
16
M
arkBurgess&

ÆleenFrisch

A System Engineer’s Guide to
Host Configuration and
Maintenance Using
Cfengine
Mark Burgess and
Æleen Frisch

Short Topics in
System Administration16
Jane-Ellen Long, Series Editor

A
System

Engineer’sGuidetoCfengine

THE USENIX SIG FOR

SYSADMINS

THE USENIX SIG FOR

SYSADMINS

ISBN-13: 978-1931971492
ISBN-10: 1931971498

9 781931 971492

9 0 0 0 0
ISBN-13: 978-1931971522
ISBN-10: 1931971528

9 781931 971522

9 0 0 0 0

0001.cover_����er��:c�e����e 5/18/07 12:03 PM P��e 1

Short Topics in
System Administration

A System Engineer’s Guide to
Host Configuration and Maintenance

Using Cfengine

Mark Burgess and Æleen Frisch

Published by the USENIX Association
2007

Jane-Ellen Long, Series Editor
16

© Copyright 2007 by the USENIX Association. All rights reserved.
ISBN 1-931971-52-8

To purchase additional copies, see
http://www.sage.org/pubs/short_topics.html.

The USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA USA 94710
orders@usenix.org
http://www.usenix.org/

First Printing 2007

USENIX is a registered trademark of the USENIX Association.
USENIX acknowledges all trademarks herein.

About SAGE

SAGE is a Special Interest Group of the USENIX Association. Its goal is to serve the
system administration community by:

! Offering conferences and training to enhance the technical and managerial
capabilities of members of the profession

! Promoting activities that advance the state of the art or the community
! Providing tools, information, and services to assist system administrators

and their organizations
! Establishing standards of professional excellence and recognizing those who

attain them

SAGE offers its members professional and technical information through a variety of
programs. Please see http://www.sage.org for more information.

Contents

Acknowledgments v

1. Introducing Cfengine 1
1.1 Fundamental Concepts 3
1.2 Cfengine Components 7
1.3 Getting Started 8

2. Cfengine Policies: Under the Hood 13
2.1 Action Sequence Rule Types 15
2.2 Cfengine Classes 32
2.3 Filters 37
2.4 Policy Ordering and Execution 40

3. Building a Cfengine Infrastructure 42
3.1 Roadmap for Centralized Policy 42
3.2 The cfrun Command: Simulating Push with Pull 49
3.3 DHCP and Dynamic Addresses 51
3.4 Dealing with Firewalls 53

4. Some Case Studies: Sample Policies 58
4.1 Managing a Laptop Computer 58
4.2 Web Server 60
4.3 A Site Policy File Suite 64
4.4 Gathering Data from Many Hosts 77

5. Extending Cfengine: Modules and Methods 78
5.1 Modules 78
5.2 Methods 79
5.3 Example: Generating the Password and Shadow File 82

5. Extending Cfengine: Modules and Methods 78
5.1 Modules 78
5.2 Methods 79
5.3 Example: Generating the Password and Shadow File 82

6. Host Monitoring and Anomaly Detection 86
6.1 Autonomic Computing 87
6.2 Alerts: Some Basics About Warnings 87
6.3 The cfenvd Daemon 88
6.4 The ShowState Function 90
6.5 The Cfenvgraph Utility 91
6.6 FriendStatus Alerts 93
6.7 File System Scans 96
6.8 Interpreting Anomaly Results 97
6.9 Patterns and Anomalies 104

7. The Cfengine Management Process 105
7.1 Process Requirements 105
7.2 Revision Control and Rollback 106

Index 109
About the Authors 114

iv / Contents

Acknowledgments

The authors would like to thank all of the people who have made contributions to this
booklet. First, we thank our excellent team of technical reviewers: Chaos Golubitsky,
Edward F. Brown, Jason Heiss, and Jeremy Mates. Their very careful reading of the
manuscript for this booklet has made it much better. We also thank Kyrre Begnum and
Laura Villa for input and pointing out some problems. Finally, we thank all of the
members of the cfengine community for their ongoing support and encouragement in
the project and in general. Any errors that remain are our own.

As technology becomes more sophisticated,
the cost of introducing variations declines.

—Alvin Toffler, Future Shock, 1970

Cfengine is a free software package for automating the configuration and maintenance
of networked computers. It is available for all major UNIX and UNIX-like operating
systems, and it will also run under recent Windows operating systems via the Cygwin
UNIX-compatibility environment/libraries.

Cfengine is suitable for managing anything from one to tens of thousands of hosts. As
of this writing, the largest installations we know of regulate around 20,000 machines
under a common administration.

Cfengine can manage a great many aspects of system configuration and maintenance,
including the following:

! Performing post-installation tasks such as configuring the network interface.

! Editing system configuration files and other files.

! Creating symbolic links.

! Checking and correcting file permissions and ownership.

! Deleting unwanted files.

! Compressing selected files.

! Distributing files within a network.

! Automatically mounting NFS file systems.

! Verifying the presence and integrity of important files and file systems.

! Executing commands and scripts.

! Applying security-related patches and similar system corrections.

! Managing system server processes.

Cfengine’s purpose is to implement policy-based configuration management. In practi-
cal terms, this means that cfengine greatly simplifies the tasks of system configuration
and maintenance. For example, to customize a particular system, it is no longer neces-
sary to write a program that performs each required action in a procedural language like
Perl or your favorite shell. Instead, you write a much simpler policy description that

1. Introducing Cfengine

2 / Introducing Cfengine

documents how you want your hosts to be configured. The cfengine software deter-
mines what needs to be done in terms of implementation and/or remediation from this
specification. Such policy descriptions are also used to ensure that the system remains
configured as the system administrator wishes over time.

Here is a brief, annotated example of such a policy description:

Policy Example 1: Introducing Cfengine Configuration

control: General directives.
tmpdirs = (tmp:scratch:scratch2) Define a list variable.
actionsequence = (files copy tidy) Specify actions to perform (& order).

files: File ownership and protection specifications.
/usr/local/bin owner=root group=bin mode=755 action=fixall recurse=1

copy: Copy files on/to the local system.
solaris:: Applies only to Solaris systems.
/config/pam/solaris server=pammaster dest=/etc/pam.d recurse=1

linux:: Applies only to Linux systems.
/config/pam/common-auth server=pammaster
dest=/etc/pam.d/common-auth

tidy: Manage temporary scratch directories.
/${tmpdirs} include=* age=7 recurse=inf

This simple configuration is divided into four stanzas, each introduced by a colon-
terminated keyword, specifically, control:, files:, copy:, and tidy:. The control stanza
defines a list of directories, which we’ve named tmpdirs and which we’ll use later (in the
tidy stanza).

The files stanza specifies that all of the files in the directory /usr/local/bin should be
owned by user root and group bin and have the file mode 755. When cfengine runs
with this configuration description it will correct any ownership and/or permissions that
deviate from these specifications. Thus, this stanza serves to implement a policy about
the proper ownerships and permissions for the executables in the local binaries directory.

The copy stanza prescribes different configurations for Linux and Solaris systems.
On Solaris systems, files in /etc/pam.d will be updated with those in the directory
/config/pam/solaris on a master server when the latter are newer. On Linux systems, only
the file /etc/pam.d/common-auth is updated from the PAM master configuration.1 Note,

1. The reason for this is somewhat obscure. Many Linux systems use the PAM include file mechanism to
propagate this file’s PAM stacks to the configuration files for all of the PAM-enabled services. Thus, only this
master file will ever change.

however, that both of these specifications implement the same underlying system con-
figuration maintenance policy: update the relevant PAM configuration files from the
master server if necessary.

The final, tidy stanza illustrates the use of implicit looping. The single directive in the
example applies to each of the directories in the tmpdirs list. For each directory, cfengine
will delete all items in the directory or any of its subdirectories that have not been
accessed in seven days (including ones where the filename begins with a period). Like the
other directives in this sample configuration file, this stanza implements a policy: items
in temporary directories that have not been used within a week will be deleted.

All cfengine configuration descriptions are variations on these and similar themes, albeit
more elaborate ones. Before turning to more details about the technical aspects of using
cfengine, a brief consideration of the most important underlying and guiding theoreti-
cal concepts is in order.

1.1 Fundamental Concepts
As we’ve stated, cfengine operates on hosts in order to bring their configurations in line
with their specified policies. Here are formal definitions of what we mean by these key
terms:

Definition 1: Host. Generally, a host is a single computer that runs an operating
system like UNIX, Linux, or Windows. We will sometimes talk about machines
too, and a host can also be a virtual machine supported by an environment such as
VMware or Xen/Linux.

Definition 2: Policy. This is a specification of what we want a host to be like.
Rather than being any sort of computer program, a policy is essentially a piece of
documentation that describes technical details and characteristics. Cfengine imple-
ments policies that are specified via directives of the sort we just considered.

Definition 3: Configuration. The configuration of a host is the actual state of its
resources, e.g., the permissions and contents of files, the inventory of software
installed, and the like. It is the state of affairs on a particular host at a given time.

What are we aiming for with cfengine? The answer is, policy conformant configuration.
We want to formulate a specification for one or more hosts, describing their characteris-
tics and how they all interact (perhaps to solve a business problem); then we want to
leave the details, implementation, and maintenance to a robot agent: cfagent.

Humans are good at understanding input and thinking up solutions but are not very
reliable at implementation: doing. Machines and software agents are good at carrying
out tasks reliably, but are not good at understanding or finding actual solutions. With
cfengine, you let the distinct parts of your human-computer organization concentrate
on what they are each good at doing.

Introducing Cfengine / 3

4 / Introducing Cfengine

Cfengine works at a relatively low level, and it is therefore a pragmatic approach rather
than a conceptual approach. Nevertheless, you will find that there are plenty of high-
level concepts to think about when deciding on your policy.

1.1.1 Promises, Actions, and Operations
A cfengine policy can be thought of as a list of promises that the system makes to some
auditor about its configuration. Most of these promises involve the possibility of change
to make a host fulfills its policy promises. We call such changes actions or operations. As
you probably already guessed, the auditor in this scenario is part of cfengine itself.
Cfagent is also the mechanic or surgeon that performs the operations on the system, if it
does not meet its promises.

By describing its operation in this manner, we can think of configuration management
as a service, one that is intimately connected with monitoring and maintenance, and
which can be “bought” on demand without necessarily subordinating a system to a
central authority.

Definition 4: Operation. A unit of change is called an operation. Cfengine deals
with changes to a system, and operations are embedded into the basic sentences of
a cfengine policy. They tell us how policy constrains a host—in other words, how
we will prevent a host from running away.

For example, here is a promise about the attributes of a file:

files:
/etc/passwd mode=a+r,go-w owner=root group=root action=fixall

There are implicit operations (actions) in this declaration: specifically, the operations
that will change the attributes if/when they do not conform to this specification.

1.1.2 Convergence
A key property of cfengine is convergence. This is an important characteristic that
distinguishes it from general computer languages. It is a property that helps to prevent
systems from diverging: running away in an uncontrollable fashion.

Definition 5: Convergence. An operation is convergent if it always brings the
configuration of a host closer to its ideal, policy-conformant state and has no effect
if the host is already in that state. We can summarize this in functional terms by
the following meta-rules:

cfengine(incorrect state) " correct state
cfengine(correct state) " correct state

We shall sometimes call a “correct state” a “healthy state,” using the metaphor that
a badly configured host is suffering from a kind of sickness.

Here is an example used during the editing of an ASCII file:

editfiles:
...
AppendIfNoSuchLine “Important configuration line”

This operation tells cfengine to append the given text to the end of a file, only if that
text is not already there. The policy-conformant configuration is, therefore, that the line
is present, and once that is achieved nothing more will be done. We say that the opera-
tion AppendIfNoSuchLine is convergent.

Don’t underestimate the value of convergence. It provides stability. Because cfengine’s
language interface strongly discourages you from doing anything non-convergent, it also
helps to prevent mistakes. The price is that you will have to learn to think in a conver-
gent way—and that is new for most people who come to cfengine for the first time.

1.1.3 Classes and Declarations: From One to Many Hosts
One of the features that make cfengine policies readable is the ability to hide away all of
the complex decision-making that needs to be performed by the agent. To realize this
ambition, cfengine uses a declarative language to express policy.

A declarative language is simply a structured list of sentences (in the case of cfengine, it
is a list of policy promises). It is stated in no particular order; it describes a final goal.
The details of how one gets there are left implicit, to be evaluated and implemented by
the engine that interprets the specification. This is in contrast to procedural or impera-
tive languages, such as shell or Perl, which micro-manage every step along the way.

In an imperative language, one focuses on the procedure. In a declarative language, one
focuses on the intention or the presumed result.

One example of this is the use of classes in cfengine. Classes are a way of making deci-
sions without writing many “if-then-else” clauses. A class is an identifier, a Boolean
variable that has the value “true” when a particular test is true. In other words, it caches
the result of an “if ” test. A class is used to limit the scope of cfengine actions, to the
appropriate system(s) and/or under the appropriate conditions.

The benefit of classes is that all of the testing can be hidden away in the bowels of
cfengine, and only the results need be visible if or when they are needed.

Definition 6: Classes. A class is a way of slicing up and mapping out the complex
environment of one or more hosts into regions that can then be referred to by a
symbol or name. They describe scope: where something is to be constrained.

Introducing Cfengine / 5

6 / Introducing Cfengine

For example, the class debian is true if and only if cfagent is running on a host that has
Debian GNU/Linux as its operating system.

1.1.4 Voluntary Cooperation
It is a fundamental property of cfengine components that every host retains its individ-
ual autonomy. A host can always opt out of cfengine-based governance if its administra-
tor wants it to. This principle leads to a fundamental design and implementation
decision:

Definition 7: Autonomy. No cfengine component is capable of receiving
information that it has not explicitly asked for itself.

It is important to understand what this means. It does not mean that centralized control
of hosts cannot be achieved. Centralized control is the way most administrators choose
to use cfengine. Indeed, all you have to do to achieve centralized control is to make a
policy decision for all your hosts to fetch policy specifications from a central authority.

Autonomy does mean that if your environment has some small groups or sub-cultures
with special needs, it is possible for them to retain their special identity. No self-
appointed authority can ride roughshod over their local decisions.

Where does policy come from, then? Each host works from a policy specification that
cfengine expects to find in a local directory (usually /var/cfengine/inputs on a UNIX-like
host). If you want your host to be controlled from some central manager or authority,
then your policy must contain bootstrapping specifications that say, “It is my decision
that I should download and follow the policy specification located at the central
manager.”

Each host can turn this policy decision off at any time. This is a key part of the cfengine
security model.

1.1.5 Scalability
Cfengine is designed to be maximally scalable. Its scalability is at least as good as any
other system, because it allows for maximal distribution of workload.

Definition 8: Scalable distributed action. Each host is responsible for carrying
out checks and maintenance on/for itself, based on its local copy of policy.

This does not mean that you are immune from making bad decisions. For example, net-
work services can always be a bottleneck if you ask 10,000 hosts to fetch something
from one place at the same time.

The fact that each cfengine agent keeps a local copy of policy (regardless of whether it
was written locally or inherited from a central authority) means that cfengine will con-
tinue to function even if network communications are down.

1.2 Cfengine Components
The cfengine software consists of a number of components, separate programs that
work together (see Figure 1.1).2

The components of cfengine are:

! cfagent: Interprets policy promises and implements them in a convergent man-
ner. The agent can use data generated by the statistical monitoring engine cfenvd,
and it can fetch data from cfservd running on local or remote hosts.

! cfexecd: Executes cfagent and logs its output (optionally sending a summary via
email). It can be run in daemon (standalone) mode, or it can be run from cron
on a UNIX-like system.

! cfservd: Monitors the cfengine port: serves file data and starts cfagent on receipt
of a connection from cfrun. Note that no data can be passed to this daemon.

! cfrun: Contacts remote hosts and requests that they run cfagent.
! cfenvd: Collects statistics about resource usage on each host for anomaly detection

purposes. The information is made available to the agent in the form of cfengine
classes so that the agent can check for and respond to anomalies dynamically.

! cfkey: Generates public-private key pairs on a host. You normally run this pro-
gram only once, as part of the cfengine software installation process.

! cfshow: Dumps the cfagent database contents in ASCII format, in case you ever
become interested in its internal memory.

! cfenvgraph: Dumps cfenvd’s statistical database contents in a form that can be
used to plot graphs showing the normal behavior of a host in its environment.

Figure 1.1: Cfengine Components and the Connections Between Them

Introducing Cfengine / 7

2. The components differ between version 1 and version 2. We shall only discuss cfengine 2 here, as
cfengine version 1 is no longer supported, and you are strongly advised to use version 2. In addition, cfengine
version 3 is being developed at the time of writing, but this will take a number of years before it can fully
replace version 2. It will incorporate the state of the art in network and system sdministration research, build-
ing on all the lessons learned from versions 1 and 2.

8 / Introducing Cfengine

Figure 1.1 illustrates the relationships among cfengine components on different hosts.
On a given system, cfagent may be started by the cfexecd daemon; the latter also han-
dles logging during cfagent runs. In addition, operations such as file copying between
hosts are initiated by cfagent on the local system, and they rely on the cfservd daemon
on the remote system to obtain remote data.

1.3 Getting Started
In this section, we’ll get cfengine installed and running. You should get the cfengine
components working with a trivial policy before trying to understand the details of the
language, just to get the engine ticking over. Later, when you have understood its
operation, you can build up your policy step by step.

1.3.1 Building the Software
Cfengine is installed like most other UNIX open source software. You can either use a
packaged version that comes with your operating system, or you can compile it from
source code.

In either case, you will need two libraries: BerkeleyDB, for internal database usage, and
OpenSSL for cryptographic methods. These libraries are both open source and can be
used freely, just like cfengine. You cannot use cfengine without these libraries, nor can
you replace the libraries with something else.3

To begin the cfengine installation process, download the source code archive from
http://www.cfengine.org or one of its mirror sites. The download will be a compressed tar
archive with a name of the form cfengine-2.x.x.tar.gz, where x.x indicates the minor ver-
sion number within cfengine version 2.

The following procedure summarizes the steps required to build cfengine:

Procedure 1: Installing Cfengine from Source Code

$ tar zxf cfengine-2.x.x.tar.gz
$ cd ./cfengine-2.x.x
$./configure
$ make
$ sudo make install

The default location for installed binaries on a UNIX-like host is under /usr/local/sbin.

3. The databases that cfengine uses are fast low-level structures for internal memory. They are not used for
user data storage. Rather, cfengine needs a local database with very fast lookup capabilities. For this reason,
SQL relational databases are unsuitable and cannot be used with cfengine.

This directory is sometimes a shared file system (e.g., on a remote file system mounted
via NFS). This could be a problem, as cfengine must be able to function even if the net-
work is down. For this reason, copies of the cfengine binaries are maintained within the
cfengine directory tree.

1.3.2 Setting Up Your First Cfengine Host
Eventually, you will be able to let cfengine do most of the work of installing itself on
new computer systems. As a novice, however, you will want to learn something about
how things work. To accomplish this, we will now install cfengine manually so that
everything is manifest.

To avoid unnecessary dependencies on network file systems, cfengine uses a directory
that is guaranteed to be local on any host (except diskless clients). The default location
(referred to as the “work directory”) is /var/cfengine. At this stage, we’ll also assume that
the cfengine binaries are installed in /usr/local/sbin.

The next step is to create the basic structure of the cfengine work directory tree:

Procedure 2: Creating Cfengine Work Directories Manually

mkdir /var/cfengine
mkdir /var/cfengine/bin
mkdir /var/cfengine/inputs

Next, make local copies of the cfengine binaries in the work directory’s bin subdirectory
(i.e., /var/cfengine/bin). These are the copies that are actually executed, so that there will
be no risk of having a network hang during execution.

Procedure 3: Copying Cfengine Binaries to the Work Directory

cp /usr/local/sbin/cfagent /var/cfengine/bin
cp /usr/local/sbin/cfexecd /var/cfengine/bin
cp /usr/local/sbin/cfservd /var/cfengine/bin
chown -R root:0 /var/cfengine
chmod -R 755 /var/cfengine

Now that the binaries are in a reliable location, let’s test the agent by creating a trivial
cfengine policy.

Create the following file as /var/cfengine/inputs/cfagent.conf:

Introducing Cfengine / 9

10 / Introducing Cfengine

Policy Example 2: Trivial Policy for Initial Testing

#/var/cfengine/inputs/cfagent.conf
control:

actionsequence = (shellcommands)

shellcommands:
“/bin/echo Danger, Will Robinson!”

This is all you need to test cfengine. The policy is a simple one: it simply promises to
print out a message. Test this now by running the agent. The agent will look for the
cfagent.conf file in the work directory by default. Note also that we need to run the
cfkey command once,4 prior to the first time that we run cfagent.

Procedure 4: Run the Agent to Test Cfengine’s Basic Functioning

/usr/local/sbin/cfkey Run once, before your first cfagent command.
/var/cfengine/bin/cfagent
cfengine::/bin/echo Dange: Danger, Will Robinson!

Now for a surprise! Run the cfagent command above a second time, immediately after-
wards, and you will see that nothing happens. This is normal. In fact, nothing more will
happen until at least a minute has elapsed from the last time you ran cfengine. If you
run cfagent -v, invoking verbose mode, you will see the message within the output:

cfengine:: Nothing scheduled for
[shellcommand./bin/echo Danger, W] (0/1 minutes elapsed)

This message is telling you that cfengine thinks it is too soon to repeat this promised
action. We’ll return to this matter later, when discussing cfengine’s transaction locks.

Congratulations: you have now successfully used cfengine.

1.3.3 Creating a Permanent Setup
It is normal to have cfengine run on a regular basis: once per hour or perhaps every 15
minutes, depending on your requirements. Running cfagent often need not be a bur-
den on the system, because the agent will not repeat actions unnecessarily (keep in mind
the property of convergence).

We could accomplish this by editing a crontab file manually, but, instead, let’s use
cfengine to do it for us.

4. This command creates the public/private key pair for the local system, storing the resulting files in the
/var/cfengine/ppkeys subdirectory. It also creates the randseed file and several additional subdirectories in the
cfengine work directory.

