
1
4

P
au

lA
n

derson

System Configuration
Paul Anderson

Short Topics in
System Administration14
Rik Farrow, Series Editor

System
C

on
figu

ration

ISBN 1-931971-42-0

Booklets in the Series

#14: System Configuration
Paul Anderson

#13: The Sysadmin’s Guide to Oracle
Ben Rockwood

#12: Building a Logging Infrastructure
Abe Singer and Tina Bird

#11: Documentation Writing for System Administrators
Mark C. Langston

#10: Budgeting for SysAdmins
Adam Moskowitz

#9: Backups and Recovery
W. Curtis Preston and Hal Skelly

#8: Job Descriptions for System Administrators,
Revised and Expanded Edition
Edited by Tina Darmohray

#7: System and Network Administration for Higher Reliability
John Sellens

#6: A System Administrator’s Guide to Auditing
Geoff Halprin

#5: Hiring System Administrators
Gretchen Phillips

#4: Educating and Training System Administrators: A Survey
David Kuncicky and Bruce Alan Wynn

#3: System Security: A Management Perspective
David Oppenheimer, David Wagner, and Michele D. Crabb
Edited by Dan Geer

#2: A Guide to Developing Computing Policy Documents
Edited by Barbara L. Dijker

#1: See #8 above

Short Topics in

System Administration

System Configuration

Paul Anderson

Published by the USENIX Association
2006

Rik Farrow, Series Editor

14

© Copyright 2006 by the USENIX Association. All rights reserved.
ISBN 1-931971-42-0

To purchase additional copies and for membership information, contact:

The USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA USA 94710
orders@usenix.org
http://www.usenix.org/

First Printing 2006

USENIX is a registered trademark of the USENIX Association.
USENIX acknowledges all trademarks herein.

Contents

List of Figures v
Acknowledgments vii
Introduction 1
The State of the Art 1
About This Booklet 2

1. What Is System Configuration? 5
The Configuration Problem 5
Files and Configuration Specifications 7
Complicating Factors 8
A Configuration Example 18
Some Key Points 21

2. Approaches to Configuration Management 22
Manual Configuration 24
Cloning 25
Procedural Scripting 25
Declarative Configuration 28
Proscriptive Configuration 29
Higher-Level Configuration 29
Some Key Points 30

3. Configuration Tools 31
Configuration Models 31
Configuration Languages 32
Deployment Issues 34
Monitoring and Feedback 36
Some Key Points 37

4. File Distribution and Package Management 38
File Distribution Tools and Configuration 38
Package Management 39
Package Configuration 40
Some Other Considerations 42
Some Key Points 42

5. Some Sample Tools 43
Cfengine 43
LCFG 46
Microsoft Tools 49
CDDLM, CDL, and SmartFrog 51

Other Tools 53
Some Key Points 53

6. Theory, Research, and Current Issues 54
Fundamental Theory and Models 54
Language and Semantics 55
Distributed Deployment and Reasoning 56
Configuration Synthesis 57

7. Conclusion 58
The Future 58

Glossary 59
References 63

iv / Contents

List of Figures

1.1: The basic system configuration task 5
1.2: An example of configuration change rate 11
1.3: An LCFG configuration specification 20
2.1: Levels of configuration specification 23
2.2: Non-idempotent vs. idempotent actions 27
2.3: Conflicting actions 27
2.4: Non-declarative vs. declarative specifications 28
3.1: Inheritance in SmartFrog 33
3.2: The LCFG status display 37
5.1: The LCFG architecture 47
5.2: The Active Directory hierarchy 50
5.3: An Active Directory group policy 51

Acknowledgments

Thanks to Adam Moskowitz for persuading me that it was worthwhile writing down
my thoughts on this subject, and to Rik Farrow for his supportive editing. The com-
puting staff in the School of Informatics at Edinburgh University have suffered my
experimental code on their production system and provided invaluable practical feed-
back. Too many people to name have contributed by reviewing text, commenting, and
patiently explaining things that I didn’t understand.

The complexity of a typical computing site has increased immensely over the past 10
years, not only in scale but also in the range of services and the intricacy of its inter-
connections. This has led to systems which can no longer be configured reliably using a
purely manual process. For example:

■ If a Web server fails, what needs to be done to enable a replacement? This
is likely to require a complex chain of reconfigurations, involving firewalls,
DNS servers, database servers, and backups. This example is discussed in
more detail in section 1.4.

■ Can we be sure that the appropriate configuration files on every machine
are always set in such a way as to implement the desired security policy?
This policy does not just involve individual machines, but also the trust
relationships between them.

■ Can we be sure that different people, responsible for different aspects of a
site, will not change configurations in conflicting ways?

■ Can we be sure that a complex service is not configured in such a way that
there is a “single point of failure” which has not been identified?

In addition to this increase in complexity, new requirements are presenting new
challenges:

■ Higher expectations of service reliability call for systems that are able to
reconfigure, without manual intervention, to cope with failures of individ-
ual machines or components (autonomics).

■ More complex relationships between machines on an individual site, and
between remote sites, imply a more collaborative approach to the develop-
ment of overall configurations. These are no longer under the complete
control of a single individual or small group. This leads to complex prob-
lems of security and conflict resolution (federation).

Without automated solutions to problems such as those listed above, large comput-
ing sites will become increasingly unreliable and unmanageable. Solving these problems
is the domain of system configuration.

The State of the Art
An awareness of the need for automated system configuration has been gradually grow-
ing within the system administration community itself, and this has spawned a great
deal of discussion and a plethora of “homegrown” tools. Many of these can be found in

Introduction

the proceedings of the LISA conferences [9]. However, the vast majority of these tools
address only the lowest levels of the problem, and system configuration continues to be
a major source of failures (see [60]) and to consume a disproportionate amount of
highly skilled manual effort.

Senior system administrators and consultants looking for technologies and ap-
proaches to site configuration are faced with a difficult task; there is no clear process
for even identifying and evaluating a potential selection of tools, and there will rarely
be a single obvious candidate. Most sites end up with a number of imported tools and
a large amount of locally developed “glue.” Some sites will decide to develop significant
tools of their own, but it is easy to underestimate the resources that this requires, in
terms both of skills and experience and of the sheer effort of maintaining critical code
which has close dependencies on many rapidly evolving applications: LCFG (see sec-
tion 5.2), for example, has probably consumed about 10 person-years of direct devel-
opment effort, supported by twice that effort in configuration-related research. Sig-
nificant ongoing effort is required to track new operating system and application
releases.

So far, tool development appears to have failed to attract a coordinated implementa-
tion effort from the open source community. It is also hampered by a lack of appropri-
ate standards, which prevents interoperability and effective tool-sharing. Vendor-sup-
plied tools are frequently used for specific tasks, but they, too, fail to address the overall
problem adequately. There is no single, obvious reason for this lack of progress; certain-
ly, the issue is a large one whose solution is well beyond the resources of a system ad-
ministrator developing code part-time. However, the subject also includes many hard
problems whose solution probably involves attracting more interest from computer sci-
entists and theoreticians.

Tools designed to address the real problems of system configuration also face an
acceptance challenge from the system administration community; such tools are likely
to hide the low-level details of the familiar configuration files and to work with higher-
level concepts. This represents a paradigm shift for the average system administrator,
comparable to the assembler code programmer who must learn to write distributed
applications in Java without worrying about which registers hold which variables! More
predictable and trustworthy tools, with clear semantics, are necessary to earn this
acceptance.

About This Booklet
This is not a “cookbook”; it does not include detailed descriptions of using specific
tools to solve configuration problems, and there is no attempt to provide a comprehen-
sive tool survey, since tools can change rapidly (for some recent evaluations see, e.g.,
[29], [21]). But neither is this booklet about the developing theory of system configu-
ration (although such theories are summarized in chapter 6). Rather, the booklet is
aimed squarely at the working system administrator; it aims to explain clearly the vari-

2 / Introduction

Introduction / 3

ous facets of the system configuration problem and to describe how these relate to cur-
rent tools and future research.

Understanding underlying configuration principles will help system administrators
to use “best practice” in applying current configuration tools and procedures; these are
often very flexible, and it is all too easy to negate the advantages presented by a perfect-
ly good tool. Descriptions of the various facets of the configuration problem should
also help provide system administrators with criteria to evaluate potential tools, since
most sysadmins will be able to relate these to concrete examples at their own sites.

In the longer term, a better understanding of the fundamental principles should
encourage theorists to address underlying configuration problems and tool developers
to incorporate this theory into their products. Ultimately, this will yield new tools and
enable system administrators to have more confidence in the ability of these tools to
automatically manage the configuration of their sites.

Finally, it should be noted that there is not yet consensus on all aspects of the sub-
ject, and some topics may reflect the author’s personal bias. For instance, the LCFG
tool is often used in the examples that follow, because it is broad enough to illustrate
many of the important issues in a consistent way. However, it is hoped that the presen-
tation is sufficiently logical and objective to allow readers to draw their own conclu-
sions.

The LISA configuration workshops and the lssconf mailing list1 provide some
forums for the topics discussed in this book.

A Word About Operating Systems
This booklet deals mostly with principles that apply equally to any operating system.
However, the terminology and most examples are taken from UNIX, and it is expected
that this will be the natural background of most readers. UNIX probably has the
widest range of configuration tools and practices; at the bottom end, raw UNIX sys-
tems provide no clear standard and no comprehensive support for system configura-
tion—many sites without the necessary in-house skills still have very primitive configu-
ration management. At the opposite extreme, the most complex sites and the most
sophisticated configuration tools are probably UNIX-based.

Operating systems such as Microsoft Windows have all the same problems and
requirements for configuration management, but there is less variety in the tools and
approaches; vendor-supplied tools obviously tend to predominate, and these are cer-
tainly comparable to the middle ground of the UNIX range. The standard Microsoft
tools, for example, are mentioned where appropriate.

The Structure of the Book
Chapter 1 is perhaps the most important chapter of this book; it defines the system
configuration problem and describes its various aspects in some detail, without consid-

1. http://homepages.inf.ed.ac.uk/group/lssconf/.

4 / Introduction

ering specific solutions. This section is recommended as a prerequisite for understand-
ing the material in the following sections.

Chapter 2 outlines the range of approaches to automating configuration solutions,
starting with a largely manual approach and moving towards fully autonomic site man-
agement.

Chapter 3 describes some of the ways in which various tools approach different
aspects of the configuration problem.

Chapter 4 covers tools and techniques which are specifically used for distributing
files and managing software packages. Although this is only one (small) aspect of the
overall configuration problem, it is very common to see such tools extended and used
to provide primitive configuration management.

Chapter 5 describes a number of tools in more detail. These are chosen to demon-
strate the range of different approaches rather than to provide a basis for selecting or
using a particular tool.

Chapter 6 briefly describes some of the current issues in configuration theory and
research. Less theoretically inclined readers may want to skip this section.

Most chapters end with a list of key points which summarize the important issues.
The collection of these key points should provide a good overview of the subject.

Terms in italics are explained in the Glossary.

The term “configuration” has been used in many contexts, with many different mean-
ings, and this has often caused some confusion. Unfortunately, there is no widely
accepted name for the task which we will call “system configuration,”1 although the
fundamental problem is quite easy to describe. This chapter sets out a basic definition
and contrasts it with some other uses of the term. It then goes on to discuss some of
the many factors that complicate the configuration problem in practice.

1.1 The Configuration Problem

Figure 1.1: The basic system configuration task

The basic system configuration problem is quite simple to describe:

■ Start with:
● A large number of varied machines with empty disks;
● A repository of all the necessary software packages and data files;
● A specification of the functions that the entire system is intended to

perform.
■ Load the software and configure the machines to provide the required

functionality. Providing this externally visible functionality usually involves
a good deal of internal infrastructure: for example, DNS, LDAP, DHCP,
NFS and NIS services.

■ Reconfigure the machines whenever the required service specification
changes.

1. What Is System Configuration?

1. This seems like a good choice, because it suggests the connection with “system administration.”

■ Reconfigure the machines to maintain conformance with the specification
whenever the environment changes—for example, when things break.

1.1.1 Other Definitions of Configuration
The term “configuration” has been used in various disciplines apart from system
administration. In most cases, the usage implies a somewhat different problem from
the “system configuration” described above. However, there are some similarities, and it
is worthwhile mentioning a number of examples.

Hardware configuration involves selecting and arranging hardware parts to construct
an overall system to a particular specification. This is subtly different from the system
configuration problem, since the hardware parts tend to have fixed characteristics,
whereas computer systems are “soft” and their roles can be changed by setting the
appropriate parameters. Typical early work on hardware configuration includes John
McDermott’s expert system for configuring VAX hardware [56]. More recently, con-
straint programming (CSP) has been used [43]. This field has not been very active
recently, but the AI and CSP techniques were precursors to some of the current system
configuration research on deducing configurations to meet specific constraints (see sec-
tion 6.4).

Software configuration management is also concerned with assembling complete sys-
tems (in this case, software applications) from component parts (modules). This does
include the problem of ensuring that the module interfaces are compatible, but the
focus tends to be more on change management. Although this is also important for
system configuration, this work does not appear to have a particularly strong connec-
tion.

Network configuration management is concerned with the configuration of network
devices such as switches and routers. This shares many problems with system configu-
ration, since modern devices are highly configurable and their interaction must be
managed to achieve some desired overall effect. It is possible to think of this as a sub-
problem of system configuration, with the additional complication that the devices are
often specialized and have dedicated management protocols.

Distributed application configuration involves the deployment and configuration of
processes onto distributed computer nodes to create a single distributed application.
This field is highly relevant to system configuration and shares many of the same prob-
lems. In particular, the recent CDDLM Global Grid Forum work on configuration of
Grid applications [5] includes language work which is directly appropriate (see section
5.4). However, the deployment model tends to assume the existence of a working
infrastructure onto which the applications can be “deployed” and “undeployed.” This is
not a good match for configuration of the underlying infrastructure itself; it is not use-
ful simply to “undeploy” the DNS service, for example—service configurations must
be capable of evolving continuously without interrupting the service (see [26] for a dis-
cussion of these issues).

Per-user configuration refers to the setting of application preferences for individual
users, as opposed to the system configuration, which is determined on a per-machine

6 / What Is System Configuration?

What Is System Configuration? / 7

basis, usually by a machine’s administrator. In some cases, such as the Microsoft reg-
istry, per-user configuration is handled in a very similar way to the per-system configu-
ration. Other per-user tools such as GConf [4] also have aspects which are relevant to
system configuration: XML formats for storing configuration data, for example, and
mechanisms for notifying applications of configuration changes. In general, however,
per-user configuration tends to be treated as a separate problem.

1.2 Files and Configuration Specifications
The distinction between the configuration specifications and the software packages and
data files in the definition in section 1.1 is important and worth clarifying. Consider
two extreme cases:

■ If one wanted to control every aspect of every machine in minute detail, it
would be possible to use the configuration specification to define the value
of every bit on every disk; there would be no need for any other files or
programs (but the configuration specification would be very large!).

■ If every machine were to be identical and the configurations were never to
change, the specification could be trivial: “Every machine consists of all
the files in my software repository.”

In practice, our machines are different, and they change; the configuration specifica-
tion determines those aspects that we care about—usually things which may vary
between machines or may change over time.2 Many things are invariant, however, and
there is no need to specify every detail of these; indeed, doing so will make the specifi-
cations confusing and unmanageable.

For example, the repository may contain several different versions of an application,
and the configuration specification may simply define which version is installed on
each machine. As a more complex example, it is probably not necessary (or even desir-
able) to use the configuration system to specify every parameter in the sendmail config-
uration file, although there may be a few parameters that must vary from machine to
machine. In this case, a template file could be supplied from the repository, and the
configuration specifications could be used to provide different values for substitution
into the template for the different machines.

The decision about the level of detail contained in the specification will depend on
the individual site and will vary over time; for example, it may be initially appropriate
to install the same syslog.conf 3 file on every machine, but we may later decide that we
need some variation, so we may switch to the use of a template. One day we might
decide we need so much logging flexibility that we need to generate the whole file from
data in the specification.

2. It might also be necessary to include information in the specification, rather than a fixed file, if the
information needs to be deduced from other configuration information, particularly if this information
comes from multiple sources (“aspects”). See section 1.3 for a discussion of this.

3. syslog.conf is the configuration file that specifies where to send the logging information from various
different processes.

8 / What Is System Configuration?

At the author’s site, a typical machine includes about 400,000 system files (9GB),
installed from about 1500 packages. The complete configuration specification for a
machine consists of about 7000 parameters (1MB of XML).

Although copying files onto machines and customizing these files are important
functions, they are relatively straightforward (see chapter 4). The real configuration
problem is concerned with transforming the high-level requirements into simple low-
level specifications. The high-level requirements specify the overall configuration of the
system (e.g., a complete DNS service), while the low-level specifications determine
which files to install on which machines, and how to modify them so that the
machines work together to perform the overall function given by the specification.

Chapters 2 and 3 are concerned with the configuration issues, and chapter 4 covers
the file distribution problem.

