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Message from the
USENIX ATC °22 Program Co-Chairs

Introduction

Welcome to the 2022 USENIX Annual Technical Conference (ATC). We are excited that, after two years of being virtual
due to the COVID-19 pandemic, this year’s conference is held again in person. Because of the ongoing special circumstances,
USENIX has adopted a hybrid model with some attendees and presenters connecting remotely.

Similar to last year, ATC 2022 is co-located with OSDI. Our 2021 predecessors have already written extensively about the
opportunities and challenges of running two systems conferences at the same time (https://www.usenix.org/sites/default/files/
atc21_message.pdf). This year brings the new challenge of running the two co-located events in a hybrid model. We very
much look forward to meeting everyone in the systems community whether they attend ATC, OSDI, or both.

The rest of this document provides some insights into the submission and selection process that culminated in 64 accepted
works that will be presented at the conference.

Submissions process

We have solicited full length and short papers presenting new and original computer systems work. We adopted a double-blind
review process to minimize bias. To further the USENIX mission of bringing together researchers in academia and systems
practitioners, we have designated a special Operational Systems Track (OST) category to solicit submissions describing the
experiences from deployed systems at “production” scale with real-world data. OST submissions received the same rigorous
review process but with different criteria. The submission’s novelty bar was lower, and system and organization names did not
have to be blinded. Switching submission tracks after the deadline was forbidden.

Authors were requested to provide additional information with their submission. First, we asked whether the paper was a
re-submission from prior ATC or some other conference. 65% of the papers were marked as first-time submissions and 45%
of the accepted papers were first time submissions. In case of a resubmission, authors provided a description of what changes
they made since the previous submission. The reviewers and the program committee (PC) had access to this information, but
they did not know the venue where the paper was submitted or specific review comments (unless provided by the authors).
Prior submission information had no bearing on assigning reviewers.

We also asked the authors to indicate whether they would make an artifact available. 70% of submissions indicated they
would, if accepted. With all else being equal, the PC viewed more favorably submissions that would share an artifact over
those that did not. As researchers, we need to ensure reproducibility of published works. As members of the USENIX
community, we want to provide free and open access to data. The artifact evaluation process, which we instituted this year
together with OSDI, provides this assurance.

We received 394 submissions, of which 21 (5%) were in OST and 23 (6%) were short papers. This was about 15% more
submissions than in the previous two years. We rejected 5 submissions without a review due to violating one or more direc-
tives stated in the call for papers (CFP). The most popular submission topics were Distributed System (26%), Storage (24%),
Machine Learning (21%), Operating Systems (15%), Networking (14%), Databases (13%) and Security (13%).

In the end, the PC accepted 64 submissions for an overall 16.5% acceptance rate. Acceptance was based on the quality of the
submissions, while in-person conference constraints had no bearing on our decisions. Of the 64 accepted submissions, 7 (33%
acceptance rate) were in Operational Systems Track and 2 (9% acceptance rate) were short papers.

Program Committee

We have assembled a program committee with many goals in mind: good coverage across diverse computer systems topics,
balance between academia and industry, a mix of veterans of prior ATC PCs with individuals in early stages of their profes-
sional careers, geographic diversity, and adherence to the USENIX diversity and inclusion principles.

The assembled PC had 97 members from 15 countries, 52% from North America, 37% from EMEA and 10% from APAC.
60% of the PC were from academia and 40% from industry, though some PC members from academia were also affiliated
with industry. 36% of the reviewers were early career researchers. Women were 64% more likely to decline an invitation to join
the PC, which we find to be an alarming indication.

The main areas of expertise of PC members were Storage (22%), Distributed Systems (20%), Operating Systems (14%),
Security (13%), Networking (12%) and Databases (9%). This was a good match to the submissions topics, given the PC was
assembled in advance. As only 9% of PC members indicated that Machine Learning is their main expertise, a mismatch with
21% of submissions, we expanded the PC post submission deadline with more machine learning experts and recruited the help
of a few expert external reviewers.

Reviewing Process

We proceeded with two double-blind review rounds with the authors’ response after round 2 and before the PC meeting. We
sent early rejection notifications to 58% of papers 10 weeks after the initial submission to allow authors a quick turnaround
on their resubmission. In the first round, we assigned 3 reviewers per paper, in the vast majority of cases, complementing the
expertise with external reviewers as necessary. In the second round, we assigned at least two additional reviewers to the 162
submissions not rejected earlier.

After the authors’ response and an online discussion among the reviewers (with some papers receiving over 20 comments),
we pre-accepted 48 papers. We identified additional 39 papers for discussion at the face-to-face (virtual) PC meeting, of
which 42% of papers were accepted, and PC members had the opportunity to “revive” papers. Despite having PC members
spanning a geographic area of 13 time zones, we conducted the virtual meeting “live”. While the day (and night) was long,
with the usual logistical challenges of handling conflicts virtually in break-out rooms, we found that the ability to discuss and
calibrate our acceptance criteria during the PC meeting was very important and proved very useful.

Artifact Evaluation Process

For the first time this year, ATC adopted an artifact evaluation process. The process ran jointly with OSDI, led by Anuj Ka-
lia, Neeraja J. Yadwadkar, and Chengyu Zhang. The artifact evaluation committee chairs assembled a committee consisting
of 118 members.

The authors of all accepted papers were invited to submit an artifact for an evaluation. 52 out of 64 papers (81%) had done so.
88% of artifacts received an “Available” badge, 76% received a “Functional” badge, and 61% received a “Reproduced” badge.
51% of papers received all three badges (some artifacts were reproduced, but are not available). Only one artifact received no
badge.

Additional Observations

Strong papers easily stood out; 38% of the accepted papers received only positive reviews, and an additional 44% had only a
single weak-reject initial recommendation. This is also why so many papers were accepted prior to the PC discussion.

The Operational System Track (OST) was intended only for operational systems, especially those deployed at scale. In par-
ticular, there was an interest in the experience using these operational systems. Some authors mistook a working prototype
for an operational system. While all submissions to ATC are expected to describe working systems, a prototype implementa-
tion to gather experimental results is not the same. OST submissions required describing the experience of using the system.

Anonymization rules were not always followed. Only one paper was rejected immediately during post-submission checks

for deblinding authors names and affiliations. However, several papers were rejected following the first round of reviews, as
authors had a technical report using a similar title or a similar system name. This, in turn, led to unblinding the papers to re-
viewers and violated the submission rules. Anonymization rules, especially when applied to technical reports, vary from year
to year and between conferences. Authors should be extra vigilant when submitting blinded manuscripts.

Acknowledgements
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ZNSwap: un-Block your Swap
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Technion Western Digital
Abstract

We introduce ZNSwap, a novel swap subsystem optimized
for the recent Zoned Namespace (ZNS) SSDs. ZNSwap lever-
ages ZNS’s explicit control over data management on the
drive and introduces a space-efficient host-side Garbage Col-
lector (GC) for swap storage co-designed with the OS swap
logic. ZNSwap enables cross-layer optimizations, such as di-
rect access to the in-kernel swap usage statistics by the GC
to enable fine-grain swap storage management, and correct
accounting of the GC bandwidth usage in the OS resource
isolation mechanisms to improve performance isolation in
multi-tenant environments. We evaluate ZNSwap using stan-
dard Linux swap benchmarks and two production key-value
stores. ZNSwap shows significant performance benefits over
the Linux swap on traditional SSDs, such as stable through-
put for different memory access patterns, and 10x lower 99th
percentile latency and 5 x higher throughput for memcached
key-value store under realistic usage scenarios.

1 Introduction

Swap is regaining interest from the academia, industry, and
kernel communities [2, 3, 12-14, 42, 43, 53, 54] as SSDs are
getting faster with both low-latency NAND and high-speed
PCle interfaces [5, 11, 51]. Swap on SSDs is no longer viewed
as a last-resort memory-overflow mechanism, but as a crucial
system component essential for effective memory reclamation
and high system efficiency [3, 14, 18].

Unfortunately, the broader deployment of SSDs as swap
devices is overshadowed by several notable performance is-
sues. One of the key limitations is the system performance
degradation as the SSD utilization increases. For example,
Figure 1 shows a drastic swap bandwidth drop as the device
space usage grows beyond 20%, forcing low space utilization
to maintain high performance. In § 3 we thoroughly analyze
this and other performance issues with swap on SSDs, such
as bandwidth variations for different memory access patterns,
and poor isolation in a multi-tenant setting.

These performance anomalies have no simple solution.
They stem from the inherent mismatch between the easy-to-
use block-interface abstraction and the intrinsic flash media

Mark Silberstein
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Matias Bjgrling
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Figure 1: Swap-out bandwidth of random memory accesses
(a common swap access pattern [43, 55]), with default Linux
swap on Block SSD and ZNSwap on ZNS SSD. The two 1TB
SSDs share the same hardware platform and media. WAF—
Write Amplification Factor.

properties. In particular, this interface deliberately conceals
the absence of in-place updates to flash-based media. Under
the hood, updates are written out-of-place to a specifically al-
located set of flash blocks (i.e., erase-block). To this end, SSD
controllers implement a Flash Translation Layer (FTL), which
translates the host-side random writes into sequential writes
required by the media, and maintains logic-to-physical map-
ping for each block. It further entails a device-side Garbage
Collection (GC) process to free up erase blocks and reclaim
capacity for new writes.

More crucially, this interface decouples the media manage-
ment from the host-side software stack, so neither the software
using the SSD nor the SSD’s management logic have any vis-
ibility into each other activities. In the context of swap, this
decoupling hinders the OS’s ability to optimize data place-
ment on the device, and the device’s ability to leverage unique
characteristics of the swap mechanisms and its usage of the
device. For example, the performance degradation observed
in Figure | is caused by Write Amplification (WA), i.e., the
extra data movements performed by the GC. Notably, as we
show in § 3, the Write Amplification Factor (WAF) (Figure 1,
right) could have been reduced if only the GC were aware of
the OS-managed validity status of the stored blocks.

Zoned Storage interface for SSDs (ZNS) [4] aims to reestab-
lish the host’s control over key aspects of the storage device
management [25]. ZNS opens unique opportunities for cross-
layer optimizations that allow novel storage-application co-
design simultaneously tailored to the properties of the storage
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media and its use by applications [25].

At a high level, ZNS introduces the concepts of zones.
Zones disallow in-place updates and require their blocks to be
written sequentially. To reclaim the space in a zone it needs
to be reset, and new writes can be issued. One important
benefit of the ZNS interface over prior attempts to expose
flash media control to applications (i.e., raw flash or open-
channel SSD [26]), is that it enables host-side storage control
without having to deal with low-level media management
such as wear-leveling or error correction.

In this work, we introduce ZNSwap, a novel swap sub-
system for Linux that explores the advantages of the syn-
ergy between the SSD management and the OS swap logic,
leveraging the ZNS interface to overcome the swap perfor-
mance issues with block-interface SSDs. While prior works
observed that the direct application control over SSDs can
be beneficial in the context of file-systems and key-value
stores [25, 26, 30, 59], ZNSwap is the first to leverage such
control for the OS swap on SSDs.

ZNSwap provides a novel, space-efficient host-side mecha-
nism for SSD space reclamation we call ZNS Garbage Collec-
tor (ZNGC). Unlike the device-side GC of traditional SSDs,
ZNGC is tightly integrated with the OS and has direct access
to OS data structures which it uses to optimize its operation.

ZNGC design poses a conceptual challenge, however. The
space reclamation process naturally involves the migration of
logical blocks on the device, without coordinating the block
location changes with the applications that own the stored
data. This is not a problem for an SSD-side GC because the
user-visible Logical Block Addresses (LBA) remain intact.
However, applying this solution to the host-side ZNGC would
incur unacceptable space overheads in the host, requiring
to maintain reverse mapping for every 4KiB block in TB-
scale devices. ZNSwap avoids these overheads in the host
by storing the reverse mapping information into the logical
block metadata being written alongside the swapped-out page
contents. The mapping is guaranteed to be correct during the
page lifetime.

More specifically, ZNSwap brings the following benefits:
Fine-grain space management. ZNSwap obviates the need
for TRIM commands, achieving higher performance and better
space utilization. The OS uses TRIMs to hint to a Block SSD to
deallocate specific LBAs, reducing the load on the SSD-side
GC. Unfortunately, the use of TRIMs have been mostly dis-
abled in the OS swap for their large overheads [35, 39, 50, 54],
at the expense of significant bandwidth drop due to the artifi-
cial space bloat (§ 3.1.1). In ZNSwap, the ZNGC leverages
the direct access to the OS internal page validity structures,
without the costly overheads associated with TRIMs.
Dynamic ZNGC optimization. ZNSwap dynamically ad-
justs the number of swapped-in pages that are also stored in
the swap device, improving the performance for read-mostly
and mixed read-write workloads. The OS keeps a copy of
unmodified swapped-in memory pages in the swap device

to avoid the swap-out penalty for those pages. The amount
of disk space such pages may occupy is statically capped
by the OS (50% in Linux, non-configurable). However, this
static threshold does not fit all workloads: lower values de-
grade read-mostly workloads, whereas higher values affect
mixed read-write workloads (§ 3.1.2). ZNSwap monitors the
WAF and decreases the storage occupancy when necessary
by reclaiming the SSD space from swapped-in pages.
Flexible data placement and space reclaim policies. ZN-
Swap allows easy customization of the disk space manage-
ment policies to tailor the GC logic to the swap requirements
of a specific system. For example, a policy may force co-
location of data with similar lifetimes onto the same zone,
which was shown to be useful before [28, 34, 44, 56], or
achieve better performance isolation by dedicating a separate
zone to handle swap from a specific tenant.
Accurate multi-tenancy accounting. As the ZNGC runs on
the host, ZNSwap integrates with the cgroup accounting mech-
anisms to explicitly attribute GC overheads to different ten-
ants, thus improving performance isolation between them.
To summarize, our main contributions are as follows:

* Thorough analysis of traditional Block SSDs’ drawbacks
when used as swap devices.

* A mechanism to enable ZNS SSDs to serve for swap, with-
out resource-expensive redirection mechanisms in the host,
by leveraging logical block metadata for efficient reverse-
mapping.

e Custom swap-aware SSD storage management policies
which reduce WA, improve performance, and achieve bet-
ter isolation in multi-tenant environments.

» Extensive evaluation on standard benchmarks and real appli-
cations, demonstrating ZNSwap’s performance gains, e.g., up
to 10x lower 99th percentile latency and 5x higher through-
put for memcached, with 2.5x lower WAF when compared
to traditional swap on Block SSD.

2 Background

OS swap. When a system encounters memory pressure, it
selects victim memory pages for eviction to a swap device.
The OS unmaps the page chosen for eviction from the page-
tables and swaps-out the page, writing it to the swap device.
Linux divides the space on a swap device into memory-
page-sized blocks called swap-slots. The OS allocates a
new slot for each page being swapped-out. When a page
is swapped-in and the utilized swap device capacity is below
50%, Linux keeps the copy of the page both in memory and
in the swap. Such pages belong to the swap-cache. The OS
evicts swap-cache pages without writing them back to the
swap. The swap-slot is freed upon the first write to a swap-
cache page, and the page is removed from the swap-cache.

Block SSD space management. The SSD’s FTL maps Log-
ical Block Addresses (LBAs) to the physical data locations
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within erase-blocks on the device. An update to a logical
block is implemented by writing the new data to a separate
erase-block, and then remapping the host-side LBA to the
new block, followed by invalidating the old one. To free space
for new writes, a Garbage Collector (GC), executed by the
SSD controller, reclaims the invalidated blocks and consol-
idates the still-valid blocks from multiple erase-blocks to a
new erase-block, and then erases the freed erase-blocks. This
operation requires over-provisioning (OP) of the flash media
in the drive in order to reduce the number of copies during
the GC operation.

The device-side GC competes for bandwidth with the user
I/0. The relative increase in the amount of data written due
to GC vs. the external writes is called a Write Amplification
Factor (WAF). The smaller the OP, the higher the WAF and
the lower the user-visible performance of the device [34].

Zoned Namespace (ZNS) is a new storage interface for
SSDs [25]. A ZNS SSD is organized as a set of logically-
addressable zones. Each zone is physically aligned to an
SSD’s erase-block size. Reads inside a zone can be random,
but writes must be sequential. Writing to a zone can be done
via the common write command or through the Zone Append
command. The latter works by the host specifying the zone,
and the SSD returning the specific write location upon com-
pletion, which allows multiple in-flight requests to the same
zone [24] (unlike the write command).

Each zone may be either Empty (initial state), Open (after
the first write) or Full (no longer writable). The SSD main-
tains a write pointer to the next logical block for each Open
zone. To rewrite a zone, it must be reset, which transitions it
into an Empty state. There is a hardware limit on the number
of simultaneously Open zones.

3 Motivation

Swap performance is important for data centers. The pro-
liferation of fast flash-based storage revitalized the use of
swap as a way to maximize memory utilization and reduce
costs. Today, swapping does not serve for sustaining severe
memory pressure alone. Rather, swap acts as a memory
extension during moderate loads, e.g., to optimize the in-
memory balance between file-backed and anonymous mem-
ory pages [3].

Thus, the swap performance is becoming increasingly im-
portant. Recent works propose to accelerate the swap with
dedicated hardware [42]. Linux kernel added optimizations
to its memory reclamation mechanism [13]. Alibaba Cloud
added a per-cgroup background reclaim mechanism [12] to
improve multi-tenancy support in data centers. Facebook in-
troduced swap controls for the cgroupv2 mechanism and used
it in the fbtax2 project to improve system efficiency [10].

This trend highlights the importance of swap in modern
systems. However, most of the current works focused on the

OS logic alone. Here we present a thorough analysis of the
Linux swap performance focusing on the interplay between
the swap logic and the SSD behavior.

3.1 Performance anomalies of swap on SSDs
3.1.1 GC is not aware of deallocated swap-slots

As shown in Figure 1, the swap bandwidth decreases as the
swapped-out data occupies a larger part of the device. In
general, this behavior is expected because the GC overheads
grow proportionally to the amount of actively updated data.
However, the drop should not occur when a device is almost
empty (occupied only 10% of its capacity).

The root cause is that the device-side GC is not aware
that the OS discards some swapped-out pages and invalidates
their respective swap-slots because the OS does not by default
notify the SSD. Therefore, the actual occupancy of the swap
device is much higher than the one visible to the OS, leading
to higher GC overheads.

To cope with this issue, most SSDs implement a TRIM com-
mand that allows the OS to hint to the SSD to reclaim the stor-
age of invalidated swap-slots. However, in practice, popular
Linux distributions (e.g., Debian, Ubuntu) disable the use of
TRIM command for swap [7, 9, 15, 21]. The reasons include
TRIM dispatching overheads, the long latency of the TRIM
command, and the complexity of supporting asynchronous
TRIMs [35, 39, 50, 54, 54].

When TRIMs for swap are explicitly enabled, Linux issues
the command once for a batch (cluster) of 512 invalidated
swap-slots, to reduce the overheads. Notably, these swap-slots
must be contiguous in the LBA address space [1].

To see the performance effect of TRIMs, we run the same
random-write vm-scalability benchmark as in Figure 1,
but with TRIMs enabled (see § 6 for the setup). We measure
the swap-out bandwidth and WAF over time as the device is
being used to illustrate gradual performance degradation.

Figure 2 shows that TRIMs (512-slot) have negligible ef-
fect. This is because the LBA contiguity requirement of TRIM
clusters in Linux effectively prevents issuing TRIMs for the
majority of the invalidated slots. These results corroborate the
note in the swapon man page [20] that enabling TRIMs often
does not improve swap performance.

Finer-grain TRIMs are not effective either. To demonstrate
this, we develop a special mechanism that enables TRIMs for
small contiguous clusters of eight swap-slots. This is not a
practical approach, however, due to its high overheads (see
§ 6.1.1) Figure 2 shows slight performance improvement, but
still 2x lower than the maximum bandwidth. Clusters smaller
than 8 slots result in a prohibitively high rate of TRIMs, so the
SSD cannot keep up with the swap-slot invalidation rate.

Observation I: TRIMs are not effective at lowering GC
overheads for swap.
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3.1.2 Swap cache is not aware of GC

We execute the vim-scalability benchmark to perform uni-
form random reads on a large chunk of memory exceeding
physical RAM and measure the swap performance for differ-
ent values of the swap device utilization. Ideally, we expect
the read performance to be independent of the utilization. In-
stead, Figure 3 shows a 6.9 x slowdown and 2.5x WAF above
50% occupancy.

Our analysis shows that this problem occurs due to the
way Linux implements its swap-cache. Recall that this cache
is comprised of pages that are swapped into memory but
the OS still maintains a copy in the swap. When the swap de-
vice’s utilization exceeds 50% — a hard-coded static parameter
we call swap reclamation cutoff, Linux stops adding newly
swapped-in pages to the swap-cache, invalidating their swap-
slots immediately. As a result, the swap-out penalty for such
pages incurs writing a page to the swap device, rather than
discarding them from memory if they were in the swap-cache.

We suggest two possible reasons for this implementation.
First, as the swap device gets full, the swap-slot allocation
algorithm scans the swap-slot array linearly, which becomes
slow [6]. Second, in the context of SSDs, deferring the swap-
slot invalidation for in-memory pages effectively increases
the device occupancy and eventually reduces performance
due to the GC.

Unfortunately, the swap reclamation cutoff establishes
a trade-off between the swap-out performance (preferring
higher cutoff), and WAF (preferring lower cutoff). To illus-
trate, we measure the performance of two applications: one
performing reads, and the other mixing both reads and writes.
This setup aims to show that lower values of the reclamation
cutoff are good for write-intensive workloads and bad for
read-intensive ones. Higher values mirror this behavior.

We execute vm-scalability configured to use 80% of the
swap device’s capacity. Half of the working set fits in RAM.
Figure 4 shows the swap-in and swap-out bandwidth and
WAF as a function of the swap reclamation cutoff. For random
reads, the swap-in performance increases with the reclamation
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Figure 4: Swap-in and swap-out bandwidth for random reads
and mixed reads and writes workloads respectively for differ-
ent swap reclamation cutoffs.

cutoff, as fewer pages need to be written back upon eviction,
with all the pages having copies both in the swap and in
memory at the extreme. For the mixed workload, the effect of
the cutoff is not visible with the default Linux configuration
because the performance is low anyway. But with fine-grain
TRIMs and higher baseline performance, smaller cutoff values
are preferable.

Observation 2: The static reclamation cutoff strives to
strike a balance between read and write performance, but
instead aggressively prioritizes write workloads when the
swap occupancy grows.

3.1.3 GC is not aware of page access pattern

We evaluate the performance of workloads with different
memory access patterns using pmbench. We consider two
write workloads: with uniform and with skewed access dis-
tributions (normal, ¢ = % of the working set size, the de-
fault in pmbench). The swap-out bandwidth is 480MiB/sec
(maximum for this SSD), and 195MiB/sec (WAF is 2.5) re-
spectively, when using 5% of the swap capacity and 512-slot
TRIMs enabled.

This difference stems from the different lifetimes of
swapped-out pages. With the skewed distribution of memory
writes, there are fewer opportunities for the swap subsystem to
find large contiguous clusters of swap-slots to perform TRIMs,
whereas uniformly distributed writes result in the swap-slots
of similar lifetimes, increasing the chances of finding such
clusters. 8-slot TRIMs are better, but the performance is still
suboptimal: 324MiB/sec, with WAF of 1.5x.

Observation 3: Swap performance may vary significantly
depending on the memory access pattern.

3.1.4 GC is not aware of OS’s performance isolation

Linux’s cgroup mechanism enforces resource isolation among
different processes. In particular, it is possible to isolate
swap bandwidth via blk-throttle. This is useful, e.g., in
container-based virtualized environments to prevent perfor-
mance interference between containers.
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We now evaluate the quality of the performance isolation
in a scenario where we expect no interference. We run two
processes, each in its own cgroup limited to 300MiB/sec reads
and 300MiB/sec writes from/to the swap device. One process
performs 100% reads and the other executes an equal mix
of reads and writes, all uniformly distributed. To prevent any
interference the processes are pinned to separate sets of cores,
each with its own device queue. The aggregate bandwidth of
the SSD does not reach its limit (1GiB/sec).

We expect both processes to achieve their maximum band-
width allocation. In practice, during the first 20min of the
execution (Figure 5) no GC is performed, thus the SSD sus-
tains the cumulative request rate from both processes. When
the GC is triggered, the swap-in bandwidth of both cgroups
drops. Importantly, the first process performs only reads, and
should not have been affected by the GC overheads caused
only by the writes of the second process. This behavior stems
from the GC'’s inability to distinguish between the I/Os from
different processes, and the OS’s inability to enforce band-
width limits on the GC.

Observation 4: The GC impairs performance isolation
dictated by the host OS.

3.2 Opportunities with swap on ZNS

ZNS SSDs provide better control over physical data place-
ment, thereby enabling tighter coupling between the appli-
cation logic and the device management, and have already
been shown to offer new optimization opportunities for pro-
duction Key-Value-Stores [25]. These results motivate a new
GC-swap subsystem co-design that can leverage this coupling
to mitigate the performance problems of traditional SSDs
discussed above.

Is ZNS essential for performance? An important question
is whether there is an inherent benefit to using ZNS SSDs
over traditional ones, or one can redesign the swap subsystem
alone to achieve the same outcome. In other words, can we
achieve the performance of ZNS by emulating it on top of a
Block SSD?

To answer, we run an experiment on a Block SSD while
using a write access pattern that mimics the one enforced
by ZNS zones. We run multiple threads, each performing
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Figure 6: Write bandwidth and WA of sequential writes and
TRIM operations to erase-block sized regions on Block SSD
and ZNS SSD as a function of device utilization.

4KiB logically sequential writes with 1GiB-TRIMs (the size
of an erase-block and a ZNS zone on our device). Each thread
accesses its own part of a drive, and overwrites the available
space, issuing a TRIM for the whole next 1GiB chunk. Multiple
threads are used to emulate typical swap behavior.

We run the experiment for different values of device utiliza-
tion. Figure 6 shows the results. We observe that the perfor-
mance starts to decrease when a device is 30% full, drops to a
half of the maximum bandwidth at 50%, and degrades down
to a quarter at 80%. This is expected because the Block SSD
cannot ensure that host-side TRIMs are aligned with physical
erase-blocks as the writes from different threads get mixed in
the device, even though the host strives to align them at the
LBA level. In contrast, the same experiment on ZNS drives
maintains full bandwidth no matter how full the device is.

We conclude that the ZNS interface offers unique advan-
tages that cannot be achieved with traditional Block SSDs.

ZNS adoption. ZNS SSDs are expected to gain broader adop-
tion in the near future. They hold the promise to reduce stor-
age costs as they lower the internal DRAM size requirements,
and might help reduce media overprovisioning via application-
optimized software stack [25].

While the ZNS interface is not backward compatible with
the in-place block interface, there is growing support for ZNS
at the file system level. For example, F2FS and Btrfs in Linux
can utilize ZNS drives.

These trends motivate us to tailor OS swap for ZNS SSDs.

4 Design

ZNSwap addresses three key design goals.

Resource-efficient Host-side GC. Reclaiming storage space
in ZNS SSDs requires a host-side process akin to a GC that
consolidates valid blocks from fragmented zones into new
ones, subsequently erasing the freed zones. The primary chal-
lenge is in minimizing the memory and CPU overheads as-
sociated with the host-GC operation. This is because, unlike
the device-side GC, the host-side GC directly competes for
these host resources with regular applications. In essence, we
need to on-load the GC onto the CPU from the device with
minimal costs, thereby enabling its tighter integration with
the swap.
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Figure 7: ZNSwap overview. Shaded shapes are internal ZN-
Swap components.

These resource constraints preclude direct porting of ex-
isting host-side GC implementations. In particular, such im-
plementations commonly maintain large translation tables
(FTL) [32, 37], which consume about 1GiB for every TiB
of data. The tables are frequently updated by writes and GC
operations and accessed during reads. Given the typically
poor locality of swap-induced I/O accesses [43, 55], these
tables have to be resident in host memory. Maintaining the
extra level of indirection between logical and physical block
addresses appears to be inevitable to allow the host-side GC
to move data without affecting the applications using it.

Our host-side GC, znGC, eliminates the need for the extra
level of indirection entirely. It takes advantage of the fact that
the swapped-out pages are still maintained in their owner’s
page tables, and thus stores the relevant kernel reverse map-
ping metadata alongside the swapped-out page in the SSD. It
also avoids I/0 overheads to manage the reverse mappings
by using the per-LBA metadata region available in NVMe
devices as we describe in §§ 4.2 and 5.1.

ZNGC-OS integration. The key benefit of ZzZNGC over
device-side GC is the ability to access the information ex-
posed by the OS to optimize the swap I/O performance. For
example, ZNGC may consult the OS-maintained swap-slot ar-
ray to identify OS-invalidated swap-slots and avoid redundant
copies without using TRIMs. We explain this and additional
optimizations in § 4.3.

Swap data placement policies. Swap data placement may
have a significant effect on the system performance, but the
placement policy may depend on the specific execution en-
vironment. For example, a policy to achieve better resource
isolation between a pair of processes might prefer storing all
the pages of the same process in the same SSD zone. We
strive to facilitate the implementation of such policies via a
set of APIs that hide the complexity of zone management and
ZNGC logic. We explain the API and the policies in § 4.3.

4.1 Overview

Figure 7 shows ZNSwap’s main design components. We ex-
plain each component and its role using the swap-out path as
an example.

After a page to be swapped-out is selected by the OS, it is
passed to the ZNS page reclaim @ which handles the page-
table and swap-cache operations @. In contrast to the original
swap logic, it updates the destination location for the swapped-
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Figure 8: Linux reverse mapping overview. Shaded shapes
are data structures accessed during ZNGC reverse mapping.

out page after it has been written, as dictated by the ZNS zone-
append interface. Before writing a page, the page reclaim
module consults the policy manager @ which determines
the destination zone and may guide ZNGC to free certain
zones on the device. The policy manager incorporates custom
policies that can be tailored to specific system requirements.
The zone allocator @ seamlessly handles Full zones and
allocates a new zone when necessary.

The page is then submitted to the block layer @, which
subsequently passes the page to ZNSwap’s I/O manager @.
The I/0 manager merges zone-append operations whenever
possible, and generates an I/O request containing the page’s
data and reverse mapping information used by ZNGC. Finally,
the I/O manager hands off the I/O requests to the NVMe driver
@ which writes to the ZNS SSD @, and updates the reclaim
module with the page location on the SSD @.

4.2 zNGC

ZNSwap’s reclamation mechanism, ZNGC, is tightly inte-
grated with the kernel virtual memory (VM) subsystem.
ZNGC runs as a daemon in the kernel and is triggered ei-
ther when the number of Enpty zones is low, or via explicit
requests by the ZNSwap policy.

Contrary to Block SSDs, a page moved by ZNGC is as-
signed a new host-visible address. Without an additional trans-
lation layer, ZNGC must update the page tables holding the
original page swap-slot to reflect the new location. To this end,
ZNGC stores the relevant reverse-mapping metadata along-
side the data in the ZNS SSD’s per-LBA metadata region to
assist later in updating the page tables. The storage interface
(i.e., NVMe) allows to retrieve the metadata together with the
respective data block in a single I/O operation. Thus, ZNGC
retrieves the metadata to perform the reverse lookup of a given
page and then updates the page table(s) that own it.

An important question remains: which information needs
to be stored in the page metadata to guarantee that the reverse
mapping remains correct during its lifetime?

To answer it, we leverage the same main data structures and
procedures in the Linux kernel used to implement its reverse
mapping scheme (Figure 8).

Background: Linux memory mapping structures. Recall
that virtual memory pages in a process’ address space belong
to virtual memory areas (vmas) that represent virtual mem-
ory allocations. vmas belong to a processes’ virtual memory
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address spaces (mm_structs), which hold the page table di-
rectory (pgd). The physical page descriptor (struct page)
holds metadata enabling the reverse mapping. ZNGC stores
the same metadata fields in the logical block’s metadata on
the SSD.

To locate all page table entries associated with a physical
page, the reverse mapping procedure accesses the anon_vma
@ data structure, which is present between each physical page
and the virtual memory area (vma) structures that map it'. The
anon_vma structure holds a list of vmas which may map the
page @ and accounts for changes to the virtual mappings of
the physical page. The physical page’s descriptor (struct
page) does not not directly account virtual mapping changes,
rather, the descriptor holds a pointer to the anon_vma in its
mapping field.

The mm_st ructs of each of the vmas that may map the page
are accessed @, and their page tables are walked @ to locate
the page table entries. To calculate the virtual address used
to walk the page tables, the index metadata value @ along
with the vma’s start virtual memory address are used. The
physical address corresponding to the physical page we have
initialized the reverse mapping procedure is located in the
last level page table entries and subsequently returned. Since
swapped-out pages do not have a valid physical address in
their page table entry, ZNGC returns the entries that hold the
swapped-out location of the swap-slot we were performing
the reverse mapping procedure.

Since the anon_vma structure is freed when there are no
more vmas which may map the page and the anon_vma pointer
in the struct page does not change, storing the pointer to
the anon_vma as well as the mapping’s offset (index) within
the logical block’s metadata on the SSD enables the same
functionality as reverse mapping within the kernel.

4.3 zZNGC-swap integration

Physical zone information. Each zone is associated with a
map of swap-slots. The map holds information on the use
of each swap-slot, and whether it is valid, or swap-cached
(similar to Linux’s swap_map). This information is used by
ZNGC during the space reclamation. Note that a swap-slot
can be discarded by the OS and ZNGC becomes immediately
aware of the change, without using TRIMs as in Block SSDs.
ZNGC may decide to reclaim some zones that are mostly free
but hold some of the swap cache pages if it runs out of free
storage space, making the swap reclamation cutoff parameter
in Linux unnecessary.

Swap-zone abstraction. Active zones that can be used for
swap-slot allocation are exposed via a swap-zone abstraction.
A swap-zone is a virtual entity used to hide the complexity
of managing physical SSD zones. Swap-zones are backed by
Open zones. When an underlying physical zone transitions

Lanonymous pages and vmas only

Function Purpose

void rec_zn(int zn) Reclaim specified zone

void pg_inf(pg_i*, u64 pfn)
void vm_inf (vm_i*, u64 pfn)
void zn_inf(zn_i*, int zn)
void swap_inf (swap_i%*)

Get page statistics

Get information on VMA
Get information on zone
Get ZNSwap statistics

typedef struct { typedef struct {

u64 last_swapout_t; u64 vm_flags;
ul6 access_bit_vec; u6d size;
int owner_pid; int readahead_win_sz;
u64 cgroup_id; u64 cgroup_id;
b opg_i; }ovm_i;

typedef struct {
int zone_id;
int capacity;
int occupied_slots;

typedef struct {
u64 num_{slots, zns};
u6d free_{slots,zns};
u8 zslot_array_sz;

int invalid_slots; u32 {high, low}_wmark;
int swap_cache_slots; bool gc_running;
int swap_zone_id; } swap_i;

} zn_i;

Table 1: ZNGC policy APL

to the Full state, it is seamlessly replaced by another Open
physical zone. The total number of swap-zones is determined
by the limit on the number of Open zones in the device.

ZNSwap policies. ZNSwap provides an API to facilitate the
development of custom data placement and zone reclamation
policies. A policy is invoked when the OS swaps-out a page,
and its primary goal is to determine which swap-zone the page
is written to. If there is a need to reclaim some of the zones,
the policy may (asynchronously) invoke ZNGC to do so for a
specific set of zones. The policies are implemented in a kernel
module. Note that the swap-slot allocation policy operates
at the granularity of swap-zones rather than swap-slots to
conform to the ZNS interface.

API. A policy receives the page frame number (pfn) of the
page being swapped-out and returns the swap_zone_id of the
swap-zone where the swap-slot should be allocated. Table |
lists the functions that can be invoked by the policy.

We define three sample policies:

per-core policy Attempts to assign a swap-zone per-CPU-
core. If there are more cores than Open zones, the swap-zones
are multiplexed. This mimics Linux’s swap-cluster per core
policy and reduces contention on swap-zones.

hot/cold policy Utilizes a per-page access history bit-vector
maintained by the OS and assigns hot and cold pages to dif-
ferent swap-zones.

cgroup policy Attempts to assign a swap-zone per-cgroup. If
more cgroups are available, the swap-zones are multiplexed.
If cgroup swap limits are set (max number of swap-slots),
the policy will reclaim a zone used by the cgroup whose
number of used zones exceeds the limit the most (as zones
may contain invalidated swap-slots).

Example policy. We use cgroup policy to illustrate the use
of the policy API. When invoked, the policy:
1. Selects the destination swap-zone for the cgroup (using
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the cgroup_id from pg_inf ()).

2. If the number of free physical zones is below a prede-
fined low watermark (swap_inf ()):

2.1. Selects a victim cgroup whose number of utilized
physical zones exceed its allocated swap-slot ca-
pacity the most.

2.2. Iterates over the cgroup’s physical zones (obtained
via swap_zone_id from zn_inf () corresponding
to the swap-zone allocation of the cgroup) and
selects the zone with the least amount of valid slots.

2.3. Triggers an asynchronous explicit reclaim on the
victim zone (rec_zn ()).

2.4. Repeats the procedure until enough zones have
been reclaimed (step 2.1).

3. Returns the destination swap-zone.

cgroup accounting. When a cgroup’s swapped-out data is
copied during the ZNGC operation, ZNGC’s bandwidth is
accounted as part of the cgroup’s total bandwidth to the device.
We do not yet implement the CPU accounting, but this is not
critical as ZNGC’s CPU overhead is low as we show in § 6.1.1.

4.4 Discussion

ZNSwap introduces the zoned namespace interface to core
kernel mechanisms which used to support only traditional
block devices. The ZNSwap’s design is driven by the fun-
damental characteristics of ZNS SSDs, that are unattainable
with traditional Block SSD, and which dictate the following
design choices:

» Zoned interface: ZNSwap fully adheres to the zoned stor-
age specification, therefore it inherits the specification’s in-
tegral benefits. For example, ZNSwap utilizes zone-append
operations to enable concurrent writes to sequential-write-
only zones, accelerating the swap-out procedure to ZNS SSD
by sequentially appending page data.

e ZNS-related host responsibilities as opportunities: ZNS
requires implementing host-side GC, which present new op-
portunities for WA mitigation, better utilization of the SSD’s
capacity for swap-cache pages, and for improving perfor-
mance isolation.

* Tight integration of ZNSwap with kernel mechanisms:
utilizing fine granularity information the OS attains per swap-
slot enables better synergy between the OS and ZNS SSD.

Hardware limitations. The number of possible destination
zones for swapped-out pages in ZNSwap’s data placement
policies are limited by the number of Open zones the ZNS
SSD supports, which is device specific. The limit affects the
granularity of the policies’ classifications. ZNSwap is de-
signed to support ZNS SSDs with varying number of Open
zones and zone sizes, and abstracts the intricacies of zone
management via the swap-zone abstraction (§ 4.3).

ZNSwap also requires the use of the ZNS SSD’s per-block
metadata (64B). While per-block metadata is currently sup-

ported primarily in enterprise NVMe-SSDs, we believe that
it will be a common feature among ZNS-SSDs.

S Implementation

ZNSwap adds support for the zoned-interface model to key
kernel mechanisms located in several subsystems. We imple-
mented ZNSwap in Linux 5.12 with 4K LOC? (CLOC [8)).

5.1 ZNS page reclaim

Linux’s reclamation algorithm is incompatible with the zone-
append interface because it assumes that the write location of
the swapped-out data is known before the write completion.
Specifically, the algorithm uses the swap-slot as the key in the
swap-cache for the page currently undergoing reclamation. If
a page is accessed while it is being written to the swap device,
a page-fault is raised, and the kernel locates the page in the
swap-cache using the swap-slot entry to remap it.

ZNSwap redesigns the swap-out mechanism not to rely on
the pre-acquired swap-slot entry. The main idea is to utilize
the dirty bit of the page’s page-table entry to indicate whether
the page has been dirtied during the data transfer to the swap
device. Write access to such a page does not raise a page-fault
since the page is still mapped in the page-table. Rather, we
check the dirty bit in the page-table when unmapping it. We
provide more details in Appendix A.

5.2 zZNGC

We now describe the zone reclamation process in detail.
ZNGC first selects a candidate zone from a preselected set
of zones supplied by the policy. Given a zone, ZNGC scans
through batches of pages until a whole zone is reclaimed.
Figure 9 depicts the main stages:

Gather. ZNGC checks the swap-slots in the candidate zone.
Swap-slots of the pages currently cached by the swap-cache
are removed from the swap-cache and their swap-slots are
invalidated. Occupied valid swap-slots are gathered into a
pre-allocated array of block IOs to perform device reads. This
stage completes when the block IO array is full, or until it
reaches the end of the zone.

Read. The occupied blocks 10s containing the read opera-
tions are dispatched as a batch of requests to the device. The
destination of each read operation corresponds to a page from
a pre-allocated page pool. The metadata for each swap-slot is
read from the device into a buffer.

Write. Once all read operations are complete, each occupied
page from the page pool is examined and assigned a desti-
nation zone based on the ZNGC-swap policy. The block IO
array is subsequently reused to hold all the pending write
requests, which are dispatched as a batch.

Zhttps://github.com/acsl-technion/znswap
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Figure 9: ZNGC: main stages in garbage-collecting a victim zone.

Activate. After the write operations complete, the correspond-
ing swap-slots in the victim’s zone are re-examined. If a swap-
slot is still valid and occupied, it is marked as if it resides in
swap-cache in both victim and destination zones, to indicate
to other kernel procedures that these swap-slots are currently
in use. The page-table entries corresponding to the victim
swap-slots are subsequently remapped to hold the destination
swap-slots with the help of the reverse mapping information
obtained from the metadata (mapping and index). Finally,
the victim swap-slots are cleared. After ZNGC traversal over
a zone is complete, the zone is reset.

Concurrent accesses to swapped-out pages undergoing mi-
gration trigger a regular swap-in operation. ZNGC will skip
the corresponding swap-slot’s migration as the page resides in
memory, and will continue with the reclamation of the zone.

ZNGC does not perform dynamic memory allocations and
is designed to occupy a minimal amount of physical memory
(up to SMiB).

5.3 1/0 manager

ZNSwap’s I/0 manager adds support for zone-append merges
and seamlessly stores the per-page reverse-mapping informa-
tion into the metadata region of each written LBA.

Zone append merges. ZNGC and the page-out procedures
take advantage of the b1k _plug mechanism to batch together
zone-append operations destined to the same zone. We add
support for zone-append merges in the block layer by iden-
tifying block 10s destined towards the same zone that are
waiting to be drained and merge the page-list of each block
IO, creating a single block IO request. Once the request has
been completed, we iterate over the pages in the request and
generate an independent completion notification to each of
the merged block 10s with their respective write location,
calculated from their offset within the merged block 10 and
its final location.

Reverse mapping metadata. The /O manager allocates a
DMA-mapped physical page pool for metadata associated
operations. The pages serve as a host buffer for the per-page
metadata, and act either as a source or target location for
append and read I/Os, respectively. The DMA address of the
pages is supplied as part of the per-LBA metadata for each
command. When serving a swap-out append operation, each

LBA stores 16 bytes of metadata for the reverse mapping
information of the page (mapping and index).

6 Evaluation

Our evaluation demonstrates the benefits of ZNSwap using
ZNS SSDs over the Linux swap using Block SSDs. In particu-
lar, we focus on the benefits of integrating the ZNGC with the
host OS and the usefulness of ZNGC policies. We note that
all our benchmarks perform direct memory accesses only, and
impose SSD accesses due to the swap activity. Thus, the ac-
tual SSD access pattern might differ from the memory access
pattern in the benchmark.

Can ZNS drives be used via compatibility layers? Linux
swap does not work on top of ZNS drives, either as a swap-file
or a swap partition. Existing Linux device-mappers such as
dm-zoned [49] and dm-zap [33] aim to expose zoned devices
as regular block devices without any write-pattern constraints
but require large mapping structures for indirection. However,
they do not currently support ZNS SSDs. Therefore, the only
plausible baseline is Linux swap with block SSDs.

Hardware. We use a server with 2x Intel Xeon Silver 4216
CPU and 512 GiB of memory (2x 256 GiB DDR4 2933 Hz),
with Ubuntu 20.04, Linux 5.12.0. HyperThreading is disabled,
the frequency governor is "performance”, and "turbo" is dis-
abled to achieve stable results. We use a 1 TB production-
grade Western Digital ZN540 ZNS SSD and an equiva-
lent 1TB conventional Block SSD (with 7% OP) that uses
the same hardware platform and media. Both SSD’s max-
imum sequential read and write bandwidth is 3.2 GiB/sec
and 1 GiB/sec respectively. Random 4 KiB reads and writes
reach 1.4 GiB/sec and 1 GiB/sec respectively. For the ZNS
SSD, the writeable capacity of each zone is 1077 MiB, and is
formatted with the ability to store 64 B of metadata per LBA.

Setup. We configure the swap size to be the size of the system
memory (512 GiB) according to the common practice [19].
The remaining capacity on the drives is filled with data. The
resulting effective OP of the swap partition in the Block SSD
is 12%, therefore we configure ZNSwap to use the same OP.

Before each experiment, the SSD is formatted, followed by
a ramp-up until the workload has reached its steady state [17].
Bandwidth and WAF measurements are sampled at 10 min
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Figure 10: Swap-out bandwidth of vm-scalability with
random memory writes. As expected, higher device utilization
results in higher GC load.

intervals. The Block SSD’s WAF is measured through the
device’s internal host- and media-writes counters, and the
ZNS SSD’s WAF is measured by recording the number of
writes performed by ZNGC.

Performance metrics and optimal performance. We pri-
marily focus on the swap-out bandwidth as the main per-
formance metric. The rationale is that under write-intensive
memory access pattern, swap-in operations trigger the evic-
tion of an equal amount of dirty pages to the drive. Hence,
the resulting SSD access pattern is an equal mixture of 4KiB
random reads and mostly random writes for Block SSD, and
random reads and sequential writes for ZNS SSD.

The maximum write bandwidth for such a 50%/50% access
pattern on both Block SSD and ZNS SSD drives is measured
to be 488 MiB /sec. Therefore, we claim that the ZNSwap’s
performance benefits over the Linux swap baseline presented
in this section stem primarily from ZNSwap design rather
than from the performance differences among the drives or
the difference in the access patterns.

6.1 Synthetic benchmarks

We use the standard swap performance benchmarks,
vm-scalability [22] and pmbench [58] which allow evalu-
ating the performance of the swap subsystem and the swap
device under different memory access patterns.

We rerun several experiments from the Motivation section
on ZNSwap, to show how it recovers the system performance
for the cases where the standard Linux swap on Block SSDs
suffers from the performance anomalies.

6.1.1 Benefits of ZNG C-swap subsystem integration

Swapping without TRIMs. We execute vm-scalability in
a 2 GiB memory-limited cgroup. In each experiment, we pre-
allocate different amounts of memory to evaluate different lev-
els of the swap device’s capacity utilization. We then perform
random writes to that memory (case-anon-w-rand-mt), re-
sulting in random read/writes from/to the swap device. To
maximize throughput, we execute 64 threads (2x the number
of available cores). This is the same experiment as in § 3.1.1.

Figure 10 shows the results. ZNSwap immediately observes
the OS-managed swap-slot allocation without using TRIMs,
and as such only moves the valid pages when running ZNGC.
While ZzZNGC adds overheads to the host, ZNSwap outper-
forms the Linux swap in all cases but at 10% utilization due
to the device WA being lower.

CPU overheads of ZNGC vs. fine-grain TRIMs with Block
SSD. We measure the maximum CPU overhead of ZNGC
under 80% swap device utilization in Figure 10. We observe
that ZNGC occupies 15% of a single CPU core. At 10% swap
device utilization, the overhead drops to a negligible 0.3%.
In contrast, the CPU overhead for dispatching 8-slot TRIMs
is 32% of a single CPU core with lower swap performance
compared to ZNSwap.

Swapping without swap reclamation cutoff. We run the
same experiment with read-only and mixed read-write bench-
marks as in § 3.1.2 where we established the performance
degradation due to the static swap reclamation cutoff in the
standard swap. When invoked with ZNSwap, the performance
matches the “ideal” line in Figure 4.

6.1.2 Skewed workloads

We run pmbench configured to allocate 320 GiB of memory
and perform skewed memory writes with the default normal
distribution parameters (¢ = 1—12 of the allocated memory). The
distribution directs 80% of the memory accesses to 20% of
the allocated memory considered “hot”. The other 80% of the
allocated “cold” memory occupies 50% of the swap capacity.
The “hot” pages’ lifetime in swap tends to be shorter than for
other pages. In each experiment, we modify the amount of
RAM available to pmbench thus varying the proportion of the
working set swapped-out from 50% to 90%. This allows to
vary the swap device utilization without changing the working
set size and page access pattern across the experiments.

‘We compare the baseline with ZNSwap with the per-core
policy that ignores the page access frequency, and ZNSwap
with the hot/cold policy that strives to group pages with simi-
lar access frequencies into the same zone (see § 4.3).

We make two observations. First, ZNSwap achieves the
same performance regardless of the access pattern up to 2x
higher bandwidth compared to the baseline for both ZNSwap
policies. Second, the hot/cold policy exhibits 15-20% lower
WA compared to the naive policy, even though this benefit
is not reflected in the swap-out bandwidth in this workload.
Reducing WA is important on its own to achieve a higher
device lifetime [31].

6.1.3 Swap performance isolation in cgroups

We execute two instances of the vm-scalability bench-
mark, each in a different cgroup. Both cgroup A (CG. A) and
cgroup B (CG. B) run with 16 threads. CG. A utilizes 30%
of the swap capacity, and performs random writes, whereas
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one reading and another writing data.

CG. B utilizes 10% of the swap capacity and performs only
random reads. In addition, A’s and B’s swap bandwidth is
limited via blk-throttle to 300 MiB /sec. This is the same
experiment as in § 3.1.4.

Figure 11 shows the swap-in bandwidth for each cgroup
under different configurations. If the swap performance isola-
tion was perfect, each cgroup would behave as if it runs with
its own SSD, reaching its target bandwidth (red line). With
Block SSD, however, the target bandwidth cannot be attained.
Figure 5 shows that without the device-GC overhead, the up-
per bound is reached, implying that in this experiment this
overhead indeed causes performance degradation. Similar to
Block SSD, ZNS SSD with ZNSwap’s per-core placement
policy fails to provide swap isolation.

In contrast, with ZNSwap’s cgroup policy, the bandwidth of
the writer process (CG. A) fully absorbs the ZNGC bandwidth
overheads because only the data attributed to that cgroup is
moved by ZNGC. Note that the sum of the bandwidth used
by the swap and ZNGC operations in that cgroup does not
exceed the predefined limit. CG. B attains full bandwidth, and
it is not affected by the ZNGC bandwidth overheads.

6.1.4 Raw swap performance

We stress-test the raw swap-out performance of ZNSwap and
its multi-core scaling. We execute vm-scalability to se-
quentially write (case-anon-w-seg-mt) 500 GiB of data in
a contiguous memory region, while limiting the memory size
to 2 GiB via cgroup. By choosing the sequential access pat-
tern, not reusing the same pages, and limiting the number of
writes to not surpass the device’s capacity, we force the system
to avoid reusing swap-slots thus preventing device-side GC
and swap-in operations. This is done to achieve the highest
performance, stressing the swap software mechanisms.

ZNSwap exhibits the same performance as the traditional
Linux swap, achieving 740 MiB/sec swap-out bandwidth
for a single core, and the maximum device bandwidth of
1 GiB/sec with 4 cores (no graph shown).

6.2 End-to-end application Benchmarks

We evaluate two popular key-value store servers, demonstrat-
ing the benefits of ZNSwap to run large-memory produc-

tion applications. The throughput and latency we obtain are
consistent with those reported for other flash-assisted KVS
works [36, 46, 57].

We execute the KV servers on one NUMA node, and the
client on the other; hence we set the affinity of both NUMA
nodes’ kswapd threads as well as the kznsd thread that ex-
ecutes ZNGC to run on the first NUMA node to co-locate
them with the application. Thus, both ZNSwap and traditional
Linux swap are allocated the same amount of compute re-
sources which they share with the application threads.

6.2.1 memcached-ETC

We run a memcached key-value store [29] using the mutilate
client [45] and Facebook’s ETC benchmark [23]. We eval-
uate a random-skewed access pattern with 90% of requests
accounting for 10% of the keys. Despite this skewness, the dis-
tribution of popular keys in the memory is mostly uniformly
random because they are scattered across different memory
pages. This also dictates random access to the SSD.

We configure memcached to use 32 threads on one NUMA
node, and invoke 32 mutilate client threads on the other
NUMA node. We load the data to the server until we reach
the target swap device capacity utilization. We do not limit
the amount of memory available to the server, thus utiliz-
ing all memory (from both NUMA nodes) for the workload.
For example, 10% swap utilization (51 GiB) implies the total
working set of 563GB. We report the 99p latency of the KV
store, maximum throughput, as well as the WAF of the SSD.

Figure 12 shows that ZNSwap consistently outperforms
Block SSD-based swap in all performance metrics under the
evaluated swap device utilization: under 10% swap device
utilization ZNSwap exhibits 10x lower 99p latency and 5x
higher maximum QPS while not experiencing any WA, as op-
posed to Block SSD which suffers from a 2.5 x WAF. With the
added 8 blk. TRIM support for Block SSD, ZNSwap achieves
5x lower 99p, 1.6x higher QPS and 1.1x lower WAF.

6.2.2 redis-YCSB

We use an in-memory redis data store [16] with the YCSB
client [27] configured with 50% reads and 50% updates
(update-heavy configuration) in a 20-80 hotspot distribution
(80% of accesses target 20% of the working set) which is one
of the standard options. This memory access pattern induces
the same distribution of accesses as we evaluated in § 6.1.2,
thereby allowing us to show the application performance im-
pact of the hot/cold placement policy.

redis is executed in cluster-mode consisting of 32 servers-
threads, running on one NUMA node in a RAM-limited
cgroup. It loads a 320 GiB dataset to the cluster. 64 client
threads are spawned on the other NUMA node. Similar to the
microbenchmark in § 6.1.2, we vary the amount of available
RAM while keeping the working set size constant.
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Figure 13: redis 20-80 hotspot distribution 50/50 read/write, 99p latency at maximum throughput

Figure 13 shows the 99p latency, throughput and WA for
ZNSwap’s per-core and hot-cold policies, as well as Block
SSD. Both ZNSwap’s policies outperform Block SSD in
all performance metrics. We observe a 1.27x speedup in
throughput and 1.4 x drop in latency with 1.1x lower WA for
ZNSwap’s hot/cold policy compared to the per-core policy.

7 Related work

SSD-friendly swap support. SSDs’ unique characteristics
warranted a body of works [48, 54] that aim to optimize swap
on Block SSDs. These works modify Linux’s page reclaim
policy (similar to CFLRU [52]) to prioritize reclamation of
clean pages and reduce device-side GC overheads without
modifying the GC itself. In contrast, ZNSwap offers a novel
co-design of the host-side GC and the swap mechanisms and
achieves its benefits via tighter coupling between them.

Swap on raw flash. Several early works proposed swap to
raw flash [38, 41, 47] thereby avoiding GC overheads due
to copying blocks of discarded swap-slots. These papers pre-
dated the introduction of native TRIM support in SSDs, which
was supposed to achieve the same effect. ZNSwap shows that
even fine-grain TRIMs are not sufficient, and demonstrates
other benefits of the tight coupling with the OS enabled by
the host-side GC.

Open-channel SSDs [26] expose a low-level storage manage-
ment interface, similarly to ZNS. ZNSwap’s main contribu-
tion is its study of the benefits of host-side SSD management
and swap co-design, not considered in prior works. Further,
unlike ZNS, the adoption of OC-SSDs so far has been limited
due to poor portability and the complexity of the host-side
media control they require, such as media wear-levelling.
Stream-SSDs [40] expose a traditional block interface, and
can reduce WA by utilizing hints so the device may attempt

to co-locate data with similar lifetimes onto the same erase-
blocks. However, Stream-SSDs’ block-interface hinders sup-
port for cross-layer optimizations introduced by ZNSwap on
ZNS-SSDs, which are key to ZNSwap’s performance gains.

Implementing swap data placement support for Stream-
SSDs, akin to ZNSwap’s swap policies, will offer certain ben-
efits in the scenarios where data lifetime can be predicted and
data consolidated into a set number of streams, such as hot/-
cold access patterns (as noted in § 6.1.2). However, under ran-
dom access patterns, Stream-SSDs would perform similarly
to traditional Block SSDs. The performance gains pertaining
to ZNSwap’s cross-layer optimizations that aren’t related to
data-placement policies (i.e., the elimination of TRIMs) ex-
hibit higher performance gains than data-placement policies,
as shown in Figure 10.

8 Conclusion

ZNSwap leverages the recent ZNS SSD interface to enable
tight integration of the storage management mechanisms with
the swap subsystem. ZNSwap introduces a host-side ZNGC
that is co-designed with the swap logic to reduce garbage-
collection overheads and improve system performance, while
also leveraging the tight coupling with the OS and NVMe
metadata interface to avoid the costly flash translation layer
in the host. ZNSwap demonstrates significant performance
advantages of using ZNS for swap in realist scenarios, paving
the way to broader adoption of this new technology.
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A Pageout process

Figure 14 illustrates the operations performed during the pa-
geout process in detail.

Traditional page-out. A candidate anonymous memory page
from the inactive-list is selected to be evicted (not recently
accessed ) and is not in the swap cache , it is assigned
a swap-slot entry . The swap-slot entry is used both as
the destination of the page in the swap device, as well as
its identifier within the swap-cache. After the page has been
inserted into the swap-cache and subsequently unmapped
from the page tables [6], the swap-slot entry value is inserted
instead. If the page is dirty , it is unmarked as such, the
write operation to the swap device initiates , and the page
is reinserted into the head of the inactive list [9].

After the page has been successfully written to the swap
device, it is moved to the tail of the inactive list , where it
is then removed for the second time and passes through
the same conditions as in the first iteration. Finally, the page
is freed along with its swap-cache entry

If the page is accessed during the write to the swap device,
it is located in the swap-cache using the swap-slot entry, and
will subsequently fail one of the conditions in .

ZNSwap page-out. Apart from sampling the accessed bit
in , the dirty bit is sampled, cleared, and stored in the
PG_dirty flag of the struct page. The page is then as-
signed a zone per the defined policy and the append op-
eration to the swap device initiated ; the page is then rein-
serted to the inactive-list[6] . Once the append operation has
been completed and the location of the written data retrieved,
the page is inserted into the swap-cache. The PG_dirty flag
is cleared and the page is moved to the tail of the inactive-list
. The page then traverses through and is unmapped
from the page tables . If the page has been dirtied since
the append operation has initiated , the page-out oper-
ation is aborted. The page is finally freed at .