Edit the policy file so that it matches the following example:

Policy Example 3: Cron Runs cfexecd Every 15 Minutes

/var/cfengine/inputs/cfagent.conf
control:

actionsequence = (editfiles)
EmailTo = (sysadmin@mydomain.tld)

editfiles:
!SuSE::
{ /var/spool/cron/crontabs/root
AutoCreate
AppendIfNoSuchLine
“0,15,30,45 * * * */var/cfengine/bin/cfexecd -F”

}

SuSE::
{ /var/spool/cron/tabs/root
AutoCreate
AppendIfNoSuchLine
“0,15,30,45 * * * * /var/cfengine/bin/cfexecd -F”

}

We have removed the Lost in Space policy, replacing it with one about root’s crontab
file. Instead of (possibly) running a shell command, the policy can potentially perform
some simple file editing. In addition, it makes some references to SuSE Linux in the
lines ending with double colons. These expressions are another example of cfengine
classes, and they determine when the promises that follow apply.

In the example, we are taking account of the fact the SuSE Linux uses a different direc-
tory convention for crontab files than most other operating systems. So we make a rule
for SuSE hosts and another rule for non-SuSE hosts (as you might guess, “!” means logi-
cal NOT), with the latter appearing first in our sample policy file.

In both cases, the promise is to add a line to crontab if it does not already exist.5 We’ll
explain file editing in more detail later in this booklet.

The revised policy file also includes an additional directive in the control section. It
specifies the target address for email generated by cfagent when initiated by cfexecd. In

Introducing Cfengine / 11

5. This simple example is not as careful as a real one would need to be in at least two respects. First, not all
non-SuSE UNIX and Linux systems use the specified location for crontab files, so the second class expression
needs to be more complex for many environments. Second, the editing directives should take more care to
ensure that multiple entries for cfexecd do not appear in the final crontab file.

12 / Introducing Cfengine

general, output from such cfagent runs are stored in timestamped files in
/var/cfengine/outputs, and this subdirectory is created by cfexecd if it does not already
exist.

1.3.4 What’s Next?
Starting from this simple policy being enforced on a single host, you can build up your
cfengine implementation, expanding it both to include more hosts and to place more
aspects of system configuration and maintenance under cfengine control. We will con-
sider these two activities separately in the chapters that follow.

2. Cfengine Policies: Under the Hood

In this chapter, we’ll consider creating policies for cfengine in detail. As a user of
cfengine, you naturally want to move beyond simple recipes to a state of understanding,
since understanding and mastering tools are prerequisites for ensuring the predictabil-
ity—and, therefore, security—of your site.

Cfengine uses a language interface for maximally expressive policy specifications. The
language has a very simple, free-format grammar which has grown organically as the
cfengine research project has progressed. This has made it somewhat inconsistent at
times, and the goal of simplicity has brought with it a few limitations in the parser.6

At the highest level, the cfengine policy grammar has the following simple form:
rule-type:

[class-expression::] Classes are optional, defaulting to the “any” class.

policy rule 1
policy rule 2
...
policy rule n

Not all rules can be used in all contexts. The rule types used in the cfservd.conf file are
rather different from the ones that are valid in cfagent.conf, and the file cfrun.hosts has an
entirely different format (we’ll cover each of these files in due course).

Most rules follow this general structure:

target option=value option=value ...

where the various options control when and how the target item is validated and/or
modified.

The following are the most important characteristics of the cfengine policy language:

! Free-format language, with some parser restrictions. Rules can extend over as many
lines as necessary or desired. Indentation is conventionally used for readability.

! Internal setting and macro (local variable) values are enclosed in parentheses.
Built-in setting values may consist of multiple items, separated by spaces.

6. These limitations will not be removed in version 2 of cfengine; they will be dealt with comprehensively
in version 3, via substantial modifications to the existing syntax.

14 / Cfengine Policies: Under the Hood

! Locally defined lists are enclosed in parentheses as well, with list elements separated
by colons.7 However, any desired separation character may be defined for this con-
text using the Split directive in the control section.

! Variables and lists are dereferenced using the following syntax: ${name}.8

! Comments use the shell syntax; a # sign marks the remainder of the line as a comment.

Here is a brief excerpt from a cfagent.conf file that illustrates several of these features. It
contains some initial settings and definitions in its control section, and two policy rules:
one of type files and one of type tidy.

control:
domain = (cfengine.org)
ChecksumDatabase = (/var/cfengine/db/cfdb)
actionsequence = (tidy files)
Split = (,)
tmpdirs = (tmp,scratch,aux/temp)
maxage = (3)

File ownership and Tripwire-like checksum verification
files:
Hr02.linux:: # Linux systems during the 2AM run
/sbin owner=0 group=0 mode=o-w checksum=md5 recurse=inf

tidy:
/${tmpdirs} include=* age=${maxage} recurse=inf

The control section defines four cfengine settings: the local domain, the location of the
database of checksum values referred to in the files rule, the ordering for the two policy
stanzas that follow, and the item separation character for lists (here, a comma).9 The sec-
tion’s final two lines define a list named tmpdirs and a macro named maxage, which are
used in the tidy stanza.

The files section illustrates the use of comments and of a compound class expression: in
this case, two classes joined by logical AND, denoted by a period. The rule in this sec-
tion checks the user and group owners and owner write permission for all of the files
under /sbin. It also computes an MD5 checksum for each file and compares it to a
stored value in /var/cfengine/db/cfdb (the database location is specified in the control sec-
tion). The agent will report on any file with incorrect ownership, user write permission,
or an incorrect checksum.

7. In cfagent policy files. The default separator in cfservd.conf is the comma.
8. Parentheses are legal replacements for the curly braces, but a parser bug in cfengine version 2 makes

them unreliable. We therefore recommend avoiding them.
9. Careful readers will notice that the actionsequence items do not use any defined split character but,

rather, are always separated by spaces.

Cfengine Policies: Under the Hood / 15

The tidy section is similar to the one we considered in the previous chapter. In this case,
the rule removes all files that have not been accessed in three days from the /tmp,
/scratch, and /aux/temp directory trees. The rule uses the maxage macro for the value of
the access time limit option, age.

We’ll now take a look at the most important rule types and then return to some more
advanced features of the configuration language.

A note about configuration snippets: Not all of our illustrative examples are runable as
is by cfengine. For example, many of them will not include actionsequence directives
or even control stanzas at all. You may need to modify them in order to incorporate
them within your own configuration files. All examples assume cfengine version 2.2.0
or later.

2.1 Action Sequence Rule Types
We’ve already introduced you to several of the rule types supported by cfagent configu-
ration files (e.g., cfagent.conf) . In this section, we will discuss the most widely used of
these in some detail.10 Table 2.1 briefly describes the rule types that appear in the fol-
lowing subsections.

actionsequence Item Purpose

alerts Display messages (based on classes defined).
copy Copy files to or update files on the local system;

the source files can be local or remote.
disks Verify presence of/free space on disk partitions.
disable Deactivate system features by renaming configuration

files.
This rule type can also perform log file rotation.

editfiles Modify text files (typically, system configuration files).
files Verify/correct the attributes of files. This rule type can

also specify file compression.
links Verify/create/correct the attributes of symbolic links.
netconfig Configure the network interface in the defaultroute

and interfaces stanzas.
resolve Specify name servers and other resolv.conf contents.
packages Verify the presence of/install software packages.
processes Monitor and manage processes.
shellcommands Execute external shell commands.
tidy Deleted unwanted files and directories.

Table 2.1: Principal Cfengine Rule Types

10. The discussion of alerts is postponed until we discuss classes, later in this chapter.

Unfortunately, space limitations do not allow us to cover all of the available rule types
here. Consult the Cfengine Reference (www.cfengine.org/docs/cfengine-Reference.html) for
complete information about all rules types and options.

2.1.1 Important Options
We’ll begin by discussing some options that are available for many different rule types.
We’ll see examples of these options in action as we consider each rule type in turn. Fig-
ure 2.1 illustrates the availability of these options by rule type.

Figure 2.1: Availability of Commonly Used Options by Rule Type

Logging Options

There are two options that control whether and where cfagent reports on its activities.
By default, most actions are performed silently.

! inform=on: Report on all actions taken (to standard output).

! syslog=on: Log all actions taken to syslog. You can specify the desired facility with
the SyslogFacility setting in the control section (the default is LOG_USER).

There are also control sections, which can be used to enable and disable inform and
syslog everywhere they are supported.

Here are some sample directives illustrating these features:

control:
Inform = (off)

GENERAL OPTIONS SUPPORTED
inform/ recurse/ define/ ifelapsed/

Rule Type syslog xdev elsedefine expireafter include exclude ignore filter

copy √ √ √ √ √ √ √
disks √ √
disable √ √
editfiles √‡ √† √‡ √ √ √ √
files √ √ √ √ √ √ √ √
links √ √ √ √ √ √ √ √
packages √ √
processes √ √ √ √ √
shellcommands √ √ √
tidy √ √ √ √ √ √ √ √
†No xdev option. ‡Feature is present using an alternate syntax.

16 / Cfengine Policies: Under the Hood

Cfengine Policies: Under the Hood / 17

Syslog = (on)
SyslogFacility = (LOG_LOCAL1)

disable: # Rename files => deactivate features
/etc/hosts.equiv inform=on # Report and log to syslog
/etc/ftpusers syslog=off # Disable silently

Specifying Successive Run Timeouts

The following options specify timeout periods for cfagent actions:

! ifelapsed=m : Ignore rule unless at least m minutes have passed since the previous
run. The default is 1 minute.

! expireafter=n : Assume that the action corresponding to the rule is hung after n
minutes (i.e., its maximum lifetime). It will be killed by any later cfagent run.

There are also control settings which correspond to global values (i.e., defaults) for these
options. Here are some example of these settings and options:

control:
IfElapsed = (10)
IExpireAfter = (15)

copy: # Copy RPM files at most once an hour.
I/rpm_out dest=/rpm_in server=silo include=*.rpm
ifelapsed=60 recurse=inf

This rule will result in server silo being checked for RPM files at most once an hour (the
actual frequency depends on how often cfagent and cfexecd are executed). Any copy
operation that results will be assumed to be hung after 15 minutes. Other rules in the
same configuration file as these lines could potentially be deployed every 10 minutes.

Controlling Directory Tree Traversal

There are two options which control how subdirectories encountered during an opera-
tion are handled. By default, rules apply only to the specified items; in other words,
actions are not recursive by default.

! recurse=depth: Perform recursive checks/operations, descending at most depth
levels. Use a depth value of 1 to act on the items within a specified directory. Use the
keyword inf to descend to the bottom of the directory tree.

! xdev=off: Descend into subdirectories residing on different disk partitions. By
default, partition boundaries are not crossed.

18 / Cfengine Policies: Under the Hood

Here are some examples of these options:

files: # Check ownerships under /usr/local
/usr/local owner=root group=admin mode=755 recurse=inf

tidy: # Clear /tmp and subdirectories (>3 days old)
/tmp age=3 include=* rmdirs=sub exclude=.X11
recurse=inf xdev=off

The first rule checks the user and group owners of files in the /usr/local directory tree,
reporting on any that are incorrectly set. The second rule removes files and empty sub-
directories that have not been accessed in three days under /tmp (except the .X11 subdi-
rectory), regardless of the disk partition on which the items reside.

See the discussion of the ignore option in the next subsection for another method of
controlling directory tree traversal.

File and Directory Inclusion and Exclusion Patterns

! include: Include items matching the specified patterns when selecting files and/or
directories for verification or modification. Patterns may include the shell wildcards *
(match any characters, including no characters) and ? (match any one character).

! exclude: Exclude items matching the specified patterns when selecting files and/or
directories for verification or modification. Global exclusion lists can be specified for
copying and linking operations via the ExcludeCopy and ExcludeLink settings,
respectively, in the control section.

! ignore: Ignore items matching the specified patterns. In contrast to exclude, direc-
tories matching an item in the ignore list are not traversed during recursive opera-
tions. A global list of directories to ignore can be specified via the separate ignore
stanza (see the example below).

! filter: Select items to which to apply a rule based on complex filtering criteria. Filters
are discussed in detail later in this chapter.

Here are some brief examples of some of these settings and options:

control:
ExcludeCopy = (*.bak *~)

ignore:
.Xll
/usr/local

tidy: # Remove non-recent files from /tmp and /scratch
/tmp age=1 include= * recurse=inf
/scratch age=1 include=* exclude=*.sav recurse=inf

Cfengine Policies: Under the Hood / 19

copy: # Update local documentation from server silo
/masterdoc dest=/usr/local/doc server=silo recurse=1

files:
/usr recurse=inf action=fixall owner=root

This example specifies a global exclusion list for copy operations and a list of subdirec-
tories to ignore during recursive operations. The tidy rule will clean up files that haven’t
been accessed today from /tmp and all of its subdirectories except /tmp/.X11 (the loca-
tion of X11 semaphores). It will also remove such files from the /scratch directory, except
ones having the extension .sav.

The copy rule copies all files from silo:/masterdoc that are newer than the version in
/usr/local/doc (if any), excluding any whose name ends in a tilde character (emacs backup
files) or that have the extension .bak (using the global copy exclusion list.) Note that
having /usr/local in the directory ignore list does not affect the file copying operation,
since the former applies only to directory traversal in recursive operations. In contrast, it
is excluded from the files operation.

Additional Options

The remaining options appearing in Figure 2.1—define, elsedefine, and filter—will be
discussed later in this chapter.

2.1.2 Configuring the Network Interface
Cfengine provides several rule types that enable the network interface to be minimally
configured. They are illustrated in the following policy definition:

Policy Example 4: Network Interface Configuration

control:
domain = (cfengine.org)
actionsequence = (netconfig resolve)

interfaces: Corresponds to the netconfig actionsequence item.
linux::
“eth0” netmask=255.255.255.0 broadcast=ones

defaultroute:
192.168.1.1

resolve:
192.168.1.100
192.168.1.105

20 / Cfengine Policies: Under the Hood

These rules specify the netmask and broadcast address used by the specified Linux net-
work interface, as well as the default route (router address). They also configure the
/etc/resolv.conf file, specifying the local domain and DNS name servers. When cfagent
runs, the IP addresses specified in the resolve stanza will be listed as the first two name
server entries in resolv.conf, and the domain defined in the file will be the one specified
in the control. Thus, resolv.conf on this system will look like this:

domain cfengine.org
nameserver 192.168.1.100
nameserver 192.168.1.105
Any existing nameserver entries

If you would like the resolv.conf name server entries to consist only of the listed items,
then include the following setting in the control section:

control:
EmptyResolvConf = (true)

Note that the network interface rules we’ve just considered are convergent. For example,
if /etc/resolv.conf already has the specified configuration, then no modifications will be
made to it. Similarly, once the network interface is properly configured, subsequent
cfagent runs will simply verify that its configuration is correct. Remediation will be
necessary only if something untoward happens to the network interface in the interim.

2.1.3 Monitoring and Protecting Files and Directories
In this subsection, we’ll consider rule types which enable you to monitor the contents
and attributes of important system files and directories and to take certain kinds of cor-
rective actions. The files rule type allows you to check and correct directory and file
permissions, and the links rule type maintains symbolic and hard links.11

The following example rules illustrate some ways that files can be used to maintain the
file system in a correct configuration:

Policy Example 5: Checking File/Directory Ownerships and Permissions

files:
/usr/local/sbin owner=0 group=admin mode=755 recurse=1
/usr/local/bin mode=ugo-w owner=root,bin,admin
action=fixall recurse=1

/home mode=g-w,-6000 action=fixplain inform=true
recurse=inf

11. Actually, both of them do more than this, but this description is a good place to start.

Cfengine Policies: Under the Hood / 21

The first rule will report on any items within /usr/local/sbin whose ownership or permis-
sions differ from the ones specified.

In the second rule, the same attributes are checked for the files in /usr/local/bin, and the
action option tells cfengine to correct any deviating settings. The rule specifies that
write permission should not be set for any item in any context; the syntax of the mode
option is quite flexible and generally follows that used by chmod. The owner option
has a list of usernames specified as its argument. The user owner for any file whose cur-
rent user owner is not included in this list will be set to the list’s first item, “root.” Such
a list is also valid for the group option.

The third rule illustrates some additional features of the mode option. The hyphen pre-
ceding the octal mode value means that the corresponding bits should be turned off
(and a plus sign means “turn on”), and more than one item may be included in the
option’s argument. Thus, this rule has the effect of removing setuid and setgid permis-
sions for all plain files under /home as well as group write access, reporting on each
action that results.

As we’ve seen, by comparing checksums cfengine can also determine whether file con-
tents have been modified. The following policy illustrates the method for initializing or
updating the checksum database used by this feature:

Policy Example 6: Initializing/Updating the Checksum Database

control:
Compute/store checksums; remove entries for deleted files

ChecksumDatabase = (/var/cfengine/db/cfdb)
ChecksumUpdates = (on)
ChecksumPurge = (on)
bindirs = (bin:usr/bin:sbin:usr/sbin:usr/local/bin)

files:
/${bindirs} checksum=md5 recurse=inf

Once the database values have been initialized, best practice is to copy the database to
read-only media (such as CD-ROM), which can be mounted in the same location.

The following rule will compare the current checksums for the files under these directo-
ries to the ones stored via Policy Example 6, reporting on any discrepancies:

control:
ChecksumDatabase = (/var/cfengine/db/cfdb)
bindirs = (bin:usr/bin:sbin:usr/sbin:usr/local/bin)

files:
/${bindirs} checksum=md5 recurse=inf action=warnplain

22 / Cfengine Policies: Under the Hood

The files rule type can also monitor and modify certain operating- system specific
attributes, including Solaris and Windows access control lists (ACLs) and BSD security
flags, as in these examples:

Policy Example 7: Specifying Solaris ACLs and BSD Flags

acl: # Define Solaris ACL
{ secure

method:overwrite
fstype:posix
default_user:*:=rwx
default_group:chem:=rwx
default_other:*:=
user:chavez:=rwx
user:mark:+rx
user:kyrre:=r
mask:*:rwx

}

Finally, files rules can also specify file compression, file and directory creation, and
modification time updating, as in these examples:

control:
CompressCommand = (/usr/bin/gzip)

files:
/depot include=*.tar action=compress recurse=inf
/var/log/messages owner=root group=0 mode=755 action=create
/scratch/ owner=root group=root mode=777 action=create
/usr/local/src/rabbit include=*.c action=touch recurse=1

The first rule compresses all files in /depot with the extension .tar (presumably tar
archives). The second rule creates the file /var/log/messages if it does not already exist,
with the specified ownerships and mode; if the file does exist, its attributes are unmodi-
fied. The third rule similarly creates the /scratch directory if necessary (note the final

files:
solaris:: # Apply ACL to files
/private acl=secure action=fixall recurse=inf

bsd:: # Ensure that the immutable flag is set
/special flags=uchg action=fixall recurse=inf

Cfengine Policies: Under the Hood / 23

slash in the rule “/scratch/”).12 The final rule updates the modification times of all C
source files in the specified directory.

The links rule type is primarily used for maintaining required links.13 By default, such
rules specify symbolic links whose targets are absolute pathnames, contrary to the work-
ings of the UNIX ln command. The following policies illustrate this rule type:

Policy Example 8: Maintaining Links

links: # Specify required links
/logs -> /var/log
/etc/aliases -> /etc/postfix/aliases type=relative
/mascot.jpg -> /usr/local/lib/images/ahania.jpg type=hard
/home/g03 ->! /homes/mike/g03 # Force link to conform

The first, second, and fourth rules specify symbolic links that should be present, while
the third rule specifies a hard link. The second rule specifies a symbolic link expressed as
a relative pathname, i.e., ./postfix/aliases.

When processing links rules, cfengine checks the links and their targets, adding missing
links that have valid targets and reporting on links that have the wrong target, point to a
nonexistent item, or are themselves plain files or directories (rather than links). In addi-
tion, you can force link rules to be enforced in all circumstances by including an excla-
mation point in the specification, as in the final example above. Table 2.2 charts how
link rules are applied, normally and when forced.

Table 2.2: Link Rule Effects (Default and Forced)

12. The directories rule type can also be used for this function.
13. It can also be used to perform file copying in some circumstances, but we will not cover that capabil-

ity here.

Link Exists? Target Status Default Action Forced Action

No Exists Link created Link created

No Missing Warning Link created

Yes Correct None None

Yes Wrong item Warning Link corrected

Yes Missing Link removed None

File renamed to File renamed to
Wrong type Exists name.cfsaved; name.cfsaved;

link created link created

Wrong type Missing Warning File renamed; link made

24 / Cfengine Policies: Under the Hood

2.1.4 Managing Configuration Files (and Others)
Cfengine provides two types of rules that are very useful for managing configuration
and other files on a system. The disable rule type renames files, typically by adding the
extension .cfdisabled; such renaming can often serve to disable unwanted services and
features. The editfiles rule type enables you to modify the contents of system configura-
tion files and other ASCII text files.

The following policy illustrates these rule types:

Policy Example 9: Disabling and Modifying Files

disable:
Disable passwordless system access
/etc/hosts.equiv
/root/.rhosts inform=true
Rotate syslog file; truncate maillog when big
/var/log/messages rotate=6 ifelapsed=1440
/var/log/maillog rotate=truncate size=>1024m

editfiles:
{ /etc/hosts.allow # Disable access for this domain

HashCommentLinesContaining “bad-guys.org”
}

{ /etc/xinetd.d
Backup “false”
Make sure telnet is disabled
BeginGroupIfLineMatching “.*telnet.*”
DeleteLinesMatching “ *disable =.*”
GotoLastLine
InsertLine “disable = yes”

EndGroup

If no access control, limit to subnet
SetLine “only_from = 192.168.9”
AppendIfNoLineMatching “ *only_from.*”

}

There are four rules in the disable stanza. The first two rename the specified files by
adding the aforementioned extension, thereby deactivating certain types of passwordless
remote system access.

The disable type can also be used to rotate system log files (like the logrotate facility).
The third rule in the disable stanza maintains the most recent six versions of the mes-

Cfengine Policies: Under the Hood / 25

sages log file, renaming older ones to messages.1 through messages.5. This file will be
rotated at most once per day (controlled by the ifelapsed option).14 The final rule in
the stanza truncates the maillog file whenever its size exceeds 1 GB.