1.3 Complicating Factors
Although the basic statement of the system configuration problem is straightforward,
there are a number of complicating factors which make practical solutions very diffi-
cult. Even developing sound manual procedures is not easy, and few automated tools
address any of the following issues in a totally satisfactory way—note that sheer scale
itself is not a significant problem; in general, it is complexity, in various forms, that
causes the real difficulties. The following sections cover these issues in more detail.

1. Managing relationships—Configuring and maintaining the relationships
between machines is harder than configuring individual machines in iso-
lation.

2. Managing change—Both the configuration requirements and the physical
systems are in a constant state of change.

3. Managing diversity—Managing many similar machines is comparatively
simple; complete management of a site involves a diversity ranging from
laptops to database servers, and supporting this diversity is much harder.

4. Devolved management and “aspects”—Many different people (and auto-
matic systems) are involved in specifying the configuration requirements
of a large installation. These requirements need to be consolidated and
conflicts resolved without human intervention, wherever possible.

5. Distributed systems—A computing installation forms a distributed system,
and the configuration problem involves all the difficulties associated with
distributed programming, including communication, failure recovery, and
latency.

6. Usability—People with a wide range of experience and ability will be
expected to interact with a configuration tool, at several levels, and this
poses special difficulties of usability.

7. Autonomics—Autonomic systems (which can perform automatic fault
recovery) must be able to reconfigure without any human intervention.
This places particularly strong requirements on the configuration system.

What Is System Configuration? / 9

8. Uncertainty—In a large enough system, there will almost always be some
hardware or software that has failed at any one particular time. Due to
the latencies involved, it is not possible for a configuration tool always to
have an accurate view of the entire system state. Configuration tools must
be prepared to work in this uncertain environment.

9. Security—A good configuration system will be capable of reconfiguring
every aspect of an entire site. This makes configuration tools an attractive
target for malicious attacks, yet such tools are extremely difficult to
secure.

1.3.1 Managing Relationships
System configuration, as defined above, is concerned with the overall functionality of a
complete site; at a level above the configuration of individual machines, this involves
understanding and managing the many complex relationships between individual con-
figurable entities. For example, to provide a Web service, we need to configure more
than just the Web server itself; we need corresponding entries in the DNS, we need
appropriate configuration of the firewall, etc. (see section 1.4). Some relationships exist
between different components on the same machine, but the relationships between
components on different machines are the most challenging to manage, because of the
increased complexity and the practical difficulties of working with a distributed system.

Most existing tools do not address this problem well, if at all. They are concerned
with the configuration of individual objects; they may provide facilities for grouping
and automatically configuring many such objects, but they do not “understand” the
relationships between them. As an example, consider the configuration of an NFS serv-
er and its associated clients: a tool may allow us to configure the fstab4 on multiple
client machines with a single statement. It may also allow us to configure the exports
file5 on the server. However, it is important to ensure that the file systems the clients
expect to import are actually the same ones as those being exported by the server. Most
sites currently need to manage such higher-level relationships manually, and mismatch-
es in these are a common source of configuration errors. Automatic configuration of
these relationships is also necessary to perform any kind of autonomic fault recovery.

The client/server example described above is typical of the most common relation-
ship type: one object has configuration parameters which must correspond in some
way to configuration parameters of some other object. There are, however, other types
of relationship which are also important. Static dependencies are a common but rela-
tively straightforward issue—for example, the installation of one package may have pre-
requisite conditions on other packages. Dynamic dependencies are more difficult to
manage. Reconfiguring a related set of services in the correct order to avoid inconsis-
tent transient states, for example, is a difficult problem (see section 3.3).

For a tool to “understand” these relationships and provide support for their mainte-

4. The client configuration file specifying which remote file systems to mount.
5. The server configuration file specifying which file systems to export.

10 / What Is System Configuration?

nance, some kind of higher-level model of the system is required; in the NFS example
above, it is insufficient simply to manipulate the configuration files (fstab and exports)
as opaque entities. It is even insufficient for the tool to manipulate individual lines in
these files; it must understand the “meaning” of the configuration data they contain.
Sanjai Narain et al.’s paper [59] gives a good example of how complex these relation-
ships can become in practice, and section 3.1 looks at the different levels of modeling
necessary to represent them effectively.

1.3.2 Managing Change
The rate at which configuration requirements change will clearly vary between sites—a
research or academic environment is likely to have a model of change management
very different from that of a production trading floor. However, there are many reasons
why configuration changes may be necessary, and some are more urgent than others.
For example (in descending order of urgency):

■ Some critical hardware or software system has failed, and the system con-
figuration needs changing to bring a replacement online.

■ A critical security update needs applying.
■ New application functionality (upgraded software) is required.
■ The infrastructure is being refactored (e.g., changes to IP subnets or file

servers).
■ New or upgraded hardware is being introduced.

In conducting case studies, it is very difficult to determine the real change require-
ments of any particular site. Sites with configuration tools that cannot handle high
rates of change often deny the need for such changes. However, sites that do have the
capability usually exhibit comparatively frequent changes. Figure 1.2 shows the config-
uration change rate for a typical two-week period at the author’s site. The short bars
(and corresponding figures in parentheses) show the number of edits to systemwide
configuration files (typically 10 to 100 files per day). The large bars show the number
of resulting host reconfigurations (out of about 1200 hosts).6

Sites without the tools to manage such frequent configuration changes will often
make architectural choices to minimize the need for change. For example, mounting
applications from a remote fileserver avoids the need to update the applications on the
client hosts. Other choices, such as the use of UPnP or DHCP to specify a NTP server,
allow parts of the configuration problem to be delegated to other tools. Although this
might appear to be a good strategy, it disperses the configuration information and
makes it difficult to extract a coherent view of the entire system.

In addition to restricting architectural options, genuinely low change rates usually
imply deferring and restricting the “lower priority” changes; this clearly has some
impact on the service to the end user and on the efficiency of system management.

6. Note that these figures do not include minor software updates (probably on the order of 10 packages
per day), which occur without explicit configuration changes.

What Is System Configuration? / 11

Figure 1.2: An example of configuration change rate
However, there is often a genuine requirement for different levels of stability for differ-
ent applications: an internal system used for benchmarking and testing may require a
very stable configuration, while an externally visible server will require rapid response
to security updates. Providing this flexibility is difficult because it is necessary to ensure
that the state of each machine remains consistent, even when it implements only a sub-
set of the “latest” configuration changes.

1.3.3 Managing Diversity
Supporting very diverse configurations has many similarities with supporting a high
rate of change. Sites often restrict the diversity deliberately to ease these problems. For
example:

■ It is common to see sites with automated systems for managing desktop
workstations or cluster nodes (which are all very similar), but it is less
common to see complete (proscriptive) management of servers or laptops.

■ Sites deliberately restrict the diversity of the supported hardware, for exam-
ple, or the degree to which workstations may be personally customized.

As with the change rate, sites with a capability for supporting diversity tend to
exhibit a wide variety of configurations, while those without this capability are not
always aware of the restrictions under which they are operating. For example, fully
autonomic site management requires automated management of all types of node.
Managing servers manually also exposes the most critical services to manual configura-
tion errors and to potential difficulties with rebuilding in the event of hardware failure.

However, it is worth noting that supporting very diverse configurations makes test-
ing difficult; some core configuration change may have a different effect on each of
hundreds of different machines, if they have slightly different configurations. For this
reason, diversity may be deliberately restricted in critical environments (such as on a
trading floor).

����

���

����

��	

����

	��

����

���

���

�

�
�

�

����

���

����

���

����

���
��
�

��

����

��	

�
��

��

�
�

�

����

�	

�

���

���

���

	��

���

���

���

���

	��

����

����

�
�

�

�
�

�
�

�

�
�

�

�

�
�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

�

�
�
�

	

�
�
�

�

�
�
�

�

�
�
�

�
�
�

���� ���	����
�
�

��

12 / What Is System Configuration?

1.3.4 Devolved Management and “Aspects”
Individual administrators have traditionally held responsibility for the configuration
and management of individual servers. This requires a lot of general knowledge and the
ability to coordinate (usually informally) with people managing related machines. As
systems become larger and (particularly) more complex, this model becomes less ten-
able. Administrators need both to become more specialized and to deal with aspects of
the whole site configuration. Responsibility for the different aspects of a machine con-
figuration may devolve to a number of different specialists, often without very close
contact between them. For example, a site may have a mail specialist who is responsible
for the configuration of the mail “subsystem” on all the machines. A network/security
specialist may be responsible for the site’s firewalls, the iptables configuration on all of
the hosts, and perhaps the routing.

Many of these aspects are now so complex that it is not possible for the administra-
tors at a small site to understand and manage them all effectively. In some cases, some
aspects are best handled by an external specialist who can be shared by several sites; for
example, a university department may manage its own machines but allow the mail
configuration to be defined by the central computing organization. Some applications,
such as Grid computing, also require coordination of configuration specifications
between widely disparate sites (see [25] for a discussion of this topic). In these cases,
some aspects of the configuration (e.g., package versions) may need to be determined
externally. It is not hard to imagine much more complicated instances of aspect devolu-
tion; for example, customers may be allowed control over the configuration of some
aspects of a service provided by their ISP. Conversely, the ISP may be allowed control
over some aspects of a customer site, such as external routing. Ultimately, the configu-
ration of any one machine may depend on many different aspects defined by many dif-
ferent people from different organizations.

Even within an individual site, it may be necessary for end users to have control
over some aspects of their desktop machines (e.g., versions of certain packages or the
details of personal peripheral devices) without allowing them full control of the com-
plete configuration. It is a common mistake for users to assume that the use of a cen-
tralized configuration management tool implies that they will have no control over
their own machines; a good tool should actually provide them with a lot of flexibility
and power in determining their own configuration. The degree of control users are per-
mitted is, of course, a policy issue, and a good tool will give the administrator a lot of
flexibility in setting the desired policy.

The overall configuration of an individual machine now needs to be computed by
composing the aspects which may have been specified by many different people. It is
important to note that these aspects do not usually correspond directly to any configu-
ration files or subsystems on the target machine; one aspect may impact many different
configuration files, and one configuration file may depend on many different aspects.
For example, the inetd.conf 7 file would typically be affected by many different aspects,

7. inetd.conf is a configuration file which specifies services to be run in response to incoming requests.

What Is System Configuration? / 13

not only the aspects defining the individual services but also those defining global poli-
cies on logging and access control; these overlapping aspects, determined by people
with differing concerns, may need to be reconciled.

Clearly, it is possible for different administrators to specify aspects which imply con-
flicting configuration requirements on some individual machine. If the configuration is
not proscriptive (i.e., some aspects of the machine have been manually configured),
this presents another opportunity for conflict. In a highly devolved environment, it is
not practical to negotiate every potential conflict manually, and it is an important
function of a configuration tool to provide some support for conflict resolution in the
composition process. The Arusha project [51] has the explicit goal of enabling this type
of “federated” management. In most cases, however, conflicts are resolved by some
override mechanism which gives some aspects priority over others. In practice, this is
insufficient, and the resulting configurations may be unpredictable.

1.3.5 Distributed Systems
The mesh of services (DHCP, DNS, LDAP, etc.) which support the infrastructure of a
typical modern site form a complex distributed application. Furthermore, these services
must be extremely robust, since the failure of any one is likely to affect the entire infra-
structure, often to the point where the configuration system cannot recover without
manual intervention.

The configuration parameters for each individual machine at a particular site are
computed (manually or automatically) from some overall specification of the site
requirements. The configuration of each machine must then be deployed by transmit-
ting it to the machine and modifying the actual machine configuration to match the
specification. This deployment process entails all the problems of any distributed ap-
plication; the configuration changes must be deployed on the individual machines reli-
ably and in a suitable order, all in the face of possible failures and latency, both of the
machines themselves and of the network. An ideal tool needs to provide some atomici-
ty guarantees to ensure that the configuration is not left in an inconsistent state when
failures or configuration errors occur. Section 3.3 discusses typical deployment tech-
niques, and section 6.3 looks at some of the current research into novel approaches.

An important, but separate, question concerns the balance between centralization
and decentralization of the configuration information itself. Clearly, there needs to
be some single “central” specification of the overall purpose of a particular site at a
sufficiently high level: “providing a student lab of 100 machines running Java,” for
example. However, as we have seen in the discussion of “aspects,” the detailed compo-
nents which make up this specification naturally come from many distributed sources.
It is possible to collect this information together on a central server, which then com-
putes the configurations of the individual machines and manages their deployment.
Alternatively, the configuration information can be managed in a more peer-to-peer
style, so that there is no single point which has complete “knowledge” of all the config-
uration details. Both of these approaches have advantages; robustness and scalability

14 / What Is System Configuration?

favor a decentralized solution, but this makes it very difficult to gather, for example,
the distributed information necessary to manage relationships. LCFG (section 5.2) is a
system which tends towards a centralized approach, and SmartFrog (section 5.4) tends
towards a more distributed approach. Reference [23] describes an attempt to combine
the advantages of both approaches.

1.3.6 Usability
Mark Burgess defines system administration as “the design, running, and maintenance
of human–computer systems” [34]. This rightly emphasizes the role of the human
administrator and his or her interaction with the system—in surveying configuration
tool usage, “usability” frequently appears as the major barrier to the adoption of more
powerful tools. Misunderstandings about tool usage are also a significant source of
exactly those configuration errors which the use of the tool is intended to avoid. The
configuration problem is inherently complex, and there are a number of good reasons
why it is difficult to build tools that are clear and easy to use. However, usability
should almost certainly be a higher priority objective of tool design.

As was noted in the Introduction, tools that manage the high-level configuration of
a whole site require a very different approach from the traditional “bottom-up” process
involving system administrators hand-editing configuration files. Administrators may
have spent many years learning how to manipulate these files, and the formats are rea-
sonably standard, so documentation and peer assistance are widely available. Many
configuration tools tend to replace this familiar environment with completely different
procedures, using languages and formats which are not widely known and which differ
between tools. This presents a frustrating learning curve for most people and makes it
difficult to share knowledge or move between sites. A further complication is that
many different people, with differing skill levels and requirements, need to interact
with the tool. For example:

■ A technician replacing a faulty machine needs to specify the MAC address
of the new box.

■ A junior system administrator, managing a group of machines, needs to
add a new machine with the same configuration as the existing ones.

■ A system administrator managing a Web service wants to add some ma-
chines to act as accelerator caches. This involves changes to a number of
related machines and services, similar to those described in the example in
section 1.4.

■ A senior system administrator wants to enforce a policy that every
Ethernet subnet will include at least two DHCP servers.

■ An administrator/developer is introducing a new application or service and
needs to write code to interface the service to the configuration system.

The last example is particularly important; many benefits of a high-level configura-
tion tool can be realized only if the tool is used in a proscriptive way—i.e., there are no

What Is System Configuration? / 15

parameters of the system that are configured manually (see section 2.5 for a discussion
of this topic). This means that any new service or application which requires configura-
tion management must be interfaced to the configuration tool. There will rarely be
dedicated developers available, and the system administrators who are likely to perform
this task are not usually in a position to learn large and complicated APIs in various
languages; a very simple scripting-based interface is almost always preferable (and, nor-
mally, adequate).

Graphical user interfaces (GUIs) often provide a more usable interface to a system,
particularly for naive users or casual use. However, it should be clear from the examples
above that GUIs are not the whole answer in this case. Certainly a graphical interface
is a big advantage for the lower-level tasks; in the first two examples listed above, the
users would probably benefit from a GUI which would make these well-defined tasks
easier to learn and less error-prone. However, as the specifications of intent become
more complex, GUIs become less appropriate; it would probably be possible to specify
the third example (Web caches) via a GUI interface, but the clarity of the intent would
be completely lost in a myriad of dialog boxes and forms. Special-purpose languages for
describing configuration specifications are the key to usability once those specifications
become more complex; it is important that the high-level intent is clear and unambigu-
ous (we discuss these important language issues more fully in section 3.2).

1.3.7 Autonomics
The term “autonomic” originates from physiology, where it is used to describe involun-
tary actions which occur without conscious control. The term has been used more
widely in computing following IBM’s “vision” set forth in their Autonomic Computing
Manifesto [17]. A better explanation of this is given in [54], where Jeffrey Kephart
says:

Just like their biological namesakes, autonomic systems will maintain and
adjust their operation in the face of changing workloads, demands and
external conditions, and in the face of hardware or software failures of
innocent or malicious origin.

This is, of course, not a new concept; Mark Burgess, for example, has advocated a sim-
ilar principle in system configuration for some time [33], and cfengine (see section 5.1)
incorporates the philosophy of a self-healing system. However, as we move towards
managing configurations at a higher level, supporting autonomics introduces specific
complications.

