlex, lcfg-postgresql, lcfg-ramdisk, lcfg-rmirror, lcfg-rsync, lcfg-samba,
lcfg-server, lcfg-snmp, lcfg-subversion, lcfg-syslog, lcfg-tcpwrappers,
lcfg-updaterpms, lcfg-webdav lcfg-xfree,lcfg-xinetd

Many of these components will be quite small, and the production quality will vary, but
this list illustrates the range of services supported. These also make a good starting point
for writing your own components.

4.4 Updating Software
The LCFG components we have seen so far have all been concerned with making
changes to configuration files and controlling any associated daemons. We haven’t said
anything about how these configuration files, daemons, and other software get installed
on the machine and updated.

LCFG doesn’t mandate any particular technology for installing software packages. What
it does do is give you a way of managing the list of packages that should be installed.
You can then create a component using your favourite technology to handle the package
installation and removal. Our Linux systems use the updaterpms component, which
relies on the updaterpms program to manage RPM packages. Other components have
been written for Solaris and Mac OS X packages.

The software update component adds and removes packages from the machine to make
it conform to the list specified in the profile. It also notifies the LCFG client (by touch-
ing the file /etc/LCFG-RELEASE) when an update has been successful. This allows the
status page to display a warning for those hosts that have not had successful updates for
a specified length of time. The contents of the LCFG-RELEASE file (installed from a
package) may also be used to give an identity to the overall “release” of the installed soft-
ware. This too can be checked by the LCFG server and flagged if it is not as expected.

The following sections explain the handling of the package list (which is independent of
the update technology) and then describe the components available for managing RPM
packages.

The Package List

The client component downloads the list of packages created by the LCFG server (see
section 3.3) and stores it in /var/lcfg/conf/profile/rpmcfg/nodename. This file is updated
every time a new profile is received with changes to the package specifications.

A software update component (such as updaterpms) needs to implement a run method.
When this is called, the component should remove and add packages as necessary to
synchronise the installed packages with the package list. There are several possibilities for
configuring exactly when the run method is called:

The ❖ client.runupdate resource can be set to initiate a software update immedi-
ately whenever the list changes. But this is likely to be disruptive for the user,
so one of the following methods is often used.

42 / LCFG Components

The update component is added to the ❖ boot.run resource so that it is called
whenever the boot component runs. Normally this happens once nightly—
from cron, as specified by the cron.run_boot resource. Of course, the run
method could also be called directly from cron using om.
Sometimes there is a need for more control over the timing of the updates ❖

(e.g., on a laptop). In this case, the updaterpms component can be run manu-
ally. Non-root users can be permitted to do this by setting the updaterpms
.om_acl_run resource to a capability for the user, or simply to <console> (for
any user at the console).

Some packages (e.g., the kernel) should not be updated on a running system.
 updaterpms provides a flag to indicate that such packages should only be installed
at boot time.

The package list contains one package specification per line, in the following format:

name-version-release

The version and the release may contain wildcard expressions, which are interpreted
by the update program to mean “the latest available.” The supported syntax of these
expressions, and their evaluation, depends on the update program. The manual page
for updaterpms describes the format accepted by that program.

The use of wildcard versions is very convenient during development—new versions of
packages can be easily installed without changes to the profile. This might not be such
a good idea for production installations, though, because it is no longer possible to tell,
just from the profile, exactly what software is installed on each machine.

If the required architecture is different from the default, the package specification may
be followed by an optional architecture. This may be followed by a : and a number of
single-character flags. The meaning of these flags depends on the update program being
used.

The package list is designed to be passed through the C preprocessor (cpp) and contains
several cpp directives:

#include ❖ can be used to include local RPM lists.
#ifdef ❖ is used to allow different sets of RPMs to be selected.
#pragma LCFG derive ❖ gives the location(s) in the LCFG sources where the
packages were specified (if known). This is useful for debugging.
#pragma LCFG context ❖ gives the context in which the following package was
specified.

Normal software update components can ignore the significance of the conditional com-
mands and context pragmas. These are used by the rpmcache component, which needs
to cache all the packages, regardless of their context.

LCFG Components / 43

Updating RPMs

The updaterpms program manages packages for RPM-based systems. It compares the
installed RPMs with the RPMs specified in the package list. It then installs/updates/de-
letes RPMs to make the set of installed packages correspond to the required list.

The updaterpms.rpmpath resource specifies a (colon-separated) list of repository loca-
tions. Each location may be a pathname or the URL of an HTTP-exported directory.
These are searched (in order) for the specified RPMs.

Every RPM in the repository must also have a corresponding file with the same name,
prefixed by a dot. This file contains meta-information for the package and is used by
updaterpms to avoid the overhead of reading the entire RPM file to extract this informa-
tion. The program genhdfile is used to generate these files:

$ genhdfile mpdist-3.5.2-2.i386.rpm
$ ls .mpdist-3.5.2-2.i386.rpm
.mpdist-3.5.2-2.i386.rpm

Repositories that are exported via HTTP must also contain a file called rpmlist, which
simply lists the RPMs in the repository, one per line. This could be generated by the
commands:

$ cd repository
$ ls .rpm >rpmlist

If the rpmlist or hd files are missing or out of date, updaterpms will generate errors or
install incorrect versions. It is usual to have a script that updates these files automatically.

The RPM Cache Component

The rpmcache component allows a cache of RPMs to be maintained on the local disk.
This is useful in several cases:

The ❖ updaterpms component installs RPMs as they are downloaded. Especially
if the network connection to the repository is unreliable, it may be helpful to
ensure that all the necessary RPMs are available on the local disk before com-
mencing the update.
If a node (e.g., a laptop) is liable to be disconnected from the network, a local ❖

cache of RPMs can be used to reinstall or check the installation of individual
packages without being connected to the network.
A local cache of RPMs can be re-exported as a repository to other LCFG ❖

 clients.

Typically, the RPM cache component is configured to fetch the RPMs from the remote
repositories and to trigger updaterpms when it has finished. updaterpms is configured to
use the local cache as its repository.

5. Managing a Site with LCFG

By now, you should have a good idea of the mechanics of LCFG. But managing a real
site involves a lot more—the manual procedures and the “mindset” behind the use of
the tool are equally important. The SAGE System Configuration booklet provides some
general discussion of these topics. In this chapter, we will look specifically at how LCFG
can help.

5.1 How Much to Automate?
There is always a trade-off between the effort involved to perform a task manually and
the effort involved in automating it. Automation entails an initial development cost
and it requires certain specialist skills, but the resulting system should be less effort to
manage and more reliable. In general, the larger the site, the more viable automation
becomes.

In theory, more automation should make a system:

More reliable and “correct”—i.e., it behaves according to the requirements. ❖

More efficient—i.e., it takes less effort to manage. ❖

More flexible—i.e., it is easier to accommodate changes in the requirements. ❖

But the automation has to be managed well to reap these benefits. It is easy to imagine a
site where people spend most of their time writing ad hoc “time-saving” scripts. If these
scripts are fragile and poorly understood, they can easily contribute to a very unreliable
and inflexible system.

The traditional, bottom-up approach to configuration starts with scripts to solve small
problems and attempts to evolve into a solution for the whole site. This can produce
poorly structured solutions which are not well suited to automating the higher levels—
for example, the co-ordination between Web servers and the corresponding holes in the
firewall.

LCFG provides a framework for developing a configuration solution. This allows a site
to start with the simple use of the file component to manage one or two configuration
files. From there, it can grow, by gradually adding components, into a fully prescriptive
system. The framework helps to organise the configuration process and ensure that it
remains manageable as it expands. An installation that is managed completely by LCFG
usually provides a solid foundation for automating higher-level aspects of the system.

Most people find that there is a significant cost to getting started with LCFG. Once they
are familiar with the system, automation tends to grow fairly quickly and in a controlled

Managing a Site with LCFG / 45

way. This often ends up being a fully prescriptive system. This has a lot of benefits, but
it is not essential; even in a mature system, there will be cases where the cost of writing a
component for a temporary application will not be worthwhile.

As we noted in the introduction, one thing is very important: a clear separation between
those parts of the system that are managed by LCFG and those that are not. Having
decided to automate some subsystem, LCFG will expect to have control over it, and it
needs to be trusted. Conflicts between manual intervention and one or more configura-
tion tools are a common source of errors.

5.2 Who Manages What?
Traditionally, individual system administrators tended to have complete control over
“their” servers; one person will have been responsible for all aspects of a machine, includ-
ing installation, software updates, configuration changes, etc.

In a large, modern installation, this is not feasible. Many different people need to have a
say in the configuration of a machine. To give only a few examples:

The security specialist may want to control various authorisation and firewall ❖

settings.
The end user may want to specify the versions of application packages to be ❖

loaded.
The networking specialist may want to configure the DNS. ❖

The platform specialist may want to update the OS software. ❖

The finance department may want to update an application client. ❖

These are too varied and too complex for a single administrator to understand fully.
More importantly, these aspects often have implications for other machines on the net-
work (e.g., when updating the finance software, all the clients and the servers must be
updated at the same time). This synchronisation cannot be allowed to depend on manu-
al communication between the administrators for all of the machines involved.

Large installations tend to have a range of specialists. The configuration of any one ma-
chine is made up by composing their individual contributions. LCFG recognises this and
provides a mechanism so that a number of people can collaborate on the configuration
of a machine with a minimum of conflict.

For example, the file /etc/hosts.allow typically specifies which services are provided to
which remote hosts. Different entries in that file may well be the responsibility of differ-
ent people (ssh, mail, snmp, etc.). Traditionally, there might be some conflict over the
ownership of that file. Some tools, such as Cfengine, are designed to edit parts of the file
without affecting other parts, but this is very hard to do reliably.

LCFG avoids this problem completely. Different people can specify access resources for
different services (usually in different header files). The LCFG compiler composes these,
resolving any conflicts, and the component regenerates the complete hosts.allow file.

If there are conflicts in the values specified by different people, the LCFG server can
often resolve these automatically—perhaps by giving one aspect priority, or perhaps by

46 / Managing a Site with LCFG

creating some composition of the conflicting values. If any unresolved conflicts remain,
these will be reported at compile time rather than misconfiguring the machine.