The editfiles rule type allows you to modify the contents of text files, using a rich set of
editing primitives. The first rule in Policy Example 9 will place a comment character—
in this case, a pound sign (#)—at the beginning of any active line in /etc/hosts.allow in
which the string “bad-guys.org” appears.

The second rule in the editfiles stanza loops over all of the files in the /etc/xinetd.d direc-
tory. The first directive disables the creation of backup files containing the previous ver-
sion of modified files. The next group of editing commands apply only to a file having a
line that matches the specified regular expression—i.e., containing the string “telnet”
somewhere within it—as indicated in the BeginGroupIfLineMatching directive; only
the file for the telnet service should contain a matching line. For this file, the editing
operations will result in the disable keyword appearing as the last entry within the file,
with a setting of “yes.”

The remaining editing operations in this section will be applied to every file within the
specified directory. The SetLine operation defines the specified character string as the
active replacement text. The second operation causes this text to be placed at the end of
the file when the string “only_from” does not appear anywhere within the file. These
operations have the effect of adding the specified only_from setting to any file that does
not already have one.

These editfiles examples illustrate just a few of the many available editing operations.
Consult the Cfengine Reference for information about the entire set.

Note that editfiles does not modify the file if the specified directives do not result in
any actual changes to the file, and the file’s timestamps do not change. This is true even
if directives such as EmptyEntireFilePlease are used (discussed below).

When you are constructing editfiles rules, it is important to be certain that the opera-
tion sequence you are specifying is convergent and will always result in the same final
form of the file. It is all too easy to introduce unintended assumptions about the specific
form of the configuration file which may be violated in practice. Sometimes the best
way to ensure that a file has the desired contents is to replace it completely, either by
copying a saved version or with an editfiles policy such as the following:

editfiles:
{ /etc/issue # Specify entire file contents.

EmptyEntireFilePlease
InsertLine “Welcome to my parlor! Please login.”

}

14. We’ll see other ways of accomplishing this when we consider classes, later in this chapter.

26 / Cfengine Policies: Under the Hood

Note that editfiles does not create files which do not already exist unless the AutoCreate
directive is included.

Using a Central Repository

We have seen several contexts where cfengine will save the current version of a file that
it is modifying or replacing. By default, such files are given a new extension and remain
within the directory in which they were encountered. Alternatively, you can specify a
repository directory to which such files can be moved instead. The repository location is
specified in the control section:

control:
Repository = (/var/spool/cfengine)

Files moved to the repository are given names reflecting their full paths, with slashes
replaced by underscore characters.

The repository is used by disable, editfiles, links, and copy rule types; copy and
disable allow you to override repository use or to specify an alternate repository
directory via their repository option.

2.1.5 Copying and Distributing Files
We’ve seen several examples of cfengine’s ability to copy files already. In fact, file distri-
bution within a network is one of cfengine’s most powerful and widely deployed capa-
bilities. Rules related to these activities appear in the copy stanza.

By default, file copy operations are performed subject to the following conditions:

! A file is copied only when the source file is newer than an existing destination file.
This is determined by comparing their ctimes,15 but alternative criteria can be speci-
fied using the DefaultCopyType global setting or with the type option (for individ-
ual rules). Some useful comparison types are mtime (content modification times),
checksum (computed checksums), and binary (binary file comparison). You can
also force a copy operation to take place even when the comparison says it doesn’t
need to, by including the force=on option.

! Old versions of copied items are retained, either by giving them the extension
.cfsaved or moving them to the repository. You can force existing items to be simply
replaced, by including the backup=off option.

! The modification and access times for copied files reflect the time when the copy
operation took place. You can force copied items to retain the same timestamps as
the source files by including the timestamps=on option.

15. The UNIX “ctime” is the inode change time, and it is updated whenever the corresponding file’s con-
tents or attributes are changed.

Cfengine Policies: Under the Hood / 27

! Cfengine will refuse to perform copy operations that modify the item type of the tar-
get (for example, replace a directory with a plain file). This behavior can be overrid-
den with the typecheck=off option.

! When copying complete directories, files present in the target location but not in the
source directory are ignored. Such files can be automatically deleted using the
purge=on option, in order to maintain identical directories.

! Copy operations do not verify the resulting data. Verification is performed (via a
checksum comparison) when the verify=on option is specified.

! Network copy operations transmit data in the clear. For sensitive information, you
can include the encrypt=on option, which causes network transmissions to be
encrypted.

The following sample policies illustrate some of the copy rule type’s capabilities, includ-
ing some of the options we just considered.

Policy Example 10: File Copying Policies

control:
DefaultCopyType = (mtime)
SplayTime = (15)
adminhost = (secrets.cfengine.org)

copy:
Copy dat/doc files if not too big

/usr/local/data dest=/archive/data
include=*.dat include=*.doc exclude=test.*
recurse=inf backup=false size=<500m

Retrieve configuration file from master
/depot/hosts.deny server=${adminhost}
dest=/etc/hosts.deny owner=root group=0 mode=644
backup=off force=on timestamps=keep

Transmit shadow password file encrypted
/depot/shadow server=${adminhost} dest=/etc/shadow
owner=0 group=0 mode=600 encrypt=true

The first rule specifies that .dat and .doc files within the /usr/local/data directory tree be
copied to /archive/data, provided that the source files have been modified more recently
then their counterpart in the target directory and that they are smaller than 500 MB. In
addition, files having the name test are also excluded. Existing files will be overwritten
without being saved.

28 / Cfengine Policies: Under the Hood

The second rule unconditionally replaces the local /etc/hosts.deny file with one from the
system secrets.cfengine.org, retaining the timestamps from the source file. This rule also
specifies the ownership and mode for the target file.

The third rule is similar to the second one, retrieving another file from the same remote
system. In this case, however, the file will be copied only when the remote file is more
recent than the local copy. When the file is copied, the previous version will be retained
and the file contents will be encrypted as it is transmitted across the network.

The SplayTime setting in the control section of Policy Example 10 is used to prevent
the network congestion that might result from many systems simultaneously attempting
to retrieve files from a master distribution host. This setting specifies a maximum num-
ber of minutes that cfagent will wait to begin working after it is initiated. The actual
wait time is some random value less than or equal to the splay time. In this way, the
working of multiple cfagents running with similar configurations will be sufficiently
offset to avoid problems.

Another copy example that illustrates the use of multiple remote source systems appears
in the section on feedback classes, later in this chapter.

2.1.6 Administering File Systems
The disks rule type allow you to verify that important file systems are present and con-
tain sufficient free space, and the tidy rule type provides features for maximizing space
by deleting unwanted items. Here is a sample policy using them:

Policy Example 11: Managing Disks and Disk Space

control:
SensibleCount = (10)

disks: # Check disks and free space
/homes
/aux freespace=500mb inform=on

tidy: # Delete core files and clear /tmp
/ include=core age=1 type=ctime

recurse=inf xdev=off
/tmp include=* ignore=.X11 rmdirs=sub

age=3 recurse=inf links=traverse

The disks rules check that the /homes and /aux file systems are present by determining
whether a reasonable number of files are present in each directory (i.e., at each mount
point). The SensibleCount setting specifies what “reasonable” means. In the case of the
latter file system, the amount of free space is also determined, and a warning is issued

Cfengine Policies: Under the Hood / 29

when the amount falls below 500 MB (including inform=on results in a clearer warning
message).

Rules in the tidy stanza specify items that should be deleted from the relevant directory
tree. The first rule in the example removes core dump files more than 24 hours old that
are located anywhere on the disk partition containing the root directory. The second
rule clears all files and empty subdirectories under /tmp that were last accessed more
than three days ago (the rmdirs=sub option specifies that /tmp itself should not be
removed). As cfagent traverses this directory tree, it will travel into subdirectories that
are symbolic links to locations elsewhere in the file system (the default behavior is to
skip such links).

2.1.7 Managing Processes
We now turn to a rule type that manages something other than file system objects,
specifically processes. The following policies illustrate some of the capabilities of the
processes rule type:

Policy Example 12: Managing Processes

processes:
“dhcpd” matches=1
“sendmail” restart “/etc/init.d/sendmail start”
“inetd” signal=hup syslog=on
“kudzu” signal=kill
“cpuhog” matches=>2 signal=stop action=signal

SetOptionString “-e”

Each rule in this processes stanza includes a quoted string as its initial item. This
string specifies the process(es) to which the rule applies. Cfengine compares the string to
the output of the ps -ef16 command and applies the rule to all processes whose entry
contains it. Thus, the first rule would apply to both the inetd and xinetd daemons if
both were present on the system (and possibly to other processes whose ps output con-
tained that string). You can modify the options supplied to ps via the SetOptionString
directive.

The first rule will check for the presence of a process named dhcpd and issue a warning
if this daemon is not running. The second rule checks for a sendmail process, restarting
using the specified restart command it if it is not running.

The remaining rules illustrate more complex process management. The third rule will
send a hangup (HUP) signal to matching processes and log its action to the syslog
facility. The fourth rule will kill any kudzu process that is running. The final rule will

16. Or ps aux on BSD-based systems.

30 / Cfengine Policies: Under the Hood

count the number of cpuhog processes and suspend all of them when more than two
are present.

There is one subtlety with respect to the restart option. When it is specified, it causes
the corresponding command to be run if the specified process does not exist (as in the
sendmail example above). It also causes the specified command to be run after an exist-
ing process is terminated via the signal option. This is not always what you want. More
complex decision making is possible using filters, which are discussed later in this
chapter.

There are also options for specifying the process’s user and group execution contexts and
for sandboxing: owner, group, chdir and chroot. See the Cfengine Reference for details.

2.1.8 Installing and Verifying Software Packages
Cfengine can also automate software package management and installation. Policies for
these items are specified in the packages stanza. Here are some examples:

Policy Example 13: Package Management

control: # Define package manager & install command
linux:: DefaultPkgMgr = (rpm)
redhat:: RPMInstallCommand = (“/usr/sbin/up2date %s”)
suse:: RPMInstallCommand = (“/usr/sbin/yast2 -i %s”)

packages:
nagios version=2.4 cmp=ge
pstree action=install

The settings in the control section specify the package management software that is in
use, as well as the command used to install a software package. These directives illustrate
the use of operating system–based classes within policies for defining a different installa-
tion command for different Linux distributions.

In the packages stanza, the first rule checks whether Nagios is installed. A warning will
be generated if the package is not present or if the installed version is earlier than ver-
sion 2.4. The second rule checks for the pstree package and installs it if it is not present
on the system.

2.1.9 Executing Shell Commands
Flexible as cfengine is, there are nevertheless many actions you might want to perform
that are not (yet) supported. Fortunately, cfengine provides the ability to execute arbi-
trary shell commands. The package itself can also be extended via modules and meth-
ods, which are discussed in detail in Chapter 5.

Before we consider policies using external shell commands, we need to look briefly at

Cfengine Policies: Under the Hood / 31

the syntax required for including quotation marks within quoted strings, since this
construct is frequently needed when specifying shell commands.

Definition 9: Quotes Within Quotes. In cfengine you must escape quotes that are
contained within quotes, even quotes of a different kind (e.g., single quotes inside
double quotes). Quotes are escaped with a backslash. Here is an example of quot-
ing within an function argument:

result = (ExecShellResult(“/usr/bin/who -r | awk \’{print $2}\’“))

Here is an example of a simple policy employing external shell scripts:

Policy Example 14: Executing External Commands

shellcommands:
“/etc/init.d/postfix restart”
“/usr/local/sbin/cleanup” timeout=300 background=true

The first rule runs these standard boot scripts for the Postfix facility in order to restart
its associated daemons. The second rule runs a shell script named cleanup, located in
/usr/local/sbin. This rule starts the script as a background process, and cfagent will not
wait for it to complete. The rule also specifies a timeout period of five minutes, after
which cfagent will kill the corresponding process (presuming it to be hung). Be aware
of the difference between this option and expireafter; the latter requires a second
cfagent run in order to terminate the process.

To Shell or Not to Shell

We are used to having commands executed on a command line, where we are always
working inside a shell with a defined path and environment variables. A shell can be a
mixed blessing, however. For security reasons, you might want privileged scripts to
avoid uncontrollable environment variables. For this reason it is possible to execute
programs directly, without a shell wrapper, as in this example:

shellcommands:
“/usr/bin/updatedb” useshell=false

The default behavior is to use a shell wrapper.

Occasionally, shell commands hang during execution due to improper file descriptor
termination in children. A tip for preventing this is to explicitly close their file descrip-
tors with this shell construction:

“/bin/command < /dev/null > /dev/null 2>&1” useshell=true

Note that you must use a shell wrapper when employing this technique.

32 / Cfengine Policies: Under the Hood

2.2 Cfengine Classes
Classes are the cached results of tests about properties of the system. They are evaluated
just before cfagent starts executing. Classes can be:

! Detected from the host environment.

! Defined by the system administrator in a policy file.

! Created at the start of a run based on the results of supplied functions.

! Defined as a result of actions taken (or not taken) during rule processing.

! Based on measurements/observations taken by cfenvd.

! Used in complex logical expressions to enable the conditional application of rules.

Classes of the first type include characteristics of the operating system environment, the
network environment, and the date and time of the cfagent run. To see which classes
are detected in your environment, run cfagent with the -pv options.

Here is an example of the output from one of our systems. We have reorganized and
annotated the output for pedagogical purposes.

$ cfagent -pv
Defined Classes = (
bella bella_ahania_com ahania_com Hostname & domain variations
192_168_1_101 192_168_1 192_168 19 IP address components
April Day14 Friday Yr2006 Date components
Hr12 Hr12_Q3 Min35 Min35_40 Q3 Time of day components
linux linux_2_6_11_4_21_10_default OS and kernel version
SuSE SuSE_9 SuSE_9_3 Operating system specifics
32_bit i686 Hardware characteristics
fe80__20e_35ff_fe52_5b03 net_iface_eth0 MAC address & interface name
cfengine_2 cfengine_2_1 Cfengine version variations
UserProcs_high_dev1 DiskFree_high_dev2 System resource usage levels
...
)

Classes, like other identifiers, can only consist of the characters a–z, A–Z, 0–9, and the
underscore. When cfagent converts data containing other characters such as dots or
hyphens into classes, it converts all illegal characters to underscores. Hence fully quali-
fied domain names such as host.domain.tld, when represented as classes, become
host_domain_tld.

Most of these classes are self-explanatory. However, those relating to the time of day
may be a bit opaque at first. First of all, these times always refer to when the current

Cfengine Policies: Under the Hood / 33

cfagent run began, and not to the exact time when any specific rule is actually
processed. The Hrnn and Minnn forms refer to specific hours of the day and minutes
after the hour. The Qn classes refer to the four 15-minute “quarters” of each hour: e.g.,
Q3 refers to the period from 30 to 44 minutes after the hour. Similarly, the form
Minmm_nn refers to the specified five-minute interval: e.g., Min20_25 refers to the five
minutes starting at 20 minutes past the hour.

Note that, because each agent detects its own private environment, the classes it experi-
ences are local and are not seen by any other hosts on the network.

Definition 10: Autonomy and Locality. By default, cfengine does not give you an
overview of the state of all the hosts running it. Each host is a closed and inde-
pendent box.

If you are used to thinking in terms of centralized management, you might find this
surprising or even a weakness, but how should cfengine know the boundaries of your
system? No one would want a system that automatically opened every host to knowl-
edge about every other host. Since cfengine allows every possible model from centraliza-
tion to independence, it defaults to maximum privacy.

2.2.1 How Do I Make My Own Classes?
Cfengine defines a number of classes that cover generic aspects of systems. These are
called hard classes because they are indisputable properties of the environment in which
cfagent is operating. In addition to these, you might want to define other classes of
your own (known as soft classes) based on abstract customizations of the local environ-
ment, such as group membership or the existence of certain files or processes.

By default, any name used as a class that is not defined in some other way/context is inter-
preted as a host name (or, more precisely, subject to misinterpretation as a host name).

The classes section of cfagent.conf may be used to define classes.17 Here are some sam-
ple class definitions:

classes:
WinXP = (pc121 pc122 pc123_cfengine_org)
indigo = (solaris -box2 -box4)
TheTouched = (FileExists(/usr/local/etc/mark))

The identifier name on the left hand side becomes defined (logically true) if any of the
classes on the right hand side are defined. In the first case, the class name WinXP is
shorthand for the three specifically named hosts on the right-hand side.

In the second example, the class indigo is defined as an alias for any host that is of class

17. A classes stanza may also be included in cfservd.conf for use when configuring that server.

34 / Cfengine Policies: Under the Hood

solaris, except for host box2 and host box4, where the exclusion is indicated by the
minus sign.

Finally, the class TheTouched becomes defined if the function evaluates to true, i.e., if
the file /usr/local/etc/mark exists.

Once classes are defined, they can be used to label policy rules using the double colon
notation:

editfiles:
TheTouched::

{ /usr/local/etc/mark
AppendIfNoSuchLine “Mark woz ere”

}

2.2.2 Combining Classes
Classes label policy rules—promises—in the configuration files. For precise customiza-
tion, you need to combine them like Boolean expressions. Classes are combined with the
basic operators:

Logical Operation Symbol Alternative symbol

NOT !
AND . (dot) &
OR | ||
Grouping ()

Operator precedence is as ordered in this table. However, we recommend using parenthe-
ses for grouping, to avoid ambiguity as well as to improve configuration file readability.

Here are some examples of class expressions:

Class Expression When True
solaris.Monday.Hr01:: Solaris systems on Monday during the 1 AM hour
aix|hpux:: AIX or HP-UX systems
aix.!vader:: AIX systems other than system vader
December.Day31.Friday:: New Year’s Eve when a Friday
Day13.!Friday:: The 13th of the month when not a Friday
solaris|aix.Monday:: Solaris systems, or AIX systems on Monday
(solaris|aix).Monday:: Solaris or AIX systems, on Monday
something:: Local hostname is “something”

In these examples, all items that are not defined keywords are interpreted as hostnames.
In the absence of user-defined and feedback classes (discussed later), this is how cfengine
interprets unknown class names that it encounters.

Cfengine Policies: Under the Hood / 35

Classes remain in effect within a stanza until another class expression is encountered.
However, they do not carry across stanza boundaries. Note that the any class may
always be used to remove any class-based restrictions in effect.

2.2.3 Defining Classes with Functions
Classes can also be defined conditionally, based on the return value of a variety of built-
in functions or of an external command. Here are some examples:

need_restart = (IsNewerThan(/old/file,/new/file))
do_update = (ChangedBefore(/etc/passwd,/1/passwd)) Variant: AccessedBefore
has_xinetd = (FileExists(“/usr/sbin/xinetd.conf”))
do_import = (IsDir(“/tmp/import”)) Variants: IsPlain, IsLink
ip_ok = (IPRange(192.168.89.100-150))
my_subnet = (IPRange(192.168.89.200/26)) Related: IsHost(basename,n1-n2)
is_running = (ReturnsZero(“/bin/ps -C httpd”)) Variant: ReturnsZeroShell

The functions are quite intuitive and easy to use. See the Cfengine Tutorial for full
details on the available functions.

2.2.4 Feedback Classes
Feedback classes are classes which are defined in the course of a cfagent run based on
whether an action took place. They are defined using the define and elsedefine
options.
Here are two simple examples:

tidy:
/tmp age=3 pattern=* type=mtime recurse=inf define=did_clean

disks:
/aux freespace=500mb inform=true elsedefine=aux_ok

The first example defines the class did_clean when the tidy rule finds one or more files
to delete. The second example defines a class named aux_ok when the specified file sys-
tem contains at least the specified amount of free space. If define had been used instead
of elsedefine, the class would be defined when there was not at least the specified
amount of free space. In general, define creates a class when the rule results in an
action, even if that action is simply issuing a warning message, and elsedefine creates a
class when the rule results in no action.

The following example illustrates the use of feedback classes along with the failover
option to copy to specify multiple potential remote source servers for a copy rule:

36 / Cfengine Policies: Under the Hood

control:
actionsequence = (copy)
domain = (cfengine.org)
AddInstallable = (fail1 fail2 no_pam)

copy:
any::

/etc/pam.d dest=/etc/pam.d recurse=1
server=master1 failover=fail1

fail1::
/etc/pam.d /etc/pam.d recurse=1

server=master2 failover=fail2

fail2::
/etc/pam.d /etc/pam.d recurse=1

server=master3 failover=no_pam

alerts:
no_pam::

“Failed to copy PAM configuration directory.”

This example attempts to update the PAM facility’s configuration files by trying three
remote servers. The failover option in each rule specifies a class to define if the copy
operation returns an error. The structure of these rules causes three remote systems to be
tried in succession. If the copy operation has still not succeeded after these three
attempts, then the no_pam class will be defined, and the message in the alerts stanza
will be displayed.

This example highlights two features closely tied to classes:

! The AddInstallable directive in the control section is used to declare feedback classes
which may be defined in the course of the cfagent run.18

! The alerts stanza is used to display messages based on class expressions. The syntax is
as illustrated in the preceding example: a class expression followed by a message
string. Note that the any class may not be used, explicitly or implicitly, in the alerts
stanza. However, you can get around this limitation by defining another class as
equivalent to any:

classes:
all = (any)

18. The AddClasses directive may also be used to specify classes that should be (unconditionally)
activated for the current policy file. Note that we have chosen to declare all feedback classes in this guide in
this way, and we recommend that you do the same. Although it is not always strictly necessary, it is a good
practice.

Cfengine Policies: Under the Hood / 37

alerts:
all::
“Hello, world.”

2.3 Filters
Sometimes the inclusion and exclusion options do not provide sufficient flexibility to
select just the items we intend. For such cases, cfengine provides filters, which can be
used to build complex file and process selection expressions. A filter is a description of
items that we would like to include. Filters are declared in separate stanzas in their own
section of the cfagent.conf configuration and are attached to any number of rules, as
attributes, using their identifier.

Each filter is parameterized by a number of matching criteria. Each filter has a result
which is expressed as the logical combination of a number of criteria.

2.3.1 File Filter Parameters
The following components can be used to construct file filters:

! Owner and Group can use numerical IDs or names, or “none” for users or groups
that are undefined in the system passwd and group files.

! Mode applies only to file objects. It shares syntax with the mode= strings in the files
command. This test returns true if the bits that are specified as “should be set” are
indeed set, and those that are specified as “should not be set” are not set.