The aim is for an entire system to exhibit autonomic behavior, and this involves all
possible levels; individual machines must independently attempt to adapt and recover
from failures, but when they do not succeed, higher-level autonomic behavior needs to
be invoked; for example, individual nodes may recover from some failures by restarting
failed processes or “fixing” corrupt configuration files. However, if entire machines fail,
replacements must be automatically reconfigured to take over their role. In an extreme

16 / What Is System Configuration?

case, an overloaded service might automatically negotiate with some other organization
to temporarily make use of remote compute power (this is the realm of Grid comput-
ing).8 Successful autonomics therefore depends on the existence of good solutions to
most of the other issues described in this section (no manual intervention is possible).
The problems of effectively decentralizing the configuration must also be solved to
support effective and rapid configuration changes on an impaired infrastructure; sec-
tion 6.3 describes some of the current work in this area.

Autonomics also has particular implications for the way in which configurations are
specified (and hence for configuration languages). Specifically, the autonomic system
must be able to change the configuration, so the administrator must not specify this in
too much low-level detail. For example, we might declare:

■ Servers X and Y export a particular filesystem (both providing read-only
copies of the same data).

■ Machine A imports the file system from server X.
■ Machine B imports the file system from server Y.

(Perhaps this is intended to balance the load between the two servers.)
However, if server X fails, machine A will also fail, since its filesystem will disappear.

An autonomic tool will be unable to reconfigure machine A to bind the other server,
because the bindings have been specified explicitly and such a reconfiguration would
violate the specification.

Existing fault-recovery systems would typically use event-condition-action (ECA)
rules to specify recovery procedures in addition to the above specification, perhaps
something like:

■ If server X fails, change the specification so that machine A imports the
filesystem from server Y.

■ If server Y fails, change the specification so that machine B imports the
filesystem from server X.

This is not a good solution; even in the trivial example above, the intent is not imme-
diately clear, and we no longer have an explicit specification of the desired behavior
(our original specification is going to be modified by the fault-tolerance rules). A much
better specification9 (from the autonomic point of view) would be:

■ Servers X and Y export a particular file system (both providing read-only
copies of the same data).

8. Of course, the configuration of the remote compute nodes must be compatible, and the site requesting
service may want to pass on some configuration requirements; this is a good example of “federated” configu-
ration, which has been explored further by the OGSAConfig project [3].

9. The preferred specification is declarative because it clearly states what we want to be true, without
specifying how it is obtained. The previous specification is not declarative, since it specifies actions or proce-
dures rather than just the required end result.

What Is System Configuration? / 17

■ Machine A imports the file system from server X or server Y.
■ Machine B imports the file system from server X or server Y.

We are now leaving the choice of server up to the configuration tool. If one server
fails, the tool will have the freedom to rebind all the clients to the working server, and
we have the desired autonomic behavior. In practice, we would want such a tool to
accept more high-level constraints as well, to ensure all the required properties. To
reestablish (and maintain) the load-balancing behavior, we might add, “All working
servers should have the same number of clients (plus or minus one).” At present, few
languages support this type of loose, constraint-based specification. There is also a
major acceptance problem, since most system administrators would require a good deal
of trust in a tool before allowing it to automatically make such drastic reconfiguration
decisions unsupervised.

1.3.8 Uncertainty
System configuration naturally takes place in an uncertain environment. In any suffi-
ciently complex system, there will always be hosts or network connections that have
either completely failed or are operating incorrectly. One important function of a con-
figuration tool is to reconfigure the overall system to counter this type of failure. The
configuration process itself must therefore be sufficiently robust to function in the face
of uncertainty; no tool (or person) can guarantee to be able to deploy a configuration
change onto a remote host. Furthermore, it is not always possible for the tool (or per-
son) to know with certainty whether or not a particular configuration change has been
successfully deployed (there may be failures in the monitoring process).

A fully autonomic configuration tool must be sufficiently robust to continue operat-
ing in the face of serious system failures, and it must be capable of reasoning about
uncertainty in the deployed configurations.

1.3.9 Security
A powerful configuration system is the perfect vector for malicious software; a single
change to some configuration specification can install software or modify the configu-
ration on every machine at a particular site. In addition, several inherent characteristics
of configuration tools (see below) make them notoriously difficult to secure. Most suf-
ficiently powerful configuration tools are unable to address the security issue adequate-
ly, and the lack of standard software and procedures is probably the only reason why
there have not been more serious exploits of this vulnerability.

The design of the UNIX operating system means that configuration of most sub-
systems requires root access. It is therefore difficult to partition the configuration tool
so that vulnerabilities in one module do not affect the entire configuration. Develop-
ments such as SELinux are capable of providing the technology to solve this partition-
ing problem, but low-level system configuration operations have large and complex

18 / What Is System Configuration?

webs of dependencies which are difficult to manage; for example, the ability to recon-
figure a primary DNS service or a DHCP service has wide-ranging security conse-
quences, which are difficult to enumerate and contain.

In addition, it can be difficult to determine the origin of any particular configura-
tion parameter. In a devolved management context, the final value of many configura-
tion parameters is determined by composing input from several people, possibly in a
distributed way, on several different machines. This implies some degree of host-based
as well as user-based trust, which makes it impossible to simply use digital signatures to
authenticate the configuration information.10

1.4 A Configuration Example
The following sections provide a concrete example of a fairly sophisticated configura-
tion tool (LCFG)11 being used to perform some typical configuration tasks—in this
case, managing an externally visible Web server at the author’s site. This involves:

1. Specifying the required configuration.
2. Physically installing the machine with that configuration.
3. Subsequently changing the configuration requirements.
4. Replacing failed hardware (possibly with hardware of a different type).
5. Decommissioning the machine and removing all traces from the network.

Note that many of these operations entail a chain of related configuration actions
which affect not only the server itself, but other hosts on the network as well; the serv-
er must be loaded with the correct software and configured to run the appropriate serv-
ices, but other hosts, such as the DNS servers, routers, and backup servers, must be
reconfigured to support this service.

The following is intended to provide a complete example of a realistic configuration
task and to show how it might be managed in a highly automated way. It illustrates a
number of the general issues raised earlier in this chapter.

1.4.1 Specification

1. We create a DNS entry for the new machine. This site has chosen not to
manage the DNS database with LCFG (although it could).

All the following steps are performed by editing a single configuration file on the
LCFG server:

2. We specify that we want a “standard server” with a particular (support-
ed) OS. Someone else will have defined what this “standard server” looks
like, including the default software, default access rights, and all other
configuration parameters; we simply specify the appropriate class.

3. We specify what hardware we are using. This determines any special
drivers.

10. The configuration system probably has control over the distribution of the public key material as
well.

11. For a more detailed discussion of LCFG, see section 5.2.

What Is System Configuration? / 19

4. We specify which part of the network we want to connect the machine
to. This determines how the routing works, which NTP servers get used,
etc.

5. We specify that we want to run Apache (this does not happen by default
at our site).

6. If the server is similar to an existing one, there may already be a suitable
template for an httpd.conf file in the repository. If not, we create one
and add it to the software repository as an RPM. There is no technical
reason why the entire configuration file could not be specified directly in
the LCFG specification file. However, we do not do this, for the reasons
discussed in section 1.2.

7. We might specify parameters to plug into the template.
8. We specify the MAC address for the machine. This information will be

aggregated into the configuration information for the DHCP server, so
that we automatically get DHCP service; we do not have to maintain
the DHCP server configuration independently.

9. We specify that we want http(s) holes in the firewall. This information
will be aggregated into the configuration for the host that manages the
firewall router.

10. We specify that we want an SSL certificate. An LCFG component will
automatically generate and sign a certificate at install time.

11. We specify any host-specific parameters—perhaps we want to specify a
non-default disk layout, for example.

12. We might specify that we want our data mirrored. This information
would be aggregated into the configuration for the mirror server.

It is worth observing how some of the important principles from the previous sec-
tion are reflected in this example:

■ Several important inter-machine relationships are established automatical-
ly; for example, the MAC address is passed to the DHCP server configura-
tion, and the firewall hole requirements are passed to the firewall—we do
not need to maintain these relationships by manually reconfiguring the
servers.

■ Any degree of diversity is easily supported by combining the desired
“aspects” and customizing them with any necessary machine-specific
parameters.

■ There is a high degree of devolved management; aspects such as the
configuration of the base operating system, local site policies, hardware
specifics, and network configuration are all delegated to others—we do
not need to be concerned with these at all. In many cases, these aspects
will affect common sets of parameters, and the tool is responsible for
resolving any apparent conflicts.

20 / What Is System Configuration?

#include <lcfg/os/redhat9.h>
#include <lcfg/opts/server.h>

#include <lcfg/hwbase/dell_optiplex_gx240.h>

#include <inf/sitedefs.h>
#include <inf/wire_c.h>

!boot.services mADD(lcfg_apache)

!profile.packages mEXTRA(my-apache-config-*-*)

dhclient.mac 00:06:5b:bf:88:7e

#include <inf/ipfilter.h>
ipfilter.export https

!x509.keys mADD(myweb)
x509.service_myweb myweb.inf.ed.ac.uk

!fstab.size_hda1 mSET(10000)
!fstab.partitions_hda mADD(hda3)
!fstab.mpt_hda3 mSET(/webdata)
!fstab.size_hda3 mSET(free)
!fstab.type_hda3 mSET(ext3)

Figure 1.3: An LCFG configuration specification

Figure 1.3 shows what this configuration profile (specification file) would look like
in practice; unfortunately, LCFG does not score very highly on usability, and the syn-
tax is notoriously obscure. However, the details are not particularly relevant here, and
very often a specification such as this would be created by copying and editing the pro-
file for some similar machine.

1.4.2 Installation
Server installation is a technician-level task. After physically connecting the machine, it
is booted using PXE (or CD), and installation is fully automatic; the corresponding
configuration specification is determined (ultimately) by relating the MAC address of
the machine to that specified in the configuration profile.

In our case, Kerberos host keys and SSL certificates will be generated automatically
at install time, and this operation will require an authorized administrator to provide
Kerberos credentials at some point during the installation. Otherwise, the install is
unattended.

1.4.3 Changing the Configuration
LCFG can support a high rate of configuration change; configuration changes only
require an edit of the profile. If this changes, then the LCFG server will propagate the
new configuration to the machine, and all the affected components will reconfigure
automatically. Similarly, changes to any of the included aspects will trigger reconfigura-
tion of all affected machines; this can be clearly seen in figure 1.2 where some file edits
led to very large numbers of host reconfigurations.

1.4.4 Replacing Failed Hardware
It is trivial to replace a failed machine with similar hardware; the profile is edited to
specify the new MAC address, and the new machine will install as an exact replica of

What Is System Configuration? / 21

the original one when it is booted. If the replacement hardware is different, it is only
necessary to change the hardware type in the profile and perhaps some details such as
the disk partitioning. This ability to substitute machines with slightly different specifi-
cations is an important advantage over simpler recovery techniques such as system
backups or filesystem cloning.

The reinstallation does not restore the user data (Web content, in this case). This
must be reinstated manually from the backups or the mirror server.

1.4.5 Decommissioning
When the server is decommissioned, the profile is simply deleted, and the related serv-
ices will automatically reconfigure; the holes will be removed from the firewall and the
MAC address from the DHCP server. In our case, we also need to delete the DNS
entry separately.

1.5 Some Key Points
■ Configuration specifications are fundamentally declarative—they specify

the configuration requirements, not the steps necessary to transform a sys-
tem into compliance with those requirements.

■ The job of a configuration tool is to make a physical system conform to
the declarative specification, and to maintain this conformance as the envi-
ronment and the specification change.

■ The “physical system” refers to an entire installation, and managing the
relationships between nodes usually presents more difficulty than manag-
ing the individual nodes.

■ Diversity and change are ubiquitous; they need to be embraced rather than
avoided.

■ Many different people will be involved in various aspects of a system con-
figuration. Tools need to take into account the different perspectives (and
levels of experience) of these users and handle potential conflicts automati-
cally whenever possible.

■ Configuration systems must operate in an unreliable environment. It is not
always possible to be certain whether a desired configuration has actually
been deployed.

■ Support for autonomics requires the ability to perform major reconfigura-
tions without manual intervention.

■ Configuration is not simply “scripting.” New paradigms, languages, and
working practices are necessary to fully address the above issues.

2. Approaches to Configuration
Management

There are currently no tools available that address the full scope of the configuration
problem, as described in the previous chapter; indeed, a full solution requires answers
to problems which are still in the realm of research (some of these are discussed more
fully in chapter 6). In practice, different sites have different priorities, and they adopt
different compromises; the case studies described in [22] and [47] show some typical
situations. However, it is possible to identify a broad hierarchy of approaches, starting
with a low-cost, largely manual approach, and moving towards highly automated solu-
tions which involve a considerable investment of effort.

Historically, the development of system configuration has tended to mirror the evo-
lution of a typical site; starting with an entirely manual process, and maturing towards
more control over the configuration, more automation, and more concern with higher-
level properties. The individual steps in this process are not entirely well defined; they
are not a strict progression, and most sites will use a mixture of techniques. However,
there are several distinct stages each of which presents additional challenges and yields
additional benefits:

1. Manual configuration—Individual machines are manually installed and
configured.

2. Cloning—Multiple similar machines are installed by cloning the image of
one hand-crafted machine. The images usually need customizing in some
way, either by hand or by additional scripting, to differentiate them.

3. Procedural scripting—A program or script is used to create or modify the
configuration (possibly following a cloning operation). This provides
automatic support for more diversity or a greater rate of change.

4. Declarative configuration—A declarative language is used to specify some
of the configuration requirements, and a special-purpose tool automati-
cally computes and applies the necessary changes to bring the machine
into compliance with those requirements.

5. Proscriptive configuration—The entire configuration of the machine is
under the control of the configuration system. Machines can be recreated
or duplicated, and all relevant aspects of their configuration can be
changed via the configuration system.

6. Modeling relationships—The configuration tool manages relationships
between machines automatically, preventing errors due to mismatches
between servers and their clients.

Approaches to Configuration Management / 23

7. Deducing configurations—Configurations are specified as looser “con-
straints,” rather than absolute values, allowing the system to reconfigure
automatically in the face of failures and allowing multiple people to col-
laborate on the configuration without conflict.

8. Autonomics and feedback—The configuration system makes use of live
feedback information to adapt to failures and maintain service levels in
response to changing demands.

The majority of large sites are probably using some form of scripted configuration
management. Manual configuration is usually suitable for one-off or very small situa-
tions, and cloning can be appropriate for certain applications such as clusters (see chap-
ter 4). Fully proscriptive configuration is entirely practical, but many sites will be
unprepared for the necessary commitment and discipline. The higher levels (see 7 and
8, above) are becoming increasingly important, since they are a prerequisite for fully
autonomic services, but at present they tend to exist only in limited production appli-
cations or in research systems.

“Copy this disk image onto these machines”

⇓

“Put these files on these machines”

⇓

“Put this line in sendmail.cf on this machine”

⇓

“Configure machine X as a mail server”

⇓

“Configure machine X as a mail server for this cluster”
(and the clients will automatically be configured to match)

⇓

“Configure any suitable machine as a mail server for this cluster”
(and the clients will automatically be configured to match)

⇓

Configure enough mail servers to guarantee
an SMTP response time of X seconds

Figure 2.1: Levels of configuration specification

In some sense, this range of approaches moves from dealing with low-level concerns,
such as disk images and files, toward high-level ones, such as services and service levels
(see figure 2.1). This is analogous to the development of programming languages,
where the emphasis has moved away from bits and registers, through variables and sub-
routines, towards the manipulation of higher-level entities and relationships. In both

24 / Approaches to Configuration Management

cases, the higher-level approaches require a firm low-level base, with well-understood
theoretical properties, to provide a reliable foundation. Of course, the ultimate require-
ments of every site are expressed in very high-level terms (e.g., “I need a reliable multi-
tiered Web service”), and this must always be translated into some low-level physical
requirements; the issue is how much of this process can be performed automatically,
and how much must be performed manually.

Alva Couch [39, 38] has postulated that sites tend to move up this hierarchy of
control as they increase in size and complexity, often facing a difficult transition
between phases. The case study from Argonne National Laboratories [45] is a good
illustration of the social issues typically involved in adopting a new level of configura-
tion technology.

2.1 Manual Configuration
Manual configuration usually involves an administrator hand-editing configuration
files (or perhaps using a GUI interface) on each individual machine. In most cases
where a professional system administrator is involved, the administration problem will
be sufficiently complex and/or critical that this is impractical, and some degree of con-
figuration automation will be more appropriate. However, in a few cases (e.g., non-crit-
ical one-off systems) completely manual configuration may be a reasonable solution. It
is also a pragmatic approach when the cost of implementing and maintaining an auto-
mated solution is disproportionately high: for example, in very small or very diverse
environments. It is common to see sites with large numbers of clients under automatic
management and a smaller number of manually configured servers. The motivation for
this is clear; the servers are more complex, and manual configuration is a viable option
when their number is small.

It is useful to summarize some of the major problems with this manual approach,
both to assist in evaluating this option and to act as a baseline against which to evalu-
ate more automated approaches:

■ It is difficult to ensure that configurations on supposedly identical
machines are in fact identical (and that these configurations actually repre-
sent the intended configuration).