LCFG’s mutation functions are central to this composition process. Rather than having
to specify a complete list of services, for example, it is normal to use mADD() to “add my
service to the ones already there.” Or “add 50 MB to the size already specified for this
partition.”

Header File Organisation

The organisation and structure of the header files are important issues for an LCFG
site. In general, the header files are created to represent different aspects of the configu-
ration—perhaps a physical aspect such as the machine model or a logical aspect such as
a “Web server.” These headers are created by the various specialists. The more general
system administrators can then select the appropriate ones to configure a particular ma-
chine.

Typically, the headers will be structured into some kind of inclusion hierarchy. There
are general lcfg-level headers, which contain generic defaults. These will be included in
site-level headers, which override some values to make them site-specific. These may be
further included in department-specific headers, and so on.

A mature LCFG site will have a number of header files, so the structure of the hierarchy
is important. In particular, the mutation functions are often sensitive to the inclusion
order of the header files. It is also common to use preprocessor commands to detect par-
ticular combinations of headers and make specific adjustments to the configuration. This
can be fragile if it is not used with care.

Finally, there is no access control on individual LCFG resources—access control can
only be implemented at the file level. But source files may contain arbitrary resources,
and even preprocessor commands, so that level of access control is ineffective. The
LCFG source files are simple plain-text files, though. It is common to generate some in-
cluded files, perhaps from a utility or Web form which provides control over a restricted
number of resources and their values.

5.3 Managing Change
Some sites demand a very stable configuration. For others, however, the hardware, the
software, and the requirements change almost continually. LCFG is capable of support-
ing a high rate of configuration change. It is not uncommon to see a large LCFG server
almost continuously busy tracking changes to various source files.

Especially when there is a wide diversity of configurations, though, high rates of change
make it very hard to test new configurations properly. Of course, errors can usually be
fixed quickly when they are detected, but it is usually preferable to “stage” the changes,
so that production systems are more stable. LCFG makes this very easy. For example, we
use a scheme similar to the following:

During development, new changes are deployed only onto an LCFG “develop- ❖

ment” server. The developer’s test machines are configured from this server.

Managing a Site with LCFG / 47

At various intervals, the configuration files from the development server ❖ 1 are
transferred to an LCFG “test” server. This is used to configure a small set of
machines that are typical of the production environment. The new configura-
tion release is tested for a few days on these machines.
Usually weekly, the production LCFG server is synchronised with the test ❖

server to release the new configurations onto the production machines.

Of course, it is not possible to test all aspects of the configurations, and the test ma-
chines represent only a sample of the production machines, so errors do still occur in
production. But the LCFG sources are maintained in CVS, and it is usually simple to
roll back the configuration of the entire site to any point in the past.

Some configuration changes clearly need to bypass this mechanism. If the network is be-
ing reconfigured or a server is being moved, that aspect of the production configurations
needs to be changed at the appropriate time. A small number of header files are shared
directly among the three LCFG servers (“development,” “test,” and “release”).

LCFG does support a mechanism to allow configuration changes to be manually vetted
before they are accepted on the client. This may be appropriate for a few highly critical
servers which need to be very secure and/or very reliable (e.g., the Kerberos master).

Some configuration tools allow more manual intervention in the configuration deploy-
ment. This is strongly discouraged with LCFG, because it is often managing the con-
figuration of relationships between machines. If a server is reconfigured, the client must
be reconfigured to match. Delaying the reconfiguration of the client will simply break
the service.

5.4 Installing from Bare Metal
The ability to (re)install machines easily from bare metal2 is very important. This is what
lets us replace failed hardware or duplicate an existing machine to increase the size of a
cluster, for example. Various “cookie-cutter” mechanisms have been available for a long
time—these usually duplicate an existing disk image to create a clone.

However, cloning does not always work well. Duplicating machines to increase the size
of a cluster requires us to store and maintain too many different images. More subtly, we
often want to clone a logical part of the configuration rather than the whole thing—for
example, we might want to recreate the functionality of an existing server on different
hardware. In this case, the new machine needs a configuration that is a composite of the
old functionality and the new hardware, but we don’t have a configuration like this avail-
able to clone.

Most applications of cloning use some process to subsequently customise the clone. In
the simplest case, cloning a new machine for a cluster requires that the IP address of the
clone is different from the original. But this process can easily get out of hand—it is not
uncommon to see large and unmanageable post-cloning scripts.

1. At least, those which are deemed ready for production.
2. That is, starting with an empty disk or one that has no (useful) OS pre-installed.

48 / Managing a Site with LCFG

LCFG can be used as a very effective post-cloning script. The golden copy should be a
minimal OS image, including an LCFG client. To create a new machine, this image is
cloned. When the new machine first boots, LCFG runs to customise the software and
configuration according to the profile. This lets us create very different configurations
from the same image. By mixing the header files in the machine profile, we can even cre-
ate, for example, a new Linux mail server with the same functionality as our old Solaris
mail server.

Many tools can be used in conjunction with LCFG in this way, but there are a number
of disadvantages: in particular, when LCFG is used on top of an existing clone process,
certain parameters are beyond its control. For example, the disk partitioning of the ma-
chine will already have taken place by the time LCFG first runs, so the benefits of man-
aging this in LCFG are lost.

Under Linux, LCFG provides an installation mechanism (the LCFG installroot) that
allows it to take control of the whole installation process. In this case, there is no image
to be cloned. The disk is partitioned according to the LCFG profile, and the software is
loaded from packages, as specified in the package list. This process is described in Ap-
pendix C.

6. Writing Components

Chapter 2 offered a brief introduction to writing your own component. The amount of
code required in that case was very small, partly because the LCFG framework provides
a lot of supporting functionality. This chapter covers component writing in more detail
and supplies a reference for the framework.

Every “subsystem” of a machine that is configured by LCFG needs a component script
to read the resources from the profile and generate the appropriate configuration files
and daemon options. If there is a daemon process, the component usually controls the
lifecycle of the daemon as well (by starting and stopping it). This allows the component
to notify (and perhaps restart) the daemon when the configuration changes. It also allows
LCFG resources to control which daemons should be running on a particular machine.

Components obey certain conventions about their output and logging, so that status
information from the components can be relayed to the LCFG server for display on the
status page, and the logs be made available via the logserver.

If you have a new subsystem that you want to configure with LCFG, you should first
consider whether it is necessary to write a new component at all. The file component
can handle most cases only involving the creation of configuration files.

If you do need to manage a daemon or perform more complex processing, you will
probably need a custom component. In that case, it is worth looking first for a similar
component you can use as a basis—although you should be aware that not all compo-
nents on the Web site will be exemplars of production code.

Having decided to write your own component, you will need to:

Be clear about the scope of the subsystem that the component is intended to ❖

manage. It is important that there be no overlap between components. For
example, individual configuration files or daemons should be managed by one
component only.1 This is a very important principle.
Choose a language. ❖

Create a schema file with the types and defaults for the resources to be used. ❖

Create skeleton code for the component with ❖ lcfg-skeleton.

Write code for the ❖ configure method (see Section 6.2) to create the necessary
configuration files from the LCFG resources.
If a daemon is involved, write code for the methods to manage its lifecycle. ❖

Code any other methods that may require special treatment. ❖

Install the component on the client, and the schema file on the LCFG server. ❖

1. Of course, the resources for that component may well come from many different sources.

50 / Writing Components

The LCFG “buildtools” (see Appendix B) is a set of scripts and makefile targets that are
useful when building components. They are not strictly essential, and it is likely that
they will be replaced at some time in the future, but they currently provide some very
convenient functionality. The rest of this chapter assumes their use.

Choosing a Language

The LCFG framework provides support for shell (bash) and Perl components. Using
other languages for the component itself is probably not advisable, because this would
involve interfacing to (or duplicating) the framework. Of course, components often call
utilities written in other languages. To some extent, the choice of language is a personal
decision. However, different languages are suited to slightly different applications:

If you need to actually write a new daemon process (as opposed to simply ❖

managing some external daemon command) and the daemon can be written
in Perl, then a Perl component is highly recommended. The Perl framework
provides a mechanism for communicating configuration changes directly to a
running daemon (and for reporting messages directly into the LCFG status sys-
tem). The component lcfg-perlex is a minimal example of a Perl component.
If the component is very simple and just creates a few configuration files, a ❖

shell component is probably most appropriate. The component lcfg-example is
a minimal example of a shell component.
If the component is intended to manage a pre-existing daemon, a shell compo- ❖

nent is usually sufficient. The component needs to start and stop the daemon,
notify configuration changes, and ensure that any output from the daemon is
routed to the LCFG logging and monitoring system. If access to the C source
code of the daemon is available, routines from the framework C library can be
added to the daemon itself to handle status reporting.
The shell framework makes the component resources available directly as shell ❖

variables. In some cases (especially when importing large spanning maps), the
number of these variables exceeds the shell limit. Perl components are more
suitable for handling large numbers of resources.

6.1 Schema Files
Every LCFG component requires a schema file to define the schema for its resources.
This supplies:

The list of valid resource names for the component. ❖

Information on the structure of any list resources. ❖

Validation predicates (❖ types) for resource values.
Default values. ❖

Simple Resources

Simple resources are declared by specifying their name and default value. For example:

ipaddr 129.215.65.78

The resource is assumed to be of type string, so no validation is performed when the re-
source is compiled.

Writing Components / 51

Built-in Types

Resources may have a type specified. In this case, the resource values are validated at
compile time and, in some cases, transformed into a canonical representation. The types
currently supported are:

integer: Validated as an integer.

boolean: Validated as a boolean. Several formats are accepted (e.g., yes and no),
and these are all transformed into the canonical true or false. The client trans-
lates these values into non-null and null strings so that they can be tested easily
from shell scripts.

string: This is equivalent to having no type specification.

Type specifications have the form:

@name %type

For example:

@debug %boolean
debug yes
@interval %integer
interval 10

String Validation

String resources may have arbitrary validation code attached. For example:

@url %string(http url): /^http:/
url http://www.lcfg.org

If the value does not satisfy the validation predicate, the name in brackets is printed as
part of an error message. The file validate.h provides a number of standard validation
predicates (see Figure 6.1). Arbitrary Perl code can be used for validation, but care is re-
quired, since this executes in the context of the compiler (albeit in a “safe” module).

vENUM(L) The value is a member of the token list L.

vINFILE(F) The value matches a line in the file F.

vIPADDR The value is a valid IP address.

vIPADDRLIST The value is a (space-separated) list of valid IP addresses.

vHOSTNAME The value is hostname present in the DNS at the time of compi-
lation. Note that this will not automatically be revalidated if the
DNS is subsequently changed.

vHOSTLIST A (space-separated) list of valid hostnames.

vURL A URL.

