
1
3

B
en

R
ockw

ood

The Sysadmin’s Guide
to Oracle
Ben Rockwood

Short Topics in
Systems Administration13
Rik Farrow, Series Editor

T
h

e
Sysad

m
in’s

G
u

id
e

to
O

racle

ISBN 1-931971-41-2

Short Topics in

System Administration

The Sysadmin’s Guide to

Oracle

Ben Rockwood

Published by the USENIX Association
2005

Rik Farrow, Series Editor

13

© Copyright 2005 by the USENIX Association. All rights reserved.
ISBN 1-931971-41-2

To purchase additional copies and for membership information, contact:

The USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA USA 94710
orders@usenix.org
http://www.usenix.org/

First Printing 2005

USENIX is a registered trademark of the USENIX Association.
USENIX acknowledges all trademarks herein.

This booklet is dedicated to the memory of my hero, Bob Larson,
who gave more to the UNIX community than most will ever know.

Contents

Introduction 1
1. Installation and the OFA 3

UNIX Users and Groups 3
Environmental Variables 3
File Locations 4
Memory Parameters 4
Troubleshooting Logs 5
Steps for Installation 5

2. Oracle Basics 7
Create a Database 7
Connect to and Start the Database 9
Create a Table 9
Add Data to the Table 10
Create an Index 10
Query the Table 10
Create and Query a View 10
Destroy Objects 11
Stop the Database 11
Destroy the Database 11

3. Poking Around Inside Oracle 12
The Data Dictionary 13
Essential System Tables 14
The Dollar Views 15

4. Files and Components 16
Database Files 16
Initialization Parameters 17
Oracle Startup 18
Oracle Distribution Files 21

5. Users and Permissions 22
Users and Passwords 22
Adding New Users 23
Privileges, Roles, and Profiles 24
Changing Passwords 26

6. The Listener 27
Configuring the Listener 27
Starting the Listener 28

TNS Resolution 29
Connecting Remotely 30
Troubleshooting TNS 31

7. Oracle Programming 32
SQL 32
PL/SQL 33
Pro*C: The Oracle SQL Precompiler 34
The C Interface: OCI 35
Regarding Perl 36

8. SQL*Loader 39
Loading Syslog into a Table 39

9. Exporting Databases with Data Pump 42
The Export 42
The Import 44

10. Using RMAN 47
Enabling ARCHIVELOG Mode 47
Basic RMAN Backup 49
Basic Recovery 51
Listing Backups 53
Advanced Backup 54
Advanced Recovery 55

11. Loose Ends 62
Oracle Flashback 62
Data Guard 64
OLTP 65
Oracle Options and Extensions 66

12. Tools to Lessen the Pain 68
YaSQL 68
TOra 69

Appendix: Oracle Processes 71

iv / Contents

Foreword

The Sysadmin’s Guide to Oracle, like many books, went through a long,
transformative process before it was printed. The result is a short book
that covers what a person who may support Oracle 10g as a sysadmin
needs to know.

Ben Rockwood set about this project in a way that I found famil-
iar. He set up his own Oracle servers and experimented, based on his
research, until he found techniques that worked. This brand of work
and writing is really core to much of the UNIX sysadmin experience,
where hands-on is the standard for learning.

If you find yourself charged with managing systems that run
Oracle, even if you have formerly worked with Postgres or MySQL,
this book will be of service to you.

Rik Farrow

Short Topics Series Editor

The Oracle Relational Database Management System (RDBMS) has become one of
the most powerful and flexible databases available. With ever-expanding functionality
provided by options such as Data Guard replication and Real Application Clusters
(RAC), it has increasingly blurred the divide between database administrators and sys-
tem administrators. Nowadays it’s becoming essential that sysadmins have a solid
understanding of Oracle in order to interface effectively with database admins and
architects.

This booklet won’t teach you everything about Oracle, and it’s not intended to.
Instead, you’re going to get an overview of the major components of Oracle, specifical-
ly Oracle10g. Even though you might never export an Oracle database, it’s essential
that you understand what it is, so that when your database admins do it, you’ll know
what they are doing and how to provide for their needs. Throughout the booklet you’ll
find URLs to Oracle documentation which will provide you with more information on
a given topic.

By the end of this booklet you’ll have the confidence to log in to Oracle, configure
basic networking, manipulate user access, understand the programming interfaces, uti-
lize major tools for importing and exporting data, and interface with the backup sys-
tem—and, most important, you’ll have enough knowledge to learn more about Oracle
on your own.

The Relational Model
In this day and age it’s easy to take the “simplicity” of the modern relational database
for granted. If when you first learned about relational databases you said to yourself,
“This is just a bunch of spreadsheets!” you’d have been more or less right. What makes
a relational database special is how relationships between parts of the data are managed.
In 1985 Dr. E.F. Codd, an IBM researcher, published a list of rules known as “Codd’s
12 Rules” that defined how a true RDBMS should be evaluated. Understanding these
rules will greatly improve your ability to understand RDBMSes in general and Oracle
in particular:

1. Information is represented logically in tables.
2. Data must be logically accessible by table, primary key, and column.
3. Null values must be uniformly treated as “missing information,” not as empty

strings, blanks, or zeros.

Introduction

4. Metadata (data about the database) must be stored in the database just as regu-
lar data is.

5. A single language (usually SQL) must be able to define data, views, integrity
constraints, authorization, transactions, and data manipulation.

6. Views must show the updates of their base tables and vice versa.
7. A single operation must be able to retrieve, insert, update, or delete data.
8. Batch and end-user operations are logically separate from physical storage and

access methods.
9. Batch and end-user operations can change the database schema without having

to recreate it or the applications built upon it.
10. Integrity constraints must be available and stored in the relational database

metadata, not in an application program.
11. The data manipulation language of the relational system should not care where

or how the physical data is centralized or distributed.
12. Any row processing done in the system must obey the same integrity rules and

constraints that set-processing operations do.1

Of these rules the most difficult one to come to terms with is rule 4: this is where
system tables or data dictionaries come in and why it’s so difficult to start exploring the
database without a basic understanding of the relational database design rules. It’s not
terribly different from building a Web server that must be configured using a CGI;
while it isn’t intuitive, it is an admirable design.

You by no means need to bother memorizing this list of rules, but if they’re stashed
in your long-term memory, retrieval may help you to understand some design decisions
used by modern relational databases that might otherwise seem odd.

Play Along at Home
All of the examples and code used throughout this booklet were done using Oracle10g
Enterprise Edition on Solaris 10 (Sun Ultra2 Dual UltraSPARC II workstation,
512MB memory) and Gentoo Linux (AMD AthlonMP Dual 1.2Ghz, 1GB memory,
Kernel 2.6.8.1). The Oracle Database is available as a “free” download from
Oracle.com. Oracle provides you with a 30-day trial period by which to test and
explore the product. Please note that although the software will not stop you from run-
ning Oracle longer than that, it is illegal to do so.

2 / Introduction

1. I was unable to acquire a copy of Codd’s The Relational Model for Database Management, 2nd ed.;
these rules are quoted from Kevin Kline and Daniel Kline, SQL in a Nutshell (O’Reilly, 2004).

Installation of Oracle is pretty simple, although the intertwining of installation and
database creation can cause confusion. In fact, it is probably best not to create a data-
base during installation. Leave that to the Database Configuration Assistant (DBCA)
after Oracle has been installed.

The layout of files in an Oracle installation can be confusing. Often you’ll see instal-
lations of Oracle in /u01 and data placed in /u02, /u03, and so on. If you do a fresh
install of Oracle, though, that installation layout may not be suggested. Why, then, do
so many database admins do it that way?

The answer is the OFA (Optimal Flexible Architecture—note: “Optimal,” not
“Oracle”). The OFA was created by Cary Milsap at the Oracle Users Conference in
1991. The OFA was an attempt to create a standardized set of conventions for Oracle
file locations and file naming. The OFA has been widely adopted and is considered an
Oracle Best Practice. Besides creating order from chaos, the OFA ensures that your
installation will always be able to scale to larger databases, new versions of Oracle, etc.

Installation guidelines combining the OFA and the Oracle installation recommen-
dations are detailed in the following sections.

UNIX Users and Groups
Three UNIX groups should be added: dba, oper, and oinstall. The dba group is used
for database install and has SYSDBA database admin privileges. The oper group is
optional and maps to the SYSOPER privileges in the database. The oinstall must be
created when you install the first time and is the owner of the Oracle Inventory, which
is a catalog of installed Oracle software on the system.

Only one user needs to be created: oracle. The oracle user owns all the Oracle soft-
ware, and its primary group must be oinstall, with dba and oper as secondary groups.
After Oracle is installed, many people change the primary group to dba, but it’s not
recommended.

Environmental Variables
Several Oracle environmental variables are utilized by various Oracle tools. Essential
variables include ORACLE_SID, which specifies the Oracle System Identifier (SID) that
identifies the database instance you want to act on, and ORACLE_HOME, which specifies
the location of the Oracle installation. Most of these variables should be defined in the
user’s .profile. For example:

1. Installation and the OFA

umask 022
ORACLE_BASE=/u01/app/oracle
ORACLE_SID=testdb
ORACLE_HOME=$ORACLE_BASE/product/10.1.0/db_1
ORACLE_PATH=/u01/app/oracle/product/10.1.0/db_1/bin:.
TNS_ADMIN=$ORACLE_HOME/network/admin

If ORACLE_SID and ORACLE_HOME aren’t defined, the various Oracle tools such as
SQL*Plus won’t know which Oracle installation to use or which database to access.
You can find a full list of all supported environmental variables in the documentation:
http://download-west.oracle.com/docs/html/B10812_02/chapter1.htm#sthref23.

File Locations
The OFA suggests installing in top-level directories named something like /u01, /u02,
etc. (you can name them anything you want, so long as you use a consistent naming
scheme). Before installing Oracle you should create the directory structure for user ora-
cle and change ownership of the directories to oracle:oinstall. Each top-level directory
consists of both app and oradata directories (e.g., /u01/app, /u01/oradata), where the
app directories contain user directories for each database user and the oradata directo-
ries contain Oracle data files. In this way, you’re actually installing Oracle into the ora-
cle user directory. Therefore, you should set this directory (/u01/app/oracle) as the
home directory for user oracle.

The following are some examples of Oracle directories that conform to the OFA:

/u01/app/oracle/ Base
/u01/app/oracle/oraInventory Oracle Inventory
/u01/app/oracle/product/9.2.0 Oracle9i Home
/u01/app/oracle/product/10.1.0/db_1 Oracle10g Home
/u01/app/oracle/admin/ Administrative
/u01/app/oracle/admin/db_name1/ Admin Subtree for a SID
/u01/app/oracle/doc/ Online Docs
/u01/app/edm/ Oracle Home Dir for user edm
/u02/oradata/db_name1/ Data for SID

When you install Oracle, the oratab file will be installed in /var/opt/oracle. This file
lists the available database instances and whether they are startable. If they are defined
in oratab as startable, you can start databases using the dbstart script. (Think of dbstart
being to Oracle what the startx script is to X11.)

Memory Parameters
Thanks to the massive memory and IPC requirements of Oracle, we need to increase
the default memory and IPC-related tunable parameters of the host OS for Oracle to
run. If you do not increase these values before you install, the Oracle Installer will
require you to adjust them.

The following are the Oracle Installer required minimum values for Solaris, to be
set in /etc/system:

4 / Installation and the OFA

Installation and the OFA / 5

set noexec_user_stack=1
*
set semsys:seminfo_semmni=100
set semsys:seminfo_semmns=1024
set semsys:seminfo_semmsl=256
set semsys:seminfo_semvmx=32767
*
set shmsys:shminfo_shmmax=4294967295
set shmsys:shminfo_shmmin=1
set shmsys:shminfo_shmmni=100
set shmsys:shminfo_shmseg=10

These are tunable by definition and therefore can be tweaked upward for your envi-
ronment, but it is not recommended until you have become very familiar with Oracle’s
behavior.

Please note that some of the above tunables have been deprecated in Solaris 9 and
Solaris 10, but the installer will complain if they aren’t present. You can either add
them to /etc/system, even though they do nothing, or ignore the error generated by the
installer when it checks. See the Solaris Tunable Parameters Reference Manual at
http://docs.sun.com for a complete listing of Solaris tunables for your version.

Troubleshooting Logs
Oracle reports errors (called “exceptions”) in trace files and alert logs. The alert logs are
found in $ORACLE_HOME/rdbms/log and are database wide. The trace files are per
instance and found in $ORACLE_BASE/admin/SID/bdump/.

Steps for Installation
We can take all this and set up a basic order for installation:

1. Modify the system tunable for your platform (/etc/system on Solaris) and
reboot to take effect.

2. Create the directories /u01/app/oracle and /u01/oradata.
3. Create the groups dba, oinstall, and oper.
4. Create user oracle with primary group oinstall and /u01/app/oracle as the home

directory.
5. Add user oracle to the dba and oper groups.
6. Start the Oracle Universal Installer from the Oracle install media.
7. Use /u01/app/oracle/oraInventory as the path for the inventory and

/u01/app/oracle/product as the base path for the installation, skipping database
creation.

8. After the installer is complete, use DBCA (Database Configuration Assistant)
to create your databases.

When you create your databases with DBCA, continue to use the OFA by installing
your data files in /u01/oradata/SID or, if you prefer to use a different mount point,

6 / Installation and the OFA

/u02/oradata/SID. Obviously, you can get creative with your data layout as it maps to
your disk subsystem. Some database admins will request a local mount for /u01 to
install Oracle and then two or more /u0n directories with different specs for data files.
In this way we can distribute files onto disks with different access patterns or tuning
specifications.

Please note that some operating system versions, such as Solaris 10, are not support-
ed by Oracle10g. They will run the database without problems, but the installer will
report that you are using an unknown or unsupported operating system. To forcibly
install Oracle, you can start the installer with the “-ignoreSysPrereqs” argument to
runInstaller.

First we’ll cover how to do the most basic operations:

1. Create a database.
2. Connect to and start the database.
3. Create a table.
4. Add data to the table.
5. Create an index.
6. Query the table.
7. Create and query a view.
8. Destroy objects.
9. Stop the database.
10. Destroy the database.

Create a Database
Two methods are available for creating a new database: the Database Configuration
Assistant (DBCA) GUI and the CREATE DATABASE SQL statement. For simplicity
we’ll use the DBCA. You can read about creating a database using the SQL interface in
Chapter 2 of the Oracle Database Administrator’s Guide.

To use the configuration assistant, export your display (if you’re not on the console)
and run DBCA:

$ export DISPLAY=10.10.1.100:0
$ pwd
/u01/app/oracle/product/10.1.0/db_1/bin
$./dbca

We’ll then use the following steps in the GUI. The step numbers noted (e.g., “In step
1”) refer to the numbered steps that DBCA uses to identify your progress.

1. In step 1, choose “Create a database.”
2. In step 2, choose “General Purpose.”
3. In step 3, we’ll name the database test.cuddletech.com with the SID testdb.
4. In step 4, we’ll leave “Configure the Database with Enterprise Manager”

checked and also check “Enable Email Notifications,” specifying both our local
SMTP server and our email address.

5. In step 5, we’ll use the same password for all accounts. Here we’ll use “passwd”.

2. Oracle Basics

6. In step 6, we’ll use regular File System storage.
7. In step 7, we’ll choose “Use Common Location for All Database Files”; follow-

ing the OFA, we’ll use /u02/oradata as the location.
8. In step 8, we’ll disable flash recovery by unchecking all boxes.
9. In step 9, we’ll uncheck “Sample Schemas.”
10. In step 10, we’ll use the default settings for memory management. In my case

that’s 120MB for the shared pool, 24MB for the buffer cache, 8MB for the
large pool, and 24MB for the PGA. The only thing to change is “Java Pool”:
set it to 0.

11. In step 11, look over the layout of the storage. Nothing needs to be changed
here.

12. At last, in step 12 we can actually create the database or save it as a template.
Make sure “Create Database” is checked and click “Finish.”

13. We’ll now have the chance to look at our configuration and save an HTML
copy of it. When done, create the database.

14. The database will now build. On my Sun Blade 100 this process took about 10
minutes.

15. Finally, you’ll get a confirmation dialog with the database name, SID, Server
Parameter Filename, and an Enterprise Manager URL.