! Atime, Ctime, Mtime specify times or time ranges (via the From and To prefixes—see
the third example below). If the file’s timestamps lie in the specified range, the
expression evaluates to true. Times are specified by a six-component vector: (year,
month, day, hour, minutes, seconds). This may be evaluated as two functions:
date() or tminus() which give absolute times and times relative to the current time,
respectively. In addition, the keywords now and inf (infinity) may be used.

! Size specifies the file’s size (or a size range when the prefix From or To is included).
The keyword inf may also be used.

! Type applies only to file objects. It specifies a list of file types to be matched. Items in
the list should be separated by the “or” symbol, |, which make sense intuitively, since
the types are mutually exclusive. Values include reg, link, dir, socket, fifo, door, and
char.

! NameRegex matches the name of the file with a regular expression.

! IsSymLinkTo applies only when the file object is a symbolic link. It is true if the reg-
ular expression matches the contents of the link.

38 / Cfengine Policies: Under the Hood

! ExecProgram matches if the command returns successfully (with return code 0).
Note that this feature introduces an implicit dependency on the command being
called. This might be exploitable as a security weakness by advanced intruders.

! ExecRegex matches the parenthesized test string against the output of the specified
command.

! Result is a logical expression specifying the way in which the above elements are
combined into a single filter.

Here are some examples:

filters:
{ badgif # Look for executables disguised as GIF
NameRegex: “.*gif”
ExecRegex: “/bin/file $(this) (.*ELF.*)”
Result: “ExecRegex.NameRegex”

}

{ histnull # Check if users set history to dev/null
NameRegex: “.*history”
IsSymLinkTo: “/dev/null”
Result: “IsSymLinkTo.NameRegex”
DefineClasses: “history”

}

{ old_or_big # Find .dat files that are old or big
FromMtime: “date(2001,1,1,0,0,0)”
ToMtime: “tminus(0,0,1,0,0,0)”
FromSize: “500m”
NameRegex: “dat$”
Result: “NameRegex.(Mtime|FromSize)”

}

In the final filter, Mtime is shorthand for (FromMtime.ToMtime), and similar abbrevia-
tions can be used for other numerical and time-period based items.

Here is another example, showing the use of a file filter in the files stanza:

filters:
{ setuid
Owner: “root”
Mode: “+6000”
Result: “Owner.Mode”

}

Cfengine Policies: Under the Hood / 39

files:
/home recurse=inf filter=setuid mode=-6002
action=fixplain inform=on syslog=on

2.3.2 Process Filter Components
Process filter components match common fields from the ps command output:

! PID: process ID (parameter is a quoted regular expression).

! PPID: parent process ID (quoted regular expression).

! PGID: process group ID (quoted regular expression).

! RSize: resident size (quoted regular expression).

! VSize: virtual memory size (quoted regular expression).

! Status: status (quoted regular expression).

! Command: CMD or COMMAND field (quoted regular expression).

! TTime: Total elapsed time in TIME field (accumulated time). The prefixes From and
To may be used to specify a range.

! STime: Starting time for process in STIME or START field (accumulated time). The
prefixes From and To may be used to specify a range.

! TTY: terminal type, or none (quoted regular expression).

! Priority: PRI or NI field (quoted regular expression).

! Threads: NLWP field for SVR4 (quoted regular expression).

! Result: logical combination of above returned by filter (quoted regular expression).

Note that these names are all case-sensitive.

Here is a sample process filter in action:

filters:
Processes owned by root with > 2 hrs CPU time

{ program_gone_bad
Owner: “root”
FromTTime: “accumulated(0,0,0,200,0,0)”
ToTTime: “inf”
Result: “Owner.TTime”

}

processes:
“.” filter=program_gone_bad action=warn matches=0

40 / Cfengine Policies: Under the Hood

In this case, the regular expression searched for among the output from ps is any char-
acter (specified by a single period). The matches option tells cfengine to perform the
specified action—in this case, issuing a warning message—if any processes matching the
regular expression also match the filter.

2.3.3 Troubleshooting Filters
Two common causes of error in constructing filters are:

! Incorrect capitalization of the filter attributes: e.g., “FromMTime” for FromMtime.

! Forgetting to include a colon after the attribute name when specifying its value:

FromSize “100m” Will not work without the colon!

2.4 Policy Ordering and Execution
Cfengine provides several means of specifying the order in which rules are applied and
actions are carried out. In the first instance, the order of processing for the various pol-
icy stanzas is controlled by the actionsequence directive in the control section, as in
this example:

control:
actionsequence = (files editfiles copy)

In this case, the files stanza will be processed first, followed by the editfiles stanza, and
then by the copy stanza (regardless of the order in which they appear in the policy file).
Any other rule types which may be present in the policy file will be ignored.

In general, the following principles govern rule-processing order in cfengine:

! Order of rule types is guided in bulk by action sequence.

! The order of active rules is sequential within each rule type, but class dependencies
can alter this, so do not assume too much.

! We can organize input into multiple files using imports. The ordering complexities
that arise in this case are discussed in the next subsection.

! Additional ordering constraints imposed by feedback classes are taken into account.

! Two passes of the action sequence are made automatically if there remains a possibil-
ity of outstanding rules.

2.4.1 Using Multiple Policy Files
You can break up a configuration into smaller pieces, for special purposes, using the
imports directive. If you use this feature, then the recommended practice is to use the

Cfengine Policies: Under the Hood / 41

cfagent.conf file only to import other files. The reason for this is straightforward.
Cfengine reads imported files after the cfagent.conf file, so any definitions you put into
imports will not be seen by configuration commands that you place in cfagent.conf. If
you use cfagent.conf only for imports, then you can first import definitions, then com-
mands that depend on the definitions, and so on.

Here is a sample cfagent.conf file broken down into several components:

imports:
any::
cf.main
cf.classes
cf.motd
cf.services
cf.mail

OS-specific policies
solaris:: cf.solaris
linux:: cf.linux
redhat:: cf.redhat
SuSE:: cf.suse
nt:: cf.windows

More specific policy files
(linux|solaris).!matrix:: cf.users
gaughin|vangogh|picasso|okeefe|matisse:: cf.printservers
nexus|dax|cube|pax:: cf.www
matrix:: cf.matrix

Each of these files is stored in /var/cfengine/inputs. Note that the policies may be divided
into separate files on any basis that makes sense at your site. In this example, we have
divided rules based on both operating system and functional area.

Note that we use only hard classes in this top-level policy file. We also place policy files
applying to only a few hosts near the end of the file, moving from most general to most
specific.

Each of the individual included files can contain a control section, if needed, to define
lists, variables, etc., used in that file. However, only the first actionsequence directive
encountered will be used; any ones contained in later files will be ignored. Because of
this rule, many people choose to place the actionsequence directive in the top-level
file.

In this chapter, we provide a quick setup roadmap for distributed management using
cfengine. For this, you will need the server component cfservd running on at least one
master host, as well as the agent running on each of your slave hosts and master host.

The traditional view of network management is to apply a control over a network from
some centralized, authoritative location: a master host. You can easily create this kind of
architecture using cfengine, but you are not limited by it. Cfengine’s principle of auton-
omy makes it plausible to divide authority into regions, or have every host managed
individually if that suits your needs. There is no compulsion to have centralized man-
agement, but it is easily implemented if that’s what makes sense for you.

What are the advantages of centralized management?

! Having a single point of decision aids consistency.

! Changes of policy are easiest to implement from one place.

! Backup and version control of policy are convenient when policy is centralized.

What are the disadvantages?

! Central services are somewhat old-fashioned, making one think of marching
armies rather than free market business.

! Local customization becomes awkward, by forcing local knowledge to pass
upward through a central authority.

! Centralization is inappropriate for security and privacy if you have completely
independent departments or businesses that merely coexist and work together.

You can probably think of other reasons, and indeed you should think about this care-
fully. The key to sound management lies in calculating the correct force to apply. Too
much, and you will bludgeon your departments into inappropriate conformity; too lit-
tle, and they might run away to a place you no longer understand.

Cfengine’s view is one of voluntary cooperation and hence voluntary consensus.

3.1 Roadmap for Centralized Policy
We shall assume that you have a central location for your policy. If you don’t, then you
can repeat this procedure multiple times for each decentralized point of control.

3. Building a Cfengine Infrastructure

Building a Cfengine Infrastructure / 43

There are several steps to be performed. The following order is recommended:

1. Set up the policy source host first. This is the computer that will store the master
policy files which are used on every host running cfengine.

a. Decide on the policy for the network.

b. Make production versions of cfagent.conf and update.conf. The first file is the
primary policy file to be applied to every host. Your set up may eventually
include a series of policy files rather than just a single one, but this default pol-
icy file is a good way to get started. The second file, update.conf, is the policy
file used by clients to retrieve updated versions of the configuration files from
the policy host whenever they change. In other words, it is the policy file that
enables cfengine to update itself.

2. Set up clients to install and update themselves.

a. Install an appropriate version of the software binaries on each host. As part of
the installation process, you should add an entry for cfengine to /etc/services,
specifying port 5308/tcp.

b. Make a small, generic cfagent.conf bootstrap file to start the automation
process rolling. This file will be used for the first policy file retrieval from the
policy host. Thereafter, the real policy files will be present on and used by the
client. This file is also used to update the cfengine binaries when needed.

Deciding policy is clearly a big task, but you can start simply, by getting a small policy
running across your network and then building on this foundation. To get started, you
only need to have a working prototype.

3.1.1 Set Up the Policy Host Server
The best place to start is at the computer that will house your policy and be used to dis-
tribute it to the rest of the network. Once this host is set up, all of the others can use it
to bootstrap.

Procedure 5: Set Up the Policy Host

1. Choose a host to play the role of policy master.

2. Set up the cfservd component for distributing policy to authorized hosts.

3. Create your prototype master configuration files (probably as stubs to be devel-
oped later) in a separate directory tree (e.g., /master/cfengine). The cfengine
command binaries may also be placed within this tree in order to update them
using cfengine.

4. Grant access to the master files to your client hosts in cfservd.conf.

5. Create and install the policy files on the master. Don’t forget cfservd.

44 / Building a Cfengine Infrastructure

Your cfservd.conf file can be located in a master repository. We shall use the path
/master/cfengine/inputs to designate this. You can replace that with your own location.
We will also assume that you are managing an IP subnet, with address series of the form
192.168.0.nnn. Finally, we’ll call our example master host polly.cfengine.org (although no
such system exists).

In this example, we are configuring several layers of access. The cfservd daemon inde-
pendently controls the following activities:

! The right to connect to the server daemon: AllowAccessFrom.

! The right to make multiple requests of the server:
AllowMultipleConnectionsFrom.

! The right to present new credentials (public encryption key) on trust:
TrustKeysFrom.

! The right to read files from the server’s disk: admit rules.

Here is a sample cfservd.conf configuration file which you can use as a model:

Policy Example 15: An Initial cfservd.conf File

Basic cfservd.conf (improve later)
control:

domain = (cfengine.org)
AllowAccessFrom = (192.168.0)
AllowMultipleConnectionsFrom = (192.168.0)
TrustKeysFrom = (192.168.0)

classes:
policyhost = (polly) # Alias for polly.cfengine.org

admit: # provides read access to files on the server
policyhost::
/master/cfengine

192.168.0 # By IP subnet
*.cfengine.org # By domain

Note that this file does not yet reside in a location where cfservd can find it. This will be
handled by the bootstrap update.conf (discussed below).

The TrustKeysFrom directive deserves special mention. This directive should be acti-
vated only long enough to allow initial key exchanges from new client computers, a
process which should be monitored carefully. Afterward, it should be commented out.
The cfengine key infrastructure and the issues it raises are discussed later in this chapter.

Building a Cfengine Infrastructure / 45

3.1.2 Set Up the Master Policy Files
The next step is to create two policy files, cfagent.conf and update.conf, the master policy
file and policy file updater, respectively. As we’ve seen, cfagent.conf is the default policy
file processed by cfagent; update.conf is another file that has special meaning to cfagent
and it is automatically processed at the start of each run. We will create these files in the
directory /master/cfengine/inputs on the policy server.

Your starting master policy file can be rather simple. In our example, all it does is to
install a cron job to run cfengine every 15 minutes and email the output to sysadmin@
cfengine.org.

Policy Example 16: An Initial Master Policy File

Prototype cfagent.conf — add to/customize over time
control:

actionsequence = (editfiles processes)
EmailTo = (syadmin@cfengine.org)
bin = (/var/cfengine/bin)
access = (root mark aeleen) # Who is allowed to run cfagent

editfiles:
!SuSE::
{ /var/spool/cron/crontabs/root

AutoCreate
AppendIfNoSuchLine
“0,15,30,45 * * * * ${bin}/cfexecd -F”

}

processes:
Activate these lines to start these daemons
“cfservd” restart “/var/cfengine/bin/cfservd”
“cfenvd” restart “/var/cfengine/bin/cfenvd”

We’ve omitted the policy for SuSE Linux systems this time.

In order to complete the infrastructure setup, you will need to install a policy file on the
policy master computer (e.g., /var/cfengine/inputs/cfagent.conf) . Policy Example 16 can
serve as a starting point for that file as well. Just be sure to activate the rule for cfservd.

We now turn to the update policy file. This file can handle updating of the cfagent.conf
master policy file, the cfengine binaries, and itself. Here is our initial version:

46 / Building a Cfengine Infrastructure

Policy Example 17: Starting Update Policy File
Prototype update.conf — customize as appropriate
control:

actionsequence = (copy processes)
domain = (cfengine.org)
policyhost = (polly)
master_cfinput = (/master/cfengine/inputs)
master_modules = (/master/cfengine/modules)
cfdir = (/var/cfengine)
binsrc = (/master/cfengine/bin)

SplayTime = (2)
AddInstallable = (newservd)

copy:
${master_cfinput} server=${policyhost}
dest=${cfdir}/inputs
recurse=inf mode=700
type=binary trustkey=true

${master_modules} server=${policyhost}
dest=${cfdir}/modules recurse=1
mode=700 type=binary

${binsrc}/cfagent server=${policyhost}
dest=${cfdir}/bin/cfagent
backup=false type=checksum

${binsrc}/cfservd server=${policyhost}
dest=${cfdir}/bin/cfservd
backup=false type=checksum
define=newservd

${binsrc}/cfexecd server=${policyhost}
dest=${cfdir}/bin/cfexecd
backup=false type=checksum

processes:
newservd::
“cfservd” signal=term restart “${cfdir}/bin/cfservd”

Note that we are including an optional update of three of the cfengine binaries from a
central host. You might prefer to handle software updates differently. A similar directive
can be added to the processes stanza for cfenvd if you so choose.

Building a Cfengine Infrastructure / 47

You will also want to create a simple cfservd.conf file for use on client systems, placing it
in the same master location. For most clients, it can be very simple, consisting only of a
domain directive in the control section (see Policy Example 15).

3.1.3 Set Up a Bootstrap File on Each Client
The final step is to create a bootstrap cfagent.conf policy file for client systems that will
be distributed along with the cfagent binary, perhaps as part of the operating system
installation. This file retrieves the policy files from the master policy host. It can also
run cfkey and/or start the cfengine daemons, if desired.

Policy Example 18: Example Client Bootstrap Policy File

This is a stub that will be overwritten later
control:

actionsequence = (shellcommands copy processes)
domain = (cfengine.org)
cfdir = (/var/cfengine)
policyhost = (polly)
master_cfinput = (/master/cfengine/inputs)

copy:
${master_cfinput} server=${policyhost}
dest=${cfdir}/inputs recurse=inf
mode=700 type=binary trustkey=true

shellcommands:
Activate this line if cfkey was not run during cfengine installation.
/usr/local/sbin/cfkey

processes:
Activate these lines to start these daemons
“cfservd” restart “/var/cfengine/bin/cfservd”
“cfenvd” restart “/var/cfengine/bin/cfenvd”

The first time cfagent runs, this file copies the master cfengine inputs directory to the
local system. The next time cfagent runs, the update.conf policy is executed (since it is
now present on the local system), updating the cfengine configuration (and potentially
the software itself), and then the master version of cfagent.conf installs cfengine as a
cron job, running every 15 minutes.

3.1.4 The cf.preconf File
Cfengine provides another hook for getting systems running. The file cf.preconf is exe-
cuted before each run. This file, which is optional, is a shell script (written in any lan-

48 / Building a Cfengine Infrastructure

guage) that is designed to get the system minimally configured so that cfengine can run.
It can be useful for initial system setup and also when the system is in a very bad way
for some reason.

Here is a simple version of this file, written as a Bourne shell script:

Policy Example 19: Sample cf.preconf File

#!/bin/sh

backupdir=/nexus/master/etc

if [! -s /etc/resolv.conf]; then
echo Creating minimal resolv.conf file
cat > /etc/resolv.conf << XX

domain cfengine.org
nameserver 192.168.0.100
nameserver 192.168.0.101
XX
fi

if [! -s “/etc/passwd”]; then
echo Replacing missing passwd file
if [“$1” == “freebsd”]; then
/bin/cp $backupdir/passwd.bsd /etc/passwd

else
/bin/cp $backupdir/passwd /etc/passwd

fi
fi

Similar code for other key files: shadow, group, nsswitch.conf

3.1.5 Policy File Summary
The following summarizes the configuration files present on each system at various
points in the cfengine life cycle:

! Policy host, normal operation: Cfengine is set up and running on this system.
Master versions of policy files, including at least cfagent.conf, cfservd.conf, and
update.conf, are present in /master/cfengine/inputs. Similarly, cfengine binaries are
present in /master/cfengine/bin, and other subdirectories of /master/cfengine are
populated if appropriate (e.g., modules). The cfservd.conf file for this host must
also allow access from the various client systems.

! Client system, initial setup: Cfengine software is installed, including the boot-
strap version of /var/cfengine/inputs/cfagent.conf. The latter can be installed with
cfengine or copied to the client system manually.

Building a Cfengine Infrastructure / 49

! Client system, normal operation: Copies of the policy files and cfservd configu-
ration file from the master policy host are present in /var/cfengine/input. These
files and the cfengine command binaries are updated as necessary by update.conf.

3.2 The cfrun Command: Simulating Push with Pull
Cfengine forbids directly pushing data and files in any of its rules. Nevertheless, the
software does provide a method for a user to request a running cfservd server to run
cfagent. The user cannot send the policy that is to be executed, but can only suggest to
the listening server that it run the policy it already has.
If the policy includes checking for updates from an external location, then this is a way
of simulating a push of a new version of your configuration policy to a remote host.

The cfrun program is a simple tool that polls hosts in a list and sends the relevant
request to each host in turn. It can also parallelize its operation, to speed up matters.

3.2.1 Configuring cfservd to Listen
Client systems must be preconfigured to grant access to remote users initiating cfagent
runs via cfrun. You must declare the name of the command that will be executed in
cfservd’s configuration file, as in Policy Example 20.

Policy Example 20: Enabling Remote Command Initiation

control:
AllowUsers = (root mark aeleen)
cfrunCommand = (“/var/cfengine/bin/cfagent”)

cfrunCommand = (“/var/cfengine/bin/cfexecd -F”)

classes:
hostlist = (IPRange(192.168.10.0/24))

admit:
/var/cfengine/bin/cfagent hostlist

/var/cfengine/bin/cfexecd hostlist

There are two ways you might want to set this up. In the first case, which is active in
Policy Example 20, this feature is configured for interactive use. By running cfagent
directly, the output will be channeled back to you immediately. In the second case,
which is commented out in the example, cfagent will be run under the cfexecd wrap-
per and any output will be emailed to the usual recipient.

3.2.2 The cfrun.hosts File
To use cfrun, you start by creating a configuration file called cfrun.hosts in /var/cfengine/
inputs. In its simplest form, it contains a list of host names (one per line) that are to be
contacted. If there are special options you would like to set, globally or for a particular

50 / Building a Cfengine Infrastructure

host, you can place them in the file as well. For example, the domain name is needed if
you are going to use unqualified host names and your name resolution mechanism does
not append a default domain.

Here is a sample file:

domain=cfengine.org
access=mark,aeleen
outputdir=/tmp/cfoutput Directory must already exist!
maxchild=20
hostnamekeys=true

gudinne
wallace:3333
...
include=cfrun.external.hosts

Here, we define a list of allowed users, a directory for placing the output of cfrun
queries, and a maximum number of children to spawn for parallel connections, and we
require that hosts use key-based authentication. We also list two hosts (one with an
alternate communication port), as well as incorporating an external file containing still
more hosts, via the include directive.

If the outputdir directive is in place, cfrun automatically uses a parallelized batch
method of communication.

3.2.3 Using the cfrun Command
The cfrun command itself has the following form:

cfrun - local options [host list] \ - \ - remote options \ - \ - remote classes

If no host list is included, then all of the hosts in cfrun.hosts are contacted.

Since cfrun addresses remote hosts from a local host, there is an ambiguity in whether
options are intended for the cfrun command itself or are meant to be passed on to the
agent on the remote hosts. To clarify this distinction, the arguments are organized as
follows:

! Local options are processed by cfrun on the local host.

! Remote options are passed on as options to the remote cfagent (actually, to the
command defined in cfrunCommand). Note, however, that it is not possible to
send the -f option to the remote agent to ask it to run a different policy file. This
option is stripped by the server on receipt, to prevent an unauthorized attempt to
change policy.

Building a Cfengine Infrastructure / 51

! Remote classes are processed by the remote cfservd service; they specify classes
that must be satisfied by the remote host in order to invoke the remote command.

Here are some examples, all of which use the host list in cfrun.hosts:

cfrun - - - - linux Run on all machines, specifying class linux.
cfrun - - -p Just parse policy file on all hosts.
cfrun -v - - -v Verbose output on local system and remote hosts.
cfrun -v - - -k - - solaris Verbose local; suppress copy/specify solaris on remote.

Table 3.1 lists the most useful options to the cfagent command.