Unlike the traditional page-out algorithm, an access to the
page while it undergoing write-back to the swap device will
not raise a page-fault and subsequently remapped since it is
still mapped in the page-tables. Rather, the dirty bit in the
page tables is evaluated during the unmapping process ,
which indicates whether it is safe to free the page or not.
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Traditional page-out for regular block devices
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Abstract

Fine-grained deduplication, which first removes identical
chunks and then eliminates redundancies between similar
but non-identical chunks (i.e., delta compression), could ex-
ploit workloads’ compressibility to achieve a very high dedu-
plication ratio but suffers from poor backup/restore perfor-
mance. This makes it not as popular as chunk-level dedupli-
cation thus far. This is because allowing workloads to share
more references among similar chunks further reduces spa-
tial/temporal locality, causes more I/O overhead, and leads to
worse backup/restore performance.

In this paper, we address issues for different forms of
poor locality with several techniques, and propose MeGA,
which achieves backup and restore speed close to chunk-
level deduplication while preserving fine-grained deduplica-
tion’s significant deduplication ratio advantage. Specifically,
MeGA applies D a backup-workflow-oriented delta selector
to address poor locality when reading base chunks, and Q) a
delta-friendly data layout and “Always-Forward-Reference”
traversing in the restore workflow to deal with the poor spa-
tial/temporal locality of deduplicated data.

Evaluations on four datasets show that MeGA achieves a
better performance than other fine-grained deduplication ap-
proaches. In particular, compared with the traditional greedy
approach, MeGA achieves a 4.47-34.45 x higher backup per-
formance and a 30-105 X higher restore performance while
maintaining a very high deduplication ratio.

1 Introduction
Chunk-level deduplication [2,7, 18,20,27,28,40,45,54] has
been widely used in backup storage systems to reduce stor-
age costs, but it is limited by its coarse-grained processing
granularity (i.e., file/chunk level) and can not completely ex-
ploit data workloads’ compressibility. To achieve a higher
deduplication ratio, fine-grained deduplication [22,38,47] is
proposed.

Fine-grained deduplication, sometimes previously called
"delta compression," not only focuses on duplicate chunks
but also removes sub-chunk-level redundancies existing in
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Figure 1: Performance of MeGA (our approach), FGDedup
(a typical fine-grained deduplication approach similar to
SDC [53]), CLDedup (a typical chunk-level deduplication
approach [23]), and MFDedup (a special chunk-level dedupli-
cation approach [58]) on a website snapshot dataset.

similar but non-identical chunks, and it has been studied in
several use cases [15,37,38,51]. Typically, fine-grained dedu-
plication first deduplicates identical chunks, then finds similar
base chunks (among non-duplicates), and finally runs delta
encoding between the new and base chunks to only store their
differences (a.k.a., delta chunks) for space-saving. As a result,
fine-grained deduplication could achieve a much higher dedu-
plication ratio than chunk-level deduplication [37]. We use
the term fine-grained deduplication, though some previous lit-
erature uses the term delta compression to refer to this entire
process.

However, fine-grained deduplication’s performance is usu-
ally much worse than that of chunk-level deduplication be-
cause of further reducing data locality. Chunk-level dedu-
plication usually suffers from the poor locality of dedupli-
cated data, which has been mentioned in several previous
works [12,23,58]. For example, when deduplicating a work-
load, we only store unique chunks and “share” chunks that
appear in stored workloads as duplicates. Because chunks are
stored in chronological order, this kind of “sharing” results in
duplicate chunks and other unique chunks of this workload
being scattered across the storage media, which leads to poor
performance when restoring this workload. This problem is
aggravated by fine-grained deduplication. It is because fine-
grained deduplication introduces delta compression to exploit
more compressibility among workloads, so workloads “share”

USENIX Association

2022 USENIX Annual Technical Conference 19



more data, decreasing locality, increasing I/O overheads, and
leading to worse backup/restore performance.

Generally, different forms of the poor locality caused by
delta compression impact backup and restore workflows. In
the backup workflow, reading base chunks for delta encoding
suffers from poor locality of base chunks (denoted by Read-
ing Base Issue). Specifically, this issue is related to local com-
pression, since consecutive chunks are compressed and must
be decompressed together, which makes the compression unit
become the I/0 unit [6, 25,44]. Thus, we have to read a com-
pression unit even when only one or a few base chunks are
needed, which leads to huge I/O amplification. In the restore
workflow, the Fragmentation Issue [12,23,53] (that also ex-
ists in chunk-level deduplication) is exacerbated by the more
complex dependencies in fine-grained deduplicated data. It is
caused by a new kind of reference relationship between delta
and base chunks, and this new kind of reference relationship
further breaks spatial locality in fine-grained deduplicated
data. Meanwhile, additional reference relationships between
delta and base chunks also lead to a poor temporal locality in
fine-grained deduplicated data. During delta decoding, base
chunks and delta chunks must both be read, unlike restoring
deduplicated data that only requires a single I/O read for a
needed chunk, which makes the restore workflow repeatedly
access containers to gather delta-base pairs (denoted by the
Repeatedly Accessing Issue).

In this paper, we aim to improve these locality issues based
on several observations and techniques.

For the Reading Base Issue, we apply a backup-workflow-
oriented delta selector to improve the efficiency of reading
base chunks in the backup workflow. It is based on an obser-
vation that most base chunks are located in a few containers
(e.g., 64.1% containers only include 8.31% of the base chunks
when running a backup workflow in a studied dataset). Ac-
cording to this observation, our delta selector skips delta com-
pression when base chunks are located in those “base-sparse
containers”. Without reading these “inefficient” containers,
the efficiency of reading base chunks will be improved.

For the Fragmentation Issue, we propose a delta-friendly
data layout, which covers the two-level reference relationships
in fine-grained deduplicated data: the chunks—workloads ref-
erence relationship (also exists in chunk-level deduplication)
and the additional delta—base reference relationship (caused
by delta compression). The delta-friendly data layout handles
the new dependencies and improves the spatial locality in
fine-grained deduplicated data.

For the Repeatedly Accessing Issue, we observe the ex-
istence of “Always-Forward-Reference” traversing. It is a
special path to traverse restore-involved containers, in which
delta chunks always appear before their base chunks. By
using this feature and exploiting the asymmetry of the I/O
characteristics of storage media, we design a delta prewrit-
ing mechanism to deal with the poor temporal locality in
deduplicated data, which first prewrites delta chunks to their

location in the to-be-restored workload and then reloads them
for decoding when later accessing their base chunks.

We propose MeGA, a fine-grained deduplication frame-
work, by using the above techniques to address the Reading
Base Issue, Fragmentation Issue, and Repeatedly Accessing
Issue. As shown in Fig. 1, MeGA achieves performance close
to chunk-level deduplication while preserving fine-grained
deduplication’s significant deduplication ratio advantage. The
contributions of this paper are threefold:

* We analyzed several forms of poor locality caused by
fine-grained deduplication, which leads to additional I/O
overhead and poor backup/restore performance.

We proposed techniques (i.e., the backup-workflow-
oriented delta selector, the delta-friendly data layout,
the “Always-Forward-Reference” traversing, and delta
prewriting) to deal with these different issues caused by
the poor locality.

We proposed MeGA with these techniques to achieve
performance close to chunk-level deduplication while
preserving fine-grained deduplication’s significant dedu-
plication ratio advantage. Especially, compared with
the traditional greedy approach [53], MeGA achieves
a 4.47-34.45x higher backup performance and a 30—
105 x higher restore performance, while maintaining a
very high deduplication ratio.

2 Background and Related Works

2.1 Fine-grained Deduplication

Fine-grained deduplication [10, 15, 37, 38, 44, 51] could
achieve a much higher deduplication ratio than deduplication
alone [9,11,17,19,21,32-34,39]. It focuses on redundancies
not only between duplicate chunks but also between similar
but non-identical chunks, and finally achieves sub-chunk-level
detection as well as byte/string-level elimination.

However, fine-grained deduplication achieves a higher
deduplication ratio while introducing additional computa-
tion and I/O overhead when applying delta compression be-
tween similar chunks. To address these challenges, many
previous works have been proposed, and the additional com-
putation overhead has been hugely reduced. For example,
Zhang et al. [52] and Zou et al. [57] proposed much faster
sketch methods by exploiting the locality in backup streams
and content-based sampling, respectively. MacDonald [26]
proposed Xdelta for fast delta encoding. Xia et al. [48,49]
and Tan et al. [41] presented chunking-inspired methods to
further improve delta encoding/decoding speeds. Zhang et
al. [53] extended the rewriting techniques [12,23] from chunk-
level deduplication to fine-grained deduplication to reduce the
additional I/O overhead only in fine-grained deduplication’s
restore workflow.

Fine-grained deduplication has been employed in many
other works. Xu et al. [50] introduced fine-grained dedupli-
cation for databases to reduce storage cost. Jain et al. [16]
applied the idea of fine-grained deduplication in replica syn-
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Figure 2: The backup workflow of fine-grained deduplication.

chronization. Pucha et al. [35], Mogul et al. [30], and Zhou
et al. [55] designed a detection mechanism for p2p system,
which finds both identical and similar sources to accelerate
downloads.

Fig. 2 shows a standard workflow for fine-grained dedu-
plication: D Split backup streams into chunks and calculate
a fingerprint for each chunk. ) Check and eliminate dupli-
cate chunks using the fingerprint index. Q) Calculate each
unique chunk’s sketches. Super Feature [5,22,24,37] is a typ-
ical kind of sketch. It first generates multiple local-sensitive
hashes with rolling hashes and linear transformations, and
then packs these local-sensitive hashes together into fewer
Super Features to detect highly similar chunks. @ Find sim-
ilar candidates for unique chunks using a sketch index or
cache. O If a similar candidate exists, read it as a base chunk,
and delta encode the incoming chunk relative to the base,
often generating a much smaller delta chunk. ® All dedu-
plicated chunks are stored in containers in order, and then
each container will be compressed. (7) Generate a recipe for a
backup stream by recording fingerprints of all needed chunks,
including indirectly referenced base chunks.

2.2 Backup Workloads

In backup storage systems [29], workloads usually are a series
of backups (i.e., successive snapshots of the primary data),
and consecutive backups are usually similar, which has been
reported and exploited in many existing studies [13,47,52].
Thus, due to the highly redundant nature of the data, backup
storage often leverages data deduplication to greatly reduce
the size of backups and save hardware costs.

Deduplicated data (i.e., chunks) are usually locally com-
pressed and stored in immutable and fixed-size containers
(e.g., 4MB). Containers are compatible with striping across
multiple drives in a RAID configuration, and writing in large
units achieves the maximum sequential throughput [23].

3 Observation and Motivation
3.1 Challenges

Fine-grained deduplication obtains a higher deduplication
ratio than chunk-level deduplication with much worse
backup/restore performance, but further fragments data lo-
cality. As mentioned in several previous works [12,23, 58],
chunk-level deduplication usually suffers from poor locality
because chunks from a workload that are logically consecu-
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Figure 3: Restoring a delta chunk in the restore workflow of
fine-grained deduplication.
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Figure 4: I/O overheads in backup and restore workflow.

tive may refer to previously written chunks scattered across
the disks. However, fine-grained deduplication has more se-
rious locality issues. Specifically, fine-grained deduplication
eliminates redundancies among similar chunks by creating
more references to previously written chunks, which increases
fragmentation. Meanwhile, this observation also means that
as more space is saved, locality becomes worse. Poor locality
harms both backup and restore performance.

Fig. 2 demonstrates the poor locality involved in reading
base chunks for fine-grainded deduplication. Specifically, this
issue is related to the local compression, since consecutive
chunks must be decompressed entirely according to the com-
pression unit (that also becomes the I/O unit) [6,25,44], which
could be containers or compression regions (i.e., containers’
sub-unit). Therefore, reading a compression unit when only
one or a few base chunks are needed leads to I/O amplifica-
tion. Generally, a larger I/O unit (e.g., containers) may cause
a larger I/O amplification, but it also could opportunistically
prefetch more base chunks and reduce costly random accesses
on HDDs (due to locality of backup stream [38, 52]). Even
with a smaller I/O unit (e.g., 128KB container regions), read-
ing bases remains a bottleneck [38]. Though it may cause less
I/O amplification, reading some base chunks having locality
with a small I/O unit can be disrupted by write tasks and
result in more random seeks, because the backup workflow
of fine-grained deduplication mixes reads and writes (i.e.,
reading base chunks and writing deduplicated data). Thus,
we learn Challenge 1: Poor locality in the backup workflow
causes inefficient I/O when reading base chunks.

In the restore workflow (like Fig. 3), there are two chal-
lenges. The first challenge in the restore workflow is the frag-
mentation problem, which is caused by poor spatial locality in
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deduplicated data. It also exists in chunk-level deduplication,
but it becomes more serious in fine-grained deduplication.
It is because fine-grained deduplication allows workloads to
share more similar chunks, but it also produces more refer-
ences to previously written chunks. Therefore, fine-grained
deduplication introduces another kind of reference relation-
ship (i.e., between the base and delta chunks) and no longer
only has one kind of reference relationship (i.e., between
chunks and workloads). This makes the fragmentation prob-
lem more complex since the dependencies of each workload
are distributed more widely. Thus, there exists Challenge 2:
Delta-base relationships lead to more complex fragmentation
problems than deduplication alone. The restore workflow
also has Challenge 3: Delta-base dependencies cause poor
temporal locality during delta decoding and causes repeated
container reads. Without fine-grained deduplication, individ-
ual chunks can be read as needed to restore a file, but for fine-
grained deduplication, base chunks and delta chunks must
both be read. When chunks in a container are used (for unique
or base chunks) across long time intervals, the restore work-
flow needs to alternately and repeatedly access containers to
gather delta-base pairs for delta decoding.

Finally, Fig. 4 suggests the seriousness of these challenges.
It studies the I/O overheads of a basic fine-grained deduplica-
tion system with container I/O when backing up and restoring
backup workloads from a WEB dataset (detailed in §5.1),
which consists of 100 snapshots of a website. “WriteDedu-
plicatedData” means I/O for writing deduplicated data in
the backup workflow, and “NeededChunks” means 1/O for
reading needed chunks. “ReadBase”, “Fragmentation”, and
“RepeatedlyAccess” map to the above three challenges, re-
spectively. We learn that these three challenges cause huge
I/0 overheads, and even “WriteDeduplicated” and “Needed-
Chunks” only take about 0.3% and 1.12% of the total I/O in
backup and restore workflows.

3.2 Selective Delta Compression

As Challenge 1 mentioned, poor locality in reading base
chunks causes large I/0 overheads in the backup workflow.

To this end, we studied datasets and observed that base
chunks are not distributed evenly. For example, Fig. 5 gives
the distribution of base chunks when backing up the 100"
backup in the WEB dataset. Fig. 5(a) suggests that 64.1% of
containers include fewer than 30 base chunks, and Fig. 5(b)
demonstrates that these containers only hold 8.31% of the
total base chunks. We call these containers “base-sparse con-
tainers”. Though there are only a few base chunks in these
base-sparse containers, when requiring base chunks in one
of them, we have to load the whole container from the disk,
which causes a significant read amplification.

Thus, these observations motivate us to design a backup-
workflow-oriented delta selector, which skips delta com-
pression whose base chunks are located in “base-sparse con-
tainers” to avoid reading these “inefficient” containers. Thus,
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(c) The delta-friendly data layout for fine-grained deduplication.

Figure 6: An example of the order-based data layout versus
the delta-friendly data layout.

it could reduce the I/O overheads in the backup workflow,
and finally greatly improve the backup speed in fine-grained
deduplication, which will be evaluated in §5.2.

3.3 Delta-friendly Data Layout

For Challenge 2, we use the example in Fig. 6 to discuss
the fragmentation problem in fine-grained deduplicated data.
Fig. 6(a) lists three backup streams, and Fig. 6(b) suggests the
order-based data layout after fine-grained deduplicating these
three backup streams. The order-based data layout allocates
chunks in containers according to their written order and is
widely used in previous works [12,23,37,52]. When restoring
a backup, the needed and unneeded chunks are always mixed
in this data layout. Consider Container 2 in Fig. 6(b) for
example: when restoring the 3" backup, chunk F is needed
while chunks D and E are unneeded, but all of them will be
read as a whole container due to container I/O, which causes
extra I/O overheads.

Rewriting-like defragmentation approaches could be ex-
tended to fine-grained deduplication to alleviate the fragmen-
tation problem [53]. Their mechanisms can be summarised as
skipping deduplicating chunks already in sparse containers,
but this cannot stop the locality of deduplicated data becoming
increasingly poorer as the number of backups increases, which
thus makes the restore speed continually decrease [13,23,53].
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MFDedup [58] introduces a lifecycle-based data layout and
eliminates the fragmentation problem in chunk-level dedu-
plication. The lifecycle-based data layout classifies chunks
into categories according to whether they are always refer-
enced by the same set of consecutive backup workloads (i.e.,
lifecycles), and stores chunks in the same category together.
Lifecycle-based classification of chunks ensures whichever
backup workload is to be restored, chunks in any categories
are always either all needed together or all not needed together.
Thus, reading needed chunks in the unit of categories will
never cause unneeded chunks to be read. Generally, MFD-
edup only considers one-level simple reference relationships
(between chunks and backup workloads), which is the only
type of reference relationship in chunk-level deduplication.

However, directly applying this lifecycle-based data layout
to fine-grained deduplication is not feasible since fine-grained
deduplication introduces an additional kind of reference re-
lationship between delta and base chunks and causes new
fragmentation. In the 2" backup stream, there are two-level
reference relationships:

* Between workloads and chunks.

i.e., the 24 backup stream < {A,B’, C’, H, I, F’, G}
* Between base chunks and delta chunks.
ie., B AB); C & AC); F & A(F)
Therefore, we need a new data layout that considers both
kinds of reference relationships to eliminate the fragmentation
problem in fine-grained deduplicated data.

We first need a new way to describe chunks’ lifecycles with
the additional introduced reference relationship’s impacts.
Here we define the Necessary Chunks (denoted by NC) of a
backup workload as the combination of its directly referenced
chunks (i.e., the 1* level) and its indirectly referenced chunks
(i.e., the 2" level). Accordingly, we redefine a chunk’s lifecy-
cle in fine-grained deduplication as which backup workloads’
NCs refer to this chunk, which could cover the two-level ref-
erence relationships. In Fig. 6, we can list the NCs for the
three backups:

* NC_Backupl: A,B,C,D,E,F, G

e NC_Backup2: A, B, A(B’), C, A(C’), H, I, F, A(F*), G

e NC_Backup3: A,J,C,H, A(H), I, F, A(F*), G, A(G)
In this example, the lifecycle of chunk G is from NC_Backupl
to NC_Backup3, since G is used as a unique chunk for
NC_Backupl & NC_Backup2 and then as a base for
NC_Backup3.

After that, we could build a delta-friendly data layout by
integrating the second level of reference relationship into the
lifecycle management as well. As shown in Fig. 6(c), the delta-
friendly data layout consists of categories, which includes
several chunks. To clearly present them, we use Cat.(X,Y) to
indicate the category, which includes all chunks whose lifecy-
cles are only from NC_BackupX to NC_BackupY. All dedupli-
cated data are classified and sequentially stored in categories
according to their lifecycles, which hugely benefits the re-
store workflow. In this example, NC_Backup! is composed of

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Traversing Assumption: Always first meeting ..—..
delta chunks then meeting their base chunks. |

i User Space X i/ 1
i (SSD) |To»be—restored Workload“[j _/3.Decoding them and writing bac U 1

Figure 7: The delta prewriting mechanism. Here the half
shaded chunk is a delta chunk.

Cat.(1,1), Cat.(1,2) and Cat.(1,3); NC_Backup?2 is composed
of Cat.(1,2), Cat.(2,2), Cat.(1,3) and Cat.(2,3); NC_Backup3
is composed of Cat.(1,3), Cat.(2,3) and Cat.(3,3). When
restoring any of these three backups, we can select categories
according to the above lists, and all chunks in selected cate-
gories are all needed. In this way, the restore workflow never
needs to read any unneeded chunks, and the Fragmentation
Issue in Challenge 2 could be eliminated.

To simplify the implementation of the delta-friendly data
layout, we only deduplicate redundancies between adjacent
backups to ensure that chunks’ lifecycles are always consec-
utive (composed of successive backup streams’ Necessary
Chunks), similar to the approach in MFDedup [58]. This strat-
egy may reduce the total deduplication ratio, but it will not be
significant according to several previous works [38,44,58],
which will be also further studied in §5.4.

3.4 Forward Reference and Delta Prewriting
For Challenge 3, we design a delta prewriting mechanism. It
relies on two things: (D The storage media’s I/O characteris-
tics between User Space and Backup Space are asymmetric.
Backup Space usually uses HDDs as storage media due to its
lower price, while User Space usually uses SSDs or NVMs
since better I/O performance is essential for business [58]. @
When performing a restore, delta-encoded chunks are always
accessed before their base chunks, which we call “Forward
Reference.”

Fig. 7 shows the basic idea of the delta prewriting mecha-
nism. For each delta chunk, the prewriting mechanism will
prewrite it to the offset where it should be after delta decoding
in the to-be-restored backup workload (in User Space). And
then, when meeting its base chunk later, the prewriting mech-
anism will read the delta chunk from the prewritten position,
decode the delta chunk with the base, and finally write back
the decoded chunk to its offset. Through this mechanism, we
ensure that when restoring, all restore-involved containers
only need to be read only once, which hugely reduces the 1/O
overheads on Backup Space.

The next issue is how to make the assumption always
hold. By studying the data layout proposed in §3.3, we
find it is possible to design a special path for traversing
restore-involved containers when restoring, in which delta
chunks always appear in front of their base chunks. We call
it “Always-Forward-Reference” traversing (shortened to

USENIX Association

2022 USENIX Annual Technical Conference 23



AFR traversing), whose details will be introduced in §4.4.

Due to improved spatial locality (delta-friendly data layout
in §3.3) and temporal locality (the AFR traversing and delta
prewriting in §3.4) in deduplicated data, the I/O overheads in
the restore workflow are hugely reduced. Meanwhile, there
exists only sequential I/O to the Backup Space when restoring,
which is optimized for HDDs. Finally, the restore speed could
be greatly improved, which we evaluate in §5.3.

4 Design and Implementation

4.1 General Description

The overall framework of MeGA is shown in Fig. 8. In gen-
eral, @ For the backup workflow, MeGA first runs Chunk-
level Deduplication to remove duplicate chunks according
to Local-based FP Index, and then, it finds similar matches
for unique chunks according to Local-based Sketch Index and
selectively applies delta compression using Delta Selector. 2)
For the storage organization, MeGA stores and manages the
deduplicated and delta compressed data in the Delta-Friendly
Data Layout. @) For the restore workflow, MeGA generates an
Offset Hash Table according to the recipe of a to-be-restored
workload; then, MeGA accesses all restore-involved contain-
ers with AFR Traversing and Delta Prewriting.

Specifically, there are several modules in MeGA:

e Local-based FP Index and Local-based Sketch Index
maintain fingerprints and sketches of each backup work-
load’s chunks in separate hash tables per backup. They
only retain the current and last backup’s tables (simi-
lar to some previous works [44, 58]), because MeGA
only deduplicates a backup within itself and the previous
backup (mentioned in §3.3).

* Chunk-level Deduplication first splits the backup stream
into chunks with Content-Defined Chunking [31, 46]
and then calculates a fingerprint (i.e., SHA1 digest) for
each chunk. After that, it detects and eliminates identical
chunks with a Local-based FP index.

* Delta Selector first generates sketches with the resem-
blance detection approaches [4,5,37,52,57] for unique
chunks and identifies similar candidates according to
the Local-based Sketch index for further delta compres-
sion. Then, it delta-encodes chunks unless the referenced
bases are in base-sparse containers.

* Base Cache holds cached containers to provide base
chunks for delta compression in the backup workflow.

* Delta-Friendly data layout manages fine-grained dedu-
plicated chunks according to their lifecycles, reflecting
which backup workloads require these chunks. As a re-
sult, the delta-friendly data layout promises to eliminate
the fragmentation problem in fine-grained deduplicated
data and reduce I/O overheads in the restore workflow.

* AFR Traversing applies “Always-Forward-Reference’
traversing on fine-grained deduplicated data in a restore
workflow, which guarantees that delta chunks are always
accessed before their base chunks and provides the pre-
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Figure 8: An overview of MeGA framework.

condition for Delta Prewriting.

* Delta Prewriting transfers the random operations from
Backup Space to User Space, exploiting the asymmetry
of storage media characteristics between the two spaces.
This also avoids repeatedly accessing containers when
restoring files.

* Offset Hash Table is built according to a to-be-restored
backup workload’s recipe and provides offsets of chunks
(three kinds of chunks: unique, base, and delta) in the
to-be-restored backup workload.

Details of each workflow using our proposed key tech-

niques will be introduced in the following §4.2—§4.4.

4.2 Backup Workflow

The backup workflow runs Chunk-level Deduplication and
Delta Selector to eliminate duplicate chunks and redundancies
among similar chunks, respectively.

Chunk-level Deduplication. The chunk-level deduplica-
tion step splits the backup stream into chunks with Content-
Defined Chunking [31,46] and then calculates a fingerprint
(i.e., SHA1 digest) for each chunk. After that, MeGA detects
and removes duplicate chunks according to the Local-based
FP Index, as we introduced in §4.1.

Delta Selector. Then, the backup workflow runs Delta Se-
lector with the following steps. (D Delta Selector first com-
bines several successive chunks (from Chunk-level Dedu-
plication) into fix-sized segments (e.g., 20MB). @ In each
segment, Delta Selector generates sketches (i.e., Super Fea-
tures [22]) for each (unique) chunk, and then tries to find for
each chunk a similar chunk as its base chunk with the Local-
based Sketch Index. 3) For chunks that have a potential base
chunk, Delta Selector records their base chunk’s container ID
in a ‘selector table’, which counts the times each container is
referenced for base chunks within a segment. @ Then, Delta
Selector observes which containers are rarely referenced (with
a threshold) in the ‘selector table’ and considers these con-
tainers as ‘sparse-base containers’, which are inefficient to
read for base chunks. 3 Finally, for chunks having a similar
chunk that is not in sparse-base containers, Delta Selector will
run delta compression to calculate and store their differences
(i.e., delta chunk) for saving space; For the remaining chunks,
they will be directly stored as unique chunks. Base chunks in
delta compression are acquired from the base cache, and if a
cache miss occurs, the base cache will read related containers
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from disks and add them to the cache.

As a result, Delta Selector could improve the efficiency of
reading base chunks and then accelerate the backup workflow.
Next, we will introduce how to store these deduplicated data.

4.3 Maintaining Delta-Friendly Data Layout
In this subsection, we will introduce how to locate the dedu-
plicated data in the delta-friendly data layout. There are two
steps: (D Store the incoming deduplicated data of a new
backup in the delta-friendly data layout. 2) Process the in-
coming and previous backups’ deduplicated data to ensure
each chunk’s location is consistent with the principle of our
delta-friendly data layout.

Storing New Fine-grained Deduplicated Data and Data
Organization. For storing fine-grained deduplicated data, we
first consider their lifecycles. After running the backup work-
flow (introduced in §4.2), the fine-grained deduplicated data
consists of the latest backup workload’s unique and delta
chunks. Since these chunks are only referenced by the lat-
est backup, they should have the same lifecycle, and their
lifecycle should be different from previously stored chunks.

Then, considering the definition of the lifecycle and the
naming style of categories (shorten to Cat.) introduced
in §3.3, these chunks (assuming they are from the n" Backup)
should be classified into a new category Cat.(n,n).

Considering the sizes of categories are usually variable, we
design a two-level storage organization: fix-sized Containers
(e.g., 4MB) and variable-sized Categories. Containers directly
hold chunks, and categories hold containers whose chunks
have the same lifecycle. For example, Cat.(1,2) could include
one or several containers, and each container holds chunks
whose lifecycle is from NC_Backupl to NC_Backup?.

Data Migration. After storing fine-grained deduplicated
data of the latest backup workload, we should consider up-
dating the data layout to handle the issue that some chunks’
lifecycles are changed. In general, storing a new backup in the
delta-friendly data layout only changes the lifecycles of its ad-
jacent backups’ chunks, because MeGA only allows adjacent
backups to share common chunks (i.e., MeGA deduplicates
a backup within itself and its previous backup). Therefore,

these shared chunks’ lifecycles should be extended to the
latest backup. Thus, we need to migrate these shared chunks
into new categories to match their updated lifecycles, and we
call these migrations the maintenance workflow.

An example of the maintenance workflow is shown in
Fig. 9. It shows a situation that the 1% and 2" backups have
been stored in the data layout, and the 3"¢ backup is the latest
one, whose fine-grained deduplicated data have been stored
in Cat.(3,3), as discussed earlier in this subsection. At this
time, some chunks located in Cat.(1,2) and Cat.(2,2) are ref-
erenced by the 3rd backup (as duplicate or base chunks).
Thus, these chunks’ lifecycles newly include NC_Backup3
and they should be migrated into new categories. In this exam-
ple, chunks in Cat.(1,2) and Cat.(2,2) will be traversed, and
duplicate/base chunks will be migrated into new categories
Cat.(1,3) and Cat.(2,3), respectively.

Note that the maintenance workflow (i.e., data migra-
tion) only works on related categories and does not in-
volve all categories.. As the example in Fig. 9 shows, a main-
tenance workflow after storing the 3" backup only impacts
Column 2. Similarly, the maintenance workflow always runs
on one column, and its overhead is also limited (will be stud-
ied in §5.6). With support of the maintenance workflow, the
delta-friendly data layout is preserved, which benefits restore
performance.

Features in Migration. There exist two interesting fea-
tures when the maintenance workflow involves delta and base
chunks. For clarity, here we say Cat.(X,Y) is in Row X, and
Column Y, as shown in Fig. 9.

Feature 1: base chunks are always in the same or an
earlier Row than their delta chunks. It could be easily ex-
plained by the example in Fig. 9. For delta chunks of the 3™
backup (must be in Cat.(3,3)), their base chunks can only be
from two sources: (D from the 3rd backup itself. In this case,
the bases are also in Cat.(3,3), the same Row as the delta. Q)
from the 2" backup. In this case, the bases must be migrated
into Cat.(1,3) or Cat.(2,3), the earlier Row than the delta.

Feature 2: base chunks are always in the same or a later
Column than their delta chunks. Here we also take Fig. 9 as
an example: When the duplicate chunks in Fig. 9 contain base
or delta chunks, there are two cases: (DIf a delta chunk is a
duplicate of another delta chunk (i.e., its “original” chunk is
a duplicate of delta-encoded chunk) to the 3rd backup and
should be migrated, its base must be also migrated as the
delta’s dependency, since both of them should be included in
NC_Backup3. Therefore, in this case, they will be migrated
into the same Column (Column 3). @If a base chunk is dupli-
cate (i.e., is itself a duplicate) to the 3rd backup and should be
migrated, its delta will not be migrated, since the 3rd backup
does not require this delta chunk. In this case, the base (mi-
grated to Column 3) will be in a later Column than the delta
(left in Column 2).

These two features will help to achieve “Always-Forward-
Reference” traversing, which will be further used in §4.4.
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Table 1: Possible category locations of the corresponding base

chunks for the delta chunks in the 2"¢ backup.
Corresponding Base Chunks’
Possible Positions

Delta Chunks’ Positions

Cat.(1,2) = Cat.(1,2), Cat.(1,3)

Cat.(2,2) = Cat(1,2), Cat.(2,2), Cat.(1,3), Cat.(2,3)
Cat.(1,3) = Cat.(1,3)

Cat.(2,3) = Cat.(1,3), Cat.(2,3)

4.4 Restore Workflow

As introduced in §4.1, the restore workflow of MeGA relies
on AFR traversing and Delta Prewriting. In the beginning,
the restore workflow needs to determine which containers are
needed for restoring the required backup workload.

Identifying All Required Containers. All the required con-
tainers could be simply calculated in a delta-friendly data
layout. For example, there are n backup workloads stored,
and we want to restore a backup By. According to the naming
style of categories (mentioned in §3.3), all categories whose
lifecycles include NC_Backupk are required, and they are
Ui UL, Cat.(i, j),where 1 <i <k < j < n. For example,
when restoring the 2" backup in Fig. 9, Cat.(1,2), Cat.(2,2),
Cat.(1,3), Cat.(2,3) are required.

Then all containers in these categories are the restore-
required ones. Benefiting from the delta-friendly data layout,
all chunks in these containers are exactly what we need, which
avoids reading unneeded chunks when restoring. Next, we
present how to traverse them for restoring a workload.

AFR Traversing. As mentioned in §4.1, AFR traversing
promises that when traversing the restore-involved contain-
ers, delta chunks always appear in front of their base chunks.
For the example in Fig. 6(c), when restoring the 2"¢ backup,
restore-involved categories are Cat.(1,2), Cat.(2,2), Cat.(1,3)
and Cat.(2,3) (according to “Identifying All Required Con-
tainers”). In this case, we can achieve AFR traversing with
the following order: Cat.(2,2) = Cat.(1,2) = Cat.(2,3) =
Cat.(1,3), in which we always meet the delta chunks before
their base chunks.

Next, we explore how and why MeGA can achieve AFR
traversing, also with the example of restoring the 2""¢ backup
in Fig. 6(c). Consider the two key Features about the rela-
tive positional relationship (i.e., the located categories’ Rows
and Columns) between the delta and base chunks (learned
from §4.3). We can get Table 1, listing all possible positions
(i.e., located categories) of delta and based chunks of the 2"
backup. To achieve AFR traversing (accessing delta chunks
and then their bases), Cat.(2,2) must be first accessed, which
is because the base chunks of Cat.(2,2)’s delta chunks could
be in all four categories as shown in Table 1. With similar anal-
ysis, we could finally get the previous example path: Cat.(2,2)
= Cat.(1,2) = Cat.(2,3) = Cat.(1,3). Additionally, AFR
traversing should go through chunks and also containers of
each category in reverse order in case there are delta and
base chunks in the same category or container, since the delta
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Figure 10: An example of the restore workflow.

must be generated and then appear after its base in the backup
workflow.

To this end, we can summarize three rules to achieve
AFR traversing on our delta-friendly data layout in general
cases:

* Between columns, access columns in positive order. This

is deduced from Feature 2 (in Section 4.3).

¢ In the same column, access categories in reverse order.
This follows from Feature 1 (in Section 4.3).

* In a category, access containers in each category and
chunks in each container in reverse order. This is because
delta chunks can only reference earlier chunks by design.

Delta Prewriting. As shown in Fig. 10, Delta Prewriting
requires an Offset Hash Table, which is generated accord-
ing to the to-be-restored backup’s recipe. The Offset Hash
Table records key/value pairs: each chunk’s offset (in the
to-be-restored backup) and whether it is a base chunk (i.e.,
<offset, base tag>). For unique chunks in the recipe, we only
insert its offset into its FP’s entry list and tag this record as
not a base (e.g., <offsetUniqueK, false>). For a delta chunk
in the recipe, we first process it as a unique chunk (e.g., insert
<offsetDeltaN, false> in its FP’s entry list) and then addition-
ally insert a record into the entry list of its base’s FP and tag
this record as a base chunk (e.g., <offsetDeltaN, true>).

Then, we apply AFR traversing on restore-involved con-
tainers. For each chunk, we acquire its entry list according to
its fingerprint. We check each record in the entry list: If it is
not a base chunk record, we directly write the chunk (it may
be a delta or unique chunk) to the offset in the record; If it is
a base chunk, we read the delta chunk from the offset in the
record (the delta should already be written before), decode
the delta chunk with the base chunk, and then write back the
decoded chunk to the offset in the record.

Finally, MeGA could achieve a much higher restore speed
with the benefits of the delta-friendly data layout, AFR travers-
ing and delta prewriting, since it no longer reads unneeded
chunks and repeatedly accesses restore-involved containers.

4.5 Discussion
In this subsection, we discuss several features and issues.
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Deletion. Different from the order-based data layout, the
delta-friendly data layout supports direct deletions without
GC. Because MeGA allows workloads to share chunks as
duplicate chunks or base chunks, deleting the n" backup only
needs to remove its unique chunks. According to the category
naming rule, Cat.(n,n) only contains chunks unique to backup
n. Thus, deleting the n'”* backup could be achieved by directly
removing this category, instead of the way in the order-based
data layout, which first runs logical deletion and later runs
garbage collection to reclaim storage space [3,9, 14].

Delta Prewriting. This mechanism introduces additional
I/0 on User Space, including prewriting and reading delta
chunks. Our observations suggest these issues cause about
5%-10% additional I/O overheads on User Space. Moreover,
since delta chunks are usually much smaller than unique ones,
we could also introduce a delta cache in memory and prewrite
delta chunks into the cache as an alternative solution.

Memory Overhead. Since the size of the base chunk cache
(in a backup workflow) is configurable, the other memory
overhead of MeGA is mainly from the local-based indexes
(in backup workflow) and the offset hash table (in restore
workflow). (D Instead of putting the whole index in memory,
MeGA only maintains the index of the last two backups and
thus costs less memory, which is similar to some previous
work [44,58]. Moreover, a stream-informed index [56] could
also be applied to our local-based index to further reduce
memory overhead. 2) The overhead of the offset hash table
is related to the number of chunks in a single backup. Some
previous works [1,43] suggest that the majority of single
backups were 4—128GB, and for these cases, RAM usage
for the Offset Hash Table could be 12.9-445.6MB, which
is feasible for a server. To reduce this RAM usage for large
backups, we could keep the offset hash table in an on-disk
key-value store, but it would require indexing time.

Maintenance’s (i.e., Migrations) Overheads. The Mainte-
nance process in MeGA replaces Garbage Collection (GC)
in previous works, and its overhead could be offset since
both techniques are offline processes, which will be evalu-
ated in §5.6. Through the Maintenance process, MeGA could
achieve direct deletion (to immediately reclaim storage space)
instead of logical deletion followed by GC. Besides, the Main-
tenance process also addresses two interesting issues [36]:
knowing how much space will be freed after deletion and
estimating the remaining logical space of a fine-grained dedu-
plication system.

Incremental Backups. Although MeGA focuses on full
backups (i.e., a full snapshot of primary storage), we present
a plan to support incremental backups by generating “virtual”
full backups.

When handling an incremental backups, we generate a
“virtual” full backup according to the previous full backup’s
recipe, and then process the “differences” included in the
incremental backup. Specifically, D non-modified (i.e., not
listed in the incremental backup) parts of the “virtual” full

backup are duplicates, and we can directly copy correspond-
ing records from the previous full backup’s recipe to the
“virtual” full backup’s recipe; @ modified (i.e., listed in the
incremental backup) parts have potentially new content, and
we need to apply fine-grained deduplication. Chunk bound-
aries need to be recalculated due to the modified data regions,
so we could combine the new data with their surrounding
duplicate chunks to make up a local stream and run content-
defined chunking on this stream to determine new chunks.
Then, MeGA could process these chunks normally, and finally
record these “modifications” in the “virtual” full backup’s
recipe.

S Evaluation

5.1 Configuration

We perform our experiments on a workstation running Ubuntu
18.04 with an Intel Core i7-8700 @ 3.2GHz CPU, 64GB
memory, and a 7200rpm HDD. To better evaluate MeGA, the
following five approaches are considered:

* Greedy: applying the greedy strategy for fine-grained
deduplication, often evaluated as the baseline [44, 53].

* FGD: Fine-Grained Deduplication with the Capping
rewriting technique [23], which skips some deduplica-
tion and delta compression whose duplicate chunks or
base chunks are located in a few referenced containers.
This is similar to a recent work called SDC [53].

* CLD: Chunk-Level Deduplication with the Capping
rewriting technique [23], considered as a typical ap-
proach of chunk-level deduplication defragmentation.

* MFD: Chunk-level deduplication with the previous
lifecycle-based data layout, which only deduplicates
chunks between adjacent backups [58].

These approaches are implemented according to related

papers, and they all follow these common configurations:

* Chunking backups uses FastCDC [46] with the mini-
mum, average, and maximum chunk sizes set to 2KB,
8KB, and 64KB; SHA1 is used for chunk identification.

* Their resemblance detection generates 12 features and
3 super-features as sketches for each unique chunk, as
suggested in previous works [22,24,37].

 Consecutive chunks are compressed together with ZSTD
and stored in containers.

* The delta encoding stage uses Xdelta to calculate differ-
ences between unique chunks and its similar candidates,
as configuration in previous works [52,57].

* MeGA only requires a container cache in the backup
workflow, and the other four non-trivial approaches re-
quire two container caches in both backup and restore
workflows. The cache of each workflow totals 512MB.
When loading base chunks into the cache, all approaches
apply container I/O for fair comparison.

To focus on testing the performance of the deduplica-

tion storage side (i.e., running deduplication on HDD me-
dia), tested datasets are backed up from User Space (i.e., a
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Figure 11: Backup speed of five deduplication approaches on four datasets.
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Table 2: Four backup datasets used in evaluation.
Workload Descriptions

Name Original Size Versions

Backups of website: news.sina.com,

WEB 260GB 100 captured from Jun. to Sep. in 2016.
Source codes of Chromium project
CHM 279 GB 100 from v82.0.4066 to v85.0.4165
Synthetic backups by simulating file
SYN 138 TB 200 create/delete/modify operations [42]
VMS 155 TB 100 Backups of an Ubuntu 12.04

Virtual Machine

RambDisk) to Backup Space (i.e., a 7200rpm HDD) one by one
while the restore runs in the reverse direction. For speed of
backup and restore in our evaluation, we present the average
results of five runs.

Four backup datasets are used for evaluation, as shown
in Table 2. These datasets represent various typical backup
workloads, including website snapshots, an open-source code
project, virtual machine images, and a synthetic dataset. They
have been used in several deduplication studies [8,46,53].

5.2 Backup Speed

The backup speed of five approaches are evaluated and shown
in Fig. 11, and the results vary by 5.2% on average in mul-
tiple runs. FGD# and MG# represent FGD and MeGA with
different parameters (the capping level in FGD and the delta
selector threshold in MeGA). The capping level L indicates
that when processing a backup stream segment, containers
will be considered as sparse containers except for the L most
referenced (for duplicate or base chunks). Chunks in the seg-
ment, whose duplicate or base chunks are in sparse containers,
will be processed as unique chunks. A delta selector thresh-
old T means that when processing a backup stream segment,
containers, which are referenced for base chunks less than
T times, will be considered as base-sparse containers. Delta
compression in the segment, whose base chunks are in base-
sparse containers, will be skipped. Considering that datasets

have different characteristics and require different parameters,

we optimized the parameters for each dataset. The backup

T he—Size—of—Backup—or—Restore— Warkload
Speed is calculated by Backup—or—Restore—Time—Cost

Because deduplicated and compressed data is much smaller
than their original size and writing to disk takes less time, the
backup speed could exceed the disk speed.

With the benefits of the delta selector, MeGA outperforms
other fine-grained deduplication approaches (i.e., Greedy
and FGD). On the SYN dataset, MeGA reads increasingly
fewer containers when processing later backups, which makes
MeGA’s backup speed increase. VMS is a virtual machine
dataset and its modification style (i.e., trending to change
the same region in each backup) makes distribution of base
chunks uneven, which makes MeGAOQ’s performance jittery.
Generally, MeGA achieves a 4.47-34.45x higher backup
speed than Greedy.

Fig. 11 also suggests a stricter (smaller) capping level
in FGD and a stricter (bigger) delta selector threshold in
MeGA both accelerate backup speed, due to skipping some
potential delta compression and the need to read more base
chunks. Note that if delta selector threshold and capping level
were strict enough, all delta compression would be skipped.
Though the delta selector and the capping rewriting have sim-
ilar mechanisms, their results are much different due to their
different views on container utilization. The capping rewrit-
ing is restore-workflow-oriented and focuses on how many
needed chunks (all kinds of chunks) are in containers. But the
delta selector is backup-workflow-oriented, and only concerns
how many base chunks are in containers.

Fig. 12 further studies why MeGA could achieve a much
higher backup speed than FGD, which lists the disk access
times for acquiring base chunks (within the unit of containers)
and average access time cost when storing backup. On the one
hand, MeGA has much lower disk access time due to skipping
reading “inefficient” containers. On the other hand, MeGA
has a lower average access time cost, since it only finds base
chunks in adjacent backups and its accessed containers will
be located closer. These two efforts ensures MeGA'’s better
performance.

Note that MeGA achieves similar results with chunk-level
deduplication approaches (CLD and MFD) on most datasets.
It is because the additional I/O and computation overhead both
have been hugely limited by our delta selector and previous
computation optimization works, respectively. Besides, SYN
is a synthetic dataset and its modified parts are distributed ran-
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domly instead of having more typical locality, which makes
MeGA slightly slower than CLD and MFD.

5.3 Restore Speed

Fig. 13 shows the restore speed of all five approaches, and
the results vary by 2.6% on average in multiple runs. Among
all approaches, MeGA consistently achieves a better restore
performance than other approaches, which reflects MeGA’s
restore techniques (i.e., the delta-friendly data layout, delta
prewriting and AFR traversing). MeGA solves the Fragmen-
tation Issue and Repeatedly Accessing Issue and improves
the spatial and temporal locality in fine-grained deduplicated
data. It also ensures that MeGA's restore performance is more
consistent, while FGD, CLD and Greedy all have a decreasing
restore speed. Note that the local compression ratio increases
when storing more backups on SYN, which makes the restore
speed faster. Generally, MeGA achieves a 30—105x higher
restore speed than Greedy.

Fig. 14 shows the number of restore-involved containers
(i.e., containers with restore-required chunks) and contain-
ers read from disk during restore of MeGA, FGD, and CLD.
These two metrics reflect the seriousness of the Fragmentation
Issue and Repeatedly Accessing Issue, respectively. Compared
with FGD and CLD, MeGA has lower results on both of the
metrics due to applying our data layout and AFT traversing
with delta prewriting. Consequently, MeGA achieves a much
higher restore performance, as shown in Fig. 13.

5.4 Deduplication Ratio

Fig. 15 studies deduplication ratios of five approaches with
different parameters mentioned in the above subsections. All
three fine-grained deduplication approaches (i.e., Greedy,
FGD, and MeGA) have higher deduplication ratios than
chunk-level deduplication approaches (i.e., CLD and MFD),
since they can exploit compressibillity among similar chunks.

capping level in FGD or threshold in MeGA will lower the
deduplication ratio but lead to a better backup or restore speed,
as reported in the above subsections.

MeGA’s advantage is relatively smaller on the VMS and
SYN datasets. For VMS, its modification style (i.e., trending
to change the same region in each backup) leads to fewer
similar chunks, which limits the benefits of fine-grained dedu-
plication, regardless of the approach. For SYN, its modifica-
tions are completely random because it is a synthetic dataset,
and the locality of base chunks is not as strong as that of
other datasets. Therefore, MeGA’s delta selector causes more
reduction in the compression ratio.

Generally, MeGA preserves fine-grained deduplication’s
significant advantage by achieving a 1.18-8.73 x higher dedu-
plication ratio than chunk-level approaches.

5.5 Overall Performance

The three metrics discussed above are of the most interest to
users. Fig. 16 shows the overall performance with different
parameters (used in Fig. 11 and 13) from the above section. It
is obvious that MeGA significantly improves over other fine-
grained deduplication approaches (i.e., FGD and Greedy) on
both backup and restore speed while preserving the deduplica-
tion ratio advantage of fine-grained deduplication. It reflects
the performance improvement that our proposed technology
brings. MeGA’s advantage is relatively smaller on SYN and
VMS datasets. As we mentioned in § 5.4, it is because VMS
does not have many similar chunks, and SYN lacks natural
locality, which is unfriendly for our delta selector.

5.6 1/0 Overhead in Maintaining Data Layout
In this subsection, we evaluate I/O overheads of maintaining
the delta-friendly data layout (shortened to "Maintenance")
compared with traditional garbage collection (GC).

Our experiments are based on MeGA and FGD using the
median parameters as in Fig. 11 and 13, and MeGA runs main-
tenance while FGD runs GC. For GC, a container liveness
threshold is usually considered to make a tradeoff between
more storage space cost and more GC overheads. Here we
use three liveness thresholds: 0%, 25%, and 50%, mapping
to toleration up to 0%, 25%, 50% invalid chunks in each
container, respectively. In order to make the results among
different datasets comparable, we measure their time costs.
Both approaches retain the last 20 backups; thus GC would
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Figure 17: The delta-friendly data layout’s maintenance vs. the order-based data layout’s garbage collection.

not run for the first 20 backups, though the maintenance does.

Fig. 17 compares time cost of maintenance and GC. For
GC, a bigger threshold does not always lead to a lower I/O
overhead, since tolerating invalid chunks will make the next
GC need to clean more containers, which causes additional
I/Os. In general, maintenance and GC have similar I/O over-
heads, and compared with the best version of GC (“GC:25%”),
maintenance costs about 0.32—1.92x the GC I/O overheads,
which suggests maintenance and GC’s overhead have differ-
ent characteristics and have an overall similar impact.

Note that in maintenance of MeGA, if all chunks in a con-
tainer are needed to be migrated to a new category, we can
directly let this container belong to that new category without
any chunk migration. It is interesting to observe that about
25.13% (WEB), 14.57% (CHM), 59.13% (SYN), and 72.95%
(VMS) of containers do not need chunk migrations.

6 Conclusion

This paper proposes MeGA, a fine-grained deduplication
framework, with three techniques: backup-workflow-oriented
delta selector, delta-friendly data layout, and AFR traversing
with delta prewriting, to address the three issues for different
forms of poor locality caused by the introduction of delta

compression: reading base chunks, fragmentation, and repeat-
edly accessing containers, respectively. Evaluations show that
MeGA achieves performance close to chunk-level deduplica-
tion while preserving fine-grained deduplication’s significant
deduplication ratio advantage.
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A Artifact Appendix
Abstract

The artifact is source code of a prototype deduplication system for backups that
follows the ideas in the paper.

Scope

It could suggest the details and effectiveness of the delta selector, the delta-
friendly data layout, the ” Always-Forward-Reference” traversing, and the delta
prewriting mechanism.

Contents

The artifact is source code of a prototype deduplication system for backups
that follows the ideas in the paper. It mainly supports two main operations:
(1) deduplicating and storing backup workloads and (2) restoring stored backup
workloads.

Detailed manuals are introduced in our GitHub repository. In brief, the ar-
tifact supports the two operations with the following two commands.

# deduplicating and storing a new backup
./MeGA --ConfigFile=|config file path] --task=write -~InputFile=[backup work-
load] --DeltaSelectorThreshold=[Delta Selector Threshold]

# restoring a stored backup
./MeGA --ConfigFile=[config file path] --task=restore --RestorePath=[path
to restore] ——RestoreRecipe=[which backup to restore (1 ~ n)]

MeGA generates several outputs when executing. Note that:

(D MeGA includes chunk-level deduplication, delta compression, and local
compression. The “total reduction ratio” suggests the benefits from all these
parts on a single backup.

) The “total reduction ratio” simply indicates how many times the size
of a single backup has been reduced. For the entire dataset, the user needs to
add up the original size of all backups in a dataset and divide it by the ” After
Compression” of all backups to get the general ”Dedup ratio” of the dataset,
which is suggested in Figure 15.

(3 The backup speed is related to the results in Figure 11.

(@) The cache misses and average time cost are related to the results in Figure
12.

(6 The arrangement duration is related to the results in Figure 17.

(D The restore speed is related to the results in Figure 13.
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() Figure 16 is just a general view, and it does not have new results.

Hosting

The source cost is available at https://github.com/Borelset/MeGA (the ” Con-
tainerBased” branch).

Requirements

The Artifact has the following requirements.
Hardware Requirement:
e CPUs supporting AVX2 instructions.
32GB or larger RAM
7200rpm HDD drivers for experiments.
Another storage device for datasets. (400GB for full evaluations or 100GB
for partly evaluations)
Software Requirement:
isal_crypto [https://github.com/intel/isa-1_crypto]
jemalloc [https://github.com/jemalloc/jemalloc]
openssl [https://github.com/openssl/openssl]
zstd [https://github.com/facebook/zstd]
Reformat your HDD and deploy an XF'S file system, as fragmentation of
the file system will affect performance.
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Secure and Lightweight Deduplicated Storage via
Shielded Deduplication-Before-Encryption

Zuoru Yang', Jingwei Li*? and Patrick P. C. Lee’
"The Chinese University of Hong Kong *University of Electronic Science and Technology of China

Abstract

Outsourced storage should fulfill confidentiality and storage
efficiency for large-scale data management. Conventional ap-
proaches often combine encryption and deduplication based
on deduplication-after-encryption (DaE), which first performs
encryption followed by deduplication on encrypted data. We
argue that DaFE has fundamental limitations that lead to vari-
ous drawbacks in performance, storage savings, and security
in secure deduplication systems. In this paper, we study an
unexplored paradigm called deduplication-before-encryption
(DbE), which first performs deduplication and encrypts only
non-duplicate data. DbE has the benefits of mitigating the per-
formance and storage penalties caused by the management of
duplicate data, but its deduplication process is no longer pro-
tected by encryption. To this end, we design DEBE, a shielded
DbE-based deduplicated storage system that protects dedu-
plication via Intel SGX. DEBE builds on frequency-based
deduplication that first removes duplicates of frequent data
in a space-constrained SGX enclave and then removes all
remaining duplicates outside the enclave. Experiments show
that DEBE outperforms state-of-the-art DaE approaches.

1 Introduction

Data outsourcing to public cloud storage provides a plausible
solution for low-cost, large-scale data storage management in
the face of explosive data growths [71]. To defend against data
privacy leakage [57], clients require end-to-end encryption,
such that their outsourced data be encrypted before being
stored in (untrusted) public cloud storage. However, tradi-
tional symmetric encryption prohibits cross-user deduplica-
tion (i.e., removing duplicate data from multiple clients), since
each client encrypts its own outsourced data with a distinct
secret key, implying that the encrypted outputs from multiple
clients are also distinct.

The literature has numerous studies (e.g., [3,7,8, 18, 23,
72,74,79]) on how to seamlessly combine encryption and
deduplication for secure deduplicated storage in data out-
sourcing, which we collectively refer to as deduplication-
after-encryption (DaE). DaE first performs encryption on the
outsourced data on the client side for confidentiality, followed
by applying cross-user deduplication in the cloud to remove
duplicate encrypted data for storage savings. To preserve the
identical content after encryption, DaE encrypts data using a

*Corresponding author: Jingwei Li (jwli@uestc.edu.cn)

symmetric key derived from the content of each chunk (the ba-
sic unit of deduplication), such that duplicate original chunks
(called plaintext chunks) are always encrypted by the same
key into duplicate encrypted chunks (called ciphertext chunks)
that are later removed by deduplication.

Despite its popularity, we argue that DaE has fundamental
limitations including high key management overhead, incom-
patibility with compression, and security risks (see §2.1 for
details). Since DaE always manages a key for each chunk
for encryption before deduplication, it not only unnecessarily
generates a huge number of keys for duplicate chunks that
will later be removed by deduplication, but also incurs high
storage overhead for managing a huge number of keys for all
duplicate and non-duplicate chunks [47]. In addition, DaE
stores non-duplicate encrypted chunks, whose contents look
randomized and have limited room for further space reduction
from compression. Furthermore, DaE necessitates determin-
istic encryption to preserve the deduplication capability on
ciphertext chunks. Such a deterministic nature is vulnerable
to information leakage through frequency analysis [48,49].

The limitations of DaE motivate us to explore a simple but
unexplored paradigm called deduplication-before-encryption
(DbE), which first performs deduplication on the plaintext
chunks and then encrypts the remaining non-duplicate plain-
text chunks with any key that is independent of the chunk
content. A major distinction from DaE is that DbE does not
need to manage per-chunk keys for encryption/decryption, and
we argue that DbE addresses the limitations of DaE (§2.2).
However, DbE remains unexplored in secure deduplicated
storage, mainly because the chunks are no longer protected
by encryption in deduplication processing, which is carried
out in the cloud for cross-user deduplication.

Our insight is that the deduplication process in DbE can
be protected with shielded execution [4,37]. To this end,
we present DEBE, a shielded DbE-based deduplicated stor-
age system with performance, storage savings, and security
in mind. DEBE builds on Intel Software Guard Extensions
(SGX) [41], which provides a shielded execution environment,
called an enclave, for secure deduplication processing. A key
challenge of realizing DEBE in SGX is the limited enclave
space (e.g., up to 128 MiB [36]). Thus, we propose frequency-
based deduplication, a two-phase deduplication scheme that
can realize secure and lightweight deduplication with the
space-constrained enclave. Specifically, DEBE first performs
deduplication on the most frequent chunks inside an enclave,
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motivated by our observation that the most frequent chunks
often contribute to a large fraction of duplicates in real-world
backup workloads (§4.1). It then performs deduplication on
the remaining less frequent chunks outside the enclave. With
frequency-based deduplication, DEBE has the key advantages
of: (i) high performance, as it removes most duplicates in the
first-phase deduplication and incurs limited performance over-
head for the second-phase deduplication outside the enclave;
(ii) high storage savings via both deduplication and compres-
sion; and (iii) security, as it protects the most frequent chunks
(which are more vulnerable to frequency analysis attacks [48])
inside the enclave.

We evaluate our DEBE prototype in a LAN testbed. DEBE
achieves significant speedups over state-of-the-art DaE ap-
proaches (e.g., 10.09x and 13.08 x speedups over DupLESS
[7] in uploading non-duplicate and duplicate data, respec-
tively). In our technical report [81], we also show that DEBE
achieves high storage savings (e.g., 93.8% of key metadata
storage savings compared with DaE) and reduces information
leakage without compromising storage savings (e.g., by 87.7%
of the relative entropy over TED [49], while TED incurs a
storage blowup). The source code of our DEBE prototype is
at: https://github.com/yzr95924/DEBE.

2 Background and Motivation
2.1 Limitations of Deduplication-after-Encryption

Deduplication is a widely deployed data reduction technique
in modern storage [26,27,59,77,85]. We focus on chunk-
based deduplication, which removes duplicates at the granu-
larity of a chunk. Specifically, a deduplicated storage system
partitions input file data into chunks. It identifies each chunk
by a cryptographic hash (e.g., SHA-256), called a fingerprint,
of the chunk content (assuming that fingerprint collisions of
distinct chunks are practically impossible [10]). It maintains
a key-value store, called the fingerprint index, to track the
fingerprints of all existing stored chunks, and stores only the
non-duplicate chunks. It also stores a manifest file, called
the file recipe, for each file to track all chunks of the file in
storage for file reconstruction. In addition, it may further ap-
ply compression to remove byte-level duplicates within the
non-duplicate chunks for more storage savings [27,73, 85].
Deduplication-after-encryption (DaE) combines dedupli-
cation and encryption for both confidentiality and storage
savings. In DaE, a client locally encrypts the plaintext chunks
and uploads the ciphertext chunks to the cloud, which then
performs deduplication on the ciphertext chunks. One popular
cryptographic primitive for DaE is message-locked encryption
(MLE) [8], which formalizes that the key for chunk encryp-
tion/decryption is derived from the content of each chunk,
so that identical plaintext chunks are always encrypted into
identical ciphertext chunks for deduplication. An instantiation
of MLE is convergent encryption (CE) [3,18,23,72,74,79],
which derives each chunk’s key based on its fingerprint.