Figure 6.1: Standard Validation Macros

52 / Writing Components

Tag Lists

LCFG resources support a single compound datatype called a tag list. As noted earlier,
this has some similarity to both the lists and the hashes usually found in programming
languages; the elements are ordered, but they can also be identified by a named tag.

The notation for declaring tag lists is unfortunately rather awkward2—for example, we
saw these resources earlier:

kdm.menu file quit saveas
kdm.mitem_file File
kdm.mitem_quit Quit
kdm.mitem_saveas Save As

The corresponding type declaration would be:

@menu mitem_$
mitem_$

Notice that this allows us to provide default values for both the list of tags and the indi-
vidual elements:

@menu mitem_$
menu First Second
mitem_$ A Menu Item

A tag list may have more than one resource per element:

@devices dev_$ perms_$
dev_$ /dev/null
perms_$ 0644

An instance of this list might look like:

foo.devices knife fork
foo.dev_knife /dev/knife2
foo.perms_knife 0655
foo.dev_fork /dev/fork
foo.perms_fork 0600

The notation for declaring multi-level tag lists can be particularly confusing, and several
different styles are in use. For example, the second-level resource keys may contain only
a single tag:

@disks dopartition_$ partitions_$
disks
dopartition_$
@partitions_ pdetails_$
partitions_$
pdetails_$

Or they may contain the tags from both levels:

2. This is a consequence of evolution from the simple list markup convention used in the original LCFG
implementation.

Writing Components / 53

@modules entries_$
modules
@entries_$ entry_$_$
entries_$
entry_$_$

Some old components do not provide an explicit tag list; they assume an implicit tag list
of 1..N, where N+1 is the lowest integer for which no matching resource exists. This is
not recommended, but it can be simulated for compatibility by specifying a # in the tag
list. For example:

@rules rule_$
rules foo #
rule_foo R1
rule_1 R2
rule_2 R3
rule_4 R4

This would generate resources corresponding to an implicit tag list of:

foo 1 2

Notice that rule_3 is ignored. There is a limit of 100 on these enumerated tags.

List Sorting

Typically, the value of a list resource is not fully specified in any single file but is built up
from declarations spread across several header files, representing different aspects. For
example, the list of components that is started at boot time is usually defined by the re-
source boot.services. The basic site header file normally defines a default list of services,
but optional header files will add other services, such as a Web service or a database ser-
vice (e.g., using mADD).

In some cases, as in the boot order above, the (partial) order of the items in the list is
important. If the optional header files simply append items to the end of the list, their
order depends on the ordering of the header files, and this can vary.

The LCFG compiler provides a mechanism to sort the items of a list automatically, ac-
cording to precedence constraints. For example:

boot.services a b c d e f
boot.order_a >c >d <e
boot.order_c >d

The boot.services list will be (topologically) sorted so that a comes (not necessarily im-
mediately) after c and after d, but before e. c will also come after d. The order of uncon-
strained items in the sorted list is not defined. (Clearly, it is possible to specify contradic-
tory constraints, but that will generate a compile-time error.)

The name of the resources containing the ordering constraints must be specified in the
definition of the list resource. In addition to specifying resources of the current com-
ponent, it is also possible to specify that the ordering resource comes from some other
component; this is very useful in cases such as the boot.services example, because

54 / Writing Components

 additional components can be added and their ordering constraints can be included in
their own schema file without any changes to the header files or the boot defaults. For
example:

@boot.services foo_$ order_$; order_$ $.bootorder

In this case, the ordering constraints for the component b can be specified either in
boot.order_b or in b.bootorder, or in both.

Occasionally, it may be useful for the component to know the explicit ordering con-
straints for the items, as well as the sorted list. This would be necessary, for example, for
the boot component to determine whether certain services could be started in parallel.
The compiler can store the final constraints in specified resources. For example:

@boot.services order_$ after_$ before_$; order_$ >after_$ <before_$

This definition will cause the compiler to generate resources such as after_a, which con-
tains the list of items that must come after a, and before_a, which contains the list of
items that must come before a. If this definition was used with the resource values above,
the following values would be generated:

after_a = e
before_a = c d
after_c = a
before_c = d
after_d = a c
before_e = a

Spanning Maps

Spanning maps are a very important feature of LCFG. They allow resource values to be
collated from many different machines and integrated into the profile of some other ma-
chine. This allows you to create components that automatically manage the relationships
between machines.

For the user of a spanning map, the process is almost transparent. But the component
author needs to create the appropriate schema files. In all, four configuration files are in-
volved—the subscriber and publisher source files (created by the user) and the subscriber
and publisher schema files (created by the component author). This is best illustrated by
an example:

The schema file for the ❖ dhcp client component specifies which resources are to
be exported:

 name
 mac
 ...
 @map %publish: name mac
 map

This says that the resources name and mac are to be published to the spanning
map whose name is given by the map resource.

Writing Components / 55

The ❖ dhcp client source files specify only the map name to which the resources
should be published (and, of course, the values of the resources themselves):

 name foo
 mac 1.2.3.4.5.6
 ...
 map dhcp/cluster27

The user need not be aware of which resources are being published.

The ❖ dhcp server schema file specifies the name of a list resource into which the
map entries will be imported. The fields of the list resource should correspond
to the resource names that will be published to the map:

 @clients name_$ mac_$
 clients
 name_$
 mac_$
 ...
 @map %subscribe: clients
 map

This specifies that a list of all the clients publishing to the map named in the
map resource should be generated and stored in the clients resource. For each
client, the values of the name_client and mac_client are generated from the
values of the corresponding client resources.

The ❖ dhcp server source file need only specify the map to which to subscribe:
 map dhcp/cluster27

The result of this is that the clients resource in the server profile will include the data
from all the clients that have published to the specified map. The list tags are the node
names of the clients. This is equivalent to having manually created the following:

clients client1 client2 ...
name_client1 foo
mac_client1 1.2.3.4.5.6
name_client2 bar
mac_client2 6.5.4.3.2.1
...

If any of the published resources in a node is changed, all nodes that subscribe to the
map are recompiled automatically. A node may publish and subscribe to the same map.

Resources of type %publish and %subscribe may list multiple maps, allowing resources
to be exported and imported from several different maps. The same resources can be
exported by several different %publish resources, and it is possible to export a resource
with a different name:

@map %publish: name ether=mac

This will export the value of the resource mac with the name ether.

56 / Writing Components

Resources from different components can be published to the same map as long as the
field names of the subscribe resource include the names of all the published resources.
(References can also be used to collate values from multiple components.)

If a list resource is published, only the one resource containing the tag names is export-
ed; the sub-resources of the list are not automatically exported.3 Cross-domain spanning
maps4 require unique (short) node names for the publishers, because the short names are
used as the list tags in the imported map.

Common Resources

In addition to the application-specific component resources, most components will want
to include the following:

#include “ngeneric-1.def”
#include “om-1.def”

The ❖ ngeneric resources are described in the lcfg-ngeneric man page. These
resources are interpreted by various parts of the LCFG system itself and control
logfile rotation, configuration dependencies, monitoring and status behaviour,
and some other options.
The ❖ om resources are interpreted by om, mainly for authorisation (see the
manual page for LCFG::Authorize).
Components should also include a ❖ schema resource specifying the version of
the schema that they require. This allows for schema changes which are not
backwards-compatible.

Extending Existing Schema

Since the schema file is passed through the C preprocessor, it is possible to extend exist-
ing component schema by including the schema files of those components. Overrides
and mutations are supported so that the inherited resources can be changed if required.
For example, the ngeneric resources for log rotation can be extended:

!ng_logrotate mEXTRA(tr)
ng_logrotate_tr copytruncate

It is even possible to mutate the type defined by an included component to add addi-
tional fields to a list record or to add additional validation. The following example cre-
ates a local version of the client schema which adds additional validation to the LCFG
server URL:

#include “client-2.def”
!schema mSET(local-2)
!@url mSET(%string(interval): /^http:foo.com/)

Notice that the header files containing the macros for mutation and validation (e.g., the
mEXTRA) should be included explicitly if they are required:

3. This is an implementation restriction we would like to remove.
4. That is, a spanning map that publishes resources collated from machines in different domains. In this

case, the short hostnames used as resource keys may not be unique.

Writing Components / 57

#include “mutate.h”
#include “validate.h”

Pseudo-Nodes

Sometimes it is useful to create source files that do not represent real machines. These
can used as either publishers or subscribers to spanning maps. For example:

An inventory source file can be used to collate all the inventory information ❖

published in the machine source files. By default, the inventory is available as
an XML profile, but a plug-in LCFG server module can be used to generate
this in a different format.
Source files can be created to represent printers, and the information needed ❖

by the print servers can be published to a spanning map. The print servers can
then subscribe to the spanning map to get the list of printer names and attri-
butes.
As a combination of both, a pseudo-node can subscribe to the printer informa- ❖

tion and feed the resources into LDAP using a plug-in module.

6.2 The Component Framework
The LCFG framework consists of three main packages:

lcfg-skeleton ❖ is a script to interactively create a complete set of skeleton files
for a new component.
lcfg-utils ❖ is a set of utility functions with Perl and shell bindings. This includes
functions for manipulating resources, reporting status, etc.
lcfg-ngeneric ❖ provides the “superclass” for LCFG components in Perl or shell.
This is a complete implementation of a component, but without explicit code
for the core of the methods. This is what allows new components to be written
simply by supplying the component-specific code for the methods.

LCFG-Utils

lcfg-utils provides C libraries, Perl bindings, and shell commands5 for a number of stan-
dard functions:

lcfgmsg ❖ is a command-line utility, and LCFG::Utils is a Perl module, both
based on the C library liblcfgutils. These routines format and route error and
log messages, as well as notifying the client component (and ultimately the
LCFG server) of any status changes.
qxprof ❖ is a command-line utility based on the Perl module LCFG::Resources.
It copies resources between various formats: resources can be read from the
profile, from a file, from the command line, or from the environment. The val-
ues can be written to a file or the environment. This is the primary interface to

5. Components can certainly be written natively in other languages, but that requires writing and main-
taining a copy of the framework in that language. It is more common to see components that use a shell
wrapper whose methods call separate programs in some other language.