■ Configuration changes are difficult to support because the effort is approx-
imately linear in the number of machines. This has implications—for
example, for security (security patches need timely applications).

■ It is unlikely that the configuration can be restored easily if the hardware is
upgraded or requires replacement; the configuration information is not
separated from the rest of the operating system and cannot be reapplied
quickly and reliably to a newly installed machine.1

■ None of the higher-level configuration automation facilities (e.g., valida-
tion of relationships between machines, autonomics) are available.

1. If the machine type has changed, for example, then simply installing an image backup is probably not
sufficient.

Approaches to Configuration Management / 25

The combined effect of these factors generally leads to sites which are less reliable,
more difficult to change, and less secure. Of course, the ongoing maintenance of the
site also requires more manual effort.

2.2 Cloning
One of the earliest approaches to managing large numbers of machines was the concept
of cloning. This usually involves hand-configuring some golden-copy machine and then
replicating the entire file system onto a number of other machines, by either a file-level
or a disk-level copying process. This does address the difficulty of creating a number of
machines with a guaranteed identical configuration, and it does help to some extent in
dealing with change; an entire cluster can be reconfigured by making a change to the
golden copy and re-cloning every machine. (Of course, this is a very disruptive process,
which might be acceptable as a scheduled activity in a compute cluster but would
probably not be acceptable for desktop machines.)

Managing diversity of configurations is the most obvious drawback of the cloning
approach.2 When there are differences in hardware or differences in the required func-
tionality of machines, pure cloning is not sufficient. Pure cloning nearly always evolves
into a hybrid approach in which the cloning operation is followed by some scripting
process to differentiate (“customize”) the cloned machines (see, e.g., [53, 64]), and
cloning alone does not address any of the higher-level issues.

Despite these limitations, there are a number of situations where cloning can still be
useful; for example, it is an efficient way of installing the bulk of the system files onto a
new machine, before the configuration system takes control. Cloning tools can also be
pressed into service as a substitute for true configuration tools if the requirements are
very simple; this is discussed further in chapter 4.

2.3 Procedural Scripting
The term scripting can be used to describe any situation where the configuration of a
machine is modified by some program or script. The use of scripting usually arises out
of a need to address the following problems:

■ The configuration of the (possibly cloned) machines needs to vary, perhaps
because of differences in the machines themselves (hardware), or because
of differences in the required functionality.

■ The configuration of existing machines needs to be modified to track
changing requirements or to correct discrepancies that have appeared in
the actual configuration.

In the first case, the scripting is being used to address the problem of diversity.
Typically, a machine is created by cloning some generic template machine, and a script
is then applied to modify the configuration depending on the specific characteristics
and requirements of the individual machine. Alternatively, the script might operate on

2.Interestingly, this is one area that is not normally a problem when managing configurations manually.

26 / Approaches to Configuration Management

a bare machine to build the entire system by selecting and loading specific software
packages and generating configuration files.

In the second case, the scripting is being used to solve the problem of change (with-
out the need to rebuild the entire machine). Note that there are two possible reasons
for a mismatch between the actual and the designated configuration—either what we
want the configuration to be has changed, or the actual configuration has changed
from what we wanted it to be (presumably due to some human or system error).

Ad hoc scripting is a very attractive and popular approach to configuration manage-
ment; additional scripts can be created incrementally to address pressing configuration
problems, and it is easy to migrate slowly towards a higher degree of automation.
Existing systems do not need to be rebuilt, and there is no jump in technology which
might involve significant staff retraining and familiarization. However, as with any type
of programming, an undisciplined approach to scripting can quickly lead to serious
problems, and the following pitfalls are common:

■ Incremental development often leads to poor structuring, and mature sites
frequently have very large quantities of scripts, all dealing with essentially
low-level concepts. The overall purpose of the configuration can become
obscured, and it is difficult to have any confidence that the scripts reliably
implement the intended high-level configuration requirements (or indeed,
any idea of what the intended configuration actually is!).

■ Maintenance is likely to be difficult and error-prone.
■ Scripts that have the power to perform arbitrary actions on multiple

machines, usually as root, can cause spectacular system failures (either
through small errors or malicious intent).

■ Collaborative development of configurations (devolved management) is
difficult because of the potential conflicts between scripts created by differ-
ent people.

■ Arbitrary scripts in a rich language are a poor basis on which to layer high-
level tools. For example, it would be difficult for a higher-level tool to take
a collection of arbitrary scripts and determine which machines were
intended to be mail servers.

Scripts are usually written in some familiar language such as shell or Perl; crucially,
these tend to be procedural rather than declarative languages, and research work in
configuration theory has highlighted some common practical problems that are a con-
sequence of this approach. It is possible to write scripts in most languages that avoid
these problems, but this requires considerable care and understanding. Tools designed
specifically for configuration tend to use a declarative approach (see section 2.4) and
should avoid these issues by design.

Approaches to Configuration Management / 27

2.3.1 Idempotence
Actions are called idempotent if executing them multiple times will have the same effect
as executing them once. If scripts do not satisfy this property, then it is necessary to
keep very careful track of which scripts have been applied to which machines; in prac-
tice, this is extremely difficult.3

Add the following line to /etc/services:
amidxtape 10083/tcp

Add the following line to /etc/services if it does not already exist:
amidxtape 10083/tcp

Figure 2.2: Non-idempotent vs. idempotent actions

Notice that it requires great care to code such operations correctly using a general-pur-
pose language; in this example (figure 2.2), even the (naive) idempotent version fails if
we attempt to change the port number for the service (the file will end up with two
lines for the same service).

2.3.2 Closures
If two scripts affect the same object, it is likely that different results will be obtained by
running the scripts in different orders. This almost certainly represents a configuration
error, but it is likely to go unnoticed in practice, except for the apparently random
effect that it is likely to have on the configuration of the target machine. To avoid this,
tools should aggregate the requirements from the different aspects of the specification
into disjoint closures, resolving (or reporting) conflicts before generating a single action
to modify the target object.

Add the following line to /etc/services if it does not already exist:
amidxtape 1234/tcp

Add the following line to /etc/services if it does not already exist:
amidxtape 4567/tcp

Figure 2.3: Conflicting actions

A good configuration tool would resolve the conflict implied by the example in fig-
ure 2.3 before attempting to implement the configuration (note the different values for
the port numbers). Ideally, priority would be given to one of the specifications, based

3. It is also impossible simply to run the script again to fix a machine whose state is unknown or some-
how corrupt.

28 / Approaches to Configuration Management

on some logical criteria (not just the order of appearance of the specifications in some
file). If this is not possible, the conflict should be reported for human resolution (per-
haps the two different requirements were specified by different people).

2.4 Declarative Configuration
Declarative specifications describe the desired end result of a configuration rather than
the process required to achieve that result (which should be computed by the tool).

The file /etc/services must contain one copy (only) of the following line:
amidxtape 1234/tcp

Add the following line to /etc/services if it does not already exist:
amidxtape 1234/tcp

Figure 2.4: Non-declarative vs. declarative specifications

The distinction between the two examples in figure 2.4 is subtle but important. The
non-declarative version describes an action. The declarative version specifies the desired
final state, and the tool is free to choose the appropriate action (which may mean
doing nothing). Special-purpose configuration tools tend to use declarative specifica-
tions, and this has the following advantages:

■ Because they do not suffer from the idempotence problem discussed
above, tools can run continuously to monitor the actual configuration and
converge it with the designated configuration whenever it deviates. This is
very different from the application of a one-off configuration change
action, which instantiates a configuration at one time, but does not guar-
antee that it will not diverge at some time in the future.

■ Tools can reason about the configuration statements and detect conflicts
before attempting to apply the configuration.

■ The declarative statements are more amenable to automated reasoning at a
higher level: for example, matching configurations of servers to the config-
urations of their clients, or reassigning whole services when servers fail.

Although declarative specifications should be much easier to formulate than their
procedural implementations, system administrators are used to dealing with proce-
dures, and sometimes have difficulty in expressing the desired end result without con-
sidering the method by which it is achieved. This difficulty is compounded by current
declarative configuration languages, which are not so clear and well-developed as the
familiar procedural programming languages.

Approaches to Configuration Management / 29

2.5 Proscriptive Configuration
If a configuration system controls the entire configuration for a set of machines, with
no manual intervention, then it is known as proscriptive. The pure cloning process, for
example, is proscriptive (but, of course, is unsuitable for handling the diversity of a
realistic site). Considerable effort is required to implement a fully proscriptive configu-
ration for a diverse installation, and many sites do not have the necessary tools, or do
not consider it worthwhile; in practice, most sites probably have proscriptive configura-
tion for their clients, but not for their servers.

Non-proscriptive configuration processes are subject to configuration divergence if
various aspects are moved in and out of the scope of the configuration tool (see [42,
40]); over time, the configuration of machines that are intended to be identical will
tend to diverge in unpredictable ways. Of course, those parts of the configuration that
are outside the control of the tool are also subject to all the problems of manual config-
uration noted above.

Proscriptive configuration tools are a prerequisite for machines to be completely
reconfigured autonomically, perhaps in response to failures or changing external load.

2.6 Higher-Level Configuration
Once a site is able to perform declarative, proscriptive configuration automatically, a
different set of problems appear; at this level, the physical fabric of the site can be com-
pletely instantiated and maintained from a “soft” configuration description. The focus
of the problem then moves towards creating and manipulating that description. This is
analogous to having created the hardware for a new processor (or perhaps the assem-
bler) and starting to concentrate on programming the device to solve useful problems.

For example, the correct functioning of a site and the capability of performing true
autonomics depend heavily on the ability to manage the relationships between
machines; if a replacement server is automatically substituted for a failed one, then all
the clients must be reconfigured to use the new server. Devolved management and
autonomics also require a configuration system that has enough flexibility to compute
an explicit instance of a configuration from a changing set of available resources and a
changing set of high-level requirements, as well as taking into account external factors
such as load. This requires configurations to be specified in a less explicit way; specify-
ing all of the low-level details is no longer appropriate, since the system must have the
freedom to choose these so as to satisfy the high-level requirements given the available
resources. Constraint-based specifications allow the system to choose from all of the
acceptable solutions.

Ultimately, it is the behavior of a system that is important, rather than the details of
its implementation. Specifying this required behavior and having suitable implementa-

30 / Approaches to Configuration Management

tion details computed automatically requires feedback on the actual performance and
the ability to incorporate this into an overall reasoning system.

All of these higher-level functions involve complex manipulations of the configu-
ration description, and they rely on solid lower-level tools with suitable interfaces
to ensure the effective deployment and monitoring of the actual configuration.
Production systems cannot yet support these higher-level functions in any general
way, although chapter 6 describes some of the current research in this area.

2.7 Some Key Points
■ The full configuration problem involves translating high-level requirement

specifications into low-level configuration parameters (as well as actually
deploying the resulting low-level descriptions).

■ There are a range of approaches that automate increasingly higher-level
stages of this problem; individual sites need to choose an approach suitable
to their requirements and available resources.

■ Necessity and economy of scale usually mean that large sites employ higher
levels of configuration automation than small sites. This leads to corre-
sponding benefits in terms of reliability, consistency, and security.

■ Moving from one approach to a higher-level approach usually entails a sig-
nificant change in mindset, and can often be a difficult transition.

■ It is possible to instantiate and maintain physical configurations from
declarative descriptions. Beyond this level, the configuration problem
becomes one of manipulating these high-level descriptions to meet the
necessary requirements.

3. Configuration Tools

Existing configuration tools approach the problem from many different angles, show-
ing their different ancestry and emphasizing different aspects. However, it is possible to
compare the various approaches in a number of important dimensions:

■ The model which a configuration tool uses to represent the system.
■ The language provided for users to describe this model.
■ The way in which the specified configuration is physically deployed.
■ The extent to which monitoring and feedback are used to ensure that the

physical system matches the required specification.

Unfortunately, a lack of standards means that few tools are capable of useful interoper-
ation, and it is usually impractical to mix tools in a way that takes advantage of their
different strengths. Some kind of standard interface to the low-level functions would be
particularly useful in allowing development of high-level tools which could build on
existing implementations of the low-level operations (see [27] for a discussion of this).

3.1 Configuration Models
The model supported by a configuration tool determines the types of objects that can
be described and the relationships and operations that can be represented. There is an
important distinction between this and the language used to describe the model (e.g.,
multiple languages may be used to describe the same model).

Very simple approaches to the configuration problem (e.g., basic scripting) involve
no special model at all beyond that of the underlying operating system; the tool deals
with fundamental entities, familiar objects such as files and processes. The advantages
and disadvantages are similar to those of programming at the assembly-code level,
where the model is the hardware architecture of the physical machine. For example:

■ In theory, it is sufficiently flexible to write code which meets any require-
ments.

■ There are no new languages to learn or compilers to buy.
■ The code is expensive to produce and maintain.
■ Correctness and clarity are harder to achieve.
■ Interoperability and code-sharing are very hard, because they rely on agree-

ments about interfaces and standards.

At the opposite end of the spectrum, the DMTF (Distributed Management Task

32 / Configuration Tools

Force [2]) defines a Common Information Model (CIM) and communication/control
protocols (WEBM) [15]. This is intended to be a standard model that will allow con-
figuration management tools to interoperate at a high level:

It is not sufficient to manage personal computers, subnets, the network
core and individual systems in isolation. These components all interoperate
to provide connectivity and services. Information passes between these
boundaries. Management must pass across these boundaries as well. [46]

Models such as this, which provide comprehensive, detailed standards, are probably
necessary to address the highest-level goals of interoperability between diverse systems
in an autonomic way. Although CIM is being used as a practical system management
tool (see, e.g., [61]), development of CIM schema and the associated code is not with-
in the scope of the average system administrator; they require considerable background
information and understanding, and are largely intended for developers. Very few sites
are likely to have CIM schema and interfaces for all the subsystems they need to man-
age, and this probably makes CIM-based systems unsuitable for most current sites,
unless they have considerable development resources.

LCFG (see section 5.2) and SmartFrog (see section 5.4) are examples of approaches
with an intermediate model; both define a simple framework of “components” with a
mechanism for composing declarative descriptions of the configuration and passing
them to the components for instantiation. Standard components (which sites may
choose to use, or not) are available, but custom components can be created comparative-
ly easily using shell, Perl, or Java. The frameworks support important generic features
such as aggregation, which are difficult to implement in a more ad-hoc way, and the
configuration information is managed as simple declarative structures suitable for high-
level processing. This level of modeling appears to be a good practical compromise.

3.2 Configuration Languages
To some extent, a language for specifying configurations depends on the underlying
model; for example, declaring file permissions appears to be quite different from
declaring a constraint about the relationship between two services. However, ignoring
the details of syntax, it is possible to make some useful generalizations.

As noted above, most special-purpose configuration languages have independently
converged on a declarative approach—that is, the language makes statements about the
designated configuration and the tool computes the necessary actions to achieve (and
maintain) that configuration. General-purpose, declarative programming languages do
exist, and these have been studied in a configuration context (e.g., Prolog in [41]).
However, configuration languages tend to have other requirements (see below) which
are not well met by these languages, so most configuration tools define their own lan-
guage.

Prototyping appears to be ubiquitous as a method for structuring configurations and
addressing the problems of collaboration and devolved management. Support for this is

Configuration Tools / 33

almost universal in all configuration languages; for example, one person will create a
generic template for some particular aspect, and this will be inherited 1 and specialized
(perhaps several times) for some specific purpose, by overriding some of the default val-
ues. Figure 3.1 shows an example in the SmartFrog configuration language (see section
5.4).

Disk = {
filesystem = “NTFS”;
size = 20;
}

// A bigger disk is a disk augmented with a size 40
BiggerDisk = Disk {
size = 40;
}

// An HP is a bigger disk is augmented
// with an attribute “make”
HPDisk = BiggerDisk {
make = “HP”; }

Figure 3.1: Inheritance in SmartFrog

Current research is looking at more general ways of composing values from different
aspects (see section 6.2) to try to address some of the deficiencies of this rather naive
process.

As with programming languages, support for structuring the configuration into
meaningful subunits which can be inherited and reused is also important. Unfortu-
nately, this is not a well-developed aspect of many existing configuration languages,
which tend to have evolved in a bottom-up manner; however, SmartFrog, for example,
provides a hierarchical component model which supports good reuse at multiple levels,
while LCFG provides structuring at a single-component level.

Addressing the higher-level aspects of the configuration problem places extra
demands on a configuration language: for example, the ability to represent relation-
ships and constraints in a meaningful way. Such facilities are not yet a major part of
any production tool.

Finally, as was noted in chapter 1, usability is extremely important; configurations
are determined by many people with different skill levels, and configuration specifica-
tion errors are a common source of serious failures. Most current tools perform very
badly in this respect, and finding good ways of clearly specifying relationships and

1. Note that this is technically “instance-inheritance,” as opposed to the “type-inheritance” familiar from
object-oriented programming languages.