CE is vulnerable to offline brute-force attacks [7], in which
an adversary enumerates all possible plaintext chunks to de-
rive their secret keys, attempts to decrypt a ciphertext chunk
using each key, and deduces the plaintext chunk if the decryp-
tion succeeds. DupLESS [7] defends against offline brute-
force attacks in CE via server-aided key management, by
deploying a key server that generates the key of each chunk
based on a global secret (securely owned by the key server)
and the chunk fingerprint. Also, DupLESS implements key
generation based on an oblivious pseudorandom function
(OPRF) [63] to prevent the key server from learning the
chunks or the keys during key generation, and rate-limits
the key generation requests from clients to defend against
online brute-force attacks, in which a malicious client aggres-
sively issues key generation requests for different plaintext
chunks to the key server.

Limitations. DaE is the state-of-the-art paradigm for building
secure deduplicated storage systems. However, we argue that
DaE suffers from three fundamental limitations.

e LI (High key management overhead). DaE generates one
key per chunk, leading to huge overheads for maintaining
all chunk-based keys. Also, each client needs to encrypt
its chunk-based keys via its own master secret key for pro-
tection. Thus, the key storage overhead increases propor-
tionally with the numbers of chunks and clients, and is
particularly significant for the workloads with high content
redundancy (e.g., backups [77]) as they store only small
amounts of non-duplicate data after deduplication. Also,
DupLESS [7], which realizes server-aided key management,
generates a key for the encryption of each chunk before the
chunk is uploaded to the cloud, even though the chunk is a
duplicate and is later removed by deduplication. As Dup-
LESS employs OPRF and rate-limiting in key generation
(see above), its key generation is shown to be expensive [70].
In short, DaE incurs high key management overhead, both
in terms of key storage and key generation.

e L2 (Incompatibility with compression). In DaE, the cloud
cannot further save additional storage space of non-
duplicate encrypted chunks via compression, as encrypted
chunks have high-entropy (almost random) contents. While
a client may apply compression to the plaintext chunks
before encryption and upload the encrypted compressed
chunks, this leaks the compressed chunk lengths and intro-
duces security risks [13].

e L3 (Security risks). Server-aided key management in Dup-
LESS [7] makes the key server a single point-of-attack. If
an adversary compromises the key server and has access to
the global secret, it can infer the secret keys of chunks via
offline brute-force attacks as in CE. Also, DaE is determin-
istic by nature and realizes one-to-one mappings between
plaintext chunks and ciphertext chunks. An adversary can
launch frequency analysis to infer the original plaintext
chunks from the frequency distribution of ciphertext chunks
in deduplicated storage [48].
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2.2 Moving to Deduplication-before-Encryption

Given the limitations of DaE (§2.1), we study an unexplored
paradigm, namely deduplication-before-encryption (DbE),
for secure deduplicated storage. Its idea is to first perform
deduplication on the plaintext chunks to remove duplicates,
followed by encrypting the non-duplicate plaintext chunks
into ciphertext chunks for storage.

DbE naturally offers several benefits over DaE. First, since
deduplication is applied first, DbE can encrypt each non-
duplicate plaintext chunk with a content-independent key as in
traditional symmetric encryption (§1) without compromising
deduplication. This avoids generating and storing per-chunk
content-derived keys and reduces the key management over-
head (i.e., L1 addressed). Second, DbE can apply compres-
sion to the non-duplicate plaintext chunks after deduplication
for further storage savings, followed by encrypting the com-
pressed non-duplicate plaintext chunks (i.e., L2 addressed).
Finally, since DbE can perform encryption with a content-
independent key, it no longer needs a key server for per-chunk
key generation as in DupLESS. This removes the single point-
of-attack in the key server (i.e., L3 addressed).

The major challenge of DbE, however, is to decide whether
clients or the cloud should perform deduplication, which is no
longer protected by encryption. We consider three scenarios:

* Each client maintains a local fingerprint index for its own
plaintext chunks. It encrypts the non-duplicate plaintext
chunks and uploads the ciphertext chunks to the cloud.
However, this approach prohibits cross-user deduplication.

* The cloud maintains a global fingerprint index to track the
stored chunks of all clients. Each client first submits the
fingerprints of its own plaintext chunks to the cloud to query
if they can be deduplicated. It encrypts the non-duplicate
plaintext chunks identified by the cloud, and uploads the
ciphertext chunks to the cloud. This approach, also referred
to as source-based deduplication [35], is vulnerable to side-
channel attacks [35,62] since any malicious client can infer
if some target chunk has already been stored by querying if
the target chunk can be deduplicated.

* Each client uploads all chunks to the cloud. The cloud per-
forms deduplication based on its global fingerprint index
that tracks the stored chunks of all clients, followed by
encrypting the non-duplicate chunks. This approach, also
referred to as target-based deduplication [35], hides the
deduplication pattern from the clients and is secure against
side-channel attacks. However, each client inevitably ex-
poses its plaintext chunks to the cloud.

Thus, DbE remains unexplored in the literature, while existing
studies mostly focus on DaE for secure deduplicated storage.

2.3 Intel SGX

In this work, we realize DbE with target-based deduplication
and show how we protect DbE via shielded execution. We
implement shielded execution using Intel SGX [41]. As our

major requirement is to provide a secure memory region for
data processing in the untrusted cloud, we conjecture that
our design can be supported with other shielded execution
technologies (e.g., ARM TrustZone [67] and AMD SEV [2]).
SGX basics. SGX is a set of extended instructions for In-
tel CPUs to realize a shielded execution environment, called
an enclave, in an encrypted and integrity-protected memory
region called the enclave page cache (EPC). It ensures confi-
dentiality and integrity for in-enclave contents with hardware
protection. It provides two interfaces to interact with untrusted
applications outside the enclave: (i) enclave calls (ECalls),
which permit applications to safely access in-enclave contents,
and (ii) outside calls (OCalls), which allow in-enclave code
to issue function calls in applications.

Challenges. Realizing DbE in SGX is non-trivial due to the
resource constraints of an enclave. First, the EPC size is lim-
ited (e.g., up to 128 MiB [36]). When an enclave has memory
usage exceeding the EPC size, it encrypts and evicts the un-
used memory pages to the unprotected main memory, and
decrypts and verifies the integrity of the evicted pages when
loading them back to the EPC. This incurs expensive EPC
paging overhead [5,21]. Although recent SGX designs sup-
port a large EPC size of up to 1 TiB [44], they provide weaker
security guarantees due to the loss of integrity tree protec-
tion [28]. Second, both ECalls and OCalls involve expensive
hardware operations (e.g., flushing TLB entries [5]) that lead
to significant context switching overhead (e.g., around 8,000
CPU cycles per call [66,78]).

3 Design Overview
3.1 DEBE Architecture

We make a case for DbE by designing DEBE, a shielded DbE-
based deduplicated storage system based on Intel SGX [41].
Figure 1 presents the architecture of DEBE; note that DEBE
does not maintain a key server as in DupLESS [7] (§2.1). We
consider a multi-tenant scenario, in which the clients from dif-
ferent organizations store outsourced data to a cloud storage
service (or the cloud in short). DEBE performs target-based
deduplication [35] (§2.2) to remove the duplicate data of
multiple clients in the cloud. Currently, each DEBE client
uploads all its data to the cloud for deduplication. Although a
client may apply deduplication to its own data to save upload
bandwidth without introducing side-channel attacks [50], our
design does not make this assumption.

To prevent the cloud from accessing any plaintext chunks
during deduplication processing, DEBE hosts an enclave in
the cloud and performs deduplication inside the enclave. To
support the multi-tenant scenario, we assume that a trusted
third party (e.g., a certificate authority in the public key in-
frastructure (PKI) [56]) is responsible for the enclave setup.
Specifically, the trusted third party compiles the enclave code
into a shared object (as a . so file). It distributes the shared
object to the cloud, along with its signature for integrity ver-
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Figure 1: DEBE architecture.

ification. The cloud loads the shared object to bootstrap the
enclave. The trusted third party can initiate remote attesta-
tion [41] to ensure that the correct code is loaded into the
enclave, and it can go offline after the enclave is bootstrapped.

After the enclave is bootstrapped, each client sets up two
secure communication channels: (i) the control channel with
the cloud for transmitting the commands of storage operations
and (ii) the data channel with the enclave for transmitting the
plaintext chunks originated by the client. Currently, DEBE
sets up the control channel between a client and the cloud
using traditional SSL/TLS authentication. To set up the data
channel between a client and the enclave, since the enclave
cannot directly access the network socket of the cloud [41],
DEBE implements the Diffie-Hellman key exchange to agree
on a session key between a client and the enclave (§4.2), and
the session key is used to protect the data channel. Note that
other key exchange algorithms can be used for session key
establishment.

To upload a file to the cloud, a client divides the file data
into fixed-size or variable-size plaintext chunks as in tradi-
tional chunk-based deduplication (§2.1). It issues an upload
request to the cloud through the control channel, and sends all
plaintext chunks to the enclave through the data channel. The
enclave deduplicates and compresses the received plaintext
chunks on a per-batch basis (§4.1), encrypts the remaining
non-duplicate compressed chunks into ciphertext chunks, and
emits the ciphertext chunks and the file recipe to the storage
pool.

To download a file, the client issues a download request

to the cloud through the control channel. The enclave then
retrieves the file’s recipe and the corresponding ciphertext
chunks. Finally, it decrypts the ciphertext chunks, and decom-
presses and returns the plaintext chunks to the client through
the data channel.
Practical relevance of DEBE. DEBE focuses on multi-
tenant deduplication, which is widely deployed in practice
(e.g., Dropbox [24], Druva [25], Cohesity [14], and Memo-
pal [58]) and is shown to achieve higher storage savings than
single-tenant deduplication by removing the duplicate data
from multiple clients [50,59,83]. Existing DaE approaches are
also designed for multi-tenant deduplication, while DEBE ad-
dresses the limitations of DaE (§2.1). Although DEBE incurs
costs due to shielded execution (e.g., the enclave verification
fee from a trusted third party), its improvements over DaE
approaches (in terms of performance, storage savings, and
robustness; see §3.3) provide incentives for a cloud storage
provider to use DEBE to provide secure and cost-effective
cloud storage services for customers.

3.2 Threat Model

We consider an honest-but-curious adversary that does not
modify the system protocol but aims to compromise data
confidentiality by identifying the original content of the out-
sourced data stored in the cloud. The adversary can tap into
the cloud and gain access to any data stored in the unpro-
tected main memory of the cloud as well as the ciphertext
chunks in the storage pool. It can also eavesdrop on the con-
tent of OCalls issued to the unprotected main memory (e.g.,
the parameters and untrusted functions used by OCalls).
Our threat model assumes that the enclave is trusted and
reliable; its authenticity is verified by remote attestation [41]
when it is created (§3.1). Any denial-of-service or side-
channel attack against SGX is protected by existing solu-
tions [64, 76]. Also, if the adversary has access to a com-
promised client, then it can access all the plaintext chunks
of the client. However, since DEBE performs target-based
deduplication (§3.1), the adversary cannot access or infer the
plaintext chunks of other non-compromised clients.

3.3 Design Goals

DEBE is designed for clients from multiple tenants (§3.1)
to securely outsource their storage management to public
cloud storage services. It targets storage workloads with high
content redundancy (e.g., backups [77] and file system snap-
shots [59]) that can be effectively removed by deduplication
and compression. DEBE has the following design goals:

* High performance. DEBE has significantly lower key man-
agement overhead than DaE approaches. It also incurs lim-
ited overhead in SGX.

* High storage savings. DEBE supports exact deduplication
(§4.4), i.e., all duplicates from multiple clients can be re-
moved. It also applies compression to the non-duplicate
chunks after deduplication for extra storage savings.

* Confidentiality. DEBE preserves the security of DaE by
enforcing end-to-end encryption for the plaintext chunks be-
tween each client and the enclave, and the plaintext chunks
are inaccessible by the cloud provided that the enclave is
trusted and reliable (§3.2). DEBE remains secure against
offline brute-force attacks in CE (§2.1), without the need
of server-aided key management as in DupLESS [7].

* Robustness over DaE. DEBE mitigates the single point-of-
attack of DaE by eliminating the key server. It also miti-
gates the information leakage caused by frequency analysis
against DaE [48,49].

4 Detailed Design
4.1 Main Idea

DEBE’s core idea is to perform deduplication inside the en-
clave (hosted in the cloud), so as to provide confidentiality
guarantees for the plaintext chunks during the deduplication
process. Keeping a full fingerprint index (or the full index
in short) inside the enclave can track the fingerprints of all
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Figure 2: Duplicate rate versus top-percentage of frequent chunks
in five real-world traces.

non-duplicate chunks being stored, but incurs significant EPC
paging overhead due to the limited EPC size (§2.3). Alter-
natively, managing the full index outside the enclave saves
the EPC usage, but incurs expensive context switching due to
excessive OCalls for querying the full index (§2.3).

We propose frequency-based deduplication, which per-
forms secure deduplication subject to the resource constraints
of the enclave. Our insight is that the frequencies (i.e., num-
bers of duplicates) of chunks are highly skewed in practical
backup workloads, such that a small fraction of chunks can
contribute to a large fraction of duplicates. To justify, we con-
duct trace analysis on five real-world backup traces (see §6.1
for the trace details). We measure the duplicate rate for a sub-
set of input chunks, defined as the ratio between the total size
of duplicate chunks derived from the subset of chunks and the
total size of duplicate chunks in the whole trace (note that a
chunk is said to be a duplicate chunk if its identical copy has
already been stored and it can be removed by deduplication).
Figure 2 shows the duplicate rate versus the top-percentage
of frequent chunks (ranked by their frequencies in descending
order). For example, in the VM trace, the top-5% of frequent
chunks contribute to a duplicate rate of around 97%. This
implies that if we maintain a small fingerprint index to track
the top-5% of frequent chunks, we can remove around 97%
of duplicate data and achieve high storage savings.

The idea of frequency-based deduplication is to separate
the deduplication process based on chunk frequencies. It man-
ages a small fingerprint index inside the enclave to remove the
duplicates from the most frequent chunks. It also maintains
the full index outside the enclave to remove the remaining du-
plicates for the less frequent chunks. Frequency-based dedu-
plication addresses both performance and security concerns.
For performance, it only manages a small fingerprint index
for the most frequent chunks inside the enclave to remove
a large fraction of duplicate chunks. Thus, it mitigates the
EPC paging overhead. It also reduces the context switching
overhead as it only queries the full index outside the enclave
via OCalls for a limited fraction of less frequent chunks. For
security, since the most frequent chunks are more vulnerable
to frequency analysis [48], we remove the duplicates of the
most frequent chunks with in-enclave processing only. Thus,
an adversary in the cloud cannot readily learn the frequen-
cies of the most frequent chunks, and hence the information
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Figure 3: Architecture of the enclave.

leakage caused by frequency analysis is limited.

Enclave architecture and design roadmap. Figure 3 de-
picts the architecture of the enclave in DEBE. Initially, the
enclave is bootstrapped with a set of keys and establishes
secure data channels with each client (§4.2). Then the enclave
tracks the frequency of each plaintext chunk received from the
data channel of a client (§4.3). Based on the chunk frequen-
cies, frequency-based deduplication removes the duplicates
of the most frequent plaintext chunks and interacts with the
full index outside the enclave to remove the duplicates of the
remaining less frequent plaintext chunks (§4.4). The enclave
performs compression on the non-duplicate plaintext chunks
and encrypts the compressed plaintext chunks. Finally, the
enclave stores the ciphertext chunks in the storage pool (§4.5).

4.2 Key Management

The enclave maintains a set of keys for the secure storage of
chunks after deduplication and compression as well as for
secure communication with clients.

Data key and query key. The enclave maintains two long-
term keys, which remain valid throughout the lifetime of the
enclave (i.e., the whole duration when DEBE is running): (i)
the data key for encrypting and decrypting the compressed
non-duplicate plaintext chunks in secure storage, and (ii) the
query key for protecting the information of plaintext chunks
when querying the full index outside the enclave (§4.4). When
the enclave is bootstrapped, it initializes both the data key
and the query key via the on-chip hardware random num-
ber generator (i.e., sgx_read_rand [42]). Both keys can be
periodically renewed via existing approaches (e.g., key regres-
sion [30]), without compromising deduplication as DEBE
performs deduplication before encryption.

Session key. Recall that each client maintains a data chan-
nel with the enclave for secure data communication (while
maintaining a control channel with the cloud for securely is-
suing storage operations) (§3.1). Each data channel protects
its communication using a short-term session key, which re-
mains valid for a single communication session. It establishes
a session key for the data channel using Diffie-Hellman key
exchange through the control channel. The session key is
kept in the enclave during the communication session of the
client, and will be freed after the session is completed (both
the control and data channels will be released as well).
Per-client master key. The enclave requires each client to
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submit a master key through the data channel for each storage
request. It uses the master key to protect the file recipes for
the client’s files and enforces the client’s ownership of the
files. Similar to the session keys, the enclave only keeps the
master key of the client for a single communication session
and will destroy the master key at the end of the session, so
the storage overhead for the master keys is also limited.

4.3 Frequency Tracking

The enclave needs to track the frequencies of plaintext chunks
to identify the most frequent and less frequent chunks for
frequency-based deduplication. To mitigate the EPC usage
(§2.3), the enclave uses a Count-Min Sketch (CM-Sketch) [16]
to track the approximate frequency of each chunk with fixed-
size space and small errors.

The CM-Sketch is a two-dimensional array with r rows
of w counters each. One key design here is to limit the com-
putational overhead of mapping the plaintext chunks to the
counters. To do so, our insight is that the chunk fingerprint is
computed as a cryptographic hash (e.g., SHA-256 in our case),
so we can treat the chunk fingerprint as a random input value
and map it directly to a counter without compromising the
accuracy of the CM-Sketch. Specifically, for each plaintext
chunk M, the enclave partitions the fingerprint of M into r
pieces. It takes the i-th piece modulo w to find one of the w
counters, indexed from O tow — 1, inrow i (1 <i < r) and
increments each of the mapped counters by one; this is in
contrast to the traditional CM-Sketch, which maps the input
to the counters of different rows using pairwise independent
hash functions [16] and hence has extra computational over-
head. To estimate the frequency of a chunk, the enclave uses
the minimum value of the » mapped counters of the chunk. By
default, we configure r = 4, w = 256 K, and 4-byte counters,
so the overall EPC usage of the CM-Sketch is only 4 MiB.

4.4 Frequency-based Deduplication

We present the design of frequency-based deduplication,
which removes all duplicate plaintext chunks in two phases
based on their estimated frequencies (§4.3).

First-phase deduplication. The enclave maintains a small
fingerprint index, called the rop-k index, to deduplicate the k
most frequent plaintext chunks. We implement the top-k index
as a combination of a min-heap and a hash table, as shown
in Figure 4. The min-heap differentiates the top-k-frequent
and less frequent plaintext chunks. It tracks top-k estimated
frequencies of the plaintext chunks, such that the root heap
entry corresponds to the plaintext chunk with the minimum
frequency in the current top-k estimated frequencies. Each
heap entry in the min-heap stores a pointer to a hash entry in
the hash table. On the other hand, the hash table is used for
duplicate detection, as in conventional deduplication. Each
hash entry stores a mapping from the chunk fingerprint to a
tuple of elements: (i) the pointer to the heap entry (i.e., both
the heap entry and the hash entry reference each other), (ii)

hash table

- FP-> [ freq [ addr [ size]

Figure 4: Overview of the top-k index.

the estimated frequency of the chunk, (iii) the chunk address
(including the container ID and the internal offset within the
container; see §4.5), and (iv) the compressed chunk size (i.e.,
the size of the chunk after compression).

Given a plaintext chunk, to perform the first-phase dedu-
plication, the enclave takes the estimated frequency of the
plaintext chunk obtained from the CM-Sketch (§4.3) and the
chunk fingerprint as inputs. It first checks against the root heap
entry of the min-heap. If the input frequency is smaller than
the minimum frequency of the min-heap (i.e., the chunk is a
less frequent chunk), the enclave skips querying the hash table
for the chunk and proceeds to the second-phase deduplica-
tion (see below); otherwise (i.e., the chunk is a top-k-frequent
chunk), the enclave uses the input fingerprint to look up the
hash table. We have the following two cases:

* If the fingerprint is found in the hash table (i.e., the chunk is
a duplicate), the enclave updates the frequency in the hash
table and adds both the chunk address and the compressed
chunk size to the file recipe (§4.5). Since the frequency is
updated, it also adjusts the min-heap based on the pointer
to the heap entry in the min-heap.

« If the fingerprint is not found in the hash table (i.e., the
chunk is a new top-k-frequent chunk), the enclave creates
a new hash entry in the hash table and inserts a new heap
entry containing the pointer to the new hash entry into the
min-heap. If the min-heap has already stored k heap entries,
the enclave deletes the current root heap entry of the min-
heap (with the minimum frequency) and also deletes the
corresponding hash entry in the hash table via the pointer
stored in the root heap entry. Since the chunk may have
already been stored (but not tracked by the top-k index as its
frequency is low), the enclave also runs the second-phase
deduplication on the chunk and updates the chunk address
and the compressed chunk size according to the result of
the second-phase deduplication.

We show that the top-k index has low space usage. Suppose
that the chunk fingerprint has 32 bytes (a SHA-256 hash), the
chunk address has 12 bytes (an 8-byte container ID and a
4-byte internal offset; see §4.5), and the compressed chunk
size has 4 bytes. For each top-k-frequent chunk, the hash
entry additionally stores a 4-byte frequency and a pointer to a
heap entry. Since we implement the min-heap as an array, the
pointer to a heap entry can be represented as a 4-byte integer
array index. Also, the heap entry keeps an 8-byte pointer to a
hash entry. Overall, each top-k-frequent chunk uses 64 bytes
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in the top-k index (excluding the internal pointers of the hash
table, which we now implement as an unordered_map of
the C++ standard library). For example, to track 512 K most
frequent chunks, the EPC usage of the top-k index is 32 MiB.

We further show that the top-k index has low time complex-
ity. For each plaintext chunk, the top-k index can return the
minimum frequency (from the root heap entry) in the current
min-heap in constant time. For a top-k-frequent chunk, the
top-k index needs to further check the hash table (in constant
time) and update the min-heap. Since we store the pointer
to the heap entry in the hash entry, we can directly update
the corresponding heap entry when the frequency is changed,
without searching the whole min-heap for its location. Thus,
the time complexity of updating the min-heap is O(logk).
Second-phase deduplication. The second-phase deduplica-
tion is performed on the plaintext chunks that are not removed
by the first-phase deduplication, including the less frequent
chunks and the fresh new top-k-frequent chunks whose fin-
gerprints are new to the top-k index. DEBE manages a full
index outside the enclave as the EPC size is limited (§2.3).
We implement the full index as a hash table, in which each
entry stores the mapping from the encrypted fingerprint of a
plaintext chunk to the encrypted chunk information (i.e., the
chunk address and the compressed chunk size, both of which
are encrypted by the query key) of the corresponding cipher-
text chunk. Our rationale of encrypting both the fingerprint
and the chunk information is to prevent any adversary in the
cloud from inferring the plaintext chunks, since the full index
is not protected by the enclave.

Given a plaintext chunk, to perform the second-phase dedu-
plication, the enclave deterministically encrypts the finger-
print of the plaintext chunk (not removed by the first-phase
deduplication) with the query key (§4.2), so that duplicate
plaintext chunks from different clients are always mapped to
duplicate encrypted fingerprints for cross-user deduplication.
It then queries the full index based on the encrypted fingerprint
via an OCall. If the encrypted fingerprint is found in the full
index, the OCall returns the encrypted chunk information that
will be decrypted by the query key inside the enclave. Then
the enclave will update the address and the compressed chunk
size into the file recipe (§4.5). Otherwise, if the encrypted
fingerprint is new to the full index, the enclave identifies this
chunk as a non-duplicate chunk, assigns the chunk an address,
compresses the chunk to obtain its compressed chunk size,
and encrypts both the address and the compressed chunk size
with the query key. It then updates the encrypted fingerprint
and the corresponding encrypted chunk information in the full
index. Note that the context switching overhead due to OCalls
is limited, as a large fraction of duplicates are expected to
have been removed by the first-phase deduplication.
Remarks. Traditional efficient indexing techniques for dedu-
plication, such as similarity-based [9] and locality-based dedu-
plication [52] approaches, can also address the limited EPC
size by loading only a portion of the full index into the en-

clave. However, they only achieve near-exact deduplication
(i.e., some duplicates cannot be removed), while DEBE can
achieve exact deduplication (§3.3).

Note that the CM-Sketch may overestimate the chunk fre-
quencies as multiple chunks can be mapped to the same coun-
ters (§4.3). Thus, the enclave may track some less frequent
chunks in the top-k index. Nevertheless, it does not affect
the storage savings from deduplication, as the full index still
tracks all currently stored non-duplicate chunks.

4.5 Storage Management

Container storage. DEBE manages physical chunks in fixed-
size containers to mitigate disk I/O costs [51]. The en-
clave performs compression on the non-duplicate plaintext
chunks after deduplication, and encrypts the compressed non-
duplicate plaintext chunks into ciphertext chunks with the
data key. It writes each ciphertext chunk, together with an
initialization vector (IV) (§5), into an in-memory container
inside the enclave. When the in-memory container is full,
the enclave emits it to persistent storage in the cloud. Note
that DEBE only stores an IV (of size 16 bytes in AES-256)
for each non-duplicate ciphertext chunk after deduplication,
while DaE approaches store an encrypted key (of size 32 bytes
in AES-256) for each ciphertext chunk before deduplication
and incurs substantial key storage overhead when there exist
many duplicate chunks (§2.1).

Also, the enclave creates and manages the file recipe for

each uploaded file. Each entry in the file recipe keeps the
chunk address and the compressed chunk size of each cipher-
text chunk of the file. Note that when the enclave adds entries
to the file recipe, it does not need to perform compression for
the duplicate chunk to obtain its compressed chunk size, since
the compressed chunk size has been stored in both the top-k
index and the full index. To guarantee the ownership of the
file, the enclave encrypts the file recipe by the client’s master
key and stores the encrypted file recipe as a regular file. Since
the enclave treats containers (each of which contains multiple
ciphertext chunks) as the basic I/O units and the chunk size
is stored in the file recipe (protected by the per-user master
key), DEBE preserves the security of compression as it avoids
leaking the lengths of compressed chunks [13].
Downloads. To download a file, the client issues a download
request and its master key to the enclave through the secure
data channel. The enclave retrieves the file recipe and de-
crypts the file recipe with the given master key. It then parses
the decrypted file recipe to obtain the chunk addresses and
compressed chunk sizes. To restore all chunks, the enclave
exposes the container IDs of the requested chunks to the cloud
to perform I/Os via OCalls. Once the cloud fetches the corre-
sponding containers into the unprotected main memory, the
enclave accesses the ciphertext chunks based on their internal
offsets and decrypts the ciphertext chunks by the data key.
Finally, it decompresses and sends the plaintext chunks to the
client through the data channel.
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4.6 Security Discussion

We discuss the security of DEBE in response to our threat
model (§3.2). We focus on two cases.

Case 1: A snapshot adversary gains one-time access to
contents in unprotected memory and storage pool. DEBE
enforces end-to-end encryption for the plaintext chunks be-
tween each client and the enclave, and provides semantic
security [33] for the ciphertext chunks stored in the cloud.
Specifically, it sets up a secure data channel that encrypts
all plaintext chunks exchanged between a client and the en-
clave by a session key. It performs deduplication inside the
enclave (that is oblivious to the adversary), and encrypts the
non-duplicate plaintext chunks into ciphertext chunks by the
data key before the ciphertext chunks are stored. Note that
both data-in-transit and data-at-rest encryption operations are
based on traditional symmetric encryption, and semantic se-
curity is achieved.

Case 2: A persistent adversary eavesdrops on OCalls in
deduplication. DEBE encrypts both chunk fingerprints and
chunk information by the query key inside the enclave before
it includes them as the inputs of OCalls for accessing the full
index outside the enclave. Thus, even though an adversary can
eavesdrop on the OCalls, it cannot infer the original inputs
from the OCalls.

One potential information leakage is that a persistent ad-
versary (that stays in the cloud for a long time) can learn
the chunk frequencies in the deduplication process, as the
enclave maps duplicate plaintext chunks into duplicate en-
crypted fingerprints when querying the full index. Specifically,
the adversary can track the frequency distribution of encrypted
fingerprints by monitoring the OCalls, and launch frequency
analysis to infer the plaintext chunks. However, DEBE limits
such information leakage to the less frequent chunks, which
are relatively robust against frequency analysis [48] (for com-
parisons, DaE leaks the frequencies of all chunks since it
is deterministic by nature; see §2.1). Our evaluation shows
that DEBE mitigates information leakage more effectively
than TED [49], a state-of-the-art approach that trades storage
savings for security (see our technical report [81]).
Remarks. A powerful adversary may launch frequency-based
side-channel attacks by simultaneously compromising a client
and the cloud. If it proactively lets the compromised client
upload artificial chunks to the cloud and monitors OCalls in
the cloud, the adversary could infer chunk frequencies and
even identify the most frequent chunks among the clients.
While the practical damage caused by such side-channel at-
tacks remains an open question, we can obfuscate the chunk
frequency information by perturbing the OCalls patterns (e.g.,
adding dummy OCalls), at the expense of incurring extra
performance overhead.

S Implementation

We have implemented a prototype of DEBE in C++ on Linux
based on Intel SGX SDK Linux 2.7 [42]. It uses OpenSSL-

1.1.1 [65] and Intel SGX SSL [43] for cryptographic opera-
tions. Our current prototype contains 17.5 K LoC.

Each client implements FastCDC [80] to realize content-
defined chunking, where the minimum, average, and maxi-
mum chunk sizes are configured at 4 KiB, 8 KiB, and 16 KiB,
respectively. The container size is 4 MiB. We implement
Diffie-Hellman key exchange based on NIST P-256 ellip-
tic curve for session key management of the data channel
between the client and the enclave. The enclave computes the
fingerprints of plaintext chunks via SHA-256 and encrypts
each unique plaintext chunk via AES-256 in GCM mode with
arandom 16-byte IV. Also, it encrypts the fingerprint of each
plaintext chunk via AES-256 in CMC mode with a 16-byte
zero IV to support queries over encrypted fingerprints (as in
CryptDB [68]). Both SHA-256 and AES-256 are configured
to use (via OpenSSL EVP API) the Intel New Instructions
Set for hardware-accelerated operations [39,40]. We also im-
plement L.Z4 [15] for lossless stream-based compression in
the enclave for chunk compression after deduplication.

To mitigate context switching overhead of the enclave,
DEBE transmits and processes chunks on a per-batch ba-
sis (the default batch size is 128 chunks). Also, to speed up
downloads, the cloud keeps an in-memory least-recently-used
cache (256 MiB by default) to hold the recently accessed
containers. For each container access request issued by the
enclave (§4.5), the cloud first checks the cache and retrieves
the containers from local storage only if they are not in cache.
Limitations. DEBE currently does not address crash con-
sistency. We now discuss how to extend DEBE with crash
consistency, and pose the implementation as future work.

When a system crash occurs, DEBE would lose its in-
enclave contents (i.e., the query key, the data key, the CM-
Sketch, the top-k index, and the in-memory container pending
to be persisted into the storage pool). We can extend DEBE to
recover the query and data keys, the CM-Sketch, and the top-k
index via sealing, an SGX feature that encrypts in-enclave
content for secure out-enclave storage on disk [41]. When
the enclave is bootstrapped (§3.1), DEBE stores a persistent
copy of both the query key and data key by sealing. Also, it
makes periodic snapshots of the CM-Sketch and top-k index
by sealing. To restore the enclave states from a system crash,
the cloud re-initializes the enclave by unsealing the keys and
snapshots back to the enclave.

To realize crash consistency, we can augment DEBE with
write-ahead logging [61] to record updates in on-disk logs
before updating the in-memory CM-Sketch and top-k index.
To recover from the data loss of the in-memory container,
the enclave can log the IDs of the persisted containers for
the currently uploaded file in on-disk logs. If a system crash
occurs during the current upload, DEBE can roll back to the
state before the upload starts based on the logs. It finally
notifies the client to re-upload the file. Note that logging
the changes into on-disk logs would incur extra OCalls. To
mitigate the context switching overhead of logging, we can
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batch multiple logging operations in a single OCall.

We can initialize a new CM-Sketch and a new top-k in-
dex after enclave recovery. This would not affect the storage
savings from deduplication, provided that the full index is
crash-consistent (e.g., via its implementation in a persistent
key-value store) and tracks all currently stored non-duplicate
chunks. However, DEBE incurs extra performance overhead,
as it cannot learn frequent chunks and hence incurs more
OCalls to build the top-k index from scratch.

6 Evaluation

We deploy DEBE in a local cluster of 11 machines connected
with 10 GbE. Each machine has a quad-core 3.4 GHz Intel
Core 15-7500 CPU and 32 GiB RAM, and is installed with
Ubuntu 16.04. We deploy one or multiple clients, a key server
(for DaE only), or a cloud storage backend on distinct ma-
chines. The machine for the cloud storage backend is attached
with a TOSHIBA DTO1ACA 1 TiB 7200 rpm SATA hard disk.
By default, DEBE sets k =512 K for the top-k index and con-
figures the CM-Sketch with » =4 and w =256K, so as to
keep the overall EPC usage within 64 MiB to limit the paging
overhead in SGX. Note that we can tune the parameters based
on the available EPC size.

We evaluate DEBE using both synthetic and real-world
datasets. We summarize our evaluation results as follows.

* DEBE accelerates the uploads of non-duplicate and du-
plicate data of state-of-the-art DaE approaches by up to
10.09x and 13.08x, respectively (Exp#1). Its frequency-
based deduplication only takes 5.8-18.4% of the overall
upload time (Exp#2). It preserves high performance for
multi-client uploads/downloads (Exp#3) and various syn-
thetic workloads (Exp#4).

* For real-world workloads, DEBE achieves 1.17-2.76x
speedups over state-of-the-art deduplication alternatives
(Exp#5), and preserves high performance in long-term up-
loads and downloads (Exp#6).

In our technical report [81], we present additional evalua-
tion results and show that DEBE achieves high storage savings
and preserves security against frequency analysis.

6.1 Datasets

Synthetic datasets. We consider two synthetic datasets for
our evaluation. The first dataset, namely SYN-Unique, in-
cludes non-duplicate and individually compressible chunks.
Specifically, we generate SYN-Unique as a set of 2 GiB com-
pressible files via the LZ data generator [38], which generates
synthetic data based on SDGen [34]. The LZ data gener-
ator takes two parameters as inputs: (i) a compression ra-
tio, which specifies the compressibility of the generated data,
and (ii) a random seed for data generation. We configure the
compression ratio as 2 to resemble real-world backup work-
loads [77], and vary the random seeds to generate distinct
synthetic files. We perform chunking on each synthetic file

to ensure that its chunks are globally unique over all files.
We use the dataset for stress-testing different schemes with
non-duplicate chunks.

The second dataset, namely SYN-Freq, includes the original
chunks (before deduplication) following a target frequency
distribution. We build a synthetic file generator that gener-
ates files whose chunk frequencies follow a Zipf distribution
as shown by prior work [83, 84]. Our generator takes three
parameters as inputs: (i) the number of original chunks, (ii)
the deduplication ratio (i.e., the ratio between the original
data size and the non-duplicate data size), and (iii) the Zipfian
constant (a larger constant implies higher skewness). To gen-
erate a synthetic file, we prepare a set of non-duplicate 48-bit
fingerprints based on the expected number of non-duplicate
chunks (i.e., the number of original chunks divided by the
deduplication ratio). We assign each fingerprint with a com-
pression ratio based on the normal distribution with a mean
of 2 and a variance of 0.25 [46,77]. To generate each original
chunk, we sample its fingerprint from the fingerprint set based
on the target Zipf distribution, and construct its content using
the LZ data generator [38] with the compression ratio and fin-
gerprint (as the random seed) as inputs. Finally, we generate
the SYN-Freq dataset as a set of synthetic files, each of which
contains 13,107,200 8-KiB original chunks (i.e., 100 GiB)
and a deduplication ratio of 5x. The number of non-duplicate
chunks is large enough that only a subset of non-duplicate
chunks can be tracked by the top-k index.

Real-world datasets. We consider five real-world datasets of
backup workloads, which are also used in previous studies
for trace-driven evaluation [49, 50,69, 70, 80, 86]:

* DOCKER: docker snapshots (from v4.1.0 to v7.0.0) of
Couchbase [17] from Docker Hub [22];

e LINUX: snapshots (from stable versions between v2.6.13
and v5.9) of Linux source code [54], in which each snapshot
is stored in the mtar format [53];

* FSL: home directory snapshots [29], among which we select
42 snapshots from nine users in 2013;

* MS: Windows file system snapshots [59], among which we
select 30 snapshots of size around 100 GiB each; and

e VM: virtual machine snapshots [50] collected by ourself.

Table 1 shows the statistics of the five real-world datasets.
Previous studies have shown that multi-tenant deduplication
can achieve higher storage savings than single-tenant dedu-
plication in FSL, MS, and VM [50, 59, 75]. Given the limited
available disk space in our testbed, we sample a subset of
snapshots from the original datasets [29, 59] for FSL and MS
as in [49]. As FSL, MS, and VM only contain fingerprints,
we generate compressible chunk contents as in SYN-Freq.

6.2 Evaluation on Synthetic Data

To examine the maximum achievable performance without
disk I/O overhead, we load the synthetic files into each client’s
memory before each test and let the cloud store all post-
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[ Dataset [ Raw size [ Snapshots [ Dedup Ratio [ Compress Ratio ]

DOCKER | 70.2GiB 94 4.2 1.7
LINUX | 44.6GiB 82 2.8 2.3
VM 3.0TiB 660 334 2.0
FSL 3.0TiB 42 8.2 2.0
MS 3.9TiB 30 4.1 2.0

Table 1: Characteristics of real-world datasets.

deduplicated data in memory (we include the disk I/O over-
head in the evaluation in §6.3). We report the average results
over five runs and include the 95% confidence intervals based
on student’s t-distribution (except for line graphs).

Exp#1 (Overall performance). We evaluate the upload
(download) performance of overall systems. We consider a
single client that successively uploads the same 2 GiB file
from SYN-Unique twice. The client then downloads the same
file. We measure the upload (download) speed of each op-
eration. Our goal is to examine the maximum achievable
performance of all schemes for storing all non-duplicate data
and all duplicate data. Note that the file size is small here,
such that all fingerprints can be tracked in the top-k index in
DEBE (we consider large-scale datasets in §6.3).

We compare DEBE with three DaE approaches: (i) Dup-
LESS [7], which implements server-aided key management
based on OPRF (§2.1); (ii) TED [49], which generates the
key of each chunk based on lightweight hash computations
in the key server; and (iii) CE [23], the convergent encryp-
tion scheme (§2.1). To study the security overhead of DEBE,
we include plain deduplication (Plain), in which the client
uploads the plaintext chunks to the cloud for deduplication
and compression through a communication channel protected
by SSL/TLS. Unlike DEBE and Plain, the DaE schemes (i.e.,
DupLESS, TED, and CE) do not realize compression due to
incompatibility (§2.1). For fair comparisons, we re-implement
all baselines based on their original papers under the same
implementation setting (§5) in C++.

Figure 5(a) shows the upload speeds. DEBE outperforms
all DaE schemes. When uploading non-duplicate data, DEBE
achieves 10.09x, 1.42x, and 1.25 x speedups over DupLESS,
TED, and CE, respectively, by avoiding the generation of
chunk-based keys (note that DupLESS has very low up-
load speeds due to the expensive OPRF operations). Even
though DEBE applies compression, its compression overhead
is masked by the performance gain over the key generation
overhead of DaE. When uploading duplicate data, DEBE be-
comes more efficient. Its speedups increase to 13.08 x, 1.88 %,
and 1.65x over DupLESS, TED, and CE, respectively, since
it avoids performing encryption and compression on the du-
plicate chunks. Compared with plain deduplication, DEBE
only incurs 21.6% and 7.4% performance overhead for the
uploads of non-duplicate and duplicate data, respectively.

Figure 5(b) shows the download speeds. All DaE schemes
follow the same download paradigm, in which the client re-
trieves both ciphertext chunks and encrypted chunk-based
keys from the cloud, decrypts each key and the corresponding

400 | upload-Unique [ Upload-Duplicate 900
Bup ique [ Up p! 301 205 185

= 300 2 | e
S £ 600
%200 156 160 178 162 %

(] (9]

£ 100 $ 300

& @

0 DupLESS TED CE  DEBE Plain O"DEBE DaE Plain
(a) Upload (b) Download

Figure 5: (Exp#1) Overall performance.

| Steps [ 1st upload [ 2nd upload
Chunking 0.61 + 0.0l ms
Transmission Protection 0.37 £0.01 ms
Fingerprinting 2.27 £ 0.04 ms
Frequency tracking 0.06 = 0.01 ms
First-phase dedup 0.10£0.0lms | 0.14 = 0.01 ms

Second-phase dedup 0.80 £ 0.02 ms -

Compression 0.67 £ 0.01 ms -

Encryption 0.33 £0.01 ms -

Table 2: (Exp#2) Breakdown of computational time per processing
1 MiB data in two successive uploads.

chunk, and reconstructs the original file. Compared with DaE,
DEBE incurs 8.5% download speed drop due to the OCalls
for moving chunks into the enclave for decryption and de-
compression (§4.5). Also, DEBE and DaE have 17.7% and
10.1% download speed drops compared with Plain, respec-
tively, since they perform decryption on retrieved chunks.
Exp#2 (Upload breakdown). We study the breakdown of
the upload performance. We consider the same scenario as
Exp#l (i.e., a client successively uploads the same 2 GiB file
from SYN-Unique twice) and measure the computational
time of the client and the enclave in different steps in uploads:
(i) chunking, in which the client partitions the input file into
plaintext chunks; (ii) transmission protection, in which the
enclave exchanges a session key with the client and decrypts
received ciphertext chunks; (iii) fingerprinting, in which the
enclave computes the fingerprint of each plaintext chunk;
(iv) frequency tracking, in which the enclave estimates the
frequency of each plaintext chunk via the CM-Sketch; (v)
first-phase deduplication, in which the enclave removes dupli-
cate plaintext chunks via the top-k index; (vi) second-phase
deduplication, in which the enclave queries the full index via
OCalls to remove remaining duplicates; (vii) compression,
in which the enclave compresses the non-duplicate chunks;
and (viii) encryption, in which the enclave encrypts the com-
pressed chunks with the data key.

Table 2 shows the results (measured by the computational
time per 1 MiB of uploads). In the first upload (i.e., up-
loading non-duplicate data), fingerprinting is the most time-
consuming step since it performs expensive computations on
all chunks. On the other hand, frequency-based deduplication
(including frequency tracking plus first-phase and second-
phase deduplication) takes only 18.4% of the overall time.
Note that since the storage is empty before the upload, each
non-duplicate chunk is treated as a frequent chunk and exam-
ined by both the first-phase and second-phase deduplication.
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In the second upload (i.e., uploading duplicate data), all du-
plicate chunks are removed by the first-phase deduplication
and hence the second-phase deduplication is skipped. In this
case, frequency-based deduplication takes only 5.8% of the
overall upload time.

Exp#3 (Multi-client uploads and downloads). We evaluate
DEBE when multiple clients issue upload/download requests
concurrently. In addition to the cloud, we deploy 10 machines,
with two client instances each, so as to simulate the concurrent
uploads/downloads by up to 20 clients. Each client uploads a
2 GiB synthetic file from SYN-Unique to the cloud, and then
downloads the same 2 GiB file. We measure the aggregate
upload (download) speed as the ratio of the total uploaded
(downloaded) data size to the total time all clients complete
the uploads (downloads).

Figure 6 shows the results versus the number of clients.

The aggregate upload speed first increases with the number
of clients and reaches 791.1 MiB/s for 10 clients, followed
by dropping to 755.8 MiB/s for 20 clients due to the resource
contention in the enclave. The aggregate download speed has
a similar trend, and first increases to 870.0 MiB/s and finally
drops to 835.7 MiB/s.
Exp#4 (Impact of frequency distribution). We evaluate
DEBE on processing the chunks from different frequency
distributions. We configure a single client to upload each orig-
inal chunk of SYN-Freq without chunking, and measure the
computational speed of the enclave (i.e., including the steps
of Table 2 except chunking).

Figure 7 shows the results for different k in the top-k index
versus the Zipfian constant. A larger k implies lower perfor-
mance for all Zipfian constants, since SGX incurs significant
paging overhead when the size of enclave contents is greater
than 64 MiB [45]. For example, when the Zipfian constant is
0.8, the computational speeds for k =512 K and k =1 M are
282.5MiB/s and 147.3 MiB/s, respectively. In addition, the
computational speed of the enclave increases in more skewed
distribution (i.e., a larger Zipfian constant), since the most
frequent chunks contribute more duplicates. This mitigates
the OCall overhead of querying the full index.

6.3 Evaluation on Real-world Traces

Exp#5 (Performance of deduplication approaches).
DEBE’s key design is frequency-based deduplication, and
we compare it with other design alternatives. We consider two
state-of-the-art memory-efficient deduplication approaches,

namely similarity-based deduplication [9] and locality-based
deduplication [52]. Both approaches store a small in-enclave
fingerprint index based on the feature of each segment of
chunks and perform deduplication by loading a portion of
the full index (outside the enclave) into the enclave based
on the matched feature. Similarity-based deduplication de-
rives the feature based on the minimum chunk fingerprint of
each segment of chunks, while locality-based deduplication
generates it by sampling a few fingerprints. As in [9,52], we
choose the segment size as 10 MiB, and the sampling rate of
locality-based deduplication as 1/64. While both approaches
aim to mitigate disk I/O in plain deduplication, our idea is
that they can also be applied to reduce EPC usage, but can
only support near-exact deduplication (§4.4).

In addition to the above near-exact deduplication ap-
proaches, we include the naive but exact deduplication base-
lines for comparisons. Specifically, in-enclave deduplication
attempts to manage the full index in the enclave; when the
full index increases in size and cannot fit into the EPC, it
triggers page swapping to evict unused EPC pages to memory.
Out-enclave deduplication manages the full index in memory,
and detects duplicates by issuing OCalls to the full index. For
fair comparisons, we include compression over non-duplicate
chunks into all baseline approaches. We upload the snapshots
of each real-world backup dataset (§6.1) in the order of their
creation times. We measure the computational speed of the
enclave as in Exp#4.

Figure 8 shows the results. DEBE generally outperforms all
approaches. For example, in FSL, it achieves 1.17x, 1.20x,
1.25x%, and 2.76 x average speedups over the similarity-based,
locality-based, out-enclave, and in-enclave approaches, re-
spectively. The reason is that DEBE avoids the extra compu-
tational overhead of compressing and encrypting some du-
plicate chunks in both similarity-based and locality-based
approaches (which perform near-exact deduplication). Also,
it performs the first-phase deduplication and filters out many
queries to the full index, thereby mitigating the OCall over-
head of the out-enclave deduplication. Although in-enclave
deduplication outperforms DEBE when the workload size
is small (e.g., the first few snapshots in DOCKER and
LINUX), its performance drops dramatically in subsequent
snapshots due to expensive paging overhead. DEBE manages
lightweight data structures (a CM-Sketch and the small top-k
index) in the enclave and mitigates the paging overhead.
Exp#6 (Trace-driven upload and download). Unlike in
Exp#1, we evaluate the upload and download performance of
DEBE based on real-world data. We enable cloud-side disk
1/0, upload all snapshots of each dataset, and finally let the
client download them on disk. Here, we only compare DEBE
with CE, which is the fastest DaE approach. Since FSL, VM,
and MS only include the compressible chunks (§6.1), we let
the client machine directly upload chunks without chunking.

Figure 9 shows the speeds for uploading and download-
ing each snapshot in DEBE and CE. The upload speed of
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Figure 9: (Exp#6) Trace-driven upload and download performance.

DEBE gradually increases in subsequent snapshots, which
include more duplicate plaintext chunks, so DEBE does not
need to perform compression and encryption on the dupli-
cate plaintext chunks (removed by deduplication). In contrast,
CE is consistently slower than DEBE in uploads, as it per-
forms key generation and encryption for all duplicate plaintext
chunks. For example, in FSL, the upload speed of DEBE is
246.5 MiB/s for the first snapshot, and reaches 277.5 MiB/s
for the last snapshot. In contrast, the upload speed of CE is
163.5-179.1 MiB/s across all snapshots.

The download speeds of both DEBE and CE are almost
the same, since they are throttled by disk I/O. Also, their
download speeds decrease across snapshots due to chunk
fragmentation [51] (i.e., the chunks of subsequent snapshots
become scattered after deduplication), which increases 1/O
overhead. For example, the download speed of DEBE in FSL
is 131.4 MiB/s for the first snapshot, and drops to 95.1 MiB/s
for the last snapshot (the download speed of CE is almost the
same). Chunk fragmentation can be mitigated via existing
approaches [11,12,31,51,86] and we pose the integration of
such approaches into DEBE as future work.

7 Related Work

DaE approaches. Several approaches realize secure dedu-
plication via DaE. In addition to those described in §2.1,
some approaches are designed from the security perspectives.
Random MLE [1] and iMLE [6] apply non-deterministic en-
cryption to prevent frequency leakage, but they use expensive
primitives (e.g., non-interactive zero-knowledge proofs [1],
fully homomorphic encryption [6]) that are not ready to be
implemented. Liu et al. [55] propose to share keys via a de-
centralized agreement protocol without relying on a dedicated
key server, but it introduces expensive performance overhead
of interactions among different clients. TED [49] mitigates
frequency leakage with a configurable storage blowup. In con-
trast, DEBE realizes DbE to address both key management
overhead and security issues simultaneously.

SGX meets secure deduplication. SGX has been used in
secure deduplication. Dang et al. [20] employ SGX as a
trusted proxy to save network bandwidth for secure dedupli-
cation. SPEED [19] performs deduplication for computations
inside the enclave to improve resource utilization. You et
al. [82] leverage SGX to verify the ownership of dedupli-
cated data for secure deduplication. SeGShare [32] builds on
a server-side enclave for file-based deduplication, but does not
consider fingerprint indexing for chunk-based deduplication.
S2Dedup [60] uses a server-side enclave to eliminate a trusted
key server for key generation, and it performs deduplication
outside the enclave via re-encrypting chunks; in contrast,
DEBE directly performs deduplication inside the enclave to
protect plaintext chunks. SGXDedup [70] leverages SGX to
improve the performance of client-side secure deduplication
under DaE. Note that the above SGX-based deduplication
approaches are still based on DaE.

8 Conclusion

DEBE realizes an unexplored paradigm, deduplication-before-
encryption (DbE), for secure deduplicated storage. It builds
on SGX and applies frequency-based deduplication to man-
age a small fingerprint index for most frequent chunks in
the enclave. We show that DEBE outperforms conventional
deduplication-after-encryption (DaE) approaches in perfor-
mance, storage savings, and security.
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A Artifact Appendix
Abstract

Our artifact consists of the prototypes of DEBE and all base-
line approaches, a trace analysis tool for frequency leakage
measurement, and the scripts to run all our experiments in §6.
The DEBE prototype is a shielded DbE-based deduplicated
storage system that supports secure deduplication via Intel
SGX. It supports upload/download operations to allow multi-
ple clients to securely outsource their data storage to the cloud.
It applies frequency-based deduplication and implements the
designs described in §4.

Scope

Our artifact can be used to validate our main claim that DEBE
outperforms conventional DaE approaches in performance,
storage efficiency, and security. Specifically, our artifact can
be used to validate the results shown in the figures and tables
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in §6 to support our main claim. In addition, our artifact can
be used to run the workloads independent of our evaluation
in $6.

Contents
The artifact comprises the following sub-directories:

* ./Prototype, which includes the implementation of the
DEBE prototype.

* ./Baseline, which includes the implementation of all
baseline approaches (e.g., DupLESS, TED, CE, and Plain)
used in Exp#1 and Exp#6.

* ./Sim, which includes a trace analysis tool to measure
frequency leakage of CE, TED, and DEBE (see Exp#9 in
our technical report [81]).

Also, each sub-directory has a separate README file to
introduce the build instructions and usage.

Hosting

Our artifact is available on GitHub. Users can obtain the arti-
fact from the repository https://github.com/yzr95924/
DEBE. The version we provided for the artifact evalua-
tion is marked with the atc22ae tag. We encourage the
users to use the latest version of the repository, since it
may include bug fixes. We also release the traces used in
§6. The README file (https://github.com/yzr95924/
DEBE/blob/master/README.md) describes the detailed in-
structions to collect the traces.

Requirements

We developed and evaluated our artifact on a local cluster
of 11 machines connected with 10 GbE. Each machine has
a quad-core 3.4 GHz Intel Core i5-7500 CPU and 32 GiB
RAM running Ubuntu 16.04. We implement DEBE based on
Intel SGX SDK Linux 2.7 [42], OpenSSL 1.1.1 [65], and
Intel SGX SSL 1.1.1 [43]. The DEBE prototype is writ-
ten in C++ and compiled by Clang 3.8.0. To validate the
basic upload/download operations of DEBE, users need to
prepare at least two machines, one of which needs to sup-
port Intel SGX to run as the cloud. We recommend users to
check the SGX-supported device in https://github.com/
ayeks/SGX-hardware.

Note that if the user’s OS version is higher than Ubuntu
16.04 LTS (e.g., Ubuntu 20.04 LTS), it might not be able to
install the packages with the same versions as in our paper.
Nevertheless, we expect that the impact of using the packages
with newer versions would be limited and our prototype can
still run correctly.

Workflow

To reproduce the experiments in §6, users can refer to
./Prototype/ae_instruction.md for the detailed instruc-
tions.
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Abstract

The secure container that hosts a single container in a mi-
cro virtual machine (VM) is now used in serverless comput-
ing, as the containers are isolated through the microVMs.
There are high demands on the high-density container de-
ployment and high-concurrency container startup to improve
both the resource utilization and user experience, as user
functions are fine-grained in serverless platforms. Our in-
vestigation shows that the entire software stacks, containing
the cgroups in the host operating system, the guest operating
system, and the container rootfs for the function workload,
together result in low deployment density and slow startup
performance at high-concurrency. We propose and imple-
ment a lightweight secure container runtime, named RunD,
to resolve the above problems through a holistic guest-to-
host solution. With RunD, over 200 secure containers can
be started in a second, and over 2,500 secure containers can
be deployed on a node with 384GB of memory. RunD is
adopted as Alibaba serverless container runtime to support
high-density deployment and high-concurrency startup.

1 Introduction

With serverless computing (Function-as-a-Service), ten-
ants submit functions directly to the Cloud without rent-
ing virtual machines, and the cloud provider uses contain-
ers to host invocations on-demand [26, 31, 35, 48, 48, 56].
Most cloud providers publish the serverless computing ser-
vices with the pay-for-use pricing model, such as Amazon
Lambda [4], Google Cloud Function [11], Microsoft Azure
Functions [13], and Alibaba Function Compute [2].

When hosting function invocations, traditional contain-
ers (e.g., Docker, LXC) only provide process level isola-
tion [22,38], as they are implemented based on Namespace
and Cgroup. They cannot prevent privilege escalation, in-
formation disclosure side channels, and covert channel com-
munication [20]. To this end, secure containers that achieve
the same isolation with the traditional virtual machines are
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Rootfs i User Privacy ;
Container Runtime . — H
- Guest OS E Concurrency E
MicroVM ; bottlenecks ;
Guest Linux Kernel Cgroups : \—‘ :
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(a) Secure Container model (b) Secure Container stacks
Figure 1: The state-of-the-art secure container model, and
several bottlenecks in the architecture stacks.

often preferred. MicroVM is for isolation, and the container
is for abstraction [30]. Secure container often creates a nor-
mal container within the lightweight microVM as shown in
Figure 1(a). In such way users can build serverless services
based on exsiting container infrastructure and ecosystem. It
ensures compatibility with the container runtime in the Mi-
croVM. Kata Containers [19] and FireCracker [20] provide
practical experience in implementing such secure containers.

Figure 1(b) shows the architecture hierarchy of a secure
container. In general, the guest operating system (GuestOS)
in the microVM and resource scheduling on the host are of-
floaded to the cloud provider. The rootfs is a filesystem and
acts as the execution environment of user code. It is cre-
ated by the host and passed to the container runtime in the
microVM. On the host side, cgroups are used to allocate re-
sources to secure containers, and the CPU scheduler man-
ages the resource allocation. The complex hierarchy of se-
cure containers brings extra overhead.

The lightweight and short-term features of functions make
high-density container deployment and high-concurrency
container startup essential for serverless computing. For in-
stance, 47% of Lambdas run with the minimum memory
specification of 128MB [5] in AWS, about 90% of the ap-
plications never consume more than 400MB in Microsoft
Azure [49]. Since a physical node often has large memory
space (e.g., 384GB), it should be able to host many func-
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tions. Meanwhile, a large number of function invocations
may arrive in a short time. However, the overhead of secure
containers significantly reduces the deployment density of
functions, and the concurrency of starting containers.

Our investigation identifies two key factors in secure con-
tainers that result in low concurrent startup. First of all,
rootfs either results in unacceptable long latency for writable
device provisioning or high CPU overhead under consider-
able I/O stress, when many containers are started concur-
rently. Secondly, concurrently starting multiple containers
brings a large number of cgroups operations on the host side.
However, the cgroup-related operations are serialized in the
operating systems. The serialization is due to several mutex
locks introduced in the kernel to handle a complex hierar-
chy of cgroup subsystems. The serial operations slow down
cgroups creation for microVMs.

Meanwhile, secure containers amplify the resource over-
head of each function, multiply host-side resource consump-
tion with more microVMs, and lower the deployment den-
sity. Firstly, for microVMs, the standard Linux kernel is
heavyweight for a small-sized memory specification. Sec-
ondly, the mainstream block-based solution for container
rootfs in microVM generates the same page cache in both
host and guest, resulting in a duplicated memory overhead.
Lastly, CFS (Completely Fair Scheduler) in the host operat-
ing system traverses all the cgroups (containers) for balanc-
ing the processes, resulting in a significant scheduling over-
head at high-density deployment.

We propose and implement a lightweight secure con-
tainer runtime, named RunD, to resolve the above problems
through a holistic guest-to-host solution. According to our
evaluation, RunD boots to application code in 88ms, and can
launch 200 secure containers per second on a node. On a
node with 384GB memory, over 2,500 secure containers can
be deployed with RunD.

The main contributions of this paper are as follows.

1. Bottlenecks identification in high-density deploy-
ment and high-concurrency startup of secure con-
tainers in serverless. We analyze the shortcomings and
bottlenecks through a holistic guest-to-host solution, in
terms of container rootfs storage, the microVM memory
footprint, and the overhead of cgroups.