After the database has been created, you can go examine the files it created:

cd /u02/oradata/testdb
ls -alh
total 1451556
drwxr-xr-x 2 oracle oinstall 512 Oct 5 16:43 .
drwxr-xr-x 4 oracle dba 512 Oct 5 16:40 ..
-rw-r——- 1 oracle oinstall 2.7M Oct 5 16:53 control01.ctl
-rw-r——- 1 oracle oinstall 2.7M Oct 5 16:53 control02.ctl
-rw-r——- 1 oracle oinstall 2.7M Oct 5 16:53 control03.ctl
-rw-r——- 1 oracle oinstall 10M Oct 5 16:53 redo01.log
-rw-r——- 1 oracle oinstall 10M Oct 5 16:46 redo02.log
-rw-r——- 1 oracle oinstall 10M Oct 5 16:51 redo03.log
-rw-r——- 1 oracle oinstall 210M Oct 5 16:53 sysaux01.dbf
-rw-r——- 1 oracle oinstall 430M Oct 5 16:53 system01.dbf
-rw-r——- 1 oracle oinstall 20M Oct 5 16:43 temp01.dbf
-rw-r——- 1 oracle oinstall 25M Oct 5 16:53 undotbs01.dbf
-rw-r——- 1 oracle oinstall 5.0M Oct 5 16:46 users01.dbf

There will also be files in your Oracle admin directory (OFA path: /u01/app/
oracle/admin/[SID]) and the dbs directory (OFA path: /u01/app/oracle/product/
10.1.0/db_1/dbs).

If you want to play with Enterprise Manager, you can do so now. Go to the URL
listed in the final dialog of the DBCA session. At the login screen use the username
“sys”, the password “passwd” (as we specified during creation) and from the drop-down
menu choose “SYSDBA”. After you log in and agree to the licensing information

8 / Oracle Basics

Oracle Basics / 9

terms, you’ll get the full Enterprise Manager experience. You’ll see that the database has
already been started and is up. On the “Administration” tab you can really play with
some nifty things: You can create nearly any database component here without ever
touching SQL*Plus.

If you are playing with the Enterprise Manager, go ahead and shut down the data-
base so that we can see how to start it up using SQL*Plus.

Connect to and Start the Database
Database startup can be done using either SQL*Plus or the Enterprise Manager (EM).
We’ll use SQL*Plus. There are a variety of ways to log in to SQL*Plus. Using the
“/nolog” argument followed by a connect string is best, because specifying the user-
name and password on the command line make it visible to system tools such as ps or
pargs.

$ export ORACLE_SID=testdb
$ sqlplus /nolog
. . .
SQL> CONNECT sys/passwd AS SYSDBA
Connected to an idle instance.
SQL> STARTUP
ORACLE instance started.
Total System Global Area 184549376 bytes
Fixed Size 1300928 bytes
Variable Size 157820480 bytes
Database Buffers 25165824 bytes
Redo Buffers 262144 bytes
Database mounted.
Database opened.
SQL> quit
Disconnected from Oracle Database 10g
$ ps -ef | grep -i testdb
oracle 1624 1 0 17:16:20 0:00
ora_qmnc_testdb
oracle 1612 1 1 17:16:08 ?
0:01ora_cjq0_testdb
. . .

Many additional startup arguments can be used: STARTUP NOMOUNT, for example,
to keep the database from mounting, or STARTUP FORCE, to force it to start.

Once startup completes, the database should be open, mounted, and in read/write
mode.

Create a Table
If you disconnected from SQL*Plus, reconnect and we’ll try creating a table:

10 / Oracle Basics

SQL> create table address_book (
2 id number,
3 name varchar2(30),
4 home_num varchar2(12),
5 cell_num varchar2(12),
6 location varchar(40)
7);

Table created.

Add Data to the Table
Let’s add some data to the table:

SQL> insert into address_book
2 values (1, ‘Ben Rockwood’, ‘510-555-1234’, ‘650-555-2345’,

‘Menlo Park, CA’);
1 row created.
SQL> insert into address_book
2 values (2, ‘Tamarah Rockwood’, ‘510-555-4443’, NULL, ‘Menlo

Park, CA’);
1 row created.
SQL>

Create an Index
Index creation works just as you’d expect:

SQL> create index home_num_idx
2 on address_book (id, home_num);

Index created.

Query the Table
Grabbing data from the table is trivial using standard SQL:

SQL> select name from address_book;
NAME

Ben Rockwood
Tamarah Rockwood

Create and Query a View
Views make tables a little more comfortable to use as they grow larger:

SQL> create view cell_view as
2 select name, cell_num
3 from address_book;

View created.
SQL> select * from cell_view;

Oracle Basics / 11

NAME CELL_NUM

Ben Rockwood 650-555-2345
Tamarah Rockwood

Destroy Objects
Using DROP statements, we can easily destroy objects that are no longer needed:

SQL> drop view cell_view;
View dropped.
SQL> select * from address_book;
ID NAME HOME_NUM CELL_NUM

LOCATION

1 Ben Rockwood 510-555-1234 650-555-2345
Menlo Park, CA
2 Tamarah Rockwood 510-555-4443
Menlo Park, CA
SQL> drop table address_book;
Table dropped.

Stop the Database
If you’re not already logged in, log in now and shut down the database:

bash-2.05$ sqlplus /nolog
. . .
SQL> connect sys/passwd as sysdba;
Connected.
SQL> shutdown immediate;
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> quit

There are a variety of shutdown methods. Using shutdown without an argument is
rare, because the database won’t shut down until all connections have disconnected
willingly, during which time it won’t allow any new connections. shutdown immedi-
ate will safely close out all current connections regardless of whether or not they want
to.

Destroy the Database
Databases can be deleted like any other object, using the DROP SQL statement. In
order to drop the database it must be mounted and closed, mounted exclusively (not in
shared mode), and flagged as RESTRICTED. The easiest way to do this is by using EM
(but then, most things are). Once your database is in the proper state, issuing the SQL
drop testdb will destroy the test database we created.

What separates sysadmins from everyone else? We want to understand everything.
Being highly analytical people by nature, we need to understand not only how to do
something but the environment in which we operate. But, sadly, when it comes to
Oracle that’s a tall order, especially without the assistance of the Enterprise Manager or
tools like TOra.

I find smaller databases such as PostgreSQL and MySQL very refreshing, because
they are so easy to dig around in. In PostgreSQL, if you want to see all the tables, just
issue a \dt and look at the list. Want to see the indexes? Type \di, and there they are.
This makes it easy to poke around when you are either new or lost in your environ-
ment. With Oracle it’s a little harder. When I really started playing with Oracle I was
frustrated by the blindness of the whole experience. I could only see as far as the tip of
my nose. But I soon realized just why you can’t see everything with such clarity in
Oracle—there is just too much!

Oracle keeps so many internal tables that it’s hard to browse around in them. If you
pull up Enterprise Manager, you’ll see (sit down for this) 1,468 tables and 3,470 views.
This immediately answers the question, “Why doesn’t SQL*Plus have a \dt feature
like PostGreSQL?” Thankfully, you can find lists of the commonly used tables, such as
http://www.techonthenet.com/oracle/sys_tables/.

The ALL_* tables are especially interesting. For instance, using the SQL COUNT()
function, we can count the number of tables listed in the ALL_TABLES system table:

SQL> select COUNT(*) from ALL_TABLES;
COUNT(*)

1468

When managing Oracle you’re going to need to query the system tables a lot, so keep-
ing your SQL skills sharp and a reference or cheat sheet nearby is a good idea. Here’s a
common example:

SQL> select * from dba_users
2 where username = upper(‘benr’);

USERNAME USER_ID PASSWORD
--
ACCOUNT_STATUS LOCK_DATE EXPIRY_DA
--

3. Poking Around Inside Oracle

Poking Around Inside Oracle / 13

DEFAULT_TABLESPACE TEMPORARY_TABLESPACE CREATED
--
PROFILE INITIAL_RSRC_CONSUMER_GROUP
--
EXTERNAL_NAME
--
BENR 58 BEFEAB8A2CDD5A85
OPEN
USERS TEMP 08-OCT-04

Looking at all that output, it’s hard to see what’s happening. For this reason, whenever
possible limit your queries to just what you really need. You’ll also notice that when
you’re searching (using the “where” clause), the search parameter is case-sensitive,
which can be confusing because so much of SQL is case-insensitive. Almost everything
is stored in uppercase, so you can either search for “BENR” or you can use the SQL
function upper() to convert to uppercase.

Let’s try outputing that table again, with a little less cruft this time:

SQL> select username, user_id, profile from dba_users
2 where username = ‘BENR’;

USERNAME USER_ID PROFILE
--
BENR 58 DEFAULT

Much better.

The Data Dictionary
The data dictionary is the set of tables and views that store Oracle’s own data. The
tables in the data dictionary are broken down into three sets of views: ALL_, DBA_,
and USER_. The ALL_ views display all the information accessible to the current user.
The DBA_ views display all relevant information in the entire database and are only
intended for admins. Finally, the USER_ views display all the information from the
schema of the current user. The difference between the USER_ and ALL_ views is that
you can only look around in your own schema using USER_ views, but in the ALL_
views you see all the schemas you have permission to view. Because these are views,
most of the data is duplicated between them: for instance, USERS_USERS, ALL_USERS,
and DBA_USERS.

You can find a complete listing of all the data dictionary tables and views in the
Oracle Database Reference manual: http://download-west.oracle.com/docs/cd/
B12037_01/server.101/b10755/ toc.htm.

14 / Poking Around Inside Oracle

Essential System Tables

What follows is a list of tables that will make your life easier and help you feel less
blind and helpless. This is by no means a complete list, just some important tables to
get you on your way poking about and learning the lay of the land.

Table 4.1: Some Essential Oracle System Tables

Table Description
ALL_CATALOG All tables, views, synonyms, sequences accessi-

ble to the user
ALL_INDEXES Descriptions of indexes on tables accessible to

the user
ALL_OBJECTS Objects accessible to the user
ALL_OBJECT_TABLES Description of all object tables accessible to

the user
ALL_TABLES Description of relational tables accessible to

the user
ALL_TRIGGERS Triggers accessible to the current user
ALL_TYPES Description of types accessible to the user
ALL_UPDATABLE_COLUMNS Description of all updatable columns
ALL_USERS Information about all users of the database
ALL_VIEWS Description of views accessible to the user
DBA_OBJECTS All objects in the database
DBA_ROLES All roles which exist in the database
DBA_ROLE_PRIVS Privileges granted to users and roles
DBA_SOURCE Source of all stored objects in the database
DBA_TABLESPACES Description of all tablespaces
DBA_TAB_PRIVS All privileges on objects in the database
DBA_TS_QUOTAS Tablespace quotas for all users
DBA_USERS Information about all users of the database
DBA_VIEWS Description of all views in the database
DICTIONARY Description of data dictionary tables and

views
GLOBAL_NAME Global database name
PRODUCT_COMPONENT_VERSION Version and status information for compo-

nent products
SESSION_PRIVS Privileges which the user currently has set
SESSION_ROLES Roles which the user currently has enabled
SYSTEM_PRIVILEGE_MAP Maps privilege type numbers to type names

Poking Around Inside Oracle / 15

The Dollar Views
I sometimes hear these mistakenly referred to as the “dollar tables,” but they’re actually
views. These are the system views that are named V$[something]. Because they are in
the SYS schema, you’ll sometimes see them more explicitly named as SYS.V$[some-
thing]. These views are unique because they are dynamic and present in memory,
which means they can be queried even when the instance isn’t open. If you need to
deal with a database that is crippled, these views may be all that’s accessible to you.
When looking at system views you may also see GV$[something] views; these are for
RAC installations where you want to see the Global View.

Views of interest include V$ACTIVE_SERVICES, which contains data regarding all
active services provided by the instance; V$CLIENT_STATS, where you can find data
regarding client connections to the instance; V$CONTROLFILE, which contains the loca-
tions of the control files and their status; and V$DATABASE, which contains informa-
tion about the database from the control files.

You can learn about all of these views in the Oracle Database Reference manual:
http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10755/
dynviews_part.htm#i403961.

As a sysadmin you need to be able to divide the various files in Oracle into logical
groups mentally. Knowing what goes where will help you better understand your role
in maintaining Oracle. For this discussion, we’ll assume that you have installed Oracle
in accordance with the OFA.

We can divide the installation into two main categories: distribution files and data-
base files. Oracle distribution files would be everything that you installed when you
installed Oracle. Database files would be all the files that pertain to a given instance of
the database.

It’s important here to clarify the difference between a database and an instance. A
database is the collection of files that store your data and all the metadata and configu-
ration information which govern how that data is accessed, utilized, etc. An instance is
a group of processes that make your database accessible. For example, the data file
users01.dbf is a component of the database and the logwriter process ora_lgwr_SID is
a component of the instance.

Database Files
When you create a database, you’ll be creating several files:

Control Files Usually three, named control01.ctl–control03.ctl.
Data Files The default DBCA configuration is to create five data files: sys-

tem01.dbf, undotbs01.dbf, sysaux01.dbf, users01.dbf, and
temp01.dbf.

Redo Logs Typically three, named redo01.log–redo03.log.
Admin Files A series of directories and files usually in

$ORACLE_BASE/admin/[SID].

A control file can be thought of as the Oracle equivalent of a DiskSuite state database.
It contains references and metadata pertaining to all the database files, such as data
files and redo logs. Typically there are three or more copies of the control file, like
DiskSuite’s state database replicas. This guarantees that if one control file is lost or cor-
rupt, we still have a usable copy. Control files supposedly can be rebuilt if they are lost
or destroyed, but it isn’t easy. If there is one file you want to make sure you’re backing
up, the control file is the one.

The data files contain the actual data. These files are often referred to as tablespaces.
Within the tablespace reside all the tables that make up your database. For example,

4. Files and Components

Files and Components / 17

the “users tablespace” is in the users01.dbf data file. Temp tables are written to the temp
tablespace, which is the temp01.dbf data file.

Redo logs are the database equivalent of a filesystem journal. When changes are
made to the database, the changes are written to the redo log. If data is lost, we can
recover the lost changes by replaying the redo logs just as we’d replay a VERITAS
filesystem journal on an inconsistent file system. Redo logging is enabled by default
but can be turned off, if you choose, by enabling the NOLOGGING parameter. There
are typically three or more redo logs, which are written in a round-robin fashion. Each
one fills up until all the logs are full and it begins overwriting the first again.

On a related note, redo logs can be archived. When a database is in ARCHIVELOG
mode the redo logs can be written out to archive logs and stored elsewhere. The upside
is that you could replay weeks of transactions back into the database if you wanted to.
The downside is that if the so-called archive log destination (the directory where
archived redo logs get stored) becomes full or unwritable, the instance will shut down!
Typically a cron or backup job regularly backs up or moves the archived redo logs to
tape or to a permanent storage location, ensuring that the archive destination never fills
up.

Additionally, several administrative directories will be created in $HOME/admin/
[SID] for each database:

bdump Background dump directory (alert logs and trace files)
cdump Core dump directory
udump User dump directory
create Creation logs
PFILE Parameter dile directory

Dump directories contain trace files, denoted by the suffix .trc. These traces are
dumped by various Oracle tools when certain actions are carried out or an error condi-
tion is encountered. An experienced DBA can use trace files to debug problems with
the database and to provide information to Oracle support. The most useful file for the
sysadmin is the alert log, which is the Oracle equivalent of a syslog file. In the alert log
(typically named alert_[SID].log) we may find warnings or errors that affect the data-
base. Additionally, some database applications and HA cluster agents will actively mon-
itor the alert log to help determine the state of the database.

Initialization Parameters
Several files contain lists of initialization parameters: init.ora files, PFILEs (parameter
files), and SPFILEs (server parameter files). Each database instance will have a PFILE
in its admin directory. An init.ora will exist in the $ORACLE_HOME/dbs/ directory.
In the PFILE directory of each instance’s admin directory you’ll also find an init.ora.

The parameter files contain a variety of Oracle tunables, including the database
block size (db_block_size), database cache size (db_cache_size), number of open
cursors (open_cursors), the database name (db_name) and domain (db_domain),

18 / Files and Components

resource limits (processes), size of all the various pools (e.g., large_pool_size), and
the location of the control files (control_files). The parameters are read by Oracle
when you start an instance, as the name initialization implies. Once this file is read and
processed, the control files will point the instance at the rest of the data files.