34 / Configuration Tools

requirements is an active research area. It is worth noting that GUI interfaces are
almost certainly not appropriate for anything beyond very simple specifications;2 the
Active Directory interface (see figure 5.3), for example, almost certainly obscures the
relationships and intent behind related settings, and does not attempt to address high-
er-level issues such as constraints.

3.3 Deployment Issues
After a model for the desired configuration has been developed and has been expressed
in an appropriate language, a configuration tool is needed to deploy the specification
onto a physical system.

Most operating systems are completely ill-suited to automated configuration man-
agement; changes to the configuration on an individual machine may involve changes
to several different files (in as many different formats) and often the restarting or noti-
fication of assorted processes as well. The details of this process are largely uninterest-
ing, despite the fact that it represents the bulk of the code in most configuration tools;
when the configuration specification changes, some code is required to translate the
new specification into (possibly) new configuration files and perform any additional
actions, such as restarting daemons. The real difficulty in deployment comes in manag-
ing the relationships between machines and in maintaining those relationships in the
face of changing requirements and uncertain hardware.

3.3.1 Centralized vs. Distributed Models
The most straightforward approach to configuration deployment is for a central server
to have full knowledge of the requirements and the available resources (this is the
model used by LCFG). The server uses these to compute the low-level configurations
of each of the machines in its domain, and it deploys the resulting configurations
directly.3 If the specification changes (or a hardware failure occurs), the server has all
the necessary knowledge to recompute and deploy a new configuration. This is a very
attractive approach, since the server (theoretically) has sufficient knowledge to validate
configuration relationships in advance and to control the overall configuration of the
site. However, as with a central compute server, it presents a number of problems:

■ The computation load on the server means that recomputing configura-
tions for large numbers of machines can take some time, and this is a com-
mon occurrence for systems that support good modeling of relationships.
For example, when an NFS server is reconfigured, it may be necessary to
reconfigure all of its clients. The graph in figure 1.2 shows the result of
this effect on the number of recompilations performed by the configura-
tion server. The resulting reduction in response time may make the system
unsuitable for autonomic reconfigurations.

2. Of course, GUIs are very useful for presenting less-skilled staff with limited choices.
3. This implies that the server controls the configuration; the actual transport may be either a “push” or a

“pull” operation.

Configuration Tools / 35

■ The source of the configuration information is not always centralized, and
collating the information into a central location may not always be appro-
priate. The extreme example is the case of a laptop, which may be discon-
nected when a configuration change is required. In a federated manage-
ment situation, it is also likely that different aspects of the configuration
would be “owned” by different organizations.

■ A centralized system can be replicated and hardened against failure, but
there is still a significant risk of machines being unable to reconfigure due
to network failure.

Section 6.3 looks at some of the research into alternatives approaches; peer-to-peer
techniques are an obvious possibility, and these work well in specific applications, but
providing a more general framework appears to be more difficult.

3.3.2 Change Sequencing
The declarative approach to configuration specification is very attractive; the specifica-
tion defines the desired state, and the tool has the job of deploying that configuration.
However, in practice, the process of deployment may take some time, and the configu-
ration of the entire system will move through many intermediate states during the
transition. Ideally, we would like all of the possible intermediate states to be “valid” in
some sense; we certainly would not want the system to be left indefinitely in an invalid
state if some operation failed, and normally we would not want transient invalid states
to last “too long.”

As a simple example, consider the updating of a package on an individual machine
—at some time during the process, there will be a period when the package is inconsis-
tent because some of the installed files belong to the old version of the package and
some belong to the new version. However, a good package manager will minimize this
time period and ensure a truly transactional installation if at all possible (i.e., either the
new package is installed correctly and completely or the old package is left unmodi-
fied). A more complicated example occurs when we wish to change a file server:

1. Deploy the new file server.
2. Change all the clients to point at the new server.
3. Withdraw the old server.

At each stage, we must wait for positive acknowledgment that the previous stage has
completed.

This is clearly a procedural process, and if we simply change a declarative specifica-
tion, there is no guarantee that a configuration tool will perform the transition in this
orderly fashion. The ideal solution is to augment the declarative description with con-
ditions that describe the valid and invalid states. In theory, a configuration tool should
then be able to plan a sequence of changes between two configurations that moves only
through the valid states (if possible). This again is an interesting area of research (see
section 6.3).

36 / Configuration Tools

A related problem occurs when some feature of a configuration change must be
deferred for some reason; for example, LCFG will not change the configuration of the
display manager while there is a user logged in to the console (because this would
involve restarting the display server, which would be rather disruptive!). Similarly, a
compute cluster node would probably want to defer a change to the maths library dur-
ing a very long-running compute job. Allowing certain parts of an overall configuration
change to occur while deferring others—e.g., installing a new version of some software
with new configuration files without restarting the running daemon—has the potential
for leaving the machine in an unexpected state which has not been validated and may
cause problems. Alternatively, deferring all configuration changes when any one change
is blocked has the potential for blocking all configuration changes for an unacceptable
length of time.

Deployment order of related services is an important issue for distributed applica-
tions such as Grid services. SmartFrog provides primitive components that allow other
components to be deployed in sequence or in parallel and to construct complex
deployment strategies, with reliable rollback in the event of failure.

3.4 Monitoring and Feedback
All of the previous discussions have been concerned with computing and deploying a
designated configuration, which represents one of the many possible ways of configur-
ing the overall system to meet the ultimate requirements. At any one time, there will
be a discrepancy between this and the actual configuration of the system. In most
cases, this discrepancy will be a normal consequence of the latency in the deployment
process; in addition to the natural latency of the tool, changes may be explicitly
deferred for the reasons described in the previous section, or machines may simply be
unavailable at the time when a change is initially deployed. In a sufficiently large sys-
tem, the actual configuration will never correspond exactly to the designated configura-
tion, since the requirements are likely to change again before the entire system has
implemented the previous change—the very appropriate term asymptotic configuration
is used to describe this situation. Any monitoring system is also subject to latency and
system failures, so it is theoretically impossible to be absolutely certain of the actual
state of the system at any one time.

A simple monitoring tool will provide feedback to the system administrator on the
apparent state of the configuration deployment; for example, figure 3.2 shows part of
an LCFG status display indicating which machines have implemented their current
designated configuration.4 In a simple situation, this discrepancy can be monitored
manually, and the system administrator will make a decision about which discrepancies
are due to acceptable latency and which represent a true failure. Of course, in complex
situations, some automated help is necessary to determine the root cause of the prob-

4. The machine Kilmany has apparently not acknowledged configuration changes for several weeks (it is
probably turned off).

Configuration Tools / 37

Figure 3.2: The LCFG status display. (N.B. Dates are UK format.)

lem; for example, the failure of a particular router may generate apparent configuration
failures in a large number of machines. This situation is not specific to configuration
tools, and the problems of monitoring and “root cause analysis” are normally outside
the scope of system configuration.

However, an autonomic system must be capable of automatically reconfiguring a
whole group of machines to compensate for failed nodes and even partial network or
service failures. This implies some automatic analysis of the monitoring information to
determine the cause of failures, followed by a logical deduction and deployment of some
alternative solution. Although many subsystems exhibit this type of behavior in a limit-
ed domain, the general problem is very hard, and there are no comprehensive solutions.
Reference [23] describes an experimental approach to a more general solution.

3.5 Some Key Points
■ Standards defining sophisticated models are necessary for interoperability

between sites and tools, but these are complex to work with and not yet
widely implemented.

■ Tools that impose no model are inadequate for higher-level configuration
and make it difficult to share and collaborate on configuration manage-
ment.

■ There is great variety in configuration languages, but declarative languages
with support for prototyping appear to be particularly appropriate.

■ Peer-to-peer technologies for configuration management have the potential
for offering some important benefits, but they also present (as yet)
unsolved difficulties, and a centralized approach to configuration manage-
ment is probably more practical at present.

■ Sequencing of related changes between components is not well handled by
most configuration tools, although work on this is being driven by the
requirements of distributed Grid applications.

■ Monitoring of configuration states in a form suitable for human consump-
tion is common. Processing this information to provide feedback for auto-
nomic reconfiguration is much harder.

File distribution and installation are only a small part of the full configuration prob-
lem; computing which files to install on each node and managing the semantics of the
small proportion of “configuration files” (perhaps 0.005%) are the real difficulties. For
true configuration tools, package management and distribution are a necessary
(although small) component. However, these topics are comparatively well understood
and there are many tools available, so in the absence of good configuration systems,
such tools are often extended and pressed into service as configuration solutions.

This section looks at the possible approaches to file distribution and package man-
agement and their relationship to the configuration problem.

4.1 File Distribution Tools and Configuration
Once a configuration tool (or a manual process) has determined which files should be
installed on a particular node, a file distribution tool is required to copy the necessary
files from the repository onto the client during the installation phase. If the require-
ments then change, the tool may be required to install additional files or to remove
existing ones. The comparative simplicity of this process means that it is relatively well
understood, and there are a wide range of tools available, many of which provide effec-
tive solutions. A relatively small number of files (the “configuration files”) will be mod-
ified (or generated) by the configuration tool (or manually) to complete the configura-
tion process.

If the diversity and change rate for a group of machines can be minimized, the file
selection and modification processes become very simple, and the core of the configu-
ration problem can be reduced to file distribution, perhaps augmented by some simple
scripting to customize the resulting configurations for each node. Since file distribution
tools are simple and widely available (unlike more complete configuration tools), this
can be an attractive approach to managing configurations for small sites or clusters; the
cluster nodes or clients are kept as nearly identical as possible and are managed by file
distribution and customization scripts. A smaller number of servers will typically have
their configurations managed individually (possibly by hand), to avoid the complica-
tion of diversity. This is a very pragmatic solution for small sites, and some variation of
this is probably the most common approach to configuration management today.

Many “configuration tools” are essentially file distribution tools that have been aug-
mented with additional scripting features in an attempt to provide solutions based on
the above approach. In many cases, these can be good, pragmatic solutions for small

4. File Distribution and Package
Management

File Distribution and Package Management / 39

sites; however, they address only the very lowest levels of the configuration problem,
and they are often subject to all the dangers of arbitrary scripting described in section
2.3.

4.2 Package Management
The files to be installed on a particular system can typically be specified in three differ-
ent ways:

■ As a complete disk image (or “opaque” file list).
■ As a list of individual files.
■ As a list of packages, each of which is represented by a list of files and some

additional meta-information.

4.2.1 Image-Based Systems
Dealing with complete disk images is often adequate where there is a high degree of
uniformity in a system (e.g., in a large compute cluster). A golden copy can be created
by hand, and this can be installed efficiently on many different hosts—by multicasting,
for example—before making minor host-specific customizations. This is a very coarse
granularity, however, and the configuration tool has no “knowledge” of the details of
the configuration; this makes such tools unsuitable for very diverse environments, and
“higher-level” issues, such as management of inter-machine relationships, are not nor-
mally supported (and are likely to be difficult to integrate). SystemImager [48] is a typ-
ical (and effective) tool, based on image copying.

4.2.2 File-Based Systems
At the opposite extreme, some tools deal with simple lists of files to be installed. Usual-
ly, the file lists can be constructed per-machine, and this provides a simple way of sup-
porting very diverse environments—simple inclusion directives in the file lists are usu-
ally sufficient to structure the file sets for different classes of machines. The flexibility
of this approach and the scope for diversity usually make it preferable to an imaging
approach, except where the machines being configured are guaranteed to remain very
homogeneous and the efficiency gains of imaging are desirable (and proven). Radmind
[12] is a typical tool based on file copying.

4.2.3 Package-Based Systems
The file sets for most modern operating systems are managed as collections of pack-
ages. Each package consists of a set of files, together with a variety of meta-informa-
tion. Depending on the packaging system, this may support:

■ Clean addition/removal—Each file installed by the package is recorded, and
packages can be removed easily, leaving no significant trace of their previ-
ous installation.

■ Dependency management—Each package can specify dependencies so that
it is impossible to install an application without its prerequisites, or to

40 / File Distribution and Package Management

install an application which conflicts with an existing one.
■ Verification/repair—The checksums of the package files can be recorded, so

that unwanted modifications can be detected and corrupt files reinstated.
■ Remote transport—Packages can be automatically retrieved from a remote

repository.
■ Script execution—Scripts can be executed after package installation or

removal, to perform some customization, although this can be a problem
as well as a benefit (see section 4.3, below).

The first two properties above are particularly important—without these, reliable con-
trol over the installed packages is impossible.

Most operating systems have a preferred package management tool which is normal-
ly used for the distribution of the OS itself: RPM [28] (RedHat Linux), Pkg [13]
(Solaris), MSI [57] (Windows), etc. Usually, most software for a particular operating
system is available in the vendor’s preferred package format.1 Despite some attempts to
develop a standard (Posix P1003.7.2), there is currently no ubiquitous cross-platform
solution, and tools that attempt to address this (e.g., the Grid Packaging Tool [6])
often introduce additional complexity by requiring multiple package management
technologies on each machine.

In general, the core software for a machine is best managed using the native package
format for the particular platform; most software will already be packaged appropriate-
ly, and there will be a range of useful tools available. The granularity of a package is
also more natural than a file or a disk image when specifying the required software. In
a few cases, there may be a good justification for using imaging, or file copying, but
these reasons should be considered carefully (Chierichi et al.’s paper [37] shows one
example of a comparative performance analysis). Early solutions based on identifying
package files by directory (e.g., Depot [55]) or ownership (e.g., lfu [19]) tend to have
been largely superseded by modern package management tools.

4.3 Package Configuration
There are two levels at which configuration information is required by a package man-
agement tool:

1. To select the required packages (or files) for each machine.
2. Having installed a package (or file set), to modify some of the installed

files (or registry entries, in the case of Microsoft Windows) to reflect the
necessary configuration.

Normally, the package selection occurs outside of the package management tool,
and some other tool can easily be used to generate and manage the necessary package
lists for each node. However, the configuration of the package itself (on the client) is

1. Unfortunately, OS X (Apple) is an exception, and third-party software often uses a variety of different
technologies.

File Distribution and Package Management / 41

often handled by the package management tool; technically, this is a separate function
which should be handled by a configuration tool, but the package management tools
are normally intended to operate alone, and they often include some post-install con-
figuration ability. This introduces a number of difficulties:

■ Configuration of the package only occurs at install time; there is no oppor-
tunity to reconfigure the package later to track changing requirements
(without reinstalling).

■ The configuration process might be designed for manual interaction and
may be difficult to interface with a tool that computes the necessary con-
figurations automatically.

■ The package management tool may typically want to execute arbitrary
code (supplied with the package) as a privileged user, and this may be not
be acceptable (e.g., RPM pre/post scripts).

■ Configuration scripts included with packages are extremely difficult to
write in a sufficiently generic way; for example, a package may need to add
an extra user to the system, and this would involve reconfiguration of
some other subsystem, which is well outside the scope of the package.
Simply adding an arbitrary user (and user ID) to the local password file is
unlikely to be appropriate in most cases.

In an ideal situation, the package configuration (as well as the selection) would be
under the control of some configuration tool, so that configuration files belonging to
the package would be updated appropriately when the configuration was changed, not
just when the package was installed. Dependencies in configuration information—such
as the requirement for a package to have a specific user ID—would be resolved at a
sufficiently high level that the user ID would be created automatically in the appropri-
ate way, even if this implied changes to the configuration of some other node (e.g., an
NIS server).2 Since the information used by different package management tools is
very similar (a list of packages and versions), the configuration tool should also be able
to present a consistent interface for package management across multiple platforms.3

One further problem with most current package management systems is the use of
the package name as a unique identifier for the package contents. RPM, for example,
usually encodes a (hopefully unique) package name, the target architecture, and ver-
sioning information into the filename of the package. Most tools then assume that
packages with the same filename have the same contents. However, the contents of
packages can vary in other ways; for example, the code may have been linked to differ-
ent libraries (static or dynamic), and it is usually difficult for a configuration tool to
distinguish between these.

2. This is an example of the relationship management problem discussed in the previous chapter.
3. LCFG components provide a consistent interface to both RedHat Linux and Solaris package manage-

ment.

42 / File Distribution and Package Management

4.4 Some Other Considerations
It is certainly important for a package management system to present a declarative
interface to the higher-level configuration system; that is, the configuration system
should specify the packages required on the machine, and the tool should translate this
into the necessary addition and removal operations. As with other configuration
parameters, this declarative approach allows the tool to continuously monitor the actu-
al state of the system and add or remove packages as necessary, to match the require-
ments. If this is not the case, it is very easy for the system to get out of step with the
specification, caused either by users manually adding or removing packages or by the
machine missing some update operation. Support for declarative package lists often
requires an additional layer—for example, updaterpms (see the LCFG guide [18]) is
one tool that provides this functionality on top of the basic RPM mechanism. Tools
such as rsync perform the equivalent function at the file level.