58 / Writing Components

the profile. These functions are called automatically by the generic components
(see below); it is not usually necessary to call them explicitly.
sxprof ❖ is a command-line utility based on the Perl module LCFG::Template.
It takes a flat-text template file and substitutes variable values from LCFG
resources. As with qxprof, resource values can be taken from several sources.
For most components, sxprof is sufficient to generate complete configuration
files directly from LCFG resources without any additional coding. sxprof is the
heart of the file component.

lcfg-ngeneric provides generic components (for shell and Perl) which act as superclasses
for creating component instances. These give the default semantics for the standard
methods, including resource loading, locking, error checking, and standard option pro-
cessing. They also provide additional utility functions and convenient access to the func-
tions in the lcfg-utils library. The shell generic component consists of a file of shell func-
tions which can be sourced by a component shell script. The Perl generic component is a
Perl object class which can be subclassed to create a component instance.

Shell Bindings

The ngeneric script provides support for components written in the bash shell. Compo-
nents simply source ngeneric, which provides a number of useful shell functions as well
as default code for all standard methods. The manual page for lcfg-ngeneric describes
the available functions.

The Dispatch() function should be called with the command-line arguments. This parses
the common options and calls the corresponding method. The absolute minimal com-
ponent script is:

#!/bin/bash
. /usr/lib/lcfg/components/ngeneric
Dispatch “$@”

This will support all the standard methods and options, perform locking and logging,
and load the component resources. To add application-specific functionality, it is simply
necessary to override some of the default methods.

For a method foo, Dispatch() calls the Shell function Method_Foo(). This performs some
generic operations before calling the function Foo(), which is normally defined to be
empty. Component scripts simply need to redefine the function Foo() for any methods
they want to support.6 The generic operations include locking, loading of resources, and
some error checking. When the user function is called, the LCFG resources are usually
available as environment variables, and the standard options have already been parsed.
For example, the component could redefine the Start() function as follows:

Start() {
 Info “Starting my component”
 Info “My arguments are $*”

6. The function Method_Foo() can also be redefined in special cases, although this is discouraged, because
it is likely to change the standard method semantics.

Writing Components / 59

 Info “My server resource is $LCFG_foo_server”
 Info “The verbose flag is $_VERBOSE”
}

The ❖ Info() function is a standard function for displaying informational mes-
sages. Functions such as this should always be used, rather than simply “echo-
ing” messages.
The arguments are those supplied on the command line, following the method ❖

name, when calling the component (after removal of any generic options).
These component-specific arguments can be used for any purpose.
The names of the environment variables used to hold the resources are deter- ❖

mined by qxprof (see the manual page).
The exact operations performed before calling the user function depend on the ❖

method. These are described in detail on the lcfg-ngeneric manual page.
The standard options are available as environment variables (see Appendix B). ❖

ngeneric also includes a number of other utility functions which are described later. The
manual page (man lcfg-ngeneric) provides further details. The source code is also quite
simple to read, and the lcfg-example component provides a complete simple example.

Perl Bindings

The Perl module LCFG::Component provides a superclass that can be inherited to create
pure-Perl components. This module provides all the functionality of the ngeneric shell
functions, including methods, utility functions, and variables. The corresponding mini-
mal Perl component is:

package LCFG:: Foo;
@ISA = qw(LCFG::Component);
use LCFG::Component;
new LCFG:: Foo() -> Dispatch();

The component methods are Perl member functions, and the resources are passed as Perl
data hashes. A simple user-defined Start() function might look like:

sub Start($$@) {
 my $self = shift;
 my $res = shift;
 my @args = @_;
 $self->Info(“Starting my component”);
 $self->Info(“My arguments are .”join(‘ ‘,@args));
 $self->Info(“My server resource is .”
 $res->{‘server’}->{VALUE});
 $self->Info(“The verbose flag is .”$self->{_VERBOSE});
}

The methods are Perl object methods. ❖

The resource hash contains resource meta-information as well as values. See ❖

man LCFG::Template for details of the format.

60 / Writing Components

The standard options are available as member variables. ❖

The LCFG::Component module includes utility functions similar to those of ngeneric,
as well as the I/O handling functions, and some additional routines for supporting dae-
mon components. The manual page (man LCFG::Component) provides further details
on available variables and functions. The lcfg-perlex component provides a complete
simple example.

The Template Processor

The template processor is a powerful utility for creating configuration files by substitut-
ing LCFG resource values into template variables. It supports conditionals and iteration
based on LCFG resource lists. This can be used to create most configuration files very
easily, with no additional code.

The command-line utility sxprof is based on the Perl module LCFG::Template, so iden-
tical template files can be processed either from Perl or from the shell. Typically, sxprof
is called to read a template and substitute the values of LCFG resources, creating a new
configuration file. The values of the resources are usually obtained from the environment
(where they are placed automatically by the generic component):

sxprof -i component template outfile

The format of the templates is best illustrated with some examples. The most basic usage
is the substitution of a simple resource value—for example, to create a sendmail.cf file
and substitute the value of the mail relay from the LCFG relay resource:

...
DH<%relay%>
...

Iteration over tag lists is supported automatically, so multiple lines can be generated for
list resources:

fstab.partitions hda1 hda2
fstab.mnt_hda1 /
fstab.args_hda1 ext2 defaults 1 0
fstab.mnt_hda2 swap
fstab.args_hda2 swap defaults

Using the template:

<%for: item=<%partitions%>%><%\%>
/dev/<%item%> <%mnt_<%item%>%> <%args_<%item%>%>
<%end:%><%%>

yields:

/dev/hda1 / ext2 defaults 1 0
/dev/hda2 swap swap defaults

Writing Components / 61

The syntax may seem awkward, but this is largely due to the rather obscure delimiters.7
The evaluation process is really quite straightforward. For example, during the first it-
eration of the above loop, the variable item is assigned to the value of the first tag from
the list resource partitions (i.e., hda1). The second field of the fstab is set to <%mnt_
<%item%>%>, which evaluates to <%mnt_hda1%> and hence swap.

The exact character sequence (including newlines) appearing outside the <% and %>
characters is copied to the output. Hence the use of the <%\%> symbols, which are
used to prevent unwanted newlines appearing in the output.

The template processor also supports:

File inclusion (❖ <%include:%>).
Conditionals on the value (❖ <%if:%>) or the existence (<%ifdef:%>) of a
 resource.
Evaluation of arbitrary shell (❖ <%shell:%>) or Perl (<%perl:%>) expressions
and the substitution of their output.
Arbitrary variables which can be set from the command line or can be the ❖

 results of evaluating some other expression.
Insertion of resource derivations as well as values (❖ <%#variable%>). This is
useful for comments in the generated file.
Comments in the template which are not copied to the generated file ❖

(<%/_%>...<%_/%>).

See the LCFG::Template man page for the full details.

When evaluating conditionals, the empty string is considered false and all other values
(even 0) are considered true. This is consistent with the LCFG client’s treatment of re-
sources that are declared as boolean: the client maps any representation of false onto a
null string so that it may be tested more easily with the shell test function.

The return status from sxprof also indicates whether the resulting output file has been
changed by the substitution. This is very useful in components that manage daemons,
since the daemon may need to be notified or even restarted when the configuration
changes:

sxprof -i foo template output
status=$?;
[$status = 2] && LogMessage “configuration changed”
[$status = 1] && Fail “failed to substitute template”

A similar process can be used to automatically create command-line arguments for a
daemon and to force a restart if they have changed:

sxprof -i foo - argfile <<EOF
<%if: <%debug%>%> -D ‘<%debug%>’<%end:%><%%>
<%if: <%verbose%>%> -v<%end:%><%%>
<%if: <%xmldir%>%> -x ‘<%xmldir%>’<%end:%>

7. The delimiters can be changed with command-line arguments, but the default is deliberately rather
obscure, to reduce the chance of misinterpreting any characters that are a literal part of the template file.

62 / Writing Components

EOF
if daemon is running ...
 if [$? = 2]; then
 stop daemon
 daemon ‘cat argfile‘
 fi
fi

If changes to certain parts of the template are insignificant (e.g., comments), the text can
be included inside the delimiters <%{%> and <%}%>. This will prevent changes to this
text from causing a return status of 2, which would lead to an unnecessary notification
of the daemon.

Utility Functions

lcfg-utils provides the following utility functions:

Do(): The arguments to this function are executed as a shell command. If the
debugging option (-D) is set, the command is also printed as a debug message. If
the dummy option (-d) is set, the command is printed without being executed.

IsStarted(): Returns true if the component is currently started.

RequestReboot(): Sets a flag in the status display indicating that the node re-
quires a manual reboot.

ClearReboot(): Clears the reboot flag.

SetPwrCycle(): Sets a flag in the status display indicating that a power shut-
down has been scheduled.

ClearPwrCycle(): Clears the power shutdown flag.

SaveStatus(): Saves resources from the environment to the status file.

LoadStatus(): Loads resources from the status file into the environment.

LoadProfile(): Loads resources from the profile into the environment.

Lock(): Locks the component (blocking).

Unlock(): Unlocks the component.

SaveStatus() is automatically called by the generic component after successful comple-
tion of a configure method to save the configured resources. These resources are auto-
matically loaded again (using LoadStatus()) at the start of methods such as run so that
the resources in the environment represent the values that are currently configured—
these will be different from those in the profile if a previous configure operation failed.

Lock(), Unlock(), and LoadProfile() are also called by the generic component and do not
normally need calling explicitly.

Component Output

Component scripts often run at boot time and at other times when error messages may
go unnoticed or verbose output might obscure other important messages. Components

Writing Components / 63

should restrict output to a few well-defined messages, written to stderr. More verbose
information should be written to the logfile. Messages should only be generated on std-
out when that is the purpose of the method (e.g., status).

At boot time, messages should be formatted to conform to the standard system boot
message format.

Ngeneric provides the following functions:

OK(): This is called automatically by the framework on successful completion of
a method.

Fail(): The component should call this function with an error message to abort
the method. The failure is notified to the LCFG server for indication on the
status display, and it is logged in the logfile.