2. A guest-to-host solution to secure containers for
high-density and high-concurrency targets in server-
less. The practice including: 1) a better container rootfs
implementation based on read/write splitting for server-
less; 2) the method to condense the guest kernel and im-
prove kernel sharing by a pre-patched kernel image; 3)
the host-side lightweight cgroup design and the rename-
based cgroup pool management.

3. A lightweight serverless runtime RunD for server-
less architecture. We design and open-source RunD
based on Kata-runtime, and it shows much higher de-
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Figure 2: Two practices of the secure container model.

ployment density and startup concurrency compared
with the state-of-the-arts.

RunD is adopted as Alibaba serverless container runtime
serving more than 1 million functions and almost 4 billion in-
vocations daily. The online statistics demonstrate that RunD
enables the maximum deployment density of over 2,000 con-
tainers per node and supports booting at most 200 containers
concurrently with a quick end-to-end response.

2 Background

In this section, we will discuss the current secure container
design, and concerning problems motivating this work.

2.1 Secure Container Models

Based on different levels of security/isolation requirements,
there are generally two categories of secure containers in the
production environments.

Figure 2(a) shows the multi-container-per-VM secure con-
tainer model that only isolates functions. In the model, a vir-
tual machine (VM) hosts the containers for the invocations of
the same function. The containers in the same VM share the
guest operating system of the VM. In this case, the invoca-
tions to different functions are isolated, but the invocations
to the same function are not isolated. Since the number of
required containers for each function varies, this model re-
sults in memory fragmentations [34]. Though the memory
fragmentations can be reclaimed at runtime, it may signif-
icantly affect the function performance, and even crash the
VM when the memory hot-unplug fails.

Figure 2(b) shows the single-container-per-VM secure
container model that isolates each function invocation. Cur-
rent serverless computing providers [1,20] mainly use this
secure container model. In this model, each invocation is
served with a container in a microVM. This model does not
introduce memory fragmentations, but the microVMs them-
selves show heavy memory overhead. It is obvious that each
microVM needs to run its exclusive guest operating system,
multiplying the memory footprints.
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The secure container depends on the security model of
hardware virtualization and VMM, explicitly treating the
guest kernel as untrusted through syscall inspections. With
the prerequisite of isolation and security, this work targets
the single-container-per-VM secure container model.

2.2 Problems with Secure Containers

In production serverless platforms, achieving high container
startup concurrency, and high container deployment den-
sity are the two key requirements [20]. With the single-
container-per-VM secure container model, there are prob-
lems in achieving the two purposes.

Requirement on high-concurrency container startup.
In serverless platforms, each function invocation is short, and
a large number of function invocations may arrive in a short
time. For example, in Alibaba serverless platform, more
than 200 container-launch requests arrive nearly simultane-
ously on a node. The latency until all containers have entered
main() can swell super-proportionally due to resource con-
tention among the simultaneously launching VMs. Mean-
while, emerging internet services often show a diurnal load
pattern and have bursty loads [18]. A large number of con-
tainers are required to be created when the load bursts. Some
techniques, such as prewarming containers [31,42,49], are
able to alleviate container cold startups.

However, bursty loads are inevitable can easily exhaust the
limited prewarmed containers. The ability to startup contain-
ers at high-concurrency is crucial for serverless platforms.

Requirement on high-density container deployment.
The small container specification in a serverless computing
platform brings the requirement to deploy containers densely
on a node. For instance, 47% of lambda functions run with
the minimum memory specification of 128MB in AWS [5].
The actual memory usage of a container may also be smaller
than its specifications. As Azure reports [49], about 90% of
the applications never consume more than 400MB of mem-
ory. A node with 256GB of memory can host 8 x 256 = 2048
containers if there is no other overhead. In Alibaba serverless
platform, over 2,500 secure containers that 128MB-sized can
be deployed on a node with 384GB memory.

Without proactive customizations, secure containers in-
cur extra memory overhead, reducing deployment density in
serverless computing. Increasing deployment density greatly
improves resource utilization and multi-tenant serving effi-
ciency with the same infrastructure.

3 Problem Analysis and Insights

In this section, we analyze the problems of achieving high-
concurrency startup and high-density deployment with se-
cure containers. We use Kata container [19] as the repre-
sentative secure container to perform the following studies.
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Figure 3: The steps of starting up multiple Kata containers
concurrently. The concurrency bottleneck results from cre-
ating rootfs (step @ in red block) and creating cgroups (step
@ in red flowline). The density bottlenecks result from the
memory footprint of the microVM (step @ in blue block) and
the scheduling of massive cgroups (step @ in blue block).

Figure 3 shows the steps of starting Kata containers. First,
containerd concurrently creates the container runtime Kata-
runtime and prepares runc-container rootfs. Second, the hy-
pervisor loads the GuestOS and the prepared rootfs to launch
a runc-container in the microVM. Third, the function work-
load is downloaded into the container and may start to run.

Comparing with starting traditional containers [53], we
have two observations when starting up secure containers.

* When starting 100 or more Kata containers concur-
rently, there is a distinct performance degradation of
creating rootfs and cgroups, during the Kata-runtime
preparation. The degradation results in the low concur-
rency of starting containers.

* When deploying more than 1,000 Kata containers with
128MB memory specification on a single node with
384GB memory and 104 cores, the microVMs’ mem-
ory footprint (due to the guest kernel and rootfs) already
occupies most of the memory space. Meanwhile, the
containers’ 1/O performance is also seriously degraded.

Figure 3 also shows three bottlenecks we found that result

in the above two observations. In general, the inefficiency of
creating rootfs and cgroups results in low container startup
concurrency. The high memory footprint and scheduling
overhead result in low container deployment density. We an-
alyze the bottlenecks in the following subsections.

3.1 Bottleneck of Container Rootfs Storage

In general, rootfs can be exposed to the container runtimes
in the microVMs through two interfaces to construct the im-
age layers: filesystem sharing (e.g. 9pfs [45], virtio-fs [16])
and block device (e.g. virtio-blk [46]). Filesystem sharing
enables microVMs to access a directory tree on the host di-
rectly. When the block device is used, the host creates block
devices through the device-mapper [8] and passes them to
the microVMs, so that containers can access data at the block
level, rather than the file level.
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Figure 4: The IOPS/bandwidth performance of rand/seq di-
rectlO/BufferlO read/write when using different rootfs map-
ping in Kata-runtime (dev-mapper represents that virtio-blk
is used, extd+overlayfs represent the baseline of default
runc-container rootfs implementation).

Figure 4 shows the IOPS (I0-Per-Second) and IO band-
width of the random/sequential read and random/sequential
write, when Kata uses 9pfs, virtio-fs, and virtio-blk, respec-
tively. We also measure the metrics of using ext4 file system
and overlayfs file access interface on the host node, to denote
the case of the traditional containers [50,51]. As observed,
microVMs should not use 9pfs as rootfs storage interface due
to the poor performance.

With the default configuration (cache enabled), virtio-blk
performs best at random/sequential writing. However, the
device-mapper who prepares the block device in the host
cannot meet the high-concurrency requirement [59]. Ac-
cording to our measurement, it takes as high as 10 seconds
to prepare a rootfs when 200 containers are started concur-
rently, while it only takes about 30 milliseconds for a single
container startup. In this case, the operation of preparing
rootfs timeouts, resulting in the container breakdown. More-
over, virtio-blk inherently does not support the page cache
sharing between host and guest operating systems. When
virtio-blk backend reads rootfs files into the host page cache,
the mapped content reproduces the same page cache in the
guest. The issue of duplicated page cache brings a high
memory footprint overhead.

Virtio-fs resolves the problem of duplicating page cache.
When DAX is enabled in virtio-fs, it allows bypassing guest
page cache and mapping host page cache directly in guest
address space [16]. However, virtio-fs results in poor ran-
dom/sequential write performance (Figure 4). In addition,
each container has to employ a client daemon to support
virtio-fs 1/O operations, leading to excessive CPU usage
when enormous containers colocate. Things get worse for
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Figure 5: The memory overhead of a secure container.

either large I/O stress under high-concurrency or massive op-
erations of metadata processing.

The above investigation shows that either virtio-fs or
virtio-blk can compromise either deployment density or
startup concurrency of secure containers. An exploratory
alternative would be: using virtio-fs to support the read-
only part of rootfs for sharing page cache between host and
guests, and using virtio-blk to support the writeable part of
rootfs for high I/0 performance. A solution is also required
to further reduce the duplicated writable part for rootfs.

3.2 High Memory Overhead Per Container

Except for the memory used by the user function, the mem-
ory footprint of other components in the secure container is
the memory overhead. The SMB memory overhead reported
in FireCracker [52] is the overhead of the FireCracker VMM
itself. In the microVM of a secure container, the guest oper-
ating system, the struct page for memory management, and
other components (e.g., baseOS, shimv2, agent) also con-
sume additional memory space [52].

Figure 5 shows the per-container memory overhead of se-
cure containers with different memory specifications and at
different deployment densities. In the figure, Kata-gemu is
the secure container that uses gemu as the hypervisor, and
Kata-FireCracker uses FireCracker as the hypervisor. As ob-
served in Figure 5(a), the memory overheads of a 128MB
container are 94MB and 168MB with Kata-FireCracker and
Kata-qemu, respectively. The overhead increases with the
memory specification of the container.

The average memory footprint of a single microVM can
be reduced by sharing the text/rodata segment among multi-
ple microVMs. Mainstream MicroVMs achieve it by map-
ping the kernel file to the guest memory directly using mmap.
As shown in Figure 5(b), the per-microVM memory over-
head of kata-gemu and kata-FireCracker reduce to 145MB
and 71MB when 1,000 VMs are deployed on a node. How-
ever, the overhead is still too large for a serverless container
with only 128MB memory specification.

MicroVM template (e.g., Kata template) [17,29,52] is a
popular method to further reduce the per-microVM mem-
ory overhead, while preserving microVM consistency. The
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template serves as a primary image for a microVM copy
that includes disks, devices, and settings. New microVMs
are created by on-demand forking from a pre-created tem-
plate microVM, and text/rodata segments are also shared
among multiple microVMs [54] in read-only mode. The un-
accessed kernel files of the template will not consume the
physical memory, reducing the memory overhead.

However, the template technique is not as efficient as we
thought, due to the self-modifying codes in the operating
system kernel [24,25]. The self-modifying code technique
alters the instructions on-demand as it runs, and the Linux
kernel relies heavily on self-modification code to improve
performance on boot and during runtime. We start a clean
microVM with CentOS 4.19 guest kernel from a template to
investigate the impact of self-modifying codes. The investi-
gation shows that 10,012KB of the code and the read-only
data is accessed in the memory, but 7,928KB of them were
modified during boot. This case in point reveals that the self-
modifying codes degrade the efficiency when using mmap
for less memory consumption of kernel image files.

The code self-modifying reduces the shareable memory
when using microVM template. Reducing the self-modifying
codes in the guest kernel is worth investigating if they are not
necessary for the serverless computing scenario.

3.3 High Host-side Overhead of Cgroups

Cgroup is designed for resource control and abstraction of
processes. In serverless computing, the frequency of func-
tion invocations shows high variation. In this case, the cor-
responding secure containers are frequently created and re-
cycled. For instance, in our serverless platform, at most 200
containers would be created and recycled on a physical node
concurrently in a second. The frequent creating and recy-
cling challenge the cgroup mechanism on the host.

We measure the performance of cgroup operations when
creating 2,000 containers concurrently. In the experiment,
we use different numbers of threads to perform cgroup op-
erations. Figure 6(a) shows the cumulative distribution of
container creating latencies. Counter-intuitively, the latency
increases when more threads are used, even if each thread
needs to create fewer containers.

The reason behind the above fact is that the Linux ker-
nel introduces several global locks (e.g., cgroup_mutex,
css_set_lock, freezer_mutex) to serialize cgroup operations.
The global locks are used to coordinate more than 10 re-
source subsystems (aka. the cgroup subsys) involved in
cgroup. Figure 6(b) shows the flame graph of creating 2,000
cgroups using 10 threads concurrently. In the figure, the red
parts show the case that “mutex locks” are active. When the
cgroup mutex uses the optimistic spinning by default, the
spinner cgroups experience the optimistic spinning if they
fail to acquire the lock. It will lead to heavy CPU consump-
tion and belated exiting of the critical section in the multi-
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Figure 6: The performance of cgroup operations when cre-
ating 2,000 containers concurrently. Due to the mutex lock,
the cgroup operations have higher latencies as the concur-
rency increases.

threaded scenarios. Therefore, the locks serialize the opera-
tions of cgroups and drag down the latencies.

Besides, a common observation is that there are often
more than 10,000 cgroups with thousands of containers on
a compute node. The PELT (Per-Entity Load Tracking) for
load balancing in CFS will iterate over all cgroups and pro-
cesses when scheduling these containers. In this scenario,
the frequent context switching and hotspot functions that in-
volve high-precision calculation in the scheduler become a
bottleneck, accounting for 7.6% of the CPU cycles of the
physical node, according to our measurement.

The host-side overhead of cgroups prohibits the high-
density deployment and high-concurrency startup in server-
less computing. Simplifying the cgroup design, and reducing
the critical section introduced by the mutex locks, are funda-
mental solutions to eliminate the high host-side overhead.

4 Methodology of RunD

The above analysis reveals the bottlenecks in the host, the
microVM, and the guest in achieving the high-concurrency
startup and high-density deployment. We propose RunD, a
holistic secure container solution that resolves the problem
of duplicated data across containers, high memory footprint
per VM, and high host-side cgroup overhead.

In this section, we first show a general design overview
of RunD, and then present the design of each component to
resolve the corresponding problem.

4.1 Design Overview

When designing RunD, we have a key implication for server-
less runtime. The negligible host-side overhead in a tradi-
tional VM can cause amplification effects in the FaaS sce-
nario with high-density and high-concurrency, and any triv-
ial optimization can bring significant benefits. Utilizing the
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Figure 7: The lightweight serverless runtime of RunD.
The condensed kernel and pre-patched image land in the
guest domain, while read/write splitting-based rootfs and a
lightweight cgroup pool land in the host domain.

features of read-only data/runtime and non-persistent storage
in serverless, RunD proposes guest-to-host solutions.

Figure 7 shows the RunD design and summarizes our
methodologies. RunD runtime makes a read/write splitting
by providing the read-only layer to virtio-fs, using the built-
in storage file to create a volatile writeable layer to virtio-
blk, and mounting the former and latter as the final container
rootfs using overlayfs. RunD leverages the microVM tem-
plate that integrates the condensed kernel and adopts the pre-
patched image to create a new microVM, further amortizing
the overhead across different microVMs. RunD renames and
attaches a lightweight cgroup from the cgroup pool for man-
agement when a secure container is created.

Based on the above optimizations, a secure container (re-
ferred to as a “sandbox”) is started in the following steps,
when RunD is used as the secure container runtime.

* In the first step, once containerd receives a user invoca-
tion, it forwards the request to RunD runtime.

¢ Second, RunD prepares the runc-container rootfs for the
virtual machine hypervisor. The rooffs is separated into
read-only layer and writable layer. (Section 4.2).

e Third, the hypervisor uses the microVM template to
create the required sandbox (Section 4.3), and mount
the runc-container rootfs into the sandbox by overlayfs.

» Lastly, a lightweight cgroup is attached to the sandbox
(Section 4.4), to manage the resource allocation for this
sandbox in the host.

4.2 Efficient Container Rootfs Mapping

Section 3.1 examines the challenges in the high-density and
high-concurrency scenario for container rootfs. The cur-
rent secure container fails to discriminate between serverless
platforms and traditional infrastructure-as-a-service environ-
ments. The mainstream solutions are designed for persistent
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Figure 8: The read/write splitting of container rootfs. Virtio-
fs is used to handle the read-only layer and virtio-blk is used
to handle the volatile writable layer.

data storage, and it is the key point why container rootfs stor-
age imposes restrictions on our goals.

We investigate the data in a sandbox in the serverless
computing scenario, and find that user-provided code/data
is read-only for the operating system, and the system-
provided runtime files are also read-only for user func-
tions. Meanwhile, the data in the local memory or storage
generated in a sandbox will not be used by subsequent func-
tion invocations, due to the stateless feature of serverless
computing. The temporary and intermediate data generated
during the function execution is not required to be persisted.

Based on the above finding, it is possible to split the rootfs
into a read-only layer and a writable layer, and then handle
them in different ways [32]. The sandboxes can share the
read-only layer on the same node, and the writable layer has
to be prepared separately for each sandbox.

Figure 8 shows the way to split rootfs into a read-only
layer and a volatile writable layer. According to the investi-
gation in Section 3.1, virtio-fs is used to handle the read-only
layer, and virtio-blk is used to handle the volatile writable
layer for better performance. The read-only layer is stored in
the host and can be prepared in negligible time when using
the overlay snapshotter provided by the container runtime.
However, it is challenging to handle the volatile writable
layer efficiently. By default, the host operating system needs
to prepare a logic storage volume for the sandbox. This op-
eration is time-consuming and is one of the most important
reasons that result in the long latency of preparing rooftfs.

We propose the volatile block device as the volatile
writable layer, considering the volatile feature of the writable
layer in serverless platforms. The volatile block device will
not persist temporary data from user functions to the disk,
unlike the logic storage volume. A storage image template
is pre-created in the host as the base file. When creating a
volatile block device for a new sandbox, a build-in storage
image is created and linked to the storage image template,
using reflink [60]. reflink enables storage image template to
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share data with build-in storage images in a CoW (Copy-
on-Write) fashion. Then a volatile block device is created
associated with the build-in storage image. Once the hyper-
visor opens the device, the build-in storage image will be
deleted. The volatile block device ensures that user func-
tions can perform writing as usual without persisting data on
the local disk.

We compare our solution with the traditional ones in
which the entire rooftfs is created by the device-mapper as a
block device. When 200 sandboxes are started concurrently,
traditional solutions incur 4,500 IOPS and use 100MB/s 10
bandwidth. On the contrary, our solution incurs only 1,500
IOPS and uses 8MB/s 10 bandwidth. Better, the time needed
to prepare the rootfs decreases from 207ms to only a negligi-
ble 0.2ms, and the writing performance of our solution is the
same as that of the mainstream transmission.

4.3 Condensed and Pre-patched Guest Kernel

In this subsection, we present two techniques used to reduce
the memory used by each sandbox, so that the deployment
density can be significantly increased.

4.3.1 Reducing the guest kernel size

Following the abstraction premise in current serverless plat-
forms, the guest environment management for serverless
containers is offloaded to the cloud provider. Meanwhile,
RunD depends on the security model of hardware virtual-
ization and VMM, explicitly treating the guest kernel as
untrusted through syscall inspections. Based on this fact,
there is an opportunity to condense the guest kernel for the
lightweight characteristic of serverless functions. Consider-
ing that several features in the guest kernel are redundant and
memory intensive in the serverless context, RunD condenses
these features at compile-time. When customizing the con-
densed guest kernel, the principles behind it are as follows:

- Minimize kernel memory footprint and image size.

- Retain features required in the serverless context.

- Without runtime performance degradation.
Following the above principles, we build the condensed ker-
nel for the guest operating system based on Linux kernel, by
disabling features:

- Do not pre-create loop device (2.2MB Mem reduced).

- Disable acpi and ftrace (2MB and 6MB Mem reduced).

- Disable graphics-related items (2MB Mem reduced).

- Disable i2¢ and ceph (3MB Mem reduced, and 4MB
reduced of kernel image size).

- Kernel files (560K Mem and 571K image size reduced).

Validating all features at compile-time case by case, RunD

effectively reduces the memory footprint of a CentOS 4.19

Linux kernel by about 16MB and condenses the kernel image

by about 4MB. Based on this condensed guest kernel, we

review several investigations of the self-modifying code and
propose our solution to reduce the memory overhead further.

4.3.2 Alleviating code self-modification

As mentioned before, cloud providers manage and maintain
the underlying hardware and execution runtimes in server-
less context, standing for that all microVMs on the same
node generally use the same guest kernel. In this scenario,
the sandboxes on the same node generate the same patched
kernel code, even if they execute the self-modification patch
logic. This is because the self-modifying code of ker-
nel text segments only occurs at the startup phase, after
which the kernel code area becomes “read-only after ini-
tialization”. In this case, sandboxes experience the same
initialization phase and generate predicable self-modifying
code segments.

Based on the above observation, there is an opportunity to
generate a pre-patch guest kernel image file already patched
with self-modified code segments. The MicroVM template
technique discussed in Section 3.2 may work efficiently
without self-modifying code.

Adapting to this optimization, we also resolve the poten-
tial kernel panic issues when loading the pre-patched ker-
nel image for higher stability. RunD tries to share as many
kernel files as possible across different secure containers.
With a pre-patched microVM template, RunD not only re-
duces the memory footprint of a single container for higher-
density deployment, but also allows to quickly fork multiple
instances [29, 52].

4.4 Lightweight Cgroup and Cgroup Pool

In Section 3.3, we analyze that serialized cgroups operations
in the host become one of the bottlenecks of secure con-
tainers with high-density deployment and high-concurrency
startup. The intuitions are to efficiently handle synchroniza-
tion access on mutex structures and reduce the number of
cgroups with a better design.

Our further investigations reveal the optimization oppor-
tunities in two aspects. Firstly, creating containers involves
multiple cgroup subsystems (e.g. cpu, cpuacct, cpuset, mem-
ory, and blkio). Because the Linux kernel cannot parallelize
these cgroup-related operations, creating these groups for
each sandbox is time-consuming. Secondly, pre-creating
and maintaining cgroups in a pool can effectively reduce
the creation overhead, since afterward only the cgroup
rename is used. The cgroup rename, as a special case,
is a lightweight operation without acquiring any global lock.
Following these two observations, we propose a lightweight
cgroup and the cgroup pool, as shown in Figure 9.

The lightweight cgroup decreases the total number of
cgroups and system calls. Rather than creating the cgroup for
each subsystem, we aggregate necessary cgroup subsystems
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Figure 9: The lightweight Cgroup aggregates all subsys-
tems, eliminating the time-consuming creation by renaming
from the Cgroup pool.

(aka the cpu, cpuacct, cpuset, memory, and blkio) into one
single dedicated lightweight cgroup. The implementation of
the joint cgroup controller helps RunD reduce the redundant
cgroup operations when a container is started, significantly
decreasing the total number of cgroups and system calls.

The cgroup pool with renaming mechanism eliminates the
time-consuming cgroup creation and initialization. RunD
pre-creates corresponding lightweight cgroups and main-
tains them in a cgroup pool based on the pre-defined node
capacity. These cgroups are marked idle when initialized,
and are protected in a linked list. For each created container,
RunD simply allocates an idle cgroup, updates the state to
busy, performs the cgroup rename operation, and then at-
taches the container to this renamed cgroup when a container
is started. If a container triggers recycling, RunD will take
the cgroup back to the pool, kill the corresponding instance
process, and then update the returned cgroup state to idle for
subsequent allocating and renaming.

Adopting the above optimizations in kernel mode, we re-
play the evaluation in Section 3.3. The cgroups creation only
consumes 0.09s (1 thread), 0.1s (50 threads), and 0.14s (200
threads), respectively. Compared with the default mecha-
nism, the lightweight cgroup and the rename-based cgroup
pool reduce 94% of the cgroups creation time.

5 Evaluation

In this section, we evaluate the performance of RunD in sup-
porting high-concurrency startup and high-density deploy-
ment of secure containers, and introduce the performance of
RunD in production usage.

5.1 Evaluation Setup

We have implemented and open-sourced RunD with Rust,
a more memory-efficient and thread-safe programming
language. RunD runtime involves four main modules:
Containerd-shim (21k LOC), Device (4.4k LOC), Hypervi-
sor (5.6k LOC), and Lightweight-cgroup (20k LOC).

Table 1: Experiment setup in our evaluation.
Configuration
CPU: 104 vCPUs (Intel Xeon Platinum 8269CY)

Hardware |y roory: 384GB, two SSD drives: 100GB, 500GB
Software OS: CentOS7, kernel: Linux kernel 4.19.91
kata-gemu containerd 1.3.10, kata 1.12.1
. kata-FC containerd 1.5.8, kata 2.2.3
Container

kata-template containerd 1.3.10, kata 1.12.1
RunD containerd 1.3.10

Baselines: we compare RunD with the state-of-the-
art secure container, Kata Containers [19]. Specifically,
we use three popular configurations of Kata containers:
Kata-gemu, Kata-template, and Kata-FC. Kata-gemu uses
QEMU [15,23] as the microVM hypervisor, Kata-template
uses QEMU while integrating container template, Kata-FC
uses lightweight FireCracker [20] as the microVM hypervi-
sor. Kata-gemu and kata-template use an old version of Kata
Containers, as the new version has some bugs that result in
poor performance. Table | shows the detailed setups.

Testbed: we run the experiments on a node with 104 vir-
tual cores, 384GB memory, and two SSD drives of 100GB
and 500GB. Such specification is widely-used in production
clouds. The 100GB drive is used as the root filesystem of the
host operating system, and the S00GB drive is used by the
secure containers. We use Alibaba Cloud Linux 2 for RunD
and Alpine Linux [3] for others, as the guest operating sys-
tems in the microVM for a low memory footprint.

Measurement: in the CRI specification [6], a pod sand-
box refers to a microVM with a lightweight pause con-
tainer [12]. In all the tests, we only create the pod sand-
boxes without other containers inside, through the crictl
command. In the following evaluations, the memory speci-
fication of a container denotes the size of memory that can
be used by itself. The actual memory usage of a container is
collected using the smem command.

As RunD is proposed to maximize the supported container
startup concurrency and deployment density, in the experi-
ment, we start empty secure containers without user codes
or data considering that it is a common practice in FaaS to
start empty containers concurrently for prewarming. The in-
production results show the performance of RunD for actual
workloads with all the steps involved.

5.2 Concurrent Startup Measurement

In this experiment, we focus on three critical metrics related
to user experience: (1) the time needed to start a large num-
ber of sandboxes concurrently, (2) the startup latency distri-
bution of the sandboxes, and (3) the CPU overhead on the
host. The first metric reveals the throughput of starting sand-
boxes, and the second metric reveals the experience of every
user.

As for the first metric, Figure 10(a) shows the time needed
to start a large number of sandboxes concurrently. In the fig-
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(c) The CPU usage of concurrent startups.

ure, the x-axis shows the number of sandboxes to be started
concurrently, the y-axis shows the overall time needed to
startup all the sandboxes.

As shown in the figure, RunD uses the shortest time to
start a large number of sandboxes for all concurrency levels.
When 200 containers are created concurrently (we already
observe such high-concurrency in Alibaba serverless plat-
form), Kata-FC, kata-qemu, kata-template, and RunD needs
47.6s, 6.85s and 2.98s and 1s to create them. Kata-FC re-
quires a much longer time to startup the sandboxes when the
concurrency is high. This is because Kata-FC uses virtio-
blk to create rootfs, and the performance is poor at high-
concurrency, as we measured in Section 3. There is no such
bottleneck in Kata-template and Kata-qemu. Kata-template
simply uses template to reduce the overhead of guest kernel
and rootfs loading, but the inefficient rootfs mapping, code
self-modification and high host-side overhead of the cgroup
operations still exists. As a result, it performs worse than
RunD at high startup concurrency. The overall optimizations
suggest that RunD provides the performance improvement of
about 40% over its nearest baseline, Kata-template, at high-
concurrency (e.g., 400-way) startup.

As for the second metric, Figure 10(b) shows the latency
distribution of starting each sandbox, when 200 sandboxes
are started concurrently. RunD and Kata-template are able
to start sandboxes in a stable short time, but the latencies of
starting sandboxes with others are out of expected. Users can
have identical good experiences with RunD.

As for the CPU overhead, Figure 10(c) shows the CPU
time needed on the host to startup sandboxes. When the
concurrency is high, RunD greatly reduces the CPU over-
head. For instance, when 200 sandboxes are started concur-
rently, RunD reduces 89.3%, 74.5% and 62.1% CPU over-
head compared with Kata-qgemu, Kata-template, and Kata-
FC, respectively. In addition, the CPU overhead of RunD
only increases slightly, when the concurrency increases. This
is due to the read/write split policy and the reduction of
compute-intensive operations in cgroups. Therefore, RunD
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Figure 11: The memory overhead of Kata-qemu, Kata-

template, Kata-FC, and RunD (100 sandboxes are deployed).

is scalable in starting more sandboxes concurrently.

In summary, RunD is able to start a single sandbox in
88ms and launch 200 sandboxes simultaneously within Is,
with minor latency fluctuation and CPU overhead.

5.3 Deployment Density

In this experiment, we evaluate the effectiveness of RunD in
increasing the sandbox deployment density. In general, the
memory used by each container determines the deployment
density, while the CPU time needed by each function invo-
cation is minor in the serverless platform. Figure 11 shows
the memory overhead when 100 sandboxes are deployed on
the experimental node. In the figure, the x-axis shows the
memory specification of each sandbox.

As observed, RunD has the least memory overhead among
four runtimes, and does not increase with the memory spec-
ification. The memory overhead is less than 20M B per sand-
box with RunD. Compared to kata-qemu, kata-template and
kata-FC, the overhead of RunD is reduced by 54.9%, 27.2%,
and 18.9%, respectively, even when the memory specifica-
tion is 128MB. The memory overhead does not increase, be-
cause the microVM template technique uses the on-demand
memory loading for the containers. Therefore, the page ta-
ble required for memory management is determined by the
actually used memory space. On the contrary, the memory
overheads introduced by Kata-gemu and Kata-FC increase
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with larger memory specifications, as the page table is built
for all available memory. In addition, the pre-patched kernel
image in RunD further reduces memory overhead.

Figure 12 shows the average memory overhead of the
sandboxes when different numbers of sandboxes are de-
ployed on a node. The x-axis shows the deployment den-
sity. As observed, the average memory overhead reduces
with the deployment density, as the sandboxes share the
mapped code/data segments. RunD reduces the memory
overhead by 87.7%, 82.4%, and 75.1% when 1,000 sand-
boxes are deployed, respectively, compared with kata-gemu,
kata-template, and kata-FC.

RunD supports to deploy over 2,500 sandboxes of 128MB
memory specification on the node with 384GB memory.

5.4 Impact of Deployment Density on Startup
Latency and Concurrency

When some sandboxes are already deployed on a node, the
performance of starting sandboxes concurrently is affected.
Figure 13 shows the time needed to boot 10 and 200 sand-
boxes, when some sandboxes are already deployed on the
node. The x-axis shows the number of already deployed
sandboxes. The y-axis is in the log10 scale.

When 1,000 sandboxes are already deployed, the time
needed to startup 10 containers increases by 1.69s, 0.41s,
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Figure 14: The startup latency and concurrency tracing of
RunD in Alibaba serverless platform.

10.8s, and 0.22s compared with the cases in Figure 10(a)
with Kata-gemu, Kata-template, Kata-FC, and RunD. In ad-
dition, the time needed already increases with the number of
already deployed sandboxes.

We can also observe that, the time needed to start 200
sandboxes is at least 10 times as much as that needed to start
10 sandboxes at a 1,000-density deployment in all the tests.
The significant increase originates from a large number of
cgroups in the host operating system. Scheduling and man-
aging containers with these cgroups consume more CPU cy-
cles, thus resulting in CPU bottlenecks appearing earlier than
a low-density deployment. The increased time is the small-
est with RunD, because it already eliminates many time-
consuming cgroup operations.

RunD shows better performance and stability in support-
ing high-concurrency startups at high-density deployment.

5.5 In-Production Usage for Serverless

Currently, Alibaba serverless computing platform has
adopted RunD. The platform serves almost 4 billion invo-
cations from more than 1 million different functions per day.

Figure 14 reports the sandbox startup concurrency and the
corresponding startup latency from six nodes. The specifi-
cation of each node is the same as our experimental setup
in Table 1. The data is collected between 08:00 and 18:00
of Jan 10", 2022. There are about 800 active sandboxes on
each node, when the concurrency data is collected. The in-
production startup latency of sandboxes at high-concurrency
is consistent with that reported in Section 5.4.

As observed from the figure, the startup concurrency
bursts at the beginning of each hour. At most 191 sandboxes
are started concurrently around 10:00. RunD starts the 191
sandboxes in 1.6 seconds. We look into the function invo-
cation logs, and find that the periodic burst is caused by the
an-hour time trigger and cluster-level load balancing. The
periodical burst is pervasive, as the Azure serverless platform
traces [14] show the same pattern. In the figure, the sandbox
startup latency occasionally increases when the concurrency
is low. The long time results from the operation in loading
large-scale workloads from the tenants. Although the startup
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Figure 15: The deployment density and concurrency of
RunD in 1 minute intervals, from Alibaba production traces.

concurrency is not always high, it is crucial to ensure a quick
startup for a good user experience.

Figure 15 shows the deployment density of the sandboxes
on each node. We collect the density statistics of the six
nodes between 18:00 of Jan 10 to 10:00 of Jan 11, 2022.
As observed, more than 2,000 sandboxes are deployed on a
node at most. We can also find that the high-density deploy-
ment happens at the same time as high concurrent startups.
This is because many tasks are triggered at the beginning of
each hour. The deployment density does not achieve the the-
oretical upper limit of 384GB/(128+20)MB=2656 contain-
ers, as some functions use more than 128MB memory, and
the workloads are also balanced to other nodes.

RunD is production-verified to meet the high-concurrency
startup and high-density deploymant requirements.

5.6 Lessons Learned from Production Usage

Besides the RunD secure container, we have some insights
about designing secure containers for serverless systems.

Lesson-1: the CRI specification designed for Kubernetes
is not suitable for serverless system. In CRI, multiple re-
lated containers can co-locate in the same sandbox, and a
lightweight pause container is started first to prepare the
cgroups for the remaining containers. This pause container-
based solution is negative for serverless computing, as each
sandbox only has a single container for security and privacy.

Lesson-2: Functions tend to use the same standard guest
environment provided by the serverless platform. In this
case, the language environment (e.g., JVM) can also be inte-
grated into the microVM template. However, the language-
level template will invalidate the on-demand memory load-
ing in the guest because some language runtimes need to pre-
allocate the available memory. There are tradeoffs between
higher memory utilization and less startup time, and the deci-
sion should be made based on how often the functions share
the language environment.

Lesson-3: The memory usage of user functions is the key
aspect determining the upper limit of the deployment den-
sity. Most functions are lightweight. When 2,000 sandboxes
are deployed on a node of our serverless platform, the CPU

utilization does not achieve 50%, and there is no complaint
on the poor performance from users. One reason for the low
CPU utilization is that many sandboxes are actually idle and
“kept-alive” after its function invocation is completed in a
serverless scenario.

6 Related Work

The most closely related work to RunD is FireCracker [20],
which proposes a lightweight VMM for serverless runtime.
It provides fast startup within 125ms, allowing 150 VMs to
start concurrently per second per node, with less than SMB
footprint per VM. However, FireCracker only serves as the
hypervisor stack in the Security Container model, without
other complex related processes, e.g., rootfs [52]. By con-
trast, RunD investigates the guest-to-host solution through
all stacks and provides higher concurrency and density.

Higher-density deployment. Regarding serverless com-
puting, in the space of higher function deployment density
of Secure Containers and VMs [57], the key is designing a
more lightweight container runtime both in guest and host.
Unikernel [36, 37, 43,47] runs as a built-in GuestOS with-
out necessary add-ons, demonstrating great potential for de-
ploying containers with less overhead. Kuo [33] Explores
lightweight guest kernel configurations for use in Unikernel
environments, which has similarity to the approach towards
reducing guest kernel size. However, Unikernel is hard to
be changed once after compilation with the application. Its
compile-time invariance results in poor flexibility in prac-
tice. SAND [21] adopts the multi-container-per-VM model
to amortize the memory footprint of sandboxing. However,
they do not further investigate the utilization impact of mem-
ory fragmentations in a real-system with high-density de-
ployment. Gsight [61] observes that fine-grained function-
level profiling can expose more predictability system-level
features in the partial interference. With a more accurate in-
terference predicting [27, 44], the function density can get
improved with QoS guaranteed.

The above studies make sense in improving the effective
density with less interference for serverless. They are or-
thogonal to our work, because RunD is motivated to improve
the maximum deployment density on a signe node.

Higher-concurrency startup. In the space of higher
function startup concurrency, recent approaches leverage the
container prewarm pool [9, 40, 49, 58]. The state-of-the-art
on container prewarming, SOCK [42], uses a benefit-to-cost
model to select packages pre-installed in zygotes, and builds
a tree cache to ensure that the forked zygote container does
not import any additional packages other than the private
ones the handler specifies. The C/R (Checkpoint/Restore) [7,
31, 39] supporting the VM snapshotting [10, 28,29, 41, 54]
captures the state of a running instance as a checkpoint,
and then restores it once cold startup. Observing that most
functions only access a small fraction of the files and mem-
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ory loaded in the initialization stage, Catalyzer [29] and
Replayable Execution [55] extend the C/R mechanism to
achieve a faster on-demand recovery and paging when start
containers. REAP [52] identifies the guest-side page when
loading a VM snapshot and records the metadata during
the record phase. Then, for subsequent invocations, REAP
proactively prefetches and load the recorded pages into the
guest memory for faster and higher-concurrency startup.

The above studies reduce the startup and recovery phases
to partially improve the capability of higher-concurrency
startup. From a different angle, RunD holistically focuses on
prominent bottlenecks through a guest-to-host investigation
when start secure containers with high-concurrency. We also
proposes a lightweight serverless runtime that production-
verfied in practice.

7 Conclusion

In serverless computing, the lightweight and short-term
functions leads to the requirement of high-density container
deployment and high-concurrency container startup. This
work dives into the bottlenecks from the entire software
stack and proposes RunD, a lightweight secure container
runtime for serverless through a holistic guest-to-host solu-
tion. The evaluation results and in-production usage prove
the efficiency of RunD to launch 200 secure containers in one
second, and deploy over 2,500 secure containers per node.
RunD is used in Alibaba production serverless platform, and
shows good performance in terms of high-density deploy-
ment and high-concurrency startup.
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Artifact Appendix

A.1 Abstract

We choose Kata containers and its three configurations kata-
gemu, kata-FC, kata-template as baselines for comparison
with RunD. For measuring the startup latency, we use the
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crictl command to start pod sandboxes and measure the time
between the first crictl runp invocation and the last ready
pod sandbox. For measuring the memory footprint, we use
the smem command and the PSS column of its output. All
the tests are run on a machine with 104 vCPUs and 384GB
of memory running CentOS7.

A.2 Artifact Check-list (Meta-information)

¢ Run-time environment: Alibaba ECS instance;

e Hardware: Intel Xeon(Cascade Lake) Platinum 8269CY,
CPU and Memory: 104 cores and 384GiB, Storage: Two
ESSDs (100GB + 500GB);

* Software: Aliyun Cloud OS 2, with Linux kernel 4.19.91,
Kata container 1.12.1 and 2.2.3, containerd 1.3.10, smem 1.4;

* Metrics: average latency and average memory footprint;
* Time is needed to complete experiments: 10 hours;
Available: https://github.com/chengjiagan/RunD_ATC22
* Code Licenses: Apache-2.0 license

A.3 How to Access and Installation

Github Link: https://github.com/chengjiagan/RunD_ATC22.
Then you should follow the README instructions to get in-
stallation.

A.4 Experiment Workflow
A.4.1 High-concurrency Experiment (Section 5.2)

Scripts are provided to run the high-concurrency test
for kata-qemu, kata-fc and kata-template. To run high-
concurrency tests:

$ ./script/time_kata_test.sh
$ ./script/time_katafc_test.sh
$ ./script/time_katatemplate_test.sh

They may take several hours to finish. Some concur-
rency tests can be removed by removing the correspond-
ing concurrency setting in file time_test.conf to shorten the
time. The scripts will create a directory (e.g., named like
time_kata_05120948) to store the logs.

We provide python scripts to analyze logs from the tests:

$ python3 data/time.py

$ python3 data/cpu.py

The python script will create two .csv files in the result
directory: time.csv and cpu.csv. Each line in the csv file in-
dicates the average cold-start latency and cpu time of a con-
tainer runtime.

A.4.2 High-density Experiment (Section 5.3)

Scripts are provided to run the high-density test for kata-
gemu, kata-fc and kata-template. To run high-density tests:

$ ./script/mem_kata_test.sh
$ ./script/mem_katafc_test.sh
$ ./script/mem_katatemplate_test.sh

Density and memory capacity of containers in the tests
can be changed in the file mem_test.conf. The scripts will
create a directory named like mem_kata_05120948 to store
the logs.

We provide a python script to analyze logs from the tests:

$ python3 data/mem.py

The python script will create a csv file for each runtime,
named like mem_kata.csv, containing the average memory
consumption of containers with different memory capacity
in different density.

A.4.3 Density Impact on Concurrency (Section 5.4)

Scripts are provided to run the high-density test for kata-
gemu, kata-fc and kata-template. To run tests:

$ ./script/density_kata_test.sh
$ ./script/density_katafc_test.sh
$ ./script/density_katatemplate_test.sh

The background density and the concurrency of the tests
can be changed in the file density_test.conf. The scripts will
create a directory (e.g., named like density_kata_05120948)
to store the logs.

We provide a python script to analyze logs from the tests:

$ python3 data/density.py

The python script will create a csv file for each runtime,
named like density_kata.csv, containing the average cold-
start latency under different background densities and con-
currencies.

A.5 Expected Results and Notes

The expect results are all stored in ae_data directory. Con-
sidering that some related binary packages are tightly in-
tegrated with our internal system, we provide a screencast
ATC_RunD_AE.mp4 of the tool along with the results. You
can also find RunD-related performance and execution logs
in our artifact..
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Abstract

In serverless computing, each function invocation is exe-
cuted in a container (or a Virtual Machine), and container
cold startup results in long response latency. We observe
that some functions suffer from cold container startup, while
the warm containers of other functions are idle. Based on the
observation, other than booting a new container for a func-
tion from scratch, we propose to alleviate the cold startup by
re-purposing a warm but idle container from another func-
tion. We implement a container management scheme, named
Pagurus, to achieve the purpose. Pagurus comprises an
intra-function manager for replacing an idle warm container
to be a container that other functions can use without intro-
ducing additional security issues, an inter-function scheduler
for scheduling containers between functions, and a sharing-
aware function balancer at the cluster-level for balancing the
workload across different nodes. Experiments using Azure
serverless traces show that Pagurus alleviates 84.6% of the
cold startup, and the cold startup latency is reduced from
hundreds of milliseconds to 16 milliseconds if alleviated.

1 Introduction

Owing advantages of high maintainability and testability,
serverless computing is suitable for the ever-growing Inter-
net services (the tenants are charged per invocation). As a re-
sult, hyperscalers now provide serverless computing services
(e.g., Amazon Lambda [5], Google Cloud Function [11], Mi-
crosoft Azure Functions [12], and Alibaba Function Com-
pute [1]). Meanwhile, some open-source serverless com-
puting solutions like Apache OpenWhisk [3] and Fission [9]
have also been developed and released.

In serverless computing, user functions run in containers
(or Virtual Machines), and the containers are specialized for
a function (a container is not allowed to run different user
functions). Warm containers refer to the keep-alive contain-
ers that serve subsequent invocations (warm startup). If there
is no warm container for a function invocation, a new con-
tainer is started from scratch (cold startup). The cold startup
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Figure 1: “Fork” an idle container of Function A for Function
B to alleviate its cold startups.

latency is more than 10x of the warm startup latency due to
the container creation, software environment setup, and code
initialization [40,44,47,49,59,61]. It is ideal if all functions
can run in warm containers. However, keep-alive containers
are recycled to save resources once no new invocation arrives
during the lifetime.

Many efforts have been devoted to speeding up the con-
tainer cold startup [7, 28, 31, 32, 45, 46, 54-56, 58]. The
prewarm-based methods create containers and runtime in ad-
vance, one method of which is prewarming customized con-
tainers for each function that includes all its required soft-
ware packages [8, 15,27, 28, 60]. However, it brings heavy
memory consumption. Another method of prewarming con-
tainers is only installing common packages, and all functions
share the prewarmed container pool [14,45,46]. This method
is more memory space-efficient, but generating customized
containers for a function from the prewarmed containers suf-
fers from package download and installing latency overhead.
Current solutions mainly adopt the second method [14,46].

To alleviate the memory waste and minimize the function
response time, instead of prewarming containers, we pro-
pose to alleviate the cold container startup through container
sharing. For instance, if function A in Figure | can “fork or
lend” the runtime checkpoint from its idle warm containers
for function B, the cold startup of B is eliminated. By such
means, we can leverage a function’s idle warm containers
before being recycled to help others that tend to experience
cold container startup.
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Step 1: Identify the
idle container
Function A

Step 2: Replace it as
the zygote container

Step 3: Share it
to avoid cold startups

Container pool
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Figure 2: The container sharing logic and challenging steps.

Analyzing the container sharing procedure, we find three
challenges in achieving such goal. 1) The function invo-
cation loads are not stable [51]. It is difficult to identify
whether function A’s warm containers are actually idle or
not. If the warm containers of A are always used to help
B, A’s invocation may not be able to get a warm container
and may even suffer from Quality-of-Service (QoS) viola-
tion. 2) Functions rely on different software packages.
When function A “forks” a warm container for function B,
the warm container has to install extra packages. Installing
and importing these packages may take longer than the cold
container startup. Worse still, greedy re-packaging for exces-
sive functions can also lead to huge image size or incur pack-
age version contradictions. 3) “Forking’ an idle container
from other functions may introduce security vulnerabil-
ities. While a function’s code or data are stored privately,
sharing the container with other functions is risky.

We propose a container management system, named
Pagurus to tackle these challenges. Figure 2 shows the
steps of using function A’s idle warm containers to allevi-
ate the cold container startup of other functions. The key
idea is to replace its idle containers with new containers that
other functions can safely use. The new container is cre-
ated through a new image that already installs the required
software packages of other functions, without including the
code/data of the original function A. In this way, the warm
containers of a function are classified into three categories:
private containers, zygote containers, and helper containers.
A function’s private containers can only be used by itself. Its
zygote containers are the new containers that other functions
can use. Its helper containers are the containers forked from
other functions’ zygotes. A helper container already loads its
user code for future invocations. By using privilege control
in the operating system, a function that uses a helper con-
tainer cannot obtain any code, data, or package information
of other functions.

Pagurus uses an intra-function container manager for
each function to manage its containers, an inter-function
scheduler on each node to manage the “fork™ action be-
tween functions, and a sharing-aware function balancer to
schedule functions across the nodes. For a function, the

intra-function manager monitors the status of each container,
identifies idle warm containers, and re-purposes an idle con-
tainer based on a QoS-based timer. The inter-function sched-
uler, acting as an orchestrator, determines the to-be-helped
functions of each function. We design a Similarity Filtered
Weighted Random Sampling (SF-WRS) algorithm to find
an appropriate set of to-be-helped functions. Besides, the
sharing-aware function balancer distributes function invo-
cations to different nodes to achieve efficient inter-function
container sharing.

Pagurus requires no offline analysis or profile on the func-
tions, thus can be easily adopted in production. The main
contributions of this paper are as follows.

¢ A resource-friendly design of zygote and helper

container. Zygote container enables resource-saving
through package and function reclamation, without in-
curring any additional security issues meanwhile.

* The design of a SF-WRS re-packing policy. Based on
the package similarity between functions and the fre-
quency of function cold startups, SE-WRS policy re-
duces the number of packages to-be-installed, thus min-
imizing the memory needed and the overhead of creat-
ing zygote containers.

* The design of an efficient container sharing mecha-
nism. Pagurus divides the warm containers of a func-
tion into three types and manages the three types of con-
tainers in different ways. The mechanism efficiently al-
leviates the cold container startup.

We evaluate Pagurus using both best-practice AWS server-
less functions [6] and Azure traces [50]. Experiments show
that Pagurus alleviates 84.6% of cold startups on average in
Azure traces, and the cold startup latency is reduced from
hundreds of milliseconds to 16 milliseconds if alleviated.

2 Background and Related Work

If a function is invoked for the first time or there is no
alive (or warm) container for it, the serverless system starts
a new container to encapsulate its function runtime, ini-
tializes the software environment, loads application-specific
code, and runs the function. All these steps make up a cold
startup and may even take several seconds [21,36,59]. The
cold startup significantly increases queries’ end-to-end la-
tency [23, 33,47,49]. The long latency problem worsens
when the function invocation is short (e.g., hundreds of mil-
liseconds).

Prewarm startup spawns template containers that are al-
ready initialized with the software environment. Though
it skips the container startup and users only need to per-
form application-specific code initialization [2, 3, 32, 46],
its pre-loaded packages can either make the image size too
large [20, 32, 53], or cause more memory consumption for
the prewarm container [24,46, 50].
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Many prior studies have been conducted to reduce the con-
tainer startup latency [19, 28,34, 48,52, 54]. However, exist-
ing works mainly focused on seeking lightweight virtualiza-
tion technologies to pursue lower overhead [17] or optimiz-
ing prewarm strategies for more accurate prediction models
and less initialization cost []. A common optimization is to
pause the container when idle to save resources consumed by
function codes and packages, and then reload it for reusing
when invoked [34,44,45,57].

SAND [19] separated applications via containers while
allowing functions of one application to run in the same
container by different processes. FaasCache [31] took the
caching model for objects into serverless context, and imple-
mented the Greedy-Dual keep-alive caching mechanism to
reduce the resource requirement and keep containers warm.
Shahrad et al. [50] proposed to dynamically change the in-
stance lifetime of the recycling and provisioning instances
according to the time series prediction. Some researchers
use C/R (Checkpoint and Restore) [7, 55, 56, 58] that re-
stores container images from checkpoints to speed up the
cold startup. For example, Catalyzer [28] utilized C/R to
realize on-demand recovery. However, it still incurs long
latency compared with a warm startup. The above technolo-
gies are orthogonal to us, and Pagurus can be combined with
them to reduce the cold startup latency further. SOCK [46]
introduced a tree cache and uses the benefit-to-cost model to
update packages in the prewarmed containers dynamically,
but the zygote design consumes more memory when main-
taining packages by a cache-tree. Moreover, the cache-tree
does not work if functions require conflicted package ver-
sions.

Pagurus resolves the problems through inter-function con-
tainer sharing with conflict concerns, and needs neither pool-
size tradeoffs nor time-consuming model training.

3 Investigation and Motivations

In this section, we discuss the current prewarm-based mech-
anism for alleviating the cold container startups, and show
the possibility of eliminating the cold container startup with
inter-function container sharing.

3.1 Latencies of Cold and Prewarm Startups

A cold container startup is done in three time-consuming
steps: create container from the image, initialize software
environment, and initialize application-specific code. With
the prewarm mechanism (used in OpenWhisk [3] and pro-
duction platforms), several containers that already import
common libs/packages are hatched in a container pool. A
function invocation with no warm container can specialize
the prewarmed container by installing the extra packages.
We use prewarm-enabled OpenWhisk with local cache as
the serverless platform, and use the best practice serverless

B Cold Startup (from image) BN Prewarm Startup
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Figure 3: The cold startup latency and prewarm startup la-
tency of the benchmarks in OpenWhisk.

applications in AWS [6] as the benchmarks, to investigate
the impacts of cold and prewarm startup on the end-to-end
latency of a function invocation. A benchmark may have
several functions [41]. As for the hardware, we use one node
to perform the computation and one node to generate func-
tion invocations. The benchmarks, software, and hardware
setups are described in Section 8.

Figure 3 shows the time of generating a container when it
is started from the image, or is specialized from a common
prewarmed container. As shown, the cold container startup
takes about 500 milliseconds. The prewarm startup takes 15
milliseconds in the best case, but takes more than 1500 mil-
liseconds in the worst case (e.g., function union in the bench-
mark ddns). This is because union requires to load/install
many additional packages in the prewarmed containers, and
the package loading is time-consuming.

Intuitively, a prewarmed container may install all the soft-
ware packages required by all the functions on a physical
node to speed up the prewarm startup. It is possible because
for most serverless systems, the packages needed by a func-
tion (besides the private ones) are usually given by its user
in a requirements.txt, and are publicly accessible for FaaS
providers. However, many functions require software pack-
ages of contradicting versions. In addition, such a solution
may expose the package information of other functions. The
pre-imported requirements will implicitly embody user pri-
vacy. Due to the software conflict and privacy concerns, it is
not a good option to install packages for all functions in the
prewarmed containers.

3.2 Limitations of Prewarm Schemes

We then explore the effectiveness of the prewarm schemes
in alleviating the cold startup. In this experiment, we run all
the benchmarks on a single node, and the invocation patterns
of the functions are the same as the patterns in the Azure
serverless traces. The invocation patterns actually follow the
Pareto distribution (most of the invocations are for a small
part of the functions) [15]. By default, a prewarm container
pool has two prewarmed containers on a node [2].

Figure 4 shows the percentage of the remaining cold star-
tups with the prewarm mechanism. Many cold startups are
not eliminated (e.g., functions in eco and cart). This phe-
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nomenon attributes to the inappropriate pool size of the pre-
warm container pool. For eco and cart, their functions are in-
voked simultaneously/or in short intervals to satisfy complex
business logic, such as workflows [18,22,25]. For instance,
five functions are triggered simultaneously by a caller in eco.
These functions contend for the prewarmed containers.

It is nontrivial to appropriately configure the prewarm
scheme due to two considerations. 1) Pool-size and mem-
ory overhead trade-off. If we prewarm more containers,
larger additional memory space is used. In our experiment,
the prewarmed containers use more than 1GB of memory
(on a node with 16GB memory) to eliminate 80% of the cold
startup. The prewarm mechanism is not able to effectively
eliminate the cold startup with reasonable memory overhead.
2) User experience and system efficiency contradiction.
As discussed, most of the invocations are from a small part
of the functions [15], and a prewarmed container can only
cache a small number of packages for the low memory over-
head. Caching packages for frequently invoked functions
improves the system efficiency (frequent invocations have
low startup time), but results in poor user experience (invoca-
tions of most functions tend to suffer from the long package
installation time), and vice versa.

The current container prewarm scheme is not efficient due
to several inevitable trade-offs. It is beneficial to alleviate
cold startups without trapping in the same dilemmas.

3.3 Opportunity of Reusing Idle Containers

We therefore propose to alleviate cold startup without relying
on prewarming containers. The key idea is leveraging the
warm but idle containers of some functions to alleviate the
cold startups. A function invocation that requires cold startup
may “steal” an idle warm container from other functions.

The proposed scheme is effective only when there are idle
warm containers in some functions when an invocation tends
to suffer from the cold container startup. In principle, only
underutilized warm containers that are active due to the keep-
alive strategy can be used by other functions. Otherwise,
always stealing a warm container directly may result in the
cold container startup of the victim function.

We analyze the day07 trace of Azure serverless plat-
form [50] (the trace contains invocations of over 44,000

—— Cold startup —— Idle containers

=
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v
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Figure 5: The number of container cold startups and idle
containers from 400 randomly selected functions.

functions) to verify the above requirement. If a container
triggers recycling, it must be an idle warm container because
of no new invocation during its lifetime. By replaying the
trace, we find that the warm containers for some functions
are idle (no invocation is received during this idle time),
while some other functions suffer from cold startup. We refer
to idle warm containers as idle containers.

Figure 5 shows the number of idle containers and cold
startups when replaying the trace. As observed, the time that
idle containers and cold startup happen are similar, and there
are more idle containers than the cold startups. If the time
does not match, the functions that suffer from cold startup
cannot find idle containers from other functions.

The time matches because many containers are prepared
and invoked to serve the high load, and they become inactive
when the load drops. We can observe a significant discon-
tinuity at the beginning of each hour as there is a certain
number of functions with a 1-hour timer trigger, and they
are invoked once and will keep idle during the rest of their
lifetime. In this case, excessive idle containers are pervasive.

In summary, serverless computing systems usually adopt
a keep-alive strategy (e.g., 15 minutes) to reduce the cold
startup. The kept-alive containers are idle before they are re-
cycled. The widely-existed diurnal load pattern also makes
containers over-provisioned at the high load. These contain-
ers will become idle when the load drops as well.

Based on the investigation, we observe the opportunity to
leverage the idle containers of some functions to help others
that suffer from cold startup on the same node.

4 Design of Pagurus

There are two prerequisites to alleviate the cold container
startup with the warm containers of other functions. First, the
container manager has to identify the actual idle warm con-
tainers. Otherwise, the “steal” results in the container cold
startup of the victim function. Second, the proposed strategy
should not expose any information of a function (e.g., data,
code, package requirements) to other functions from the con-
sideration of security.

We propose and implement Pagurus, a container man-
agement system that fulfills the two prerequisites. Figure 6
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Figure 6: Design of Pagurus.

shows the design of Pagurus. It comprises an intra-function
container manager for each function, an inter-function con-
tainer scheduler on each node, and a sharing-aware function
balancer at the cluster level. The intra-function container
manager of a function manages its three types of containers
(private containers, zygote containers, and helper contain-
ers) (Section 5). The inter-function scheduler manages the
zygotes sharing between functions (Section 6). The sharing-
aware function balancer maps the functions across multiple
nodes to minimize the system-wide cold startup (Section 7).

Based on runtime statistics, a function’s idle warm con-
tainers are replaced with its zygote containers that are newly
created from its zygote image (@ in Figure 6). The zy-
gote image does not include the code or data of any func-
tions. Pagurus uses the inter-function container scheduler
on each node to generate the zygote image of each func-
tion (@ in Figure 6). Creating zygote images does not in-
troduce extra runtime latency overhead, as it is done asyn-
chronously before replacing the idle container with a zygote
container. The inter-function container scheduler determines
the possible to-be-helped functions of each function based on
Similarity-Filtered Weighted Random Sampling (SF-WRS)
policy, which will be detailed in Section 6.1. A function’s zy-
gote container additionally installs the required packages of
its to-be-helped functions in an anonymous fashion. Based
on the privilege control of the Linux operating system, a
function is only able to access its own packages.

Specifically, when an invocation of a function f arrives, it
obtains a container to host the invocation in four steps.

1) It first tries to obtain an idle warm private container
from its own private container pool directly. Then, if its
private container pool is empty, it checks whether its helper
container pool has containers for queries.

2) If both the private pool and the helper pool are empty,
it will further check whether its zygote container pool has
some containers already adapted for other functions. If not

empty, a zygote container can be used to host the invocation.
3) If its zygote container pool is also empty, Pagurus tries
to find a container that includes the required packages of f
from other functions’ zygote container pool. The forked zy-
gote then joins the helper container pool of f (® in Figure 6).
4) If all the above steps fail, the invocation of f would
suffer from a cold container startup.

5 Intra-function Container Management

The key points of the intra-function manager are identifying
the actual idle containers, and designing an efficient sharing
mechanism.

5.1 Identifying Idle Containers

In principle, a container is idle when it does not host function
invocations for a long time. For a function f, we introduce
a timer in each of its containers to measure the free time.
A warm container is treated to be idle if its timer exceeds
threshold Ty, (f). The timer is reset once the container re-
ceives an invocation.