Option Effect
-c Ignore the files section.
-d Produce more output for debugging purposes.
-D classes Define/activate the specified classes for this run.
-e Ignore the editfiles section.
-f file Run with the specified policy file (invalid via cfrun).
-H Deactivate all hard classes.
-i Ignore the interfaces section.
-I Make inform the default for rules.
-k Ignore the copy section.
-l Set the default to traverse links in recursive directory operations.
-L Set the default to delete stale links.
-M Ignore modules.
-n Display actions that would be taken, but don’t do anything.
-N classes Undefine/deactivate the specified classes for this run.
-p Just parse the policy file and then exit.
-pv Display list of hard classes.
-s Ignore the shellcommands section.
-t Ignore the tidy section.
-v Display verbose output messages.
-w Suppress warning messages.
-x Ignore the links section.

Table 3.1 Options to the cfagent Command

3.3 DHCP and Dynamic Addresses
If you are using dynamic addressing for hosts, cfengine will struggle to justify its trust in
the public keys it sees. To make sense of public keys, one requires both a key and an
independent identity to tie it to. Once a key has been trusted, the key alone is (in prin-

52 / Building a Cfengine Infrastructure

ciple) sufficient identity (just as a fingerprint is good enough to represent you, once it
has been registered).

When IP addresses change, cfservd loses its coupling between address and key identity,
and so it has to start reevaluating. There are two cases to consider. The default behavior
is as follows:

! A host with a known IP address presents a new key to cfservd because, for
instance, the key was changed. In this case cfservd complains that the keys do
not match and refuses to authenticate the host.

! A host with an unknown IP address presents a known key to cfservd. In this
case, cfengine will look for a key file bound to the new address and will not find
one, so cfservd treats the key as unknown and normal trust rules for accepting a
new key apply.

This can cause a problem for hosts with IPv4 addresses given by DHCP, since the
address-key binding is only temporary. cfservd works around this by allowing you to
define a new access list called DynamicAddresses = (192.240.1).

If a connecting address is unknown but lies in this range, cfservd will look in a database
to see if the key itself is known, bound to a different address. If the key is found,
cfservd trusts the binding and re-binds the key to the new IP address. If the key is not
known, then (again) normal trust rules apply for accepting a new key.

Servers should always have fixed IP addresses in general; otherwise you have no idea to
whom you are connecting.

3.3.1 Public Key Exchange Issues
Public key exchange is a subtle idea. The issues are not difficult to understand, but they
are seldom expressed very clearly.

Definition 11: Public key exchange. The principle of a public key system is to asso-
ciate an identity with a key, which can be freely made public knowledge. The diffi-
culty is not in distributing the key, but in being certain who is really the owner of a
key that you have received.

Imagine that you wanted to know the identity of a stranger whom you have never seen
before. What proof would you accept of his or her identity? A name tag? A letter of ref-
erence? A DNA test? Of course, an evil identical twin would be able to pass all of these
tests and still fool you.

It is important to understand that trust in identity is something we always grant in an
entirely personal way. There is always a chance of being wrong: cryptographic methods
do not eliminate this doubt (although they are sometimes presented as doing so). Trust
is risk, and you simply have to live with it.

Building a Cfengine Infrastructure / 53

There are two common models of trust management:

! The trusted third party: This method is used by the Web. Here you outsource the
trust decision to a third party who claims to know whether keys are genuine. This
provides centralized management of trust. Since cfengine is about decentraliza-
tion, this method is not used by cfengine.

! The challenge: Individual decision-making is the way to make trust decisions for
autonomous agents. They want to rely only on their own judgment. The secure
shell uses this approach. Instead of asking you to trust an authority/third party,
the software requires you to assume the risk, and you must decide whether to
accept offered keys.

Key exchange in cfengine is very similar to that in the secure shell. However, cfengine
uses separate keys from ssh that are generated using the cfkey program.

Cfagent is not an interactive program, so when it first receives a key, the decision as to
whether to accept it must be made non-interactively. The natural solution is to make
this decision part of policy. There are several methods for accomplishing this:

! Client side: You can add trustkey=on to a remote copy command to accept the
named remote-server’s key.

! Client side: You can distribute the keys collected by one client to others by copy-
ing the /var/cfengine/ppkeys subdirectory.

! Server side: The server can receive keys from many sources; the access control list
for this is the TrustKeysFrom directive. If a server IP address is in this list, it will
be accepted.

Once a key has been accepted on trust, it is cached locally and used to verify sub-
sequent connections, until you revoke the key by explicitly deleting the key from
/var/cfengine/ppkeys. This functioning is very similar to how the secure shell handles
key exchange and trust.

Once the key has been exchanged, the trustkey option has no effect. Thus, on the client
side it does not matter if you leave trustkey options in place. On the server side, how-
ever, remember that the trust rule potentially applies to many hosts, and you might not
have considered the full ramifications of your setting. Always take care with trust issues.
The best practice on the server side is to be as specific as possible, limiting the
TrustKeysFrom list to a small set of explicitly named hosts.

3.4 Dealing with Firewalls
Some users want to use cfengine’s remote copying mechanism through a firewall, in
particular to update the cfengine policy on hosts inside a DMZ (the so-called
de-militarized zone). Firewalls are often shrouded in myth and mystery: magical force
fields that protect us against Klingon torpedoes. It is important to see the firewall secu-

54 / Building a Cfengine Infrastructure

rity model together with the cfengine security model. Among the difficulties one faces is
the fact that the firewall administrator is not often the same as the cfengine administra-
tor and does not trust anyone or anything. You might have to convince this person to
make changes that help you out, so it is important to understand the consequences of
your security strategy.

Any piece of software that traverses a firewall can, in principle, weaken the security of
the barrier. On the other hand, a strong piece of software might have better security
than the firewall itself. Consider the example in Figure 3.1.

Figure 3.1: A Cfengine Host Outside a Firewall

For convenience, we label the regions inside and outside the firewall as the “secure area”
and “demilitarized zone.” It should be understood that the area inside a firewall is not
necessarily secure in any sense of the word unless the firewall configuration is understood
together with all other security measures.

Our problem is to copy files from the “secure” source machine to hosts in the DMZ, in
order to send them their configuration policy updates. There are two ways of getting
files through the firewall:

! An automated cfengine solution, i.e., a pull operation generated outside with a
target inside the secure area.

! A manual push to the outside of the wall from the inside.

One of the main aims of a firewall is to prevent hosts outside the secure area from open-
ing connections to hosts in the secure area. If we want cfagent processes on the outside
of the firewall to receive updated policies from the inside of the firewall, information
has to traverse the firewall.

cfservd

ssh,rsync

��� ��������g������

Building a Cfengine Infrastructure / 55

Definition 12: Conflicting Trust Models. Cfengine’s trust model is fundamentally
at odds with the external firewall concept. Cfengine says: “I am my own boss. I
don’t trust anyone to push me data.” The firewall says: “I only trust things that are
behind me.” The firewall thinks it is being secure if it pushes data from behind
itself to the DMZ. Cfengine thinks it is being secure if it makes the decision to
pull the data autonomously, without any orders from some potentially unknown
machine. One of these mechanisms has to give if firewalls are to co-exist with
cfengine.

From the firewall’s viewpoint, push and pull are different: a push requires only an out-
going connection from a trusted source to an untrusted destination; a pull necessarily
requires an untrusted connection being opened to a trusted server within the secure
area. For some firewall administrators, the latter is simply unacceptable (because they
are conditioned to trust their firewall). But it is important to evaluate the actual risk.
We have a few observations on this score to offer:

! It is not the aim here to advocate any one method of update. You must decide for
yourself. The aim is only to evaluate the security implications. Exporting data
from the secure area to the DMZ automatically downgrades the privacy of the
information.

! The cfengine security model assumes that the security of every host will be taken
seriously. A firewall should never be used as a substitute for host security.

! Knowing about cfengine but not your firewall or your secure network, it is only
possible to say here that it seems, to us, safe to open a hole in a firewall to down-
load data from a host of our choice, but we would not accept data from just any
host on your company network on trust. It would be ludicrous to suggest that an
arbitrary employee’s machine is more secure than an inaccessible host in the
DMZ.

3.4.1 Option: A Policy Mirror in the DMZ
You can compromise by creating a policy mirror in the DMZ. This is the recommended
way to copy files, so that normal cfengine pull methods can then be used by all other
hosts in the DMZ, using the mirror as their source. The policy mirror host should be as
secure as possible, with preferably few or no other services running that might allow an
attacker to compromise it. In this configuration, you are using the mirror host as an
envoi of the secure region in the DMZ.

Any method of pushing a new version of policy can be chosen in principle: CVS, FTP,
RSYNC, SCP. The security disadvantage of the push method is that it opens a port on
the policy mirror, and therefore the same vulnerability is now present on the mirror,
except that now you have to trust the security of another piece of software as well. Since

56 / Building a Cfengine Infrastructure

this is not a cfengine port, no guarantees can be made about what access attackers will
get to the mirror host.

3.4.2 Option: Pulling Through a Wormhole
Suppose you are allowed to open a hole in your firewall to a single policy host on the
inside. To distribute files to hosts that are outside the firewall it is only necessary to
open a single tunnel through the firewall from the policy mirror to the cfengine service
port on the source machine. Connections from any other host will still be denied by the
firewall. This minimizes the risk of any problems caused by attackers.

To open a tunnel through the firewall, you need to alter the filter rules. A firewall blocks
access at the network level. Configuring the opening of a single port is straightforward.
We present some sample rules below, but make sure you seek the guidance of an expert
if necessary.

Cisco IOS rules look like this:

ip access-group 100 in
access-list 100 permit tcp mirror host source eq 5308
access-list 100 deny ip any any

Linux iptables rules might look something like this:

iptables -N newchain
iptables -A newchain -p tcp -s mirror-ip 5308 -j ACCEPT
iptables -A newchain -j DENY

Once a new copy of the policy is downloaded by cfengine to the policy mirror, other
clients in the DMZ can download that copy from the mirror. The security of other
hosts in the DMZ is dependent on the security of the policy mirror.

3.4.3 Frequently Asked Questions About the Pull Method

! Doesn’t opening a port on a machine on the inside of the firewall make it vulnerable
to both denial-of-service and buffer overflow attacks?

Buffer overflow attacks are extremely unlikely in cfengine by design. The likeli-
hood of a bug in cfengine should be compared to the likelihood of a bug existing
in the firewall itself.

Denial-of-service attacks can be mitigated by careful configuration (see separate
FAQ item). cfservd reads a fixed number of bytes from the input stream before
deciding whether to drop a connection from a remote host, so it is not possible to
mount a buffer overflow attack before an invalid host IP is rejected.

Another possibility is to use a standard VPN to the inside of the firewall. That way
one is concerned first and foremost with the vulnerabilities of the VPN software.

Building a Cfengine Infrastructure / 57

! Doesn’t opening the firewall compromise the integrity of the policy information by
allowing an attacker a chance to alter it?

The cfengine security model, as well as the design of the server, disallows the
uploading of information. No message sent over the cfengine channel can alter
data on the server. (This assumes that buffer overflows are impossible.)

! Couldn’t an IP spoofer manage to gain access to data from the policy server that it
should not be able to access?

Assuming that buffer overflow attacks and DOS attacks are highly improbable,
the main worry with opening a port is that intruders will be able to gain access to
unauthorized data. If the firewall is configured to open only connections from the
policy mirror, then an attacker must spoof the IP of the policy attacker. This
requires access to another host in the DMZ and is non-trivial. However, if the
attacker succeeds, the worst he/she can do is to download information that is
available to the policy mirror. But that information is already available in the
DMZ, since the data has been exported as part of the policy; thus, there is no
breach of security. (Security must be understood to be a breach of the terms of
predefined policy.)

! What happens if the policy mirror is invaded by an attacker?

An attacker who gains root access to the mirror will be able to affect the policy
distributed to any host in the DMZ. The policy mirror has no access to alter any
information on the policy source host. Note that this is consistent with the fire-
wall security model of trusted/untrusted regions. The firewall does not mitigate
the responsibility of securing every host in a network regardless of which side of
the firewall it is connected to.

Unfortunately, these decisions are often made as a matter of principle rather than con-
sidered judgment.

In this chapter we present a gallery of sample configurations for different scenarios.
They are presented “as is,” with comments for your convenience. You are encouraged to
browse and ponder them.

4.1 Managing a Laptop Computer
Even laptop computers can benefit by running cfengine. Configuration management
and maintenance applies to any computer in a work environment. Two issues with lap-
tops are: configuration problems with wireless networks, and backups. Since cfagent
cannot push files to other computers due to its strict security policy, we cannot make a
backup to a foreign medium (in the absence of mounted remote file systems). Neverthe-
less, even a local copy of files is a good idea, especially when you are far away from any
network. If you accidentally do the rm -r thing and delete a bunch of files, it is comfort-
ing to know that you have a fairly recent copy on your machine. Thus, Mark’s laptop
configuration contains an automated copy of files to the same disk.

Here is the control section. Recall that the netconfig item in the actionsequence is the
actionsequence item for the various network interfaces-related rule types.

Example laptop policy
control:

actionsequence =
(netconfig resolve copy shellcommands editfiles)

domain = (cfengine.org)
sysadm = (cfengine@cfengine.org)
nosey = (root@cfengine.org)
smtpserver = (smtp.cfengine.org)
ntpserver = (ntp.cfengine.org)

timezone = (MET CET) # Welcome to Norway ...

The next section of the file configures the network interface when necessary. The
resolve section illustrates the use of a literal line for the /etc/resolv.conf file by including
the desired text within quotation marks. This stanza also employs the hard class corre-
sponding to the laptop’s subnet.

4. Some Case Studies: Sample Policies

Some Case Studies: Sample Policies / 59

defaultroute:
no_default_route::
192.168.1.254

resolve:
Expect laptops to use DHCP
“search cfengine.org”

192_168_1::
192.168.1.254 # NAT gateway
192.168.20.87

Next comes the copy stanza, which specifies the local backup operation mentioned
earlier:

copy:
Do a backup to a local directory in case of accidents

/home/mark dest=/home/backup
recurse=inf ifelapsed=240

The editfiles rules ensure that SSH is configured properly. This example illustrates the
use of some additional editing operations.

editfiles:
{ /etc/ssh/sshd_config # SSH daemon
AppendIfNoSuchLine “Banner /etc/ssh/banner”
ReplaceAll “X11Forwarding.*no”
With “X11Forwarding yes”

AppendIfNoSuchLine “X11Forwarding yes”
ReplaceAll “PrintMotd.*yes”
With “PrintMotd no”

AppendIfNoSuchLine “PrintMotd no”
DefineClasses “sshd_hup”

}

{ /etc/ssh/ssh_config # SSH client
ReplaceAll “ForwardX11.*no”
With “ForwardX11 yes”

AppendIfNoSuchLine “ForwardX11 yes”
}

The final stanza is shellcommands, which synchronizes the local time with an NTP
server and also works around a Linux misfeature in which the wireless network inter-
face’s device name can change from boot to boot.

60 / Some Case Studies: Sample Policies

shellcommands:
“/usr/sbin/ntpdate $(ntpserver) > /dev/null”

Stupid wireless changes the device all the time
Run: cfagent -Dfix_net
One of these will fail, but who cares?
The other will pin our wandering wireless signal ...
fix_net::
“/usr/sbin/iwconfig eth1 essid MyHomeNet”
“/usr/sbin/iwconfig eth0 essid MyHomeNet”

This configuration is small and simple—the best kind!

4.2 Web Server
In a production environment, we would generally like to have systems completely auto-
mated with no hands-on work at all. This requires some infrastructure to get going.

The aim of this policy file is to take a computer box straight from installation (e.g., by
CD-ROM or DVD) and then not make any changes by hand. Every change has been
automated from the start. This example sets up a SuSE Linux machine with a Web
server, PHP, and a Subversion version control system repository.

Here are the control and classes sections of the policy file:

Web server policy
control:

domain = (cfengine.org)
smtpserver = (smtp.cfengine.org)
EmailTo = (cfengine@cfengine.org)
IfElapsed = (20)
ExpireAfter = (240)
EditfileSize = (40000)
actionsequence =
(directories editfiles files copy
links shellcommands processes)

Define macros
repositories = (/files/projects)
masterfiles = (/master)
htdocs = (/files/htdocs)

Class/command to check Subversion database availability
AddInstallable = (viewcvs_error)
probewww = (ReadTCP(“project.cfengine.org”,
“80”,”GET /viewcvs HTTP/1.0 ${n}${n}”,”512”))

Some Case Studies: Sample Policies / 61

classes: # Check probe output for error condition
viewcvs_error =
(RegCmp(“.*Exception Has Occurred.*”,”${probewww}”))

The policy file illustrates defining a class when an error condition is detected.

Here are the directories and files rules. The former is a special version of files that cre-
ates specified directories if they do not exist:

directories:
${repositories} mode=755
${htdocs} mode=755
${repositories}/Cfengine-2
${repositories}/Archipelago
${repositories}/LabCompendium
${repositories}/UNIXCompendium

files:
${repositories} recurse=inf owner=wwwrun
action=fixall ifelapsed=5

${htdocs} recurse=inf mode=0644 action=fixall
ignore=*wiki* ignore=consortium

${htdocs}/consortium recurse=inf mode=a+rw
owner=root action=fixall

${htdocs}/mediawiki-1.4 recurse=inf mode=a+r
owner=root action=fixall ignore=config ignore=images

Many more file specifications

Here are the links and copy stanzas, which install key files needed by the various facili-
ties on the Web server system:

links:
/srv/www/htdocs -> /ourfiles/htdocs
/ourfiles/htdocs/wiki -> ./mediawiki-1.4

copy:
ViewCVS config template, edited by hand and placed in masterfiles
${masterfiles}/VIEWCVS_styles.css
dest=/srv/viewcvs/doc/styles.css mode=0644

${masterfiles}/viewcvs.conf
dest=/srv/viewcvs/viewcvs.conf mode=0644

62 / Some Case Studies: Sample Policies

Install key files
${masterfiles}/server.key dest=/etc/apache2/ssl.key/server.key
mode=400 type=checksum

${masterfiles}/server.csr dest=/etc/apache2/ssl.csr/server.scr
mode=400 type=checksum

${masterfiles}/server.crt dest=/etc/apache2/ssl.crt/server.crt
mode=400 type=checksum

${masterfiles}/ca.key dest=/etc/apache2/ssl.key/ca.key
mode=400 type=checksum

${masterfiles}/ca.crt dest=/etc/apache2/ssl.crt/ca.crt
mode=400 type=checksum

Wiki setup
${masterfiles}/Wiki-LocalSettings.php
dest=/files/htdocs/wiki/LocalSettings.php
mode=644 type=checksum

Next, we edit some of the local configuration files. Some files can be copied from a tem-
plate; others are best edited in a more intelligent way, because operating system updates
might include things that we would miss out on if we simply overwrote the entire file.

editfiles:
{ /var/spool/cron/tabs/root
AutoCreate
AppendIfNoSuchLine
“0,15,30,45 * * * * /var/cfengine/bin/cfexecd -F”

}

{ /etc/sysconfig/apache2
BeginGroupIfNoLineMatching
“APACHE_SERVER_FLAGS=\”SVN_VIEWCVS\””
ReplaceAll
“APACHE_SERVER_FLAGS=\”\”\

With
“APACHE_SERVER_FLAGS=\”SVN_VIEWCVS\””

EndGroup

BeginGroupIfNoLineMatching
“APACHE_CONF_INCLUDE_FILES=\”/master/my-http.conf\””
ReplaceAll
“APACHE_CONF_INCLUDE_FILES=\”\””

With
“APACHE_CONF_INCLUDE_FILES=\”/master/my-http.conf\””

EndGroup

Some Case Studies: Sample Policies / 63

BeginGroupIfNoLineMatching “.*php4 dav dav_svn.*”
ReplaceAll “php4” With “php4 dav dav_svn”

EndGroup
}

{ /etc/postfix/main.cf
ReplaceAll “^mydomain =.*” With “mydomain = iu.hio.no”
ReplaceAll “^relayhost =.*”
With “relayhost = [nexus.iu.hio.no]”
AppendIfNoSuchLine “relayhost = [nexus.iu.hio.no]”
AppendIfNoSuchLine “mydomain = iu.hio.no”

}

Default PHP memory model is too small
{ /etc/php.ini
ReplaceAll “^memory_limit =.*” With “memory_limit = 16M”
AppendIfNoSuchLine “memory_limit = 16M”

}

The processes rules control the cfengine, MySQL and Apache daemon processes:

processes:
“cfservd” restart /var/cfengine/bin/cfservd
“cfenvd” restart “/var/cfengine/bin/cfenvd -H -T”
“mysqld” restart “/etc/init.d/mysql restart”
“httpd.conf -DSSL -DSVN_VIEWCV”
restart “/etc/init.d/apache2 startssl”

“httpd.conf -DSVN_VIEWCV” signal=term

The policy file includes some shellcommands rules that synchronize the local time
with an NTP server, back up the SQL databases, and handle database corruption
instances, as detected by the ReadTCP function in the control section, whose output
determines whether the viewcvs_error class is defined:

shellcommands:
“/usr/sbin/ntpdate ntp.cfengine.org > /dev/null”
“/usr/bin/mysqldump > /files/mysql.backup” ifelapsed=480

viewcvs_error::
“/etc/init.d/apache2 stop”
“cd /files/projects; svnadmin recover Cfengine-2”

alerts:
viewcvs_error::
“DB corruption error from web server; attempting recovery.”

64 / Some Case Studies: Sample Policies

An alert is also generated when the Web server probe returns an error.

4.3 A Site Policy File Suite
In this section, we consider a small version of the set of master policy files that a site
might deploy on every system that runs cfengine. We have still had to truncate the com-
plete set of rules significantly, for space reasons, but even this subset will give you a
sense of what a full-featured, mature cfengine deployment is like.

4.3.1 Main Policy File: cfagent.conf
We’ll begin with the cfagent.conf file. As usual, we use only hard classes, or classes that
might be true of the environment, in this file, since user-defined classes in imported
files are never seen in the parent file. Moreover, even though we could, in principle, use
AddInstallables to make user-defined classes visible, these would get defined too late to
be of any use in import decisions.