The transport protocols supported by the tool may also be an important issue.
Some tools have no transport of their own, some require an underlying remote file sys-
tem, and others support a range of protocols, including custom protocols and stan-
dards such as ssh and http. Multicast protocols can be very useful when installing com-
plete clusters or laboratories, and tools such as SMS [10] provide bandwidth throttling
to allow background package distribution that does not impair the foreground network
performance.

4.5 Some Key Points
■ The bulk of the files on any system can be installed by package manage-

ment software. This provides a number of benefits over disk-level or file-
level management.

■ Configuration involves much more than file distribution and package
management; the configuration of the system determines which packages
are to be installed and the contents of the configuration files for each pack-
age.

■ In simple cases, if the amount of diversity between machines can be mini-
mized, configuration can be handled using a package management tool,
together with some ad hoc process for customizing the configuration files.
This is a common technique in the absence of more sophisticated configu-
ration tools.

■ This simple solution becomes unworkable as the complexity increases, and
it does not address higher-level configuration issues.

■ More sophisticated configuration tools which can address these issues need
to rely on a solid package management and distribution framework.

5. Some Sample Tools

As was noted in the previous chapter, package management and distribution are com-
paratively well understood; although there are a wide range of tools available, it is rela-
tively easy to outline the different approaches and place the tools in broad categories.
In contrast, there are currently no tools that address the full scope of the configuration
problem as stated in chapter 1; those that do attempt to solve a significant part of the
problem emphasize different issues, use different terminology, and are very difficult to
compare.

This chapter presents a selection of tools from this category; this is not intended to
be comprehensive, and there will certainly be important and useful tools that are not
even mentioned. The aim is to compare a number of tools that emphasize different
approaches and, by using common terminology and criteria, to provide a context in
which to evaluate other tools. Following a brief paragraph of description and back-
ground, each tool is presented under the following headings:

1. How Does It Work?—A brief explanation of how the tool works.
2. Some Observations—Some important observations (mostly limitations)

about the tool.
3. In Conclusion—Some conclusions about the role of the tool, especially

considering in which situations it is likely to be appropriate.

5.1 Cfengine
Cfengine is probably one of the most widely used, and earliest, tools to address the sys-
tem configuration problem, with a USENIX paper on it dating from 1995 [32]; it is
now a mature product, freely available on most UNIX systems. Cfengine includes a
rich set of features which are well-documented and discussed elsewhere—the cfengine
Web site [31] includes pointers to a range of material. This section presents a very brief
outline of cfengine’s design and discusses the relationship with the various aspects of
the configuration problem outlined in chapter 1. Readers unfamiliar with cfengine will
probably want to read some of the cfengine references first: Æleen Frisch’s article [49],
for example, provides a good overview of the system.

5.1.1 How Does It Work?
The cfengine Web page summarizes the tool as follows:

Cfengine, or the configuration engine, is an autonomous agent and a mid-

44 / Some Sample Tools

dle to high level policy language and agent for building expert systems to
administrate and configure large computer networks.

Cfengine is designed to be a part of a computer immune system. It is ideal
for cluster management and has been adopted for use all over the world in
small and huge organizations alike. [31]

The current version of cfengine is capable of a number of additional functions, such
as anomaly detection, and a practical implementation requires some attention to vari-
ous details, such as secure transport. However, the core of the cfengine functionality
can be summarized as follows:

■ In a typical installation, each host runs a client program (cfagent), which
interprets a file of declarations (called a “script”) describing desirable sys-
tem states. The scripts may be downloaded automatically from a central
server running cfservd, but they may be (and often are) distributed in
other ways.

■ Cfengine selects matching declarations for each host by comparing various
characteristics of the host against “guard phrases” on the declarations. This
allows a common script to be shared by many hosts, and the active subset
of declarations is determined by various conditions such as the architec-
ture, the system type, or the result of user-defined probes.

■ Cfengine examines the active declarations and compares them with the
actual state of the machine. If there is a mismatch, cfengine takes an
appropriate action to modify the machine state and bring it into line with
the declaration.

■ Cfengine may be run on demand, or automatically at regular intervals.

There is a range of built-in, low-level primitives for the actions, including opera-
tions such as file editing, process management, and (arbitrary) script execution. These
are normally idempotent, and cfengine reorders them before execution; hence the
scripts are usually considered to be declarative, although the action order is often sig-
nificant in practice.

The concept of convergence is central to the cfengine philosophy; the scripts embody
some idea of the designated configuration, and when cfengine detects differences be-
tween this and the actual configuration, some action will be taken to move the actual
configuration towards the desired one.1 It is recognized that this process can never be
absolutely certain, and configurations may take several passes to stabilize; it is even pos-
sible for configurations to oscillate or otherwise fail to converge (although this is usual-
ly considered an error). This process is described as self-healing or computer immunolo-
gy [33] and is particularly useful in a non-proscriptive environment, where accidental
configuration errors, introduced by manual intervention, can be automatically
“healed.”

1. No action is taken unless it is required.

Some Sample Tools / 45

5.1.2 Some Observations
Cfengine has no preconditions for use; it can be applied to an existing system in any
state to enforce some specific part of the configuration in a declarative way. This makes
it a natural successor to the use of shell scripts for ad hoc configuration.

Although cfengine is described as a “high-level” tool, this term is relative, and it is
certainly not aimed at the higher-level issues identified in figure 2.1. Scripts tend to
manipulate files, permissions, and processes rather than services and node relationships.
The lack of constructs for creating parameterized modules has also prevented the effec-
tive development of higher-level shareable libraries, and most sites appear to define
their own procedures from scratch, usually operating in different ways. In theory, it
should be possible to create compilers that translate higher-level requirements into
cfengine scripts, and this is the kind of approach taken by tools such as SysNav [14,
62]. However, cfengine itself has no natural way of expressing relationships between
objects, even if those objects exist on the same node.

Cfengine operates essentially at a “host” level, and although it is possible to specify
configurations for whole sets of hosts, it is not easy to specify the relationships between
those hosts. For example, automatically relating the configuration of some server to the
corresponding configurations of the clients is not at all straightforward (see the discus-
sion of relationships in section 1.3). Although cfengine performs self-healing for an
individual node, it is difficult to achieve the same autonomic effect at an inter-node
service level—for example, to automatically reconfigure a replacement Web server
(with all the associated relationships) when the Web server dies. In a cluster situation
or a teaching laboratory, cfengine handles the scale (and even the diversity) reasonably
well; where the relationships are more complex (such as in a Grid service), cfengine is
less obviously useful.

Cfengine is non-proscriptive—at least, it is almost always used in a non-proscriptive
way. Most cfengine installations do not control every aspect of every machine’s configu-
ration—other tools and manual procedures are involved. This is particularly true for
those hosts with more complex configurations (“servers”). This contributes significantly
to cfengine’s popularity; it is possible to take an incremental approach to both the
learning and the implementation of the tool. This ease of adoption is clearly an advan-
tage in terms of usability; however, non-proscriptive solutions can lead to serious diver-
gence of configurations (see [42, 40]), and most sites will eventually want complete
control over their configurations (certainly, this is essential for any autonomic behavior
at a whole-site level). This is possible to achieve with cfengine, but it requires consider-
able care and discipline.

Cfengine does not provide any explicit support for devolved aspects. The ability to
separate concerns will depend very much on the structuring of the cfengine scripts
themselves, and it is unlikely that many cfengine-based sites have large numbers of
people collaborating on different aspects of the same set of machines.

46 / Some Sample Tools

5.1.3 In Conclusion . . .
Despite the above limitations, cfengine is accessible, reliable, and well known; this
makes it a very popular choice for many sites that need something better than com-
pletely ad hoc manual configuration management. However, it is not well suited to
sites that require a high level of automation or autonomics; cfengine is likely to be dif-
ficult to use in these situations.

5.2 LCFG
LCFG was initially developed around the same time as cfengine, with the first publica-
tion in 1994 [20]. Like cfengine, LCFG has acted as a testbed for research into system
configuration as well as providing a production service (in this case, for over 1,000 very
diverse machines in a university computer science department). For reasons that will
become apparent, LCFG is more difficult to adopt than cfengine and less portable; it
has therefore tended to be used only by sites which can make a heavy initial investment
and can benefit from LCFG’s particular strengths. For example, LCFG was initially
used by the European DataGrid, which later developed its own tool (quattor [11])
based on the same architecture. This section concentrates on LCFG’s approach to the
general problems outlined in chapter 1. References to LCFG papers and to the code
itself are available from the Web site [8]. The Atlanta paper [24] provides a reasonable
overview of the current version.

5.2.1 How Does It Work?
The LCFG core consists of two main parts (see figure 5.1):

■ An LCFG client (rdxprof) runs on each managed host. This receives a
notification from the server whenever a new configuration is available, and
it fetches a single XML document, describing the complete configuration
of the host, using a simple HTTP(S) protocol. The profile specifies which
components should be active on the host and includes a simple set of
declarative resources (parameters) for each active component. Components
are notified by the client whenever their resources change, so that they
have an opportunity to reconfigure as appropriate. This may involve regen-
erating configuration files based on the new parameters, stopping or start-
ing daemons, or performing any other necessary operation.

■ The LCFG server (mkxprof) maintains a complete description of the con-
figuration of the entire site, but not by simply listing the parameters for
each node; the configuration consists of various aspects (e.g., Web server,
Dell GX150), which are usually maintained by different people. The com-
piler composes the appropriate aspects for each host (resolving conflicts
where possible) to generate an XML profile that explicitly defines the value
of each resource. The LCFG server monitors the source files; when a
change occurs, all the affected profiles are regenerated and the

Some Sample Tools / 47

Figure 5.1: The LCFG architecture

appropriate clients are notified. Figure 1.3 shows a sample profile. The #include state-
ments reference common aspects, and the other statements set (or override) individual
resource values.

The LCFG core also supports bare-metal host installation (obtaining parameters
such as disk partitioning information from the profile), package list management, and
simple monitoring (the client sends regular status information to the server). Other-
wise, the functionality of LCFG is largely determined by the selected set of client com-
ponents, and these may be part of the core distribution, unofficially contributed, or
locally created. The standard component interface, together with templates and other
support for component creation,2 makes sharing of components relatively straightfor-
ward.

LCFG has a different philosophy and somewhat different motivations from
cfengine. For example:

■ LCFG is intended to provide proscriptive configuration management;3 it
is designed for complete automated control of all machine types, from lap-
tops to servers.

■ LCFG is intended to provide a simple, declarative interface to the config-
uration of a whole site that is suitable for use by other tools. This allows
configurations to be easily generated, manipulated, and validated by high-
er-level tools, while being instantiated and maintained by LCFG. It also
allows relationships between hosts (related client-server parameters) to be
managed automatically.

■ LCFG expects configurations to be managed as the composition of re-
quirements from many independent people. These people will have differ-
ent skill levels and may contribute in correspondingly different ways; a
technician may create an LCFG profile, a system administrator may create
a particular aspect, and a programmer may create a new component to
manage a completely new subsystem.

�����	

��
�����

���

��� ������

	����� �����

��������

���� ������

��
�������

������ �����
���� ���������� ���
���

���
������

 �����������

��!" �	"#$"#

2. These would be in Perl or shell script.
3. It can, however, be used for non-proscriptive management.

48 / Some Sample Tools

■ The use of explicit components, responsible for disjoint areas of the system
configuration, creates natural closures (see section 2.3.2) which prevent
changes to one aspect of the configuration having an adverse effect on
some unrelated aspect.

These properties support the implementation of a sitewide autonomic capability; a
high-level tool can interface with LCFG and automatically manage significant reconfig-
uration of inter-node services (to deal with hardware failures or load-balancing). See
[23] for an example of this.

5.2.2 Some Observations
In general, the learning curve for LCFG is considered to be rather high. Components
are available for managing many standard subsystems (e.g., automounter, Sendmail,
Kerberos), but configuring these requires a knowledge of their supported resources,
which may often be somewhat different from the contents of the familiar configuration
files (it is often at a higher level). If the existing components do not provide some
required functionality, it becomes necessary to write a new component (or modify an
existing one), which involves a knowledge of the component interface as well as basic
scripting skills. The profile syntax for LCFG has also evolved over several years and is
widely recognized as awkward and confusing.

The central compilation of the profiles is necessary to enable inter-machine relation-
ships to be computed (the so-called spanning maps). This can be a bottleneck for large
sites, however, taking several seconds per machine (30 to 40 minutes for a change
affecting 1000 machines). As well as being inconvenient, this is a significant barrier to
those autonomic applications that require a rapid reconfiguration response.

The LCFG components usually encapsulate some knowledge of the subsystem they
are intended to configure.4 For example, the Sendmail component understands a relay
resource which ultimately defines the corresponding parameter in the sendmail.cf
file—by abstracting this resource (rather than just specifying the parameters for send-
mail.cf), we have the possibility of using different components (and even different mail
agents) with the same configuration specifications. However, this does mean that com-
ponents are rarely portable between different operating systems without some work.

Small changes to some aspect on an LCFG server can initiate massive reconfigura-
tion of an entire network. By default, hosts will reconfigure as soon as the server has
regenerated their profile and dispatched the notification. For most reconfigurations of
related servers, the reconfiguration order is important; for example, we would like to
ensure that a new NFS server is available before transferring clients to it (and before
removing the old server).

5.2.3 In Conclusion . . .
LCFG is designed to perform high-level, proscriptive configuration management,

4. This is not true of all components—the file component, for example, can be used to generate arbitrary
files and is highly portable.

Some Sample Tools / 49

including the management of relationships between machines. This provides a good
basis for tightly controlled configurations and high-level autonomics in a diverse envi-
ronment. However, the learning curve and the level of commitment are high, and the
portability is low.

5.3 Microsoft Tools
Microsoft “Active Directory” [1] was introduced with Windows 2000 and includes
a number of technologies, such as Kerberos (authentication) and LDAP (directory ser-
vices) which have been integrated into a standard framework for system configuration
on the Microsoft Windows platform. SMS (System Management Server) is a separate
product capable of running independently of Active Directory and containing some
additional functionality (monitoring and “inventory control”), as well as an alternative
approach to software delivery. Active Directory is now the de facto standard for Micro-
soft sites, being simple for small sites to use and sufficiently extensible for customized
development in larger organizations. This section looks (only) at the configuration-
related aspects of these products.

5.3.1 How Does It Work?
The configuration parameters for different aspects of a machine are stored in Group
Policy Objects (GPOs) in the Active Directory (LDAP) and in shared file space. These
are attached to various nodes in the LDAP hierarchy corresponding to either the
machine or the user (see figure 5.2). The per-user and per-machine settings are normal-
ly disjoint,5 but this provides a uniform way of handling both. An individual machine
downloads all the GPOs on the appropriate branches, applying them so that values in
more specific policies override corresponding values in more general ones.

The resulting values for the configuration parameters are made available to modules
on the client, known as “client-side extensions,” which can take any arbitrary action to
implement the necessary configuration settings (similar to LCFG components). The
client-side extensions are called on reboot or at regular (but infrequent) intervals; they
are not, however, called automatically when the profile changes.6 Each client-side
extension also includes a server-side module to provide GUI-based editing of its own
parameters in the GPOs. Custom extensions are difficult to create and are probably
beyond the scope of the average system administrator. The closed source also prevents
existing extensions from simply being extended or used as templates for new ones.
Microsoft itself provides comparatively few extensions, preferring to rely on simpler
approaches to customization, such as an extension that provides “administrative tem-
plates” for setting arbitrary registry values.

5. The per-user settings are only applied on login to the user at the console (not remote connections),
and it is up to individual applications to resolve any conflicts with the per-machine settings.

6. In fact, this would be difficult, since the server does not necessarily know which clients are affected by
a change.

50 / Some Sample Tools

Figure 5.2: The Active Directory hierarchy

The standard package format for Microsoft package management is MSI; this
includes the ability to execute arbitrary scripts at pre/post install time but does not
explicitly support dependency information. Packages specified in the Active Directory
for a particular machine are automatically downloaded and installed, usually at the
next boot or login, although they can be installed on-demand the first time an attempt
is made to run them. SMS provides an alternative software installation mechanism
which has some different features, such as the ability to throttle the network load, and
support for different transport mechanisms and package formats.

Microsoft’s standard bare-metal installation tool has some limitations, and third-
party tools are often used, even if the machine is subsequently managed using Active
Directory.

5.3.2 Some Observations
The configuration classes of machines rarely fall into a strict hierarchy; they are deter-
mined by a range of intersecting aspects, including the hardware type, the attached
peripherals, and the physical location. This makes the predominance of a single
(LDAP) hierarchy in the configuration classes inappropriate. By using access control
lists to block access to certain GPOs from machines in certain groups, it is possible to
perform more complex aspect composition, but this is an unnatural and confusing
process.

The Microsoft configuration tools appear to address the obvious need for configur-
ing large numbers of client machines. In practice, they do not appear to be widely used
for (proscriptive) server management, and it is not clear that this is currently practical.
The tools do not address the higher-level issues of configuring relationships between
nodes at a service level, and while the GUI interface (see figure 5.3) is adequate for set-
ting individual configuration parameters, a different approach is probably necessary to
support higher-level specifications.