SPFILEs are becoming increasingly important. Unlike the init.ora PFILE, the
SPFILE shouldn’t be hand-edited. Oracle has been making more and more parameters
dynamically changeable. In older releases of Oracle, changing parameters would have
involved shutting down the database, modifying the parameter in the PFILE, and then
restarting the instance. Now many of these parameters can be changed with an ALTER
statement and take effect immediately, without downtime. The problem used to be
that if you changed these dynamic parameters, the changes wouldn’t be persistent
across database restarts, so the DBA would have to be careful to update the PFILE after
making a change. Obviously this became a problem quickly as it was easy to forget to
update manually. To combat this problem, dynamically changed parameters were
recorded in the SPFILE. However, you needed to explicitly create an SPFILE by con-
verting your existing PFILE (e.g., CREATE SPFILE ‘SPFILESID.ora’ FROM
PFILE=’initSID.ora’;). You can look in the v$parameter system view to see where
your SPFILE is. In 10g it seems that an SPFILE is created automatically:

SQL> select name,value from v$parameter where name=’SPFILE’;
NAME

VALUE

SPFILE
/u01/app/oracle/product/10.1.0/db_1/dbs/spfiletest.ora

When databases are created using DBCA, they use an SPFILE by default and are locat-
ed in $ORACLE_HOME/dbs.

Oracle Startup
The best way to understand how all the various files work together is to examine the
Oracle startup process.

When Oracle starts an instance, it reads the SPFILE or PFILE to determine the ini-
tialization parameters. It uses these parameters to allocate the System Global Area
(SGA) and create background processes. All this is done without associating a database
with the instance! At this point the instance is started but not mounted, what some
people call “started in nomount mode,” because you can reach this state by using the
SQL*Plus command startup nomount:

SQL> startup nomount;
ORACLE instance started.
Total System Global Area 184549376 bytes
Fixed Size 1300928 bytes

Files and Components / 19

Variable Size 157820480 bytes
Database Buffers 25165824 bytes
Redo Buffers 262144 bytes
SQL> quit
ps -ef | grep -i ora_
oracle 720 1 0 14:14:20 ? 0:00 ora_reco_test
oracle 710 1 0 14:14:19 ? 0:00 ora_mman_test
oracle 708 1 0 14:14:19 ? 0:00 ora_pmon_test
oracle 712 1 0 14:14:19 ? 0:00 ora_dbw0_test
oracle 718 1 0 14:14:19 ? 0:00 ora_smon_test
oracle 714 1 0 14:14:19 ? 0:00 ora_lgwr_test
oracle 716 1 0 14:14:19 ? 0:00 ora_ckpt_test
oracle 726 1 0 14:14:20 ? 0:00 ora_s000_test
oracle 724 1 0 14:14:20 ? 0:00 ora_d000_test
oracle 722 1 0 14:14:20 ? 0:00 ora_cjq0_test

When a database is mounted, the data files are associated with the instance. As a test,
you can rename the data file directory (where the control and data files are) and start
up the instance without mounting: You won’t get an error, because Oracle isn’t interest-
ed in anything but the parameter files at this point. Even though the PFILE specifies
the location of the control file, it hasn’t tried to open the control files yet, so it won’t
complain.

This last revelation is extremely important. Why? You’ll notice that a lot of the doc-
umentation, particularly regarding recovery, will tell you to connect to an instance even
though it’s in need of major recovery. At first glance, in some cases, you’ll scratch your
head trying to figure out why they expect you to start an instance of a database that’s
been destroyed. Well, now you know.

In the next phase of database startup, the database is mounted. In this step we asso-
ciate the control, data, redo, and other database-related files with the running instance.
If you are missing files, this is where you’ll get your error. If you started your instance
using nomount you can’t use the startup command again, but you can use alter
database statements to change the state of your instance.

Let’s look quickly at what happens when you mount your database with the
instance already running but with the all the data and control files missing (because we
renamed the data directory):

SQL> alter database mount;
alter database mount
*
ERROR at line 1:
ORA-00205: error in identifying controlfile, check alert log for
more info
SQL> quit
tail /u01/app/oracle/admin/test/bdump/alert_test.log
alter database mount
Wed Oct 13 14:28:12 2004

20 / Files and Components

ORA-00202: controlfile: ‘/u02/oradata/test/control01.ctl’
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3
Wed Oct 13 14:28:12 2004
Controlfile identified with block size 0
Wed Oct 13 14:28:12 2004
ORA-205 signalled during: alter database mount...

Notice that it complains about the first control file and not the data files. That’s
because the parameter file has a listing of all the control files, and the control file is
responsible for storing information about all the other data files and resources used by
the database. If the control file can’t be read, the database doesn’t know what else
should exist! This is why you must be careful to keep good system backups of your
control files. This is also why Oracle maintains multiple copies (typically three) of the
control file for safety.

Let’s put all the data files back and try mounting the database again.

mv test.HOLD/ test
sqlplus sys/passwd as sysdba
. . .
SQL> alter database mount;
Database altered.

Looking at the processes on the system, you’ll notice after mounting the database that
no change has occurred to the processes.

Once an instance is started using a PFILE and the mount process has used the con-
trol file(s) to associate the data files with the instance, we need to open the database.
Until a database is opened it is not accessible: It’s equivalent to starting a system in sin-
gle-user mode. Some amount of interaction with the database is available at this stage,
but it’s limited to fixed tables and views. The fixed tables and views are those in the data
dictionary (Oracle’s internal configuration tables) and are preceded with v$:

SQL> select status from v$instance;
STATUS

MOUNTED

To open the database for normal access, we can alter the database again:

SQL> alter database open;
Database altered.

The shutdown process is simply the opposite of the startup:

SQL> shutdown immediate;
Database closed.

Files and Components / 21

Database dismounted.
ORACLE instance shut down.

Oracle Distribution Files
The Oracle distribution is all the stuff written to disk during the install process (assum-
ing we don’t create a database during the install). During install we’ll copy all the
Oracle binaries into our $ORACLE_HOME directory, which according to the OFA is
/u01/app/oracle/product/10.1.0/db_1 for Oracle10g. In here you’ve got all the binaries
that you’ll need to work with Oracle.

The other set of files created during install is the Oracle Inventory, found according
to the OFA in /u01/app/oracle/oraInventory. The Inventory is used by the Oracle
Universal Installer to record what products have been installed, where they were
installed, and how. The Oracle Inventory doesn’t impact databases in any way; it only
affects the installer. You can see a list of all the products and options you have installed
in the oraInventory/Components directory.

Except for security, permissions is, I think, the most confusing topic pertaining to
Oracle. The line between the UNIX user (oracle) and Oracle users (e.g., sys) is quite
blurry. Just getting logged in to SQL*Plus can be a major task when you aren’t sure
whether it wants UNIX or Oracle usernames and passwords. I’ll try to demystify this a
bit.

Users and Passwords
Authentication can be done using password authentication (also called internal authenti-
cation) or OS authentication (external authentication).

If the database is configured for OS authentication you can log in to the database
based on your UNIX UID, without authenticating to Oracle. OS authentication is
enabled or disabled based on the os_roles parameter. When you create a database
using DBCA, OS authentication is disabled by default; in fact, you won’t be able to
enable it unless you edit the initialization parameters in DBCA’s step 10 by selecting
“All Initialization Parameters” and then selecting “Show Advanced Parameters.” If you
scroll down the long list you’ll see that os_roles is set to false. You can change it to
true if you choose, but the defaults tell you that Oracle isn’t keen on you doing so.
Therefore: don’t.

In step 5 the DBCA will ask you to assign passwords to the default Oracle
accounts—SYS, SYSTEM, SYSMAN, and DBSNMP (descriptions are taken directly
from the DBCA help):

SYS Owns all base tables and the user-accessible view of the data diction-
ary (Oracle configuration information). No Oracle user should ever
alter (update, delete, or insert) any rows or schema objects in the sys
schema, because such activity can compromise data integrity. The
security administrator must keep strict control of this central
account.

SYSTEM Creates additional tables and views that display administrative infor-
mation, and internal tables and views used by various Oracle options
and tools.

SYSMAN The Enterprise Manager super admin account. This EM admin user
can create and modify other EM admin accounts, as well as adminis-
tering the database instance itself.

5. Users and Permissions

Users and Permissions / 23

DBSNMP Used by EM to monitor the database. EM uses this account to
access performance stats about the database. The dbsnmp credentials
are sometimes referred to as the monitoring credentials.

A user can also connect with SYSDBA or SYSOPER privileges. When you connect
sys/passwd as sysdba, you’re connecting as the SYS user and requesting SYSDBA
privileges. Because the SYS user is the Oracle equivalent of the UNIX root user, Oracle
makes you specify the amount of control you have, which is why you’ll get an error if
you try to connect without specifying the privileges:

SQL> connect sys/passwd
ERROR:
ORA-28009: connection to sys should be as sysdba or sysoper
SQL> connect sys/passwd as sysdba
Connected.

SYSDBA and SYSOPER privileges differ in that SYSDBA can do anything (just like
root), while SYSOPER allows everything except the ability to look at user data. Both
sets of privileges allow you to alter database, create spfile, startup and
shutdown, and alter database archivelog, and they include RESTRICTED
SESSION privileges. However, only SYSDBA can create database or drop data-
base, and the alter database recover options for SYSOPER are limited to com-
plete recovery only.

Adding New Users
If you really poke around in Oracle you’ll find that the sys account is blocked from a
variety of tasks, so we need to create some users. The easiest way to add users is with
the Enterprise Manager. In case you have to use SQL, here’s how:

bash-2.05$ sqlplus /nolog
. . .
SQL> connect sys/passwd as sysdba;
Connected.
SQL> create user ben profile default identified by passwd
2 default tablespace users
3 temporary tablespace temp
4 account unlock;

User created.
SQL> grant connect to ben;
Grant succeeded.
SQL> alter user ben quota unlimited on users;
User altered.

Here, as SYSDBA, we’ve created the user “ben” with the default profile identified by the
password “passwd”. The user’s default tablespace is “users” and temporary tablespace is
“temp”, and the account is unlocked. In the second statement we grant the “connect”
role to user ben. And in the third statement we alter ben’s quota on the users tablespace.

24 / Users and Permissions

Now let’s log in as ben:

bash-2.05$ sqlplus /nolog
. . .
SQL> connect ben/passwd
Connected.
SQL> create table mytable (
2 id number(2),
3 name varchar2(30)
4);

create table mytable (
*
ERROR at line 1:
ORA-01950: no privileges on tablespace ‘USERS’

The user has no privileges because the user wasn’t defined with any roles. Each user
must be assigned one or more security roles. Note that even though our second SQL
statement granted the CONNECT role to the user, that wasn’t enough. Let’s spend a
minute sorting out the differences among privileges, roles, and profiles.

Privileges, Roles, and Profiles
Let’s define them first:

Privileges A user privilege is a right to execute a particular type of SQL state-
ment, or a right to access another user’s object, execute a PL/SQL
package, and so on. The types of privileges are defined by Oracle.

Roles Roles are created by users (usually administrators) to group together
privileges or other roles. They are a means of facilitating the granting
of multiple privileges or roles to users.

Profiles Profiles define resource limits imposed upon a user account. The
“default” profile sets all resource limits to “unlimited.”

So we can assert a good amount of control over the user here by bundling privileges
into roles, then granting those roles to user accounts, and then further controlling the
resource usage of the account with a profile. In almost all cases the default profile will
be used.

Let’s look at roles in more depth. Here are some of the predefined roles Oracle
makes available to us:

CONNECT Includes the following system privileges: alter session, cre-
ate cluster, create database link, create sequence, create ses-
sion, create synonym, create table, create view.

RESOURCE Includes the following system privileges: create cluster, cre-
ate indextype, create operator, create procedure, create
sequence, create table, create trigger, create type.

DBA All system privileges with admin option.

Users and Permissions / 25

EXP_FULL_DATABASE Provides the privileges required to perform full and incre-
mental database exports: select any table, backup any table,
execute any procedure, execute any type, administer
resource manager, and insert, delete, and update on the
tables SYS.INCVID, SYS.INCFIL, and SYS.INCEXP. It
also includes EXECUTE_CATALOG_ROLE and
SELECT_CATALOG_ROLE.

IMP_FULL_DATABASE Provides the privileges required to perform full database
imports. Includes an extensive list of system privileges (use
view DBA_SYS_PRIVS to view these privileges) and the
EXECUTE_CATALOG_ROLE and SELECT_CATA-
LOG_ROLE.

By utilizing the data dictionary (Oracle configuration tables) we can check the current
set of roles and privileges. The DBA_ROLES table contains all the roles available, and
DBA_ROLE_PRIVS contains the user-to-role mappings. If you’re not sure which roles
are assigned to a user, check this table:

SQL> select * from DBA_ROLES;
ROLE PASSWORD

CONNECT NO
RESOURCE NO
DBA NO
SELECT_CATALOG_ROLE NO
EXECUTE_CATALOG_ROLE NO
...
SQL> select * from DBA_ROLE_PRIVS;
GRANTEE GRANTED_ROLE ADM DEF

BEN CONNECT NO YES
DBA OLAP_DBA NO YES
DBA XDBADMIN NO YES
. . .

Just as we did when creating the user, we can use SQL’s grant statement to grant new
roles to a user. We can also use the revoke statement to remove a role from the user.

SQL> grant resource to ben;
Grant succeeded.
SQL> select * from DBA_ROLE_PRIVS where grantee = ‘BEN’;
GRANTEE GRANTED_ROLE ADM DEF

BEN CONNECT NO YES
BEN RESOURCE NO YES
SQL> revoke resource from ben;
Revoke succeeded.

26 / Users and Permissions

SQL> select * from DBA_ROLE_PRIVS where grantee = ‘BEN’;
GRANTEE GRANTED_ROLE ADM DEF

BEN CONNECT NO YES

Changing Passwords
Passwords can be changed by simply altering the user:

SQL> ALTER USER “BENR” IDENTIFIED BY “passwd”;
User altered.

The listener allows remote connection to the database. It’s part of the larger Oracle Net
Services framework. (FYI: In the past Oracle used the marketing terms Net8 and
SQL*Net for basically the same thing—see http://www.orafaq.com/faqnet.htm for the
few differences.)

There are three interfaces for managing Oracle network configuration: Enterprise
Manager, the Oracle Net Configuration Assistant GUI (the binary is netca), and the
CLI tools (lsnrctl, the Listener Control Utility, and cmctl, the Oracle Connection
Manager Control Utility).

At a high level you need to do two things: configure and start the listener, and then
configure name resolution on the clients. Both of these are easily done using netca or
EM, but we’ll look at the plain files so that you’ll be able to do it without these tools.

Configuring the Listener
The listener is easily configured in the $ORACLE_HOME/network/admin/listener.ora
configuration file. Here is a basic configuration:

LISTENER =
(DESCRIPTION_LIST =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = 10.10.0.130)(PORT = 1521))

)
)

SID_LIST_LISTENER =
(SID_LIST =
(SID_DESC =
(ORACLE_HOME = /u01/app/oracle/product/10.1.0/db_1)
(SID_NAME = test)

)
)

The first section is labeled “LISTENER”; this is the name of the listener itself, and can
be anything you like, although “LISTENER” is the traditional name. Then we have
some nested configuration parameters, the most important of which is the address sec-
tion, which in this case specifies the listener to use TCP, on host address 10.10.0.130
port 1521. Port 1521 is the traditional default port, but again you can use anything
you like.

6. The Listener

The SID_LIST_LISTENER section defines our essential parameters, namely
SID_NAME (same as $ORACLE_SID) and ORACLE_HOME (same as
$ORACLE_HOME). The name “SID_LIST_LISTENER” is derived from the LIS-
TENER name, so if you did change the listener’s name to “MYLISTENER”, for
instance, your second section would be “SID_LIST_MYLISTENER”.