The design principle here is that most function invocations
can still get warm containers, even when a container is iden-
tified to be idle and “stolen” by other functions. Different
functions should have different idle thresholds because of
their diverse invocation patterns. We explore the runtime in-
vocation arrival pattern to determine the value of Tjy(f) for
a function f. Specifically, we use all the m invocations dur-
ing the container lifetime, and let T3, 7>, ..., T, represent
the time intervals between the adjacent invocations (the time
interval is sorted in the ascending order). Equation (1) calcu-
lates the idle threshold Ty (f) for the function f in the next
time period.

T70.95m] »m = 30,

Tare(f) = { )

Tdefault ,m < 30.

In the equation, 7795, is the 95%-ile time interval of
the m samples. In this case, for frequent invoked functions
(m > 30), more than 95% invocations of f tend to get warm
containers, if the invocation arrival patterns remain. We use
30 to be the sampling target for stability considerations. For
occasionally invoked functions, Tig.(f) is set to be Tye fauir
and almost all the invocations get warm containers. Tye fauir
may impact the overall efficiency for idle identification, and
Section 8.4.3 evaluates the sensitivity of Pagurus to it.

5.2 Replacing Idle Containers with Zygotes

A function’s idle containers cannot be used by other func-
tions directly, as the data and code of the function may still
reside in the memory of the idle containers. To this end,
Pagurus creates a zygote container that does not include any
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data or code of the owner function, and uses the zygote con-
tainer to replace the original idle warm container. The zygote
container is created from an image that installs the shared
packages of all the to-be-helped functions. Section 6 dis-
cusses the policies used to determine the to-be-helped func-
tions and generate the zygote image of a function.

One may be concerned about the security and privacy of
the zygote container for re-purposing. Figure 7 shows the
way to avoid package information leakage in zygote con-
tainers. All the functions run as non-root users [4, 10, 16].
In the figure, fp and fc are the to-be-helped functions in f4’s
zygote container. In general, the common intersectant pack-
ages required by all functions are installed as a shared do-
main (pkg,,, pkg,) in the zygote container, and the additional
complementary and private packages of to-be-helped func-
tions are cached in different directories of the host. These
directories are mounted anonymously into the zygote, thus
ensuring that others cannot identify a function.

Each function that may use the zygote container is given
a privilege domain and is only allowed to access its corre-
sponding package directory. The privilege domain and priv-
ilege control are provided by Linux operating system and
different non-root users. For instance, in Figure 7, when
function fp obtains the zygote container, it can only enter
its own privilege domain for f5’s packages (private packages
and pkgy) to specialize its software runtime. In this way, the
zygote container serves as a safety checkpoint. Because it
does not import any user-related code and data, the function
privacy of the software environment is also protected.

6 Inter-function Container Scheduling

The inter-function container scheduler selects to-be-helped
functions for zygotes, re-packs zygote images, and manages
the fork operation for helper containers.

6.1 Selecting To-be-helped Functions

A straightforward approach is to treat all the other co-located
functions as the candidate to-be-helped functions, and in-
stall all the required packages into a zygote image. However,
this approach suffers from extremely high re-packing over-
head, in terms of both time and resource consumption. When

re-packing a zygote image, we have two important observa-
tions. On the one hand, if the set of to-be-installed packages
is large, it is time-consuming and resource-unfriendly to cre-
ate a giant zygote image. On the other hand, some functions
tend to have more cold startups than others (as observed from
Azure traces [12]), inappropriate selection of to-be-helped
functions is inefficient in alleviating the system-wide cold
startups. Taking the above challenges into consideration,
we propose SF-WRS (Similarity Filtered Weighted Random
Sampling) algorithm, which contains:

* A Similarity-based Filter to find out to-be-helped candi-
dates based on the similarity of functions’ packages. In
this way, a zygote installs fewer complementary pack-
ages, thereby lowering the re-packing overhead.

* A WRS (Weighted Random Sampling) strategy [29]
to select K to-be-helped functions based on the cold
startup frequency of each function on the node. Pagu-
rus tends to prepare zygote images for the functions that
suffer from more cold startups with high possibility.

Similarity-based Filter. Focusing on the package infor-

mation, a function f can be viewed as a set of packages, i.e.,
f = {pkgi1,pkga,...}, where pkg; is assigned in the require-
ments.txt and refers to the required package in f’s runtime
environment. Let F,, = {f{, f3,...},Vf # f represent the set
of functions on node n when function f triggers re-packing.
The package difference between f and f] € F, imposes a
deep influence on the re-packing overhead. Let us denote the
containment relationship of a package pkg in f4 and another
function fp as

1 ,if pkg € fa,

Vpkg € . 2
0 others, pkge falJfa (2)

con(pkg, fa) = {

We can then derive the containment relationship vector
of fand f! € F, as f = {con(pkg, f)|Vpkg € fUf/} and
fl= {con(pkg, f])|Vpkg € fU [/}, respectively. The simi-
larity between f and f/ thus can be calculated as their cosine
distance by

Foof

LI
L 1AlLA I =o.
Thereafter, we can obtain an initial f’s to-be-helped function
candidate set (Cf; by removing those functions with similarity
lower than TargetSimilarity from IF,,. TargetSimilarity can
be set as the median similarity in default.

Note that, as discussed before, a package may be specified
in different versions, and a zygote image with version con-
flict (i.e., the same package but different versions) could not
be re-purposed by another function. Denoting the version of
a package pkg in function f as V(pkg, f), we can express the
version conflict relationship between f and f as

C()i’lfli(‘l‘(f,f/) — {1 73 pkg € va(pkgvf) #V(pkgafl)v (4)

0 ,others.

AR #0,
YV €eF,.  (3)

Cos(f,]_‘;/) =
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Then, we first ensure that there is no conflict between
function f and its candidates, by removing the functions with
version conflict from the candidate set. However, it is still
possible that some candidates conflict with each other. For
instance, candidates f] and f; do not conflict with f, but f]
conflicts with f3. In this case, they cannot be packed into a

single zygote image either. The candidate set CJ should be
further updated by Equation (5), where (C£ \ fl-’ represents the
complement of f] in cy.

T = {f{|Conflict(f.f}) = 0,

)
Conflict(f], Ci\f!) = 0,Yf! € C},},

Take the package conflict in AWS application benchmarks
as an example, function tcp_check_transcribe requires the
package aws_requests_auth with version 0.4.1, while func-
tion ep_delivery_on_package_created requires that with
version 0.4.3. It denotes that applications have various pack-
age similarities, and two functions may rely on conflicted
packages. By selecting the to-be-helped functions based on
package similarity, a zygote image installs fewer packages
for zygote images with less re-packing overhead.

WRS selection. After the similarity filter and conflict
recognition, the to-be-helped function candidates can be sig-
nificantly reduced. However, it is still nontrivial for the inter-
function scheduler to determine the appropriate number of
to-be-helped functions without resulting in too large image
size, too long image generation time, or failing to eliminate
most cold startups. Therefore, we should choose an appro-
priate number, say K, of functions from candidates C£ that
tends to eliminate the cold startups with high probability.

Therefore, we first remove the functions never re-invoked
from C‘,’; . Let I be the number of remaining functions that
have been invoked more than once. We can calculate K as

k= Tt Ky Loy Cold(fy) + Ky Zrgotelf;)
1 = (Cold(f])+Zygote(f,))Num(Zygote)

n=1

I/1,
(©)

K; is the expected number of to-be-helped functions for f;,
Num(Zygote) is the average number of active zygotes in the
system, Zygote(f!) and Cold(f!) indicate the times a func-
tion experiences zygote-based invocation and cold startups
of f/, respectively. K; ensures that each to-be-helped func-
tion f/ can be re-packed into a zygote container at least once.

Algorithm | summarizes the SF-WRS algorithm. First,
the inter-function scheduler filters out the candidate func-
tions with low similarity values (lines 1-3), recognizes the
package conflicts (lines 4-6), and then selects K to-be-helped
ones by the A-ExpJ algorithm, which is a variation of WRS
(Weighted Random Sampling) algorithm [29] (lines 9-12).
Compared with naive WRS, A-ExpJ shows much lower time
complexity. The time complexity of selecting K functions is
O(Klog(%)) with A-Exp], and the time complexity of naive
WRS is O(n).

Algorithm 1 SF-WRS Selection Algorithm

Require: To-be-helped function candidates (C{,r
Require: Cold(f]) and Zygote(f]) of function f; in last hour

1: (Cf: = Sample.init(F,)

2: for f] in (Cﬁ do

if Cos(f, f!) < TargetSimilarity then: (Cg.delete(fi’)
4: for f}in Cj, do

5 if Conflict(f,f]'-)zl or Conflict(fj'-, (Cf,(\fj’-)zl then
6 (C‘ﬁ..delete(fj’»)

7. if C} # Null then
8

9

hed

Total = ZnKzl Cold(f!)+ ):le Zygote(f})

for f] in (C'},C do
10: Prepack(f]i) = [Cozd(flé) +Zy80te(f]£]/T0tal
11: Sample.append((f}, Prepack (1))
12: A—ExpJ(Sample,K)

!
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Figure 8: The key steps (represented in green) of re-packing
a zygote image for the first time.

6.2 Re-packing a Zygote Image

Figure 8 shows the steps of re-packing the zygote image
for a function f. When the intra-function container man-
ager of f identifies an idle container, it informs the inter-
function scheduler, then selects the to-be-helped functions
of f based on the SF-WRS algorithm. After that, the inter-
function scheduler triggers the re-packing operation, obtains
the packages, and re-packs the zygote image. Only the pack-
ages shared by all the to-be-helped functions are installed
in the shared domain. Finally, the re-packed zygote image
is returned to the intra-function container manager of f for
building zygote containers to replace f’s idle containers.

The inter-function container manager has an advantage
compared with the traditional building method, where the
image is built through the network from the container repos-
itory. Pagurus omits the downloading of the required pack-
ages in a zygote image through the network again, benefiting
from the locally cached packages, when creating the private
container images [26,39]. By reusing cached packages, re-
packing a zygote image takes a much shorter time.

Besides, the zygote image of a function is asynchronously
re-packed before its to-be-helped functions actually meet in
cold startups. Re-packing a zygote image does not result in
long response latencies of to-be-helped function invocations.
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Figure 9: Security guarantee when forking a zygote.

6.3 Forking a Zygote Container

The rest undertaking is to safely and efficiently share zygote
containers for other functions. To provide higher availabil-
ity for multiple to-be-helped functions getting zygote con-
tainers, we fork the zygote container to be helper contain-
ers, rather than directly specializing it. The zygote container
remains there for other to-be-helped functions. The forked
containers also ensure software security by the anonymous
mounting and privilege domain as zygote containers do.

When a zygote container is forked from function f4 to be
f8’s helper container, the code of f3 is copied into the forked
one. We implement two plugins Zygote fork and Code copy,
in the inter-function scheduler. The Zygote fork plugin forks
a container asynchronously, un-mounts the package directo-
ries of functions other than fp, and transfers the control ac-
cess to fp’s corresponding privilege domain. The Code copy
plugin copies the code of f5 to the helper container.

Figure 9(a) shows the steps of fp forking a zygote con-
tainer of function f4. In Step 1, a zygote container of f4 is
forked through the Zygote fork plugin. Then, the Code copy
plugin copies the code of fp into the forked zygote (Step 2).
Lastly, the forked container joins the helper container pool
of fp (Step 3). It also provides process-level isolation for
queries, as shown in Figure 9(b).

7 Sharing-aware Function Balancing

In existing serverless computing clusters, hash-based meth-
ods or resource usage-based methods are often used to route
user queries [13,30,35,37,38,42,43]. It is possible that the
functions on a node do not share many packages. In this case,
the host node needs to create many private directories with
many packages, resulting in poor resource efficiency. To ad-
dress such a problem, a straightforward solution is checking
the package similarities of all the active functions, and as-
signing the functions that share more packages to the same

node. However, it is not always a good solution, as the func-
tions sharing many packages may not have idle containers.

To resolve the problems above, we propose a function bal-
ancing strategy based on the statistics of zygote containers
and the available resources U,={Ucpy,Ujo,Unet, --- }n ON €V~
ery node. The function balancer is implemented on the head
node of the cluster, to obtain the statistics from all the nodes.
For a function fp that requires package pkg, and pkgp, if
it fails to find a zygote container during its invocation on a
node, its future invocations should be redirected to another
node with potential zygote images.

To this end, Pagurus runs the sharing-aware function bal-
ancer on the head node based on the resource usage U,, and
the similarity between the redirected f4 and functions with
idle containers on node n. Let N = {n|max U, < T} repre-
sent the set of nodes where the resource utilization is under
the threshold T,.; (80% by default). The head node will se-
lect a new node with the most zygote containers from N and
inform the API gateway accordingly. After that, the queries
of fp will be routed to this new node.

8 [Evaluation of Pagurus

In this section, we evaluate Pagurus in reducing the cold star-
tups and end-to-end latencies when a function does not have
warm containers. Then, we evaluate Pagurus by a large-scale
evaluation with Azure trace. After that, we show the integra-
tion with other techniques and overhead.

8.1 Experimental Setup

We use 10 best-practice applications with the most GitHub
stars from Amazon AWS samples as the benchmarks [6].
We use these applications for revealing the performance
of Pagurus for real applications. Experiments with small
scale benchmarks in serverless benchmark suites, e.g., FaaS-
Profiler [49] and ServerlessBench [61] show similar results.
We run the benchmarks on a 6-node cluster. A node gener-
ates function invocations, and the other 5 nodes serve invo-
cations. Table | shows the configurations of each node.

Pagurus does not rely on the function invocation arrival
distribution. In Section 8.2-8.3, we send queries to each ap-
plication following a Poisson distribution by randomly sam-
pling A between 0 and 5 queries per second. We co-locate
all the benchmarks, and run 20 tests with different sam-
ples to avoid randomness. More experiments are done with
the Pareto distribution-based invocation pattern of the Azure
serverless trace in Section 8.4.

We compare Pagurus, prewarm-disabled OpenWhisk,
prewarm-enabled OpenWhisk (OpenWhisk-Prewarm), and
SOCK [46]. SOCK also prewarms containers by dynami-
cally updating packages in the prewarmed containers to al-
leviate cold startups. When a function obtains a prewarmed
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Table 1: Hardware, software, and benchmark setups

Configuration

CPU: Intel Xeon(Ice Lake) Platinum 8369B @3.5GHz

Node Cores: 8, DRAM: 16GB, Disk: 100GB SSD (3000 IOPS)
Operating system: Linux with kernel 4.15.7, Docker: 20.10.6
Software Nginx version: nginx/1.10.3, Database: Couchdb:3.1.1
runc version: 1.0.0-rc93, containerd version: 1.4.4
Container runtime: Python-3.7.0, Linux with kernel 4.15.7
. Resource limit and Lifetime: 1-core with 256MB, 600s
Container

Function container limit: 10 for each function on each node
prewarm pool size in OpenWhisk: 2 on each node

Benchmarks (
38 functions in
10 AWS Lambda
best practice
applications)

serverless-ecommerce-platform (eco), etl-orchestrator (etl)
cost-explorer-report (rep), serverless-tokenization (tok)
transcribe-comprehend-podcast (pod), serverless-chatbot (bot)
serverless-shopping-cart (cart), refarch-fileprocessing (file)
finding-missing-persons-using-rekognition (rek), ddns

container, SOCK and OpenWhisk-Prewarm copy the miss-
ing packages into the prewarmed container for its invocation.

8.2 Alleviating Container Cold Startups

Figure 10 shows the percentages of the cold startups not
eliminated by Pagurus, SOCK, and OpenWhisk-Prewarm,
compared with prewarm disabled OpenWhisk. On aver-
age, Pagurus alleviate 83.1% of the cold startups, while
OpenWhisk-Prewarm and SOCK alleviate 68.9% and 64.4%
of that. Meanwhile, as Pagurus does not need to prewarm
containers, there is no extra memory overhead introduced by
the prewarm container pool with Pagurus.

As observed, SOCK and OpenWhisk-Prewarm only re-
duce a small percentage of cold startups for many functions
(e.g., functions of eco and cart). This is because the func-
tions tend to contend for the limited prewarmed containers.
On the contrary, Pagurus alleviates the cold startups by fork-
ing other functions’ zygote containers, without trapping in
the same dilemmas. We can also find that Pagurus alleviates
slightly fewer container cold startups for several functions,
compared with SOCK and OpenWhisk-Prewarm. This is be-
cause these functions have low cold startup frequency by de-
fault, and SF-WRS policy does not tend to re-pack them into
zygotes for achieving higher system-level cold startup alle-
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Figure 11: The latency of starting up a prewarmed container
in OpenWhisk-Prewarm and SOCK, and the latency of fork-
ing a zygote container in Pagurus.

viation. The percentage looks large when the original cold
startup frequency is low, even if a small number of cold con-
tainer startup is not eliminated.

In our experiment, 27.8% of the warm containers are
turned into zygote containers, then are forked by other func-
tions. When a function does not have a warm container for
its queries, 60.5% of the obtained containers are forked.

8.3 Reducing Startup and E2E Latency

Figure 11 shows the latencies of starting a container from
a prewarmed one (OpenWhisk-Prewarm and SOCK), and
forking a zygote container (Pagurus). As observed, all the
benchmarks have the shortest startup latencies with Pagurus.

If a function invocation is hosted by a helper container
with Pagurus, the packages are ready beforehand, and only
the user-specific code initialization is needed. Pagurus is
able to fork a zygote container in 11ms, and completes the
code initialization in Sms.

With OpenWhisk-Prewarm, starting from prewarmed con-
tainers takes longer than directly cold startup a container
from the image (e.g., functions in ddns, pod, and rep).
SOCK reduces the latency of the prewarm startup leverag-
ing the packages cached with higher benefit-to-cost.

Figure 12 shows the average end-to-end latency of each
function normalized to its latency with prewarm-disabled
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Figure 12: The end-to-end latencies of Prewarm-Disabled
OpenWhisk, OpenWhisk Prewarm, SOCK and Pagurus.

OpenWhisk. Pagurus reduces the end-to-end latency of the
benchmark functions by 475ms and 479ms on average, while
OpenWhisk-Prewarm and SOCK reduce the end-to-end la-
tency by 237ms and 286ms.

By mounting packages beforehand with privilege control,
zygote containers can better reduce the startup latency, thus
the end-to-end latency.

8.4 Large-scale Evaluation with Azure Trace

In this subsection, we evaluate Pagurus by replaying the
Azure serverless trace [50] on a 31-node cluster. The soft-
ware and hardware configuration of each node is the same
as Table 1. We use all the 40,000 functions from the day07
trace [12], generate function invocations, and randomly route
the invocations to the 30 nodes.

The Package similarity in Pagurus is used to shrink the
searching space for identifying to-be-helped candidates and
reducing the re-packing overhead. However, the Azure
trace does not provide package information for the func-
tions, but only the function duration and invocation arrival
time. Lacking the package information, it is impossible
to evaluate the similarity-filtered WRS selection policy in
Pagurus, nor OpenWhisk-Prewarm or SOCK. With no pack-
age information and similarity-filtered re-packing for Azure
trace, Pagurus identifies to-be-helped candidates based on
the basic WRS policy. We therefore only compare similarity-
disabled Pagurus, with the prewarm-disabled OpenWhisk for
the large-scale evaluation , to show the effectiveness of alle-
viating cold startups by simply replacing idle containers with
zygotes.
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Figure 13: The effect of alleviating cold startup, and the CDF
that functions suffer from different cold startup frequencies.

8.4.1 Alleviating Cold Startup

We report two user experience-related metrics in this exper-
iment. First, how many cold startups are alleviated by Pagu-
rus? Second, how many functions seldom experience cold
startups (e.g., one cold startup) in one day with Pagurus?

Figure 13(a) shows the total number of cold startups
with Pagurus and prewarm-disabled OpenWhisk (denoted by
“OpenWhisk™ for short in this subsection). In the figure, the
functions are sorted in the descending order of their invoca-
tion frequencies. The smaller the function ID, the more fre-
quent the function is invoked. As shown in the figure, Pagu-
rus reduces the number of cold startups by 84.6%. We can
also find that OpenWhisk results in the frequent cold startup
for the functions of middle-popularity. It is because the
warm containers of these middle-popularity functions tend
to be recycled due to the relatively low invocation frequen-
cies. Pagurus efficiently alleviates the cold startups for the
middle-popularity functions through zygote containers.

Figure 13(b) shows the cumulative distribution of the
functions with different container cold startup frequencies.
As observed, 73.4% and 52.1% of all functions experience
cold startup less than once in a day with Pagurus and Open-
Whisk, respectively. Meanwhile, 90.1% of the functions ex-
perience cold startups less than 5 times daily with Pagurus.
In the figure, sudden jumps happen around 24 and 48 cold
startups for OpenWhisk. The jumps are caused by functions
with a 1-hour or 30-minutes trigger in the trace.

Pagurus effectively alleviates the cold container startup,
especially for middle-popularity and low-popularity func-
tions in production. It greatly improves the user experience.

8.4.2 Reducing Tail Latency

Figure 14 shows the 95%-ile latencies of the 40,000 func-
tions with Pagurus and OpenWhisk. The left y-axis shows
the 95%-ile latencies of functions with Pagurus, and the right
y-axis shows that with OpenWhisk normalized to the for-
mer. OpenWhisk results in longer 95%-ile latencies for most
functions than Pagurus (the right y-axis is larger than 1).

We can also observe that popular functions (functions
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with ID smaller than 15,000) have similar 95%-ile latency
with OpenWhisk and Pagurus. This is because the slowest
95%-ile invocations of these functions still experience warm
startup, as these functions are frequently invoked. For the
middle-popularity and low-popularity functions, their 95%-
ile latencies are the latency of the function invocation that
suffers from the cold container startup with OpenWhisk.

8.4.3 Impacts of Hyperparameters

In this experiment, we evaluate the impact of Ty rq; (the
value is set as 60s by default), and the number of to-be-
helped functions K, on Pagurus. Figure 15 shows the per-
centages of cold startups alleviated by Pagurus with differ-
ent Ty raui; and different K. As observed, the performance of
Pagurus is stable when Ty, 44, varies. The performance of
Pagurus is not sensitive t0 Ty, fauis-

We also find the number of to-be-helped functions, K,
gradually converges to 8. Moreover, the appropriate value
of K is not affected by Ty, fqu;. For Azure workloads, Pagu-
rus should generate a zygote for 8 to-be-helped functions on
average. It is consistent with the calculated one in Equa-
tion 6. We also measure the impact of larger prewarm pool
size in OpenWhisk, and find that the improvement becomes
marginal but with significant resource waste.

8.5 Integrating with Orthogonal Techniques

The decoupled hierarchy design of Pagurus provides easy-
to-use APIs for container orchestrators. Pagurus can be inte-
grated with prior work on speeding up the cold startup.

Table 2: Overheads of the components in Pagurus

Sources Type Overheads (each node)
CPU overhead 0.345 core
Intra-container manager | Memory overhead 228MB

Storage overhead 485MB for each zygote image

Inter-function scheduler CPU overhead 0.66 core (re-packing included)

Memory overhead 315MB

Pagurus brings shorter end-to-end latency when it is in-
tegrated with Checkpoint/Restore [7] (denoted by C/R) and
Catalyzer [28], respectively. With C/R, a container is recov-
ered from a checkpoint image. With Catalyzer, more data are
already loaded in the image stored in memory. By replaying
the evaluation, we find that C/R+Pagurus reduces the cold
startup time of the benchmarks by 78.9% on average com-
pared with C/R; Catalyzer+Pagurus reduces the cold startup
time by 15.1% on average compared with Catalyzer. Even if
no appropriate forked zygote container returns, Pagurus does
not slow down the container startup.

8.6 Overheads of Pagurus Components

In Pagurus, packing zygote images, generating zygote con-
tainers from the images, and determining the to-be-helped
functions for each function introduce runtime overhead.

According to our measurement, each container in Pagurus
uses smaller memory on average than OpenWhisk. The re-
duction originates from the design of the zygote container.
Although packages are pre-installed in zygote containers,
they are imported into memory only when a zygote container
is forked. On the contrary, warm containers (private contain-
ers) always keep the packages in memory for low latency.
The reduction of memory usage is not affected by the num-
ber of to-be-helped functions.

Table 2 shows the CPU, memory, and storage over-
head caused by the intra-container managers and the inter-
function schedulers when replaying the Azure trace. As re-
ported, less than one core is required to run all the intra-
container managers and the inter-function scheduler on a
node. If fewer functions are executed on a node, the over-
head will be smaller.

9 Conclusion

Pagurus alleviates cold startups with inter-function container
sharing rather than popular prewarm-based methods. It com-
prises an intra-function manager for idle container identifi-
cation and management, an inter-function scheduler for safe
container scheduling, and a sharing-aware function balancer
for resource-aware workload balancing. Our experimental
results based on both real system benchmarks and Azure
trace show that Pagurus significantly alleviates the cold con-
tainer startup. The cold startup latency is reduced from hun-
dreds of milliseconds to 16ms if Pagurus alleviates it.
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A Artifact Appendix
A.1 Abstract

Our artifact includes the prototype implementation of
Zygote-based mechanism in Pagurus, 10 masked applica-
tions (including 38 functions) benchmarks, and mapped
functions from Azure Trace. The artifact provides experi-
ment workflow scripts to perform the measurement.

A.2 Artifact Check-list (Meta-information)

¢ Run-time Environment: Ubuntu 18.04, Docker 20.10.6,
CouchDB 3.2.2 and Python are required.

* Data set: The artifact uses 10 masked application bench-
marks from AWS samples and Azure traces.

* Execution workflows: For reproducing our paper’s results,
we provide the corresponding scripts for each evaluation sec-
tion (from Section 8.2 to Section 8.4) to send queries, collect
the execution metrics, and draw the comparison plots.

Time needed to complete: see the instruction of each Exp.
* Publicly available: https://github.com/Izjzx1122/Pagurus
* Code Licenses: Apache-2.0 license

A.3 Hardware and Software Dependencies

* Hardware: The hardware is configured by { CPU: Intel
Xeon(Ice Lake) Platinum 8369B @3.5GHz, Cores: 8,
DRAM: 16GB, Disk: 200GB SSD with 4200 IOPS.}

* Software environment: Operating system: {Linux
with kernel 4.15.0, Docker: {20.10.15}, Container run-
time: {Python-3.6.9, Linux with kernel 4.15.7}, Nginx
version: {nginx/1.10.3}, Database: {Couchdb with ver-
sion 3.2.2}, runc version: {1.0.0-rc93}, containerd ver-
sion: {1.4.4}, and Pagurus. Detailed software depen-
dencies are all listed and scripted in the artifact.

A.4 How to Access and Install

GitHub link: https://github.com/Izjzx1122/Pagurus. Clone
the GitHub repository and then run the quick setup script to
deploy Pagurus.

A.5 Experiment and Expected Results
A.5.1 AWS applications (Section 8.2 and 8.3)

Under the path Pagurus/aws/trace, there are 18 different
sampling test results for AWS applications, and the expected
test results for each sampling are stored in the directory
aws/expected_result. You can directly run aws/plot.py
to generate the plots, or replay the trace using a testing script
to run the AWS experiment:

$ python3 aws/run_experients.py 1

Experiment customization: The above script performs
the 1st sampling test with Openwhisk, Pagurus, OpenWhisk-
Prewarm and SOCK. Other sampling tests can also be per-
formed by changing "1" to other test numbers. To fully re-
produce our result, it additionally takes at least 160-hours (20
tests with different sampling parameters) to generate the exe-
cution logs for 4 platforms. To ensure that the zygote repack-
ing mechanism and prewarm works efficiently, the running
time should be at least 2-hours for both 4 platforms (8 hours
for each test number).

After running the sampling tests under four platforms, the
script will generate the results under aws/result. Run the
following script to generate three . csv files:

$ python3 aws/summary_from results.py

* cold_start.csv shows the remained cold startups
of OpenWhisk, SOCK and Pagurus, compared with
prewarm-disabled OpenWhisk (Figure 11).

e startup_time.csv shows latencies of starting up con-
tainers in prewarm-disabled OpenWhisk, OpenWhisk
and SOCK, respectively. It also contains latencies of
forking zygote containers in Pagurus (Figure 12).
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e e2e_latency.csv shows e2e latencies of benchmarks
in Pagurus, SOCK, OpenWhisk, and prewarm-disabled
OpenWhisk, respectively. (Figure 13).

Then run the following script to generate the plots:

$ python3 aws/plot_from_results.py

A.5.2 Azure Trace mapping (Section 8.4)

In the Azure trace experiment (Day(07), invoke more than
40,000 functions will take 24 hours and more than 800
vCPUs by default. To reduce the computation resources
needed, we randomly select about 4,000 functions to
generate several small-scale Azure traces under the path
Pagurus/azure/trace. The functions in each small-scale
trace are all different from each other. A larger trace with
more functions can be replayed if only more computation
resources or nodes are provided.

Considering that the experiment will take about 24 hours,
we already pre-run each small-scale Azure trace and save
their execution results. You can directly run azure/plot.py
to generate the plots, or replay the trace using the following
script:

$ python3 azure/run_experients.py 1

Experiment customization: Each small-scale Azure
trace can be replayed by changing "1" to other trace numbers.
The script will replay the trace in Openwhisk and Pagurus,
respectively, and then generate results under azure/result.
Run the following script to generate two . csv files:

$ python3 azure/summary_from_results.py
e cold_start.csv shows the remained cold startups of
OpenWhisk and Pagurus, respectively (Figure 14).

e e2e_latency.csv shows end-to-end 95%-ile latencies
of benchmarks in Openwhisk and Pagurus, respectively
(Figure 15).

Then run the following script to generate the plots:

$ python3 azure/plot_from_results.py
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RRC: Responsive Replicated Containers

Diyu Zhou
UCLA and EPFL

Abstract

Replication is the basic mechanism for providing application-
transparent reliability through fault tolerance. The design and
implementation of replication mechanisms is particularly chal-
lenging for general multithreaded services, where high latency
overhead is not acceptable. Most of the existing replication
mechanisms fail to meet this challenge.

RRC is a fully-operational fault tolerance mechanism for
multiprocessor workloads, based on container replication. It
minimizes the latency overhead during normal operation by
addressing two key sources of this overhead: (1) it decouples
the latency overhead from checkpointing frequency using a
hybrid of checkpointing and replay, and (2) it minimizes the
pause time for checkpointing by forking a clone of the con-
tainer to be checkpointed, thus allowing execution to proceed
in parallel with checkpointing. The fact that RRC is based on
checkpointing makes it inherently less vulnerable to data races
than active replication. In addition, RRC includes mechanisms
that further reduce the vulnerability to data races, resulting
in high recovery rates, as long as the rate of manifested data
races is low. The evaluation includes measurement of the re-
covery rate and recovery latency based on thousands of fault
injections. On average, RRC delays responses to clients by
less than 400us and recovers in less than 1s. The average
pause latency is less than 3.3ms. For a set of eight real-world
benchmarks, if data races are eliminated, the performance
overhead of RRC is under 48%.

1 Introduction

For many applications hosted in data centers, high reliability
is a key requirement, demanding fault tolerance. The key de-
sirable properties of a fault tolerance mechanism, especially
for server applications, are: A) Low throughput and latency
overheads; B) Support for multithreaded applications; and
C) Application transparency. Replication, has long been used
to implement application-transparent fault tolerance, espe-
cially for server applications.

The two main approaches to replication, specifically, du-
plication, are: (1) high-frequency checkpointing of the pri-
mary replica state to a passive backup [33], and (2) active
replication, where the primary and backup both execute the
application [38,47]. A key disadvantage of the first approach
is that, for consistency between server applications and their
clients after failover, outputs must be delayed before being
released to the client, typically for tens of milliseconds. Such
delays are unacceptable for many server applications.

To support active replication of multiprocessor workloads,

Yuval Tamir
UCLA

where there are many sources of nondeterminism, active repli-
cation is implemented using a leader-follower algorithm. With
this algorithm, the outcomes of identified nondeterministic
events on the primary, namely synchronization operations
and certain system calls, are recorded and sent to the backup.
This allows the backup to deterministically replay their out-
comes [38,47]. A disadvantage of this approach is that it
is vulnerable to even rare replay failures due to untracked
nondeterministic events, such as those caused by data races.
Another disadvantage is that, for application with a high rate
of synchronization operations, the replay on the backup may
be significantly slower than the execution on the primary, re-
sulting in high throughput overhead [38]. This is due to the
interaction between thread scheduling by the OS and the need
to mirror on the backup the execution on the primary.

This paper presents a fault tolerance scheme, based on con-
tainer replication, called RRC (Responsive Replicated Con-
tainers). RRC targets server applications and is thus optimized
to minimize response latency overhead. RRC overcomes the
disadvantages of existing approaches using a combination of
periodic checkpointing [33, 62] and externally-deterministic
replay [29]. The primary sends periodic checkpoints to the
passive backup. While executing, the primary logs to the
backup the outcomes of nondeterministic events. Upon failure,
the backup restores the latest checkpoint and deterministically
replays the execution up to the last external output. Hence,
external outputs only need to be delayed by the short amount
of time it takes to send and commit the relevant portion of the
nondeterministic event log to the backup.

RRC minimizes request-reply latency overhead, not only
for the average case, but also the tail latency overhead. To
that end, RRC had to overcome a key challenge, namely, that
while the state of the primary is collected for transmission to
the backup, execution has to be paused. Even with various op-
timizations, this latency is often tens of milliseconds, largely
due to the cost of retrieving in-kernel state associated with the
container, such as the state of open file descriptors [62]. To
meet this challenge, RRC introduces a new kernel primitive:
container fork. For checkpointing, RRC pauses the primary
container, forks a shadow container, and resumes execution.
This results in pause times of less than 3.5ms. The checkpoint
is obtained from the shadow container.

RRC decouples the response latency from the checkpoint-
ing duration. This enables high performance by allowing the
tuning of epoch duration to trade off performance and re-
source overheads with recovery latency and vulnerability to
untracked nondeterministic events. The latter is important
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since applications may contain data races (§3, §6.3). RRC is
focused on dealing with data races that rarely manifest and
are thus more likely to remain undetected (§3). Since RRC
only requires replay during recovery and for the short interval
since the last checkpoint, it is inherently more resilient to data
races than active replication schemes that rely on replay of
the entire execution [38]. Furthermore, RRC includes timing
adjustment mechanisms that result in a high recovery rate
even for applications that include data races, as long as their
rate of unsynchronized writes is low (§4.7).

RRC also decouples the performance on the primary from
the backup. Thus, unlike active replication schemes [38], the
backup is not a performance bottleneck (§6.1).

Replication can be at the level of VMs [27,33,35,53,58],
processes [32, 38,47], or containers [62]. Containers have
advantages over VMs due to smaller memory and storage
footprints, faster startup, and avoiding the need to manage
updates of multiple VMs [25,45]. Furthermore, containers are
the best fit for mechanisms such as RRC. Applying RRC’s ap-
proach to VMs would be complicated since there would be a
need to track and replay nondeterministic events in the kernel.
On the other hand, with processes, it is difficult to avoid po-
tential name conflicts (e.g., process IDs) upon failover. While
such name conflicts can be solved, the existing container
mechanism already solves them efficiently.

The implementation of RRC involved developing solutions
to implementation challenges that have not been addressed
by prior works. The most important of these is dealing with
the integration of timer-triggered checkpointing, that is not
synchronized with the application, and user-level recording of
nondeterministic events (§4.2). RRC also efficiently handles
the failover of TCP connections through checkpoint restora-
tion, a replay phase, and finally resumption of live execution
(§4.3, §4.4). RRC is application-transparent and does not re-
quire any changes to the application code.

We have implemented a prototype of RRC and evaluated its
performance and reliability. With 1s epochs, RRC’s through-
put and average latency overheads were less than 49% and
230us, respectively, for all eight benchmarks. With 100ms
epochs, the corresponding overheads were less than 53% and
291us for seven benchmarks, 86% and 264us for the eighth.
RRC is designed to recover from fail-stop faults. We used
thousands of fault injections to validate and evaluate RRC’s
recovery mechanism. For all eight benchmarks, after data
races identified by ThreadSanitizer [6] were resolved, RRC’s
recovery rate was 100% for 100ms and 1s epochs. Three
of the benchmarks originally included data races. For two
of these, without any modifications, with 100ms epochs and
RRC’s timing adjustments, the recovery rate was over 99.1%.

RRC achieves both low response latency overhead and
resilience to infrequently-manifested data races. This com-
bination provides a fundamental advance over both Remus-
based techniques [33] and active replication [38,47], respec-
tively. Specifically, we make the following contributions: 1) a

fault tolerance scheme based on container replication, using
a unique combination of periodic checkpointing, determinis-
tic replay, and an optimized scheme for failover of network
connections; 2) a new system call, container fork, used to min-
imize tail latency overhead; 3) a replication mechanism with
inherent resilience to untracked nondeterministic events, fur-
ther enhanced by mechanisms that increase recovery success
rate in the presence of data races; 4) a thorough evaluation
of RRC with respect to performance overhead, resource over-
head, and recovery rate, demonstrating the lowest reported
external output delay compared to competitive mechanisms.

Section 2 presents two key building blocks for RRC: NiL-
iCon [62] and deterministic replay [21,29, 44, 50, 57]. An
overview of RRC is presented in §3. RRC’s implementation
is described in §4, with a focus on key challenges. The ex-
perimental setup and evaluation are presented in §5, and §6,
respectively. Limitation of RRC and of our prototype imple-
mentation are described in §7. §8 provides a brief overview
of related work.

2 Background

RRC integrates container replication based on periodic check-
pointing [33,62], described in §2.1, and deterministic replay
of multithreaded applications, described in §2.2.

2.1 NiLiCon

Remus [33] introduced a practical application-transparent
fault tolerance scheme based on VM replication using high-
frequency checkpointing. NiLiCon [62] is an implementation
of the Remus mechanism for containers. A key challenge
faced by NiLiCon is that, compared to VMs, there is much
tighter coupling between the container state and the state
of the underlying platform. NiLiCon meets this challenge,
based on a tool called CRIU (Checkpoint/Restore in User
Space) [4], with novel optimizations that significantly reduce
overhead. CRIU checkpoints and restores the user-level and
kernel-level state of a container, except for disk state. NiLiCon
handles disk state by adding system calls to checkpoint and
restore the page cache and a modified version of the DRBD
module [8]. NiLiCon relies on CRIU to preserve established
TCP connections across failover, using a special repair mode
of the socket provided by the Linux kernel [18].

2.2 Deterministic Replay on Multiprocessors

Deterministic replay is the reproduction of some original
execution in a subsequent execution. During the original ex-
ecution, the results of nondeterministic events/actions are
recorded in a log. This log is used in the subsequent exe-
cution [29]. With a uniprocessor, nondeterministic events
include: asynchronous events, such as interrupts; system calls,
such as gettimeofday(); and inputs from the external world.
With shared-memory multiprocessors, there is a higher
frequency of nondeterministic events related to the order of
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Figure 1: Architecture and workflow of RRC.

accesses to the same memory location by different processors.
For such systems, a common approach is to support determin-
istic replay only for programs that are data-race-free [49]. For
such programs, as long as the results of synchronization oper-
ations are deterministically replayed, the ordering of shared
memory accesses are preserved. The recording of nondeter-
ministic events can occur at different levels: hardware [40,59],
hypervisor [36,37,41], OS [39,43], or library [49, 54]. With-
out dedicated hardware support, it is advantageous to record
the events at the user level, thus avoiding the overhead for
entering the kernel or hypervisor [44].

To support seamless failover with replication, it is suffi-
cient to provide externally deterministic replay [44]. This
means that, with respect to what is visible to external clients,
the replayed execution is identical to the original execution.
Furthermore, the internal state at the end of replay must be
a state that corresponds to a possible original execution that
could result in the same external behavior. This latter require-
ment is needed so that the replayed execution can transition
to consistent live execution at the end of the replay phase.

3 Overview of RRC
RRC provides fault tolerance by maintaining a primary-
backup pair with an inactive backup that takes over when
the primary fails. Execution on the primary is divided into
epochs and the primary state is checkpointed to an inactive
backup at the end of each epoch [33,62]. Upon failure of the
primary, the backup begins execution from the last primary
checkpoint and then deterministically replays the primary’s
execution of its last partial epoch, up to the last external out-
put. The backup then proceeds with live execution. To support
the backup’s deterministic replay, RRC ensures that, before
an external output is released, the backup has the log of non-
deterministic events on the primary since the last checkpoint.
Thus, external outputs are delayed only by the time it takes to
commit the relevant last portion of the log to the backup.
Figure | shows the overall architecture of RRC. The pri-
mary records nondeterministic events: operations on locks
and nondeterministic system calls. The record and replay are
done at the user level, by instrumentation of glibc source code.
When the primary executes, the instrumented code invokes
functions in a dedicated RR (Record and Replay) library that
create logs used for replay. There is a separate log for each

Epoch N Epoch N+1 Epoch N+2
pause ! Execute pause
Container | <\ Execute | CFORK [COW CFORK_| -~
MEM|Other|Send
RRC COPY|COPY|CKPT

Figure 2: Timeline of an epoch on the primary replica.

lock. For each thread, there is a log of the nondeterministic
system calls it invoked, with their arguments and return values.
Details are presented in §4.1.

Figure | shows the processing of requests and replies for
server applications. (1) Client requests are sent to the backup.
(2) To support TCP failover, the backup records incoming
packets and forwards them to the primary. (3) Replies from
the primary are forwarded to the backup and blocked by the
PackGate queueing discipline kernel module. (4) The pri-
mary sends the nondeterministic event log to the backup.
(5) Upon receiving the log, PackGate releases the correspond-
ing replies.

Figure 2 shows a timeline of each epoch on the primary
replica. First, the container is paused and a container fork is
performed. Execution is then resumed. The first write to a
page results in a Copy On Write (COW) so that the state of
the forked shadow container is maintained. Concurrently, the
pages modified since the last checkpoint are copied to a stag-
ing buffer (MEM COPY). Once this copy is completed, the
original container ceases to perform the COW operations. A
container checkpoint includes in-kernel state associated with
the container, such as the state of open file descriptors [62].
This state is obtained from the shadow container and written
to the staging buffer (Other COPY). The entire checkpoint is
then sent from the primary to the backup.

RRC is based on having the ability to identify all sources of
nondeterminism that are potentially externally visible, record
their outcomes, and replay them when needed. Thus, unsyn-
chronized accesses to shared memory during the epoch in
which the primary fails may cause replay on the backup to
fail to correctly reproduce the primary’s execution, leading
the backup to proactively terminate. This implies that appli-
cations are expected to be free of data races. However, not all
multithreaded programs meet this expectation. Furthermore,
precise race detection is NP-hard [48]. Hence, it is not possi-
ble to ensure that all data races are detected and eliminated.
Fortunately, frequently-manifested data races are detectable
using tools such as ThreadSanitizer [6]. Hence, only rarely-
manifested data races are likely to remain in applications.

Since RRC only requires replay of short intervals (up to one
epoch), it is inherently more tolerant to rarely-manifested data
races than schemes that rely on accurate replay of the entire
execution [38]. As an addition to this inherent advantage of
RRC, RRC includes optional mechanisms that significantly
increase the probability of correct recovery despite data races,
as long as the manifestation rate is low (§4.7). During execu-
tion on the primary, these mechanisms record the order and
timing of returns from nondeterministic system calls by all
the threads. During replay, the recorded order and relative
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timing are enforced.

If the primary fails, network connections must be main-
tained and migrated to the backup [19, 20, 22, 60]. Like
CoRAL [19,20], requests are routed through backup by ad-
vertising the service IP address in the backup. Unlike FT-
TCP [22,60] or CoRAL, replies are also routed through the
backup, resulting in lower latency (§4.3).

As with most other state replication work [33,53,58, 62],
RRC assumes fail-stop faults. Either the primary or the backup
may fail. Heartbeats are exchanged between the primary and
backup so failures are detected as missing heartbeats. Thus,
RRC relies in the synchrony assumption [34] with respect to
both the hosts and the network. If the backup fails, the primary
configures its network, advertises the service IP address, and
communicates with the clients directly. To maintain redun-
dancy, a new backup needs to be instantiated and take over
the service IP address.

4 Implementation

This section presents the implementation of RRC, focusing
on the mechanisms used to overcome key challenges. RRC is
implemented mostly at the user level but also includes small
modifications to the kernel. At the user level, the implemen-
tation includes: agent processes on the primary and backup
hosts that run outside the replicated container; a special ver-
sion of the glibc library (that includes Pthreads), where some
of the functions are instrumented (wrapped), used by the ap-
plication in the container; and a dedicated RR (record and
replay) library, that provides functions that actually perform
the record and replay of nondeterministic events, used by the
application in the container.

The kernel modifications include: an ability to record and
enforce the order of access to key data structures (§4.1); sup-
port for a few variables shared between the kernel and RR li-
brary, used to coordinate checkpointing with record and replay
(§4.2); anew queueing discipline kernel module used to pause
and release network traffic (§4.3); and container fork (§4.6).

In the rest of this section, §4.1 presents the basic record
and replay scheme. §4.2 deals with the challenge of inte-
grating checkpointing with record and replay. §4.3 presents
the handling of network traffic. The transition from replay
to live execution is discussed in §4.4. The performance-
critical operation of transmitting the nondeterministic event
log to the backup is explained in §4.5. Container fork is pre-
sented in §4.6. §4.7 presents our best-effort mechanism for
increasing the probability of correct replay in the presence of
infrequently-manifested data races.

4.1 Nondeterministic Events Record/Replay

To minimize overhead and implementation complexity, RRC
records synchronization operations and system calls at the
user level. This is done by code added in glibc before (before

hook) and after (after hook) the original code. Recording is
done in the after hook, replay is in the before hook.

For each lock, there is a log of lock operations in the order
of returns from those operations. The log entry includes the ID
of the invoking thread and the return value. The return values
are recorded to handle the trylock variants as well as errors.
During replay, synchronization operations must actually be
performed in order to properly enforce the correct semantics.
For each lock, the ordering of successful lock acquires is
enforced. Since there is no need to enforce ordering among
different locks, it is sufficient to maintain a separate log for
each lock.

For each thread, there is a log of invoked system calls. The
log entry includes the parameters and return values. During
replay, the recorded parameters are used to detect divergence
(replay failure). For some functions, such as gettimeofday(),
replay does not involve the execution of the function and the
recorded return values are returned. However, as discussed in
§4.4, functions, such as open(), that involve the manipulation
of kernel state, are actually executed during replay.

There can be dependencies among system calls, even if they
are invoked by different threads. For example, this is the case
for system calls whose execution involve writes and reads
from kernel data structures, such as the file descriptor table.
Hence, simply maintaining a separate log for each thread is
not sufficient. To handle such cases, the kernel was modified
to maintain an access sequence number for each such shared
kernel resource. Each thread registers the address of a per-
thread variable with the kernel. When the thread executes a
system call accessing a shared resource, the kernel increments
the sequence number and copies its value to the registered
address. At the user level, this sequence number is attached
to the corresponding system call log entry. During replay, the
before and after hooks enforces the recorded execution order.

4.2 Integrating Checkpointing with
Record/Replay

Checkpointing is triggered by a timer external to the con-
tainer [62], and is thus not synchronized with the recording of
nondeterministic events on the primary. This has the potential
of resulting in a checkpoint and log contents on the backup
from which correct replay cannot proceed. One example is
that the checkpoint may include a thread in the middle of exe-
cuting code in the RR library, resulting in the backup, during
replay, attempting to send the nondeterministic event log to
the backup. A second example is that there may be ambiguity
at the backup as to whether a particular system call, such as
open(), was executed after the checkpoint and thus needs to be
reexecuted during replay, or executed before the checkpoint
and thus should not be reexecuted during replay.

A naive solution to the above problem would be to delay
the checkpointing of a thread if it is in execution anywhere
between the beginning of the before hook and the end of

88 2022 USENIX Annual Technical Conference

USENIX Association



the after hook. However, this could delay checkpointing for
arbitrarily long time if a thread is blocked on a system call,
such as read().

The actual solution in RRC has two properties: (I) check-
pointing of a thread is delayed if the thread is within the
before hook or within the after hook, and (II) checkpointing
of a thread can occur even if the thread is between the end of
the before hook and the beginning of the after hook.

To enforce property (I), each thread registers with the ker-
nel the address of a per-thread in_rr variable. In user mode,
the RR library sets/clears the in_rr when it respectively en-
ters/leaves the hook function. An addition to the kernel code
prevents the thread from being paused if the thread’s in_rr
flag is set.

To deal with property (II), RRC includes mechanisms to:
(A) detect that this scenario has occurred, and (B) elimi-
nate the potential ambiguities, such as the one mentioned
above and take appropriate actions during replay. To imple-
ment the required mechanisms, RRC uses three variables: two
per-thread flags — in_hook and syscall_skipped, as well as a
global current_phase variable [63]. These variables are shared
between the user level and the kernel. In the record phase,
in_hook is set in the before hook and cleared in the after hook
— this is mechanism (A) above.

For mechanism (B), syscall_skipped is used, during the
replay phase, to determine whether, during the record phase,
the checkpoint was taken before or after executing the system
call. During the record phase, this flag is cleared during ini-
tialization and is not otherwise read or written. With CRIU
(§2.1), if a checkpoint is triggered while a thread is executing
a system call, before that call performs any state changes, the
system call is retried after the checkpoint is restored. In the
replay phase, at an early point in the kernel code executing a
system call, if in_hook is set, the system call is skipped and
syscall_skipped is set. Thus, if the system call was not exe-
cuted before the checkpoint, it will be initially skipped during
replay. During replay, if the after hook finds that in_hook and
syscall_skipped are set, it passes control back to the before
hook and the system call is then replayed or re-executed.

The handling of lock operations is similar to the handling
of system calls. In the after hook, if in_hook is set, the lock
is released and control is passed to the before hook, thus
allowing enforcement of the order of lock acquires.

4.3 Handling Network Traffic

The current RRC implementation assumes that all network
traffic is via TCP. To ensure failure transparency with re-
spect to clients, there are three requirements that must be met:
(1) client packets that have been acknowledged must not be
lost; (2) packets to the clients that have not been acknowl-
edged may need to be resent; (3) packets to the clients must
not be released until the backup is able to recover the primary
state past the point of sending those packets.

Requirements (1) and (2) have been handled in connection
with other mechanisms, such as [20, 60]. With RRC, this is
done by routing incoming and outgoing packets through the
backup (§3). Incoming packets are recorded by the PackRec
thread in the agent. Outgoing packets are sent to the backup
as part of the nondeterministic event log.

The PackGate kernel module on the backup is used to meet
requirement (3). PackGate maintains a release sequence num-
ber (RSN) for each TCP stream. When the primary container
sends an outgoing message, the nondeterministic event log it
sends to the backup (§3) includes a release request that up-
dates the stream’s RSN. The outgoing packets with sequence
numbers lower than the RSN are then released.

PackGate is implemented in the kernel since it operates
frequently and must thus be efficient. PackGate maintains
fairness among the TCP streams using a FIFO queue of re-
lease requests ordered by the order of sends.

4.4 Transition to Live Execution

As with [38,43] and unlike the deterministic replay tools for
debugging [44,55-57], RRC needs to transition from replay
mode to live mode. This occurs when the backup replica
finishes replaying the nondeterministic event log, specifically,
when the last system call that generated an external output
during the original execution is replayed. To identify this last
call, after the checkpoint is restored, the RR library scans the
nondeterministic event log and counts the number of system
calls that generated an external output. Once replay starts,
this count is atomically decremented and the transition to live
execution is triggered when the count reaches 0.

To support live execution, after replay, the kernel state must
be consistent with the state of the container and with the state
of the external world. For most kernel state, this is achieved
by actually executing during replay system calls that change
kernel state. For example, this is done for system calls that
change the file descriptor table, such as open(), or change the
memory allocation, such as mmap(). However, this approach
does not work for system calls that interact with the external
world. Specifically, in the context of RRC, these are reads
and writes on sockets associated with a connection to an
external client. As discussed in §4.1, such calls are replayed
from the nondeterministic event log. However, there is still
a requirement of ensuring that, before the transition to live
execution, the state of the socket, e.g., sequence numbers,
must be consistent with the state of the container and with the
state of external clients.

To overcome the above challenge, when replaying system
calls that affect socket state, RRC records the state changes on
the sockets based on the nondeterministic event logs. When
the replay phase completes, RRC updates all the sockets based
on the recorded state. Specifically, the relevant components
of socket state are: the last sent sequence number, the last
acknowledged (by the client) sequence number, the last re-
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ceived (from the client) sequence number, the receive queue,
and the write queue. The initial socket state is obtained from
the checkpoint. The updates to the sent sequence number and
the write queue contents are determined based on writes and
sends in the nondeterministic event log. For the rest of the
socket state, RRC cannot rely on the event log since some
packets received and acknowledged by the kernel may not
have been read by the application. Instead, RRC uses infor-
mation obtained from PackRec (§4.3).

With respect to incoming packets, once the container tran-
sitions to live execution, RRC must provide to the container
all the packets that were acknowledged by the primary but
were not read by applications. During normal operation, on
the backup host, PackRec keeps copies of incoming packets
while PackGate extracts the acknowledgment numbers on
each outgoing stream. If the primary fails, PackGate stops re-
leasing outgoing packets and it thus has the last acknowledged
sequence number of each incoming stream. PackRec obtains
the last acknowledged sequence number of each stream from
PackGate and stops recording when it has all the required
(acknowledged) incoming packets. Before the container is re-
stored on the backup, PackRec copies the recorded incoming
packets to a log. Using the information from the nondeter-
ministic event log and PackRec, before the transition to live
execution, the packet repair mode (§2.1) is used to restore
the socket state so that it is consistent with the state of the
container and the external world.

4.5 Transferring the Event Logs

Whenever the container on the primary sends a message to
an external client, it must collect the corresponding entries
from the multiple nondeterministic event logs (§4.1) and send
them to the backup (§3). Hence, the collection and sending
of the log is a frequent activity, which is thus performance
critical. Specifically, with our initial implementation, with the
Memcached benchmark under maximum load, the throughput
overhead was approximately 300%.

To address the performance challenge above, RRC offloads
the transfer of the nondeterministic event log from the ap-
plication threads to a dedicated logging thread added by the
RR library to the application process (as in [47]). With avail-
able CPU cycles, such as additional cores, this minimizes the
overhead for the application threads. Furthermore, if multiple
application threads generate external messages at approxi-
mately the same time, the corresponding multiple transfers of
the logs are batched together, further reducing the overhead.
When an application thread sends an external message, it no-
tifies the logging thread via a shared ring buffer. The logging
thread continuously collects all the notifications in the ring
buffer and then collects and sends the nondeterministic logs to
the backup. To reduce CPU usage and enable more batching,
the logging thread sleeps for the minimum time allowed by
the kernel between scans of the buffer.

To maximize performance, RRC allows concurrent access
to different logs. One application thread may log a lock opera-
tion concurrently with another thread that is logging a system
call, while the logging thread is collecting log entries from a
third log for transfer to the backup. This enables the logging
thread to collect entries from different logs out of execution
order. Thus, there is the potential for the log transferred to the
backup for a particular outgoing message to be incomplete —
missing an entry for an event on which the outgoing message
depends. This can lead to replay failure.

There are two key properties of RRC that help address the
correctness challenge above: (A) there is no need to replay
the nondeterministic event log beyond the last system call that
outputs to the external world, and (B) when an application
thread logs a system call that outputs to the external world,
all nondeterministic events on which this system call may
depend are already logged in nondeterministic event logs.

To exploit the two properties above, the RR library main-
tains two corresponding global sequence numbers: primary
batch sequence number (PBSN) and backup batch sequence
number (BBSN) in the primary and backup, respectively.
They are both initialized to 0. Application threads attach
the PBSN to the entries they log for nondeterministic events.
When the logging thread picks up an entry from the afore-
mentioned ring buffer, that is a request to collect and send the
current event log. Before taking any other action, the logging
thread scans the ring buffer to determine the number of pend-
ing requests. It then increments the PBSN by that number.
Thus, every event log entry that is created after the logging
thread begins collecting the log, has a higher PBSN tag. After
the logging thread sends the log, it sends to the backup a mes-
sage that directs the backup to increment the BBSN by the
most recent increment of the PBSN. If the primary fails, be-
fore replay is initiated on the backup, all the nondeterministic
event logs collected during the current epoch are scanned and
the entries for system calls that output to the external world
are counted if their attached sequence number is not greater
than the BBSN. During replay, this count is decremented for
each such system call replayed. When it reaches 0, replay
terminates and live execution commences.

4.6 Container Fork

The new container fork (cfork) system call is based on the
existing process fork. Given a process ID in a container, cfork
duplicates the container state shared among its processes and
threads: namespaces (e.g., mount points, network interfaces)
and control groups. Cfork then duplicates all the processes
and their threads in the container and assigns them to the new
container. Fork duplicates the file descriptor state, but does
not duplicate the underlying state, such as socket state or pipe
state. However, cfork does duplicate this underlying state.
The implementation of cfork for RRC includes optimiza-
tions to minimize the container fork time. We identified two
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major sources of overhead: (1) duplicating the namespaces
and control groups, and (2) page table copy. To minimize (1),
RRC exploits the fact that most namespace and control group
state rarely changes after initialization [62]. Thus, at the first
checkpoint, RRC creates a staging container with an idle pro-
cess. Cfork assigns the forked container to the namespace and
control group of the staging container instead of creating new
ones. To ensure correctness, RRC detects state changes of
the namespaces and control groups of the service container
using hooks, added with firace to the kernel functions that can
change the namespace and cgroup state. Cfork updates those
changes to the staging container. Ftrace only incurs overhead
if a hooked function is invoked. Since the namespace and
cgroup states rarely change, such functions are rarely invoked
and ftrace does not incur high overhead.

To minimize the latency of the page table copy, RRC avoids
copying the page table of the data region of the RR library,
whose size can be up to several gigabytes and thus takes tens
of milliseconds to copy. Specifically, the RR library tags the
VMA of the data region with a new special flag and thus
informs the cfork to skip copying its page table. This opti-
mization is correct because RRC does not need to checkpoint
the data region of the RR library; its state is initialized upon re-
play by reading the saved nondeterministic logs in the backup.

4.7 Mitigating the Impact of Data Races

As discussed in §3, RRC includes mechanisms that signifi-
cantly increase the probability of successful recovery in the
presence of rarely-manifested data races. Specifically, RRC
mitigates the impact of data races by adjusting the relative
timing of the application threads during replay to approxi-
mately match the timing during the original execution. As
a first step, in the record phase, the RR library records the
order and the TSC (time stamp counter) value when a thread
leaves the after hook of a system call. In the replay phase,
the RR library enforces the recorded order on threads before
they leave the after hook. As a second step, during replay,
the RR library maintains the TSC value corresponding to the
time when the after hook of the last-replayed system call was
exited. When a thread is about to leave a system call after
hook, the RR library delays the thread until the difference
between the current TSC and the TSC of that last-replayed
system call is larger than the corresponding difference in the
original execution. System calls are used as the basis for the
timing adjustments since they are replayed (not executed) and
are thus likely to cause the timing difference. This mechanism
is evaluated in §6.3.