Error(): The component should call this function with an error message. The
error is notified to the LCFG server for indication on the status display, and it
is logged in the logfile.

Warn(): The component should call this function to print a warning message.
The warning is notified to the LCFG server for indication on the status display,
and it is logged in the logfile.

Info(): The component should call this function to print an informational mes-
sage, usually only when requested with a verbose option. The message is also
logged in the logfile.

LogMessage(): The component should call this function to print a message to
the logfile.

Debug(): The component should call this function to print a debug message,
usually only when requested with a debug option.

StartProgress(): The component should call this function to print a message
followed by a progress indicator. The function Progress() is called at intervals
to advance the indicator, and the function EndProgress() should be called when
the operation is complete.

Note that calling Fail() (e.g., during a Start()) will abort the method (so the component
will not be considered as started). Error() can be called to indicate a problem without
aborting the method call.

The following example shows the recommended way of handling long error messages
and of debugging messages so that they do not clutter the display. The environment
variables for the standard options are described in Appendix B. The verbose option can
also be enabled on some platforms by holding down the shift key when the component
method is called.

[-n “$_DEBUG”] && Debug “Debug message”
if [-n “$_VERBOSE”] ; then
 Error “A long error message”
else

64 / Writing Components

 Error “Short message (see logfile)”
 LogMessage “A long error message”
fi

The above functions support the coloured text used by Red Hat during startup. New-
lines embedded in arguments are handled correctly. The C library lcfgutils provides
access to these functions from C, allowing them to be called directly from C helper
 programs.

The generic component redirects the standard output and error descriptors to the logfile,
so all messages not produced by the above functions will appear there. If a component
needs to print to the standard output or error (e.g., as part of a status method), the de-
scriptors 11 and 12 can be used:

cat mylogfile >&11

Command return status should be checked and Fail() called to abort the component
when necessary.

Handling Logfiles

The generic component defines the variable $_LOGFILE to be the name of the standard
component logfile. Standard output and error descriptors are redirected to the logfile so
that the component may simply write to stdout to append messages to the logfile. The
function LogMessage() generates time-stamped and formatted messages, which are usu-
ally preferable.

Sometimes a component may need several logfiles for different purposes. They should be
named by adding extensions to the standard logfile name; this makes the logfile visible
(when permitted) by the logserver component and allows the logfiles to be easily rotated
using the standard log rotation files.

Logfiles with the standard extensions .err and .warn are created automatically by the
LCFG event routines. These files contain any error and warning messages generated by
the component, and their presence is detected by the status reporting system and used to
display error and warning icons on the status display. These files are deleted only by the
Reset() method (or a reboot) so that error messages will not be removed before they are
manually acknowledged.

The generic Configure() method creates a logrotate file to cycle the logfiles at various
intervals. The logrotate file is created by passing a default template through the template
processor. This allows resources to be used to customise the log rotation:

ng_extralogs: A list of extensions for any additional logfiles to be rotated.

ng_logrotate: A list of tags representing additional lines to be inserted in the
logrotate file.

ng_logrotate_tag: The logrotate line corresponding to the tag.

If even more control over the log rotation is required, the component can include a cus-
tom template in /usr/lib/lcfg/conf/component/logrotate.

Writing Components / 65

The standard log rotation file calls the logrotate method on the component after the
logfiles have been rotated. This can be used where necessary to force daemons to close
and reopen their logfiles.

Option Processing

The generic component parses some standard options and makes them available in the
following variables:

$_DUMMY (-d): The component actions are printed but not executed.

$_DEBUG (-D): Prints debugging information.

$_NOSTRICT (-n): Certain warning and error messages are suppressed. For
example, trying to stop a component that is not started will normally generate a
warning message. If this option is used, the warning is not generated.

$_QUIET (-q): No messages are printed.

$_TIMEOUT (-t): If a component is already executing, calls to most methods
will usually block until the existing instance terminates and releases the lock.
This option specifies a timeout so that the current call will terminate after time-
out seconds if the lock cannot be obtained. Certain method calls do not lock
(see the list above). Locks can be broken using the unlock method.

$_VERBOSE (-v): Additional messages are printed. Holding down the shift key
when a component method starts executing will also enable this option on some
platforms. This is useful at boot time to enable more verbose logging on certain
components.

Component methods must parse any method-specific options explicitly. For example:

Run() {
 while getopts “:x:y” arg ; do
 case $arg in
 x’) Info “option x is $OPTARG” ;;
 y’) Info “option y specified” ;;
 ‘?’) Fail “bad option ($OPTARG)” ;;
 esac
 done
 ...
}

Standard Variables

The generic components provide some other standard variables:

$_COMP: The component name.

$_LOCKDIR: The lock directory name.

$_LOGFILE: The logfile name.

$_OKMSG: The generic components print the message given by this variable on
successful completion of a method. This can be modified to add small amounts

66 / Writing Components

of extra information (but should not be used for long messages!). For example:
_OKMSG=”$_OKMSG (custom message here)”

$_ROTATEDIR: The directory for logrotate files.

$_RUNFILE: The run file. This file is created as a marker to indicate that the
component has started.

$_STATUSFILE: The status file name. This contains the values of the resources
set at the last successful reconfiguration.

Locking

The generic component assumes that most methods are not re-entrant; a per-component
lock is used to block method calls if some other method is currently executing. The de-
scriptions in section 4.1 note those methods that are not locked by default.

The functions Lock() and Unlock() call the program lcfglock to take and release the
locks. User-supplied method code can call these functions to lock custom methods or
methods that do not normally lock by default. By (conditionally) calling Unlock() before
Dispatch() it is possible to disable the default locking of the standard methods, although
this is not recommended—the caller should use the -t option or call the unlock method
to break existing locks.

The variable $_TIMEOUT is set from the generic -t option. This can also be set explicitly
by component code to define a default lock timeout. The variable $_LOCKDIR is set to
the name of the directory used to hold the lockfiles.

The Configure Method

The configure method is the most important method. It is called whenever the compo-
nent resources are changed. The component script should update the configuration files
to reflect the new resource values. If any daemons are currently running, the component
should do whatever is necessary for the daemons to recognise the updated configuration.

The example component shows a typical configure method:

Configure() {
 # Use sxprof to create the config file:
 /usr/bin/sxprof -i $_COMP template config-file
 status=$?
 # Check status
 [$status = 1] && Fail “sxprof failed (see logfile)”
 # Return if no change
 [$status = 2] || return
 # Check if the daemon is running.
 # If so notify it of any changes (if necessary)
 LogMessage “configuration changed”
 ...
}

Writing Components / 67

A resource may change for several reasons, including a change to the specification on the
LCFG server or a local change of context. The machine may not even be connected to
the network at the time the change occurs, and the component should not need to know
the reason for a particular change.

Sometimes it is useful for the component to know the previous values of any resources
that have changed. The qxprof command can be used with the -r option to read these
from the status file. Providing a different prefix for the loaded variables enables both sets
(the previous and current values) to be present in the environment at the same time:

_NG_GLOBSTAT=‘set +o |grep noglob‘ ; set -f
eval ‘/usr/bin/qxprof -p old_LCFG_%s_,old_LCFGTYPE_%s_ \
 r $_STATUSFILE -e $_COMP 2>>$_LOGFILE ; \
 echo export _STATUS=$?‘ 2>/dev/null
eval $_NG_GLOBSTAT
[“$_STATUS” != 0] && Warn “failed to loadresources”

Immediate update of configuration changes is not always appropriate. The component
must decide whether certain changes should be deferred; for example, if a user is cur-
rently logged onto the console, the component that manages the display will defer (until
the user logs out) updates that require the display server to be restarted. Some changes
can still be difficult to schedule; for example, changes to disk partition sizes will not nor-
mally be implemented until a rebuild operation is initiated manually.

Two standard resources are interpreted by the client component to determine when to
call a component’s configure method:

ng_cfdepend: This resource is interpreted by the LCFG server (and, ultimately,
by the client). It is used to determine which components should be reconfig-
ured when resources change. The resource should include a list of dependencies
of the form >component or <component. In the first case, the specified com-
ponent will be reconfigured whenever the resources of this component change.
In the second case, this component will be reconfigured whenever the resources
of the specified component change. Normally, this resource will be set to <self
so that the component’s configure method is called whenever its own resources
change.

ng_cforder: This resource is interpreted by the LCFG server. It is used to gener-
ate the client.components resource, which specifies the order in which compo-
nents should be reconfigured after a configuration change. ng_cforder specifies
a list of constraints on the order in which the components are reconfigured. A
constraint of the form >component means that this component must be con-
figured after component. Similarly, <component means that this component
must be configured before component. A runtime error will occur if the con-
straints specify a loop.

68 / Writing Components

Managing External Daemons

In addition to creating configuration files, many components also manage one or more
daemons. This is not essential—daemons can simply be started and stopped using the
normal init process. But using an LCFG component makes it easier to notify the dae-
mon when the configuration changes and to set command-line options from LCFG
resources. It is often possible to create an init script (or use an existing one) and just call
this from the LCFG component methods:

Start { /etc/rc.d/init.d/foo start }
Stop { /etc/rc.d/init.d/foo stop }

Typically, the Configure() method would simply call Stop() followed by Start() to restart
the daemon whenever the configuration changed (see the example in section 2).

If there is no existing init file or a more complex startup process is needed, it may be
more convenient to simply stop and start the daemon directly from the LCFG compo-
nent. The shell generic component provides a Daemon function to perform some I/O
redirection and other preliminaries before forking a background process. The compo-
nent will probably want to store the process ID so that it can be located later to stop or
notify the daemon:

Start {
 Daemon “foo ‘cat argfile‘ 2>/dev/null”
 client_pid=$!
 [-z “$_DUMMY” -a -z “$client_pid”] && \
 Fail “failed to start foo (see logfile)”
 echo $client_pid >$PIDFILE
}

Stop {
 client_pid=‘cat $PIDFILE 2>/dev/null‘
 [-n “$client_pid”] && [-e /proc/$client_pid] && \
 Do “kill -INT $client_pid”
 rm -f $PIDFILE
}

Since the Configure() method is called as part of the generic Start() method, command-
line arguments can be constructed (from the resources) in the Configure() method (see
below). This allows the Start() method to simply retrieve them from the argfile, as shown
above.