If you wanted to have multiple databases specified you could nest more SID_DESC
parameters in the SID_LIST. In the same way, if you wanted to listen on different IP
addresses you could use multiple DESCRIPTION sections in the
DESCRIPTION_LIST. For example:

LISTENER =
(DESCRIPTION_LIST =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = 10.10.0.130)(PORT = 1521))

)
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = 10.20.0.10)(PORT = 1522))

)
)

SID_LIST_LISTENER =
(SID_LIST =
(SID_DESC =
(ORACLE_HOME = /u01/app/oracle/product/10.1.0/db_1)
(SID_NAME = test)

)
(SID_DESC =
(ORACLE_HOME = /u01/app/oracle/product/10.1.0/db_1)
(SID_NAME = anotherdb)

)
)

For complete details on syntax, please check out the Oracle Database Net Services
Reference Guide: http://download-west.oracle.com/docs/cd/B12037_01/
network.101/b10776/toc.htm.

Starting the Listener
The listener can be started either before or after the database instance is started. Start
the listener with a simple lsnrctl start:

$ lsnrctl start
LSNRCTL for Solaris: Version 10.1.0.2.0 - Production on 11-OCT-2004
15:42:55
Copyright (c) 1991, 2004, Oracle. All rights reserved.
Starting /u01/app/oracle/product/10.1.0/db_1/bin/tnslsnr: please
wait...
TNSLSNR for Solaris: Version 10.1.0.2.0 - Production
System parameter file is /u01/app/oracle/product/10.1.0/db_1/
network/admin/listener.ora

28 / The Listener

The Listener / 29

Log messages written to /u01/app/oracle/product/10.1.0/db_1/
network/
log/listener.log

Listening on:
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=10.10.0.130)
(PORT=1521)))

Connecting to
(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=10.10.0.130)
(PORT=1521)))

STATUS of the LISTENER

Alias LISTENER
VersionTNSLSNR for Solaris: Version 10.1.0.2.0
Start Date 11-OCT-2004 15:42:55
Uptime 0 days 0 hr. 0 min. 0 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File/u01/app/oracle/product/10.1.0/db_1/network/
admin/listener.ora

Listener Log File/u01/app/oracle/product/10.1.0/db_1/network/
log/listener.log

Listening Endpoints Summary...

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=10.10.0.130)(PORT=1521)))
Services Summary...
Service “test” has 1 instance(s).
Instance “test”, status UNKNOWN, has 1 handler(s) for this ser-

vice...
The command completed successfully

Don’t worry about the status being unknown. That’s normal.

TNS Resolution
The listener will sit patiently waiting for connections, but each Oracle client needs a
way to identify which database is where. This is done using TNS. TNS configuration is
kept in the tnsnames.ora file, which is basically an Oracle equivalent of a host file.

This file can be put in a variety of places. Typically it goes in $ORACLE_HOME/
network/admin if you have a full client installed, but each OS has a variety of places it
looks when the client starts up. The best way to find out where it’s looking is to use
truss or strace while connecting to a dummy database and seeing which files it
opens (e.g., strace sqlplus user/passwsddatabase).

Here’s an example of a tnsnames.ora:

testdb, syslogdb =
(description =
(address_list =
(address =

30 / The Listener

(protocol = tcp)
(host = 10.10.0.130)
(port = 1521)

)
)
(connect_data =
(sid = test)

)
)

What’s important here? The first line is the name of the database, followed by all
the aliases you want. When you use a client to connect to the database, it’ll look for
the name of the database you supply in the tnsnames.ora, and when it finds that name
it’ll use the information associated with it. Because the SID is specified in the descrip-
tion, the name is completely arbitrary.

Inside the description is the important stuff, namely the host, which I recommend
being specified as the IP address unless you’ve got a good reason not to do that. The
port will almost always be the default Oracle Listener port 1521. In the connect data
section of the description we supply the all-important SID.

You can have as many databases listed in the tnsnames.ora as you like; they all fol-
low the format above. But please note that the file is read completely each time it’s
accessed, so if you make a syntax error on line 15, line 16 and beyond won’t get
processed. If something just won’t work, check for an error in a database description
earlier in the file.

For complete details on syntax, please check out the Oracle Database Net Services
Reference Guide: http://download-west.oracle.com/docs/cd/B12037_01/network.101/
b10776/toc.htm.

Connecting Remotely
Oracle provides the Oracle Instant Client on the Oracle.com download page (see the
OCI programming section, below), along with a SQL*Plus client. What’s cool is that
you can use the small SQL*Plus client instead of installing the full (300+MB) Oracle
Client. I’ve installed both of these packages on my Linux workstation and put the
tnsnames.ora file in my home directory as a test (note: this is not the machine the
database is on):

$ vi ~/.tnsnames.ora
$ sqlplus ben/passwd@testdb
. . .
SQL> select count(*) from sys_log_tbl;
COUNT(*)

903
SQL> quit

The Listener / 31

If you had a full client installed, you would need to make sure your
$ORACLE_HOME was set before starting SQL*Plus, but it would work the same
way. As was mentioned before, $HOME/.tnsnames.ora is only one of several places
you can put it. Be aware that if the client can find a sqlnet.ora, it won’t look for the
tnsnames.ora file!

For more details on net services, please check out the Oracle Database Net Services
Administrator’s Guide: http://download-west.oracle.com/docs/cd/B12037_01/
network.101/b10775/ toc.htm.

Troubleshooting TNS
A nifty tool is tnsping, which functions like testing DNS name resolution using ping.
When you can’t connect to a database via TNS, tnsping comes in handy for figuring
out why:

bash-2.05$ tnsping testdb
. . .
Used parameter files:
Used TNSNAMES adapter to resolve the alias
Attempting to contact (description = (address_list = (address =
(protocol = tcp) (host = 10.10.0.130) (port = 1521)))
(connect_data = (sid = test)))
OK (10 msec)

7. Oracle Programming

The purpose of a database is to store and retrieve data. Oracle provides a wide variety
of methods for interacting with the database:

n SQL*Plus for traditional SQL interaction via CLI
n PL/SQL for scripting purposes
n Perl (via the DBI/DBD interfaces)
n a C API called the OCI (Oracle Call Interface), which is used by most Oracle

tools
n a C++ interface called OCCI (Oracle C++ Call Interface)
n Pro*C and Pro*C++ precompilers for embedding SQL and PL/SQL in C and

C++
n a full complement of Java, .Net, OLE, etc., interfaces

You can find documentation on these interfaces in the Oracle Documentation
Library, where you should look at Application Developer’s Guide—Fundamentals to get
started: http://download-west.oracle.com/docs/cd/B14117_01/nav/portal_5.htm.

SQL
SQL can be scripted in the purest sense of the word by simply dumping all your SQL
statements into a flat file, naming it [something].sql, and then running it. There is no
logic, just SQL as you’d enter it in SQL*Plus. Comments can be added by prefixing
them with double dashes.

You can execute your SQL in either of two ways: via the SQL*Plus command line,
by preceding the filename with an at sign (@) and leaving off the .sql extension, or via
SQL*Plus’s non-interactive mode, à la sqlplus user/passwd script, leaving off the .sql
just as with the interactive form. Here’s an example of the second method:

$ cat sample1.sql
— Sample of a simple sql script
CREATE TABLE test (

i int,
s char(10)

);
INSERT INTO test VALUES(1, ‘foobar’);
INSERT INTO test VALUES(2, ‘fooba’);
INSERT INTO test VALUES(3, ‘foob’);

Oracle Programming / 33

$ sqlplus ben/passwd
. . .
SQL> @sample1
Table created.
1 row created.
1 row created.
1 row created.
SQL> select * from test where i = 1;
I S

1 foobar
SQL> drop table test;
Table dropped.

PL/SQL
PL/SQL is a basic scripting language for the Oracle dialect of SQL (based on SQL99).
Along with all the typical SQLesque things you can do, PL/SQL contains a helpful
dose of basic logic handling and data constructs. It’s very similar to ADA in its design.

A PL/SQL script contains as many as three sections: a BEGIN section is required;
DECLARE and EXCEPTION sections are optional. Variables use standard SQL data
types (a string might be VARCHAR2). In the DECLARE section you declare variables
and set up procedures. The BEGIN section is where you put the real meat of your
script and where the processing is done. The EXCEPTION section is for handling
exceptions (errors). Every script ends with END, signaling the end of execution.

In addition to these sections, you can subclassify a script as a procedure or a function,
able to be reused with packages, etc. Here is an example:

-- PL/SQL Example
DECLARE
acct_balance NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;
debit_amt CONSTANT NUMBER(5,2) := 500.00;

BEGIN
SELECT bal INTO acct_balance FROM accounts
WHERE account_id = acct
FOR UPDATE OF bal;

IF acct_balance >= debit_amt THEN
UPDATE accounts SET bal = bal - debit_amt
WHERE account_id = acct;

ELSE
INSERT INTO temp VALUES
(acct, acct_balance, ‘Insufficient funds’);
--insert account, current balance, and message

END IF;
COMMIT;

END;

34 / Oracle Programming

As you can see, we initialize three variables in the DECLARE section, and then in
BEGIN we process some SQL using PL/SQL-provided logic. PL/SQL code is executed
just like SQL statements in a file, as seen in the last section.

PL/SQL itself is too big a subject to discuss in depth here. For more information on
PL/SQL, see the PL/SQL User’s Guide and Reference: http://download-west.oracle.com/
docs/cd/B12037_01/appdev.101/b10807/toc.htm.

Pro*C: The Oracle SQL Precompiler
Pro*C is a precompiler for C and C++. You can embed SQL statements in your code,
run the precompiler (the proc command, pronounced “pro c”) on your source, and out
comes a new source file that you can compile as usual. You might think that Pro*C is
just for people too lazy to learn the OCI, but it’s actually using its own library, SQL-
LIB, not the OCI. SQLLIB is unsupported (if used without Pro*C) and apparently
changes frequently, so it’s not advised that you use it directly.

Sysadmins may find the idea of a SQL preprocessor odd, but think about it for a
second: All those # lines in your C source are directives for the C preprocessor. When
you compile your C source, the preprocessor (cpp) is run on your code before it’s fed
to the parser and, eventually, the assembler and linker. Pro*C is really just adding a
level of preprocessing prior to your calling the compiler. Let’s play with a really simple
example to get the idea:

#include <stdio.h>
#include <sqlca.h> /* SQL Communications Area */
#defineUNAME_LEN 20 /* Varchar limits */
#definePWD_LEN40
VARCHARusername[UNAME_LEN]; /* SQL vars for */
VARCHARpassword[PWD_LEN]; /* username and passwd */
int main(){
strncpy((char *) username.arr, “SCOTT”, UNAME_LEN);
username.len = strlen((char *) username.arr);
strncpy((char *) password.arr, “TIGER”, PWD_LEN);
password.len = strlen((char *) password.arr);
EXEC SQL CONNECT :username IDENTIFIED BY :password;
printf(“Connected to the database as user: %s\n”, username.arr);
return(0);

}

Points of interest to note here: SQL is executed by using the EXEC SQL statement
prior to the SQL command. Notice that for the SQL statement, we’re using SQL vari-
ables using the SQL VARCHAR data type. Probably the most tricky bit to get used to
is the mixing of C and SQL variables in the same source. C variables are referred to as
“Host Variables” in the documentation. All SQL variables are prepended with a “:”
when dereferenced.

Oracle Programming / 35

It should also be noted that, just as in SQL*Plus, you don’t need to capitalize every-
thing, but it’s a good way to help you distinguish betwen SQL and “real” C code.

If you’re like me, you’re probably wondering about “username.len” in the code
above. Well, VARCHARs are handled in a weird way; the Pro*C precompiler is actual-
ly replacing those statements with structs. Each VARCHAR (and VARCHAR2) struct
has two elements, arr and len. Thus, VARCHAR username[20]; becomes:

struct
{
unsigned short len;
unsigned char arr[20];

} username;

You’ll find several, shall we say, interesting little tidbits like this.
To run the precompiler on your code, use the proc binary with at least two argu-

ments, the input source and the output filename:

$ proc connect.c connect-pro.c
Pro*C/C++: Release 10.1.0.2.0 - Production on Thu Oct 7 14:59:54
2004
Copyright (c) 1982, 2004, Oracle. All rights reserved.
System default option values taken from:
/u01/app/oracle/product/10.1.0/db_1/precomp/admin/pcscfg.cfg

$ wc -l connect*.c
215 connect-pro.c
24 connect.c
239 total

Once you’ve successfully precompiled with Pro*C, you can compile your code as
usual. Make sure that you link it against the SQLLIB libraries (found in
$ORACLE_HOME/precomp/).

Because of all the odd ins and outs of Pro*C, I wouldn’t recommend it as a database
management interface for common tasks; PL/SQL is much better and easier for that
sort of thing. However, if you really want to get down and dirty, Pro*C is probably an
easier method than using the OCI directly. Just make sure you expect to spend more
time learning and experimenting than coding.

To get the full scoop on Pro*C, read the Pro*C/C++ Programmer’s Guide: http://
download-west.oracle.com/docs/cd/B14117_01/appdev.101/a97269/toc.htm.

The C Interface: OCI
The Oracle Call Interface (OCI) lets you get close and cuddly with Oracle. One of the
chief benefits of the OCI is the ability to leverage the OCI Instant Client, a small set
of shared libraries that allows your application to run without an $ORACLE_HOME
defined and thus without a full install of the Oracle client software! This set of libraries
(libociei.so, libclnstsh.so.10.1, and libnnz10.so) can be a lifesaver if you’re creating
small portable applications in places you don’t want to install a full client.

36 / Oracle Programming

However, the OCI isn’t for the timid. You can have a look at the headers commonly
used: oratypes.h and oci.h.

The typical flow is to initialize the OCI environment (OCIEnvCreate()), connect
to the database (OCILogon()), prepare (OCIStmtPrepare()) and then execute
(OCIStmtExecute()) SQL statements, and finally disconnect (OCILogoff). In addi-
tion, there is a pile of different OCI handles that you’ve got to initialize, destroy, and
manage, which can become tedious. But because this is a low-level interface, you can
go beyond using SQL statements and interact with Oracle directly. Check out a sample
SQL select in OCI:

text *sqlstmt = (text *)”SELECT * FROM employees WHERE employee_id

= 100”;
checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (OraText *)sqlstmt,

(ub4)strlen((char *)sqlstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, 0, 0,
(OCISnapshot *) 0, (OCISnapshot *) 0, OCI_DESCRIBE_ONLY));

/* */

Notice that for safety’s sake everything is wrapped in checkerr() functions. Here a
SQL statement is defined (text * sqlstmt) and then prepared with
OCIStmtPrepare() and executed with OCIStmtExecute(). You’re seeing a lot of dif-
ferent database handles in there as arguments.

As I said, not for the timid. But if you need absolute power and you’ve got a lot of
time on your hands, OCI is definitely the way to go. Despite the extra work, it fits a
variety of common needs and should gradually come to seem easier and easier to work
with.

For full details on the OCI, flip through the Oracle Call Interface Programmer’s Guide:
http://download-west.oracle.com/docs/cd/B14117_01/appdev.101/b10779/toc.htm.

Regarding Perl
If you poke into $ORACLE_HOME you’ll notice a Perl directory, in which you’ve got
a pretty decent Perl setup at your fingertips. In 10g (10.1.0) you’ve got Perl 5.6.1, plus
a wide variety of applicable modules: mod_perl, URI, Apache, LWP, RPC, and more.
Of possibly greatest interest is the inclusion of the OraPERL module and DBI with the
DBD for Oracle—proof that Oracle doesn’t hate UNIX admins. A quick look at
CPAN, however, will tell you that the OraPERL module is intended only for compati-
bility with Perl 4 apps and that “any new development should use DBI directly.”

The included version of the Oracle DBD in Oracle 10.1.0 is 1.12. It’s incredibly
easy to use, and most sysadmins will probably find the DBD interface far more
“homey” than PL/SQL.

To use the Oracle distribution of Perl you’ll need to modify two environmental vari-
ables. First, add the Oracle library directory to LD_LIBRARY_PATH if you don’t have
it included in the runtime linkers configuration (ldconfig in Linux, crle in Solaris).

Oracle Programming / 37

Second, put the Perl module directories in your PERL5LIB variable so that they are
included in INC. If you fail to add these, you’re likely to get a slew of errors.