5 Experimental Setup

All the experiments were hosted on Fedora 29 with the 4.18.16
Linux kernel. The containers were hosted using runC [12]
(version 1.0.1), a popular container runtime used in Docker.
The primary and backup replicas were hosted on different

36-core servers, using modern Xeon chips. These hosts were
connected to each other through a dedicated 10Gb Ethernet
link. The clients were hosted on a 10-core server, based on a
similar Xeon chip. The client host was in a different building,
interconnected through a Cisco switch, using 1Gb Ethernet.

Five benchmarks were in-memory databases handling short
requests: Redis [13], Memcached [10], SSDB [15], Taran-
tool [16] and Aerospike [2]. These benchmarks were evalu-
ated with 50% read and 50% write requests to 100,000 100B
records, driven by YCSB [31] clients. The number of user
client threads ranged from 60 to 480. The evaluation also in-
cluded a web server, Lighttpd [ 7], and two batch PARSEC [26]
benchmarks: Swaptions and Streamcluster. Lighttpd was eval-
uated using 20-40 clients retrieving a 1KB static page. For
Lighttpd, benchmarking tools SIEGE [14], ab [1] and wget [5]
were used to evaluate, respectively, the performance overhead,
response latency, and recovery rate. Swaptions and Stream-
cluster were evaluated using the native input test suites. We
evaluated only two benchmarks from the PARSEC suite since
RRC targets server applications and its design is thus focused
on low latency overhead. Low latency overhead is not rele-
vant for the batch applications, such as those included in the
PARSEC suite. Nonetheless, we show that such applications
can be handled by RRC with very low throughput overhead.

We used fault injection to evaluate RRC’s recovery mech-
anism. Since fail-stop failures are assumed, a simple failure
detector was sufficient. Failures were detected based on heart
beats exchanged every 30ms between the primary and backup
hosts. The side not receiving heart beats for 90ms identified
the failure of the other side and initiates recovery.

For Swaptions and Streamcluster, recovery was “successful”
if the output was identical to the golden copy. For Lighttpd,
we used multiple wget instances that concurrently fetched a
static page. Recovery was “successful” if all the fetched pages
were identical to the golden copy. For the in-memory database
benchmarks, we developed customized clients, using existing
client libraries [3,9, 11, 17], that spawn multiple threads and
let each thread work on separate set of database records. Each
thread records the value it stores with each key, compares
that value with the value returned by the corresponding get
operation and flags an error if there is a mismatch. Recovery
was considered successful if no errors were reported.

For the fault injection experiments, for server programs, the
clients were configured to run for at least 30 seconds and drive
the server program to consume around 50% of the CPU cycles.
A fail stop failure was injected at a random time within the
middle 80% of the execution time, using the sch_plug module
to block network traffic on all the interfaces of a host. To
emulate a real world cloud computing environments, while
also stressing the recovery mechanism, we used a perturb
program to compete for CPU resources on the primary host.
The perturb program busy loops for a random time between
20 to 80 ms and sleeps for a random time between 20 to
120ms. During fault injection, a perturb program instance
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TP Overhead Avg. Latency(us)
Redis | Taran| Aero | Redis | Taran | Aero
Custom | 49%| 31%[153%| 574| 471| 456
RRC-LE| 31%| 26%| 47%| 543| 564| 602

Table 1: Throughput overhead and average latency. RRC vs.
custom replication mechanisms.

was pinned to each core executing the benchmark.

6 Evaluation

This section presents RRC’s performance overhead and CPU
usage overhead (§6.1), the added latency for server responses
(86.2), as well as the recovery rate and recovery latency (§6.3).
Two configurations of RRC are evaluated: RRC-SE (short
epoch) and RRC-LE (long epoch), with epoch durations of
100ms and s, respectively. Setting the epoch duration is a
tradeoff between the lower overhead with long epochs and
the lower susceptibility to data races and lower recovery time
with short epochs. Hence, RRC-LE may be used if there is
high confidence that the applications are free of data races.
Thus, with the RRC-SE configuration, the data race mitigation
mechanism described in §4.7 is turned on, while it is turned
off for RRC-LE.

RRC is compared to NiLiCon (§2.1) with respect to the
performance overhead under maximum CPU utilization and
the server response latency. NiLiCon is configured to run with
an epoch interval of 30ms, as in [62]. The short epochs of NiL-
iCon are required since, unlike RRC, the epoch duration with
NiLiCon determines the added latency in replying to client
requests (§2.1). Thus, for many server applications, even with
30ms epochs, NiLiCon provides unacceptably long response
latencies. In all cases, the “stock setup” is the application
running in an unreplicated container.

Some server applications can be configured to enable their
own custom fault tolerance mechanisms. However, develop-
ing and validating such mechanisms is time consuming and
error prone. Hence, mechanisms, such as RRC, that can be de-
ployed for many applications, are likely to be of higher quality
(reliability) and incur lower total development cost. Table |
compares the overhead of RRC with the custom mechanisms
of three of our benchmarks (§5). The custom mechanisms are
all configured to provide strong consistency (outputs are not
released until the changes are reflected in the backup), which
RRC also provides. The results show that RRC-LE actually
has lower throughput overhead. On average, the custom mech-
anisms do result in lower response latency. This is mainly due
to their ability to release the outputs of read requests without
waiting for acknowledgments from the backup. However, on
average, the overall results are comparable.

6.1 Overheads: Performance, CPU Utilization

Two key overhead measures of RRC are: for a fixed amount
of work, the increase in execution time and the increase in
the utilization of CPU cycles. These measures are distinct
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Figure 3: Performance overheads: NiLiCon, RRC-SE, RRC-
LE.

since many of the actions of RRC are in parallel with the main
computation threads.

For the six server benchmarks, the measurements reported
in this subsection were done with workloads that resulted in
maximum CPU utilization for the cores running the applica-
tion worker threads' with the stock setup.

With four of the server benchmarks, the number of the
worker threads cannot be configured (Lighttpd, Redis: 1,
Tarantool: 2, SSDB: 12). The remaining four benchmarks
were configured to run with four worker threads.

For each benchmark, the workload that saturates the cores
in the stock setup was used for the stock, RRC, and NiLiCon
setups. With NiLiCon, due to its large latency overhead (§6.2),
it is impossible to saturate the server with this setup. Hence,
for the NiLiCon measurements in this subsection, the buffer-
ing of the server responses was removed. This is not a valid
NiLiCon configuration, but it provides a comparison of the
overheads excluding buffering of external outputs.
Performance overhead. The performance overhead is re-
ported as the percentage increase in the execution time for
a fixed amount of work compared to the stock setup. Fig-
ure 3 shows the performance overheads of NiLiCon, RRC-SE,
and RRC-LE, with the breakdown of the sources of overhead.
Each benchmark was executed 50 times. The margin of error
of the 95% confidence interval was less than 2%.

The record overhead is caused by the RR library recording
nondeterministic events. The pause overhead is due to the
time the container is paused during the container fork. The
COW overhead is caused by the time to copy the pages after
the container fork. The page fault overhead is caused by the
page fault exceptions that track the memory state changes of
each epoch (§2.1).

With RRC-SE, the average incremental checkpoint size
per epoch was 0.2MB for Swaptions, 15.6MB for Redis, and
41.2MB for Aerospike. With RRC-SE, the average number of

Some application “helper threads” are mostly blocked sleeping.
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WWSS Redis Taran SSDB Mem$
1x  |47% (1.00)|37% (1.00)|53% (1.00)|36% (1.00)
2x  |56% (1.19)|51% (1.38)|57% (1.08)|58% (1.61)
3x  |73% (1.55)|63% (1.70) |62% (1.17)|73% (2.03)

Table 2: The impact of the write working set size (WWSS),

relative to the WWSS used in Figure 3, on the performance

overhead with RRC-SE. The overheads relative to the 1x case

are in prentheses.

ST |SC| Lig |Redis|Taran|SSDB|Mem$ | Aero

a, Primary|3%|5%| 8%| 30%| 16% 8%| 13%| 31%

© Backup|1% |2%| 5%| 26%| 15% 4%| 13%| 18%

o Primary |4% | 1% | 34%| 47%| 46%| 55%| 36%| 77%

~ Backup| ~0|~0| 33%| 29%| 20%| 11%| 15%| 19%

E; Primary| ~0|~0| ~0| ~0| ~0| ~0| ~0| ~0

= Backup|~0|~0| 59%| 86%| 54%| 23%| 40%| 43%
total | 8% |8% [139% |218% |151% | 101% | 117% |188%

Table 3: CPU utilization overhead for RRC-SE. CP: check-
pointing. RR: recording nondeterministic events. TCP: han-
dling TCP failover.

logged lock operations plus system calls per epoch was 9 with
Streamcluster, 907 with Tarantool, and 2137 with Aerospike,
partially explaining the differences in record overhead. How-
ever, the overhead of logging system calls is much higher than
for lock operations. Memcached is comparable to Aerospike
in terms of the rate of logged system calls plus lock opera-
tions, but has 341 compared to 881 logged system calls per
epoch and thus lower record overhead.

The number of pages modified during an epoch determines
the rate of page faults and COW operations, as well as the size
of the incremental checkpoint that is transferred to the backup
(§3). Hence, this write working set size (WWSS) impacts the
performance overhead. Table 2 shows the performance over-
head of RRC-SE with four of our benchmarks as the WWSS is
increased to 2x and 3x of the WWSS used in Figure 3. These
measurements were obtained by increasing the number of
records and then, with a fixed number of records, varying the
ratio of writes to reads to obtain the different WWSS values.
As expected, the checkpointing component of the overhead
(“COW?” plus “Others” in Figure 3) increases approximately
linearly with the WWSS. As shown in Figure 3, as the epoch
duration is increased, the checkpointing component of the
overhead is decreased and thus the impact of the WWSS be-
comes less significant. It should be noted that the number of
pages read during an epoch has no impact on the performance
overhead. The footprint of the application has only negligible
impact that is due to the time to scan the page table to identify
the modified pages.

CPU utilization overhead. The CPU utilization (Table 3)
is the product of the average numbers of CPUs (cores) used
and the total execution time. The CPU utilization overhead
is the percentage increase in utilization with RRC compared
to with the stock setup. The breakdown of the overhead into
its components was obtained by incrementally enabling each
component and measuring the corresponding increase in CPU

LiglK |Lig100K |Redis | Taran | SSDB [Mem$ | Aero
avg 549 2059| 406| 393| 388| 643 373
9% | <lms <3ms| 734| 617| 622| 2982| 711
avg 694 2203| 604| 604| 651| 812 663
9% | <lms <3ms| 969| 992| 988| 3941|1273
avg| 38ms 38ms | 42ms | 42ms| 45ms| 45ms|51ms
99% | <39ms| <39ms|44ms|42ms| 47ms| 53ms|63ms

Table 4: Response latency in us. S: Stock, R: RRC-SE, N:
NiLiCon

S

overhead. A significant factor in the CPU utilization overhead
is for packet handling in the backup kernel needed to support
TCP failover. This overhead is mostly due to routing. Tech-
niques for optimizing software routing [42] can be used to
reduce this overhead.

The overheads shown in Table 3 should be evaluated in
the context of comparable alternative techniques. The only
alternatives that can achieve low latency overheads neces-
sary for many server applications are based on active repli-
cation [38,47]. Such techniques have CPU overheads com-
parable to RRC’s for recording nondeterministic events and
handling TCP failover. They do not have the overhead for
checkpointing but instead have 100% overhead for execution
on the backup. Table 3 shows the with RRC-SE the overhead
for checkpointing is 4%-56%. Hence, RRC’s CPU overhead
is significantly smaller than the comparable alternatives’.
Performance decoupling. An important property of RRC is
that, unlike active replication, it decouples the performance
of the application on the primary host from the performance
on the backup. To illustrate the impact of this, we selected
two representative benchmarks: Redis and Aerospike, which
incur a significant CPU usage on the backup host, and ran
them with RRC-SE. We ran the perturb program (§5), which
consumes 40% of a CPU, first on all the cores of the primary
and then the backup. When the perturb program runs on the
primary, the performance overhead increases from 46% to
71% and 85% to 116% for Redis and Aerospike, respectively.
However, when the perturb program runs on the backup, the
execution time remains the same.

6.2 Response Latency

Table 4 shows the response latencies with the stock setup,
RRC-SE and NiLiCon. The numbers of client threads for stock
and RRC-SE are adjusted so that the CPU load on the cores
running application worker threads is 50%. For NiLiCon, the
number of client threads is the same as with RRC-SE, resulting
in CPU utilization of less than 5%, thus favoring NiLiCon.
To evaluate the impact of response size, Lighttpd is evaluated
serving both 1KB as well as 100KB files.

With RRC, there are three potential sources for the in-
crease in response latency: forwarding packets through the
backup, the need to delay packet release until the correspond-
ing event log is received by the backup, and increased request
processing time on the primary. With RRC-SE, the increase
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ST | SC|Lhttpd | Redis | Taran | SSDB | Mem$ | Aero
= avgl0.7(2.7 05| 1.6| 24| 26 1.5] 32

90% (0.7 3.1 06| 19| 27| 29 1.7] 35
= avg|5.9(7.6 7.2| 149 18.4| 13.9| 28.7|429

Q
Z.90%]5.9(8.0 74| 16.7] 20.2| 14.8| 33.7|45.8

Table 5: The pause time of RRC with container fork (CF) and

without container fork (NCF) in millisecond.

ST | SC|Lhttpd | Redis | Taran | SSDB | Mem$ | Aero
avg|3.13.9 2.5 9.1| 11.5 6.5| 15.6| 274

Table 6: The average time (ms) between resuming container

execution and the stop of COW.

3 4000 ——T— . 450

= Memcached @

2 3000 a

g 8 300 F 1
8 2000 &

N 3 150 | 1
2 1000 5

2

g 0 L L L L L * 0 L L L L L

o 0 5 10 15 20 25 30 0 5 10 15 20 25 30

Time since container fork (ms) Time since container fork (ms)

Figure 4: Average response latency and the number of COW
since container fork.

in average latency is only 144us to 290us. The worst case is
with Aerospike, which has the highest checkpointing overhead
(COW+Others in Figure 3) and a high rate of nondetermin-
istic events and thus long logs that have to be transferred to
the backup. The increase in 99th percentile latency is 235us
to 959us. The worst case is with Memcached. As shown in
Table 4, in terms of increase in response latency, NiLiCon is
not competitive, as also indicated by the results in [62].

With RRC-LE, the increase in the average response latency

is from 42us to only 229us, due to the the lower checkpointing
overhead. The increase in the 99th percentile latency is under
510us since the container fork are much less frequent and
thus less likely to interrupt the processing of a request.
The impact of container fork. The tail response time latency
overhead is determined by the time the primary is paused for
checkpointing. Table 5 shows RRC’s pause time with and
without the container fork. Without the container fork, the
container has to be paused during the entire checkpointing
process, leading to a pause time between 5.9ms to 45.8ms.
The pause time with the container fork is only from 0.5ms
to 3.5ms. Most of the container fork time is spent on copy-
ing page tables and thus can be further reduced with recent
techniques on optimizing fork() [61].

Due to the reduction in the pause time, with the SE setup,
the container fork reduces the average response latency over-
head from 156us-581us to 144us-290us, and the worst-case
99% response latency overhead from 6ms to 959us. The
throughput overhead is reduced from 8%-145% to 4%-85%.

Immediately after the container fork there is a period dur-
ing which there is additional overhead due to COW of pages
on the primary (§3). Table 6 shows that this period termi-
nates at an early stage of each epoch. To evaluate the impact
of the COW on response latency, we obtained fine grained
measurements with Memcached. Figure 4 shows the results.

Recovery Rate | Replay Time
Mem$| Aero |Mem$|Aero
stock 94.3% | 84.5% 201 28
+ Total order of syscalls | 94.3% | 92.7% 131 299
+ Timing adjustment 99.2%| 99.8%| 234| 383
stock 51.4%| 34.8%| 249| 373
2 + Total order of syscalls| 51.6% | 76.5%| 1122|1345

+ Timing adjustment 99.0% | 99.4%| 1230|1460

Table 7: Recovery rate and replay time (in ms). RRC with
different levels of mitigation of data race impact.

100ms

Immediately after the container fork, due to the pause and a
high rate of page copies, the response latency is around 3.5ms.
However, the response latency almost immediately drops to
around 1.5ms and then to 700us, where it remains for the rest
of the epoch.

6.3 Recovery Rate and Latency

This subsection presents an evaluation of the recovery mech-
anism and the data race mitigation mechanism. The service
interruption time is obtained by measuring, at the client, the
increase in response latency when a fault occurs. The service
interruption time is the sum of the recovery latency plus the
detection time. With RRC, the average detection time is 90ms
(§5). Hence, since our focus is not on detection mechanisms,
the average recovery latency reported is the average service
interruption time minus 90ms.

Backup failure. 50 fault injection runs are performed for
each benchmark. Recovery is always successful. The service
interruption duration is dominated by the Linux TCP retrans-
mission timeout, which is 200ms. The other recovery events,
such as detector timeout and broadcasting the ARP requests
to update the service IP address, occur concurrently with this
200ms. Thus, the measured service interruption duration is
between 203ms and 208ms.

Primary failure recovery rate. Three of our benchmarks con-
tain data races that may cause recovery failure: Memcached,
Aerospike, and Tarantool. Running Tarantool with RRC-SE,
through 50 runs of fault injection in the primary, we find that,
due to data races, in all cases replay fails and thus recovery
fails. Due to the high rate of data race manifestation, this is
the case even with the mechanism described in §4.7. Thus,
we use a version of Tarantool in which the data races are
eliminated by manually adding locks.

We divide the benchmarks into two sets. The first set con-
sists of the five data-race-free benchmarks and a modified
version of Tarantool. For these, 50 fault injections are per-
formed for each benchmark. Recovery is always successful.

The second set of benchmarks, Memcached and Aerospike,
is used to evaluate the the data race mitigation mechanisms
(§4.7). For these, to ensure statistically significant results,
1000 fault injection runs are performed with each benchmark
with each setup. The results are presented in Table 7. For both
the recovery rate and replay time, the 95% confidence interval
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Figure 5: Recovery latency (ms) breakdown with RRC-SE
and RRC-LE.

is less than 1%. Without the §4.7 mechanism, the recovery
rate for RRC-LE is much lower than with RRC-SE, demon-
strating the benefit of short epochs and thus shorter replay
times. Enforcing a total order of the recorded system calls in
the after hook is not effective for Memcached but increases
the recovery rate of Aerospike for both RRC setups. However,
with the timing adjustments, both benchmarks achieve high
recovery rates, even with RRC-LE. The total order of the sys-
tem calls is the main factor that increase the replay time. Thus,
there is no reason to not also enable the timing adjustments.

We measured the rate of racy memory accesses in Taran-
tool, Memcached and Aerospike. To identify “racy memory ac-
cesses”, we first fixed all the identified data races by protecting
certain memory access with locks. We then removed the added
locks and added instrumentation to count the corresponding
memory accesses. For Tarantool, the rates of racy memory
writes and reads are, respectively, 328,000 and 274,000 per
second. For Memcached the respective rates are 1 and 131,000
per second and for Aerospike they are 250 and 372,000 per
second. These results demonstrate that, when the rate of ac-
cesses potentially affected by data races is high, our mitigation
scheme is not effective. Fortunately, in such cases, data races
are unlikely to remain undetected.

Primary failure recovery latency. Figure 5 shows a break-
down of the factors that make up the recovery latency for the
server benchmarks with RRC-SE and RRC-LE. With RRC-
SE, the data race mitigation scheme is enabled, while with
RRC-LE it is disabled. The 95% confidence interval margin
of error is less than 5%. Restore is the time to restore the
checkpoint, mostly for restoring the in-kernel states of the
container (e.g., mount points and namespaces). Read log is
the time to process the stored logs in preparation for replay.
Others include the time to send ARP requests and connect the
backup container network interface to the bridge.

The recovery latency differences among the benchmarks
are due mainly to the replay time. It might be expected that
the average replay time would be approximately half an epoch
duration. However, replay time is increased due to different
thread scheduling by the kernel that causes some threads
to wait to match the order of the original execution. This
increase is more likely when the data race impact mitigation
mechanism is enabled since it enforces more strict adherence

footprint| Redis Taran SSDB Mem$ Aero

1x  [409 (1.00)[425 (1.00)[442 (1.00)]573 (1.00)[ 763 (1.00)

2x  |424 (1.04)[460 (1.08)[479 (1.08)]583 (1.02)[836 (1.10)

3x  [463 (1.13)[493 (1.16)[524 (1.18)[609 (1.06) 917 (1.20)
Table 8: The impact of the footprint size, relative to the foot-
print size used in Figure 5, on the primary recovery latency
(in ms) with RRC-SE. The latencies relative to the 1x case are
in parentheses.

to the original execution. A second factor that impact the
replay time is a decrease due to system calls that are replayed
from the log and not executed.

With the current RRC implementation, the total memory
occupancy of the application, i.e., its footprint, has an im-
pact on the recovery latency. Specifically, during recovery
on the backup host, all the pages are copied from the mem-
ory area where they are saved during prior checkpointing to
new locations. Hence, as shown in Table 8, as the footprint
is increased, there is a small increase in the recovery latency.
In these measurements, the footprint was determined by the
final checkpoint size. It should be noted that the impact of
the footprint on recovery latency is a limitation of the current
implementation. An optimization with kernel support would
avoid copying the pages from one memory location to another
by simply updating the page table.

7 Limitations

An inherent limitation is that the mechanism used for mitigat-
ing the impact of data races (§4.7) is incapable of handling
a high rate of racy accesses (§6.3). However, as discussed in

3, such data races are easily detectable and are thus easy to
eliminate, even in legacy applications.

The prototype implementation of RRC is restricted to
single-process containers. This is not a major restriction
since, in most cases, containers are used to run only a sin-
gle process. Cito et al. [30] analyzed 38,079 Docker projects
on Github and concluded that only 4% of the projects in-
volved multi-process containers. This is reinforced by Inter-
net searches regarding this issue that yield numerous hits on
pages, such as [23], that suggest that running single-process
containers is best practice. To overcome this limitation, the
RR library would need to support inter-process communica-
tions via shared memory. Techniques presented in [24] may
be applicable.

RRC also does not handle asynchronous signals. This can
be resolved by techniques used in [43], that delay signal de-
livery until a system call or certain page faults.

The current implementation of RRC only supports C/C++
applications. Adding support for non-C/C++ applications
would require instrumenting their runtimes to track nondeter-
ministic events. RRC does not handle C atomic types, func-
tions, intrinsics and inline assembly code that performs atomic
operations transparently. In this work, such cases were han-
dled by protecting such operations with locks.
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8 Related Work

RRC is related to prior fault-tolerance works on replication
based on high-frequency checkpointing, replication based on
deterministic replay, and network connection failover.

Early work on VM replication is based on leader-follower
active replication using deterministic replay [27]. This is com-
bined with periodic checkpointing in [28], based on use of this
technique for debugging [41]. These works focused on unipro-
cessor systems. Extending them to multiprocessors is imprac-
tical, due to the overhead of recording shared memory access
order for a VM [37,52]. Remus [33] (§2.1) and its follow-on
works [46, 53, 62] focus on multiprocessor workloads and
implement replication using high-frequency checkpointing.
Plover [58] optimizes Remus by using an active replica to re-
duce the size of transferred state and by performing state syn-
chronization adaptively, when VMs are idle. All the Remus-
based mechanisms release outputs only after the primary and
backup synchronize their states, Hence, outputs are delayed by
multiple (often, tens of) milliseconds. COLO [35] compares
outputs from two active VM replicas and synchronizes their
states on a mismatch, resulting in high throughput and latency
overheads for applications with significant nondeterminism.

For process-level checkpointing, libckpt [51] implements
“forked checkpointing,” where the unmodified fork() system
call is used to minimize the pause time for checkpointing.

To handle nondeterminism in parallel applications, as with
RRC, some works rely on replaying the order of synchroniza-
tion operations [32,38,47]. Rex [38] and Crane [32] cannot
handle state divergences caused by data races and require man-
ual modifications of the application source code. Castor [47]
handles data races by buffering outputs until the backup fin-
ishes replaying the associated logs. If divergence due to data
races occurs, the two replicas synchronize their state.

Comparing RRC with Rex, Crane, and Castor, for data-race-
free applications, RRC is likely to have a smaller throughput
overhead. Specifically, Rex reports that under heavy load,
replay may be slower than the original execution and thus the
active replica is a performance bottleneck. With a data-race-
free setup, both Rex and RRC are evaluated with Memcached,
and the performance overheads are 40% vs. 17%.

For applications that have data races, the only relevant com-
parison is with Castor. Castor is likely to have higher response
delays since outputs cannot be released until the backup fin-
ishes replaying the associated log. Additionally, a data race
can also cause Castor to fail. Specifically, if the primary fails
in the middle of state synchronization caused by a data race,
the system fails. Hence, for an application with a high rate of
racy memory accesses, such as Tarantool (§6.3), Castor would
be frequently synchronizing the state and thus have low recov-
ery rate (like RRC) and also high performance overhead. For
applications with a lower rate of racy memory accesses, such
as Memcached and Aerospike, Castor also has lower recov-
ery rate. For example, for Memcached, based on Table 7, the
probability of execution divergence in 50ms is 0.059. Hence,

execution diverges approximately every 0.85s. With our setup,
the time it takes to create and transfer the checkpoint for Mem-
cached is 48ms. Hence, an upper bound on the recovery rate
with Castor is expected be 94.7% versus 99.2% with RRC
(Table 7). A similar calculation for Aerospike, taking into ac-
count 76ms to create and transfer the checkpoint, results in a
recovery rate for Castor of 79.8% versus 99.8% for RRC.

9 Conclusion

RRC is a unique point in the design space of application-
transparent fault tolerance schemes for multiprocessor work-
loads. By combining checkpointing, with externally determin-
istic replay, and container fork, it provides all the desirable
properties of a fault tolerance scheme listed in § 1, with spe-
cific emphasis on low latency overhead, which is critical for
server applications. RRC facilitates trading off performance
and resource overheads with vulnerability to data races and
recovery latency. Critically, the response latency is decoupled
from the frequency of checkpointing, and sub-millisecond
added delay is achieved with all our server applications. RRC
is a full fault tolerance mechanism. It can recover from pri-
mary or backup host failure and includes transparent failover
of TCP connections.

As we have found (§6.3), legacy applications may have
data races. RRC targets data races that are most likely to re-
main undetected and uncorrected, namely, rarely-manifested
data races. Unlike mechanism based strictly on active repli-
cation and deterministic replay [38], RRC is not affected by
data races that manifest during normal operation, long before
failure. For data races that manifest right before failure, RRC
introduces simple mechanisms that significantly reduce the
probability of the data races causing recovery failure.

This paper describes key implementation challenges en-
countered in the development of RRC and outlines their reso-
lution. The extensive evaluation of RRC, based on eight bench-
marks, included performance and resource overheads, impact
on response latency, as well as recovery rate and latency.
The recovery rate evaluation, based on fault injection, sub-
jected RRC to particularly harsh conditions by intentionally
perturbing the scheduling on the primary, thus challenging
the deterministic replay mechanism (§5). With high check-
pointing frequency (RRC-SE), RRC’s throughput overhead is
less than 53% for seven of our benchmarks and 85% for the
eighth. If the applications are known to be data-race-free, with
a lower checkpointing frequency (RRC-LE), the overhead is
less than 49% for all benchmarks, significantly outperforming
NiLiCon [62]. With data-race-free applications, RRC recov-
ers from all fail-stop failures. With two applications with
infrequently-manifested data races, the recovery rate is over
99% with RRC-SE.
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Abstract

Modern data center fabrics open the possibility of microsec-
ond distributed applications, such as data stores and message
queues. A challenging aspect of their development is to ensure
that, besides being fast in the common case, these applications
react fast to changes in their membership, e.g., due to recon-
figuration and failures. This is especially important as they
form the backbone of numerous cloud-powered services, such
as analytics and trading systems, trying to meet ever-stringent
tail latency requirements. As the microservices-oriented ar-
chitecture is the de facto standard for building cloud services,
a single user request translates to a wide fan-out of microser-
vices interactions sitting on the critical path. The outcome is
implacable: the traditionally uncommon events of reconfig-
uration and failures are exacerbated by the fan-out of com-
munication, making user requests commonly experience such
events and quickly impacting the tail latency of the service.
We present uKharon, a microsecond-scale membership
service that detects changes in the membership of applications
and lets them failover in as little as 50us. uKharon consists of
(1) a multi-level failure detector, (2) a consensus engine that
relies on one-sided RDMA CAS, and (3) minimal-overhead
membership leases, all exploiting RDMA to operate at the
microsecond scale. We showcase the power of uKharon by
building uKharon-KYV, a replicated Key-Value cache based
on HERD [24]. uKharon-KV processes PUT requests as fast
as the state-of-the-art and improves upon it by (1) removing
the need for replicating GET requests and (2) bringing the
end-to-end failover down to 53pus, a 10x improvement.

1 Introduction

State-of-the-art data centers form the backbone of today’s
online services, including social networks, search engines,
video streaming, e-commerce and banking platforms. The
ever-increasing popularity of online services and their perva-
sive role manifest in both huge-scale requirements as well
as stringent tail latency to guarantee smooth user interaction.

The tail of a cloud service refers to the latency of the slow-
est requests, and thus provides a limit to the maximum la-
tency experienced by the end user. Despite substantial efforts
in both hardware (e.g., InfiniBand/RDMA [40], RoCE [4],
FPGA [6], Gen-Z [28], CXL [50]) and hardware-accelerated
software [15,21-23,38,52,53,55], keeping the tail short at
large scale is one of the most important challenges in the
cloud computing industry.

Dean et al. [9] shed light on the challenge of building
tail-tolerant software at data center scale. This challenge
mainly stems from the architecture of modern online services,
which are composed of a plethora of layers that communicate
frequently. Despite the scalability and cost benefits of such ar-
chitectures, each end-user request results in a wide fan-out of
interaction across tiers, each of which lies in the critical path
between the service and its reply to the user. The probability
of the traditionally rare reconfiguration and failure events is
thus multiplied by the fan-out of the communication. As a
result, user requests encounter such events more frequently,
which quickly impacts the tail latency of the services.

Existing systems are not capable of handling failures within
microseconds. Key-Value stores like Hermes [26], state ma-
chine replication [44] systems like Mu [2] and Hovercraft [29],
and transactional systems like FaRM [12], process requests
in a few microseconds in failure-free scenarios, but miss the
microsecond envelope when handling failures. Mu and Hover-
Craft take 0.5ms and 10ms respectively to failover. Aguilera
et al. [2] reported that Hermes has a failover of 150ms, while
FaRM mentioned ZooKeeper [20], a widely used distributed
coordination service that offers at-best millisecond failover,
for its membership management.

This paper builds on the observation that a crucial step
in making tail-tolerant microsecond applications is reacting
fast to failures. We thus propose uKharon', a membership
service tailored to the microsecond scale. Apart from acting
as a distributed membership storage for (distributed) applica-
tions, uKharon monitors their nodes, detects their failures and

1y stands for microsecond, and Kharon is the carrier of the souls of the
dead in Greek mythology. It is pronounced ma - ka - ron.
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changes their membership within 50ps. When uKharon itself
experiences a failure, it recovers within 64us. uKharon partic-
ularly benefits applications with efficient state transfer which
can swap a faulty replica with a hot one in microseconds, for
example via shadow replication. It targets cloud services that
require seamless reconfiguration for fault tolerance and scala-
bility, such as indexes, datastores and transactional systems.

The key to the performance of uKharon is the careful de-
sign of three fundamental components, all of which leverage
RDMA to operate at the microsecond scale. First, uKharon
achieves microsecond failure detection by employing a multi-
level failure detector. It distinguishes the failures related to
the application (e.g., segmentation faults), from those related
to the kernel (e.g., driver faults), and failures related to the
hardware (e.g., RDMA NIC faults), employing for each a
different failure detector. Second, uKharon decides on mem-
berships using a consensus engine which solely relies on one-
sided RDMA verbs. This engine takes advantage of RDMA
Compare-and-Swap (CAS) to handle leader changes within
10ups. Third, uKharon provides membership leases that add
minimal overhead to the end application and last ~20us. As
a result, our membership service combines typically opposing
forces: having applications with low-overhead dynamicity in
failure-free scenarios and very fast failover upon failures.

We showcase the benefits of our membership service by
building uKharon-KV, a replicated in-memory KV-cache
based on HERD [24]. It uses uKharon to track the set of
nodes and react to node failures. We compare uKharon-KV
against HERD+Mu [2] (i.e., HERD replicated by Mu), a
system which—to the best of our knowledge—achieved the
lowest replication latency to date. Our evaluation shows that
uKharon-KV processes PUT requests as fast as HERD+Mu in
failure-free periods. Moreover, thanks to its leasing mecha-
nism, uKharon-KV manages to spare the replication of GET
requests, an optimization that is algorithmically impossible
in HERD+Mu. As a result, uKharon-KV GETs are 31.8%
faster than HERD+Mu’s. uKharon-KYV, though, shines in the
event of failures, achieving an end-to-end failover of 53us,
improving on HERD+Mu’s failover of 531 s by up to a factor
of 10.

In a nutshell, we present uKharon, the first ever member-
ship service suitable for the needs of tail-tolerant microsecond
applications. We make the following contributions:

¢ A multi-level failure detector for the microsecond scale.

* A consensus engine that relies on one-sided RDMA CAS
to change leader within microseconds.

* Microsecond leases that have minimal impact on the
performance of the end application.

» uKharon-KYV, a replicated KV-cache which outperforms
the previous state of the art.

¢ The source code of uKharon is available at
https://github.com/LPD-EPFL/ukharon.

The rest of this paper is organized as follows: Section 2
introduces background concepts. Section 3 gives an overview
of uKharon’s design. Sections 4, 5 and 6 discuss the failure
detection, consensus and leasing components, respectively.
Section 7 reports on the performance of uKharon. Finally,
Section 8 discusses related work and Section 9 concludes.

2 Background

2.1 Membership Service

To achieve resilience, long-lived distributed systems must
be dynamic. Many systems [30, 31, 39,45, 47] achieve dy-
namicity by relying on a coordination substrate, such as
ZooKeeper [20] or etcd [14]. Among the various services
(e.g., atomic locks, registers) these substrates offer, dynamic-
ity is fundamentally addressed via their membership service.

A membership services offers dynamicity both in graceful
executions and upon failures. In the former case, it serves join
and leave requests issued by processes that want to become
part of a distributed application or exit it. In the latter, it de-
tects process failures and reacts to them. All these events are
reflected through new configurations (called views or simply
memberships). Essentially, a membership service acts as a
storage of configuration information, keeping track of how
the set of processes evolves, and exposes this information.

Typically, membership services rely on consensus [16] to
establish a totally ordered sequence of views. Such services,
including Zookeeper and etcd, offer strong semantics as all
processes using the membership service transition through
the same sequence of views.

Consensus-based membership services also offer real-time
semantics. Apart from knowing the sequence of member-
ships, it is also important to know which is the (single) active
membership. To understand why this real-time property is
useful, consider the following example that incorrectly builds
a cache storage solely relying on the sequence of member-
ships: The cache serves READ and WRITE requests. Initially,
membership M| = {S } designates server S; as responsible
for the cache (i.e., S| stores it and serves requests). Eventu-
ally, a second membership M, = {S,} replaces S| with 5.
S», being part of M, proceeds with serving clients’ requests
and updates the content of the cache. At the same time, S is
unaware of M, and continues serving clients’ requests as well.
As a result, a client that is also unaware of M, and reads from
S1 will get stale data. This example demonstrates a violation
of consistency. It shows that total order of memberships does
not provide any real-time guarantees by itself.

Membership services provide real-timeness by making out-
dated memberships nonoperational. A commonly used mech-
anism to achieve this property is the use of a distributed
invalidation protocol. Another solution is to rely on leases.
With leases, processes are forced to periodically check the
active membership, execute operations in this membership,
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and abort operations that span over multiple memberships.
uKharon provides real-timeness via leases.

2.2 RDMA

Remote Direct Memory Access (RDMA) [49] is a networking
technology that allows processes to access the memory of a re-
mote machine without involving the CPU of the latter. By im-
plementing several layers of the networking stack in hardware
and relying on kernel bypass, RDMA achieves microsecond
inter-machine communication. It allows applications within
the data center to communicate in as little as 0.9us [25]. This
technology is supported by different fabrics such as Infini-
band [49] and commodity Ethernet via RoCE [4].

Applications communicate over RDMA by relying on prim-
itives called verbs. There exist one-sided verbs that include
READ, WRITE and Compare and Swap (CAS) verbs and
two-sided verbs, such as SEND and RECV verbs. One-sided
verbs let a process read, write and apply atomic transforma-
tions to a remote machine’s memory without involving its
CPU. Two-sided verbs are similar to message passing and
involve both communicating sides. They let processes send
and receive memory buffers. Communication in RDMA can
notably occur over established Reliable Connections (RCs) or
over Unreliable Datagrams (UDs). While the former provide
FIFO semantics, the latter trade reliability for better perfor-
mance and support for message multicast [49].

2.3 Communication Model

uKharon is designed for data centers. It is safe under asyn-
chrony and live under partial synchrony [13]. That is, to
make progress, uKharon assumes a Global Stabilization Time
(GST), unknown to the processes, such that from GST on-
wards there is a bound A on communication and processing
delays. This is is a realistic assumption, as data center fabrics
are not asynchronous in practice [3, 35, 54]. Additionally, our
system relies on bounded clock drift for safety, i.e., durations
are approximately the same across all processes. uKharon
also assumes crash-stop failures: processes may fail by crash-
ing, after which they stop executing. Finally, we assume
that network partitions, which affect uKharon’s liveness, are
eventually resolved by the data center administrators.

3 Design Overview

3.1 Architecture

Figure | gives an overview of uKharon. Our system, as a
membership service, runs on application nodes as well as a
set of dedicated nodes called coordinators.

Central to uKharon is uKharon Core, a single-threaded li-
brary that hosts monitoring functionalities of the membership
service. This includes detecting failures of member nodes

Application node Coordinator
. while is leader:
. . Join upon join/leave/failure
Application logic [[Teave propose membership
broadcast membership ; >
S —
R i
~ s, active
\ (from broadcasts) | M | Mo I I

RDMA-exposed
memberships (views) |[H

view
Process cleanup
broadcast failure

Figure 1: Overview of uKharon

(including coordinators), listening for failures and new mem-
berships, as well as renewing leases. The application receives
these events via thread-safe accessors: a stream of failures,
a stream of memberships and a method Active (M) — bool
which checks whether a given membership M is active.

The generation and storage of memberships is delegated
to coordinators. Coordinators achieve fault tolerance through
consensus. One of them is the leader, which processes
join/leave requests from both application nodes and coor-
dinators, proposes new memberships and broadcasts decided
memberships which are picked up by the uKharon Core in-
stance running on every node. The rest of coordinators help
the leader decide and replicate the sequence of memberships.
Finally, coordinators assign each member a unique identifier.

Running uKharon Core on both application nodes and co-
ordinators helps bootstrap the membership service. uKharon
Core learns about the new memberships from coordinators,
but coordinators require the membership service to learn
about each other. Similarly, coordinators rely on uKharon
Core to detect failures of application nodes or themselves.

Part of uKharon’s failure detection logic resides in the ker-
nel, outside of uKharon Core. It consists of a kernel module
hooked to Linux’s process cleanup routine. This module can
be enabled by the application logic and broadcasts a failure
notification (called deadbeat) when the application crashes.

New memberships are merely broadcast by coordinators,
putting the burden of detecting the active membership to
the application nodes. uKharon Core is responsible for
bringing real-timeness to applications. It reads the RDMA-
exposed memberships at a majority of coordinators to deter-
mine whether a membership has been superseded by a new
one or whether it is still active. The active membership is
leased for a limited amount of time, in our case ~20us.

3.2 Communication

uKharon relies extensively on the performance of today’s
RDMA-enabled fabrics to achieve its microsecond latency
target. It leverages one-sided RDMA verbs, two-sided ones
(i.e., HERD-style RPC [24]), as well as RDMA Multicast. Co-
ordinators run consensus using RDMA Reliable Connections
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(RCs). In particular, coordinators establish all-to-all con-
nections among themselves and communicate using RDMA
READ, WRITE and CAS. Additionally, coordinators use
RDMA Multicast, which is backed by RDMA Unreliable
Datagrams (UDs), to notify all nodes about new member-
ships. uKharon also uses RDMA Multicast to emit failure
notifications. uKharon Core relies on RDMA READs over
RCs to retrieve the active membership from coordinators and
to detect the failure of remote nodes. Finally, processes send
Jjoin and leave requests to the coordinator leader using RPC.

3.3 Challenges

Our system is designed for applications that operate and
failover at the microsecond scale. To do so, uKharon meets
two important design goals. First, it itself operates at the mi-
crosecond scale, meaning that it is able of changing the active
membership within as few as 50us. Second, we ensure that
uKharon Core has minimal performance overhead on the end
application it is bundled with. To meet these goals, uKharon
is structured around three major components:

Failure detection. Efficient failure detection is the first step
towards fast failover. Conventional wisdom suggests that
there is a trade-off between the speed and accuracy of a fail-
ure detector. We work around this limitation by building a
hierarchy of RDMA-tailored failure detectors suited for the
microsecond scale. Our hierarchy detects failures within a
few tens of microseconds, as we explain in Section 4.

Consensus engine. The second step of failover is agreeing
on the new membership. Existing leader-based consensus
engines, although optimized for the microsecond scale, strug-
gle to change their leader at this time scale. In Section 5,
we explain how our microsecond consensus engine changes
leader in microseconds. This gives our design the unique
property that a coordinator failure—especially failure of the
coordinator leader—has negligible effect on the failover time.

Leases. As far as the membership service is concerned, the
last step towards failover is updating the active membership.
However, the new membership cannot become active before
leases on previous memberships have expired. Thus, the
longer the leases, the higher the failover time. On the other
hand, short leases can result in application overhead, as they
have to be checked in the application’s critical path and re-
newed in time before expiring. In section 6, we explain how
uKharon manages to have ~20us leases with virtually no cost
for the end application and how leases can scale to hundreds
of machines for an extra ~20us.

4 Microsecond Failure Detection

uKharon relies on microsecond failure detection to notify
nodes about member failures and to trigger the generation of

new memberships. In this section, we describe uKharon’s
failure detection scheme.

4.1 Multi-level Failure Detection

A practical failure detector aims at being as complete and as
accurate as possible. A complete and accurate failure detector
is able to detect all failures and not have false positives, re-
spectively. Completeness without accuracy causes problems
in practice, as false positives trigger new memberships which
require distributed applications to take further action (e.g.,
rebalancing data among nodes).

Commonly, failure detectors rely on timeouts for their oper-
ation. However, timeouts are hard to set correctly: if they are
too low, the failure detector may experience instability (e.g.,
oscillating behaviors). That explains why most systems set
the timeouts to a safe high-enough value. In the microsecond
scale this problem is magnified, as small execution delays
(e.g., kernel jitter) can take several microseconds.

Our failure detector follows a pragmatic approach: it avoids
timeouts when possible. To achieve this, we are inspired by
Falcon [35], and identify four levels of failures: (1) userspace
failures (e.g., segmentation faults, out of memory errors, un-
caught exceptions) that cause the application to abort, (2)
kernel failures (e.g., cores hanging in the kernel, kernel oops
caused by driver crashes) that impede the application’s exe-
cution, (3) catastrophic failures (e.g., power failures, RDMA
NIC failures) that prevent communication with the applica-
tion’s host, and (4) byzantine failures (e.g., stack overflows,
mercurial cores [19]) that affect the application state. Each of
the first three levels is handled by uKharon via a specialized
failure detector. We do not address Byzantine failures.

4.2 uKharon’s Failure Detectors

We now explain how uKharon’s specialized failure detectors
work, depending on the type of failure.

Userspace failures. They are handled by the Linux kernel.
The application registers to the kernel to enable a deadbeat,
which is a failure notification broadcast by the kernel upon
the death of the process. This registration happens by means
of the prctl system call that the application calls early in
its execution. The system call includes the node’s identifier
and modifies the process descriptor (Linux’s task_struct)
with a flag that the kernel checks during the cleaning routine
of the process. In Linux, when a process crashes, control is
transferred to the kernel which starts executing the process
cleaning routine. If the flag is set, the kernel broadcasts a
failure notification that includes the specified identifier. To
achieve this functionality, we extend the prctl system call
and modify the process cleaning routine that is part of the
kernel’s exit system call. The task of broadcasting the crash
notification is delegated to a kernel module. This module uses
the kernelspace RDMA driver to broadcast crash notifications
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which are polled by all instances of uKharon Core. As this
failure detector does not use timeouts, it has no false positives.

Kernel failures. To detect application failures caused by the
kernel, we rely on the way RDMA is handled in userspace. An
application registers memory to an RDMA device by issuing
ioctl system calls on a file descriptor. By design, the Linux
kernel destroys that file descriptor and thus disables remote
access to this memory at the end of the process’ cleaning
routine. If this cleaning routine runs, the failure is caught
by the previous failure detector. Otherwise, the memory
will remain remotely accessible while the execution of the
application is suspended (and the kernel is dying).

For the operation of this failure detector, processes are
arranged in a logical ring where every process monitors its
successor. Our system uses a local heartbeat counter in a sim-
ilar fashion to Mu’s detector [2]. uKharon Core increments
this counter to indicate that the process is alive. This counter
is read by the predecessor process. If a process RDMA-reads
the same value twice, it reports its successor as having failed.

A process would be wrongly detected if it were unable to in-
crement its counter between two consecutive reads. Thus, we
take special care to ensure that processes always increment
their counters faster than the time delay between two con-
secutive reads. Importantly, we deploy (the single-threaded)
uKharon Core in its own dedicated physical core. We resort
to a custom kernel compiled with the NO_HZ_FULL option,
which disables regular timer interrupts [37] on the dedicated
core and and thus reduces the kernel jitter towards uKharon
Core. Additionally, we boot this kernel with the isolcpus
parameter, which prevents other userspace processes from
sharing the dedicated core with uKharon Core. In exper-
iments, the interval we observed between two counter in-
crements under heavy load was 5us most of the time and
never more than 15us. To account for unexpected jitter (e.g.,
thermal throttling), we make processes wait 30us after the
completion of an RDMA READ before issuing the next one.
As RDMA READs are issued sequentially, network delays
do not negatively impact the accuracy of this failure detector.

Catastrophic failures. uKharon relies on a timeout-based
scheme to detect failures that prevent machines from commu-
nicating. We set the timeout to 1ms, which is 2 — 3 orders of
magnitude higher than the common case latency of modern
data center fabrics. As reported by Li ef al. [36], Ims is safe
even in case of network congestion.

The detector works by having processes periodically broad-
cast a heartbeat and poll for heartbeats from others. Processes
keeps track of the set of processes they recently received a
heartbeat from. They compare this set with the current mem-
bership and report which processes they consider failed to the
coordinator leader. Then, the leader constructs a connectiv-
ity graph based on the reported link states and changes the
membership to approximately match the maximum clique
in which it is included. Thus, our membership service en-

forces all-to-all connectivity among the members and does
not expose any information regarding network partitions. A
systematic treatment of network partitions is out of our scope.

The first two detectors broadcast failure notifications over
RDMA-multicast, which offers better scalability than broad-
casting using Reliable Connections. Nevertheless, RDMA-
multicast is backed by Unreliable Datagrams, thus failure
notifications can be lost under high network load. Dropping
these notifications is safe, as uKharon-Core rebroadcasts a
failure notification until a new membership excludes the failed
node.

5 Microsecond Consensus

In this section, we present a state-of-the-art consensus engine
that is tailored for the needs of uKharon and powers its co-
ordinators. Our engine is efficient regardless of failures: in
the absence of failures, it decides in one RDMA delay (by
issuing an operation to a majority of processes in parallel),
while it decides in one additional RMDA delay in the event of
a failure. It uses a slightly modified version of Paxos based on
the observation that the original algorithm contains RPCs that
can be emulated with RDMA CAS operations. In the rest of
the section, we intuitively describe our consensus algorithm
and discuss implementation details. Appendix A provides its
pseudocode and a proof of its correctness.

5.1 Consensus and Paxos

Consensus is a fundamental problem in distributed computing.
Informally, each process proposes a value and eventually all
processes irrevocably agree on one of the proposed values.
Processes agree on a sequence of values and totally order
them by running multiple instances of consensus.

Several algorithms solve consensus in the partially syn-
chronous model. Many are variants of Paxos [32]. In Paxos,
processes are divided in two groups: proposers and acceptors.
Proposers propose a value for decision and acceptors accept
some proposed values. Once a value has been accepted by a
majority of acceptors, it is decided by its proposer.

Intuitively, Paxos is split in two phases: the Prepare phase
and the Accept phase. During these phases, messages from
the proposer are identified by a unique proposal number. The
Prepare phase serves two purposes. First, the proposer gets a
promise from a majority of acceptors that another proposer
with a lower proposal number will fail to decide. Second, the
proposer updates its proposed value using the accepted values
stored in the acceptors. This way, if a value has been decided,
the proposer will adopt it. The prepare phase can also abort if
any acceptor in the majority previously made a promise to a
higher proposal number. If the proposer manages to complete
the Prepare phase without aborting, it proceeds to the Accept
phase. In this phase, the proposer tries to store its value in a
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1 | def cas-rpc(x):
2 expected = fetch_state()
1| [# Paxos’s RPCs pattern 3 if not comp'are(x, expected):
4 return proj(expected)
2 | def rpc(x): -
. 5 move_to = f(expected, x)
3 if compare(x, state): -
6 old = state.cas(expected,
4 state = f(state, x)
5 return proj(state) . ~ move_to)
7 if old == expected:
8 return proj(move_to)
9 abort

Algorithm 1: Paxos’s RPCs turned into CAS-based RPCs.

majority of acceptors. If it succeeds (i.e., a majority accepted
the value), it decides on that value.

5.2 One-sided Paxos

Paxos uses RPC in a very specific form. The accep-
tors’ state consists of only three variables: min_proposal,
accepted_proposal and accepted_value. In both
phases, acceptors atomically update these values based on the
proposer’s input and return some of them.

Algorithm | proposes an obstruction-free transformation
to turn Paxos’s RPCs into purely one-sided conditional writes
using RDMA CAS. Paxos’s RPCs follow the pattern seen in
rpc. The acceptor executing the RPC compares the received
value X to its state (stored in state). If the comparison is
successful, the acceptor updates its state (shown with function
) using the provided value x. Finally, the acceptor uncondi-
tionally returns part of its state (shown with function proj).

The pattern presented in cas - rpc allows RDMA to emu-
late rpc while solely relying on one-sided verbs. Opposite to
rpc, which is executed on the acceptor’s side, cas- rpc is ex-
ecuted on the proposer’s side. To execute the one-sided RPC,
the proposer first needs to know the state that is stored in
the memory of the acceptor. This value can either be guessed
(e.g., using a previous value of state) or fetched (e.g., using
RDMA READ, as shown in line 2). Then, the proposer exe-
cutes the comparison locally (line 3) and decides whether to
continue or terminate. If the comparison succeeds, the pro-
poser proceeds with updating the state of the acceptor. It is
this update that utilizes CAS 2 Inline 7, if the CAS succeeds,
the acceptor’s state has been updated successfully with the
value of move_to. Otherwise, state remains unchanged.

When the RDMA CAS succeeds, i.e., in the absence of con-
tention, both rpc and cas- rpc are equivalent (see Appendix
A.2). However, if the RDMA CAS fails, cas - rpc will abort
while rpc would not. In this case, rpc and cas-rpc are
not equivalent, but this does not violate the correctness of
Paxos. The reason is that Paxos tolerates an arbitrary number
of proposer failures and that aborting the RPC and starting
over is indistinguishable from such a failure.

2Asa reminder, variable.cas(expected, new) atomically checks
if variable equals expected and sets variable to new if this is the case.
The operation always returns the initial value of variable.

min_proposal
accepted_proposal
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accepted_value
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Figure 2: uKharon’s Consensus Engine with its RDMA-
exposed memory for multiple instances of consensus (left)
and a state machine for a single instance of consensus (right).

5.3 uKharon’s Consensus Engine

We now explain how to make the variant of Paxos described
in Section 5.2 practical and compare it with Mu [2], a state-
of-the-art consensus engine.

5.3.1 Practical Considerations

Leader election. To avoid the contention rising from multiple
concurrent proposers, our consensus engine adopts the same
leader election scheme as Mu. The process with the lowest
identifier among the coordinators considered alive is elected
as the leader. In the event of a partial network partition, this
scheme can elect multiple leaders. For example, if coordinator
(, is the only one unable to reach Cy, it will think of itself
as the leader, while other coordinators will consider C; as
their leader. Having multiple leaders cannot lead to multiple
values being decided, i.e. safety is always preserved. Leader
contention can, however, prevent the engine from being live.
Thus, a leaders that fails to decide uses a randomized backoff
before proposing until the partition is resolved.

Pre-preparation. Coordinators decide on a sequence of val-
ues by running consensus on a sequence of slots, as shown
in Figure 2. It requires two RDMA delays for each slot: one
for the Prepare and another for the Accept phase (shown with
horizontal arrows in the figure). A stable leader can prepare
slots in advance and only run the Accept phase to decide. In
this case, the leader decides in a single RDMA delay. The
leader uses the time spent waiting for the Accept phase to
complete on a slot to run the Prepare phase for the next one.
Thus, it always maintains one pre-prepared slot (depicted in
the second consensus slot of Figure 2), with no latency over-
head. Switching to the new leader requires re-preparing the
next slot. As an optimization, the new leader predicts that
the last slot had been prepared by the previous leader and
uses this prediction as the expected value of the RDMA CAS.
With this approach, the new leader manages to re-prepare the
next slot in a single RDMA delay instead of two.

CAS size limitation. Algorithm | assumes that the consensus
state fits within a single CAS. Current RDMA NICs only
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support CAS up to 8 bytes. We set both min_proposal and
accepted_proposal to be 2 bytes each’. The remaining 6
bytes are dedicated to the accepted_value.

Our consensus engine uses indirection to overcome the
limited size of the accepted_value and store uKharon’s
memberships. Instead of deciding on the membership itself,
coordinators decide on its location in memory. First, the pro-
poser RDMA -writes the membership to a part of acceptors’
memory dedicated to membership proposals (see Figure 2)
to which it has exclusive write access. Then, the proposer
runs the Accept phase where it proposes its own identifier
(Cy in the figure). If the Accept phase succeeds at a majority
of acceptors, then the proposer decides. Thanks to the FIFO
semantics of RDMA RCs, if the last RDMA operation (i.e.,
the Accept phase CAS) succeeds, the previous RDMA oper-
ation (i.e., storing the membership with an RDMA WRITE)
also succeeded. The two RDMA operations combined do not
execute atomically, yet a coordinator cannot have accepted an
identifier without knowing its associated membership.

5.3.2 Comparison with the State-of-the-art

Many systems, such as Mu [2], DARE [41] and APUS [51]
study consensus over RDMA. They primarily focus on im-
proving the throughput and latency of common case execu-
tions, thus achieving consensus in a few microseconds. How-
ever, these systems have failovers ranging from 0.5ms (in Mu)
to 10s or 100s of ms (in DARE and APUS, respectively).
Mu has the best performance in failure-free executions
among competition as it solves consensus in ~1.4pus. It relies
extensively on RDMA permissions. During its Prepare phase,
a proposer asks acceptors for the exclusive write permission
to their memory and waits for a majority of replies. This step
guarantees that only one proposer can write to an acceptor at
a time. In the Accept phase, the proposer decides by merely
writing to a majority of acceptors. As acceptors give write
permissions to a single proposer at a time, no two concurrent
proposers can successfully write to a majority of acceptors
and decide on different values. Since WRITE is the most
efficient RDMA verb and the Prepare phase runs only once
per leader change, Mu is optimal in failure-free executions.
The Accept phase of our algorithm relies on a WRITE
followed by a CAS. Importantly, these one-sided operations
have lower tail latency compared with the two-sided verbs
present in DARE and APUS. The CAS increases the decision
time from 1.4pus to 2.9us compared with Mu. When it comes
to a leader change, Mu’s permission change mechanism re-
quires approximately 250us, since it constitutes a control path
operation that involves a system call and a reconfiguration of
the NIC. In our consensus engine, the additional CAS lets co-
ordinators change leader in under 10us. Thus, our algorithm
is designed for short tail latency and makes the failure of the

3 Appendix A.6 discusses how to prevent overflows after 2'¢ failed at-
tempts to decide on a slot by switching from CAS-based to two-sided RPCs.

coordinators’ leader no more important (latency-wise) than
the failure of any other node.

6 Microsecond Real-timeness

In addition to reacting to failures and deciding on views,
uKharon lets applications track the active membership via
the Active method. While this information is essential for
consistency, it must not burden the end application. In this sec-
tion, we describe the challenge of making Active’s overhead
negligible while preserving microsecond view changes.

6.1 The Active Method

uKharon exposes real-timeness to end applications via the
Active(Membership)—bool method. If Active (M) re-
turns true, we say that M is active at some point between
the call and return of the method. Active satisfies three im-
portant properties. First, there are no two overlapping active
memberships. Second, after a membership M is active, no
memberships older than M become active. Third, the active
membership converges to the latest decided membership.
Intuitively, processes use the Active method to determine
the membership they should be executing operations in. When
coordinators decide on a new membership M’, a process p
may stay in an older membership M due to a delay in receiving
M'. Calling Active (M) will eventually return false at p,
thus letting it realize that it misses the latest membership M’.
To ensure consistency, an application typically calls Active
once before starting an operation and a second time before
committing it, only committing if both calls return t rue.

6.2 Leases

uKharon uses leases for efficiency. We proceed incrementally,
first describing an implementation of Active without leases,
before moving to a more efficient lease-powered scheme.

The basic implementation of Active requires communi-
cation in every invocation. Let M be the k-th membership
decided by the coordinators and assume a process p invokes
Active(M). In essence, Active declares that M is active
if it can conclude that no newer membership M’ has been
decided. To this end, the process RDMA-reads the k+ 1-th
consensus slots at coordinators and waits for a majority of
replies. If all replies are empty, then the k 4 1-th membership
has not been decided, meaning that M is (still) active at some
point between the invocation and return of the method. If, on
the other hand, at least one of the replies is non-empty it is
inconclusive whether M has been superseded by M'. In case
M’ has been decided before p issues the READSs, then at least
one of the replies must be non-empty, but the opposite is not
always true. For safety, Active returns false if at least one
of the READs on the next consensus slot is non-empty.
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1 | leased_membership = L; tyu = 0; tew = 0

def Active(M) — bool: # M is always a decided membership
t = hw_timestamp()
if leased_membership != M:
if majority_active(M):
leased_membership = M; tyu: = t + 8; tews = toan
else: # Check/extend lease on M
if t in [tyer, tew): return True
if majority_active(M):
teg =t + 0
return t > tgu,
return False

# First-time lease on M

——
W= OO0 & Ww

Algorithm 2: Leased active membership.