In practice, there still appear to be a number of difficulties with package manage-
ment; vendors have not yet completely embraced the MSI technology, and it is com-

Some Sample Tools / 51

Figure 5.3: An Active Directory group policy

mon to find packages that have their own install technologies and/or some sort of
problem during installation. Creation of MSI packages is not encouraged by the diffi-
cult learning curve and the need for expensive tools.

5.3.3 In Conclusion . . .
Active Directory provides the de facto standard for configuration management of
Microsoft Windows, and good reasons would be needed to justify diverging from this.
However, Active Directory is clearly targeted at desktop management and does not
attempt to address the more complex configuration requirements of whole-site configu-
ration or autonomics.

5.4 CDDLM, CDL, and SmartFrog
All of the technologies discussed so far have evolved via a bottom-up approach to the
configuration problem; they provide immediately useful, practical solutions to many
low-level problems, but they do not provide a clear route to addressing many of the
higher-level concerns. The technologies discussed in this section are interesting because
they have been explicitly developed in response to the needs of highly distributed,
autonomic Grid services. This provides a useful example of how some higher-level
issues—for example, the problems of change sequencing (see section 3.3) or the con-
cern with managing inter-organizational resources—might be approached. See refer-
ence [26] for a discussion of this work with regard to more traditional system adminis-
tration tools.

The CDDLM working group [5] of the Global Grid Forum (GGF) is concerned
with developing standards for “configuration, deployment and lifecycle management of
Grid services.” This is motivated by the need to “deploy, configure and manage large
distributed Grid applications”; however, this shares many problems with system config-

52 / Some Sample Tools

uration, and the results are extremely relevant. In particular, CDL (Configuration
Description Language) [63] is a viable candidate for a standard way of representing sys-
tem configuration information. SmartFrog (Smart Framework for Object Groups) [50]
is an object-oriented framework for managing distributed components which can be
configured using a declarative configuration language. The SmartFrog language7 pro-
vided much of the inspiration for CDL, and the scope and semantics are very similar
(but SmartFrog has a more human-friendly syntax).

5.4.1 How Does It Work?
As its name suggests, the CDDLM working group covers three areas:

■ A language for describing declarative attributes of configurable components.
■ Mechanisms for deploying components on remote machines.
■ Management of the “lifecycle” (completion, failure, etc.) of these compo-

nents.

The language aspects of CDDLM (CDL) are particularly interesting because the
features are comparable to other system configuration languages. Although the seman-
tics of CDL are similar to those of SmartFrog, CDL is XML-based; this makes parsing
and interoperability very easy but authoring and readability difficult (presumably, tools
will be developed to alleviate this). The CDL model consists of a hierarchy of compo-
nents, each of which has a set of configurable attributes. The model does not cover the
semantics of the components themselves, or even define the allowed components or
properties—as already noted, this level of definition appears to be a good practical
compromise. A familiar template mechanism provides value-inheritance. For example:

<WebServer>
<hostname>www.example.com</hostname>
<port>80</port>
. . .
</WebServer>

<AppServer cdl:extends=“WebServer>
<hostname>apps.example.com</hostname>

</AppServer>

Of particular interest is the reference mechanism, which allows lazy references whose
values are substituted dynamically at the time the component is deployed. This pro-
vides a more dynamic way of establishing relationships between distributed compo-
nents than the LCFG spanning maps, but the implementation involves complex run-
time communication.

The deployment aspects of CDDLM are also interesting because they address the
problem of sequencing the deployment of a complex distributed service in a reliable
and orderly manner. However . . .

7. SmartFrog was developed by Hewlett-Packard but is now open sourced.

Some Sample Tools / 53

5.4.2 Some Observations
The CDDLM “lifecycle” model works well for many application-level services, the
classic example being a multi-tiered Web service that includes front-end Web servers
and back-end database servers, all of which must be deployed in the right order and
connected by relating parameters. However, this approach is less obviously suited to
many lower-level infrastructure services: minor changes to the configuration of a
Kerberos service, for example, would involve undeploying the service and redeploying a
new one; an approach based on adaptive reconfiguration of running services would
seem more suitable.

The language aspects of CDDLM are more relevant to system configuration and
could well point the way towards some commonality in languages for configuration
specification. It is unfortunate that the standard mixes both basic property specifica-
tions (which could well be standardized) and higher-level operations such as templating
and references (on which there is less agreement).

5.4.3 In Conclusion . . .
These technologies form a comparatively abstract framework, and they are unlikely to
make a practical basis for management of site infrastructure in the near future.
However, they do illustrate a higher-level approach to system configuration which is
likely to become more prevalent, and system administrators may encounter them in
practice as a way of managing specific (Web) services at their sites.

5.5 Other Tools
There are numerous other tools that could be classified in some way as “configuration
tools,” and many of these have some interesting features or niche applications.
Unfortunately, there are also many home-grown tools that have little value outside the
specific application to their originating organization. Most projects considering config-
uration issues will want to perform their own surveys of existing tools, although pub-
lished surveys from other projects are a useful starting point; see, for example, refer-
ences [29, 21], as well as recent LISA conference proceedings.

BCFG [44] is one example of a more recent tool. This has a tighter coupling
between the server and the clients.

5.6 Some Key Points
■ Most practical configuration tools have evolved over time from the bottom

up and are not well suited to higher levels of automation.
■ Tools and standards with the potential to address these issues are not

mature enough or easy enough to use, for large-scale practical deployment.
■ Traditionally, tools have largely been developed in isolation, with no com-

mon standards or interoperability.

System configuration theory is currently at a stage comparable to the early days of pro-
gramming in assembly code; most sites are managed using their own ad-hoc techniques
and a mixture of tools. Most of these tools and the procedures for their use have been
developed, often as pragmatic solutions by the administrators themselves, without a
good understanding of the fundamentals. Computer programming has developed into
a discipline capable of supporting reliable, large-scale applications by basic research into
fundamentals such as language semantics and ways of automatically generating low-
level programs from specifications that are closer to the requirements (high-level lan-
guages). Addressing the challenges of higher-level configuration will require comparable
developments in configuration theory. The effort and the skills required for this
research are not within the scope of the average system administrator, but most theo-
reticians, vendors, and grant-awarding bodies have not yet been fully convinced that
this is a coherent area worthy of their attention. There are also comparatively few peo-
ple who have both a good understanding of the practical problems and the time and
skills to develop the theories necessary for their solution. However, despite the lack of a
clear theoretical core, some interesting work is starting to appear from various direc-
tions, and this is beginning to have an impact on practical understanding and on the
development of new tools. This chapter presents an overview of some of these direc-
tions.

6.1 Fundamental Theory and Models
Modern programming techniques are based on sound theoretical models. There is gen-
eral agreement about the meaning of terms such as “program” and the theoretical
framework in which to discuss different languages and their semantics (see section 6.2).
There is no such agreement about the meaning of “configuration” or “configuration
language” in relation to system configuration. It is not appropriate to discuss these
issues in detail here, but the following example should give a flavor of the possibilities
and show how theory affects some of the practical issues discussed in earlier chapters.

One approach to formalizing the notion of a configuration tool is to consider the
state of the system disk to represent the configuration of a machine (in practice, there
are other issues, such as the physical connections between the machines, but this is a
reasonable simplification). It is then possible to ask, “When should two configurations

6. Theory, Research, and Current Issues

Theory, Research, and Current Issues / 55

be considered equivalent?” Clearly, a large proportion of the possible disk states will be
completely random and useless, and it will often be helpful to consider these as equiva-
lent (broken). In other cases, there will be a large number of states which are effectively
indistinguishable (in behavioral terms), and it may be useful to consider them as equiv-
alent (perhaps they vary only in the arrangement of blocks in the disk free list, for
example). This leads to the notion of configurations being equivalence classes (in a
mathematical sense) on the sets of possible disk states. The granularity of these equiva-
lence classes is one way of characterizing a configuration tool; for example, this notion
formalizes the difference between the extreme approaches to configuration specification
described in section 1.2.

Given the above definition of a configuration state, it is then possible to define a
configuration tool as a function1 that transforms a machine into a state that satisfies
certain desired properties, i.e., the configuration specification. This simple definition
immediately leads to a whole range of issues. For example:

■ If the equivalence classes are well defined, the same configuration transfor-
mation should always take machines that start in the same state to the
same final state. This is not always the case for current practical tools,
which expose hidden preconditions.

■ There will be some states from which the tool cannot recover (e.g., if it
deletes itself from the disk).

■ If there is a choice of final states that satisfy the requirements, how should
the actual state be chosen?

It is surprising how quickly a small amount of such theory can shed light on the root
causes of real practical problems.

6.2 Languages and Semantics
There is common agreement that special configuration languages are necessary and that
these are very different from programming languages. Such languages need to provide
support for those features that have been shown to be important, such as the idempo-
tence and closures discussed in section 2.3. Other issues include the ability to specify
configuration aspects in a more natural way, avoiding conflicts, and the ability to speci-
fy loose constraints to support autonomics (see, e.g., [52]). These issues are less well
understood.

The semantics of a language defines the meaning of language statements, while the
syntax defines the arrangement of symbols used to write the statements. For example,

1. The configuration transform is technically often not a mathematical function, since it usually is
defined only on part of the domain and often has multiple possible outcomes.

56 / Theory, Research, and Current Issues

the following statements have a different syntax but (assuming a suitable language defi-
nition) identical semantics:

(plus 2 23)
0x2 + 0x17;
2 23 +
ld #2 ; add #23

As long as there is a clear formal model of the underlying system, it is possible to
define the semantics of a language in a formal way, as a mapping between the symbolic
statements of the language and the effect that each statement has on the model. Most
modern programming languages have a written definition of their semantics (in a more
or less formal notation), and this has the following advantages:

■ It is theoretically possible to prove that programs have the desired effect.
More practically, it is usually easier to convince oneself that an operation will
have the intended outcome if the semantics are clear and well understood.

■ Uncertainties and unexpected behavior of the language are highlighted.
■ Multiple implementations of the language are more likely to behave in the

same way.

In contrast, most current configuration languages have very informal semantics;
there are statements whose meaning is not obvious, and the ultimate definition of the
language semantics is the code of the (usually one) implementation. The CDL (see sec-
tion 5.4) is an example of an attempt to define a clear semantics for a configuration
language, and to encourage multiple implementations.

6.3 Distributed Deployment and Reasoning
In an ideal world, it would be possible to gather all of the requirements for the config-
uration of a complete site into a central location, use this to compute the detailed con-
figurations of all the individual nodes, and then deploy the computed configurations
onto the nodes. In practice, this approach is becoming less tenable:

■ Both nodes and the connections between them are unreliable.
■ There is a significant latency in both computation and deployment.
■ Parts of the network (and aspects of individual nodes) may be owned and

managed by different people or organizations.
■ The requirements originate from disparate sources. Both human and auto-

matic input, from various parts of the network, may generate constraints.

Harnessing more decentralized (peer-to-peer) techniques to solve these problems is
not straightforward. Not only does the deployment of the configurations have to be
distributed, but so, too, do the reasoning and computation of the configuration details
themselves. For example, a group of machines might use some distributed technique to
agree among themselves on which machine should act as a print server (see [30]). This
information then needs to be communicated to the potential clients, perhaps by modi-

Theory, Research, and Current Issues / 57

fying the DNS or perhaps by using some protocol such as Zeroconf [16]. If this print
server subsequently fails, the group will need to agree on a replacement in a decentral-
ized way, and all affected services will need to be reconfigured appropriately. Perform-
ing general reasoning in this way in a highly distributed and unreliable environment is
very hard, but this is necessary for more complex, interdependent services, such as a
multi-tiered Web service. Although the decisions about the details of the configuration
may be computed in a distributed way, they still need to conform to some centrally
agreed high-level policy; see, for example, reference [36].

“Promise Theory” [35] is a new approach to coordinating behavior in a distributed
environment, which is expected to form the basis for the next version of cfengine. This
is a graphical technique for combining simple “promises” or assertions of constrained
behavior; a promise is given by an autonomous agent who cannot be forced to do any-
thing it does not wish. Agents may, however, promise to comply with other agents’
wishes and, in this way, build up familiar structures such as dependencies.

These problems are clearly in the realm of research, and most practical configura-
tion systems currently perform any necessary coordination in a centralized way (apart
from the use of protocols such as Zeroconf to handle very specific applications).

6.4 Configuration Synthesis
Supporting high-level configuration specifications requires systems that can perform
automated reasoning [59]. For example, translating the statement “I need two DHCP
servers on each subnet” into the corresponding low-level parameters is not a straight-
forward compilation process. There may be several possible solutions, and the choice of
an appropriate one is likely to depend on other constraints, either provided explicitly
or implied by the environment. Sanjai Narain provides a good practical example in ref-
erence [58], which describes the automatic configuration of a fault-tolerant VPN. This
is a very realistic example, and it is sufficiently complex that the automated solution
highlights problems that are not immediately obvious.

Although it is possible to use general-purpose logic languages such as Prolog for
computing specific configurations from general requirements, there are special-purpose
constraint solvers that are more appropriate (such as the one used by Narain). Even
with these tools, however, performance is an issue; it is easy to specify constraints in an
impossibly inefficient way. Slight changes to the constraints can also lead to a complete
recomputation of the configuration, possibly resulting in wide-ranging changes to the
entire site. Of course, performing constraint solution in a distributed environment (as
was described in the previous section) is even more complex (although, in theory, it
does offer the potential for distributing the computation).

For practical use, automated reasoning systems must provide clear explanations of
their actions and have the ability to perform “what-if ” analyses. Using such systems in
real time requires a good deal of confidence—administrators need to be confident that
the corporate Web server will not suddenly be migrated onto their laptop without
explanation!

7. Conclusion

“System configuration” is the process of integrating hardware and software into a single
“system” that performs a specified overall function and continues to do so even as the
system components and the requirements change.

Modern computing sites involve highly complex interactions, and configuration
errors are a major and growing source of failures. System configuration tools are cur-
rently in a primitive state of development and are incapable of addressing the complete
configuration problem. Most sites therefore employ a mixture of automatic and manu-
al processes.

The current immature state of system configuration has led to the development of
many different tools with different approaches, fostering ad-hoc, bottom-up solutions.
Good system configuration practice involves an awareness of limitations and a careful
selection of manual and automatic procedures appropriate both to the resources avail-
able and to the operational priorities of the site.

7.1 The Future
The trend toward more complex computing “fabrics” is producing increasingly com-
plex interactions, both within and between sites. The correctness and agility that this
demands from the configuration system require a level of automation beyond the cur-
rently available solutions.

For the practicing system administrator, this is likely to entail a significant shift,
moving from low-level concepts (e.g., configuration files) to high-level concepts (e.g.,
services). This may involve radically different ways of specifying system requirements,
replacing certainties with probabilities and absolute values with loose constraints.

A new generation of tools will be necessary to support these developments. Progress
in this area is currently rather slow, since it involves adopting new theoretical approach-
es grounded in the solid, practical problem-solving experiences of large and complex
sites. This forms the small but growing topic of system configuration research.

Since system configuration is a relatively new subject, there is little established, com-
mon vocabulary. Apparently generic terms are used by different authors with specific
(and often different) meanings. This glossary provides the definition of some common
terms as they are used in this booklet. The definitions of technical terms are intended
to be informal.

Actual configuration: The current state of the configuration, as deployed on a running
system. Because of latency issues, this often differs from the designated configu-
ration.

Aggregation: The collecting together of configuration parameters from many different
nodes to form part of the configuration of some other node. For example, the
collation of port numbers from the externally visible servers to form part of the
configuration of the firewall.

Aspect: A view of part of an entire configuration which is the concern of one person or
function: e.g., “Web service,” “security,” or “student machines.” Frequently, indi-
vidual configuration parameters will be affected by multiple aspects, and it is the
job of the configuration tool to compose them to create a final value.

Asymptotic configuration: In a large and evolving system, the configuration require-
ments will almost always change faster than they can be deployed on all of the
nodes. The term “asymptotic configuration” is used to describe the resulting
(continuous but changing) discrepancy between the designated configuration
and the actual configuration.

Autonomic: Autonomic computer systems are ones that “maintain and adjust their
operation in the face of changing workloads, demands, and external conditions,
and in the face of hardware or software failures of innocent or malicious origin.”
See [54].

CDDLM: A working group of the Global Grid Forum (GGF) concerned with devel-
oping standards for “configuration, deployment, and lifecycle management of
Grid services.”

CDL: A Configuration Description Language developed for the CDDLM.

CIM: Common Information Model. Detailed schema for the configuration informa-
tion required by various different systems. Developed by the DMTF.

Glossary

60 / Glossary

Cloning: Making an identical copy of a system, usually by copying a physical disk
image.

Closure: A self-contained set of configuration parameters which do not interact with
the parameters from any other closures.

Component: The configuration tool LCFG uses this term to refer to a client-side code
module which manages the configuration of one particular subsystem.