$ export LD_LIBRARY_PATH=/u01/app/oracle/product/10.1.0/db_1/\

lib32:$LD_LIBRARY_PATH
$ export
PERL5LIB=/u01/app/oracle/product/10.1.0/db_1/perl/lib/site_\
perl/5.6.1/sun4-
solaris/:/u01/app/oracle/product/10.1.0/db_1/perl/lib/5.6.1

If you do forget to set LD_LIBRARY_PATH, you’ll notice that the Oracle DBD uses
the OCI.

Once you’ve got these things set up, you can use Perl and the DBI as you’d expect.
If you’re new to the DBI, I’d strongly suggest picking up the excellent Programming
the Perl DBI from O’Reilly. (Tim Bunce, who co-wrote Programming the Perl DBI, is
also the author of the Oracle DBI.)

Here’s a simple example of using the Perl DBI provided with Oracle10g:

#!/u01/app/oracle/product/10.1.0/db_1/perl/bin/perl
Example Perl DBI/DBD Oracle Example on Oracle 10g
use DBI;
my $dbname = “testdb”; ## DB Name from tnsnames.ora
my $user = “ben”;
my $passwd = “passwd”;
Connect to the database and return a database handle
$dbh = DBI->connect(“dbi:Oracle:${dbname}”, $user, $passwd);
if($dbh){
print(“Connected as user $user\n”);

} else {
print(“Failed to connect!\n”);
exit;

}
Prepare and Execute a SQL Statement Handle
my $sth = $dbh->prepare(“SELECT owner,table_name,num_rows FROM
all_tables”);
$sth->execute();
print(“All tables - Got rows:\n”);
print(“Owner\tTableName\tNumRows\n”);
print(“——-\t————-\t———-\n”);
while(@row = $sth->fetchrow_array()){
print(“$row[0]\t$row[1]\t$row[2]\n”);

}
print(“Select Done!...”);
Disconnect
if($dbh->disconnect){
print(“Disconnected\n”);

} else {
print(“Failed to disconnect\n”);

}

38 / Oracle Programming

In this script we’re grabbing three columns from the data dictionary’s ALL_TABLES
system table. We connect, grab the rows and output them, and then disconnect from
the database when we’re done.

If you have trouble connecting to the database, remember that you need to connect
through the listener (you can connect locally, but it’s pretty fidgety), so double-check
that you can properly tnsping the database before freaking out about your script.

The output looks like this (several rows removed for clarity):

$./example.pl
Connected as user ben
All tables - Got rows:
Owner TableName NumRows
--
SYS DUAL 1
SYS SYSTEM_PRIVILEGE_MAP 173
SYS TABLE_PRIVILEGE_MAP 23
. . .
SYS PLAN_TABLE$
SYS OLAPTABLEVELS
Select Done!...Disconnected

For more information on using the DBI, please refer to CPAN and/or
“Programming the Perl DBI”: http://search.cpan.org/imb/DBI-1.45/DBI.pm;
http://search.cpan.org/imb/DBD-Oracle-1.15/Oracle.pm.

I discuss the programming interfaces and SQL*Loader for two reasons. First, as a
sysadmin, you’re the person the database admins are going to bug when they break,
and we know more about general programming and parsing techniques than the data-
base admins do (hopefully). Second, as a sysadmin, you need to be really concerned
about recovering the database if the system gets dumped/destroyed for some reason.
Recovering a table or an index doesn’t matter so much; that’s stuff the database admins
can handle using their normal backups via RMAN. In order to look at recovery sys-
tems in the following chapters, we need to put data in the databases, so that we can
verify that we did recover the database properly. PL/SQL and, especially, SQL*Loader
are good ways to automate some additions to the database (sitting around doing SQL
INSERTs all day isn’t my idea of fun).

SQL*Loader is essentially a fatty parser. It can take delimited input data files and
parse and sort them into the correct tables. This is useful for taking output data from
some other system (e.g., a firewall log, Apache logs, an off-site tape report) and loading
it into Oracle tables.

You can interface with SQL*Loader using the sqlldr command line utility or by
using PL/SQL. Obviously you need to start by creating a table or tables in which to
store the loaded data. Next you’ll create a SQL*Loader control file. The control file
describes the input data, how to load it, and where to put it. Finally, sqlldr is execut-
ed to connect to the database and load the input data as you described in the control
file.

Please note that SQL*Loader control files should not be confused with the database
control files we discussed in previous chapters.

Loading Syslog into a Table
As an example, let’s load syslog into our database. We’ll create a table with three
columns: one for the timestamp, one for the hostname, and one for the message.

First, let’s create the table, which we’ll name “sys_log_tbl”:

SQL> create table sys_log_tbl (
2 timestamp date,
3 hostname varchar2(12),
4 message varchar2(1024)
5);

Table created.

8. SQL*Loader

Now we’ll create the control file for SQL*Loader to use.

$ cat syslog.ctl
-- SQL*Loader Control File for Syslog
LOAD DATA
INFILE ‘messages.0’
APPEND
INTO TABLE sys_log_tbl
(timestamp POSITION(01:15) DATE “Mon DD HH24:MI:SS”,
hostname POSITION(17:21) CHAR,
message POSITION(23:1024) CHAR

)

The control file contains a number of directives that tell SQL*Loader how to load
the data and in which table to load it. The control file we’re using is pretty minimalist.
You’ll notice that the whole thing looks like one long SQL statement, because it is. The
statement says: Load data from the input file “messages.0” and append it into the table
sys_log_tbl. The statements in parentheses will translate the input file to the column
format in the destination table. In this case we’re using fixed-field processing using the
POSITION keyboard. The first field, “timestamp,” is a date occupying characters
1–15, “hostname” is a string occupying characters 17–21 of the input line, and the
message is a string that extends from character 23 out to character 1024.

There are a variety of different parsing methods available, but in this case fixed pro-
cessing works well, since the hostname field is constant. We could tune this even more
by including conditionals, but that’s beyond the scope of this booklet.

Now we can run SQL*Loader using our control file:

$ sqlldr USERID=ben/passwd CONTROL=syslog.ctl LOG=syslog.log
. . .
Commit point reached - logical record count 64
Commit point reached - logical record count 128
Commit point reached - logical record count 192
Commit point reached - logical record count 256
Commit point reached - logical record count 301

Now that it’s done, let’s look at the table to see if everything went where it was sup-
posed to:

SQL> select * from sys_log_tbl;
TIMESTAMP HOSTNAME

MESSAGE

05-OCT-04 vixen
genunix: [ID 723222 kern.notice] 00000000fff63cc0 unix:\
sync_handler+12c
(fff57618, 1000000, 1412d55, 0, f0055aa6, f997fe48)
05-OCT-04 vixen

40 / SQL*Loader

SQL*Loader / 41

genunix: [ID 179002 kern.notice] %l0-3: 0000000000000001 \
0000000000000001
000000000001 00000000fff789b8

SQL*Loader is generally found to be the fastest method available for loading data
into Oracle, followed closely by Data Pump imports.

For more information on SQL*Loader, please refer to Part II of the Oracle Database
Utilities guide: http://download-west.oracle.com/docs/cd/B14117_01/server.101/
b10825/toc.htm.

While composing parsing translations in your control files, keep a copy of the
Oracle Database SQL Reference handy: http://download-west.oracle.com/docs/cd/
B14117_01/server.101/b10759/toc.htm.

Oracle, like other RDBMSes, has the ability to import and export databases. In
Oracle10g this system was significantly overhauled and dubbed Data Pump. More can
be found about this in the Oracle Database Utilities manual.

Data Pump provides the ability to export in several modes, including Full Export,
Schema, Table, Tablespace, and Transportable Tablespace. Exports are “logical back-
ups,” which means the essence of the instance is exported but not the framework.

Exports feel like a real “pack up and go” operation. Think of leaving an office; you
don’t take the desks or drawers (tablespaces, control files, etc.), you just empty the con-
tents into a big container and leave. The result of an export is a container called a
dump file. The file is binary and effectively contains a pile of INSERT statements which,
when imported, update the instance. Because of this you can’t import a dump without
a database instance ready to accept it, just as you can’t unpack your stuff in a new
office unless it has a desk and drawers similar to the ones you had before. Therefore an
export can’t be considered a serious backup method. It’s a great way to create a tempo-
rary backup or move data from one place to another, but it’s not much different from
simply writing a Perl or PL/SQL script to output every table into a flat file and then
using SQL*Loader to CREATE and INSERT everything back into tables. “Recovering” a
database would involve creating a new instance of the database from scratch (using
DBCA, for example) and then importing into that new instance.

Within the limits of Data Pump exports, they do offer some advantages. Because
you are importing data into an existing instance, you can easily move tables, table-
spaces, schemas, etc., into other databases. Furthermore, because the data is fairly
generic, it provides a solid method of migrating from one version of Oracle to another.
I’ve seen several database admins take exports just before applying major patches, as a
failsafe.

The Export
The first part of an export is the creation of a directory reference in which to put the
dumpfile that will be created by the export utility. This is done with a CREATE OR
REPLACE DIRECTORY statement. You can name the directory reference anything you
like: I call it exportdir here. Once it’s created, we grant read and write privileges on that
directory to the user who will be performing the export, in this case the user system:

9. Exporting Databases with Data Pump

Exporting Databases with Data Pump / 43

$ echo $ORACLE_SID
test
$ su
Password:
mkdir /export/oracle_exports
chown oracle:dba /export/oracle_exports
exit
$ sqlplus /nolog
. . .
SQL> connect sys/passwd as sysdba;
Connected.
SQL> create or replace directory exportdir as
‘/export/oracle_exports’;
Directory created.
SQL> grant read, write on directory exportdir to system;
Grant succeeded.
SQL> quit

Now that the directory is ready and Oracle can write to it, we can do the export.
There are two binaries for exports: the traditional exp export utility and the Data Pump
version, expdp. Both work the same way, but Data Pump offers significantly more fea-
tures and performance than the traditional tool. (For instance, you can pause import or
exports using Data Pump: hit control-c while it’s running, and poke around; it won’t
stop the operation.)

There are more options available than we’ll use here, but we’ll be performing a
FULL export to the specified DUMPFILE and direct logging to the noted logfile.
Notice that we write the path in the form directory:filename.dmp, where “directory” is
the Oracle reference name to the directory we set up in the previous step:

$ expdp system/passwd FULL=y \
> DUMPFILE=exportdir:Oracle-Oct11-fullexp.dmp \
> LOGFILE=exportdir:Oracle-Oct11-fullexp.log
Export: Release 10.1.0.2.0 on Monday, 11 October, 2004 17:49
Copyright (c) 2003, Oracle. All rights reserved.
Connected to: Oracle Database 10g Enterprise Edition Release
10.1.0.2.0
With the Partitioning, OLAP and Data Mining options
FLASHBACK automatically enabled to preserve database integrity.
Starting “SYSTEM”.”SYS_EXPORT_FULL_01”: system/******** FULL=y
DUMPFILE=exportdir:Oracle-Oct11-fullexp.dmp
LOGFILE=exportdir:Oracle-Oct11-fullexp.log

Estimate in progress using BLOCKS method...
Processing object type DATABASE_EXPORT/SCHEMA/TABLE/TABLE_DATA
Total estimation using BLOCKS method: 24.68 MB
Processing object type DATABASE_EXPORT/TABLESPACE
Processing object type DATABASE_EXPORT/DE_SYS_USER/USER
Processing object type DATABASE_EXPORT/SCHEMA/USER
. . .

44 / Exporting Databases with Data Pump

. . exported “WMSYS”.”WM$VERSION_TABLE” 0 KB 0 rows

. . exported “WMSYS”.”WM$VT_ERRORS_TABLE” 0 KB 0 rows

. . exported “WMSYS”.”WM$WORKSPACE_SAVEPOINTS_TABLE” 0 KB 0 rows
Master table “SYSTEM”.”SYS_EXPORT_FULL_01” successfully
loaded/unloaded
**
Dump file set for SYSTEM.SYS_EXPORT_FULL_01 is:
/export/oracle_exports/Oracle-Oct11-fullexp.dmp
Job “SYSTEM”.”SYS_EXPORT_FULL_01” completed with 2 error(s) at
18:03

The export is now complete and ready to be used.

The Import
Once you’ve got your full export you’re good to go. As a test, I’ve created a clean data-
base instance on my Linux workstation at home and named it test, just like the data-
base I exported from at the office.

The first thing we need to do is start up the new clean instance as usual. Once that’s
done we can copy over the exported dump:

$ sqlplus sys/passwd as sysdba;
. . .
Connected to an idle instance.
SQL> startup
ORACLE instance started.
Total System Global Area 159383552 bytes
Fixed Size 777896 bytes
Variable Size 132915544 bytes
Database Buffers 25165824 bytes
Redo Buffers 524288 bytes
Database mounted.
Database opened.
SQL> quit;
$ mkdir /u01/app/oracle/DUMPS
$ cd /u01/app/oracle/DUMPS
$ scp hostxyz:/export/.../Oracle-Oct11-fullexp.dmp .
$ sqlplus sys/passwd as sysdba;
. . .
SQL> create or replace directory dump_dir as
‘/u01/app/oracle/DUMPS’;
Directory created.
SQL> quit

Notice that you need to create a directory reference. It doesn’t matter what directory or
reference name you use, but if you don’t create the reference, you’ll get errors from
Data Pump.

Now let’s do the import, using the impdp command:

Exporting Databases with Data Pump / 45

$ impdp system/passwd FULL=y DIRECTORY=dump_dir \
> DUMPFILE=Oracle-Oct11-fullexp.dmp LOGFILE=Oracle-Oct11-import.log
Import: Release 10.1.0.2.0 - Production on Tuesday, 12 October,
2004 1:50
Copyright (c) 2003, Oracle. All rights reserved.
Connected to: Oracle Database 10g Enterprise Edition Release
10.1.0.2.0
With the Partitioning, OLAP and Data Mining options
Master table “SYSTEM”.”SYS_IMPORT_FULL_01” successfully
loaded/unloaded
Starting “SYSTEM”.”SYS_IMPORT_FULL_01”: system/******** FULL=y
DIRECTORY=dump_dir DUMPFILE=Oracle-Oct11-fullexp.
dmp LOGFILE=Oracle-Oct11-import.log
Processing object type DATABASE_EXPORT/TABLESPACE
ORA-31684: Object type TABLESPACE:”UNDOTBS1” already exists
ORA-31684: Object type TABLESPACE:”SYSAUX” already exists
ORA-31684: Object type TABLESPACE:”TEMP” already exists
. . .
Processing object type DATABASE_EXPORT/SCHEMA/DE_POST_SCHEMA_
PROCOBJ...
Processing object type DATABASE_EXPORT/SCHEMA/DE_POST_SCHEMA_
PROCOBJ...
Job “SYSTEM”.”SYS_IMPORT_FULL_01” completed with 6877 error(s) at
01:54
$

The import completed successfully. Note all the errors (6877 of them!) due to du-
plication. This isn’t a problem; to avoid them, we could have imported with the
TABLE_EXISTS_ACTION=APPEND parameter.

Finally, let’s test the import. Remember, this is a clean instance. All I’ve done to the
database is to create it with DBCA, start it, create a directory reference, and complete
the import. I did not create the user ben here. If the import worked properly I should
be able to log in, since my old user (ben/passwd) can access the “sys_log_tbl” table that
we created in the SQL*Loader chapter:

$ echo $ORACLE_SID
test
$ sqlplus /nolog
. . .
SQL> connect ben/passwd;
Connected.
SQL> select * from sys_log_tbl;
....
TIMESTAMP HOSTNAME

MESSAGE

46 / Exporting Databases with Data Pump

05-OCT-04 vixen
pseudo: [ID 129642 kern.info] pseudo-device: devinfo0
05-OCT-04 vixen
genunix: [ID 936769 kern.info] devinfo0 is /pseudo/devinfo@0
903 rows selected.
SQL> quit

You can find more information on Data Pump in the Oracle Database Utilities man-
ual: http://download-west.oracle.com/docs/cd/B12037_01/server.101/b10825/
toc.htm.

Why would a sysadmin like RMAN?

• RMAN can perform online (hot) backups.
• RMAN can be used for either partial or complete recovery.
• With RMAN there’s no fear of incomplete backups.
• RMAN can perform DBA-initiated backups and recovery without interven-

tion by the sysadmin.
• RMAN integrates with the existing backup infrastructure.