A lease refers to a membership and has a start and an expi-
ration date. A lease guarantees its holder that its associated
membership will remain active until it expires. In our system,
leases are created by uKharon Core and last 8 ~ 20us.

Algorithm 2 provides an efficient alternative implementa-
tion of Active that relies on leases to reduce communication.
It starts by taking a hardware timestamp ¢ (line 4) and then
checks if a lease on M already exists (line 5). If no lease
exists (lines 6-7), the method checks for a newly decided
membership by contacting a majority of coordinators. If no
membership newer than M could have been decided (i.e., all
replies are empty), it creates a lease on M (line 7) that starts
at £ + 3 and has no duration. This prevents overlapping ac-
tive memberships since any lease that processes could hold
on a previous membership M’ < M will have expired before
M becomes active. In case a lease on M already exists, the
method tries to use it in order to avoid reaching the coordi-
nators (line 9). If it cannot use it, it tries to extend the lease
(line 11) by checking the coordinators. It returns True only if
leases on previous memberships have expired (line 12), which
takes—in the worst case—0 to happen. As a result, leases
affect the speed at which memberships can change, justifying
the desire for a small lease duration. Section 7 demonstrates
that leases of & & 20us are feasible in practice.

This efficient implementation of Active renews its lease
on demand. As long as its lease is valid, the method merely
takes a hardware timestamp—which takes a few tens of
nanoseconds—and returns immediately without reaching the
coordinators. The latency overhead of Active to the applica-
tion that invokes it is thus very low. Communication with the
coordinators is only necessary when leases expire and have
to be renewed, which results in a spike in Active’s latency.
In practice, uKharon Core renews leases in the background
to ensure that—when the membership remains unchanged—
Active is not delayed by the calls to majority_active.

uKharon does not rely on operational leases for either live-
ness or safety. Timely renewal of leases is only a way to
reduce the latency of Active as Algorithm 2 would work
even with zero-duration leases. uKharon relies on bounded
clock drifts for safety, as opposed to clock synchronization.
This ensures that durations are approximately the same across

all processes, thus preventing overlapping memberships. Ap-
pendix C includes a microbenchmark evaluating the clock
drift of actual hardware and gives an overestimated drift that
is no more than 0.001% of the lease duration. Thus, clock
drift is accounted for by making leases last a few nanoseconds
less than their nominal value. As drift is reset on each lease re-
newal, it does not accumulate over time. Therefore, no matter
how long a system is up for, its operation remains unaffected
by the clock drift. A proof of correctness of uKharon’s leases
is given in Appendix B.

6.3 Extensions

Adaptive leases. So far, we have assumed a fixed lease dura-
tion 8. Network delays greater than & render leases useless
as, every time the lease is extended (line 11), #,,,4 is always
in the past. In this case, Active always contacts the coordi-
nators. In order to work under partial synchrony and avoid
this scenario, we extend the leasing mechanism as follows:
Coordinators store the lease duration for a given membership
along with the membership itself. An application node that
wants to increase the lease duration contacts the coordinator
leader. This results in a new compatible membership that
is identical to the previous one apart from the lease dura-
tion. Compatible memberships receive special handling by
uKharon Core in order to ensure that—when going from one
compatible membership to another—Active does not wait
for leases on the previous membership to expire. Also, if
the latest membership M is not compatible with the previous
one, invocations to Active (M) return false until all possibly
ongoing leases on previous memberships have expired.

Lease caches. Active reaches a majority of coordinators to
renew its lease, which scales badly as the number of appli-
cation nodes increases. uKharon solves this issue with an
intermediate lease renewal layer, the lease caches. These
caches use the Active method to lease memberships for A
(by reading from a majority of coordinators). In turn, applica-
tion nodes use leases that last for 6 and a modified version of
Active. This version differs from the one presented in Al-
gorithm 2 in the majority_check calls, which are replaced
with RPCs to a single lease cache. As a result, application
nodes reduce the communication cost required to renew their
lease by a factor of—at least—3 (the typical number of coor-
dinators). However, lease caches increase the failover time
of applications by at least A. The reason is that when the
coordinators change the membership, the Active method of
caches waits A before making the new membership active.
At the same time, the Active method of application nodes
that is directed to some lease cache, waits & before making
the new membership active. Thus, the overall time from the
moment a new membership is decided until application nodes
start using it jumps from (at least)  to (at least) A+ 8.
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7 Evaluation

We evaluate the various performance traits of uKharon and
verify its suitability as a membership service for microsecond
applications. We aim to answer the following:

* How much does uKharon increase the latency of end
applications and what is its impact on their throughput?

* How fast does uKharon respond to failures?

* How can uKharon be leveraged to build replication pro-
tocols and what performance can they achieve?

CPU 2x Intel Xeon Gold 6244 CPU @ 3.60GHz
(8 cores/16 threads per socket)
NIC Mellanox ConnectX-6 MT28908

Switch Mellanox MSB7700 EDR 100 Gbps
OS/Kernel Ubuntu 20.04.2/5.4.0-74-custom
RDMA Driver Mellanox OFED 5.3-1.0.0.1

Table 1: Hardware details of machines.

We evaluate uKharon in a 8-node cluster, the details of
which are given in Table 1. The custom kernel sets the
NO_HZ_FULL option and uses the isocpus boot parameter,
as explained in Section 4.2. Our dual-socket machines are
NUMA and their RDMA NIC lies on the first socket. For
this reason, we ensure that all threads during our experiments
execute on cores of the first socket. We also make all threads
exclusively use the memory bank closest to this socket.

Our implementation measures time durations using the
clock_gettime function with the CLOCK_MONOTONIC pa-
rameter. The function uses the TSC clocksource of the Linux
kernel, which offers efficient and accurate timestamping [43].
Appendix C discusses details regarding the drift and syn-
chrony of TSC in symmetric multiprocessing (SMP) systems.

Finally, in all experiments we deploy 3 coordinators.

Applications. We integrate uKharon with HERD [24]. HERD
is a non-replicated microsecond-scale RDMA-based KV-
cache. Clients send requests to a HERD server by RDMA-
writing to a dedicated buffer that the server has allocated for
them. Requests contain an 8-byte key and are either PUTs or
GETs. PUTs additionally contain the value to be stored for the
specified key. The server discovers new client requests by
polling its local memory, executes the requests locally and
then replies to the clients using RDMA UDs. We also lever-
age uKharon to build uKharon-KV, an extended version of
HERD which supports replication. We compare our solution
with HERD replicated by Mu (HERD+Mu) [2] which—as far
as we know—offers the lowest replication latency to date.

Implementation effort. We implemented uKharon on top of
our own RDMA framework. uKharon Core and the consensus
engine span 4448 and 1324 lines of C++, respectively. The
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Figure 3: Percentage of timely lease renewal depending on
the lease duration, network load and memory load.

kernel module of the deadbeat failure detector is 404 lines of
C. uKharon-KV extends HERD by 1498 lines of C++. The
only unimplemented features are clique-based memberships
(Section 4.2) and adaptive leases (Section 6.3).

7.1 Overhead Induced by uKharon

Latency Overhead. Applications bundled with uKharon
Core rely heavily on its Active method. As long as (the
background running) uKharon Core renews the lease on the
active membership in time, the Active method adds negligi-
ble latency overhead to the application. We experimentally de-
termine that the 99th percentile latency for invoking Active
is 38ns when the lease is renewed in time, which is the time
it takes to fetch the hardware timestamp and compare it with
the expiration date of the lease. Fluctuations in the network’s
latency or execution delays when uKharon Core renews the
lease (e.g., due to cache misses) induces additional latency to
the application, as explained in Section 6.2.

Figure 3 shows how the duration of leases affects their
timely renewal. We run 1-minute experiments under a steady
membership with 32 lease renewers contacting coordinators
directly and lease durations ranging from 18 to 30us. Each
machine has a maximum memory bandwidth of 480Gbps and
a maximum network bandwidth of 100Gbps. We apply vari-
able network and memory load by running stress-ng [27]
and perftest [42] on the first socket of our machines.

When the network load is maximum (bottom right figure),
less than 12% of the calls to Active return immediately, irre-
spective of the memory load. For network loads of 30 — 80%
(other figures), the memory load progressively affects lease
renewal. Maximum memory load causes expired leases when
lease duration is shorter than 27us. For most other configu-
rations, a duration greater than 23us suffices. For example,
with 80% network and 50% memory load, lease renewal fails
0.0011% of the time, which corresponds to Active induc-
ing latency every 300 out of 1.5 billion invocations. In other
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Figure 4: Impact of uKharon on HERD’s throughput for
different batch sizes and numbers of cores. Full bar shows the
throughput w/o uKharon; labels show uKharon’s overhead.

words, the 99.999th percentile of Active’s latency is 2us.
We get similar (omitted) results when an application renews
its leases through lease caches. In fact, RPC-based renewal
requires at most 2us longer leases (compared with reading
from coordinators) to achieve the same percentages of timely
lease renewal. We attribute this difference to RPC, which
involves the CPU of both the application and the lease cache.
From this experiment we select the lease duration that we
use for the rest of our evaluation. We pick the lease duration
when renewing from coordinators (8) to be 23us, and the lease
duration when renewing from lease caches (A) to be 25us.

Throughput Reduction. We use uKharon to make HERD
dynamic. The original HERD assumes a static set of servers,
each of which serves a shard of the key space. Clients are
aware of this sharding and use the key of a request to deter-
mine the appropriate server. The lack of dynamicity affects
HERD’s flexibility in two ways. First, if a server fails, its
shard becomes unavailable forever. Second, the system is
unable to re-balance the load among the servers. Importantly,
the use of a static set of servers ensures consistency of clients’
requests: GETSs return the value of the most recent PUT.

In our implementation, each server dedicates up to 6 cores
to the K'V-cache and each core is responsible for a part of the
key space. Every core processes clients’ requests and invokes
the Active method before replying to avoid inconsistencies.
If Active returns true, the core executes the request (if the
key belongs to its shard) and replies to the client. Otherwise,
the core rejects the request. Given that every core invokes
Active in the critical path of serving requests, the latency of
requests increases (by ~38ns) and the throughput decreases.

Figure 4 shows the per-core throughput of a static deploy-
ment of HERD, along with the drop in performance caused by
the integration of the Active method. The workload is 80%
GETs and 20% PUTs with 32 byte-long values. We vary the
number of cores from 1 up to 6 as well as the batch size (i.e.,
the number of clients’ requests processed at once). Typically,

static HERD issues a reply every 350ns. Without batching,
having Active in the critical path raises the reply time to
388ns, an increase of 11%. Batching has a positive impact
on Active’s overhead as a single call to the method is used
to serve all the requests in a batch. Thus, for batches of 6
replies, Active effectively takes 38/6 = 6.3ns per reply, an
increase of just 1.8%. Finally, the overhead of Active does
not increase with the number of cores, even though they in-
voke the method concurrently. This indicates good multicore
scalability, which implies that a single uKharon Core instance
per server is sufficient to serve all applications running on it.

Bandwidth overhead. uKharon Core reduces the bandwidth
available to applications. Lease renewal requires 240 bytes
when contacting 3 coordinators and 132 bytes when contact-
ing a lease cache, which translates to (assuming renewal every
10ps) 192Mbps and 105Mbps, respectively. This bandwidth
requirement accounts for 0.1 — 0.2% of a 100Gbps link, thus
the bandwidth of application nodes is marginally impacted.
Failure detection has similar bandwidth requirement.

7.2 Failover Time

We study uKharon’s failover time considering userspace and
kernel failures. We do not further evaluate catastrophic fail-
ures, as 95% of the failover is for their Ims-long detection,
making microsecond-scale agreement and leases insignificant.

Table 2 summarizes the median failover (over 100 measure-
ments) for various failure scenarios. We consider the failure
of a single application node optionally combined with the fail-
ure of the coordinator leader or/and a lease cache. We emulate
simultaneous failures by relying on RDMA Multicast. An
auxiliary program executes alongside the program which we
emulate the failure of. When the auxiliary program receives
the multicast message, it uses SIGKILL to kill the targeted
program. We assume the worst scenario, i.e., the failure of
the application node results in global unavailability that is
resolved only by a new (active) membership that excludes it.

In every entry of Table 2, we present the failover time
when detecting the failure using the deadbeat mechanism
(left) and the RDMA-based heartbeat mechanism (right). We
now discuss the failover time when using the deadbeat, first
considering the case when the lease caches are absent. For
a single application failure, uKharon is able to failover in
50us using the deadbeat. If the coordinator leader crashes at
the same time as the application, the failover time increases
by around 15us. We attribute this increase to (1) the leader
switch mechanism of the consensus engine (~10us) and (2)
the imperfect synchronization of SIGKILL among the failed
nodes (~5us). When lease caches are part of uKharon, the
failover times for the same failure scenarios increase (as ex-
pected) by 20 — 25us, which is about the lease duration of
the cache. Failure of a cache has no impact on the failover
time (bottom entries of the first and third columns). This is
because (1) the application node receives the broadcast failure
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Lexists? | A A+C | A+L [A+L+C
No 50\96 | 64\114 - -
Yes | 74\108 | 96\138 | 75\113 | 101\139

Table 2: Failover time (in ps) for failures in App, Coordinator
leader and Lease caches; using the deadbeat\ heartbeat.

notification and switches lease cache before the membership
changes and (2) the new membership is compatible with the
previous one. The simultaneous failure of all three types of
nodes has a downtime of 101us, instead of 96us. Again, the
failure of the cache does not affect the failover time, but with
three nodes the imperfect synchronization of failures adds
up. Finally, the same failures when using the RDMA-based
heartbeat mechanism range from 96 to 139us. This mecha-
nism adds ~ 45us of failover compared to the deadbeat. The
reason is that reading the same value twice upon failure takes
1.5 delays on expectation and READs are issued every 30us.

7.3 uKharon-KV

Both uKharon-KV and HERD+Mu follow a primary-backup
replication scheme. All requests are served by the primary,
which replicates them to backups. Backups are only used for
fault tolerance. All replicas (primary and backups) execute
requests in the same order, but only the primary replies to
clients. In the event of a failure of the primary, one of the back-
ups becomes the new primary and continues serving clients’
requests. All replicas execute all requests in the same total
order, thus replicas are an exact copy of the failed primary.
This means that when a replica becomes the new primary, it
can respond to clients without breaking consistency.

One problem these systems have to deal with is multi-
ple nodes trying to replicate clients’ requests simultaneously.
This happens when the primary fails and multiple nodes, be-
lieving they are the new primary, try to handle clients’ re-
quests. Mu avoids this problem by relying on RDMA per-
missions (see §5.3.2). On the other hand, uKharon-KV relies
exclusively on the membership service to address it. Each
membership determines a single primary. When the primary
fails, a new membership is emitted that determines the new
primary. Since only one membership is active at a time, no
two replicas can believe to be the primary simultaneously.

The replication protocol of uKharon-KV works as follows:
The primary P replicates all clients’ requests to a single
backup B by RMDA-writing them to a dedicated buffer on
the latter. In parallel, P speculatively executes the requests.
Upon completion of the RDMA WRITE, the primary checks
that the membership in which P is the primary is still active.
If that is the case, P replies to the client. Otherwise, P drops
the request. Upon membership change, B waits for the new
membership—in which it is the primary—to become active.
Then, B scans the local buffer that was dedicated to P and
applies all unprocessed requests in it. Only then B starts pro-
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Figure 5: Latency comparison (left) of vanilla HERD, Dy-
namic HERD, HERD+Mu, uKharon-KV. Failover time com-
parison (right) of HERD+Mu and uKharon-KV. HERD+Mu
uses 3-way replication; uKharon-KV uses its deadbeat. Bar
height shows 95th %-ile latency; numerical label shows the
95th %-ile; error bars show the median and 99th %-ile.

cessing clients’ requests. The client’s failover time is the time
interval between the client’s last successful request to P and
its first successful request to B (as the new primary).

If P’s speculative execution turns out to be incorrect,
its state may diverge from the one of the new primary B.
uKharon-KV, however, does not follow the common practice
of rolling back unsuccessful speculations, because our proto-
type adopts a simple design: when a node is removed from
the membership, it is not allowed to re-enter the system. Thus,
the state of the old primary P is no longer used when B takes
over, hence skipping the rollback.

Replication latency. We compare the latency of HERD,
HERD+Mu and uKharon-KV. For HERD, we deploy a single
node. For HERD+Mu, we deploy three nodes, a primary and
two backups, all of which execute an instance of HERD and
Mu. For uKharon-KV, we deploy a primary and a backup,
both running uKharon-KYV, as well as three coordinators. For
these experiments, a HERD client connects to the primary and
issues PUT and GET requests. We measure the time it takes
for a client to complete a request and compute the median,
the 95th and the 99th percentiles over 10 million requests.
Figure 5 shows the end-to-end latency of vanilla HERD
and of both replication approaches. In vanilla HERD, PUTs
are more efficient than GETs by 23%, due to the way HERD
handles the two types of requests. Briefly, PUTs rely mostly
on RDMA WRITESs, which is the most efficient RDMA
verb [25], while GETs rely mostly on RDMA SENDs. For ref-
erence, we also show the latency of Dynamic HERD, which
uses uKharon’s Active method in the critical path of execut-
ing clients’ requests, as explained in section 7.1. We verify,
once again, the efficiency of the Active method. At the 95th
percentile, Dynamic HERD’s requests are delayed by 10ns
(for GETs) and 50ns (for PUTs), compared with vanilla HERD.
The two replicated solutions exhibit different costs.
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HERD+Mu replicates all requests, regardless of whether they
are PUTs or GETs, while uKharon-KV replicates only PUTs.
HERD+Mu does not distinguish between PUTs and GETs, be-
cause in Mu the primary uses the result of replication (whether
it is successful or not) to determine if it is still the primary or
not. If Mu were to skip the replication of GETs, inconsistency
would occur (see §2.1). On the other hand, uKharon-KV
executes GETs locally, without replicating them, since the
primary relies on the Active method to determine if its data
is stale or not. Also, observe that uKharon-KV replicates
PUTs approximately 300ns faster than Mu. This improvement
is merely attributed to the speculative approach adopted by
uKharon-KV. In HERD+Mu, the primary executes the request
after it has been replicated to a majority. On the other hand,
the primary in uKharon-KV executes the request in parallel
to the replication to the backup. Thus, our solution hides the
cost of executing the request, which is approximately 300ns,
as shown by the difference of the two rightmost bars in the
middle plot of Fig. 5. Regardless, uKharon-KV provides the
same fault tolerance as Mu, even with one less replica: if a
single replica crashes in either HERD+Mu or uKharon-KV,
the system remains operational but cannot tolerate another
failure. Fundamentally, both HERD+Mu and uKharon-KV
assume a majority of correct nodes, the former among the
replicas and the latter among the coordinators.

Failover. We compare the failover latency of uKharon-KV
with HERD+Mu in the event of userspace failures. We run
uKharon-KYV in two configurations. In the first one, clients di-
rectly RDMA-read from coordinators to renew their lease. In
the second one, clients go to lease caches. The third graph of
Figure 5 shows that HERD+Mu has a 95th-percentile failover
time of 531us. This number is almost half of what Mu’s au-
thors report since we fine-tuned their failure detector for our
own setup. At the same time, uKharon-KV without cache
(resp. with) achieves a 10x improvement (resp. 6.5x) at
53us (resp. 80us) of end-to-end failover time.

8 Related Work

Membership services in general. They are widely used
in the data center. Distributed data processing apps (e.g.,
Kafka [30], MapReduce [10]), storage systems (e.g., Cas-
sandra [31], HDFS [46]) and orchestration tools (e.g.,
Mesos [18]) rely on Zookeeper [20] for leader election, mem-
bership management, locks, watches, etc. uKharon focuses
on membership management, yet it can be extended to sup-
port Zookeeper’s features. Indeed, uKharon-KV (excluding
the lack of durability) offers similar guarantees to the strongly
consistent KV-store of Zookeeper, which comprises its basic
building block. ZooKeeper’s strongly consistent K'V-store
that forms its basis. For instance, locks can be implemented
on top of uKharon-KV by extending its interface with Com-
pareAndSwap. Watches, being an unreplicated pub/sub sys-

tem, only require modifying uKharon-KV’s primary. The
important difference is that Zookeeper is not suitable for the
microsecond scale and does not exploit RDMA.

Failure detection in the data center. A common approach
to detect failures is to use end-to-end timeouts, which are hard
to set. Falcon [35] proposes to use inside information in order
to build faster and more accurate failure detectors by relying
on hierarchies of specialized detectors. It maximizes accuracy
by killing suspected processes. Albatross [34] is slightly more
forgiving and isolates suspected processes so that they cannot
affect the state of the system. Pigeon [33] provides fine-
grained reports that end applications use to act accordingly.
We embrace Falcon’s philosophy and use RDMA-tailored
failure detectors to operate at the microsecond scale.

Time-bound leases. Time-bound leases are widely used to
implement consistent distributed applications at the price of
some synchrony assumptions. They are often provided by a
distributed coordination framework such as ZooKeeper [20]
or etcd [14]. Leases are used for leader election [48], as
well as for guarding memberships (e.g., in FaRM [12] and
Hermes [26]). uKharon guards memberships with purely
client-side leases. As a result, uKharon brings leases down to
a few tens of microseconds and only assumes bounded clock
drift instead of loosely synchronized clocks as in Hermes.

9 Conclusion

Continuous breakthroughs in data center fabrics have paved
the way for microsecond applications. A key challenge for
building tail-tolerant software at scale is for applications to
react fast to events such as reconfigurations and failures. Yet,
existing microsecond applications lack an equally fast mem-
bership service to provide microsecond dynamicity. This
lack is counter-intuitive, as the vast ecosystem built around
ZooKeeper showcases the usefulness of membership services.
uKharon fills this gap by being the first membership service
tailored to microsecond scale applications. To achieve this
demanding target, uKharon relies on (1) a multi-level fail-
ure detector, (2) a consensus engine that takes advantage of
RDMA CAS, as well as (3) leases, all of which have been
carefully designed to operate in the microsecond envelope.
We used uKharon to implement uKharon-KV, a replicated
KV-cache which outperforms the state of the art in latency
while improving its failover time by up to 10x.
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A One-sided Paxos

A.1 Assumptions

In the next subsections, we consider the M&M model [1]. It
allows processes to both pass messages and share memory.

We assume that communication channels are lossless and have
FIFO semantics, which is ensured by InfiniBand’s Reliable
Connections. The system has n processes I1 = {py,...,pn}
that can attain the roles of proposer or acceptor. There are p
proposers and n acceptors. Up to p — 1 proposers and L%J
acceptors may fail by crashing. As long as a process is alive,
its memory is remotely accessible. When a process crashes,
subsequent operations to its memory hang forever. We assume
partial synchrony for consensus’s liveness [17].

A.2 One-sided RPC

In this section, we prove that the one-sided RPCs of Algo-
rithm | are equivalent to two-sided RPCs when not obstructed.
Moreover, we prove that when equivalence is violated (due
to obstruction), one-sided RPCs have no side effects. We
assume that both compare and f are deterministic.

Lemma A.1. [f cas-rpc does not abort, rpc and cas-rpc
are equivalent.

Proof. An execution of rpc solely depends on the value of
state and the input value x. We denote such execution of
rpc as (stare,x)pc. If an execution of cas-rpc does not
abort, it solely depends on the value of expected fetched at
line 2 and the input value x. We denote such execution of
cas-rpc as (expected, X) cas—rpe-

We show that any execution (s, x) . is equivalent to the ex-
ecution (s,X)cas—rpc in the sense that both rpc and cas-rpc
will have the same state value and return the same projec-
tion at the end of their execution.

If an execution (s1,x),, makes the comparison at line 3
fail, then state is not modified and proj (s;) is returned.
In the execution (s1,X)cas—rpc, the comparison at line 3 will
also fail and proj(s;) is also returned without modifying
the remote state. In this case, both executions are equivalent.

If an execution (s2,x),,- makes the comparison at line
3 succeed, then state is modified to f(sy, X) and
proj (f(sy, x)) isreturned. In the execution (s2,%)cas—rpes
the comparison at line 3 will also succeed. As the execu-
tion is assumed not to abort, the CAS will succeed. Thus
the remote state will atomically be updated from s, to f (s>,
x) and proj (f(sy, X)) is also returned. In this case, both
executions are also equivalent. O

Lemma A.2. If cas-rpc aborts, it has no side effects.

Proof. 1f cas- rpc aborts, the comparison at line 7 has failed.
This implies that the CAS failed and thus that state is unaf-
fected by the execution. O

From lemmas A.l and A.2, cas-rpc exhibits all-or-
nothing atomicity. We now prove that such a transformation
is obstruction-free.

Lemma A.3. If cas-rpc runs alone, it does not abort.
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Proof. Let’s assume by contradiction that cas-rpc runs
alone and aborts. For cas-rpc to abort, the comparison
at line 7 must have failed. This implies that the CAS at line 6
failed due to state not matching expected. state must
thus have been updated between lines 2 and 6. This implies a
concurrent execution, hence a contradiction. O

A.3 Consensus and Abortable Consensus

In the consensus problem, processes propose individual val-
ues and eventually irrevocably decide on one of them. For-
mally, consensus has the following properties:

Termination Every correct process eventually decides once.

Uniform agreement If v and V' are decided on, then v =1'.

Validity If v is decided on, v is the input of some process.
We implement consensus by composing two abstractions:

e Abortable consensus [5], an abstraction weaker than
consensus that is solvable in the asynchronous model,

* Eventually perfect leader election [ 7], the weakest failure
detector required to solve consensus.

Abortable consensus is identical to consensus except for:

Termination Every correct process eventually decides once
or aborts.

Decision If a single process proposes infinitely many times,
it eventually decides.

A.4 One-sided Abortable Consensus

Algorithm 3 appears in [5] and implements abortable con-
sensus Algorithm 4 transforms algorithm 3 by replacing its
RPCs with CAS-based RPCs. This transformation causes it
to abort strictly more than the original algorithm. To see why,
consider the following execution: Let proposers P; and P,
concurrently initiate the Prepare phase with respective pro-
posals 1 and 2. Both fetch the remote state and get (0,0, L).
Then, P; succeeds in writing its proposal to acceptor A;. Later
on, the CAS of P, fails at A; as the value is now (1,0, L) in-
stead of the expected (0,0, L). Thus, P, aborts even if it had
a larger proposal number than P;. The more relaxed compar-
ison in the original algorithm would not have caused P, to
abort.

Lemma A.4. Algorithm 4 preserves Decision.

Proof. If a single process proposes infinitely many times,
it will eventually run the one-sided RPCs obstruction-free.
By Lemma A .3, this guarantees that the one-sided RPCs
will eventually terminate without aborting. In such case,
Lemma A.1 guarantees the execution to be equivalent to one
of the original algorithm. Thus, the transformation preserves
the decision property of Algorithm 3. O

Algorithm 3: Paxos’s Abortable Core

1 Proposers execute:
2 | decided = False

3 | proposal = id

4 | proposed_value = |

6 | def propose(value):

7 proposed_value = value
8 prepare()

9 accept()

11 | def prepare():

12 proposal = proposal + [II|

13 broadcast (Prepare | proposal)

14 wait for a majority of (Prepared | ack, ap, av)
15 adopt av with highest ap as proposed_value

16 if any not ack: abort

18 | def accept():

19 broadcast (Accept | proposal, proposed_value)
20 wait for a majority of (Accepted | mp)

21 if any mp > proposal: abort

22 trigger once (Decide | proposed_value)

24 | Acceptors execute:

25 |min_proposal = 0

26 | accepted_proposal = 0
27 | accepted_value = L

29 |upon (Prepare | proposal):

30 if proposal > min_proposal: min_proposal = n

31 reply (Prepared | min_proposal == n, accepted_proposal,
— accepted_value)

33 | upon (Accept | proposal, value):

34 if proposal > min_proposal:

35 accepted_proposal = min_proposal = n
36 accepted_value = value

37 reply (Accepted | min_proposal)

Lemma A.S. Algorithm 4 preserves Termination.

Proof. Assuming a majority of correct acceptors, CASes
will eventually complete at a majority. Due to the absence
of loops or blocking operations inside prepare, accept,
cas_prepare and cas_accept in algorithm 4 (apart from
waiting for the completion of CASes at a majority), a proposer
that invokes propose will either abort or decide. O

Algorithms 3 and 4 differ only in some executions where
the transformed algorithm aborts whereas the original does
not. Nevertheless, aborting does not violate safety, as we
show next.

Lemma A.6. Algorithm 4 preserves the safety properties.

Proof. Assume, by contradiction, that adding superfluous
abortions in Algorithm 3 violates safety. Consider an ex-
ecution Ej, where processes {Pi, ..., P,} deviate from the
algorithm and abort at times {¢1, ..., #, } after which the global
state is {S, ..., Sy} and safety is violated. Also, consider
another execution Ej, where processes { Py, ..., P,} crash at
times {71, ..., t,,} after which the global state is {S|, ..., S, }. In
execution E1, safety is violated. On the other hand, execution
E, preserves safety, since Algorithm 3 tolerates arbitrarily
many proposer crashing. The two executions, however, are
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Algorithm 4: One-sided Abortable Consensus

1 | Acceptors execute:
2 | state = { min_proposal: 0, accepted_proposal: 0,
< accepted_value: 1}

4 | Proposers execute:
5 |proposal = id
6 | proposed_value = L

8 | def propose(value):

9 proposed_value = value

10 prepare()

11 accept()

13 | def prepare():

14 proposal = proposal + |II]

15 async cas_prepare(p) for p in Acceptors

16 wait for a majority to return (ack, ap, av)
17 if any not ack: abort

18 adopt av with highest ap as proposed_value

20 | def accept():

21 async cas_accept(p) for p in Acceptors
22 wait for a majority to return mp

23 if any mp > proposal: abort

24 trigger once (Decide | proposed_value)

26 |def cas_prepare(p):

27 expected = fetch_state(p)

28 if not proposal > expected.min_proposal:

29 return (False, expected.accepted_proposal, expected.
< accepted_value)

30 move_to = expected

31 move_to.min_proposal = proposal

32 read = state,.cas(expected, move_to)

33 if read == expected:

34 return (True, expected.accepted_proposal, expected.

< accepted_value)
35 abort

37 | def cas_accept(p):

38 expected = fetch_state(p)

39 if not proposal > expected.min_proposal:
40 return expected.min_proposal

41 move_to = expected

42 move_to.min_proposal = proposal

43 move_to.accepted_proposal = proposal

44 move_to.accepted_value = proposed_value
45 read = state,.cas(expected, move_to)

46 if read == expected:

47 return expected.min_proposal

48 abort

indistinguishable, hence a contradiction. Thus, Algorithm 4
preserves safety regardless of how often it aborts. O

Theorem A.7. Algorithm 4 implements abortable consensus.

Proof. The result follows directly by composing lemmas A .4,
A.5 and A.6. O

A.5 Streamlined One-sided Algorithm

In this section, we make Algorithm 4 efficient in order to
increase its practicality.

First, it is not required to fetch the remote state at the start
of each RPC. As it is safe to have stale expected states, it is
safe to use states deduced from previous CASes. Predicted
states can thus be initialized to (0,0, L) and updated each
time a CAS completes (either succeeding or not). Moreover,

wrongly predicting states can only result in superfluous aborts
which have been proven to be safe by Lemma A.6. Thus, it is
safe to optimistically assume that onflight CASes will succeed.
Second, in the Prepare phase, the proposal variable can be
increased upfront to value higher than any predicted remote
min_proposal to reduce predictable abortions.

Algorithm 5: Streamlined One-sided Abortable Consensus

Acceptors execute:
state = { min_proposal: 0, accepted_proposal: 0,
< accepted_value: 1}

N =

4 | Proposers execute:

5 | predicted[] = { 0, 0, L}
6 | proposal = id

7 | proposed_value = L

9 | def propose(value):

10 proposed_value = value

11 prepare()

12 accept()

14 | def prepare():

15 while any predicted[.].min_proposal > proposal:

16 proposal = proposal + |II|

17 for p in Acceptors:

18 move_to[p] = {min_proposal: proposal, ..predicted[p]}
19 reads[p] = async state,.cas(predicted[p], move_ to[p])
20 wait until majority of states are read

21 for p in Acceptors:

22 if reads[p] € {predicted[p], L}:

23 predicted[p] = move_to[p]

24 else:

25 predicted[p] = reads([p]

26 if any CAS failed: abort

27 adopt proposed_value from predicted accepted_values with

— highest accepted_proposal if any

29 | def accept():

30 reads = L\Al'repmr.\'

31 move_to = (proposal, proposal, proposed_value)
32 for p in Acceptors:

33 reads[p] = async state,.cas(predicted[p], move_to)
34 wait until majority of states are read

35 if any CAS failed:

36 for p in Acceptors:

37 if reads[p] € {predicted[p], L}:

38 predicted[p] = move_to

39 else:

40 predicted[p] = reads([p]

41 abort

42 trigger once (Decide | proposed_value)

With the aforementioned optimisations, Algorithm 4 is
transformed into Algorithm 5. Notably, the liveness of the
resulting algorithm is preserved: Let’s assume that a single
proposer runs infinitely many times. Eventually, it will run
obstruction-free. In the worst case, each time it will abort at
line 26 or 41 because of a single wrong guess and update its
prediction. The optimistic update of expected states at lines
23 and 38 and the FIFO semantics of communication links
provide that, once a remote state is correctly guessed, any
later CAS will succeed. Thus, after at most n runs, all CASes
will succeed and the proposer will decide.
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A.6 Overcoming Limited CAS Size

As explained in Section 5.3.1, the RDMA hardware limits
the size of CASes. Thus, proposal fields will overflow after
216 attempts. In such an unlikely scenario, our consensus en-
gine falls back to traditional RPC: Once the RDMA-exposed
min_proposal of an acceptor reaches 2!6 — |II|, proposers
switch to RPC to communicate with this specific acceptor. Ac-
ceptors check state and, if it is above the threshold, initiate
the standard RPC version of Paxos with the min_proposal,
accepted_proposal and accepted_value variables ini-
tialized to match state.

B Active Method Correctness

In this section, we provide a formal definition and a proof of
correctness of the Active method described in Section 6.

B.1 Formal Definition

Active(Membership) —bool has the following properties:

Monotonicity If Active(M') returns true at any process,
future calls Active (M) with M < M’ will return false.

Convergence If M is the last membership to be decided (if
any), invoking Active (M) will eventually return true
at all correct processes.

Definition 1. [fActive(M) returns true, then M is consid-
ered active at the linearization point of the call.

Definition 2. If M is active at times t and t', then it is consid-
ered active in the interval [t,t').

From these simple properties and definitions, it follows
that no two active memberships can overlap.

Theorem B.1. Only one membership can be active at a time.

Proof. Assume by contradiction that M and M’ (M < M)
are simultaneously active. By definition, Active (M) must
have returned true after Active(M’) returned true. This
breaks Monotonicity, hence a contradiction. O

B.2 Non-leased Active Membership

We prove the correctness of uKharon’s implementation of
Active. We assume no gaps in the sequence of decided
memberships. This is enforced by coordinators by not propos-
ing the (k+ 1)-th membership until the k-th is decided.

Lemma B.2. Algorithm 6 ensures Monotonicity.

Proof. Active can only be called on decided memberships.
Let M and M’ be two decided memberships with M < M’. If
Active(M’) returned true, by the no-gap assumption, all

Algorithm 6: Active built on top of the consensus engine

def Active(M) — bool:
reads = L\AL‘L‘L’prw‘.\
for p in Acceptors:
reads[p] = async paxos[M.id + 1].slot,.read()
wait until majority of slots are read
if all slots are not accepted:
return true
propose_membership(M.id + 1, first accepted value)
return false

O 0N AW —

memberships between M and M’ have been decided. Because
M’s successor has been decided, a majority of acceptors’ slots
M. id + 1 have been written. Thus, Active (M) will read at
least one non-empty slot and return false. O

Lemma B.3. Algorithm 6 ensures Convergence.

Proof. Assume by contradiction that M is the last decided
membership and Active (M) never returns true at some cor-
rect process. Thus, this process executes line 8, which means
that it proposes a new membership. Given that the process is
correct, some membership with id M. id + 1 will eventually
be decided. Therefore, M is not the last membership, hence a
contradiction. O

Theorem B.4. Algorithm 6 implements Active.

Proof. Follows directly from Lemmas B.2 and B.3. O

B.3 Leased Active Membership

Algorithm 2 reduces communication by leasing the output of
Algorithm 6. We prove that it preserves Active’s properties.

Lemma B.5. Algorithm 2 preserves Monotonicity.

Proof. Let e be an execution of Active(M) that returned
true. e either returned at line 9 or at line 12 with t >
tsare. We denote the former case /leased(M) and the latter
checked(M). Assume by contradiction that Active (M’) re-
turned true in an execution ¢ and then Active (M) returned
true in an execution e> with M < M'. Either:

* leased(M): In ep, majority_active(M) returned
true at most 6 before Active(M) returned true.
In e;, lines 5—7 ensure that M’ was decided at
least & before Active(M’) returned true. Thus,
majority_active (M) returned true after M' was de-
cided. However, because M’ has been decided, a major-
ity of acceptors’ slotsM’ .1d =M. id + 1 must have been
written. Thus, majority_active(M) should have
read at least one non-empty slot and returned false.
Hence, a contradiction.

checked(M): majority_active(M) returned true
after majority_active(M’) returned true. This
breaks majority_active’s Monotonicity, hence a
contradiction.
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Lemma B.6. Algorithm 2 preserves Convergence.

Proof. Assume that M is the last membership to be decided.
Thus, majority_active(M) will eventually always return
true. At most o after Active (M) returns for the first time,
tare Will be in the past and leased_membership set to M.
Thus, eventually, the else branch at line 8 will always be
visited and either return true via line 9 or 12. O

Theorem B.7. Algorithm 2 implements Active.

Proof. Follows directly from Lemmas B.5 and B.6. O

C Clocks

uKharon relies on hardware timestamps to check if a member-
ship is Active. When using modern Intel processors, Linux
has three available clocksources: tsc, hpet and acpi_pm.
The tsc clocksource is the most efficient and requires 20-
25ns to take a timestamp [11].

Architectural considerations. The tsc clocksource uses In-
tel’s TSC hardware to measure time accurately. TSC stores
the number of cycles executed by the CPU after the latest reset.
Traditionally, TSC is considered an unreliable way to take
timestamps. The reason is that Intel processors have variable
clock speed, thus the number of cycles does not correspond
to wallclock time. However, modern Intel processors have
three features [8]: Constant TSC, Nonstop TSC and Invariant
TSC which solve this problem. The combination of these
features results in a TSC that is incremented at a constant rate
regardless of the power state of the processor. As a result, it
is safe to use this counter for efficient timestamping.

TSC synchrony. In Intel processors, every core has its own
TSC. All processors in the same socket start the TSC hard-
ware using the same RESET signal, thus the absolute values
of the TSC across cores of the same socket match. This
means that one can compare safely the values of TSC across
different cores, assuming that all TSCs run at the same fre-
quency. Because this assumption does not always hold, Linux
determines the base frequency of every core during boot and
uses this frequency to convert clock cycles to wallclock time.
To accomplish it, Linux uses the more accurate (and more
expensive) hpet.

uKharon takes further care to deal with TSC synchrony.
More precisely, it checks for the synchronization of TSC
between cores using a ping-pong test. In this test, core A
takes a timestamp #; and signals core B to do the same. Core
A signals core B by writing to a lock-free Single-Producer
Single-Consumer (SPSC) queue that is polled by B. When
B receives the signal it also takes a timestamp 7, and sends
it back to A (using another SPSC queue). Upon reception of
the timestamp from B, core A takes the last timestamp #3. In

our test we confirm that always #; < f, < t3. Additionally, in
our hardware, the minimum difference between ¢; and #, is
€ = min(#, — #1) is 64ns. uKharon takes € into consideration
by incorporating into the leases as follows: Suppose a lease is
valid for a duration of J starting at time ¢. uKharon considers
that the lease starts at time # + € and has a duration of  +d —
2e.

Inter-machine clock drift. In order to ensure that active
memberships do not overlap, uKharon assumes that clock
drift is bounded, i.e., that time passes approximately at the
same speed on different machines. This assumption is nec-
essary to enable client-side leases. It guarantees that after a
lease duration period, leases across all clients will have to
be renewed. Our system is built to tolerate clock drift, as
long as this drift is bounded. We experimentally determine
an upper bound for the clock drift with a simple test. In this
test, machine A takes a timestamp ¢ and pings machine B
to wait for 1 minute before replying back to it. Upon recep-
tion of B’s response, A takes another timestamp #,. It then
computes f, —t; and compares it to the expected 1 minute
measured by B (after removing the communication delay).
We repeat this test several times and determine that the clock
drift between machines differs by at most 0.001%. uKharon
incorporates inter-machine clock drift by waiting 1.01 x &
upon membership discovery, ensuring that when leases be-
come active on a new membership, everyone’s leases on the
previous membership will have expired.

D Artifact

Abstract

The evaluated artifact is provided as a git repository and con-
tains the source code of uKharon, build instructions and de-
ployment scripts to run the experiments presented in this

paper.

Scope

The artifact contains code and steps to reproduce results ob-
tained in Figure 3, Figure 4, Figure 5 and Table 2.

Contents

The artifact contains the source code of uKharon, including
the custom kernel modules. It also contains the patches to
create the custom Linux kernel, as well as the patches required
for HERD [24] and Mu [2]. The artifact describes how to
build everything presented in the paper, including the custom
Linux kernel and the solutions we compare against. It also
describes how to deploy the built binaries.
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Hosting

The artifact source code for uKharon is available at https:
//g9ithub.com/LPD-EPFL/ukharon. All the necessary in-
structions are provided in the README . md file.

Requirements

Building uKharon requires an x86-64 system set-up with
Ubuntu 20.04 LTS. Executing uKharon requires 8 machines
equipped with Ubuntu 20.04 LTS, RDMA over InfiniBand,
ability to install a custom kernel and custom kernel modules,
as well as ability to configure and use InfiniBand multicast
groups.
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KRCORE: A Microsecond-scale RDMA Control Plane for Elastic Computing
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Abstract

We present KRCORE, an RDMA library with a microsecond-
scale control plane on commodity RDMA hardware for elastic
computing. KRCORE can establish a full-fledged RDMA con-
nection within 10us (hundreds or thousands of times faster
than verbs), while only maintaining a (small) fixed-sized con-
nection metadata at each node, regardless of the cluster scale.
The key ideas include virtualizing pre-initialized kernel-space
RDMA connections instead of creating one from scratch, and
retrofitting advanced RDMA dynamic connected transport
with static transport for both low connection overhead and
high networking speed. Under load spikes, KRCORE can
shorten the worker bootstrap time of an existing disaggre-
gated key-value store (namely RACE Hashing) by 83%. In
serverless computing (namely Fn), KRCORE can also reduce
the latency for transferring data through RDMA by 99%.

1 Introduction

The desire for high resource utilization has led to the devel-
opment of elastic applications such as disaggregated storage
systems [52, 16, 67]. Elasticity provides a quick increase or
decrease of computing resources (e.g., processors or contain-
ers) based on application demands. Since the resources are
dynamically launched and destroyed, minimizing the control
path overheads—including process startup and creating net-
work connections—is vital to applications, especially those
with ephemeral execution time. Elastic applications typically
have networking requirements. For instance, computing nodes
in a disaggregated storage system access the data stored at
the storage nodes across the network.

RDMA is a fast networking feature widely adopted in data-
centers [53, 19, 13]. Unfortunately, RDMA has a slow control
path: the latency of creating an RDMA connection (15.7ms) is
15,700X higher than its data path operation (see Figure 1(b)).
As the latency of typical RDMA-enabled applications that
require elasticity has reached to microsecond-scale (see Fig-
ure 1(a)), this high connection time may significantly decrease
the application efficiency, e.g., increasing latency when ex-
panding resources to handle load spikes. The cost is chal-
lenging to reduce because it not only includes software data
structure initialization costs but also involves extensive hard-
ware resource configurations, as RDMA offloads network
processing to the network card (§2.3.1).

*Rong Chen is the corresponding author (rongchen@sjtu.edu.cn)
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Fig. 1. (a) The execution time (Data) of typical elastic RDMA-
enabled applications, and (b) the breakdown of control path costs.
RACE [67] is a disaggregated key-value store. FaARM-v2 [46] is
a database that can accelerate serverless transactions [63]. YCSB-
C [11] and TPC-C [50] are representative benchmarks for each
system. The serverless platform evaluated is Fn [43].

A common approach to avoiding the control path cost is
to cache connections and share them with different appli-
cations. However, user-space RDMA connections can not
be directly shared by different applications, because each
app has its own exclusive driver data structure and dedi-
cated hardware resources. Nevertheless, sharing a kernel-
space RDMA connection is possible since applications share
the same kernel (LITE [53]). However, LITE has perfor-
mance and resource inefficiency issues (§2.3.2) in elastic
computing, because it doesn’t target this scenario. First, it
still pays the initialization cost under cache misses. Second,
caching all RDMA connections to all nodes is resource ineffi-
cient (e.g., taking several GBs of memory), especially when
a production RDMA-capable cluster has reached a scale of
more than 10,000 nodes [34]. Finally, sharing RDMA con-
nections complicates the preservation of the low-level verbs
interfaces, which is important to apply RDMA-aware opti-
mizations [67, 55, 14, 57, 24, 25]. LITE only provides a
high-level APL

We continue the line of reusing connections to boost
the RDMA control path, and further overcome the issues
mentioned above. We present KRCORE, a networking li-
brary with an ultra-fast control plane. KRCORE can estab-
lish a full-fledged RDMA-capable connection within 10 us,
only 0.05% and 0.22% of the verbs and LITE under cache
misses, respectively. More importantly, KRCORE only needs
a small amount of fixed-sized memory for the connection
pool (e.g., 64MB), irrelevant to the cluster scale. Finally, KR-
CORE supports low-level RDMA interfaces compatible with
existing RDMA-aware optimizations.
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Supporting such a fast control plane seems to contradict our
promise of a small fixed-sized connection pool. To achieve
this, KRCORE makes a key innovation: we retrofit a less-
studied yet widely supported advanced RDMA hardware
feature—dynamic connected transport (DCT) [1]—to the
kernel. DCT allows a single RDMA connection to commu-
nicate with different hosts. Its connection and re-connection
are offloaded to the hardware and thus, are extremely fast
(Iess than 1us). Our observation is that when virtualizing an
established kernel-space DCT connection to different applica-
tions, they no longer pay the control path cost and memory
consumption of ordinary RDMA connections.

In designing KRCORE, we found virtualizing DCT with a
low-level API brings several new challenges, and we propose
several techniques to address them (§3.1). First, DCT requires
querying a piece of metadata to establish a new connection.
Using RPC can not achieve a stable and low latency. Fur-
ther, RPC needs extra CPU resources to handle DCT-related
queries. Observing the small memory footprint of DCT meta-
data, we propose an architecture that deploys RDMA-based
key-value stores to offload the metadata queries to one-sided
RDMA READ (§4.2). Second, DCT has a lower data path
performance than normal RDMA transport (RC) due to its dy-
namic connecting feature. The performance is mostly affected
when a node keeps a long-term communication with another.
Therefore, we introduce a hybrid connection pool that retains
a few RC connections connected to frequently communicated
nodes to improve the overall performance. KRCORE further
adopts a transfer protocol that can transparently switch a
virtualized connection from DCT to RC (§4.6). Finally, we
propose algorithms to safely virtualize a shared physical QP
to multiple applications with a low-level API (§4.4).

We implement KRCORE as a loadable Linux kernel mod-
ule in Rust. We also extended an existing kernel-space RDMA
driver (mlnx-ofed-4.9) to bring DCT to the kernel. To the
best of our knowledge, KRCORE is the first to achieve a
microsecond-scale RDMA control plane. Although KRCORE
is a general-purpose RDMA library, it really shines with elas-
tic computing applications. Our experiments demonstrated
that KRCORE can reduce the computing node startup time of
a state-of-the-art production RDMA-enabled disaggregated
key-value store (RACE [67]) by 83%, from 1.4s to 244ms
(§5.3.1). For serverless computing—another popular elastic
application, KRCORE can shorten the data transfer time over
RDMA by 99%, from 33.3ms to 0.12us (§5.3.2).

Our source code and experiments are available at https:
//github.com/SJTU-IPADS/krcore—artifacts.

2 Background and Motivation

2.1 The case for fast control path in elastic computing

KRCORE targets systems that require elasticity: the ability to
automatically scale according to application demands. One
such case is disaggregated storage systems where the com-
puting nodes and storage nodes are separated and connected

by the network [52, 16, 67]. Under high loads, the system
can dynamically add computing nodes for better performance:
and they need to establish connections to the storage nodes on-
the-fly. Another important case is serverless computing [22]
where the platforms instantaneously launch short-lived tasks
with containers'. The launch time typically includes network
connections [51].

Unlike long-running tasks (e.g., web servers), the control
path (e.g., network creation) is typically on the critical path of
elastic applications. For example, before executing the appli-
cation code, a serverless function that issues database trans-
actions must first establish network connections to remote
storage nodes [63, 21]. With RDMA, the transaction latency
has reached 10-100us [14, 57]. Reducing the control path
costs—including launching a container and creating network
connections—is therefore vital to the end-to-end execution
time or tail latency of elastic applications (see Figure 1).

Much research has focused on reducing other control path
costs, e.g., the container launch time to about 10ms [40] and
even sub-millisecond [15]. However, only a few considered
accelerating network connection creation [51], especially for
RDMA. The control path of RDMA is indeed several orders
of magnitude slower than its data path (e.g., 22ms vs. 2us in
§2.3). It is also orders of magnitude slower than the execution
time of common elastic RDMA-enabled applications, or other
control path costs (see Figure 1).

2.2 RDMA and queue pair (QP)

RDMA is a high bandwidth and low latency networking fea-
ture widely adopted in modern datacenters [53, 19]. It has
two well-known primitives: two-sided provides a message
passing primitive while one-sided provides a remote memory
abstraction—the RDMA -capable network card (RNIC) can
directly read/write server memory in a CPU-bypassing way.

Although RDMA is commonly used in the user-space, the
kernel adopts the same verbs API (verbs), which exposes
network connections as queue pairs (QPs). Each QP has a
send queue (sg), a completion queue (comp_queue), and a
receive queue (recv_queue). Both primitives follow a similar
execution flow. To send a request (or a batch of requests),
the CPU uses post_send to post it (or them) to the send
queue. If the request is marked as signaled, the completion
can be polled from the completion queue via poll_cq. For
two-sided primitive, the CPU can further receive messages
with poll_cq over the receive queue. Before receiving, one
should use post_recv to post message buffers to the QP.
Note that the CPU needs to register memory through reg_mr
to give RNIC memory access permissions.

QP has several kinds of transport each with different capa-
bilities. We focus on improving the control path performance
of reliable connected QP (RCQP), as it is the most commonly
used one that supports both RDMA primitives and is reliable.

IServerless platforms may use virtual machine (VM)s to run tasks, which is
not the focus of our paper. §6 discusses how KRCORE can apply to VMs.
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Fig. 2. The execution flow of a client (CL) communicating with two
nodes (S0 and S1) using user-space verbs. change_rtr changes
the QP to ready to receive status while change_ rts changes the
QP to ready to send status.
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Fig. 3. (a) Huge performance gap btw. RDMA’s control path and
data path (issuing 8B READ) when connecting and communicating
with one node. (b) A breakdown of RDMA control path time.

2.3 Analysis of RDMA control path costs
2.3.1 User-space control path costs

Consider the example in Figure 2 where a client sends RDMA
requests to two nodes. The control path includes first initial-
izing the driver context (Init)?, creating the QPs (Create),
exchanging the QP information to the remote peer with a
handshake protocol and configuring the QPs to ready states
(Configure). Figure 3(a) reports its latency, which is 7,850X
higher than the data path (Verbs control vs. Verbs data).

Issue: High hardware setup cost. To quantify the costs
in detail, Figure 3 breakdowns the control path time. We
carefully optimize the connection handshake with RDMA’s
connectionless datagram [26], which is orders of magnitude
faster than using TCP/UDP. Contradicting the common wis-
dom, exchanging the connection information through the net-
work (Handshake) is not the dominant factor: Handshake
only contributes 2.4% of the total time. The cost is dominated
by communicating with the RNIC hardware for the connec-
tion setups. Consider the create_qgp in Create: we found
87% of the create_qgp time (361us vs. 413us) is waiting
for the RNIC to create the hardware queues.

2.3.2 Existing kernel-space solution is insufficient

LITE [53] is the only kernel-space RDMA solution and is
the closest to our work. It provides high-level remote memory
read, write and RPC interfaces over the low-level verbs API
(§2.2). LITE maintains an in-kernel connection pool that

2Including creating the protection domain and registering the memory.
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Fig. 4. The execution flow of a client (CL) communicating with

two nodes (S0 and S1) with the kernel-space RDMA assuming that
CL has cached a QP to S0 in its connection pool.

caches RCQPs connected to all nodes, which avoids the user-
space Init (Figure 2) costs because applications share the
same kernel-space driver data structures. However, it still has
the following issues for elastic applications:

Issue#1: High cost connecting to a new node. If the RCQP
of the target node is not cached, LITE must follow the same
Create and Configure as user-space RDMA, e.g., S1 in Fig-
ure 4, which are non-trivial (2ms for each connection). Note
that we have carefully optimized LITE’s control path: LITE
originally adopts a centralized cluster manager to create con-
nections, which can only establish tens of QPs per second.
We optimize it with a decentralized connection scheme using
RDMA’s connectionless datagram. The optimization achieves
a 2ms per-connection latency and 712 QPs/second per node
throughput (Figure 3), bottlenecked by the RNIC (see §2.3.1).

Issue#2: Huge memory consumption. Caching RCQPs
connected to all other nodes can mitigate Issue#1. However,
this strategy has huge per-machine memory consumption
since the number of RCQPs needed scales linearly with the
cluster size. In LITE, each QP consumes at least 159KB
memory?, excluding the message buffers and receive queues
(may share between different QPs via shared receive queue).
Therefore, LITE would consume at least 1.52 GB memory
per node for fast connection on a modern RDMA-capable
cluster with more than 10,000 nodes[17].

Issue#3: Inflexible interface. LITE exposes a high-level
RDMA API (e.g., a synchronous remote memory read), which
simplifies sharing the same QP to different applications. How-
ever, it is inflexible to apply RDMA-aware optimizations
widely adopted in the literature [67, 55, 14, 57, 24, 25],
e.g., sending different read/write requests within a batch asyn-
chronously. To utilize these optimizations, applications need
verbs low-level API (§2.2). Unfortunately, directly execut-
ing the low-level API on a shared QP can easily corrupt the
QP states (see §3.1), and interrupt application running. We
carefully design the QP virtualization algorithms to correctly
virtualize a shared QP with verbs’s low-level API (§4.4).

31t configures the QP with 292 sq and 257 comp_queue entries, a common
setup in RDMA-based systems. Each sq entry takes 448B while cq takes
64B. The driver would further round queues to fit the hardware granularity.
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3 Approach and Overview

Opportunity: advanced RDMA transport (DCT). Dynam-
ically Connected Transport (DCT) [1] is an advanced RDMA
feature widely supported in commodity RNICs (e.g., from
Mellanox Connect-IB [37] to ConnectX-7 [35]). DCT pre-
serves the functionalities of RC and further supports dynamic
connecting: a DCT QP (DCQP) can communicate to different
nodes without user-initiated connections: RNIC can create
DCT connections on-the-fly by piggybacking control plane
messages with data plane ones. Since the connections are only
processed in the hardware, DCT re-connection is extremely
fast: our measured overhead is less than 1us. When using DC-
QPs, the host only needs to specify the target node’s RDMA
address and its DCT metadata (i.e., DCT number and DCT
key) in each request.

Basic approach: virtualized kernel-space DCQP. The goal
is to achieve an ultra-fast control plane for the applications.
Our basic approach is to virtualize kernel-space DCQPs
(as VQPs) to user-space applications. The observation is
that DCT naturally addresses the costly creation overhead
(Issue#l) and the huge memory consumption (Issue#2) of
RCQPs (§2.3.2). A kernel-space solution further mitigates
the user-space driver loading costs (§2.3.1).

VQP also supports low-level RDMA interfaces
(e.g., ibv_post_send) with the necessary extended
API suitable for elastic computing (§4.1). Therefore,
users can flexibly apply existing RDMA-aware optimiza-
tions [24, 25, 57] (Issue #3 in §2.3.2). Note that different
VQPs can share the same physical QP in the kernel.
Nevertheless, KRCORE provides an exclusively owned QP
abstraction to the applications.

3.1 Challenges and solutions

C#1. Efficient DCT metadata query. DCQP needs to
query the DCT metadata before sending requests. Specifi-
cally, to allow communicating with DCT, the server must first
create a DCT target identified by a key and number (DCT
metadata). Afterward, the clients can piggyback the metadata
in their requests to communicate with the created target.

A viable solution is to send an RPC to the target node to
query the metadata using RDMA’s connectionless datagram
(UD)*, which prevents control plane costs as UD is connec-
tionless. However, it is inefficient in performance and CPU
usage. First, the latency of RPC may vibrate to tens of mil-
liseconds due to the scheduling and queuing overhead of the
CPU. Second, KRCORE must deploy extra kernel threads to
handle the queries.

Solution: RDMA-based meta server.  We replicate the DCT
metadata at a few global meta servers backed by RDMA-
enabled key-value stores (KVS) [67, 58, 55, 13], meaning
each node can query it with one-sided RDMA bypassing the
CPU. To support one-sided RDMA while preventing QP over-

“It only supports two-sided RDMA.

c Data path Control path (Background)
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Fig. 5. The execution flow of a client (CL) communicating with
two nodes (S0 and S1) with KRCORE. MS: meta server. Note that
KRCORE always put the hardware control path (i.e., creating RC-
QPs) in the background.

provisions, KRCORE only maintains a few RCQPs connected
to nearby meta servers. Replicating the DCT metadata is
practical because it is small: 12B is sufficient for one node to
handle all requests from others.

C#2. Performance issues of DCT. DCT is slower than RC
in peak throughput and may incur high tail latency due to re-
connection (§5.2). The performance is mostly affected when
a node frequently sends requests to the same node.

Solution: virtualized hybrid QP. KRCORE manages a hy-
brid QP pool that stores both RC and DC QPs. A VQP can
transparently switch between DC and RCQP (§4.6), allow-
ing us to create RCQPs in the background on-the-fly without
exposing the creations overhead to the applications.

C#3. QP state protection. If we directly forward the VQP
request (from ibv_post_send) from different applica-
tions to the (same) shared physical QP, QP’s physical states
can easily be corrupted due to malformed requests or queue
overflow, because verbs API assumes an exclusively owned
QP. Bringing the QP back to a normal state is costly because
it requires reconfiguration (the Configure in Figure 3 (b)).