After starting or stopping a daemon, before exiting the method it is useful to check that
the operation has been successful. This might, for example, involve a delay loop that
polls for the existence of a process after sending it a termination interrupt. The standard
sendmail init files, for example, sometimes exit before the sendmail process has actually
terminated. Immediately calling a subsequent init start (as one might do in a Configure()
or Restart() method) will fail intermittently because there is already a process running.
The Stop() method of the mailng component is a good example of how to handle this
situation correctly.

Writing Components / 69

It is important to make a distinction between a component being started and the cor-
responding daemon being started. The component is considered started after a success-
ful call to the Start() method and before a successful call to Stop(). This is the status
reported by the IsStarted() function. Starting daemons correctly and detecting errors can
be hard because the daemon may fail asynchronously after it has apparently started suc-
cessfully. It is sometimes useful to sleep for a short time after starting a daemon before
checking that it is still running; this helps to detect any obvious failures that might occur
during daemon startup. Subsequent failures can only be detected by regular polling, per-
haps using the Monitor() or the Run() method, called from cron to check the health of
the daemon and report or correct any failures.

The standard output (and error) channels from the component (and hence the daemon)
are redirected to the logfile, so all daemon messages will appear there. However, error
messages from the daemon will simply appear in the logfile without generating LCFG
error events (i.e., the errors will not appear on the LCFG status display). If the daemon
source code can be modified, then explicit LCFG event routines can be added using the
lcfgutils C library.

Writing Daemons in Perl

The Perl generic component can be used to create components without daemons or
components that manage external daemons, as described above. In addition, it provides
support for writing components that are themselves daemons; that is, the component
process forks in the Start() method in order to leave a copy running in the background
(both of these alternatives are illustrated in the example component lcfg-perlex). This
has the advantage of providing a much tighter coupling between the running daemon
and the LCFG framework: configuration changes are notified directly to the running
daemon, which can usually handle most changes on the fly without requiring a restart.
The process is as follows:

The ❖ Start() method should perform any initialization and then call StartDae-
mon(), which forks. The parent copy returns and hence exits the Start() meth-
od. The child calls the user-supplied DaemonStart() function, which forms the
main loop of the daemon.
The ❖ Stop() method should call StopDaemon(). This signals the running dae-
mon process and automatically calls the user-supplied DaemonStop() function,
which is responsible for terminating the main loop of the daemon and exiting.
The ❖ Configure() method should call ConfigureDaemon(). This signals the run-
ning daemon process and automatically calls the user-supplied DaemonConfig-
ure() method. The new values of the resources are read into the daemon process
automatically and provided to DaemonConfigure() as arguments. In many
cases, the daemon process can simply store the resources in global variables or
perform some simple reconfiguration that allows it to adopt the new values
without restarting.
All the standard utility functions are available to the daemon process, so error ❖

reporting and other logging can use the standard functions and events are re-
ported immediately to the LCFG server.

70 / Writing Components

6.3 Testing
LCFG components are simple scripts. In theory, it is possible to test them just by execut-
ing the script with the appropriate method as an argument:

$./mycomponent start

In practice, there are a number of problems with this:

The resources are obtained from the profile of the host running the test. These ❖

resources might not exist in the profile, or you might want to use different val-
ues during testing.
The ❖ ngeneric component requires root permission to write to several logfiles
and status files. You probably don’t want to write to these live files during test-
ing.
It is likely that the component-specific code will also need to write to root- ❖

owned configuration files or make other changes to the live system.
It is possible that the component will need to start daemons or perform other ❖

root actions that you might not want to do on the live system during testing.

The LCFG buildtools (see Appendix B) provide support for all the cases discussed below.

Test-time Status Files

If the current directory contains a file called test.mk, the buildtools will automatically
define the variables @TESTSHELLV@ and @TESTPERLV@. These variables contain re-
definitions for all the system status and logfiles used by the generic component. For shell
components, the variable should be included when sourcing the ngeneric component:

@TESTSHELLV@ . @LCFGCOMP@/ngeneric

For Perl components, the variable should be used when creating the component object:

new LCFG::PerlEx(@TESTPERLV@) -> Dispatch();

By default, the private files are created under a subdirectory called TEST in the current
directory. The pathnames for all the individual files can be changed by assigning differ-
ent values to the corresponding buildtools variables. The defaults are defined in lcfg.mk.

The test.mk file is normally included, along with the other source files, in CVS for the
module. The buildtools will not package this file for distribution, so packaged and dis-
tributed components will use the live pathnames. However, any attempt to run the com-
ponent in the working directory will use the test pathnames: this is why you were asked
to delete this file earlier, so that the component would be built with live values.

Test-time Resource Values

If the buildtools variable @TESTRES@ is defined, it is assumed to be the full pathname
of a file containing resource values. When the file test.mk exists, these values will be used
instead of any values obtained from the profile. The format of the resource file should be
suitable for reading with qxprof -r (this is the same format as generated by qxprof -w).

Conventionally, the @TESTRES@ variable is defined in the test.mk file.

Writing Components / 71

Test-time Configuration Files

Any buildtools variable definitions in test.mk will take precedence over definitions in
config.mk or in any of the standard buildtools symbol files. By defining names for live
configuration files in config.mk and corresponding test-time names in test.mk, compo-
nents can be tested in the working directory without writing to the live files.

Test-time Command Execution

The buildtools define the variable @TESTING@ when the test.mk file is present. This
can be used in the component code to take different actions during testing. For example,
a debug message may be printed, rather than starting a live daemon that requires root
privileges.

The Do() function is also useful for testing. Privileged system operations should be called
using this function. For example:

Do “/etc/init.d/rc.d/sendmail start”

In normal operation, this will execute the specified command. However, if the compo-
nent is called with the -d option, a debug message will simply be printed instead.

Test Installation

At some point it will be necessary to test the component in the live environment. The
buildtools target devrpm builds an RPM from the files in the working directory. This
RPM can be installed and tested on the current system before checking in the code and
building a production RPM. Test RPMs should never be shipped to production systems,
since the code is not guaranteed to exist under CVS.

If the nsu command is available, the buildtools target devinst can be used to create the
development RPM and install it on the current system with one command.

Summary

In summary, the following steps should make component testing straightforward:

Write the component to include ❖ @TESTSHELLV@ or @TESTPERLV@, as
 described above.
Create a file containing resource values to be used during testing. Define ❖

@TESTRES@ to be the name of this file.
Define the names for system configuration files in config.mk and provide ❖

 test-time names for them in test.mk.
Use ❖ Do() to execute any commands that require system privileges; test the
 component by using the -d option.
Use the buildtools ❖ devinst target to install a test copy on the current live
 system.

72 / Writing Components

6.4 Packaging and Installation
To use an LCFG component, the code needs to be installed on all the appropriate clients
and the schema file needs to be installed on the LCFG server. LCFG does not mandate
any special way of doing this, but mature LCFG sites will probably use LCFG itself to
manage the distribution and installation of the packages.

The details of the packaging and installation process will depend on the method used.
This section brings up a few general issues you may want to consider.

Reconfiguring on Component Upgrade

When a component is upgraded, there will often be some kind of a change that requires
a reconfiguration. You can force this by using an RPM post-install script in the specfile:

%post
if [-x @LCFGCOMP@/@COMP@ -a \
 -f @LCFGTMP@/@COMP@.run] ; then
 echo reconfiguring @COMP@ component
 /usr/sbin/daemon @LCFGBIN@/om @COMP@ configure -- -f
fi
exit 0

In most cases the configure method will not restart a daemon, for example, unless the
resources have changed. However, in this case, we do want to force the daemon to re-
start, since the daemon code may have been upgraded. The -f flag is not interpreted by
the framework in any way, but it is a convention which should be handled by the config-
ure method to force a complete reconfiguration even if the resources have not changed.
If the configure method does not expect any other special flags, the following code
would be typical:

while [-n “$1”] ; do
 [“$1” = “-f”] && _RESTART=1
 shift
done
sxprof ...
[$? = 2] && _RESTART=1
[$_RESTART = 1] && Restart the daemon

Note that the configure method will run in the context of an RPM install. This requires
some care over the environment when restarting daemons.

Installing

The following steps are required to install and use a newly created component:

The component code must be installed on the client. ❖

The schema file must be installed on the LCFG server (buildtools creates a ❖

separate RPM for the schema file, and this should be installed using the appro-
priate process).
Any clients using the component need to specify the appropriate schema ❖

Writing Components / 73

 version (usually this is included in some header file):
 profile.version_component version

The component should be added to the component list of the appropriate cli- ❖

ents (usually this is included in some header file) :
 !profile.components mADD(component)

If the component is to be started at boot time and the ❖ boot component is be-
ing used, the new component should be added to the boot list:

 !boot.services mADD(lcfg_component)

Some other boot resources may need setting to control the order and run levels. ❖

7. Finally . . .

You should now have a good understanding of what is involved in implementing LCFG
at your site, including both the benefits and the difficulties. If you decide to make use of
LCFG, you will probably find that the organisational issues described in Chapter 5 be-
come more apparent: these are the real, practical challenges of system configuration.

The LCFG Web site and wiki hold the latest code and more detailed documentation.
Corrections and updates for this booklet will also appear on the Web site. We would be
glad to have your experiences and contributions via the mailing list or the wiki.

7.1 LCFG Developments
The original LCFG concept and the current implementation have been very success-
ful in real production environments. The components themselves are small and self-
contained, and they have evolved well. But the LCFG server code is now rather old and
difficult to extend. Some of the newer features, such as spanning maps, are not imple-
mented as fully as we would have liked.

In the short term, the buildtools are currently under review and are likely to be super-
seded by a more modular and portable replacement. In the medium term, it is likely that
the LCFG server will be rewritten with functionality similar to that of the existing server
but with a more modular and maintainable structure.

The component library should continue to evolve and grow, including support for new
subsystems and platforms.

7.2 The Future
LCFG has provided a very useful platform for studying the application of system con-
figuration in a real-world environment. This has raised a lot of interesting problems that
will need more research before we have any good, practical solutions.

The study of configuration languages is one important issue: how do we create a lan-
guage that allows people at different levels to express their configuration requirements
and compose them without conflicts? The issue of centralised vs. decentralised manage-
ment is also important: can we implement a distributed method of composing configu-
rations that is more efficient and robust than the centralised solution? A desire for more
autonomics is another motivating force for fully automated higher-level configuration.