The problem with backing up Oracle using traditional methods is like the problem
with backing up file systems. Oracle maintains a huge amount of data in active memo-
ry: unless you shut down the database and perform a cold backup you can’t be sure
that all the transactions and changes have been captured. In order to ensure complete
and uncorrupted backups, we need a hot backup method.

Enabling ARCHIVELOG Mode
Most of the high-availability features of Oracle require you to enable ARCHIVELOG
mode for your database. When you enable this mode, redo logs will be archived instead
of overwritten. The archive logs are stored in a separate location from the tablespaces
and can be backed up regularly by your standard filesystem backup (e.g., NetBackup).
Archive logs are utilized by RMAN, Data Guard, Flashback, and many others.

If you’re going to enable ARCHIVELOG mode on a database that’s important to
you, I would recommend shutting down the database and doing a cold backup just in
case. Keeping a “final noarchivelog mode backup” seems to be a good practice.

Enabling ARCHIVELOG mode is simple: Just connect to your database in mount-
ed but closed mode (startup mount) and alter the database. But if you don’t tune a lit-
tle you’ll run into problems down the road: you need to specify LOG_ARCHIVE_DEST:

Start by checking the current archive mode:

SQL> SELECT LOG_MODE FROM SYS.V$DATABASE;
LOG_MODE

NOARCHIVELOG

We’re in NOARCHIVELOG mode and we need to change. We can use a database
alter statement, but that won’t be permanent, so let’s update the PFILE directly.

10. Using RMAN

The PFILE should be in either $ORACLE_BASE/admin/SID/PFILE or
$ORACLE_HOME/admin/SID/PFILE. I’ll add the following lines to the end
of the file:
############################

Archive Log Destinations -benr(10/15/04)

############################

log_archive_dest_1=’location=/u02/oradata/cuddle/archive’

log_archive_start=TRUE

Note that you’re not required to specify the log destination location, but if you
don’t, it may end up in a strange place (in my test it went to $ORACLE_HOME/dbs).
You can specify as many as 10 different archive log destinations by using the parame-
ters log_archive_dest_1 through log_archive_dest_10. Remember, if you run
out of space in your archive log destination the database will shut down!

Now we can start up the database in mount mode and put it in ARCHIVELOG mode:

$ sqlplus sys/passwd as sysdba;
. . .
Connected to an idle instance.
SQL> startup mount;
ORACLE instance started.
Total System Global Area 184549376 bytes
Fixed Size 1300928 bytes
Variable Size 157820480 bytes
Database Buffers 25165824 bytes
Redo Buffers 262144 bytes
Database mounted.
SQL> alter database archivelog;
Database altered.
SQL> alter database open;
Database altered.

You can see here that we put the database in ARCHIVELOG mode by using the SQL
statement “alter database archivelog,” but Oracle won’t let us do this unless the
instance is mounted but not open. To make the change we shut down the instance,
then start up the instance again with the mount option, which will mount the instance
but not open it. Then we can enable ARCHIVELOG mode and open the database fully
with the alter database open statement.

Several system views can provide us with information regarding archives:

V$DATABASE identifies whether the database is in ARCHIVELOG or
NOARCHIVELOG mode and whether MANUAL (archiving
mode) has been specified.

V$ARCHIVED_LOG displays historical archived log information from the con-
trol file. If you use a recovery catalog, the

48 / Using RMAN

Using RMAN / 49

RC_ARCHIVED_LOG view contains similar informa-
tion.

V$ARCHIVE_DEST describes the current instance, all archive destinations,
and the current value, mode, and status of these destina-
tions.

V$ARCHIVE_PROCESSES displays information about the state of the various archive
processes for an instance.

V$BACKUP_REDOLOG contains information about any backups of archived logs.
If you use a recovery catalog, the
RC_BACKUP_REDOLOG contains similar information.

V$LOG displays all redo log groups for the database and indicates
which need to be archived.

V$LOG_HISTORY contains log history information, such as which logs have
been archived and the SCN range for each archived log.

Using these tables we can verify that we are in fact in ARCHIVELOG mode:

SQL> select log_mode from v$database;
LOG_MODE

ARCHIVELOG
SQL> select DEST_NAME,STATUS,DESTINATION from V$ARCHIVE_DEST;

Learn more about managing archive redo logs in the Oracle Database Administrator’s
Guide: http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10739/
archredo.htm.

Basic RMAN Backup
Here’s a really simple backup that uses RMAN to write its output to a local file instead
of the tape subsystem. In this case, we’ve got our database (SID: cuddle) up and run-
ning:

$ echo $ORACLE_SID
cuddle
$ rman nocatalog target /
. . .
connected to target database: CUDDLE (DBID=251015092)
using target database controlfile instead of recovery catalog
RMAN> backup database;
Starting backup at 02-NOV-04
allocated channel: ORA_DISK_1
channel ORA_DISK_1: sid=162 devtype=DISK
channel ORA_DISK_1: starting full datafile backupset
channel ORA_DISK_1: specifying datafile(s) in backupset
input datafile fno=00001 name=/u02/oradata/cuddle/system01.dbf

50 / Using RMAN

input datafile fno=00003 name=/u02/oradata/cuddle/sysaux01.dbf
input datafile fno=00002 name=/u02/oradata/cuddle/undotbs01.dbf
input datafile fno=00004 name=/u02/oradata/cuddle/users01.dbf
channel ORA_DISK_1: starting piece 1 at 02-NOV-04
channel ORA_DISK_1: finished piece 1 at 02-NOV-04
piece handle=/u01/app/oracle/product/10.1.0/db_1/dbs/05g438u6_1_1
comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:01:45
channel ORA_DISK_1: starting full datafile backupset
channel ORA_DISK_1: specifying datafile(s) in backupset
including current controlfile in backupset
including current SPFILE in backupset
channel ORA_DISK_1: starting piece 1 at 02-NOV-04
channel ORA_DISK_1: finished piece 1 at 02-NOV-04
piece handle=/u01/app/oracle/product/10.1.0/db_1/dbs/06g4391f_1_1
comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:03
Finished backup at 02-NOV-04
RMAN> quit
Recovery Manager complete.

This is the most basic backup you can do with RMAN. We didn’t tell RMAN how or
where to back up the database, simply to do it.

The rman command is passed two arguments: the first, nocatalog, tells RMAN
that we aren’t using a recovery catalog database, and the second, target /, is similar
to a SQL*Plus connect statement, with information that RMAN requires to connect to
the target database. The target is the database we wish to back up.

Note that RMAN returns some interesting information before giving us a prompt.
It confirms that RMAN is connected to the target, and it lists that target. The DBID
seen after the target database SID can be very important for later recoveries; you
should write it down for future use. RMAN then confirms that because we aren’t using
a recovery catalog to store backup metadata it will instead store the data in the target
database’s control files.

The RMAN command backup database; sends RMAN on its merry way
backing up the database. By default the backup pieces will be placed in the
$ORACLE_HOME/dbs directory. This can get very messy, since your system
PFILEs are in there too; we recommend that you not use this location for your
regular backups.

Two backup pieces were created. The first contains the data files holding the table-
spaces, including the undo tablespace. The second backup piece contains the current
SPFILE and current control file.

We’ve opted to use ARCHIVELOG mode, which means we can do hot backups.
However, we didn’t want the hassle and administrative overhead of maintaining a
recovery catalog. So here’s the rub: Recall that you need a PFILE/SPFILE to start an
instance, and you need the control file to point to all the files to be mounted. If the

Using RMAN / 51

database were completely destroyed we would need both the SPFILE and the control
file to access the backup pieces made by RMAN, but they are inside the backup we just
made! Nice little loop of confusion, huh? We’ll talk about this later, but for now just
keep it in mind.

Basic Recovery
To see how RMAN can be useful for recovery, let’s take a database and damage it. We’ll
simulate a tablespace being deleted by a bad script or a stupid DBA and then try to
recover the database:

$ mv /u02/oradata/cuddle/users01.dbf
/u02/oradata/cuddle/users01.dbf.oops

There is our disaster. Let’s connect to RMAN and look for suitable backups to recover:

$ rman nocatalog target /
. . .
connected to target database: CUDDLE (DBID=251015092)
using target database controlfile instead of recovery catalog
RMAN> list backup;
List of Backup Sets
===================
. . .
BS Key Type LV Size Device Type Elapsed Time Completion Time
--
5 Full 528M DISK 00:01:43 02-NOV-04
BP Key: 5Status: AVAILABLE Compressed: NO Tag: TAG20041102T134437
Piece Name: /u01/app/oracle/product/10.1.0/db_1/dbs/05g438u6_1_1
List of Data files in backup set 5
File LV Type Ckp SCN Ckp Time Name
--
1 Full 1267667 02-NOV-04 /u02/oradata/cuddle/system01.dbf
2 Full 1267667 02-NOV-04 /u02/oradata/cuddle/undotbs01.dbf
3 Full 1267667 02-NOV-04 /u02/oradata/cuddle/sysaux01.dbf
4 Full 1267667 02-NOV-04 /u02/oradata/cuddle/users01.dbf
BS Key Type LV Size Device Type Elapsed Time Completion Time
--
6 Full 2M DISK 00:00:03 02-NOV-04
BP Key: 6 Status: AVAILABLE Compressed: NO Tag: TAG20041102T134437
Piece Name: /u01/app/oracle/product/10.1.0/db_1/dbs/06g4391f_1_1
Controlfile Included: Ckp SCN: 1267704 Ckp time: 02-NOV-04
SPFILE Included: Modification time: 15-OCT-04

We can see that we have good, current backups of this database available. Let’s now
try to recover in the basic way:

RMAN> restore datafile ‘/u02/oradata/cuddle/users01.dbf’;
Starting restore at 02-NOV-04

52 / Using RMAN

using channel ORA_DISK_1
channel ORA_DISK_1: starting datafile backupset restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup
set
restoring datafile 00004 to /u02/oradata/cuddle/users01.dbf
channel ORA_DISK_1: restored backup piece 1
piece handle=/u01/app/oracle/product/10.1.0/db_1/dbs/05g438u6_1_1
tag=TAG20041102T134437
channel ORA_DISK_1: restore complete
Finished restore at 02-NOV-04
RMAN> recover datafile ‘/u02/oradata/cuddle/users01.dbf’;
Starting recover at 02-NOV-04
using channel ORA_DISK_1
starting media recovery
media recovery complete
Finished recover at 02-NOV-04

Here, because the control files and spfile are intact, we can simply tell RMAN to
restore the missing data file, specifying which data file by its fully qualified path (which
you can also see in your list backup;).

Once the data file is restored, we can recover it to confirm that it’s consistent. Do
not confuse restoration, the act of putting the blocks back on disk, with recovery, the
act of bringing the data file into a correct state, similar to fsck’ing a file system:

SQL> select TABLESPACE_NAME,STATUS from dba_tablespaces;
TABLESPACE_NAME STATUS

SYSTEM ONLINE
UNDOTBS1 ONLINE
SYSAUX ONLINE
TEMP ONLINE
USERS ONLINE
SQL> select FILE#,STATUS,ENABLED,NAME from v$datafile;
FILE# STATUS ENABLED NAME
--
1 SYSTEM READ WRITE /u02/oradata/cuddle/system01.dbf
2 ONLINE READ WRITE /u02/oradata/cuddle/undotbs01.dbf
3 ONLINE READ WRITE /u02/oradata/cuddle/sysaux01.dbf
4 OFFLINE READ WRITE /u02/oradata/cuddle/users01.dbf

Once you’re done with the recovery, you’ll either want to bring the data file and
tablespaces online using ALTER statements, or at the very least use SQL*Plus to verify
that the tablespaces are online by looking at the Oracle data dictionary. In this case the
tablespace is online but we find the data file is offline. Let’s fix that by using an alter
statement:

SQL> alter database datafile ‘/u02/oradata/cuddle/users01.dbf’

online;
Database altered.

Using RMAN / 53

SQL> alter tablespace USERS online;
Tablespace altered.

We didn’t need to alter the tablespace since it was already online; I did it as a demon-
stration. Once you’ve successfully altered the database to bring both the data file and
the tablespaces online, you’ll want to run the queries above again to double-check.

Listing Backups
Let’s spend a minute looking at the history of backups, using the list RMAN com-
mand. Using the list backup RMAN statement, we can list the backups we’ve
made:

$ echo $ORACLE_SID
cuddle
$ rman nocatalog
. . .
RMAN> connect target /
connected to target database: CUDDLE (DBID=251015092)
using target database controlfile instead of recovery catalog
RMAN> list backup;
List of Backup Sets
===================
BS Key Type LV Size Device Type Elapsed Time Completion Time
--
1 Full 441M DISK 00:01:23 15-OCT-04
BP Key: 1 Status: AVAILABLE Compressed: NO Tag: TAG20041015T175207
Piece Name: /export/rman/rman_CUDDLE_01g2k8m8_1_1.bus
List of Data files in backup set 1
File LV Type Ckp SCN Ckp Time Name
--
1 Full 396472 15-OCT-04 /u02/oradata/cuddle/system01.dbf
2 Full 396472 15-OCT-04 /u02/oradata/cuddle/undotbs01.dbf
3 Full 396472 15-OCT-04 /u02/oradata/cuddle/sysaux01.dbf
4 Full 396472 15-OCT-04 /u02/oradata/cuddle/users01.dbf
BS Key Type LV Size Device Type Elapsed Time Completion Time
--
2 Full 2M DISK 00:00:02 15-OCT-04
BP Key: 2 Status: AVAILABLE Compressed: NO Tag: TAG20041015T175207
Piece Name: /export/rman/rman_CUDDLE_02g2k8ou_1_1.bus
Controlfile Included: Ckp SCN: 396502 Ckp time: 15-OCT-04
SPFILE Included: Modification time: 15-OCT-04

Here we can see two backup pieces: the first contains the data files for the “cuddle”
database, is 441MB in size, was made to disk, and took 1 minute and 23 seconds to
back up. We also see the pieces tag (note the tag is the same for both pieces). Also note
that each data file in the backup piece has a Checkpoint System Change Number (Ckp
SCN) associated with it (SCNs are covered in Chapter 11, below). The second piece is

54 / Using RMAN

2MB in size, took 2 seconds to back up, and was made to disk. Notice that the second
piece lists the modification time for the SPFILE and the SCN for the control file.

The list command has a number of arguments that allow you to tailor the output.
A concise output is seen using list backup summary.

See a complete list of options to the RMAN list command in the Oracle Database
Recovery Manager Reference manual: http://download-west.oracle.com/docs/cd/
B14117_01/server.101/b10770/toc.htm.

Advanced Backup
The method we used for a basic RMAN backup shows how to use RMAN, but it
doesn’t provide an efficient way to automate the process using traditional tools such as
cron. Using a little RMAN scripting, the process can easily be controlled from a script
and run from cron or any other scheduling method.

The foundation of this method of using RMAN is built on the run block. Within
the block is a list of RMAN commands to be run sequentially. When the block is han-
dled by RMAN, it will first verify that each of the input lines in the block is valid and
proper and then execute each statement sequentially. This is as good a method as possi-
ble for ensuring that the operation is atomic.

Here is a simple RMAN run block (the backup_full.rman we’ll use in a minute):

run {
allocate channel d1 type disk;
backup full database format ‘/export/rman/rman_%n_%T_%s_%p.bus’;

}

In this run block we’re simply allocating a disk channel and performing a backup to
the /export/rman directory using a specific naming convention for the output backup
set.

This run block can be run directly from the RMAN prompt by entering it line by
line. However, the best way to execute it is from a standard command line, wrapped in
a script and/or controlled from cron:

$ rman nocatalog target / \
> cmdfile=’backup_full.rman’ log=’/export/rman/rman.log’
RMAN> 2> 3> 4> 5>

Here the RMAN executable is called as usual, but we supply the location of an RMAN
script to run with the cmdfile argument, and we determine the place to output the
logging information by the log argument.

When RMAN is executing, it will output the RMAN prompts but nothing else.
This can be useful for debugging, but should probably be redirected for cleanliness
when used from a script or cron.

Comments can be put in RMAN scripts using a hash mark (#).

Using RMAN / 55

More details on syntax can be found in the Oracle Database Recovery Manager
Reference: http://download-west.oracle.com/docs/cd/B14117_01/server.101/b10770/.