Note that the configuration file names we’ve chosen to use here are arbitrary; other
names may make more sense in your environment.

cfagent.conf
import:
any::
cf.classes
cf.main

!matrix:: # matrix is too specialized
cf.site
cf.services
cf.users

linux.!matrix:: cf.linux
solaris:: cf.solaris
hpux:: cf.hpux
freebsd:: cf.freebsd

Subsystem-specific policy files
any:: # files use classes internally to limit scope
cf.www
cf.ftp
cf.mail

Host-specific policies
labs:: cf.rebuild_labs
matrix:: cf.matrix

end cfagent.conf

Some Case Studies: Sample Policies / 65

4.3.2 Class Definitions: cf.classes
Here is the class definition file, cf.classes:

cf.classes
classes:

x86 = (i386 i486 i586 i686) # Intel boxes

lab1= (daystrom panzer faust vorlon nirvana nevermore
delenn voyager borg mulder duke bajor collective
arrakis axis valis ubik)

lab2 = (winter mute roog zhora deckard usul tetsuo zodiac
ix thistledown jart tleilax axolotl giediprime)

labs = (lab1 lab2)

WWWServers = (nexus orion)
FTPServers = (orion mercury acrasia)
PrimeServers = (nexus)
SlaveServers = (quetzalcoatal cube)
NameServers = (PrimeServers SlaveServers)
securehosts = (nexus matrix sigmund)
backupserver = (dax)

OnTheHour = (Min00_05 Min05_10 Min10_15 Min15_20 Min20_25)
OnceaDay = (Hr00.OnTheHour)
PeakTime = (Hr10 Hr11 Hr12 Hr13 Hr14 Hr15)
CheckIntegrity = (Hr06.OnTheHour)

end cf.classes

4.3.3 Global Settings and Network Interface Policies: cf.main
Here is the control section from cf.main, the file that contains settings and rules used by
every system under cfengine’s control:

cf.main
control:

Access = (root) # Only root should run this

domain = (iu.hio.no)
sysadm = (cfengine@iu.hio.no)
smtpserver = (nexus.iu.hio.no)

timezone = (MET CET)

Repository = (/var/spool/cfengine)
SpoolDirectories = (/var/spool/cron/crontabs)

66 / Some Case Studies: Sample Policies

labs::
SplayTime = (15)

any::
IfElapsed = (15)
ExpireAfter = (240)
SensibleSize = (1000)
SensibleCount = (5)
EditfileSize = (40000)

Security settings
NonAlphaNumFiles = (on) # Warn on filenames w/ bogus chars
SuspiciousNames = (.mo lrk3 lkr3 nuke rootkit cloak zap
icepick toneloc .ek wzap clnlog sniff.pid sp.pl)

ChecksumDatabase = (/var/cfengine/db/cf.db3)

AddInstallable = (rootfull labupdate dnsupdate syslogdhup)
cfgmaster = (pandora)
cfgsrc = (/usr/local/sbin/master)

actionsequence = (
editfiles
copy
checktimezone
resolve
netconfig
shellcommands
links.Prepare
files.Prepare
directories
links.Rest
tidy.IfElapsed120.ExpireAfter240
disable
editfiles
files.Rest
processes
)

Network configuration
nexus|quetzalcoatal|haddock::

interfacename = (hme0) # Newer type of machine
labs::
netmask = (255.255.254.0)

Some Case Studies: Sample Policies / 67

!labs::
netmask = (255.255.255.0)

The actionsequence in this file illustrates two features we have not yet encountered:

! The use of rule type-specific expiration times, as in the tidy item. For this item
only, the default values for ifelapsed and expireafter are replaced by the values
120 minutes and 240 minutes, respectively.

! The links and files items appear twice within the actionsequence, followed by a
class name suffix in each case. The first appearance will invoke the corresponding
stanza with the class Prepare defined, and the second appearance will invoke the
same stanza with the class Rest defined (and Prepare not defined). Any rules in
these stanzas that are not modified with either class will be executed during the
first invocation of that action.

Here is the remainder of the cf.main policy file, which sets the directory recursion
ignore list, configures the broadcast format and the default route, removes some univer-
sally unwanted files, and disables some nearly universally undesirable features:

ignore:
Pseudo-file systems

/dev
/proc
/devices
/kernel

Directories
/local/lib/gnu/emacs/lock
/local/tmp
/local/lib/tex/fonts
/local/etc
/usr/tmp/locktelelogic
/usr/tmp/lockIDE
.X*
.Media*

Files and patterns
ls-R
mysql.sock
RootMailLog
lock
/usr/bin/[
!*

68 / Some Case Studies: Sample Policies

broadcast:
ones

defaultroute: # Set by subnet
(192_168_74|192_168_75)::
192.168.74.1

192_168_89::
192.168.89.101

resolve: # Specify different orders for balancing
nexus::
127.0.0.1
192.168.89.26 # quetzalcoatal
192.168.74.16 # cube

SlaveServers::
127.0.0.1
192.168.89.10 # nexus
192.168.74.16 # cube

!NameServers.192_168_89::
192.168.89.10 # nexus
192.168.89.26 # quetzalcoatal
192.168.74.16 # cube

!NameServers.(192_168_74|192_168_75)::
192.168.74.16 # cube
192.168.89.10 # nexus
192.168.89.26 # quetzalcoatal

tidy: # Clear /tmp and old core files (except for lab 2)
/tmp/ pattern=* recurse=inf age=1
/var/tmp pattern=* recurse=inf age=1

!lab2::
/home pattern=core recurse=inf age=7

disable:
Disable hosts.equiv except in sysadmin lab
!lab1::
/etc/hosts.equiv

Remove nologin file if present during nightly run
OnceaDay.!securehosts::
/etc/nologin

end cf.main

Some Case Studies: Sample Policies / 69

4.3.4 Global Probes, Links, Permissions,
and SSH Policies: cf.site
The next file we’ll consider is cf.site, which also contains rules applying widely across the
site. The file begins with some class definitions, followed by the links and disable
stanzas:

cf.site
classes: # Define some probe-based classes

has_ssh = (ReturnsZero(“/usr/bin/test -f /etc/ssh2/ssh2_config”))
has_inetd = (FileExists(“/etc/inetd.conf”))
has_xinetd = (IsDir(“/etc/xinetd.d”))

links:
Prepare:: # Everything depends on the link
/local -> /nexus/local

Rest.!labs::
/etc/rc2.d/S13kdm ->! /local/etc/init.d/S13kdm

disable:
any::
/usr/lib/expreserve

Remove passwd program except for nexus,daneel,sysadmin lab
!nexus.!daneel.!lab2::
/usr/bin/passwd repository=none

Here is the files stanza, divided between the two passes via classes:

files:
CheckIntegrity.Rest::
/usr/local owner=root,bin,man,daemon,www-data
group=root,daemon,bin,staff,www-data,adm,other,sys
action=warnall mode=u-w recurse=inf
checksum=md5 syslog=true
exclude=*.log exclude=.bash_history

has_inetd.Rest::
/etc/inetd.conf owner=root group=0 mode=644 action=fixall

Prepare.!labs::
/.cshrc m=0644 r=0 o=root act=touch
/var/spool/cron m=755 act=fixall

Prepare::
/etc/ssh2/ssh2_config m=644 o=root g=0 act=fixall
/etc/ssh2/sshd2_config m=644 o=root g=0 act=fixall

70 / Some Case Studies: Sample Policies

Here is the remainder of cf.site:

copy:
has_xinetd.labs:: # Make sure labs xinetd files are correct
/local/etc/xinetd.d dest=/etc/xinetd.d
owner=0 group=0 mode=444 force=on

shellcommands:
!has_ssh.!labs::
“/local/bin/SetupSSH”

disks:
/ freespace=10mb define=rootfull

processes:
“cfenvd” restart “/usr/local/sbin/cfenvd” useshell=false
“eggdrop” signal=kill
“BitchX” signal=kill
“enting” signal=kill
“bnc” signal=kill

PeakTime::
“rc5des” signal=kill
“stst” signal=kill

linux::
SetOptionString “aucx”

Kill user-processes > 1 day old.
At Hr23 works around old ps misfeature
any.Hr23::
“Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec”
signal=kill
include=ftpd
include=tcsh
include=bash
Many more inclusions ...
exclude=sshd
exclude=sowille
...

end cf.site

4.3.5 Configuring and Managing Daemons: cf.services
The cfagent.conf file next imports the policy file cf.services, which manages the most
important system server processes—daemons—on the various systems at the site.

Some Case Studies: Sample Policies / 71

The version of the file we present here is shortened significantly, to save space. The
actual file contains policies for quite a few more services.

cf.services
control:

mastersrv = (janus.cfengine.org)
src = (“/usr/local/master”)

copy:
Access control for inetd

/${src}/etc/hosts.deny server=${mastersrv}
dest=/etc/hosts.deny mode=644

labs::
/${src}/etc/hosts.allow.labs server=${mastersrv}
dest=/etc/hosts.allow mode=644

securehosts::
/${src}/etc/hosts.allow.secure server=${mastersrv}
dest=/etc/hosts.allow mode=644

PrimeServers::
/${src}/etc/dfstab server=${mastersrv}
dest=/etc/dfstab mode=644

editfiles:
FTPServers::
{ /etc/shells
EmptyEntireFilePlease
AppendIfNoSuchLine “/bin/tcsh”
AppendIfNoSuchLine “/bin/bash”
AppendIfNoSuchLine “/bin/false”

}

{ /etc/syslog.conf # Configure central log host
AppendIfNoSuchLine “*.warning @loghost”
DefineClasses “syslogdhup”

}

processes:
syslogdhup::
“syslogd” signal=hup

NameServers::
“named” restart “/usr/sbin/named -u dns”
useshell=false inform=true

72 / Some Case Studies: Sample Policies

sunos_5_6::
“identd” restart “/local/sbin/identd”

disable: # Rotate key syslog files
Sunday.OnceaDay::
/var/log/messages rotate=6 size=500m

Day1.OnceaDay::
/var/log/sulog rotate=4 size=500m

end cf.services

4.3.6 User Account Policies: cf.users
The cf.users file defines policies related to user accounts, including checking for poten-
tial security problems, removing junk files, and (then) performing nightly backups of
user files.

Here is the first part of the file. It defines a long list of patterns for items to be excluded
from backup operations, two filters for locating potential security problems, and the
tidy stanza:

cf.users
control:
backup exclusions
excludecopy = (*.EXE *.avi *.ZIP *.AVI *.MP3

*.mp3 *.o *.dvi *.rar ...)
backupdirs = (bkupAH:bkupIN:bkupOZ)
SensibleCount = (20)

filters:
{ history # Shell history = /dev/null
NameRegex: “.*history”
IsSymLinkTo: “/dev/null”
Result: “IsSymLinkTo.NameRegex”
DefineClasses: “historyalert”

}

{ setuid # SetUID/SetGID
Owner: “root”
Group: “0”
Mode: “+6000”
Result: “(Owner|Group).Mode”

}

Some Case Studies: Sample Policies / 73

tidy:
emergency|labs:: # emergency class used for ad-hoc runs
/home include=.rhosts age=0 inform=on
/home include=core r=inf age=1
/home include=a.out r=inf age=1
/home include=*.o r=inf age=7
Many more patterns ...
/home/.netscape/cache include=*
recurse=inf age=3 type=atime

Make sure backup disks don’t get full
backupserver.Hr17.OnTheHour::

/${backupdirs} include=* recurse=inf age=14

The copy stanza performs the actual backup operations as well as removing world write
access from any files that have these permission bits set.

files:
Rest.Hr01.OnTheHour::
/home mode=-6002 recurse=inf action=fixplain
syslog=on filter=setuid

/home filter=history action=alert
/home mode=o-w include=* recurse=inf
action=fixplain syslog=on

copy:
labs.Hr03.OnTheHour::
/home/AH dest=/backup/backupAH
recurse=inf size=<4mb typecheck=false
backup=false # Don’t backup the backup!
action=silent

labs.Hr04.OnTheHour::
/home/IN dest=/backup/backupIN
Same as previous ...

labs.Hr05.OnTheHour::
/home/OZ dest=/backup/backupOZ
Same as previous ...

end cf.users

74 / Some Case Studies: Sample Policies

4.3.7 OS-Specific Policy Files: cf.freebsd as an Example
The next section of the cfagent.conf policy file contains several operating specific files.
Here is a simple example designed for FreeBSD systems:

cf.freebsd
control:

bsdmaster = (devil)

links: # Restore finger habits
/usr/spool -> /var/spool
/usr/local/bin/perl -> /usr/bin/perl
/usr/lib/sendmail -> /usr/sbin/sendmail

files:
/usr/tmp mode=1777 owner=root action=fixall

editfiles:
{ /etc/crontab # Disable standard cleanup scripts
HashCommentLinesContaining “daily”
HashCommentLinesContaining “weekly”
HashCommentLinesContaining “monthly”

}

directories:
/var/spool/VirtualLight o=root g=other mode=755

copy:
/etc/printcap.client server=${bsdmaster}
dest=/etc/printcap mode=0644

shellcommands:
“/usr/local/sbin/BSD-pw-update”

OnceaDay::
“/usr/libexec/locate.updatedb”
“/usr/bin/makewhatis $MANPATH”

end cf.bsd

4.3.8 Subsystem-Specific Policy Files: cf.ftp as an Example
The final group of policy files specified in cfagent.conf manage specific subsystems/
features and generally apply to special-purpose servers. Our example is the policy file
cf.ftp, which defines policies for FTP servers. The entire file is processed for hosts in the
FTPServers class (defined in cf.classes) and ignored for all other hosts. The latter is
accomplished by defining an alternate actionsequence by including the FTPServers
class throughout the policy file.

Some Case Studies: Sample Policies / 75

Here is the first part of the file, containing its control section, as well as the files and
directories stanzas:

cf.ftp
control:

FTPServers::
ftp = (/usr/local/ftp)
uid = (99) # ftp user
gid = (99) # ftp group

directories:
FTPServers::

${ftp}/pub mode=644 owner=root group=other
${ftp}/etc mode=111 owner=root group=other
${ftp}/dev mode=555 owner=root group=other
${ftp}/usr mode=555 owner=root group=other
${ftp}/usr/lib mode=555 owner=root group=other

files:
FTPServers::

${ftp}/etc/passwd mode=644 o=root action=fixplain
${ftp}/etc/shadow mode=400 o=root action=fixplain
${ftp}/pub r=inf mode=644 o=${uid} action=fixall

Here is the copy stanza, which ensures that all required items are copied from the real
file system to the FTP chroot directory tree:

copy:
FTPServers::

/bin/ls dest=${ftp}/usr/bin/ls mode=111
owner=root type=checksum syslog=true

/etc/netconfig dest=${ftp}/etc/netconfig mode=444 o=root

/devices/pseudo/mm@0:zero dest=${ftp}/dev/zero m=666 o=0
/devices/pseudo/clone@0:tcp dest=${ftp}/dev/tcp m=444 o=0
/devices/pseudo/clone@0:udp dest=${ftp}/dev/udp m=666 o=0
/devices/pseudo/tl@0:ticotsord dest=${ftp}/dev/ticotsord m=666 o=0

/usr/lib dest=${ftp}/usr/lib recurse=2
mode=444 owner=root backup=false
include=ld.so*
include=libc.so*
include=libdl.so*
include=libmp.so*
include=libnsl.so*
include=libsocket.so*

76 / Some Case Studies: Sample Policies

include=nss_compat.so*
include=nss_dns.so*
include=nss_files.so*
include=nss_nis.so*
include=nss_nisplus.so*
include=nss_xfn.so*
include=straddr.so*

/usr/share/lib/zoneinfo
dest=${ftp}/usr/share/lib/zoneinfo
mode=444 recurse=2 o=root type=binary

The editfiles stanza sets policies for the contents of key system configuration files in
both the real file system and the FTP directory tree:

editfiles:
FTPServers::
{ /etc/rc2.d/S72inetsvc
PrependIfNoSuchLine “umask 022”

}

{ ${ftp}/etc/passwd
AutoCreate
EmptyEntireFilePlease
AppendIfNoSuchLine
“ftp:x:${uid}:${gid}:Anonymous FTP:${ftp}:/bin/sync”

}

{ ${ftp}/etc/group
AutoCreate
EmptyEntireFilePlease
AppendIfNoSuchLine “ftp::${gid}:”

}

{ ${ftp}/etc/shadow
AutoCreate
EmptyEntireFilePlease
AppendIfNoSuchLine “ftp:NP:6445::::::”

}

{ /etc/passwd
AppendIfNoSuchLine
“ftp:x:${uid}:${gid}:Anonymous FTP:${ftp}:/bin/sync”

}

Some Case Studies: Sample Policies / 77

{ /etc/group
AppendIfNoSuchLine “ftp::${gid}:”

}
end of cf.ftp

The final item in the cfagent.conf file is a policy file used to manage the host matrix,
which requires substantial individualized attention. We will not examine it here.

4.4 Gathering Data from Many Hosts
Sometimes you want to collect and collate data from a number of different hosts in the
network by collecting a known file and placing it on a “repository host” in a special
directory. For instance, you might be collecting log files or other monitoring statistics.

The first instinct of many administrators is to use a push solution, giving up the basic
cfengine security principle. Cfengine will not allow this, however, and you might start
thinking of embedding shell commands to perform this task. This is not necessary. Let
us suppose that you have a centralized repository host and you want to collect a file
from all of the other clients.

! Run cfservd on every client. Its configuration file will need to include an admit
section that gives the repository host access to the appropriate local files and
directories.

! Use a cfagent.conf entry on the repository host to collect a file from the list of
hosts. We use list iteration to accomplish this.

Policy Example 21: Iterating Over a List of Hosts

control:
actionsequence = (copy)

list = (host1:host2:host3:host4)
Another method:
list = (SelectPartitionNeighbours(/dir/cfrun.hosts,#,random,4))

copy:
repository_host::
/var/cfengine/database dest=/depot/$(this)/db server=$(list)

Notice that the special variable $(this) holds the value of the current server during
iterations. Using it will cause the file /var/cfengine/database on host1 to be placed in
/depot/host1/db on the repository host, and so on for each host in the list.

Shell commands are simple and straightforward, but they do not allow any useful
communication between cfagent and the script being executed. We would like to be
able to take advantage of cfengine’s classes in scripts, and we would like to be able to
return values and classes from scripts to cfagent.

5.1 Modules
Modules fulfill the purposes mentioned above. Modules are simply programs, written in
any language, that follow a protocol. They are stored in the /var/cfengine/modules direc-
tory. They can do whatever you like, and cfengine will interpret their output (sent to
standard out) appropriately. Using modules we can:

! Send parameters and classes.

! Return macro values and classes.

There are two kinds of modules, both of which are added to the control part of a policy:

! Preparatory modules, PrepModules, executed during parsing.

! Action sequence modules, executed after parsing.

PrepModules are executed immediately once parsed. This allows us to read in data that
will be used during the parsing of a program, e.g., set variables and classes. Action
sequence modules are only run after parsing, at run time, in the relevant part of the
actionsequence.

Here is an example illustrating how to invoke the two types of modules:

control:
gotinit = (PrepModule(startup2,”arg1 arg2”))
actionsequence =

(
copy
“module:mymodule arg1 arg2”
editfiles
)

The variable gotinit stores the exit status of the startup2 script.

5. Extending Cfengine:
Modules and Methods

Extending Cfengine: Modules and Methods / 79

Note that the module name begins with “module:”; this naming convention is required
for modules listed in an actionsequence.

5.1.1 Modules Protocol
A module can do anything you like, but it should be convergent, for the reasons we
have already discussed.

Often we would like to benefit from cfengine’s knowledge of the class environment.
Cfengine tries to package all of its classes into a shell environment variable called
ALLCLASSES. However, passing ALLCLASSES to scripts could be very long! Most
UNIX variants balk at environment variables larger than 2048 bytes, so the list is trun-
cated. The variable allclasses is also defined in all parts of cfengine and is guaranteed
not to be larger than 2048 bytes.

However, if you have very long class lists, it is better to read the data as a file. The file
/var/cfengine/state/allclasses contains a list of all defined classes, one per line.

Any output from the module is echoed back to cfagent and will be quoted as output
from the script, except for lines that begin with either +, -, or =, which are processed as
variable and class declarations. For example, if the module output looks like this:

=var5=what do you know
+wedidit
-problem
more output follows, which is just text

then cfagent interprets the first three lines as commands to set a variable or class.

The + symbol says to define a class, and the - symbol means to undefine a class. The =
symbol says to define the variable string that follows. Thus, in the example above, we set
a variable named var5 to the value what do you know. We also define the class wedidit,
and we remove the class called problem (if it exists). Note that deleting a class that is
not defined has no effect.

5.2 Methods
Modules are good for tasks such as querying databases, interacting with third-party soft-
ware, and the like. The disadvantage of using modules is that we are not automatically
protected by all of cfengine’s safety features. For that reason, cfengine subroutines were
introduced. These are called methods.

Methods are:

! A form of sub-program execution.

! Executed as a separate process, sharing the same code text (relatively lightweight
processes).

80 / Extending Cfengine: Modules and Methods

! Encapsulated private variable space (closures).

! Able to receive and return both variables and classes on demand.

A method is a cfengine program, not a shell script. It behaves in every way like a normal
cfengine program and has all of the same features and limitations. It can contain/wrap
other shell scripts.

5.2.1 Invoking a Method
Methods are invoked in a separate methods stanza within a policy file. Here is the gen-
eral procedure for calling a method:

control:
actionsequence = (... methods ...)

methods:
name (parameter1,parameter2,...)
action=filename # File containing the method code
sendclasses=class-list
returnvars=variable-list
returnclasses=class-list

Methods may also include options for sandboxing (as for shellcommands), as well as
the server option for specifying the computer upon which to run the method (allowing
for remote execution). See the Cfengine Reference for details on these options.

Here is a concrete example of invoking a method:

control:
actionsequence = (methods)

classes: # A defined class is required by alerts
every = (any)

methods:
MethodTest(“We sent some text”,”/etc/motd”)
action=cf.methodtest
returnvars=retval
server=localhost

alerts: # Display message showing the return value
every::
“Method returned $(MethodTest.retval)”

The actual method code is kept in the file called cf.methodtest, which must be placed in
the /var/cfengine/modules directory. Let us look at a simple example showing how data is
sent back and forth.

Extending Cfengine: Modules and Methods / 81

In this example, we send the method two character-string arguments. We end by defin-
ing an alert that prints the value returned by the method call.19 The returnvars option
tells cfagent that it should name the return value retval, which is placed in the noncon-
flicting namespace MethodTest to signify that it comes from that method.