Finally . . . / 75

LCFG provides a framework for prototyping new ideas, as well as a valuable source of
data on how systems are configured in practice. The publications links on the Web site
show some LCFG-related research.

However, existing configuration tools are incompatible. Related areas, such as network
configuration and grid application configuration, have their own technologies again,
even though they share many of the same problems. Perhaps the future will bring more
standardisation and some degree of unification and compatibility.

Appendix A. Bootstrapping an LCFG
Installation

The demonstration image used for the tutorials contains a pre-installed version of
LCFG. In a full production system, LCFG itself will install new machines complete with
all the necessary LCFG software already present. In both of these cases, there is no real
need for most users to understand the details of the LCFG installation. However, if you
have been using the demonstration image and would now like to deploy LCFG on some
real hardware, you will probably want to install the LCFG core manually.

The basic LCFG software will run on a variety of platforms, from Solaris to Mac OS X.
But you will probably need to rebuild packages and/or install software manually, unless
there are prebuilt packages for your OS on the Web site. We recommend that you fol-
low this manual installation process initially under a version of Linux similar to the one
supplied on the tutorial image; this will allow you to familiarise yourself with the process
before tackling any portability problems. You will need the following from the LCFG
Web site:

Core packages: RPMs containing the “core” LCFG code: the client, the LCFG ❖

server, the libraries, and some basic components.
Prerequisites: Non-LCFG RPMs containing prerequisite packages from else- ❖

where—for example, Perl modules used by LCFG that are not part of the stan-
dard OS distribution.
Core defaults: RPMs containing the schema files for the core components. ❖

Data files: An RPM or tarball containing all of the standard “header files.” ❖

Lists of URLs are provided for the package sets so that you can download and install
them easily using wget. For example:

$ mkdir download
$ cd download
$ export URL=http://www.lcfg.org/download/rh9/release
$ wget $URL/latest/lcfg-core.urls
...
$ wget -i lcfg-core.urls
...
$ wget $URL/latest/lcfg-core-prereq.urls
...
$ wget -i lcfg-core-prereq.urls
...
$ wget $URL/latest/lcfg-core-defaults.urls
...

Appendix A. Bootstrapping an LCFG Installation / 77

$ wget -i lcfg-core-defaults.urls
...
$ rpm -i .rpm
...

This installs, in /usr/lib/lcfg/components, LCFG components, as well as various utilities
and libraries. Installation of the LCFG server and client can be verified by checking the
usage:

$ mkxprof -V
++ warning: no persistent state ...
++ (use -c option ...
usage: mkxprof [opts] [file ...]
...
$ rdxprof -V
usage: rdxprof [opts] [host]
...

You should now be able to bootstrap the LCFG client and server:

Create a profile for the local machine which includes (at least) the client and ❖

server components. You can create this using the LCFG server on the demon-
stration disk (probably easiest), or by running mkxprof from the command line
(but this will require the header and schema files in the correct places).
Run ❖ rdxprof at the command line to read this profile (you will need to supply
the appropriate options).
You should now have client and server resources available. Check these with ❖

qxprof.
You should be able to start the client and server components with ❖ om.
You will need to configure the Web server to export the profiles. Look at the ❖

Apache configuration on the tutorial disk.
Copy the source file for your machine into the source directory. The LCFG ❖

server should notice the appearance of this file and compile it locally.

This is only an outline description of the bootstrap process: at this stage, it is assumed
that you are interested in investigating LCFG a little more deeply, and you should be
prepared for some experimentation.

Once you are comfortable with the manual installation process under Linux, you should
be in a position to experiment with other platforms if required. If there are no prebuilt
packages for your platform, the source can be downloaded from the CVS links on the
Web site.

Appendix B. Buildtools

LCFG does not enforce any special process for building components, but most people
currently use a common set of Makefiles and scripts known as the buildtools. These have
evolved over the years, rather than being designed, and they have a number of issues—
particularly with portability and modularity. In particular, the buildtools assume the use
of CVS for version control and work best when using Red Hat RPMs for packaging.

It is likely that the buildtools will be superseded at some point, but for now, they provide
a very convenient set of facilities:

Substituting build-time configuration variables into scripts, TeX documents, ❖

and other files.
Automatically incrementing version numbers and committing new releases ❖

with the appropriate tags.
Automatically building RPMs, Solaris packages, or Mac OS X packages, all ❖

from specific CVS versions or the working copy.

The necessary Makefiles and scripts are available in the lcfg-buildtools package.

Getting Started

The easiest way to get started with the buildtools is to use lcfg-skeleton to create a set of
template files for a new component.

config.mk is the main configuration file—this defines the build-time configuration vari-
ables for the package. You can define your own variables, but the skeleton will populate
the file with some common ones:

NAME=lcfg-module-name
DESCR=description
V=version
R=release
GROUP=LCFG/Components (for example)
AUTHOR=name <mail>
DATE=dd/mm/yy hh:mm:ss

The component Makefile should include buildtools.mk close to the start of the file (but
following the declaration of any default target):

include buildtools.mk

buildtools.mk includes the config.mk file, as well as lcfg.mk, os.mk, and site.mk, which
provide LCFG-, OS-, and site-specific configuration variables. You will need to provide

Appendix B. Buildtools / 79

a site.mk file for your own site; a sample one is provided on the tutorial image. The file
test.mk defines values to be used when testing (see section 6.3, above).

All configuration variables defined in the files mentioned above are available for use in
the Makefile. These variables can also be substituted into other files at build-time.

Substitution

buildtools.mk provides the target config.sh, which creates a script to substitute strings of
the form @VAR@, with the value of the variable VAR, for all configuration variables.

A generic rule is supplied to create any file foo automatically from the file foo.cin by
generating and applying config.sh. The component author normally creates .cin files,
and the corresponding target files are configured and generated when they are referenced
by the Makefile.

The target config.tex creates a file of TeX definitions for all the configuration variables.
This can be included in TeX documents using:

\input{config.tex}

The TeX variables are named \cfgname, where name is the lowercase version of the vari-
able name.

Creating New Releases

The following targets edit config.mk to increment the appropriate component of the
version number (X.Y.Z) and then commit all files into CVS and tag them with the new
version tag:

release ❖ : Bump the Z component (not the RPM release).
minorversion ❖ : Bump the Y component.
majorversion ❖ : Bump the X component.

A record is also added to the ChangeLogfile (which must exist) to indicate the new re-
lease, and the DATE variable in config.mk is automatically updated.

Creating Distribution Tar Files

The target pack creates a tar file from the version of the software in the CVS repository
corresponding to the version number in the current config.mk. Apart from config.mk,
the working files in the current directory are not used. The tar file is created in the stan-
dard RPM source directory.

Other versions can be packaged as well:

make V=some-version pack

The target devpack creates a development version of the tar file from the files in the
working directory. (This might not produce correct results if files have been removed or
added since creating the last release.)

80 / Appendix B. Buildtools

The Makefile may define a prep or devprep target, which is called immediately before
packing the files into a tar archive and can be used to delete or manipulate files before
packaging. The files are copied to a temporary directory before packing, so any changes
here will not affect the working directory or the CVS contents. These targets should be
followed by a double colon, since default (null) targets are included in buildtools.mk.

Creating RPMs

lcfg-skeleton provides a skeleton specfile. This is the file used by RPM to define the
package contents. The buildtools provide rpm and devrpm targets, which pack the ap-
propriate sources, create a working specfile by substituting any variables in specfile, and
build the RPMs.

The targets spec and devspec will pack the sources and create the specfile without
continuing to build the RPM. This is useful if the RPM is to be built on a different
platform. The target devinst builds a development RPM and installs it on the current
machine (this requires that the nsu command is available and provides the user with suf-
ficient privileges to perform the installation).

The variable TARFILE is set to the name of the source tar file and should be used in the
specfile. The ChangeLog entry for the specfile is automatically created from the Change-
Logfile.

The variables PROD and DEV can be used to prefix specfile lines that should appear only
in the production or only in the development version of the RPM. These variables are
set to # or null as appropriate.

When creating development tar files and RPMs, the RPM release number will be incre-
mented for each new generation. This provides a way to distinguish between different
versions, which may be generated rapidly during development and testing (these RPMs
are never released).

Creating Solaris and Mac OS X Packages

The targets pkg and devpkg can be used under Solaris to build Solaris packages instead
of Linux RPMs. The Solaris package is created automatically from the information in
the specfile by the pkgbuild program. This conversion is not perfect—for example, de-
pendency information is not converted, care is needed with any pre- or post-scripts, and
only simple specfile directives are processed. However, it is sufficient for many cases.

The environment variable $PKG_BUILD_DIR can be used to specify the location of the
resulting packages.

Mac OS X packages can be created with the targets osxpkg and devosxpkg.

Rebuilding RPMs

Copies of buildtools.mk, os.mk, site.mk, and lcfg.mk are automatically included with
the SRPM and are used during rebuilding. This prevents errors if the installed version of
these files does not match the version used when the module was packaged (or if they do
not even exist).

Appendix B. Buildtools / 81

Any operation that requires software which may not be present on a foreign target sys-
tem should be performed at build-time rather than at RPM rebuild time, if possible. For
example, modules that require specific LaTeX packages to build the documentation can
create the PDF file at packaging time using the prep target. RPMs can then be rebuilt
without rebuilding the documentation.

Miscellaneous Targets

Any ❖ clean target supplied by the component Makefile should be followed by a
double colon, since buildtools.mk provides a default target to remove common
files.
A generic rule is provided to create ❖ lcfg-foo.$(MANSECT) or foo.$(MANSECT)
from foo.pod.
Adding the following rule will cause ❖ make release to fail if there are files in the
working copy that are out of date with respect to the repository:

 uptodate:: checkcommitted

Adding the following rule will force the ChangeLogfile to be generated from ❖

the repository contents:
 changelog:: cvschangelog

Branches

Branches can be created as follows:

cvs tag -b branch_module_X_Y_Z_branch
cvs update -r branch_module_X_Y_Z_branch

Edit the config.mk to include:

BRANCH=_branch

Environment Variables

A number of environment variables can be set to change the behaviour of the
buildtools.mk makefile:

$REL_PFX: The value of this environment variable is added as a prefix to RPM
release numbers. This can be used to indicate the environment/site in which the
RPMs were built (this may involve, for example, different versions of various
libraries).