Advanced Recovery
If you’ve spent any time with RMAN before reading this booklet, you’ll have noticed
that it’s not really designed for complete disaster recovery. As a sysadmin, I’m con-
cerned about what to do when the entire environment is in ruins and I can’t depend on
any other system being available. For advanced recovery we’re going to look at how you
would recover a database if the only parts you have available are the backup pieces. In
this case, I’m going to use my two backup pieces from the advanced RMAN backup
we just did to recover the database after destroying every trace of it.

Let’s review an important point first. RMAN can be utilized using a “recovery cata-
log,” an independent database specifically created to store RMAN’s backup informa-
tion. When used, this database is updated by RMAN with information pertaining to
backup pieces and RMAN metadata. One recovery catalog database can be utilized by
multiple databases on different systems, for instance, by a “small” installation of Oracle
on your backup server.

If we don’t use a recovery catalog we’re forced to put backup information in the
control file. From one perspective, storing backup information in the database control
file makes perfect sense, because you store information about all the other resources of
your database in there. From another point of view, however, it’s a really bad idea,
because the control file is one of the files you’re backing up! Therefore, if you have to
use a control file to store backup information you’ll need to keep some things in mind.
In particular, if you want to restore the database, you’ll need to recover the control file
first, either from the RMAN backup pieces (the hard way) or from a filesystem backup
of the system. This problem goes away if you have a recovery catalog, because when
you start a database restore RMAN can simply ask the recovery catalog for the piece
containing the control file and restore it first.

In the following example we will not be using a recovery catalog, and we’ll use an
SPFILE instead of a regular PFILE, since SPFILEs are the default in 10g.

First we need to check the location of the backup pieces, set the ORACLE_SID
(even though there is no database, you must still have a SID) and use RMAN to start
the instance for our recovery. Because no PFILE or SPFILE is present it will use the
default system parameter file:

$ ls -l /export/rman/
total 908326
-rw-r—r— 1 oracle oinstall 1465 Nov 8 17:31 rman.log
-rw-r——- 1 oracle oinstall 461864960 Nov 8 17:31
rman_TESTINGx_20041108_3_1.bus
-rw-r——- 1 oracle oinstall 2949120 Nov 8 17:31
rman_TESTINGx_20041108_4_1.bus
$ echo $ORACLE_SID

56 / Using RMAN

testing
$ rman nocatalog target /
. . .
connected to target database (not started)
RMAN> startup force nomount;
startup failed: ORA-01078: failure in processing system parameters
LRM-00109: could not open parameter file ‘/u01/app/oracle/prod-
uct/10.1.0/db_1/dbs/inittesting.ora’
trying to start the Oracle instance without parameter files ...
Oracle instance started
Total System Global Area 167772160 bytes
Fixed Size 1300832 bytes
Variable Size 115877536 bytes
Database Buffers 50331648 bytes
Redo Buffers 262144 bytes
RMAN> quit
Recovery Manager complete.

The instance is started, so we can now perform the first part of our recovery. As you
recall, you need the PFILE or SPFILE in order to properly start an instance, and, since
we’re not using a recovery catalog, you need the database control file in order to access
the RMAN backup information it contains. Since both the SPFILE and control file are
inside the backup set, we’ll need to use the PL/SQL RMAN interface to point RMAN
in the right direction.

Here is the PL/SQL you’ll need to use:

DECLARE
v_dev varchar2(50); -- device type allocated for restore
v_done boolean; -- has the controlfile been fully extracted
yet
type t_fileTable is table of varchar2(255)
index by binary_integer;
v_fileTable t_fileTable; -- Stores the backuppiece names
v_maxPieces number:=1; -- Number of backuppieces in backupset
BEGIN
-- Initialize the file table & number of backup pieces in the
backup set
-- This section of code MUST be edited to reflect the customer’s
available
-- backup set before the procedure is compiled and run. In this
example, the
-- backup set consists of 4 pieces:
v_fileTable(1):=’/export/rman/rman_TESTINGx_20041108_4_1.bus’;
v_fileTable(2):=’/export/rman/rman_TESTINGx_20041108_3_1.bus’;
v_maxPieces:=4;
-- Allocate a device. In this example, I have specified ‘sbt_tape’
-- as I am reading backup pieces from the media manager. If the
-- backup piece is on disk, specify type=>null

Using RMAN / 57

v_dev:=sys.dbms_backup_restore.deviceAllocate(type=>null,
ident=>’d1’);
-- Begin the restore conversation
sys.dbms_backup_restore.restoreSetDatafile;
-- Specify where the control file is to be recreated
sys.dbms_backup_restore.restoreControlfileTo(cfname=>’/u02/ora-

data/ testing/control01.ctl’);

sys.dbms_backup_restore.restorespfileto(‘/u02/oradata/testing/spfile
’);
-- Restore the controlfile
FOR i IN 1..v_maxPieces LOOP
sys.dbms_backup_restore.restoreBackupPiece(done=>v_done,

handle=>v_fileTable(i), params=>null);
IF v_done THEN
GOTO all_done;

END IF;
END LOOP;
<<all_done>>
-- Deallocate the device
sys.dbms_backup_restore.deviceDeallocate;
END;
/

You’ll need to edit the array elements of the v_fileTable array, including the
number of v_maxPieces as the number of elements. The deviceAllocate() func-
tion tells RMAN we’re using disk instead of tape. The most important of all are the
restoreControlfileTo() and restorespfileto() functions. The arguments sup-
plied to both indicate where RMAN should put the control file and the SPFILE.

Run this PL/SQL code by putting it in a file named “restore_foundation.sql” and
execute it like this (it’ll ask for a value—just enter 1; this doesn’t affect anything):

$ mkdir /u02/oradata/testing
$ vi restore_foundation.sql

[Use your favorite editor to make a file of the code.]

$ sqlplus / as sysdba @restore_foundation
SQL*Plus: Release 10.1.0.2.0 -- Production on Tue Nov 9 15:19:30
2004
Copyright (c) 1982, 2004, Oracle. All rights reserved.
Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 -- 64bit
Production
With the Partitioning, OLAP and Data Mining options
Enter value for number: 1
old 10: -- Initialize the file table & number of backup pieces in
the backup set
new 10: -- Initialize the file table 1 of backup pieces in the
backup set

58 / Using RMAN

PL/SQL procedure successfully completed.
SQL> quit
Disconnected from Oracle Database 10g Enterprise Edition Release
10.1.0.2.0 - 64bit Production
With the Partitioning, OLAP and Data Mining options
$ cd /u02/oradata/testing
$ ls -l
total 5618
-rw-r——- 1 oracle oinstall 2867200Nov 9
15:19 control01.ctl
-rw-r—r— 1 oracle oinstall 857 Nov 9
15:19 spfile

Now we have the necessary files to start an instance from which to restore the db.
cat the SPFILE to determine what dump directory paths need to be created for proper
startup. Once the directories have been created, you should duplicate the control file so
that there are the typical three copies. Finally, you must create a password file for the
instance. Moving the SPFILE into $ORACLE_HOME/dbs isn’t necessary, but it’s a
good idea.

$ cat SPFILE
*.background_dump_dest=’/u01/app/oracle/product/10.1.0/db_1/admin/

testing/bdump’
*.compatible=’10.1.0.2.0’
...
$ cp control01.ctl control02.ctl
$ cp control01.ctl control03.ctl
$ mkdir -p /u01/app/oracle/product/10.1.0/db_1/admin/testing/bdump
$ mkdir -p /u01/app/oracle/product/10.1.0/db_1/admin/testing/cdump
$ mkdir -p /u01/app/oracle/product/10.1.0/db_1/admin/testing/udump
$ orapwd file=/u01/app/oracle/product/10.1.0/db_1/dbs/orapwtesting
\
password=passwd entries=2
$ cp SPFILE
/u01/app/oracle/product/10.1.0/db_1/dbs/spfiletesting.ora

Now we’ve got the meat of our instance ready to be utilized for restoration of the
data files. If the instance is currently started, shut it down (shutdown abort;) and
restart it using the proper SPFILE. The database will be started in mount mode, which
will start the instance and read the control file(s) but not open the data files:

$ rman nocatalog target /
. . .
connected to target database: DUMMY (not mounted)
using target database controlfile instead of recovery catalog
RMAN> startup force mount \
pfile=’/u01/app/oracle/product/10.1.0/db_1/dbs/spfiletesting.ora’
Oracle instance started

Using RMAN / 59

database mounted
Total System Global Area 289406976 bytes
Fixed Size 1301536 bytes
Variable Size 262677472 bytes
Database Buffers 25165824 bytes
Redo Buffers 262144 bytes

If everything has gone well so far, you can now list the backups available and restore
the database:

RMAN> list backup;
List of Backup Sets
===================
BS Key Type LV Size Device Type Elapsed Time Completion Time
--
1 Full 2M DISK 00:00:01 08-NOV-04
BP Key: 1 Status: AVAILABLE Compressed: NO Tag: TAG20041108T172608
Piece Name: /u01/app/oracle/product/10.1.0/db_1/dbs/
rman_TESTINGx_20041108_2_1.bus
Controlfile Included: Ckp SCN: 387742 Ckp time: 08-NOV-04
SPFILE Included: Modification time: 08-NOV-04
BS Key Type LV Size Device Type Elapsed Time Completion Time
--
2 Full 440M DISK 00:01:31 08-NOV-04
BP Key: 2 Status: AVAILABLE Compressed: NO Tag: TAG20041108T172932
Piece Name: /export/rman/rman_TESTINGx_20041108_3_1.bus
List of Data files in backup set 2
File LV Type Ckp SCN Ckp Time Name
--
1 Full 388558 08-NOV-04 /u02/oradata/testing/system01.dbf
2 Full 388558 08-NOV-04 /u02/oradata/testing/undotbs01.dbf
3 Full 388558 08-NOV-04 /u02/oradata/testing/sysaux01.dbf
4 Full 388558 08-NOV-04 /u02/oradata/testing/users01.dbf
RMAN> restore database;
Starting restore at 09-NOV-04
allocated channel: ORA_DISK_1
channel ORA_DISK_1: sid=160 devtype=DISK
channel ORA_DISK_1: starting datafile backupset restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup
set
restoring datafile 00001 to /u02/oradata/testing/system01.dbf
restoring datafile 00002 to /u02/oradata/testing/undotbs01.dbf
restoring datafile 00003 to /u02/oradata/testing/sysaux01.dbf
restoring datafile 00004 to /u02/oradata/testing/users01.dbf
channel ORA_DISK_1: restored backup piece 1
piece handle=/export/rman/rman_TESTINGx_20041108_3_1.bus
tag=TAG20041108T172932
channel ORA_DISK_1: restore complete
Finished restore at 09-NOV-04

60 / Using RMAN

At this point you’ll need to attempt a recovery of the database. Ordinarily a recovery
is performed by applying all the archive logs against the instance; since we don’t have
any archive logs, however, you’ll get an error. But you must attempt it; if you do not,
you’ll be unable to open the database later.

RMAN> recover database;
Starting recover at 09-NOV-04
allocated channel: ORA_DISK_1
channel ORA_DISK_1: sid=160 devtype=DISK
starting media recovery
unable to find archive log
archive log thread=1 sequence=5
RMAN-00571:
===
RMAN-00569: ===== ERROR MESSAGE STACK FOLLOWS ============
RMAN-00571: ==
RMAN-03002: failure of recover command at 11/09/2004 15:39:29
RMAN-06054: media recovery requesting unknown log: thread 1 seq 5
lowscn 388558

With the restoration and recovery complete, all the data files will be in the proper
place. You can now shut down the current instance and start up the database properly.
Once the database is mounted you’ll need to reset the logs to open the database:

RMAN> shutdown immediate;
database dismounted
Oracle instance shut down
RMAN> quit
Recovery Manager complete.
$ echo $ORACLE_SID
testing
$ sqlplus / as sysdba
. . .
Connected to an idle instance.
SQL> startup
pfile=/u01/app/oracle/product/10.1.0/db_1/dbs/spfiletesting.ora
ORACLE instance started.
Total System Global Area 289406976 bytes
Fixed Size 1301536 bytes
Variable Size 262677472 bytes
Database Buffers 25165824 bytes
Redo Buffers 262144 bytes
Database mounted.
ORA-01589: must use RESETLOGS or NORESETLOGS option for database
open
SQL> alter database open resetlogs;
Database altered.
SQL> quit

Using RMAN / 61

And you’re done! You can test your database by querying a couple of tables and con-
necting as various users. If you don’t want to specify the pfile during startup, you can
symlink the spfile to $ORACLE_HOME/dbs/init(SID).ora.

After the database is backed up, you’ll want to ensure that you either restore from
filesystem backups or recreate the listener configuration.

Please note that the PL/SQL interface we used above is undocumented: Oracle will
not assist you in using it. It also (supposedly) changes between releases. The only docu-
mentation that even mentions it is available only if you have a MetaLink account, in
DocID 60545.1.

This chapter contains useful information that doesn’t fit elsewhere in this booklet.
More information on all of these topics can be found at Oracle.com.

Oracle Flashback
Flashback, a feature introduced in Oracle9i and improved (and hyped) in Oracle10g, is
similar in concept to the undo feature of your word processor or GIMP/Photoshop.
With Flashback you can do something as important as “flashing back” a dropped table
or something as minor as undoing your last SQL statement changes to a table. You can
even flash back an entire database to an earlier time.

To understand Flashback you need to be clear on two things: the “recycle bin” and
Oracle SCNs. A System Change Number, or SCN, is an integer value associated with
each change to the database. You might think of revision numbers in a source control
system. Each time you perform an action, whether you’re adding or removing data, a
unique number is associated with the change. Reverting to an earlier state is as easy as
telling Flashback which SCN you want to revert to. Obviously, the kink is that if you
drop a table the SCN isn’t going to help you: therefore Oracle puts dropped objects
into a recycle bin rather than blowing them into the nether regions immediately. (This
is why dropping an object doesn’t reclaim space immediately: to remove objects from
the recycle bin, use the PURGE SQL statement.)

Before you start playing with Flashback, there is one little catch you need to be
aware of: It doesn’t work on system tablespaces. This means that if you connect to
Oracle as SYS (who uses the system tablespace by default) and create a table, drop it,
and then try to flash back to it, the attempt will fail. Flashback works great on a non-
system tablespace, but if you blow away a system table you’re on your own.

The easiest way to enable Flashback is during database creation with DBCA. As
usual, Enterprise Manager makes everything a snap. We’ll discuss its setup here in case
you want to enable it on existing databases using the SQL*Plus interface.

In order to utilize Flashback you’ll need to put your database in ARCHIVELOG mode.
Then you can set the DB_FLASHBACK_RETENTION_TARGET parameter, which defines
the duration of retention of flashback logs, and turn Flashback on with an ALTER
DATABASE statement. Let’s look at the setup:

SQL> shutdown immediate;
Database closed.

11. Loose Ends

Loose Ends / 63

Database dismounted.
ORACLE instance shut down.
SQL> startup mount;
ORACLE instance started.
Total System Global Area 184549376 bytes
Fixed Size 1300928 bytes
Variable Size 157820480 bytes
Database Buffers 25165824 bytes
Redo Buffers 262144 bytes
Database mounted.
SQL> alter database archivelog;
Database altered.
SQL> alter system set DB_FLASHBACK_RETENTION_TARGET=4320;
System altered.
SQL> alter system set DB_RECOVERY_FILE_DEST_SIZE=536870912;
System altered.
SQL> alter system set DB_RECOVERY_FILE_DEST=’/u02/fra’;
System altered.
SQL> alter database flashback on;
Database altered.
SQL> alter database open;
Database altered.

Flashback is now enabled for this database. We’ve defined a flashback retention of
4320 minutes (72 hours), a recovery file size of 512MB, and a location for the file
recovery area (FRA) as /u02/fra.

Let’s see Flashback in action now. You can look at the contents of the recycle bin by
querying the DBA_RECYCLEBIN table.