Composition: Combining configuration parameters from different aspects to produce a
definitive set of configuration parameters. This usually involves resolving con-
flicts when the aspects have overlapping concerns.

Convergence: The process of modifying the actual configuration of some existing sys-
tem to bring it closer to the designated configuration.

Declarative description: A specification of some property of a configuration, as
opposed to a procedural description of how to manipulate the configuration.

Deployment: The process of configuring a machine (usually remotely) to conform to a
particular low-level configuration description.

Designated configuration: The desired state of the configuration of some system.
Because of latency issues, this is often different from the actual configuration
deployed on the running system.

Devolved management: This occurs when different aspects of the configuration of a
site (or, particularly, an individual machine) are under the control of different
people.

DMTF: The Distributed Management Task Force, Inc. (DMTF) is the industry organ-
ization leading the development of management standards and integration tech-
nology for enterprise and Internet environments. DMTF standards provide com-
mon management infrastructure components for instrumentation, control, and
communication in a platform-independent and technology-neutral way. DMTF
technologies include information models (CIM), communication/control proto-
cols (WBEM), and core management services/utilities. See [2].

Fabric: The underlying infrastructure of a computing site (as opposed to the applica-
tions).

Federation configuration: A system configuration in which loosely connected people or
groups have specific requirements for different aspects of the configuration.

Golden copy: The master copy of a set of files (usually a whole disk image) which is
cloned onto a set of machines to produce identical configurations.

GPO: Group Policy Object. A set of Active Directory configuration parameters which
can be applied to specific groups of machines.

Grid: “The Grid is a service for sharing computer power and data storage capacity over
the Internet.” See [7].

Glossary / 61

High-level configuration: Configuration at a level that specifies services and relation-
ships between machines rather than low-level details, such as file contents and
processes on individual machines.

Idempotent: An operation in which multiple applications are equivalent to a single
application.

Immunology: The ability of a configuration tool to continuously correct configuration
errors in a way analogous to a biological immune system.

Inheritance: In configuration languages, inheritance usually implies value inheritance,
i.e., some structure inherits all the values from some other structure, usually with
the intention of overriding some of the values with more specific ones. This is
different from the type inheritance of most programming languages, where it is
the structure (rather than the value) of some other object that is inherited.

Lazy reference: A reference allows one configuration parameter to specify the value as
being “the same as” some other value. If the other value is not known until the
configuration is deployed, this value cannot be instantiated until deployment
time and is therefore known as lazy.

Low-level configuration: Configuration at a level that deals with details such as file
names and processes rather than high-level concepts, such as services and rela-
tionships between machines.

Model: The model supported by a configuration tool determines the types of objects
that can be described and the relationships and operations that can be represent-
ed. There is an important distinction between this and the language used to
describe the model.

MSI: Microsoft Windows Installer. The standard Microsoft packaging tool.

Package: A collection of files intended to be installed as a unit. The files are usually
bundled together with some meta-information, such as dependencies, versioning,
and installation scripts.

Preconditions: Some pre-existing condition of the machine state which a configuration
tool requires to make a specific configuration change. Hidden preconditions
occur when the tool makes non-obvious assumptions about the machine state
that are likely to be untrue.

Procedural description: A description of the process for manipulating a configuration,
as opposed to a declarative description of the required final state.

Profile: The complete set of configuration parameters for a single machine (an LCFG
term).

Proscriptive configuration: Defining the entire set of configuration parameters for a
machine, as opposed to defining only a subset and allowing the rest to be
defined manually (or by some other tool).

62 / Glossary

Prototype: A set of configuration parameters intended to be used as a template for sev-
eral different instances. Usually the individual instances will override some values
from the prototype.

Resource: A single configuration parameter (an LCFG term).

Scripting: Modification of a configuration using some procedural process, such as a
script or program.

Self-healing: Automatically correcting configuration errors which have been intro-
duced, for example, by system failures or human error.

Semantics: The meaning of the statements in a configuration language; this is in con-
trast to the syntax of the language, which defines the arrangement of symbols.

Spanning map: A construction in the LCFG language used to aggregate values from a
group of machines for incorporation into the configuration of some other
machine.

Specialization: The process of overriding some values in a prototype to customize it for
use in a specific instance.

Syntax: The form in which a (configuration) language is written. This is distinct from
the semantics of the language, which describes the meaning of the various state-
ments.

WBEM: “Web Based Enterprise Management is an industry initiative to provide man-
agement of systems, networks, users and applications across multiple vendor
environments.” See [15].

[1] Active Directory overview: http://www.microsoft.com/windows2000/server
/evaluation/features/dirlist.asp.

[2] Distributed Management Task Force (DMTF): http://www.dmtf.org/home.
[3] Dynamic reconfiguration of Grid fabrics. The OGSAConfig project:

http://groups.inf.ed.ac.uk/ogsaconfig/.
[4] GConf: http://www.gnome.org/projects/gconf/.
[5] The GGF CDDLM working group: https://forge.gridforum.org/projects

/cddlm-wg.
[6] The Grid Packaging Tool (GPT): http://www.gridpackagingtools.org/.
[7] GridCafe: The place for everybody to learn about the Grid: http://gridcafe.web

.cern.ch/gridcafe/.
[8] LCFG: http://www.lcfg.org/.
[9] LISA: The Large Installation System Administration Conference:

http://www.usenix.org/events/byname/lisa.html.
[10] Microsoft system management server: http://www.microsoft.com/smserver/.
[11] Quattor: http://www.quattor.org/.
[12] Radmind. University of Michigan: http://rsug.itd.umich.edu/software

/radmind/.
[13] Sun Microsystems: Application packaging developer’s guide:

http://docs.sun.com/app/docs/doc/806-7008/.
[14] Systems Navigator (SysNav): http://www.sysnav.com/.
[15] What Is WBEM? http://wbemservices.sourceforge.net/#WBEM.
[16] Zeroconf. IETF Zeroconf Working Group: http://www.zeroconf.org/.
[17] Autonomic computing: IBM’s perspective on the state of information technol-

ogy. Technical report, IBM Corporation, 2001. http://www.research.ibm.com
/autonomic/manifesto/autonomic_computing.pdf.

[18] P. Anderson. The complete guide to LCFG. Technical report, University of
Edinburgh: http://www.lcfg.org/doc/guide.pdf.

[19] P. Anderson. Managing program binaries in a heterogeneous UNIX network.
In Proceedings of the 5th Large Installation Systems Administration Conference, pages
1–9, Berkeley, CA, 1991. USENIX: http://homepages.inf.ed.ac.uk/dcspaul
/publications/LISA5_Paper.pdf.

References

64 / References

[20] P. Anderson. Towards a high-level machine configuration system. In Proceedings
of LISA ’94: 8th USENIX Systems Administration Conference, pages 19–26, Berkeley,
CA, 1994. USENIX: http://www.lcfg.org/doc/LISA8_Paper.pdf.

[21] P. Anderson, G. Beckett, K. Kavoussanakis, G. Mecheneau, and P. Toft.
Technologies for large-scale configuration management. Technical report, GridWeaver
Project, December 2002: http://www.gridweaver.org/WP1/report1.pdf.

[22] P. Anderson, G. Beckett, K. Kavoussanakis, G. Mecheneau, P. Toft, and J.
Paterson. Experiences and challenges of large-scale system configuration. Technical
report, GridWeaver Project, March 2003: http://www.gridweaver.org/WP2/report2.pdf.

[23] P. Anderson, P. Goldsack, and J. Paterson. SmartFrog meets LCFG—
Autonomous reconfiguration with central policy control. In Proceedings of LISA ’03:
17th Large Installation Systems Administration Conference, Berkeley, CA, 2003.
USENIX: http://homepages.inf.ed.ac.uk/dcspaul/publications/lisa03.pdf.

[24] P. Anderson and A. Scobie. Large-scale Linux configuration with LCFG. In
Proceedings of the 4th Annual Linux Showcase & Conference, Atlanta, pages
363–372, Berkeley, CA, 2000. USENIX: http://www.lcfg.org/doc/ALS2000.pdf.

[25] P. Anderson and E. Smith. Dynamic reconfiguration for Grid fabrics: Case
studies. Technical report, OGSAConfig project, June 2004: http://groups.inf.ed.ac.uk
/ogsaconfig/papers/report1.pdf.

[26] P. Anderson and E. Smith. System administration and CDDLM. In GGF12
CDDLM Workshop. GGF, 2004: http://homepages.inf.ed.ac.uk/dcspaul
/publications/ggf12.pdf.

[27] P. Anderson and E. Smith. Configuration tools: Working together. In Pro-
ceedings of LISA ’05: 19th Large Installation System Administration Conference,
Berkeley, CA, 2005. USENIX: http://www.usenix.org/events/lisa05/tech/anderson.html.

[28] E. C. Bailey. Maximum RPM. RedHat Software Inc., 1997.
[29] M. Barroso. Datagrid: WP4 report on current technology. Technical report

IST-2000-25182, 2001. http://hep-proj-grid-fabric.web.cern.ch
/hep-proj-grid-fabric/Tools/DataGrid-04-TED-0101-3_0.pdf.

[30] G. Beckett, G. Mecheneau, and J. Paterson. The GPrint Demonstrator.
Technical report, GridWeaver Project, December 2002.
http://www.gridweaver.org/WP4/report4_1.pdf.

[31] M. Burgess. Cfengine: http://www.cfengine.org/.
[32] M. Burgess. Cfengine: A site configuration engine. USENIX Computing

Systems, vol. 8, no. 3, 1995: http://www.iu.hio.no/~mark/papers/paper1.pdf.
[33] M. Burgess. Computer immunology. In Proceedings of LISA ’98: 12th Systems

Administration Conference, page 283, Berkeley, CA, 1998. USENIX:
http://www.usenix.org/publications/library/proceedings/lisa98/full_papers/burgess
/burgess.pdf.

[34] M. Burgess. Analytical network and system administration. John Wiley, 2004.
[35] M. Burgess. An approach to understanding policy based on autonomy and vol-

untary cooperation. Proceedings of DSOM, 2005.

References / 65

[36] M. Burgess and S. Fagernes. Pervasive computing management (I): A model of
network policy with local autonomy. IEEE eTransactions on Network and Service
Management (submitted).

[37] A. Chierici, L. dell’Agnello, E. Ferro, and M. Serra. Experience with LCFG
installation in DataGrid environment. Technical report, European DataGrid, May
2003: https://edms.cern.ch/file/384844/1/lcfg-scalab-test.pdf.

[38] A. Couch. Why people don’t adopt configuration management tools.
Presentation. 2004: http://homepages.inf.ed.ac.uk/group/lssconf/config2004/slides
/alva/workshop.pdf.

[39] A. Couch. Toward a cost model for system administration. In Proceedings of
LISA ’05: 19th Large Installation System Administration Conference, Berkeley, CA,
2005. USENIX: http://www.usenix.org/events/lisa05/tech/couch.html.

[40] A. Couch. A (very brief) overview of cfengine. Presentation. 2005:
http://homepages.informatics.ed.ac.uk/group/lssconf/config2005e/Slides/cfengine.pdf.

[41] A. Couch and M. Gilfix. It’s elementary, dear Watson: Applying logic program-
ming to convergent systems management processes. In Proceedings of LISA ’99: 13th
Systems Administration Conference, page 123, Berkeley, CA, 1999. USENIX:
http://www.usenix.org/events/lisa99/full_papers/couch/couch.pdf.

[42] A. Couch and Y. Sun. On observed reproducibility in network configuration
management. Science of Computer Programming, vol. 53, no. 2, pages 215–253,
2004.

[43] E. C. F. Daniel Sabin. Configuration as composite constraint satisfaction. In
Proceedings of the (1st) Artificial Intelligence and Manufacturing Research Planning
Workshop, G. F. Luger, ed., pages 153–161. AAAI Press, 1996.

[44] N. Desai, R. Bradshaw, R. Evard, and A. Lusk. BCFG: A configuration man-
agement tool for heterogeneous environments: ftp://ftp.mcs.anl.gov/pub/bcfg/papers
/bcfg-cluster2003.pdf.

[45] N. Desai, R. Bradshaw, S. Matott, S. Bittner, S. Coghlan, R. Evard, C.
Lueninghoener, T. Leggett, J.-P. Navarro, G. Rackow, C. Stacey, and T. Stacey. A case
study in configuration management tool deployment. In Proceedings of LISA ’05: 19th
Large Installation System Administration Conference, Berkeley, CA, 2005. USENIX:
http://www.usenix.org/events/lisa05/tech/desai.html.

[46] DMTF. Common information model (CIM) specification. Technical report,
DMTF, 1999: http://www.dmtf.org/standards/cim/cim_spec_v22.

[47] R. Evard. An analysis of UNIX system configuration. In Proceedings of LISA
’97: 11th Systems Administration Conference, page 179, Berkeley, CA, 1997.
USENIX: http://www.usenix.org/publications/library/proceedings/lisa97/full_papers
/20.evard/20.pdf.

[48] B. E. Finley. VA SystemImager. In Proceedings of the 4th Annual Linux
Showcase & Conference, Atlanta, Berkeley, CA, 2000. USENIX: http://www.usenix.org
/publications/library/proceedings/als00/2000papers/papers/finley.html.

[49] Æ. Frisch. Top five open source packages for system administrators:
http://www.onlamp.com/pub/a/onlamp/2003/05/29/essentialsysadmin.html.

66 / References

[50] P. Goldsack. SmartFrog: Configuration, ignition and management of distrib-
uted applications. Technical report, HP Research Labs. http://www-uk.hpl.hp.com
/smartfrog.

[51] M. Holgate and W. Partain. The Arusha project: A framework for collaborative
systems administration. In Proceedings of LISA 2001: 15th Systems Administration
Conference, Berkeley, CA, 2001. USENIX: http://www.usenix.org/events/lisa2001
/tech/full_papers/holgate/holgate.pdf.

[52] A. Holt and J. Hawkins. Making collaborative system administration easier:
Constraints and declarative aspect precedence. In Proceedings of SAICSIT 2004, pages
249–253, Stellenbosch, South Africa, 2004. http://www.fixedpoint.org/lex/papers
/holt-2004-mcs.pdf.

[53] G. M. Jones and S. M. Romig. Cloning customized hosts (or customizing
cloned hosts). In Proceedings of the 5th Large Installation Systems Administration
Conference, pages 233–242, Berkeley, CA, 1991. USENIX.

[54] J. Kephart. Technology challenges of autonomic computing. Technical report,
IBM Academy of Technology Study, November 2002.

[55] K. Manheimer, B. A. Warsaw, S. N. Clark, and W. Rowe. The Depot: A frame-
work for sharing software installation across organizational and UNIX platform bound-
aries. In Proceedings of the 4th Large Installation System Administration Conference,
pages 37–46, Berkeley, CA, 1990. USENIX.

[56] J. McDermott. R1: A Rule Based Configurer of Computer Systems. Artificial
Intelligence 1982, no. 19, pages 39–80, 1982.

[57] Microsoft. Windows installer technologies: http://www.microsoft.com
/windows2000/en/advanced/help/default.asp?url=/windows2000/en/advanced/help
/sag_WinInstall_Technology.htm?id=3991.

[58] S. Narain. Configuration management via model finding. In Proceedings of
ACM SIGSOFT Workshop on Self-Managed Systems. ACM SIGSOFT, October
2004.

[59] S. Narain, T. Cheng, B. Coan, V. Kaul, K. Parmeswaran, and W. Stephens.
Building autonomic systems via configuration. In Proceedings of Autonomic
Computing Workshop, June 2004: http://www.argreenhouse.com/papers/narain
/Autonomic.pdf.

[60] D. Oppenheimer. The importance of understanding distributed system config-
uration. Computer Science Division, EECS Department, UC Berkeley:
http://roc.cs.berkeley.edu/papers/dsconfig.pdf.

[61] J. Salceda. CIM modelling for system management. Presentation. University of
A Coruña, Spain, 2003. http://homepages.inf.ed.ac.uk/group/lssconf/config2003/slides
/salceda.pdf.

[62] SysNav. Sysnav white paper. Technical report, SysNav, 2005:
http://www.sysnav.com/download.php?id=697354,8,3.

References / 67

[63] J. Tatemura. Configuration description, deployment, and lifecycle manage-
ment: XML configuration description language specification. Technical report:
http://www.gridforum.org/Meetings/GGF12/Documents/draft-ggf-cddlm-xml-cdl-03.pdf.

[64] E. D. Zwicky. Typecast: Beyond cloned hosts. In LISA VI: 6th Systems
Administration Conference, pages 73–78, Berkeley, CA, 1992. USENIX.

About the Author
Paul Anderson (http://www.homepages.inf.ed.ac.uk/dcspaul/) has a background in
pure mathematics and over 20 years of experience in system administration. He is
currently a principal computing officer with the School of Informatics at Edinburgh
University, where he divides his time between research projects in system configuration
and the practical problems of managing a complex computing infrastructure. He is
the primary author of the LCFG configuration system and the organizer of the LISA
configuration workshop series.