If we run cfagent with this policy file, we get the following output:

cfengine:: Method returned We sent some text ... and got some back.

In order to understand this output, we now turn to the method configuration itself.

5.2.2 Method Declaration
The file that contains the code for the method differs only slightly from an ordinary
cfengine input file. It contains the additional control directives MethodName and
MethodParameters, which indicate that the current file is to expect a bundle of infor-
mation from a parent and that it will return a bundle of information to its parent when
it completes.

Here is the configuration file for our MethodTest method:

control:
MethodName = (MethodTest)
MethodParameters = (value1 value2)
var1 = (“${value1} ... and got some back.”)
actionsequence = (editfiles)

classes: # Class required by alerts
every = (any)

editfiles:
{ ${value2}
AppendIfNoSuchLine
“Enjoy your time in Oslo, the Official Cfengine Test City.”

}

alerts:
every::
ReturnVariables(“${var1}”)

The MethodName declaration confirms the name of the method to the parent. The
MethodParameters directive tells the method how it should interpret the arguments
that were transmitted to it. The arguments are placed in new variables called value1 and
value2.

19. Alerts are discussed in detail in Chapter 6.

82 / Extending Cfengine: Modules and Methods

The method code calls only editfiles, which appends some text to the file specified as
the method’s second argument (if it is not already present). This is the only real work
performed by this sample method. Finally, an alert is generated which sends a variable
back to the parent. In this case, the value is that of the local variable var1, which con-
sists of the method’s first argument concatenated to “ ... and got some back.”, resulting
in the displayed message we saw previously.

5.3 Example: Generating the Password and Shadow File
In this section, we considered an extended, real-world example using the cfengine meth-
ods and modules capabilities.

There are many ways to arrange for password distribution. Nearly all of them are
fraught with some kind of trouble. Here is a simple approach to selecting a number of
users from another UNIX host’s password file.

This example uses a module and a method to solve a subset of the password distribution
problem. It uses the following files in /var/cfengine:

! inputs/cfagent.conf: Main policy file

! modules/cf.passwd: Method definition file

! modules/module:getusers: Module shell script

5.3.1 The Policy File
Here is the key part of the policy that handles password and shadow file generation. It
calls the method named ImportPasswords, which requires no arguments.

control:
actionsequence =
(shellcommands processes methods files)

shellcommands:
“/usr/sbin/ntpdate $(ntphost) > /dev/null”

processes:
“portmap” restart “/sbin/portmap”
“rpc.mountd” restart “/usr/sbin/rpc.mountd”
“rpc.nfsd” restart “/usr/sbin/rpc.nfsd”
“cfservd” restart “/var/cfengine/bin/cfservd”
“mysqld” restart “/etc/init.d/mysql restart”

methods:
ImportPasswords(void)
action=cf.passwds
server=localhost

Extending Cfengine: Modules and Methods / 83

files:
/etc/passwd owner=root group=0 mode=0644 action=fixplain
/etc/shadow owner=0 group=0 mode=600 action=fixplain

Make it hard for fingers to change the passwords
/usr/bin/passwd mode=0400 action=fixplain

This policy file ensures that the local time is synchronized with the NTP master (so that
update decisions are made based on a correct time value) and that required daemons are
running. It then invokes the ImportPassword method. Finally, the policy sets the own-
ership and mode for the password and shadow files and turns off the execute bits for the
passwd command to prevent changes.

5.3.2 The ImportPasswords Method
The password file entry importing method uses a module to collect a list of authorized
users from a database. It then collects complete password and shadow files from a
trusted source, deletes all lines that do not begin with the name of an authorized user,
and merges the remaining lines into the existing password file, replacing any entries that
are already there. Finally, it corrects the users’ home directory entries and deletes its
work files.

control:
MethodName = (ImportPasswords)
MethodParameters = (none)
actionsequence =
(copy module:getusers editfiles directories tidy)

Split = (“,”)
editfilesize = (0) # unlimited

Locations of remote source and local work files
srcserver = (pmaster.cfengine.org)
srcpasswd = (/master/etc/passwd)
srcshadow = (/master/etc/shadow)
tmppwd = (/var/run/workfile1)
tmpshad = (/var/run/workfile2)

File generated by module:getusers
ufile = (/var/run/userlist)
ulist = (ReadList(“${ufile}”,”lines”,”#”,”1000”))

copy: # Copy remote master copies
${srcpasswd} server=${pmaster}
dest=${tmppwd} mode=600 type=checksum

${srcshadow} server=${pmaster}
dest=${tmpshad} mode=600 type=checksum

84 / Extending Cfengine: Modules and Methods

module:getusers runs and creates /var/run/userlist

editfiles:
Remove all entries not in the generated user list

{ ${tmppwd}
DeleteLinesNotStartingFileItems “$(ufile)”

}

{ ${tempshad}
DeleteLinesNotStartingFileItems “$(ufile)”

}

Generate the real files from the work files
{ /etc/passwd

DeleteLinesStartingFileItems “${ufile}”
AppendIfNoSuchLinesFromFile “${tmppwd}”

}

{ /etc/shadow
DeleteLinesStartingFileItems “${ufile}”
AppendIfNoSuchLinesFromFile “$(tmpshad}”

}

directories: # Configure user home directories
/home/${ulist} owner=LastNode LastNode = final path component.

tidy:
/var/run include=workfile* include=userlist* age=0

For space reasons, we have not been as careful in checking the results of each operation
before proceeding with the next one in this policy file.

5.3.3 The module:getusers Shell Script
This script simply generates a list of usernames of the users who are to be given
accounts on the custom machines. We assume that this list is a subset of the users on
the regular, noncustomized hosts.

#!/bin/sh

list=/var/run/userlist

Extract names from a database
mysql -BN -h sqlserverhost -u nobody -D users \verb+\+
-e “select account,mygroup from mytable \verb+\+
where mygroup=’chosenfew’ and status=’ENABLED’“ \verb+\+
| cut -f1 > $list

Extending Cfengine: Modules and Methods / 85

Append some additional names
echo mark >> $list
echo aeleen >> $list

The script file will need to have its execution bits set in order for it to be successfully
executed.

Traditionally, administrators have viewed management software as being about moni-
toring and presenting data about systems to humans. This has been part of a long-run-
ning philosophy of servicing components: wait until something fails and then replace it,
please, Dave. Cfengine is not really about monitoring, but it certainly is about the
opposite of getting involved with humans. Moreover, there is ongoing research focused
on using cfengine to simplify the problem of system monitoring.

First of all, let us clear up a misconception: cfengine does not care specifically about
anomaly detection in the sense of intrusion detection. This is because there is no provable
correlation between anomalies and intrusions—the link between these has been over-
sold by security people. Cfengine is interested in the detection of resource anomalies,
regardless of their cause. It can autonomically monitor the usage of a subset of system
resources: disk, CPU, number of users, network services, etc. Why would a tool like
cfengine bother to do this?

There are obviously advantages to monitoring such resource usage. We can better tune
and configure a system if we know how it works on a good day and compare this to
how it fails on a bad day. On the other hand, in general, if you don’t know what you are
looking for in a system, there is little point in collecting reams of data about it, via
cfenvd’s potentially highly resource-intensive process.

The answers to the existential questions are by no means clear, and they are still the sub-
ject of much research. It is simply not known whether there is much point in having
automated systems try to monitor and regulate systems at the level of configuration
management. Certainly there are examples where low-level regulation can improve the
efficiency of services, e.g., by deploying more resources in response to a heavy load, but
whether there is much we can do about automating responses in configuration is
unclear. At the time of this writing, we are exploring the use of this kind of feedback for
load balancing and overload (denial-of-service) protection, but the full story will have to
be told elsewhere.

6. Host Monitoring and
Anomaly Detection

Host Monitoring and Anomaly Detection / 87

6.1 Autonomic Computing
Whatever we lack in understanding of the issues, we must make up for by trial and
experience in the field. One of the research aims of cfengine is to move toward a vision
of autonomic computing, as a proof (or disproof) of concept. The idea of self-regulating
systems has gone through several conceptual shifts over the years, including the idea of
artificial immune systems. The basic idea is that we should borrow ideas from biology
to allow computers to detect and fix their own maladies. Based in this analogy alone, we
think that it will be helpful to detect anomalous behavior and respond to it.

Several well-known systems already exist for recording the immediate levels of system
data from the Simple Network Management Protocol (SNMP). Cfengine will also
shortly have SNMP capabilities, but not in the manner of the well known Multi Router
Traffic Grapher (MRTG) program, as cfengine’s philosophy is to reduce the amount of
information being thrown at humans, not compound it.

At the present time, cfengine can detect certain kinds of anomalies and respond to
them, report them, and so on.

6.2 Alerts: Some Basics About Warnings
The simplest response to an anomaly is to issue an alert. The alerts section of cfagent’s
configuration is used for this. alerts simply prints messages based on class membership,
and every entry within this stanza must be preceded by a explicit class specificative. The
class any is always defined, so you are not allowed to place an alert in this class, because
it would always give rise to a message. Since this is probably an expensive mistake if you
have 10,000 hosts, cfagent makes it a little difficult for you.

You can test alerts using some simple rules like these:

classes:
jambalaya = (any) # a class that is always true

alerts:
jambalaya::
“Gumbo!”

In general, alerts are most useful if they are issued only in unusual circumstances. For
example, let’s see what happens when a variable crosses a threshold:

Interface variables from cfenvd
classes:

lt = (LessThan(${average_users},6))
gt = (GreaterThan(${average_otherprocs},60))

88 / Host Monitoring and Anomaly Detection

alerts:
lt:: “$(a) LESS THAN $(b)” # shut down for the night?
gt:: “$(a) GREATER THAN $(b)” # security incident?

The special variables in the messages for these alerts correspond to the function call
arguments used to define the corresponding class. Thus, $(a) in the first alert will print
the average_users value specified to LessThan, and $(b) in the second alert will print
the second argument to GreaterThan, “60”.

Alerts can also be channeled directly to syslog, to avoid extraneous console messages or
email:

alerts:
lt::
SysLog(LOG_ERR,”Test syslog message”)

We shall use alerts more in this chapter.

6.3 The cfenvd Daemon
The basis of resource monitoring is the cfenvd daemon. cfenvd requires no configura-
tion. It makes use of tools existing on your system for monitoring—commands such as
ps and netstat. If you have tcpdump installed, cfenvd can use it to monitor traffic
(cfenvd -T). Presently, it will also be able to interface with the scli SNMP interface
software. It updates its measurements every two minutes, a carefully measured balance
between too often (heavy on resources) and too seldom (missing important information).

Using a smart learning algorithm, cfenvd:

! Learns the behavioral trends in each computer over weeks.

! Evaluates the current state of the resources against learned averages.

! Classifies the current state against learned averages into a basic ontology of
performance.

When cfenvd is active, it records data in /var/cfengine/state. Later, when cfagent inter-
mittently starts, it reads classes and variables about the current state of resources from a
file env_data in the same directory. These are of the form:

$(value_tcp_in) Most recent measured value
$(average_www_out) Weekly mean value
$(stddev_userprocs) Weekly standard deviation

rootprocs_high_anomaly Class related to the number of root processes
loadavg_high_dev2 Class related to the load average

Host Monitoring and Anomaly Detection / 89

The first two items show the use of the _in and _out suffixes with metrics that distin-
guish incoming and outgoing connections.20 The latter two items illustrate the auto-
matic classes that are defined based on comparing current resource usage with normal
values. The second and third components of these classes, which function syntactically
as suffixes to the metric keyword, have the following meanings:

low, normal, high Current value is <, ≈ or > normal.
dev1, dev2, anomaly How far current value deviates from norm:

1, 2 or 3 standard deviations.

Like everything in cfengine, alerts about anomalies are subject to policy decisions. Here
is a sample cfagent configuration for alerting about unusual activity:

alerts:
The class anomaly_hosts matches hosts collecting anomaly data

anomaly_hosts.UserProcs_high_dev2::
“UserProc anomaly high 2 dev on $(host)/$(env_time) \
current value $(value_otherprocs) av $(average_otherprocs) \
pm $(stddev_otherprocs)”
ShowState(procs)

entropy_www_in_high.anomaly_hosts.www_in_high_anomaly::
“HIGH ENTROPY Incoming www anomaly high anomaly dev!!\
on $(host)/$(env_time) current value $(value_www_in) \
av $(average_www_in) pm $(stddev_www_in)”

ShowState(incoming.www)

anomaly_hosts.smtp_out_high_dev2::
“Outgoing smtp anomaly high 2 dev on $(host)/$(env_time) \
current value $(value_smtp_out) av $(average_smtp_out) \
pm $(stddev_smtp_out)”

ShowState(outgoing.smtp)

20. The ShowState function, illustrated and described below, uses the initial components incoming and
outgoing to distinguish connection types, e.g., incoming.www.

90 / Host Monitoring and Anomaly Detection

Table 6.1 lists the available metrics tracked by cfenvd.

Table 6.1 Anomaly Detection-Related Classes

6.4 The ShowState Function
The ShowState function reveals more details about the current sample of data that
caused the alert we have asked for. For instance, if we ask for:

ShowState(incoming.www)

_in and _out
Metric Description Port accepted?
cfengine Cfengine-related traffic 5308 yes

diskfree Amount of free disk space no

dns Domain name server related traffic 53 yes

ftp File transfer protocol traffic 21 yes

icmp Total ICMP traffic (e.g., ping) yes

irc Internet relay chat protocol traffic 194 yes

loadavg Current load average no

netbiosdgm NetBIOS datagram service 138 yes

netbiosns NetBIOS name service 137 yes

netbiosssn NetBIOS session service traffic 139 yes

nfsd NFS daemon traffic 2049 yes

otherprocs Number of non-root process no

rootprocs Number of processes owned by root no

smtp Simple mail transfer protocol traffic 25 yes

ssh Secure shell remote login protocol 22 yes

tcp Total TCP traffic all yes

tcpack TCP packets with ACK flag set all yes

tcpfin TCP packets with FIN flag set all yes

tcpmisc All other TCP packets all yes

tcpsyn TCP packets with SNY flag set all yes

udp Total UDP traffic all yes

users Number of logged in users no

www World wide web traffic (HTTP) 80 yes

wwws HTTP protocol over TLS/SSL (HTTPS) 443 yes

Host Monitoring and Anomaly Detection / 91

in the case of a low-entropy (sharp) anomaly, we might get a report like the following:

cf:cube: LOW ENTROPY Incoming www anomaly high anomaly dev!!
on cube/Fri Feb 20 19:57:23 2004
current value 53 av 9.9 pm 16.1
cf:box: ————————————————————————————
cf:box: In the last 40 minutes, the peak state was:
cf:box: (1) tcp 0 0 128.39.74.16:80 157.158.24.40:4049 TIME_WAIT
cf:box: (2) tcp 0 0 128.39.74.16:80 157.158.24.40:3796 TIME_WAIT
cf:box: (3) tcp 0 0 128.39.74.16:80 157.158.24.40:3544 TIME_WAIT
cf:box: (4) tcp 0 0 128.39.74.16:80 157.158.24.40:4063 TIME_WAIT
cf:box: (5) tcp 0 0 128.39.74.16:80 157.158.24.40:4035 TIME_WAIT
cf:box: (6) tcp 0 0 128.39.74.16:80 157.158.24.40:3782 TIME_WAIT
cf:box: (7) tcp 0 0 128.39.74.16:80 157.158.24.40:3530 TIME_WAIT
cf:box: (8) tcp 0 0 128.39.74.16:80 157.158.24.40:3824 TIME_WAIT
...
DNS key: 157.158.24.40 = arm.iele.polsl.gliwice.pl (47/53)
DNS key: 80.203.17.11 = 11.80-203-17.nextgentel.com (1/53)
DNS key: 66.196.72.28 = j3118.inktomisearch.com (1/53)
DNS key: 80.202.77.107 = 107.80-202-77.nextgentel.com (2/53)
DNS key: 80.213.238.106 = ti100710a080-3690.bb.online.no (2/53)

Frequency: 157.158.24.40 |************************************ Frequency:
80.203.17.11 |*
Frequency: 66.196.72.28 |*
Frequency: 80.202.77.107 |**
Frequency: 80.213.238.106 |**

Scaled entropy of addresses = 12.7 %
(Entropy = 0 for single source, 100 for flatly distributed source)
cf:box: ———————————————————————————— - -
cf:box: State of incoming.www peaked at Fri Feb 20 19:57:23 2004

Note that the entropy classes generated by cfenvd refer to how sharply peaked the dis-
tribution of IP addresses or processes is. See how the frequency plot in the example
above has a sharply peaked distribution: this is low entropy. A completely flat distribu-
tion, where an equal amount of traffic came from every address, would be a maximal
entropy distribution.

6.5 The Cfenvgraph Utility
The data cfengine measures is normally hidden from view in a database. It can be
instructive to view this information. At present there are only primitive tools available

92 / Host Monitoring and Anomaly Detection

for this. The cfenvgraph -s command generates a directory of files that show a weekly
snapshot of the system. For extra high resolution, add -r to this.

By default, the plots all show the entire week starting from Monday morning and fin-
ishing on Sunday evening.

The data files have names in the following forms :

! variable.q—This is the latest raw value q measured. The format is x y.

! variable.E-sigma—This is the computed average value with standard deviation.
The format is x y dy.

! variable.distr—This is the distribution about the mean, a frequency histogram,
with format x y.

These can be viewed, for instance, in gnuplot:

$ gnuplot
plot “loadavg.q” with lines
plot “loadavg.E-sigma” with errorbars
plot “loadavg.distr” with lines

The result is a picture similar to the one in Fig. 6.1.

Figure 6.1: Output of cfenvgraph, Viewed with gnuplot

Similar commands can be used with the more advanced xmgrace software (which is
widely available on the Internet):

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

Host Monitoring and Anomaly Detection / 93

$ xmgrace -nxy cfenv-average
$ xmgrace -settype xydy www_in.E-sigma -hardcopy -hdevice EPS
$ xmgrace -settype xydy netbiosssn_in.E-sigma -hardcopy -hdevice EPS
$ xmgrace scan\:_mountpoints_disk1.db.cfenv -hardcopy -hdevice EPS

Cfenvgraph produces two kinds of graphs: time series and distributions. The time
series are graphs of measured value versus time. Time is measured in intervals of 5 min-
utes so that the scale runs from zero (Monday morning 0:00 hours) to 12 x 24 x 7 =
2016 (Sunday night at 24:00). Each measurement has its own natural scale. Load aver-
ages are multiplied by 100 so that the traces do not disappear on the multi-trace graphs.

Distributions measure the scatter about the mean averaged over the whole week. In
other words, they are de-trended scatter distributions, placed on a scale from 0 to 100,
where 50 is chosen to be the expectation value for the entire week. The vertical scale is a
frequency which is not normalized, and hence will be different in every case.

6.6 FriendStatus Alerts
A neighborhood watch scheme is a useful way of monitoring hosts without using a ping
or a heartbeart monitor. Cfengine can use its secure communication infrastructure to
get hosts to monitor one another in a decentralized way.

A cfengine friend is another host with which cfagent collaborates. Any host that grants
us access to files is a friend. Any host to whom we grant access to files is a friend.

Cfengine and cfservd record all successful connections between cfengine friends. The
FriendStatus(n) function shows known hosts that we have not seen for n hours.
FriendStatus(0) shows hosts that we have not seen for the learned average interval.
LastSeenExpireAfter determines when friends are judged to have died forever.

From version 2.1.7 on, cfengine includes automatic monitoring of friends. This pro-
vides us with a simple way of learning from the network when hosts are down or not
responding. Each time cfengine makes contact with a peer (either by opening a channel
to cfservd on a remote host or by receiving such a connection from a peer agent), it
records the time at which it last observed the peer and stores it in a database called
“last seen”.

Each time a new connection arrives, cfengine updates an average interval of time since
the last time it saw the peer. These can be seen in verbose mode (i.e., cfagent -v) by
using an alerts function:

alerts:
myclass::
FriendStatus(3)

94 / Host Monitoring and Anomaly Detection

In verbose mode, this prints a summary of the last-seen times. It produces alerts in non-
verbose mode if any hosts have not been seen for more than three hours.

The output in verbose mode is of the form (lines wrapped for space reasons):

cf:myhost: Host duke.iu.hio.no i.e. 192.1.1.65
last hailed us @ [Thu Feb 15 21:01]
cf:myhost: i.e. (3.03) hrs ago, Av 0.10 +/- 0.15 hrs

cf:myhost: Host vorlon.iu.hio.no i.e. 192.1.1.23
last hailed us @ [Thu Feb 15 21:01]
cf:myhost: i.e. (3.02) hrs ago, Av 0.10 +/- 0.15 hrs

Each host presents its own perspective on the landscape of friends it normally works
with, from the viewpoint of its own policy:

! The first entry tells us that the host 10.39.89.10 answered a request from us only
0.11 hours ago. The average time between our requests to this host is 0.15 hours.

! The second entry says that the host 10.39.89.26 attempted to connect to our
cfservd process at the stated time, 0.11 hours ago. The expected time between
connections from this host was 0.04 hours, so we are overdue.

The FriendStatus alert tells us which hosts in our recent memory of connections are
overdue according to the time specified in the argument or according to their regular
pattern of behavior. If the time specified in the argument of the function is zero, warn-
ings are issued if the time is greater than the expected time. Hosts that have not been
seen for more than a week are purged from the database.

The FriendStatus alert has a limited value unless we overlay some predictable pattern
of interactions between peers, because it is easily confused by anomalies or irregularities.
Another way of monitoring hosts is to use a graph theoretical trick that allows every
host in the network to watch out for its neighbors.

The following method can be plugged into any configuration. The method is called by
adding the following stanza to your configuration:

Policy Example 22: Peer Watch (Part 1)

control:
AddInstallable = (PeerCheck_done)

methods:
any::
PeerCheck(null)

Host Monitoring and Anomaly Detection / 95

action=cf.peercheck
server=localhost
returnclasses=done
returnvars=null
ifelapsed=5

This policy causes cfagent to attempt to execute a method whenever possible, but not
more often than every five minutes. The method simply tries to download a small, unim-
portant file from the remote peers.

The module itself should be placed in the modules subdirectory of the main cfengine
directory, /var/cfengine/modules/cf.peercheck. It is listed in Policy Example 23, below.