$ sqlplus ben/passwd
. . .
Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Produc-
tion
With the Partitioning, OLAP and Data Mining options
SQL> create table test_table(
2 id number(2),
3 name varchar2(30)
4);

Table created.
SQL> insert into test_table values (1, ‘Ben Rockwood’);
1 row created.
SQL> insert into test_table values (2, ‘Tamarah Rockwood’);
1 row created.
SQL> insert into test_table values (3, ‘Nova Rockwood’);
1 row created.
SQL> insert into test_table values (4, ‘Glenn Rockwood’);
1 row created.
SQL> select * from test_table;

64 / Loose Ends

ID NAME

1 Ben Rockwood
2 Tamarah Rockwood
3 Nova Rockwood
4 Glenn Rockwood
SQL> drop table test_table;
Table dropped.
SQL> select * from test_table;
select * from test_table

*
ERROR at line 1:
ORA-00942: table or view does not exist
SQL> flashback table “test_table” to before drop;
flashback table “test_table” to before drop
*
ERROR at line 1:
ORA-38305: object not in RECYCLE BIN
SQL> flashback table “TEST_TABLE” to before drop;
Flashback complete.
SQL> select * from test_table;
ID NAME

1 Ben Rockwood
2 Tamarah Rockwood
. . .

In this example I logged in as a user (ben) who by default writes to the users table-
space. Alternately, I could have specified the tablespace explicitly and used the SYS user
for testing (i.e., users.table_test instead of table_test). I created a simple table and pop-
ulated it with some data. Then I dropped the table and verified that it was gone. To
restore the table I used the Flashback to before drop statement. Another query veri-
fied that the table was properly restored.

Note that our first attempt to flash back the table failed. That was because Oracle
refers to the table (and thus the recycle bin does too) in all caps and is case-sensitive.
The second attempt, giving the table name in all caps, works just fine. If you forget
this you’ll find yourself repeatedly hitting yourself in the head trying to figure out what
went wrong.

For more information about Flashback check out Oracle Database 10g High
Availability with RAC, Flashback and Data Guard and the Oracle Database Backup and
Recovery Advanced User’s Guide manual: http://download-west.oracle.com/docs/cd/
B14117_01/server.101/b10734/rcmflash.htm.

Data Guard
Data Guard is Oracle’s database replication product, used for creating and maintaining
“standby” disaster recovery databases. This is done by leveraging Oracle archived redo
logs, which, as you recall, are generated when the database is in archive mode. The

Loose Ends / 65

archived redo logs from the primary database are periodically sent to a read-only stand-
by database which applies each archived redo log to itself. Standby databases come in
two varieties, physical and logical. A physical standby database is identical block for
block to the primary database; hence the standby system design will effectively need to
be identical to that of the primary database. A logical standby database can be very dif-
ferent in design from the primary database’s as long as it has sufficient resources to con-
tain the primary’s data. In the case of a physical standby database, archived redo logs
can be applied directly, whereas they need to be ripped apart into SQL statements and
applied one by one to a logical standby database. These options allow for a flexible
architecture based on your environment’s available resources.

The standby database sits idle most of the time in read-only mode, accepting
archive redo logs from the primary. This makes the standby system ideal for running
reports and intensive queries. If the primary database fails for some reason, the standby
can simply be restarted in read-write mode and used until the primary comes back
online.

For small organizations where complex architectures for RAC and data warehousing
aren’t practical, a standby database using Data Guard can fill a variety of needs all at
one time.

A brief aside: Some companies use RMAN as a replication scheme by immediately
recovering a backup to a standby system and using it for reports and read-only access,
just as if they were using Data Guard. RMAN’s one advantage over Data Guard for
replication is that you are always testing the validity of your backup system. But
RMAN is not at all efficient and you typically don’t run RMAN backups more than
once a day, making it a poor HA solution by itself.

For more information about Flashback check out Oracle Database 10g High
Availability with RAC, Flashback and Data Guard and the Oracle Data Guard Concepts
and Administration manual: http://download-west.oracle.com/docs/cd/B14117_01/
server.101/b10823/toc.htm.

OLTP
Online Transaction Processing (OLTP) databases, as the name implies, handle real-time
transactions, which have some special requirements. If you’re running a Web store, for
instance, you need to ensure that as people order products, updates are made to all
affected tables at once. When a product is sold, tables for product inventory, shipping
information, account information, and billing must be updated together or the whole
transaction could be in jeopardy. Thus OLTP databases must be atomic (an entire
transaction either succeeds or fails—there is no middle ground), consistent (each trans-
action leaves the affected data in a consistent and correct state), isolated (no transaction
affects the state of other transactions), and durable (changes resulting from committed
transactions are persistent). Achieving all of this can be a fairly tall order but is essential
to running a successful OLTP database.

66 / Loose Ends

Because OLTP databases tend to be the real frontline warriors as far as databases go,
they need to be extremely robust and scalable.

The OLTP feature you tend to hear most often is “row level locking,” in which a
given record in a table can be locked from updates by any other process until the trans-
action on that record is complete. This is akin to mutex locks in POSIX threading. In
fact OLTP shares a number of the same problems as concurrent programming: When
different users or processes could grab for the same thing at the same time, there’s the
potential to run into problems; for databases, OLTP methodology is the solution.

Several other factors come into play with OLTP databases: the Oracle10g documen-
tation library dedicates a whole section to OLTP. Find more information in the
Oracle10g docs: http://www.oracle.com/pls/db10g/portal.portal_demo3?selected=18.

Oracle Options and Extensions
A wide variety of options and extensions for Oracle exist. They include:

RAC Real Application Clusters, formerly Oracle Parallel Server (OPS): Allows for cluster
databases

OLAP Online Analytical Processing: “Provides valuable insight into business operations
and markets”

Spatial databases: Store geographical information (e.g., GPS coordinates) with
records;using Spatial, you can run queries based on geographical parameters, e.g.,
how many of the given objects in the database are within 50 miles of New York
City?

Streams: An information sharing/distribution mechanism for replication and integra-
tion (similar to Data Guard)

Ultra Search: A feature of Oracle Collaboration Suite, built on Oracle Database and
Oracle Application Server—a Web-based “out-of-the-box” solution that provides
searching across multiple repositories

Text: Can perform linguistic analysis on documents, as well as search text using a vari-
ety of strategies, including keyword searching, context queries, Boolean opera-
tions, pattern matching, mixed thematic queries, and HTML/XML section
searching, and can render search results in various formats, including unformat-
ted text, HTML with term highlighting, and original document format;t sup-
ports multiple languages and uses advanced relevance-ranking technology to
improve search quality

interMedia: Enables efficient management and retrieval of images and audio/video data,
including the ability to automate metadata extraction and basic image processing
of most popular multimedia formats.

All of these features and more are included in Oracle Enterprise Edition, with the
exception of RAC (and RAC extensions), which are Options. RAC is, however, present
in the Standard Edition of Oracle. The basic breakdown of Oracle editions is:

Loose Ends / 67

Lite Edition: Complete software for building, deploying, and managing mobile data-
base applications

Personal Edition: Full-featured version for individuals, compatible with the entire
Oracle Database family; identical to the Enterprise Edition

Standard Edition One: Two-processor version of Standard Edition at an attractive entry-
level price

Standard Edition: Four-processor version of Oracle10g, including full clustering sup-
port

Enterprise Edition: Industry-leading performance, scalability, and reliability for OLTP,
decision support, and content management—the whole enchilada

There are two open source tools that will make Oracle a heck of a lot easier to manage,
explore, and interface with: YaSQL and TOra.

YaSQL
YaSQL is Yet Another SQL*Plus replacement. It’s a GPL app written in Perl by Jon
Nangle and Nathan Shafer.

So what is SQL*Plus missing? History editing is a big one. After typing out a long
query and then screwing up a line, you don’t want to cut and paste the whole thing
back in. PostgreSQL-like listing would be cool, too, to quickly see a list of all tables,
indexes, etc. Better output formatting is a must, since SQL*Plus table output is essen-
tially unreadable. And how about bounding! When I look at a big table (or one I think
might be big), it would be nice to see only the first 10 lines or the last 10 lines, instead
of the whole thing, especially when you just want to see a couple of rows to craft a bet-
ter query. Well, good news: YaSQL does all this and more!

Here’s an example that’ll sell you instantly:

$ export ORACLE_HOME=/u01/app/oracle/product/10.1.0/db_1
$ export ORACLE_SID=cuddle
$ export LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH
$ yasql benr/oracle
YASQL version 1.81 Copyright (c) 2000-2001 Ephibian, Inc.
$Id: yasql,v 1.81 2002/03/06 21:55:13 nshafer Exp nshafer $
Please type ‘help’ for usage instructions
Attempting connection to local database
Connected to: Oracle Database 10g Enterprise Edition Release
10.1.0.2.0 - Prod
auto_commit is OFF, commit_on_exit is ON
benr@cuddle> select COUNT(*) from all_users;
COUNT(*)

24
1 row selected (0.01 seconds)
benr@cuddle> select * from all_users;5
USERNAME USER_ID CREATED

BENR 58 2004-10-14 01:18:18

12. Tools to Lessen the Pain

Tools to Lessen the Pain / 69

SCOTT 57 2004-02-05 13:44:42
MGMT_VIEW56 2004-02-05 13:37:17
WKPROXY 51 2004-02-05 13:33:46
WKSYS 50 2004-02-05 13:33:46
5 rows selected (0.01 seconds)
benr@cuddle> show all tables;
Table Name Type Owner

AUDIT_ACTIONS TABLE SYS
AW$AWCREATE TABLE SYS
...
WM$VERSION_TABLE TABLE WMSYS
WM$WORKSPACES_TABLE TABLE WMSYS
100 rows selected (0.18 seconds)
benr@cuddle> select * from SYSTEM_PRIVILEGE_MAP; >sys.priv.map.out
173 rows selected (0.10 seconds)
benr@cuddle> !head sys.priv.map.out
PRIVILEGE NAME PROPERTY
--
-3 ALTER SYSTEM 0
-4 AUDIT SYSTEM 0
-5 CREATE SESSION 0
-6 ALTER SESSION 0
-7 RESTRICTED SESSION 0
-10 CREATE TABLESPACE 0
-11 ALTER TABLESPACE 0

In this example you can first see a standard SQL statement that counts the rows of
the all_users table and finds 24 rows. In the next statement I query for all rows, but
append a “5” after the semicolon, telling YaSQL to show me only the first five rows of
output. Then I use the show YaSQL command to list all the tables available to me
(remember my rant about not having this ability, which PostgreSQL provides?). In the
last two statements I run a select but redirect output to a file and then use ! to run a
system command to read the file from within YaSQL.

That’s just a taste of the power of YaSQL. This is a professional-grade interface that
is easy to use, flexible, and won’t leave you wondering why database admins seem to
enjoy needless suffering. It’s anything but “Yet Another.”

Grab a copy and make sure to mail the authors and tell them how much you value
it. There are lots of SQL*Plus replacements, but trust me: look no further.

You can download YaSQL from its SourceForge project page: http://sourceforge.net/
projects/yasql/.

TOra
TOra was written by Henrik Johnson and is now owned by Quest Software. It’s an
open source tool that is available on SourceForge. UNIX versions are available at no

70 / Tools to Lessen the Pain

cost, but the Windows version requires a license beyond 30-day use (although this is
not enforced). It’s written in C++ and based on Qt.

TOra is a graphical interface that allows simple management of your database. The
capital TO in TOra stands for “Toolkit for Oracle.” Over time, however, it has grown
to support PostgreSQL and MySQL as well. It has a SQL editor, table editors, a
schema browser, a PL/SQL editor and debugger, a security manager, a server tuning
module, and much more.

For the sysadmin, TOra makes the database extremely easy to explore. If you con-
nect to the database as SYSDBA you can scroll up and down the huge list of tables and
views and see them in spreadsheet format. This provides an invaluable way to examine
the guts of your database without typing out hundreds of SQL queries.

The SQL and PL/SQL editors are pretty sweet, providing syntax highlighting, line
stepping, breakpoint debugging, tree parsing, and more. TOra is extremely handy,
much better than trial-and-error with VIM and SQL*Plus.

TOra can also manage multiple connections and has a pretty nice login interface, so
you can simply click your instance and go. Just make sure when you first try to con-
nect to the database that TNS resolution is working properly (tnsping the instance
first) or uncheck “SQL*Net” on the login screen to use a local login.

Binary distributions are available for Win32 and Linux in both RPM and tarball.
Some Solaris tarballs have been contributed, and TOra is fully portable for any plat-
form you want it on.

Get more information, look for updates, and check out features and screenshots at
the TOra Web site: http://www.globecom.net/tora/.

Oracle is a big beast, to say the least, composed of a variety of components. Each data-
base is run as an instance. A database server can run multiple instances at a time. Each
instance is made up of various components. We can see these as separate processes at
the system level:

$ ps -ef | grep BEN
oracle 342 1 0 13:35:59 ? 0:00 ora_pmon_BEN
oracle 344 1 0 13:35:59 ? 0:00 ora_mman_BEN
oracle 346 1 0 13:35:59 ? 0:01 ora_dbw0_BEN
oracle 348 1 0 13:36:00 ? 0:01 ora_lgwr_BEN
oracle 350 1 0 13:36:00 ? 0:00 ora_ckpt_BEN
oracle 352 1 0 13:36:00 ? 0:04 ora_smon_BEN
oracle 354 1 0 13:36:00 ? 0:00 ora_reco_BEN
oracle 356 1 0 13:36:00 ? 0:02 ora_cjq0_BEN
oracle 358 1 0 13:36:00 ? 0:00 ora_d000_BEN
oracle 360 1 0 13:36:01 ? 0:00 ora_s000_BEN
oracle 366 1 0 13:36:22 ? 0:00 ora_qmnc_BEN
oracle 368 1 0 13:36:28 ? 0:04 ora_mmon_BEN
oracle 370 1 0 13:36:28 ? 0:01 ora_mmnl_BEN
oracle 372 1 1 13:36:31 ? 0:15 ora_j000_BEN
oracle 512 1 0 15:19:33 ? 0:00 ora_q000_BEN

All these processes make up the instance of the database BEN running on this
machine. Let’s break it down:
pmon: The process monitor performs process recovery when a user process fails.

PMON is responsible for cleaning up the cache and freeing resources that the
process was using. PMON also checks on the dispatcher processes (described
below) and server processes and restarts them if they have failed.

mman Used for internal database tasks.
dbw0 The database writer writes modified blocks from the database buffer cache to

the data files. Oracle Database allows a maximum of 20 database writer
processes (DBW0–DBW9 and DBWa–DBWj). The initialization parameter
DB_WRITER_PROCESSES specifies the number of DBW processes, n.
The database selects an appropriate default setting for this initialization
parameter (or may adjust a user-specified setting) based on the number of
CPUs and the number of processor groups.

Appendix: Oracle Processes

72 / Appendix: Oracle Processes

lgwr The log writer process writes redo log entries to disk. Redo log entries are
generated in the redo log buffer of the system global area (SGA), and LGWR
writes the redo log entries sequentially into a redo log file. If the database has
a multiplexed redo log, LGWR writes the redo log entries to a group of redo
log files.

ckpt At specific times, all modified database buffers in the system global area are
written to the data files by DBWn. This event is called a checkpoint. The
checkpoint process is responsible for signaling DBWn at checkpoints and
updating all the data files and control files of the database to indicate the
most recent checkpoint.

smon The system monitor performs recovery when a failed instance starts up again.
In a Real Application Clusters database, the SMON process of one instance
can perform instance recovery for other instances that have failed. SMON
also cleans up temporary segments that are no longer in use and recovers
dead transactions skipped during system failure and instance recovery because
of file-read or offline errors. These transactions are recovered by SMON
when the tablespace or file is brought back online.

reco The recoverer process is used to resolve distributed transactions that are pend-
ing due to a network or system failure in a distributed database. At timed
intervals, the local RECO attempts to connect to remote databases and auto-
matically complete the commit or rollback of the local portion of any pend-
ing distributed transactions.

cjq0 Job queue processes are used for batch processing. The CJQ0 process dynami-
cally spawns job queue slave processes (J000 . . . J999) to run the jobs.

d000 Dispatchers are optional background processes, present only when the shared
server configuration is used.

s000 Shared server processes.
qmnc A queue monitor process monitors the message queues and is used by Oracle

Streams Advanced Queuing.
mmon Performs various manageability-related background tasks.
mmnl Performs frequent and lightweight manageability-related tasks, such as session

history capture and metrics computation.
j000 A job queue slave (see cjq0).
q000 Oracle Streams AQ or Streams slave process.