$INC_DIR: The location of lcfg.mk, site.mk, os.mk, and buildtools.mk if they
are not in the standard /usr/include location.

$CVS_PFX: The prefix used when accessing CVS modules. This is necessary if
the modules are not located in the root directory of the CVS repository.

$PKG_BUILD_DIR: The default is /var/tmp/pkgbuild.

Appendix C. The Linux Installroot

The mechanism used to install machines from bare metal depends heavily on the OS.
This appendix outlines the process for Linux—the LCFG installroot process. This is
described in more detail on the LCFG wiki. A similar process has been implemented for
Solaris, based on Jumpstart.

The following sequence is used to perform a bare-metal install:

The machine is booted from removable media or from the network, using a ❖

temporary root filesystem—the installroot.
The installroot boot process fetches the profile for the node and calls a number ❖

of components that are specifically concerned with install-time functions—for
example, partitioning the local disk and creating initial configuration files.
A number of components run to configure various aspects of the local disk. In ❖

particular, the updaterpms component is run to install the software onto the
new system. Apart from the fact that the target filesystem is not the current
root, these components work in exactly the same way as they would when re-
configuring a normal running system.
The node is rebooted on the newly created filesystem, and the installation pro- ❖

cess is completed by the standard components, which are started as part of the
normal boot sequence.

The installation process may require slight modifications for individual sites—for exam-
ple, there may be differences in the parameters supplied by the DHCP server, or other
small differences in site services. The install component accepts some configuration to
accommodate these differences.

Creating the Installroot

A bootable ISO image of the installroot is available from the Web site, so creation of a
new installroot is necessary only if, for example, additional drivers are required.

The installroot is a bootable Linux filesystem. The buildinstallroot program allows this to
be created easily from a standard LCFG profile specifying the packages it should contain:

Create a source file (say, myroot) for the installroot. A suitable default copy is ❖

available from the Web site.
Compile this into an XML profile, exactly as if it were a normal machine. ❖

Use buildinstallroot to create the installroot image: ❖

 $ /usr/sbin/buildinstallroot -f -p myroot -o /r.iso
This will create an installroot filesystem in /r and an ISO image in /r.iso. ❖

Appendix C. The Linux Installroot / 83

The ISO installroot image can be used to create a bootable CD, which is the easiest way
of performing a new installation. The filesystem image of the installroot can also be used
to perform a network install using PXE.

Install Parameters

When the installroot boots, it attempts to use DHCP to obtain the network parameters.
If DHCP is not available, these parameters can be supplied by providing a file on an
(ext2-formatted) floppy disk.

The installroot also needs to know the URL of the LCFG server. This can be supplied
by using the DHCP user-class option. A typical DHCP server configuration might
include:

subnet ... {
 ...
 option user-class “http://server.domain/profiles”;
 ...
}

If this DHCP option is not present, the URL can be given by specifying a variable in the
floppy-disk configuration file. If this is not available, the user will be prompted for the
URL of the LCFG server.

Install-time Components

Most of the components that run from the installroot are exactly the same components
that will run on the final live system. Some of these components have a specific install
method to perform special operations during installation. For example, the client com-
ponent needs to fetch an initial version of the profile before any of the normal resources
are available. The fstab component is responsible for partitioning the local disks accord-
ing to the resources in the profile (only possible at install).

The install component is the install-time equivalent of the boot component; it deter-
mines all of the other commands to be run at install time. In addition to the install
methods of LCFG components, these can include arbitrary shell commands, specified
as LCFG resources (install.methods). This allows the complete installation process to be
specified exactly via the profile. For example, if the DHCP server does not supply a valid
NTP server, we can hardwire the NTP server that is used to set the clock at install time,
by replacing the command:

!install.imethod_gettime \
 mSET(%gettime% ntpdate my-ntpserver)

Or we can execute some command before setting the time, by adding another command
immediately before this one:

!install.imethods mREPLACE(gettime,mycmd gettime)
!install.imethod_mcmd mSET(%oneshot% my-command)

Index

.cin file, 14
$CVS–PFX, 81
$INC–DIR, 81
$PKG–BUILD–DIR, 81
$REL–PFX, 81
$–COMP, 65
$–DEBUG, 65
$–DUMMY, 65
$–LOCKDIR, 65
$–LOGFILE, 64, 65
$–NOSTRICT, 65
$–OKMSG, 65
$–QUIET, 65
$–ROTATEDIR, 66
$–RUNFILE, 66
$–STATUSFILE, 66
$–TIMEOUT, 65
$–VERBOSE, 65

access control, 30
acknowledgement, 10
aspect, 4
authorisation, 30

bare metal install, 47
boot component, 37
bootstrapping LCFG, 76
buildinstallroot, 82
buildtools, 50, 78

C preprocessor, 21
cfengine, 2
chatterd, 13
ClearPwrCycle(), 62
ClearReboot(), 62
client, 4
client component, 37
clone, 47
cluster, 25
comments, 21

component, 4, 34
method, 35
output, 62

components
boot, 37
client, 37
example, 50
file, 10, 38
inv, 39
inventory, 39
logserver, 40
openssh, 12
perlex, 50
profile, 37
rpmcache, 43
updaterpms, 19, 43

conditionals, 21
configure method, 35
context, 27
core software bundle, 7

daemons, 68
Debug(), 63
declarative, 5
defaults file, 14, 19, 50
devinst, 80
devpack, 79
devpkg, 80
devrpm, 80
Dispatch(), 58, 59
Do(), 62
dotdef file, 19

early reference, 24
EndProgress(), 63
Error(), 63
example component, 50

Fail(), 63
file component, 10, 38

86 / Index

generic components, 58
genhdfile, 43

header file, 18, 46

Info(), 63
installation, 47
installroot, 82
inv component, 39
inventory component, 39
IsStarted(), 62

language, 50
late reference, 24
lcfg-ngeneric, 58, 59
lcfg-utils, 57, 62
LCFG::Authorize, 36
LCFG::Component, 59, 60
LCFG::Resources, 57
LCFG::Template, 58, 60
LCFG::Utils, 57
lcfglock, 66
lcfgmsg, 57
liblcfgutils, 57
LoadProfile(), 62
LoadStatus(), 62
Lock(), 62, 66
locking, 66
logfile, 64
logfile rotation, 64
LogMessage(), 63
logrotate, 64
logrotate method, 35
logserver component, 40

macro, 21
majorversion, 79
managed components, 39
manual pages, 20
method

configure, 35
logrotate, 35
monitor, 35
reset, 35
restart, 35
resume, 35
run, 35
start, 35
status, 35

stop, 35
suspend, 35
unlock, 35

minorversion, 79
mkxprof, 29
monitor method, 35
mSET(), 22
mutation, 17, 22

ngeneric, 58, 59

OK(), 63
om command, 36
openssh component, 12
optional software bundle, 7

pack, 79
package list, 19, 25, 41
perlex component, 50
pkg, 80
pkgbuild, 80
prep, 80
preprocessor, 21
profile, 4
profile component, 37
Progress(), 63
pseudo nodes, 57
publish, 24, 54

quotation characters, 23
qxprof, 10, 57

reconfiguration order, 67
references, 24
release, 79
repository, 43
RequestReboot(), 62
reset method, 35
resource list, 21, 52
resource type, 51
resources, 4, 20
restart method, 35
resume method, 35
rpm, 80
rpmcache component, 43
rpmcfg file, 29, 41
run method, 35

SaveStatus(), 62
schema file, 14, 19, 50

Index / 87

schema version, 19
security, 30
server, 4, 17

access control, 30
authorisation, 30
security, 30

SetPwrCycle(), 62
shell components, 58
skeleton, 14
skeleton component, 57
software updating, 41
sorting, 53
source files, 4, 18
spanning map, 5, 17, 24, 54
specfile, 80
standard software bundle, 7
start method, 35
StartProgress(), 63
status display, 31
status method, 35
status page, 10
stop method, 35
subscribe, 24, 55
suspend method, 35
sxprof, 58, 60
system configuration, 1

tag list, 21, 52
template processor, 60
test.mk, 14, 70
testing, 70
type, 51

unlock method, 35
Unlock(), 62, 66
updaterpms, 19
updaterpms component, 43
utility functions, 62
utils, 57

validation, 51

Warn(), 63

Paul Anderson (http://www.homepages.inf.ed.ac.uk/dcspaul/) is the original author of
LCFG. He has worked in system administration for over 20 years, both as a practitioner
and as a researcher. Paul currently works for the School of Informatics at Edinburgh
University, was programme chair for the LISA 2007 Conference, and is the author of the
SAGE booklet System Configuration.

About the AuthorBooklets in the Series

#17: LCFG: A Practical Tool for System Configuration
Paul Anderson

#16: A System Engineer’s Guide to Host Configuration and Maintenance Using Cfengine
Mark Burgess and Æleen Frisch

#15: Internet Postmaster: Duties and Responsibilities
Nick Christenson and Brad Knowles

#14: System Configuration
Paul Anderson

#13: The Sysadmin’s Guide to Oracle
Ben Rockwood

#12: Building a Logging Infrastructure
Abe Singer and Tina Bird

#11: Documentation Writing for System Administrators
Mark C. Langston

#10: Budgeting for SysAdmins
Adam Moskowitz

#9: Backups and Recovery
W. Curtis Preston and Hal Skelly

#8: Job Descriptions for System Administrators, Revised and Expanded Edition
Edited by Tina Darmohray

#7: System and Network Administration for Higher Reliability
John Sellens

#6: A System Administrator’s Guide to Auditing
Geoff Halprin

#5: Hiring System Administrators
Gretchen Phillips

#4: Educating and Training System Administrators: A Survey
David Kuncicky and Bruce Alan Wynn

#3: System Security: A Management Perspective
David Oppenheimer, David Wagner, and Michele D. Crabb
Edited by Dan Geer

#2: A Guide to Developing Computing Policy Documents
Edited by Barbara L. Dijker

	fm.pdf
	ch1
	ch2
	ch3
	ch4
	ch5
	ch6
	ch7
	AppA
	AppB
	AppC
	Index