The idea here is to force hosts to perform a TCP ping of one another to the cfengine
port. Each host in its peer group watches over its neighbors. This provides a redundant
clique of cross-checkers. Another, less intrusive, approach would be to pick a random
host in the clique (the peer leader) to check less frequently. Over time, this amounts to
the same thing, but with less resolution.

The method takes a list of hosts (e.g. the one conveniently located in the cfrun.hosts file)
and partitions it into neighborhood watch areas or peer groups of size 4. Each host in its
peer group can either select a leader that we will try to contact to see if it is alive, or
each host can check all its peers in the neighborhood. Both options are coded above,
but the chosen method is to check all neighbors. The method works by simply trying to
copy a small file from the hosts. If the copy succeeds, the host is alive and working; if it
fails, there is a problem and an error will be signaled.

In this way, hosts in a peer group check each other’s integrity.

Policy Example 23: Peer Watch (Part 2)

A peer to peer ping, using cfengine
control:

MethodName = (PeerCheck)
MethodParameters = (null)

smallfile = (/etc/inittab)
pf = (/var/cfengine/inputs/cfrun.hosts)
peer_leader = (SelectPartitionLeader(${pf},#,random,4))
peers = (SelectPartitionNeighbours(${pf},#,random,4))

actionsequence = (copy)
domain = (domain.tld)
AddInstallable = (nocontact nocontact_leader)

96 / Host Monitoring and Anomaly Detection

classes:
moduleresult = (any)
check_all_neighbours = (any)
check_leader = (none)

copy:
check_leader::
$(smallfile) server=$(peer_leader)
dest=/var/cfengine/state/peer_check_$(peer_leader)
trustkey=true failover=nocontact_leader

check_all_neighbours::
$(smallfile) server=$(peers)
dest=/var/cfengine/state/peer_check_$(peer_leader)
trustkey=true failover=nocontact

alerts:
nocontact_leader::
“Unable to hail host $(peer_leader)” ifelapsed=240

nocontact::
“Unable to hail one of hosts $(peers)” ifelapsed=240

moduleresult::
ReturnVariables(null)
ReturnClasses(moduleresult)

6.7 File System Scans
Cfengine’s time-series analyses can also be applied to the disk file systems on a comput-
ing device to learn about the patterns of usage and behavior with regard to storage.
When are the peak times during the week for storing data?

Scanning file systems is not something to be done on a continuous basis—it would be
too expensive—so this is not done by cfenvd. You can ask cfagent to perform a file
system scan, however, as a matter of occasional policy. The results can be viewed using
cfenvgraph, just as with other analyses.

Policy Example 24: File System Behavior Scan

disks:
/mountpoints/disk1 scanarrivals=true ifelapsed=1200

This would cause cfagent to perform a complete recursive scan of the named file system
every 1200 minutes, capturing file modification data for later analysis by cfenvgraph.

Host Monitoring and Anomaly Detection / 97

6.8 Interpreting Anomaly Results
Collecting data is all well and good, but we also need to interpret what we find. The
simple fact is that no one really knows how to fully interpret data from time-series. This
is still an area of active research, in which cfengine’s monitoring technology is among
the world leaders. Ultimately, the goal is to allow automatic interpretation of data
collected.

Let’s look at some sample graphs generated from the stored data. For each variable,
cfenvd stores three sets of data, as explained in section 6.5.

6.8.1 Overview
The graph in Figure 6.2 was generated using xmgrace:

$ xmgrace -nxy cfenv-average

Figure 6.2: Output of cfenv-average, viewed with xmgr

This shows an overview, like a brain-wave trace (EEG) or electrocardiogram (ECG).
The advantage of this view is that one can compare the normal behaviors of different
resources on a common scale. The disadvantage is that the common scale makes smaller
variations too small to see clearly.

6.8.2 Separate Traces
The overview cannot show the details of the traces or easily identify which trace is
which. Moreover it shows only the average values, with no idea of how much uncer-

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

98 / Host Monitoring and Anomaly Detection

tainty there is in the data.

The graph in Figure 6.3 was generating using xmgrace:

$ xmgrace -settype xydy netbiosssn_in.E-sigma

Figure 6.3: Output of netbiosssn_in, Viewed with xmgrace

The time scale on the horizontal axis runs from Monday morning to Sunday evening.
The visible peaks are usually centered around the middle of each day. The solid line
shows the average value, and the vertical error bars show ! one standard deviation as
estimated from the samples. Here we see that the variations of the average are larger
than the average size of the error bars (the error bars look small). This means we can be
confident that the pattern of resource usage is real.

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

Host Monitoring and Anomaly Detection / 99

The second example, in Figure 6.4, was generated using the following command:

$ xmgrace -settype xydy www_in.E-sigma

Figure 6.4: Output of www_in, Viewed with xmgrace

In this case, the error bars are larger than the variation in the average, and we have to
conclude that this variable is dominated by uncertainty, that is, we cannot make much
in the way of predictions about its regular behavior.

6.8.3 File System Scans
The next example, in Figure 6.5, was generated using the following command from the
data collected via Policy Example 24:

$ xmgrace scan:_mountpoints_disk1.db.cfenv

It shows the frequency of changes to the scanned file system at different times during
the working week. Once again, we see from this host the familiar pattern of variation,
with activity peaking around the middle of each day of the week. This need not be the
case, of course. If most of the disk activity were performed as a result of globalized
processes at any time of the day or night, we would not see this pattern. What this
graph allows us to see is how the pattern of disk activity mirrors other patterns of
change, such as load average or the main services, that can be monitored more directly.

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

Figure 6.5: Output of scan:_mountpoint_disk1, Viewed with xmgrace

6.8.4 Distributions
The distribution of normal activity levels about the mean also has a significance to host
performance. We will illustrate this concept using incoming Web traffic.

The first graph, Figure. 6.6, has a lower bound and tails off at higher values. This means
that most of the time the system is underutilized, but there are some bursts of activity,
giving a lower number of higher levels.

Figure 6.6: Incoming Web Traffic Has a Lower Bound

100 / Host Monitoring and Anomaly Detection

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

−5 −3 −1
Deviation

1 3 5
0

10000

20000

Fr
eq

ue
nc

y

30000

40000

Host Monitoring and Anomaly Detection / 101

This curve is smooth and unambiguous. A distribution curve might not always be this
perfect, however. Figure 6.7 is an example of a distribution that is more jagged. Real
systems often give jagged distributions. These even out only after many, many weeks of
data.

Figure 6.7: Incoming Web Traffic Has a Lower Bound

Next, a two-pronged molar (Figure. 6.8) shows the free disk space on a file system. It
has a fascinatingly bimodal distribution, meaning that disk space is generally mostly at
one of these two levels. Perhaps the system is cleaned periodically and remains there for
some time and then fills up quickly again. How would you explain this distribution?

Figure 6.8: Free Disk Space
0 10 20 30 40 50 60 70

0

2000

4000

6000

8000

102 / Host Monitoring and Anomaly Detection

In Figure. 6.9, an incoming FTP service distribution shows an upper bound. This could
be for one of two reasons:

! The source of the load has an upper bound on its demand.

! The service has an upper bound on its delivery.

In the latter case, we might want to improve the service capacity.

Figure 6.9: Incoming FTP with an Upper Bound

The next distribution is from load average (Figure. 6.10). This shows a fairly healthy
spread of values, with no clear tendency toward an upper bound, so no bottlenecks in
process performance are apparent.

Figure 6.10: Load Average Behavior

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

Host Monitoring and Anomaly Detection / 103

In Figure 6.11, a graph of NFS traffic does show an upper limit, however. In this case, it
is unlikely to be because of a server bottleneck, but, rather, a result of the fact that there
are a fixed number of clients that normally produce the same amount of demand.
Sometimes, however, the demand from some is less, perhaps as a result of certain hosts
being down or inactive.

Figure 6.11: Incoming NFS Traffic with an Upper Bound

The final distribution (Figure 6.12), incoming SSH traffic, shows a fairly symmetrical
distribution. The large spike in the middle means that the distribution is sharply
peaked, but the relatively low number of events makes the distribution jagged.

Figure 6.12: Incoming SSH Traffic

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

104 / Host Monitoring and Anomaly Detection

The conclusions to be drawn from this data require a certain amount of human inter-
pretation, based on a wider knowledge of the system activity.

In our opinion, monitoring has a limited value. It should either confirm your current
understanding of a system or make you think again about it. It cannot replace human
judgment. If you don’t know how your system is working, then looking at graphs will
not generally help you to understand it, since data needs a model or a theory to
interpret it.

6.9 Patterns and Anomalies
The patterns revealed in the graphs produced by cfenvgraph can give us humans a gut
impression of how a computer is being used by its users, and how the resources of the
system are being consumed, over a time scale of several weeks. This information is use-
ful for understanding performance in broad terms. If we see a large load at certain times
of the day or the week, for instance, we could use this information to alter the configu-
ration of resources at certain times to cope better with the load.

To organize your understanding about the system, examine the following checklist on
each host in your organization:

! Which measurements are predictable, i.e., which have a clear trend with small varia-
tions? These are stable and predictable features, a sign that things are efficient and
under control.

! Which measurements are dominated by uncertainty, i.e., have large error bars with no
visible pattern? This occurs if the resource usage is only sporadic and irregular. It
could be because resource usage is so low that you cannot see any pattern. The
resource is not playing any role in your organization.

! Which measurements have top-heavy distributions? This might signal a resource that
is being throttled by something, perhaps a performance limitation.

! Which combinations of anomalies are most common in your system? This will tell you
the potential sources for instability and help you avoid unpleasant surprises in the
future.

Today businesses are more service-oriented than before, as testified to by the increasing
interest in good practices such as ITIL (the IT Infrastructure Library) and NGOSS/
eTOM (New Generation Operational Support Service/enhanced Telecom Operations
Map) as championed by the Tele-Management Forum. These process models have cer-
tain requirements of practice. How does cfengine fit into this kind of process scenario?

7.1 Process Requirements
ITIL describes the following practices for good management:

! Manager: A service manager should be appointed to coordinate the management
of services; for us, that means overseeing configuration management within the
organization. The manager should determine the requirements of the “service
client”—in our case, the configuration requirements of the organization. The
configuration management workforce should be competent and well trained.

! Documentation: Policies should be documented. Performance should be reported.
Security controls should be documented. Cfengine accomplishes these goals in a
number of ways. The configuration language itself is designed to document the
configuration policy to a large extent. You should also discuss the interaction of
configuration options among different locations, processes, and hosts. The big
picture is available only to a configuration manager or engineer. Clear documen-
tation is a sign of good engineering—but, as we all know, knowing what is good
documentation for future contingencies is harder than we think.

! Service implementation: The service provider promises to deliver the agreed serv-
ice. It must allocate the appropriate funds and resources to make this happen. In
this case, an organization has to install cfengine with an appropriate schedule for
configuration management.

! Monitoring: The service provider promises to monitor its operation and seek con-
tinuous improvement of service provision. This includes testing of the service.
“Monitoring” here does not refer to the performance or configuration monitoring
of cfengine itself, but, rather, to the extent to which the current configuration
policy is effective in driving the larger goals of the organization.

! Change and revision control: Service level agreements should adapt and be subject
to revision control. In this case, this means that we should frequently review the
policies, expectations, and cfengine schedules. As changes are made to the config-

7. The Cfengine Management Process

106 / The Cfengine Management Process

uration policy, those changes should be documented and versioned using a revi-
sion control system. For example, the Subversion revision control system is both
convenient and easy to use.

! Continuity: ITIL requires a plan for continuity of an enterprise. Redundancy
must be established in order to provide the ability to continue to function in the
absence of key dependencies and personnel. The critical dependencies in cfengine
are, by design, minimal—as long as computers are running, cfengine should be
running. Humans who understand the policy itself are a dependency, and one can
interpret this requirement as the need for at least two staff members who under-
stand the cfengine installation. The network might also be a dependency in some
cases, although cfengine is designed to work under unreliable, partial communi-
cation conditions. If certain sources of data are required, e.g., servers for file copy-
ing, then failover servers can be provided.

7.2 Revision Control and Rollback
Cfengine does not version configurations internally, except to retain older version of
files that are changed during copying and editing.

One idea that frightens system administrators about autonomic computing is that if a
mistake is made (in policy or implementation), there is no clear way of “rolling back the
change” to undo the damage. If you are thinking in this way, you are trapped by dan-
gerous and costly preconceptions. System administrators often like to maintain the idea
of version control on their system configurations, as they generally believe that they are
in control of every aspect of their configurations. This is false.

There is a basic conflict between the idea of policy and version control. Policy-based
configuration management is about control of final state, and the scope of the changes
involved in reaching it. This approach to the state is not versioned. Either a system is
correct, or it is incorrect.

Figure 7.1: Elements of Revision Control

Policy Design

Testing

Policy Host

Clients

The Cfengine Management Process / 107

We wish to caution readers: just because you undo the last changes you made on a com-
puter, this does not mean that you will get back to the state you were in previously,
because runtime (operational) changes and consequences are not necessarily reversed by a
reversal of configuration.

So what do we recommend?

! Keep your source configuration files under a version control system like Subver-
sion so that you can track changes in your own thinking.

! Test new versions before rolling them out.

! When tested, update the master policy source with the new version.

! If, for whatever reason, the new policy has problems, either modify the policy
again or go back to a previous version. In each case, cfengine implements changes
in a forward direction, converging toward its policy, even if the policy has been
rolled back.

This view of rollback and versioning might be an unfamiliar way of thinking to you,
but it avoids several problems. The approach we advocate has the following properties:

! It avoids uncontrolled effects from ad hoc undo operations.

! It avoids complete reinstallation, e.g. versioning from image backup.

! By leaving the changes to cfengine, you are certain that the end result is that
which you wrote in your policy.

In this approach, you are encouraged to be forward-thinking, rather than taking a
defensive, backing-off strategy. We think that anyone implementing configuration
management should have sufficient expertise to be confident about their changes
after testing.

!, 34
", 34
#, 14
$(this), 77
${}, 14
&, 34
(), 13, 34
*, 18
., 34
/etc/services, 43
/usr/local/sbin, 8
/var/cfengine, 9
/var/cfengine/inputs, 40
/var/cfengine/modules, 78, 80
/var/cfengine/outputs, 12
/var/cfengine/ppkeys, 10, 53
/var/cfengine/state, 87
/var/cfengine/state/allclasses, 79
:, 14
::, 34
?, 18
_, 32
\, 31
|, 34
+, 79
=, 79

->, 23
->!, 23
-, 32, 79

access, 45
access control lists, 22
AccessedBefore, 35
acl, 22
action, 4, 21
actionsequence, 15, 19, 40–41, 67, 78
addclasses, 36
Addlnstallable, 36
admit, 44, 49
alerts, 15, 36, 87, 93
AllowAccessFrom, 44
AllowMultipleConnectionsFrom, 44
AllowUsers, 49
anomaly, 89
anomaly detection, 86
any, 35–36
autonomic computing, 87
autonomy, 6

backup, 26
BerkeleyDB, 8
bootstrap file, 47
broadcast, 19
broadcast address, 20
BSD security, 22
build process, 8

central repository, 26
centralization process, 43
centralized management, 42
cf.preconf, 47–48
cfagent, 3, 7–8, 10, 32–33, 49, 51, 93

listing classes with, 32
options, 51
verbose mode, 10, 93

Index

sage_booklet_index:01.Chapter1-end 5/18/07 2:41 PM Page 109

110 / Index

cfagent.conf, 9–10, 15, 37, 43, 45–46
updating, 45–46

cfdisabled estension, 24
cfengine, 90
cfenvd, 7, 86–87, 90
cfenvgraph, 7, 91–93
cfexecd, 7–8
cfkey, 7, 10, 53
cfrun, 49–50

options, 50
cfrun.hosts, 49
cfrunCommand, 49
cfruri, 7
cfsaved estension, 26
cfservd, 7, 42–44, 49, 52
cfservd.conf, 33, 43–44
cfshow, 7
ChangedBefore, 35
chdir, 30
checksum, 14, 21
checksum database, 14, 21
ChecksumDatabase, 21
ChecksumPurge, 21
ChecksumUpdates, 21
chroot, 30
class name suffixes, 67
classes, 5, 32–34, 90

anomaly detective, 90
host and domain names in, 32
legal characters, 32
logical expression, 34

comments, 14
comparison, 26
components, 7
CompressCommand, 22
compression, 22
configuration, 3, 19
control, 2, 11, 14, 18, 41, 58, 65

example, 65
convergence, 4–5
copy, 15–16, 26, 27

with encryption, 27
creating directories, 22
cron, 11, 45

declarative language, 5
default route, 20
DefaultCopyType, 26
DefaultPkgMgr, 30
defaultroute, 15, 19
defaults, 17
define, 16, 35
defining classes, 33
depth of recursion, 17
dev2, 89
dev1, 89
directories, 23, 61
disable, 15–16, 24
diskfree, 90
disks, 15–16, 28, 96
DMZ, 53–55

policy mirror in, 55–56
dns, 90
DNS name servers, 20
double colon, 34
dynamic addressing, 51
DynamicAddresses, 52

editfiles, 15–16, 24–26, 59, 76
example, 76

elsedefine, 16, 35
email, 11
EmptyResolvCont, 20
encrypt, 27
entropy classes, 91
error conditions, defining class when
detected, 61
escaping quotes, 31
eTOM, 105
exclude, 16, 18
ExcludeCopy, 18
ExcludeLink, 18
expiration time, rule-specific, 67
expireafter, 16–17, 31

failover, 35
feedback classes, 35
file filters, 37–38
file system scans, 96, 99

sage_booklet_index:01.Chapter1-end 5/18/07 2:41 PM Page 110

FileExists, 35
files, 15–16, 20, 22
filesystem, checking presence of, 28
filter, 16, 18
filters, 37–40
firewalls, 53–56

tunnels through, 56
flags, 22
force, 26
free space, 28
frequency plot, 91
FriendStatus, 93–94
ftp, 90
functions, 35

gathering data, 77
graphs, 93, 97–99

example, 97–99
group, 21, 30

hard links, 23
high, 89
home page, 7
host, 3
host monitoring, 86
hr, 33

icmp, 90
IExpireAfter, 17
ifelapsed, 16–17
IfElapsed, 17
ignore, 16, 18, 67

example, 67
imports, 40–41
in, 89
include, 16, 18
include files, 40–41
installation, 8–9, 43
interfaces, 15
IPRange, 35
irc, 90
IsDir, 35
IsHost, 35

IsLink, 35
IsNewerThan, 35
IsPlain, 35
iteration, 77
ITIL, 105

laptop computer example, 58
LastSeenExpireAfter, 93
libraries, required, 8
links, 15–16, 20, 23
lists, 13–14
loadavg, 90
locality, 33
loops, 3, 77
low, 89

management best practices, 105
MD5 checksum, 14
MethodName, 81
MethodParameters, 81
methods, 79–80, 82

example, 82
remote execution, 80

metrics, 90
min, 33
mode, 21
module, 78
modules, 78–79, 82, 95

directory, 80
example, 82, 95

monitoring, 7

netbiosns, 90
netbiosssn, 90
netconfig, 15, 19
netmask, 19–20
network interface, 19
nfsd, 90
NGOSS, 105
normal, 89

OpenSSl, 8
operation, 4

Index / 111

sage_booklet_index:01.Chapter1-end 5/18/07 2:41 PM Page 111

112 / Index

operator precedence, 34
options, 26
otherprocs, 90
out, 89
overwriting files, 27
owner, 21, 30
ownership, 21

packages, 15–16, 30
permissions, 21
policy, 3–4, 6, 13, 42

centralized, 42
policy master, 43
process filters, 39
process requirements, 105
processes, 15–16, 29
promises, 4, 34
public key exchange, 52
public keys, 51
public/private key pair, 10
pull vs. push, 49, 54, 56

FAQs, 56
purge, 27

q, 33
quoting rules, 31

readlist, 83
recurse, 16–17
remote servers, multiple, 35
repository, 26
repository location, 26
resolv.conf, 15, 20
resolve, 15, 19
restart, 29–30
ReturnsZero, 35
ReturnsZeroShell, 35
revision control, 106
rmdirs, 29
rollback, 106–107
rootprocs, 90
rotating files, 24
router address, 20
RPMInstallCommand, 30

rule processing order, 40
rule types, 15–16

general options, 16

sandboxing, 30, 80
scalability, 6
sensiblecount, 28
separator character, 14
SetOptionString, 29
shell commands, 30
shell wrappers, 31
shellcommands, 15–16, 31
ShowState, 90
signal, 29–30
signal processes, 29
site policy file suite example, 64
smtp, 90
soft classes, 33
source code, 8

installing from, 8
SplayTime, 27–28
split, 14
ssh, 90
symbolic hard link, 20
symbolic links, 23
syntax, 13
Syslog, 16–17
SyslogFacility, 16–17

target address, 11
tcp, 90
TCP port 5308, 43
tcpack, 90
tcpfin, 90
tcpmisc, 90
tcpsyn, 90
tidy, 15–16, 28–29
timeout periods, 17
timestamps, 26
touching, 22
transaction locks, 10
truncating files, 25
trustkey, 53
TrustKeysFrom, 44, 53

sage_booklet_index:01.Chapter1-end 5/18/07 2:41 PM Page 112

type, 26
typecheck, 27

udp, 90
underscore, 32
update.conf, 43, 45–46
users, 90
useshell, 31

verify, 27
voluntary cooperation, 6, 42

Web server example, 60
wildcards, 18
work directory, 9
www, 90
wwws, 90

xdev, 16–17

Index / 113

sage_booklet_index:01.Chapter1-end 5/18/07 2:41 PM Page 113

About the Authors

Mark Burgess is Professor of Network and System Administration at Oslo University
College. He is the author of the popular configuration management software package
cfengine and is the author of numerous books and papers on network and system
administration.

Æleen Frisch has been a system administrator for over 25 years, tending a plethora of
(successively) VMS, UNIX, Windows, Linux, and Macintosh systems over the years.
She is also a writer, lecturer, teacher, marketing consultant, and occasional database pro-
grammer.

sage_booklet_index:01.Chapter1-end 5/18/07 2:41 PM Page 114