Solution: pre-check. KRCORE carefully checks the physical
queue capacity and request integrity before forwarding the
requests to the physical QP. The overhead of these checks is
negligible as they only involve simple calculations. Thus, we
can avoid QP corruption while preserving the RDMA-aware
optimizations (§4.4) of using low-level interfaces.

3.2 Execution flow and architecture

Execution flow. Applications can use KRCORE to create
RDMA-capable connections in a few microseconds. Figure 5
presents its execution flow when communicating to two nodes.
First, we find available RCQPs in the hybrid pool (@). If ex-
ists (S0), we directly virtualize it. Otherwise (S1), we choose
a DCQP and fetch the target node’s DCT metadata (@) ac-
cordingly. Finally, we virtualize the selected QP so that the
client can send RDMA requests with them (©).

To increase the likelihood of hitting RCQPs, KRCORE
analyzes the host’s networking patterns and creates RCQPs
in the background (e.g., to S1).

Architecture. Figure 6 presents the KRCORE library ar-
chitecture. On each node, KRCORE is a loadable Linux
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Fig. 6. An overview of KRCORE architecture.

KRCore's extended verb's control path API

int gbind(ibv_gp *qp, ibv_gid gid, int port); ## like POSIX bind
int qconnect(ibv_qp *qp, ibv_gid gid, int port); ## like POSIX connect

KRCore's extended verb's data path API

int gpop_msgs(ibv_qgp *gp, int num_entries,  ## like POSIX(accept) +

## verbs(ibv_poll_cq)

ibv_gp **src_qgp, ibv_wc *wc);

Example code: Client Example code: Server
ibv_gp_init_attr attr;

attr.qp_type = KRCORE_VQP;

ibv_gp_init_attr attr;
attr.qp_type = KRCORE_VQP;

qp = ibv_create_gp(..., &attr); qp = ibv_create_gp(..., &attr);

qconnect(qp, gid, port); gbind(qgp, gid, port);

ibv_send_wr wr; ibv_gp *new_conn = NULL;
ibv_send_wr *bad_wr_ptr; ibv_wc wc;
## send a message

ibv_post_send(qp, &wr, &bad_wr);

## receive a message
qpop_msg(qp, 1, &new_conn, &wc);

Fig. 7. The KRCORE extended API atop of verbs and a simplified
use case. Linesin and are extended code for the client and server,
respectively. Applications can also use the verb’s data path call
(e.g., ibv_post_send) to issue RDMA requests with KRCORE.

kernel module hosting per-application (e.g., VQP) and per-
node (e.g., Hybrid QP Pool) data structures (§4.2). KRCORE
also deploys meta servers (MS) on a few nodes to facilitate
DCT metadata lookup. These servers are backed by Dr'TM-
KV [58]—a state-of-the-art RDMA-enabled KVS—to accel-
erate the metadata lookup. The metadata is broadcasted by
each machine during its boot time.

4 Detailed Design
4.1 Programming interface of KRCORE

To simplify application development and porting, it is impor-
tant to keep backward compatibility between KRCORE and
verbs, the de facto standard for using RDMA. In principle,
KRCORE can provide the same interface with verbs similar
to existing work (i.e., Freeflow [30]). However, verbs is not
designed for elastic computing and may bring inflexibility
or under-utilization of KRCORE. Therefore, we propose an
extended API based on verbs inspired by Demikernel [64], as
shown in Figure 7. Specifically, KRCORE introduces a new
type of QP (VQOP) with the following new primitives:

gconnect and gbind. The verbs API has no method for
‘connect’ commonly found in networking libraries. Therefore,
developers have to implement and optimize RDMA connec-
tion setups themselves. We provide a gconnect API to
abstract the fast connection provided by KRCORE. Specif-
ically, after calling gconnect on a VQP to a remote host
(identified by the RDMA address (gid) and a port), the VQP
can issue one-sided and two-sided requests to it. Note that
remote end must bind to the address using gbind before-
hand so that the sender can issue two-sided requests, similar
to POSIX bind.

gpop_msgs. RCQPs are one-to-one connected—meaning
the server must know how many clients may connect. This
is unhandy for elastic applications because clients can dy-
namically connect to a server. Therefore, KRCORE VQP
is many-to-one: after binding to an address, a VQP can dy-
namically accept new connections when receiving messages:
gpop_msgs will return a list of (src_gp, message) pairs,
where the src_gp is a VQP connected to the corresponding
sender of the message.

Besides the extended API, KRCORE also supports com-
mon verbs data path API, e.g., ibv_post_send, ibv_-
post_recvand ibv_poll_cqg(see §2.2). Figure 7 show-
cases a simplified code example of sending a message from
a client to a server with VQP. At the client, it can use
KRCORE_VQP as a marker to create a VQP. After success-
fully connecting the VQP with gconnect, the client can
call ibv_post_send to send the message.

Note that the VQP has the semantic as RCQP—meaning
that they have reliability guarantees and support all RDMA
operations (with various low-level optimizations).

4.2 Data structures

Hybrid QP pool. Each VQP (§4.1) is backed by a kernel-
space virtual QP that has an identifier, a reference to a physical
QP and virtualized counterparts of RDMA queues (see §2.2).
The physical QP is selected from a hybrid QP pool with both
DCQPs and RCQPs. The DCQPs are statically initialized
upon boot time and RCQPs are created on-the-fly.

In principle, the pool only needs one DCQP to handle all
the RDMA requests of the host. However, only using one
DCQP introduces extra latency when sending concurrent re-
quests to different servers. Specifically, if two requests target-
ing different hosts go over the same DCQP, the second must
wait for an additional reconnection before RNIC can process
it. This can be mitigated by increasing the DCQP pool size
since reconnections can run concurrently. Yet, the best choice
of the pool size depends on the hardware setting (§5.2). On
our platform, we choose 8 DCQPs in the pool.

To further prevent lock contention [26], we divide the pool
on a per-CPU basis: Each VQP only virtualizes QPs from
its local CPU’s pool. This strategy is optimized for cases
when each QP is exclusively used by one thread, a common
pattern in RDMA applications [47, 55, 26, 17, 33]. In case
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of thread migrations, KRCORE also re-virtualizes QPs in the
background with a transparent QP transfer protocol (§4.6).

Meta Server. For steady and low-latency DCT metadata
query, we replicate all the nodes’ metadata at a few global
meta servers backed by DrTM-KV [58], a state-of-the-art
RDMA-enabled KVS. Note that replicating all the DCT meta
at one server is practical because they are extremely small
(e.g., 17KB for a 1,000-server cluster).

The meta server stores a mapping between the RDMA
address (key) and its corresponding DCT number and key
(value). These key-value pairs can be queried via DrTM-KV
with a few one-sided RDMA READs. Since sending one-
sided requests also requires RDMA connections, each node
pre-connects to nearby meta servers (e.g., one in the same
rack) with RCQPs during boot time and thus, it can find the
DCT metadata of a given server in several microseconds even
under high load.

Optimization: DCCache. Observing that the DCT meta-
data is extremely small (12B), each node further caches them
locally to save network round-trips querying the meta server.
The metadata is suitable for caching because they are only
invalidated when the corresponding host is down.

ValidMR and MRStore. To safely virtualize a physical QP
to multiple VQPs, KRCORE additionally checks the validity
of remote memory accesses to prevent QP state corruption
(84.4). These checks were originally done by the RNIC using
the information stored in the NIC cache. Thus, we should
also record them in KRCORE. We additionally bookkeep
the registered memory regions (MR)s in ValidMR, which is
also implemented with DrTM-KV. After the bookkeeping,
KRCORE can query the local/remote ValidMRs to check the
local/remote memory regions’ validity.

Like DCCache, we also cache the checked remote MR
locally (in MRStore) to avoid extra round-trips. However,
caching remote MRs may introduce consistency problems:
unlike long-lived DCT metadata, MRs are managed by the ap-
plications and can be de-registered on-the-fly. To this end, KR-
CORE adopts a lease-based lightweight invalidation scheme:
the cached MRs are periodically (e.g., 1 second) flushed.
Upon de-registration, KRCORE waits for this period before
freeing the MR.

4.3 Control path operations

KRCORE reuses initialized QPs upon VQP connection and
creation, whose simplified pseudocode executed in the KR-
CORE kernel is shown in Algorithml.

vgp_create initializes the basic data structures of
VQP—mainly allocating the software send and completion
queues in the kernel. The physical QP assignment is delayed
to the VQP connection (line 5) because we are unaware of
the remote target during creation.

vgp_connect connects a VQP to a remote end by as-
signing a pre-initialized kernel-space QP (either RCQP or

Algorithm 1: VQP creation and connection

1: Function vgp_create (Q):

2 Q.id < allocate a free identifier

3 Q.comp_queue < allocate a software queue

4: Q.recv_queue <— allocate a software queue

5: Q.qp < NULL « Updated by gconnect

6: Function vgp_connect (Q, addr) :

7 if Q.qp == NULL then

8: if addr in HybridQP Pool.RC then

9: |  Q.gp < select in HybridQP Pool.RC[addr]
10: else

11: Q.qp < selectin HybridQ P Pool. DC

12: if addr not in DC'Cache then

13: meta < query nearby connected MetaServer
14: add meta to DCCache

15: Q.dct_meta < meta

DCQP) to it. Given the remote addr, it first checks whether
an RCQP is available in the HybridQPPool (line 8). If so, we
choose an available QP and assign it to Q.gp (line 9). Oth-
erwise, we select a DCQP (line 11). Note that all DCQPs in
the pool are available because KRCORE can virtualize one
physical QP to multiple VQPs (§4.4).

When assigning a DCQP to VQP, we need to fetch the
remote end’s DCT metadata (line 12—15) if the metadata
is not cached in the DC'Cache. We issue one-sided RDMA
READ:s to the MetaServer to query it (line 13).

Background RCQP creations. To increase the likelihood
of hitting an RCQP in the pool, KRCORE maintains back-
ground routines to sample frequently communicated nodes,
create RCQPs for frequently communicated ones in the
HybridQ P Pool and reclaim rarely used RCQPs. Currently,
we choose a simple LRU strategy for the reclamation.

Other control path operations. Besides VQP creation and
connection, other control path operations (e.g., memory reg-
istration, MR) have a straightforward implementation: we
forward them to the corresponding verbs API and record the
results in KRCORE. If necessary, we will also return the vir-
tual handler of the recorded results to the user. Due to space
limitations, we omit a detailed description.

4.4 Data path operations

As we have mentioned in §3.1, a key challenge in virtualizing
a physical QP to multiple VQPs is preventing shared QP state
corruption. Specifically, we must consider:

1. Detecting malformed request. An incorrect operation
code or an invalid memory reference would transit a QP
into error states. Since an error states QP cannot handle any
RDMA requests, we must filter out malformed requests
before posting them to the physical QP.

2. Preventing NIC queue overflow. The physical QP has a
limited queue capacity. If the user overflows a QP, the QP
will also enter an error state. Preventing queue overflow is
challenging under sharing because it can overflow even if
all the shared users correctly avoid the queue overflows.
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Algorithm 2: kernel handler of post_send and poll_cq

1: Function post_send_virtualized (Q, wr_list):

<4 wr_list: the RDMA requests list

< Assumption: the size of wr_list is smaller
than Q.gp.sq.max_depth and Q.gp.cq.mazx_depth

2: while Q.qp.sq.max_depth - Q.gp.uncomp_cnt <
wr_list.length do
3: ‘ poll_inner (Q)
4: unsignaled_cnt < 0
5: for req in wr_list do
6: if req has invalid MR or invalid Op then
7: | return Error
8: if req is signaled then
9: Q.comp_queue.add(NotReady, req.wr_id)
10: req.wr_id < encode the pointer of ) and
(unsignaled_cnt + 1)
11: unsignaled_cnt < 0
12: else
13: ‘ unsignaled_cnt +=1
14: Q.qp.uncomp_cnt +=1
15: if last_req in wr_list is not signaled then
16: mark last_req as signaled
17: last_req.wr_id < encode NULL and
(unsignaled_cnt + 1)
18: return post_send (Q.qp, wr_list)
19: Function poll_inner (Q):
20: we < poll_cq(Q.qp.cq)
21: if wc is ready then
22: VQ, comp_cnt < decode we.wr_id
23: Q.gp.uncomp_cnt —= comp_cnt
24: if V@Q is not NULL then
25: | VQ.comp_queue.head()[0] = Ready
26: Functionpoll_cq virtualized(Q):
27: poll_inner (Q)
28: if Q.comp_queue.has_head() and
Q.comp_queue.head()[0] is ready then
29: user_wr_id < Q.comp_queue.pop()[1]
30: return READY, user_wr_id
31: return NULL, O

The queue can be cleared via explicit signaling and polling.
Nevertheless, we should poll as little as possible because
they have overheads [24].

3. Dispatching completion events. The polled results of a
physical QP can be from different VQPs. Therefore, we
must correctly dispatch them to the targets, i.e., software
queues of VQPs.

To this end, KRCORE will (1) check the request integrity
before posting it to a shared QP; (2) inject necessary polls
to the physical QP and (3) encode the VQP information
in the request’s wr_id—that will be returned upon request
completion—to help the dispatch. Specifically, KRCORE
executes post_send_virtualized and poll_cqg -
virtualized after the user calls ibv_post_send and
ibv_poll_cgq, respectively. Algorithm 2 shows their sim-
plified pseudocode. For simplicity, we assume the request list
(wr_list) depth is smaller than the QP capacity, which can
be achieved by segmenting the request list before posting it.

post_send virtualized. It first clears the physi-
cal QP’s send and completion queues to prevent overflows

(line 2—3) via polling the physical completion queue (line 20).
Polling is tricky when considering unsignaled requests—the
requests that don’t generate completion events. Their entries
are freed until a later signaled request is polled. Thus, we
must track how many requests a signaled one is responsible
to clear (line 4 and line 13), and encode the number in wr_id
(line 10). Therefore, after polling a completion we can deter-
mine the left spaces of queues (line 23). Further, if the last
request is unsignaled, we signal it (line 15—17).

For each request, we also check whether it is malformed
(line 6) and record the dispatch information for the signaled
ones (line 9—10). Finally, we can safely post these requests
to the physical QP (line 18).

For two-sided primitive, KRCORE must additionally notify
the receiver the sender information. Otherwise, the receiver
cannot create proper connections in gpop_msgs. Hence,
we piggyback the sender’s address in the message header
(omitted in the algorithm).

poll_cq virtualized. It first calls poll_inner
to poll the physical QP events and dispatch the events to
the proper VQPs according to the information recorded in
the wr_id (lines 22—25). After the dispatch, it can check
whether the virtualized QP has a completion event. KRCORE
examines the head of the virtualized comp_queue and returns
the head’s wr_id to the application if the head exists.

Due to space reasons, we briefly describe other operations:

ibv_post_recv. This function registers the buffers to
the VQP by recording them in the virtualized recv_queue.

gpop_msgs. It polls the physical QP’s recv_queue and
dispatches the received messages, similar to poll_inner.
To hold in-coming messages, we pre-post message buffers
to physical QP before virtualizing it to the applications. The
challenge of pre-post is that the KRCORE doesn’t know the
exact payloads of the incoming messages. For now, we as-
sume the pre-posted buffers can always hold the incoming
message. §4.5 will describe how we cope with out-of-bound
messages in detail. After receiving a message, we will check
its destination VQP and copy it the user-registered buffer
(from ibv_post_recv).

Besides receiving messages, gpop_msgs also creates a
VQP connected to the sender (§4.1). The creation and connec-
tion follow the control path operations discussed in §4.3. To
prevent the DCT metadata query, we further piggyback the
metadata in the message header. Thus, gpop_msgs doesn’t
involve additional networking requests.

4.5 Zero-copy protocol for two-sided operations

The basic gpop_msgs (§4.4) has two issues. First, it incurs
extra memory copies. Though the copy overhead is negligible
for small messages (e.g., less than 1KB), it is non-trivial for
the large ones (e.g., see results in Figure 9 (b)). Second, it
cannot receive messages with payloads larger than the pre-
posted buffers.
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To this end, we adopt a zero-copy protocol to overcome the
above issues. Intuitively, for large or out-of-bound messages,
the receiver will use one-sided RDMA READ to read them
to the user-registered buffers, inspired by existing RDMA-
enabled RPC frameworks [48, 17]. Specifically, if the payload
is larger than the kernel’s registered buffer, the sender will
first send a small message containing the destination VQP ID,
the source message address and its size. The receiver can then
use one-sided RDMA READ to read the message directly
to the user-registered buffer in a zero-copy way. The cost of
sending an additional message is trivial for large messages
because the network transfer will dominate the time.

4.6 Physical QP transfer protocol

KRCORE supports seamlessly changing the physical QP vir-
tualized by a VQP to another. The challenge of doing so is
how to preserve the RCQP’s FIFO property [7] of the VQP
during transfer, i.e., after a request completes, all its previous
requests are finished.

To ensure FIFO, upon the transfer starts, we first post a
fake signaled RDMA request to the source QP and wait for
its completion before the change. Meanwhile, we also notify
the remote peers to transfer their physical QP. Otherwise, the
VQP can no longer receive the remote end’s message. For
correctness, we must wait for the remote acknowledgments
before changing the physical QP at the sender.

5 Evaluation

We aim to answer the following questions during evaluations:
1. How fast is the KRCORE control plane (§5.1)?
2. What are the costs to the data plane (§5.2)?

3. How RDMA-aware applications that require elasticity can
benefit from KRCORE (§5.3)?

Implementation. We implement KRCORE from scratch as
a loadable Linux kernel (4.15) module, which has more than
10,000 LoC Rust code. It exports system calls via ioctl with-
out modifying the kernel. To simplify user-kernel interactions,
we further implement a 100 LoC C shim library atop ioctl
to provide the interfaces described in §4.1. Finally, we port
DCT to the kernel-space RDMA driver by adding around 250
LoC C code to the mlnx-ofed-4.9 driver: DCT is currently
only implemented in the user-space RDMA drivers.

Testbed setup. We conduct experiments on a local rack-
scale RDMA-capable cluster with ten nodes. Each node
has two 12-core Intel Xeon E5-2650 v4 processors, 128GB
DRAM and one ConnectX-4 MCX455A 100Gbps Infini-
Band RNIC. All nodes are connected to a Mellanox SB7890
100Gbps InfiniBand Switch. Without explicit mention, we
deploy one meta server for KRCORE.

Comparing targets. We compare KRCORE with user-
space verbs (verbs) and LITE?. Original LITE has an unop-
timized control plane: it uses a centralized cluster manager to

Shttps://github.com/WukLab/LITE
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Fig. 8. The gconnect performance of KRCORE when using
DCQP with DCT metadata uncached. (a) Connecting to a single
server, and (b) establishing connections in a full-mesh fashion.

establish connections between servers and can only connect
tens of RCQPs per second. Therefore, we further optimize
it by enabling a decentralized QP connection scheme via
RDMA’s unreliable datagram (UD). Our optimized version
can achieve an optimal kernel-space RDMA control plane
performance—it is now only bottlenecked by the hardware
limits. §5.1 will describe this in more detail. Note that our
optimization leaves the LITE data plane unchanged.

5.1 Control path performance

The evaluations for the control path focus on creating and
connecting RDMA connections. The costs of the other oper-
ations in KRCORE (and verbs) are typically much smaller.
For example, registering 4MB memory only takes 1.4us in
KRCORE. Therefore, we omit their results.

We use two synthetic workloads (single and full-mesh con-
nection establishment) to evaluate the control path perfor-
mance. The connection pool and DCCache of KRCORE are
cleared before the evaluations. Otherwise, KRCORE only has
system call overheads and is extremely small (0.94s).

Single-connection establishment performance. We first
evaluated the latency and throughput of establishing a single
RDMA-capable connection to one server w.r.t. the number
of clients. Figure 8 (a) reports the throughput-latency graph
when increasing the number of clients from 1 to 240. From
the figure we can see that KRCORE can have several orders
of magnitude better performance than verbs and LITE. At
one client, KRCORE can establish a connection in 5.4us,
while verbs and LITE take 15.7ms and 2ms, respectively.
The performance gain of KRCORE comes from replacing
the costly RDMA control path operations (analyzed in §2.3.1
and §2.3.2 in detail) with fast RDMA data path operations,
i.e., two one-sided RDMA READs to the meta server. For
LITE, it saves the driver loading cost but still needs to create
and configure QP on its control path. At 240 clients, KRCORE
can handle 22 million (M) connections per second, while
verbs and LITE can only establish 712 RCQPs per second.
They are both bottlenecked by the server creating hardware
resources, while KRCORE always reuses existing ones to
prevent these overheads.

Full-mesh connection establishment performance. Be-
sides establishing a single connection, creating full-mesh
connections at a set of workers is common in elastic applica-
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Fig. 9. (a) Performance comparisons of different DCT meta query
methods, and (b) the effects of zero-copy protocol (KRCORE+opt)
of KRCORE two-sided operations.

tions, e.g., burst-parallel serverless workloads [51]. Specifi-
cally, each worker should connect to the others and vice versa.
Figure 8 (b) presents the full-mesh performance by vary-
ing the number of involved workers. In general, KRCORE
can reduce 99% of the full-mesh creation time regardless of
the worker number, thanks to the orders of magnitude faster
single-connection establishment performance (see Figure 8
(a)). For example, KRCORE connected 240 workers in 81
s, while verbs and LITE used 2.7 secs and 2.3 secs, re-
spectively. These results suggest that KRCORE can handle
complex control path operations well.

Benefit of the meta server. A key design choice of KR-
CORE is to use an RDMA-based meta server to store DCT
meta. Figure 9 (a) illustrates the benefit of this design using
the single-connection establishment workload of Figure 8
(a). The baseline (RPC) uses a kernel-space FaSST [26] RPC
for the querying. FaSST is the state-of-the-art RDMA-based
RPC that builds on RDMA’s unreliable datagram. It also
has no control plane overhead in the kernel because UD is
connectionless. To save CPU resources, we only deploy one
kernel thread to handle the queries. We can see that a meta
server design achieves an 11.8X better throughput and up to
13X query latency compared with RPC. The RPC design is
bottlenecked by the server CPU for handling DCT queries,
while the RDMA-based meta server bypasses the CPU with
one-sided RDMA.

5.2 Data path performance

KRCORE trades data path performance for a faster control
plane. We first use a set of microbenchmarks to evaluate
these overheads using two communication patterns: sync and
async. In the sync mode, each client issues RDMA requests
to one server in a run-to-completion way, aiming to achieve
low latency [17, 47]. For async, each client posts requests in
batches to achieve the peak throughput [57, 24, 25]. Without
explicit mention, the workloads are inbound, i.e., multiple
clients sending RDMA requests to one server. We reported
the aggregated throughput of clients and their average latency.

One-sided operations. Figure 10 presents the one-sided
data path performance of KRCORE when it virtualizes from
DCQP (KRCORE(DC)) and RCQP (KRCORE(RC)), and
compare them to verbs®. During the experiment, each client

SLITE’s data path API is different so we compare to it separately.
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Fig. 11. The two-sided RDMA performance of KRCORE.

issued 8B random requests to the server, and we varied the
number of clients from 1 to 240.

(1) Sync. For one-sided RDMA READ in Figure 10 (a), the
latency of KRCORE (DC) and (RC) is 27%—46% and is 25%—
41% higher than verbs. The additional latency of KRCORE
under sync mode is dominated by the system call cost. On our
hardware, we measure a ~1us overhead communicating with
the kernel. For reference, when using one client, the latency
of KRCORE (RC) is 3.15us, and the verbs is 2.15us. Another
observation is that adopting DCQP has little latency overhead
in the sync mode as DC reconnection is extremely fast. For
example, the latency of KRCORE (DC) under one client is
3.24pus. The results of one-sided RDMA WRITE in Figure 10
(c) are similar to the READ.

(2) Async. For one-sided RDMA READ in Figure 10 (b), KR-
CORE (RC) can achieve a similar peak throughput as verbs
(138M reqs/sec) when using 240 clients. With the same con-
figuration, KRCORE (DC) is 14% slower (118 M regs/sec).
KRCORE (RC) and verbs are both bottlenecked by the server
RNIC, while KRCORE (DC) is slower due to extra DCT
processing at the RNIC. For one-sided RDMA WRITE in Fig-
ure 10 (d), the results are similar: KRCORE (RC) and verbs
achieve a peak throughput of 145M reqs/sec while KRCORE
(DC) is 8.9% lower (132M reqs/sec).

Two-sided operations. Figure 11 presents the two-sided
throughput and latency of KRCORE w.r.t. to the number of
clients (1 to 240). Each client sends an 8B request to the
server in an echo fashion: after receiving a request, the server
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Fig. 12 (a) A factor analysis of the data path cost introduced by
KRCORE using one-sided RDMA READ. (b) The performance of
KRCORE in data transfer benchmark of serverless computing.

will send the request back, and the client will issue another
request after getting the acknowledgment. The server utilizes
all cores (24 threads) to handle these requests.

(1) Sync. In this mode, the performance comparisons are simi-
lar to one-sided RDMA: compared with verbs, KRCORE (RC)
and (DC) have 4-21% and 14-31% higher latency, respec-
tively. The KRCORE overheads added to two-sided RDMA
are also dominated by the user-kernel interactions. For ex-
ample, at one client, one KRCORE (RC) echo takes 9.6us
while verbs takes 7.91s. Compared to one-sided RDMA, the
absolute latency gap is larger. KRCORE two-sided has an
additional system call overhead: the server needs to enter the
kernel to receive a message.

(2) Async. Unlike one-sided RDMA, KRCORE cannot
achieve the same peak inbound throughput (when using 240
clients) as verbs for two-sided RDMA: it is 20% slower than
verbs: which can only achieve 33.7M reqs/sec regardless of
RC or DC. In comparison, verbs can achieve 42.3M reqs/sec.
The extra bottleneck comes from CPU processing costs at the
server due to user-kernel interactions. As a result, KRCORE
cannot saturate the RNIC’s high performance. This also ex-
plains why KRCORE has a similar performance when using
RC and DC.

Effects of zero-copy optimization. We next examine the
costs of memory copy—that KRCORE uses to dispatch mes-
sages between virtual QPs—to the two-sided operations. We
further demonstrate how we mitigate it with a zero-copy pro-
tocol (§4.5). Figure 9 (b) shows the two-sided echo latency
when using one client to communicate with the server w.r.t.
the payload size. We can see that the memory copy cost is
negligible for small transfers (<=16KB) but is significant
for large messages. Specifically, when transferring > 16KB
messages, the latency of KRCORE is 1.45-3.1X higher than
verbs. To this end, the zero-copy optimization (KRCORE+opt)
reduces the overheads to 0.08-0.23X when transferring >=
16KB messages.

Factor analysis. Figure 12(a) conducts a factor analysis
to show the detailed data path costs of KRCORE in a sync
one-sided RDMA READ request. The main observations are:

(1) The biggest cost to data path operations is additional
RDMA requests to check the MR validity when the remote
MR information is not cached locally (+MR miss, takes

One-sided RDMA WRITE

One-sided RDMA READ 1
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Fig. 13. The slowdown of KRCORE compared to verbs on one-
sided RDMA READ (a) and WRITE (b), respectively.
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Fig. 14. (a) The impacts of DCQP pool size. (b) The CDF of
latency of sending RDMA requests to different servers.

4.5us). Note the checks are rare because KRCORE always
caches the checked MR after a miss.

(2) For normal requests without MR checks, system call dom-
inates the overheads (+System call), resulting in 1s latency
increase (3.15us vs. 2.14us). Other costs—including using
DCQP (+DCQP) and KRCORE check to prevent QP state
corruptions (+Checks, see §4.4) are trivial (less than 0.5 us).

Impacts of payload size to one-sided RDMA. The over-
head of KRCORE becomes smaller for one-sided RDMA
with a larger payload, since transferring data through the net-
work dominates the time. Figure 13 reports the slowdown
compared to verbs on different request payloads. We mea-
sure the latency of sync one-sided RDMA with one client.
For one-sided RDMA READ, the overhead is negligible for
larger than 256KB reads (<7%). For WRITE, the overhead is
negligible for larger than 8KB payloads.

Impacts of DCQP pool size. A larger DCQP pool is typi-
cally better for concurrently sending requests to different ma-
chines (§4.2). Figure 14 (a) reports the latency when sending
a batch of 64 one-sided RDMA READ:s to different targets at
one client with different pool sizes. The targets are randomly
selected in 10 machines. We can see that when the pool only
has one DCQP, KRCORE (DC) has a 1.32X higher latency
(99 vs. 75 us) than KRCORE (RC), since requests to the same
QP are processed sequentially with reconnections. Increasing
the pool size can significantly improve the latency. Interest-
ingly, when the pool size is larger than 2, DC outperforms RC
by 28-78%. RC needs 64 different connections to send these
requests, and it has to do 63 additional polls than DC.

Tail latency. Figure 14 (b) reports the tail latency when
using 50 clients sending sync one-sided RDMA READ to 5
servers. Under such a fan-out scenario, KRCORE (DC) has
a higher tail latency than the others due to extra round-trips
caused by DC reconnections. The 99.9% latency of verbs,
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Comparison to LITE. Finally, we show that KRCORE
can achieve a similar (or better) data path performance than
LITE with smaller memory usage.

(1) Memory. Figure 15 (a) shows the memory used for caching
RDMA connections. In general, KRCORE consumes orders
of magnitude smaller memory when supporting the same
number of connections. For example, to maintain 5,000 con-
nections, LITE consumes 780MB of memory, even without
counting the memory of message queues (1.5GB if coun-
tered). In comparison, KRCORE only consumes 6.3MB of
memory because it just maintains a (small) constant number
of DCQP (48), and each DCT metadata only consumes 12B.

(2) Performance. Figure 15 (b) further compares the through-
put when issuing 64B random one-sided RDMA READ from
one node to others. We configure both systems to deploy
a pool of 32 connections, preventing LITE from encoun-
tering RCQP scalability issues [26]. KRCORE uses DCQP
for its connections. For sync, we can see that KRCORE is
up to 20% slower than LITE due to performance issues of
DCQP. On the other hand, KRCORE achieves a 3X higher
peak async throughput (15.6M/sec vs. 5.2M/sec) in the async
mode. LITE has a limited peak performance because it fails
to run with more than 6 threads. LITE doesn’t prevent QP
queue overflows (see issue #3 in §2.3.2), so it will trigger QP
errors for more than 6 threads. KRCORE handles overflows
well (§4.4) and can thus, scale to more threads.

5.3 Application performance
5.3.1 Scaling RACE Hashing

Overview and setup. RACE hashing [67] is a production
RDMA-enabled disaggregated key-value store. We chose it
as our case study because it requires elastically—a demand
not commonly found in existing RDMA-based key-value
stores. At a high level, RACE separates the storage nodes
and computing nodes by RDMA, where the computing nodes
execute key-value store requests by issuing one-sided RDMA
requests to the storage nodes. RACE further allocates com-
puting nodes on-demand to cope with various workloads in a
resource-efficient way, where the newly started nodes need dy-
namically establish RDMA connections to memory nodes. To
improve performance, it embraces a set of low-level RDMA-
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Fig. 16. Under load spikes, KRCORE can quickly bootstrap com-

puting nodes for RACE Hashing [67].

aware optimizations—e.g., doorbell batching [25] that are
tailed to RDMA’s low-level verbs interface.

Since RACE is not open-sourced, we implement a simpli-
fied version atop of verbs, LITE and KRCORE, respectively.
We have calibrated that the performance is close to their re-
ported ones. For example, RACE reports a peak 24M req/sec
Get throughput on ConnectX-5 under YCSB-C [11]. Our
(verbs) version can achieve 27M req/sec with more machines
(8 vs. 5) on a similar RNIC (ConnectX-4).

Performance under load spikes. Our evaluating workload
contains a load spike commonly found in real-world appli-
cations [8, 28, 2]. Under spikes, RACE allocates more com-
puting processes to increase performance. During process
startups, KRCORE can reduce its bootstrap time thanks to its
fast control plane.

Figure 16 shows the timelines of RACE atop of verbs, LITE
and KRCORE under load spikes, respectively. The spikes
happen at time 0, and RACE forks 180 new processors to
handle it. When using KRCORE, RACE can finish the startup
in 244ms, 83% and 76% faster than verbs (1.4 seconds) and
LITE (1 second), respectively. KRCORE is bottlenecked by
OS creating worker processors. On the other hand, LITE and
verbs are bottlenecked by RDMA'’s slow control path (§2.3).
A fast boot further reduces the tail latency: during time 0-3,
KRCORE has a 4.9X lower 99% latency than verbs.

Benefit of virtualizing a low-level RDMA API. KRCORE
virtualizes a low-level RDMA (e.g., ibv_post_send), and
thus, it can transparently apply existing RDMA-aware opti-
mizations (see Issue #3 in §2.3.2). This leads to better perfor-
mance of KRCORE on RACE compared to LITE: as shown
in Figure 16, KRCORE has a 1.73X higher peak throughput
(26M reqs/sec vs. 15M reqs/sec) than LITE after time 3.

Benefit of virtualizing hybrid QPs. As shown in Figure 16,
using RCQP (e.g., after time 3) brought 1.4X (26M vs. 18M
req/sec) throughput improvements to KRCORE, achieving
a similar performance as verbs (26M reqs/sec). This is be-
cause RACE issues RDMA requests asynchronously, and
KRCORE’s RC async peak throughput is similar to verbs (see
Figure 10 (b)). Further, we can see the overhead of switching
from DCQP to RCQP is negligible (at time 2.2). However,
there is a lag for detecting the switch because KRCORE needs
time to collect the necessary information to decide which RC-
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QPs to create.
5.3.2 Accelerating data transfer in serverless computing

Finally, we show that KRCORE can improve the communi-
cation performance between functions in serverless comput-
ing. We use an RDMA-version of data transfer testcase in
ServerlessBench [62] (TestCase5), a state-of-the-art Server-
less benchmark suite. This testcase measures the data transfer
time between two serverless functions. The experiment runs
on Fn [43], a popular open-source serverless platform.
Figure 12 (b) reports the time to pass a message w.r.t. the
payload size when using verbs and KRCORE, respectively.
The receiver function runs in a separate machine using a
Docker container after the sender finishes execution. We use
warm start to techniques [40] to reduce the control plane
costs of starting containers. From the figure we can see KR-
CORE reduces the data transfer latency of verbs by 99% when
transferring 1KB to 9KB bytes. The performance improve-
ments are mainly due to the reduced RDMA control path of
KRCORE, which we have extensively analyzed in §5.1.

6 Discussion

Trade-offs of a kernel-space solution. KRCORE chooses
kernel-space RDMA for a microsecond-scale control plane
(5,900X faster than verbs). Though it retains most benefits of
RDMA (e.g., zero-copy), we sacrifice kernel-bypassing bene-
fit and thus, result in a slower data path (up to 75% slowdown).
We argue that such cost is acceptable to many elastic applica-
tions. First, the application usually issues a few networking
requests. For example, the functions in ServerlessBench [62]
and SeBS [12] only issue one request to read/write remote
data on average. Second, the control path overhead (ms-scale)
is commonly orders of magnitude higher than the cumulative
data path overhead (us-scale), see Figure 3. Finally, existing
work (i.e., LITE [53]) also showed that kernel-space RDMA
is efficient for many datacenter applications.

Other RNICs. Our analysis focuses on Mellanox
ConnectX-4 Infiniband RNIC. Nevertheless, we argue the
cost is unlikely to reduce due to hardware upgrades or differ-
ent RDMA implementations (e.g., RoCE) since the cost is
dominated by configuring the NIC resources. For example,
we also evaluate the control path performance on ConnectX-
6, where the user-space driver still takes 17ms for creating
and connecting QP, similar to the ConnectX-4 we evaluated
(15.7ms, see Figure 3).

KRCORE in virtualized environments. We currently fo-
cus on accelerating RDMA control plane with host network-
ing mode. Using RDMA in virtual machines or virtualized
RDMA network [30, 20] is also popular in the cloud. We be-
lieve the principles and methodologies of KRCORE are also
applicable in these environments. For example, Freeflow [30]
is an RDMA virtualization framework designed for container-
ized clouds. It leverages par-virtualization that intercepts vir-
tualized RDMA requests to a software router. We can inte-

grate our hybrid connection pool to the router to support a
fast control plane atop of it. We plan to investigate applying
KRCORE in virtualized environments in the future.

7 Related Work

RDMA libraries. Many user-space RDMA libraries ex-
ist [32, 4, 3, 36, 64], e.g., MPI, UCX [4], rsocket [3]. They
can hardly provide a fast control plane because they are all
based on verbs. LITE [53] is the only kernel-space RDMA
library and is the closest to our work. We have extensively an-
alyzed the issues when deploying LITE in elastic computing
(§2.3.2) and how KRCORE addresses them (§3—§4).

DCT-aware and hybrid-transport systems. Several works
used DCT to improve the performance and scalability of
RDMA-enabled systems [49, 41]. Subramoni et al. [49]
showed that DCT could provide comparable performance
to RC while reducing memory consumption for MPI ap-
plications. Meanwhile, several works leveraged a hybrid-
transport design to overcome the shortcoming of a single
transport [31, 23]. For instance, Jose et al. [23] utilized UD
to reduce the memory consumption of RC in Memcached.

RDMA -enabled applications. KRCORE continues the line
of research on accelerating systems with RDMA, from key-
value stores [38, 55, 67, 24, 13, 39], far-memory data struc-
tures [45, 6, 44], RPC frameworks [48, 26, 9, 27], replication
systems [5, 42, 54, 29], distributed transactions [58, 46, 14,
10, 57, 65, 56], graphs [47, 59, 61, 18] and distributed file
systems [66, 33, 60], just to name a few. Most of these sys-
tems do not target elastic computing, but we believe there
are opportunities for applying them in such a setting. In such
scenarios, they can benefit from KRCORE.

8 Conclusion

This paper presents KRCORE, a pus-scale RDMA control
plane for RDMA-enabled applications that require elastic-
ity. By retrofitting RDMA dynamic connected transport with
kernel-space QP virtualization, we show that it is possible
to eliminate most RDMA control path costs on commod-
ity RNICs. Meanwhile, the data path costs introduced by
KRCORE are acceptable for many elastic applications. Our
experimental results confirm the efficacy of KRCORE.
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A Artifact Appendix

Abstract. The artifact provides the source code and scripts to
reproduce the experimental results from the USENIX ATC 2022
paper—"KRCORE: A Microsecond-scale RDMA Control Plane for
Elastic Computing". KRCORE is a kernel-space RDMA solution that
provides fast RDMA connection setups to user-space applications.

Scope. The artifact can be used to reproduce the evaluations in §5.
It can also benefit the development of kernel-space RDMA-enabled
applications.

Contents. The artifact contains the source code, the instructions
for building and installation, and instructions for running the experi-
ments in §5. All the above instructions can be found according to
the steps in the README . md at the root directory of the artifact.

Hosting. The artifact is hosted on https://github.com/SITU-
IPADS/krcore-artifacts under the main branch with commit version
7Tba3bfo.
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Abstract

Distributed big-data analytics heavily rely on high-level lan-
guages like Java and Scala for their reliability and versatility.
However, those high-level languages also create obstacles for
data exchange. To transfer data across managed runtimes like
Java Virtual Machines (JVMs), objects should be transformed
into byte arrays by the sender (serialization) and transformed
back into objects by the receiver (deserialization). The object
serialization and deserialization (OSD) phase introduces con-
siderable performance overhead. Prior efforts mainly focus on
optimizing some phases in OSD, so object transformation is
still inevitable. Furthermore, they require extra programming
efforts to integrate with existing applications, and their trans-
formation also leads to duplicated object transmission. This
work proposes Zero-Change Object Transmission (ZCOT),
where objects are directly copied among JVMs without any
transformations. ZCOT can be used in existing applications
with minimal effort, and its object-based transmission can
be used for deduplication. The evaluation on state-of-the-art
data analytics frameworks indicates that ZCOT can greatly
boost the performance of data exchange and thus improve the
application performance by up to 23.6%.

1 Introduction

High-level languages like Java and Scala are welcomed in
areas like big-data analytics thanks to their reliable and ver-
satile managed runtime environment. However, the abstrac-
tion provided by the managed runtime also introduces per-
formance overhead, especially for data exchange. Since man-
aged runtimes like Java Virtual Machines (JVMs) store data
in an opaque object-based format, they have to transform
objects into interpretable binary streams before exchanging.
The transformation contains two phases: a serialization phase
transforming objects into a byte array, and a deserialization
phase transforming the byte array back into objects. The
object serialization/deserialization (OSD) mechanism intro-
duces considerable transformation overhead and has become a

significant performance bottleneck in distributed object trans-
mission, especially for applications demanding large-scale
data exchange through network [3, 6, 13, 15,44].

Prior work has recognized the performance problem in
OSD and proposed different approaches, both in software [26,
38, 39] and hardware [16, 32,40, 46], to mitigate its effect.
However, those approaches mainly focus on optimizing spe-
cific phases in OSD, and the data transformation is still in-
evitable. Furthermore, although they can boost the perfor-
mance of OSD, many of them require extra programming
efforts to annotate serialization points or change the original
inter-JVM communication model. Last but not least, they treat
the transferred data as a monolithic byte array instead of indi-
vidual objects, which makes it difficult to identify duplicated
transmission and misses optimization opportunities.

Instead of optimizing OSD, this work aims at directly elimi-
nating the whole OSD process. To this end, this work proposes
Zero-Change Object Transmission (ZCOT), which provides
an ideal data exchange mechanism where objects are trans-
ferred among JVMs through direct object copying. When a
JVM receives objects from others, it can directly process them
without any modifications (Zero-Change). ZCOT removes the
demands for object transformation and thus improves the
performance of data exchange.

However, it is non-trivial to achieve zero-change communi-
cation given each JVM manages objects in a process-specific
and opaque format. To this end, ZCOT first introduces a glob-
ally shared abstraction named exchange space, a part of the
Java heap space accessible for multiple JVMs in a distributed
environment. ZCOT further adopts its distributed class-data
sharing (DCDS) mechanism, which provides a unified object
format to make objects in the exchange space interpretable
for all JVMs. To remain compatible with traditional OSD-
based applications, ZCOT proposes a two-level transmission
mechanism to bridge the gap between object-based copying
and traditional byte-based transmission.

As ZCOT introduces a globally shared exchange space,
it is responsible to manage objects shared among multiple
JVMs. By introducing a metadata server, ZCOT memorizes
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the stored location for objects and helps build data transmis-
sion channels between JVMs. Since objects in big-data analyt-
ics are usually exchanged as a whole dataset, ZCOT embraces
group-based object management, which organizes objects in
groups and greatly reduces the traffic between the metadata
server and JVMs. Furthermore, ZCOT also integrates with
the garbage collections (GC) triggered in individual JVMs
and reduces the GC pause time.

ZCOT sends objects instead of byte arrays during transmis-
sion, which makes it object-conscious and easier to identify
duplicated objects. This work thus proposes a data dedupli-
cation mechanism to further optimize the data transmission.
The deduplication module in ZCOT leverages the exchange
space abstraction to memorize which objects have been sent
and avoids unnecessary object transmission in the future. Nev-
ertheless, deduplication may introduce references (or depen-
dencies) among different datasets. To this end, ZCOT extends
its distributed memory management module to consider inter-
group dependencies.

This work implements ZCOT in the HotSpot JVM of Open-
JDK 11, the long-time-support version for OpenJDK. ZCOT
is well-integrated with existing features in OpenJDK (like
APPCDS [30]) to remain friendly to Java developers. We
evaluate ZCOT against state-of-the-art OSD libraries and
optimizations with both the micro-benchmark and macro-
benchmark. The micro-benchmark contains both basic and
complicated data structures for data transmission, while the
macro-benchmark contains two big-data analytics frame-
works (Spark and Flink). The result for micro-benchmark
shows that ZCOT outperforms other OSD libraries, espe-
cially for complicated data structures, and reaches up to 4.35x
speedup compared with Naos [39], a state-of-the-art optimiza-
tion on OSD. As for macrobenchmark, ZCOT outperforms the
default OSD libraries in both Spark and Flink and thus boosts
the application time by up to 23.6% and 22.2%, respectively.

To summarize, the contribution of ZCOT includes:

* A distributed shared abstraction named exchange space
to enable zero-change object transmission among JVMs
while remaining compatible with traditional OSD-based
applications.

* A memory management mechanism on the globally
shared space integrated with GC in individual JVMs.

* A data deduplication module to identify and eliminate
unnecessary object transmission for further performance
improvement.

* Experiments on communication-intensive workload to
show the performance improvement of ZCOT over ex-
isting OSD libraries.

JVM 2

deserializationQ
001100101... :> O
r O

JVM 1

Q serialization =g
|::> 001100101...
) Q \A@/‘

Figure 1: The workflow of OSD

2 OSD Background

21 OSD

Language runtimes provide a high-level abstraction for
platform-independent code execution. As for user objects,
runtimes store them with an opaque format, which maintains
object data together with corresponding metadata (type infor-
mation, synchronization, memory management, etc.). Taking
Java as an example, JVMs maintain a header for each object
to store its metadata.

However, when data exchange among JVMs is required,
objects must go beyond the runtime scope. For example, ob-
jects might be persisted into disks and reused by other JVMs
later; they can also be sent and received through network.
To support those scenarios, objects have to be interpretable
even when leaving JVMs. Therefore, JVMs embrace the ob-
ject serialization/deserialization (OSD) mechanism, which
transforms Java objects into a generalized data format (seri-
alization) and transforms back when reusing in JVMs (de-
serialization). The Java system library (JSL) already provides
a built-in OSD library for applications. Figure 1 shows the
workflow of JSL’s OSD. As for the serialization part, objects
are transformed into a byte array that follows a data format
agreed among JVMs. The byte array will be written into disks
or sent through network. When another JVM receives the byte
array, it transforms the byte array back into objects through
deserialization.

The OSD mechanism has two major advantages. First, the
library provides a general-purpose data format so that Java ob-
jects can be transformed among JVMs with different versions
and configurations. Second, the serialized data is compressed
and induces smaller footprints in both disks and network.

2.2 Limitations and opportunities

The major disadvantage for OSD is its performance penalty.
The performance problem of OSD in big-data analytics is
three-fold.

Transformation overhead. OSD introduces extra phases
for object persistence and transmission. To serialize an object,
OSD should traverse all its reachable objects and store their
type information. As for deserialization, OSD should scan
serialized data and reconstruct objects.

Memory footprint. OSD generates a considerable number
of temporary objects during data transformation. As shown
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Figure 2: Duplicated data transmission in the page-rank ap-
plication

in Figure 1, byte arrays are generated during serialization and
become useless after sending out. Those temporary objects
can increase the memory pressure and cause more frequent
GCs.

Duplicated transmission. Big-data analytics leverage
OSDs in many rounds of communication and duplicated ob-
jects may be repetitively transformed and exchanged in each
round. Figure 2 shows a concrete example in Spark [44],
which calculates the popularity for each URL (simplified as
letters) with the page-rank algorithm [31]. Since the algorithm
executes for multiple iterations, the data transmission is also
conducted in many rounds. In the first round, the URL-based
network topology is sent through network, which consists of
many string pairs to indicate the point-to relationships among
URLs. In the later rounds, the rank value for each URL is
iteratively propagated, which is organized as key-value pairs.
Note that the strings in the key-value pairs are URLs that have
been sent in the first round. Unfortunately, since all objects
have been transformed and merged into byte arrays, JVMs
cannot tell that some objects have been received before. They
have to receive all objects as a monolithic byte array, which
leads to unnecessary network transmission and OSD phases.
In the Spark page-rank application, over 60% of transferred
objects are duplicated.

Furthermore, the advantages of OSD also fade with ad-
vances in hardware technologies. For example, the band-
width of off-the-shelf network devices can reach 100Gb/s
or larger, which makes network transmission time less im-
portant, so OSD may become a more significant bottleneck.
On the other hand, the general data format is not always re-
quired. Therefore, many optimizations have been proposed
to reduce the performance overhead of OSD, both in soft-
ware [26,38,39] and hardware [16,32,40,46]. Since hardware-
based approaches require building customized hardware ac-
celerators to improve OSD, this work mainly focuses on
software-based approaches with off-the-shelf hardware.

2.3 State-of-the-art optimizations

The basic idea behind OSD is to achieve an agreement on ob-
ject representation among JVMs. Therefore, optimizations on
OSD should consider how to create the agreement so that ob-
jects can cross JVMs’ boundaries. Besides, they also need to
consider issues like compatibility with existing applications.

Kryo. Kryo [38] is a fast OSD library for Java. Compared
to JSL’s OSD, Kryo refines the binary data format to achieve
a smaller serialized data size and better performance. Applica-
tions like Spark have leveraged Kryo as its default serializer.
Nevertheless, Kryo does not eliminate any phases in OSD;
objects still need to be transformed back and forth.

Skyway. Skyway [26] proposes to directly send object
graphs instead of serialized bytes. With Skyway, the seri-
alization phase is nearly removed as objects are no longer
transformed to a binary format. Although Skyway has simpli-
fied phases in OSD, modifications on objects are still required.
First, it needs to transform the type information in the head-
ers to a globally-agreed ID so that it can be identified by all
JVMs. Second, it needs to fix references after copying, as
objects have been moved to different addresses. Moreover,
Skyway also requires programmers to mark the point where
the serialization phase starts manually.

Naos. Naos [39] is a network-specific data transmission
mechanism. Similar to Skyway, Naos also employs a global
service to reach agreements for types, but it relies on RDMA
technology to achieve rapid zero-copy object transmission.
However, Naos still requires modifications on both object
headers and references. Besides, it only supports network-
based transmission, and existing applications need significant
modifications to leverage Naos.

2.4 Summary

Prior optimizations have proposed different solutions to re-
duce the overhead of OSD. However, they cannot eliminate
the whole OSD process. Table | compares the built-in OSD in
JSL with other optimizations. Although recent work like Naos
eliminates the serialization phase, a deserialization phase is
still required to fix the type information and the references.
Besides, none of them has considered the duplicated data
transmission problem.

This work proposes ZCOT (short for Zero-Change Object
Transmission), which aims to eliminate the whole OSD pro-
cess during data exchange. In ZCOT, object transmission is
conducted in the most straightforward way: the sender JVM
copies objects and the receiver can directly use them with-
out any modifications. ZCOT also considers the duplicated
transmission problem and provides a deduplication module.
Finally, ZCOT is not bound to specific network technologies
(like RDMA) and provides easy-to-integrate interfaces for
existing applications.
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Data transmission mechanisms  Serialization

Deserialization

Ease of Integration ~ Data deduplication

JSL Slow Slow Yes No
Kryo Medium Medium Yes No
Skyway Fast (removed) Medium Medium No
Naos Fast (removed) Medium No No
Z.COT (this work) Fast (removed)  Fast (removed) Yes Yes

Table 1: Comparisons on existing OSD optimizations against our work ZCOT

3 Design of ZCOT

3.1 Overview

The core idea of ZCOT is to build a distributed-shared-
memory (DSM)-like abstraction for JVMs running on dif-
ferent machines. Figure 3 illustrates the architecture of ZCOT.
In a ZCOT-enabled system, the heap for each JVM consists of
two parts: its private space (the original Java heap) and a glob-
ally shared exchange space. Objects are originally managed
in the private space. When they require to be sent through
network or persisted into disks, they will be copied to the ex-
change space. The exchange space is an abstraction available
for all JVMs; each JVM can directly access objects therein.
Therefore, object transmission can be achieved with direct
copying to the exchange space, and the whole OSD process
can be eliminated.

________ T T B

1
private space :Ek | | | | | :

direct read

direct write

exchange space | |

Figure 3: The architecture of ZCOT

The idea for building a DSM-like abstraction is well-known
and has been studied for decades [2,7,9, 14,20, 21, 25,33
35,41,42,45]. Although our exchange space shares similar
wisdom with DSM, it is only used for data exchange and does
not need to tackle complicated issues like coherence. It also
assumes objects in the exchange space are immutable, which
usually holds for big-data analytics like Spark and Flink. If
a write operation occurs on objects in the exchange space,
ZCOT creates a copy for it on the JVM’s private heap. Never-
theless, combining the DSM concept with data transmission
in high-level languages is still not trivial. To enable efficient
and easy-to-use object transmission, ZCOT has to resolve the
following challenges.

* How to build a shared exchange space so that all JVMs
can access it freely? (Section 3.2)

* How to leverage the exchange space abstraction to sup-
port OSD-based applications? (Section 3.3)

* How to manage objects in the exchange space in the
presence of garbage collections in individual JVMs?

(Section 4)

* How to resolve the duplicated transmission problem?
(Section 5)

3.2 Distributed class-data sharing

ZCOT relies on its distributed class-data sharing (DCDS)
mechanism to build a globally accessible shared space. DCDS
guarantees that class-related metadata will be mapped into
the same virtual memory address for all JVMs. This helps
JVMs to achieve an agreement on the class metadata, so no
type-related modifications (e.g., identifiers) are required.

user jar
JAR exchange space
(3
class space

—
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JDK tool H JUM1
° Em| D
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class archives
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Figure 4: The workflow of distributed class-data sharing

Figure 4 elaborates the workflow of DCDS. First, the clus-
ter manager should prepare a shared class archive for all JVMs.
The class archive should contain all classes whose correspond-
ing object instances would be shared during inter-JVM com-
munication. ZCOT relies on the tools provided by OpenJDK
to generate such class archives [30]. Afterward, the archive
will be used during JVM startup, and classes in the archive
will be mapped to a given virtual address. The virtual ad-
dress range is also memorized and marked as a part of the
exchange space (class space in Figure 4). This step assures
that JVMs share the same view on the classes. As shown in
Figure 4, an object in the exchange space stores a reference
to its class-related metadata. Since the reference points to the
class space, the object’s class information is interpretable for
all JVMs. Although DCDS requires the data types of appli-
cations should be known in advance, mainstream big-data
analytics frameworks usually guarantee this by sending a fat
jar file for execution.

Figure 5 shows how ZCOT transfers objects through net-
work with its DCDS support. First, the sender JVM applies for
an available memory chunk in the exchange space for object
copying. This is achieved by communicating with an external
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Figure 5: The workflow of ZCOT

metadata server (details in Section 4). Second, the sender
JVM copies objects to the chunk’s memory address. This step
is similar to a deep copy in a normal Java application. To
detect cycles and avoid repeated copying on the same object,
we add a marker word in each object header to store its new
address if it has been copied.

The copied objects are kept on the sender machine and
lazily retrieved by receivers. When a receiver JVM tries to
access this part of data (Figure 5b), it encounters a page fault
since the data is unavailable on its machine. We have regis-
tered the page fault handler in ZCOT-enabled JVMs so that
they can request the metadata server for faulted pages. The
metadata server has tracked the ownership of memory ad-
dresses in the exchange space, so it forwards the request to
the data owner. Afterward, the sender builds a connection
with the receiver and puts the requested objects to the desired
address. Now the receiver can directly access those objects
for further processing, with neither metadata updating nor
reference fixing (namely zero-change).

3.3 Supporting OSD-based scenarios

Thanks to the exchange space abstraction, a JVM can directly
access received objects without any modifications. However,
this mechanism is not compatible with traditional OSD-based
applications, which usually adopt byte arrays for commu-
nication. To this end, ZCOT should provide user-friendly
interfaces to integrate easily with applications.
Programming interfaces. JSL provides stream-based
classes for OSD implementation. The ObjectOutputStream
class provides the writeObject method to serialize an
object into a stream (usually files or network). Similarly,
the ObjectInputStream class provides the readObject
method to deserialize data into objects. Therefore, prior
OSD optimizations like Skyway implement new seri-
alizers/deserializers by inheriting those two classes for

ease of integration. ZCOT adopts a similar strategy and
Figure 6 shows its basic classes: ZCObjectOutputStream
and 7CObjectInputStream, which are subclasses of
ObjectOutputStream and ObjectInputStream, re-
spectively. Compared with ObjectOutputStream,
ZCObjectOutputStream slightly modifies the interface for
writeObject to support different OSD-based scenarios
(discussed later). To use ZCOT-based communications,
applications only need to replace the original stream classes
with ours. In contrast, prior work requires developers to
modify the original communication model or annotate the
serialization points [26,39].

OSD-compatibility. To remain compatible with OSD in-
terfaces (writeObject and readObject), ZCOT should also
transfer data with byte arrays. To this end, ZCOT adopts a
two-level transmission mechanism. As illustrated in Figure 7,
ZCOT transfers data via both frontend and backend. The
frontend transmission is compatible with OSD interfaces, but
it only sends metadata, including the object’s start address
and the data length. When ZCObject InputStream receives
the metadata through readObject, it directly accesses the
corresponding address and fetches objects through backend
transmission if a page fault is triggered (as mentioned in Fig-
ure 5b). ZCOT will launch dedicated VM threads in both
sender and receiver JVMs to transfer the requested objects.
This two-level design fills the gap between the byte-based
OSD interfaces and the object-based transmission in ZCOT.

Supporting different OSD scenarios. In OSD libraries,
objects are serialized and written into a stream (e.g., the
out variable defined on Line 3 in Figure 6) when invoking
writeObject, which are usually redirected into files or net-
work. To support both scenarios, ZCOT adds a parameter
volatile in the constructor of ZCObjectOutputStream (Line
6). When volatile is set to false, the copied objects will be writ-
ten into a file, and the memory pages can be soon reclaimed
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1 // Output class

2 class ZCObjectOutputStream extends ObjectOutputStream {

3 private OutputStream out; // Private output stream

4

5 // Constructor

6 public ZCObjectOutputStream (OutputStream out,
boolean volatile /* Mode */)

7 throws IOException {...}

8

9 // Compatible with the serialization interface

10 public void writeObject (Object obj)

11 throws IOException {...}

12

13}

14

15 // Input class
16 class ZCObjectInputStream extends ObjectInputStream {

17 private InputStream in; // Private input stream
18

19 // Constructor

20 public ZCObjectInputStream(InputStream in)

21 throws IOException {...}

22

23 // Compatible with the deserialization interface
24 public Object readObject ()

25 throws IOException{...}

26

27 }

Figure 6: Basic classes in ZCOT

through GC (details in Section 4). Nevertheless, those objects
still reserve a corresponding virtual address in the exchange
space. When the object data is read by other JVMs, the meta-
data server asks the sender to pass the file so the receiver
can map it to the corresponding memory address. The case
is simpler when volatile is true, which indicates a network-
based transmission. In this scenario, objects are only kept in
memory and can be reclaimed only if they have been read by
others.

OutputStream InputStream
(byte array) (byte array)

start address = 0x3000

i readObject()

Sender - Receiver
VM threads a b Backend a b
]

Send buffer

start address = 0x3000

writeObject(a)

Receive buffer

Figure 7: The two-level data transmission mechanism in
ZCOT

Assumptions. Note that ZCOT is mainly designed to im-
prove the data exchange phase for big data analytics, so it
makes several assumptions about the transferred data. First, all
classes related to communication should be known in advance
so that they can be packed into the class archive. Second, the
transferred objects are read-mostly, otherwise copy-on-write

operations would be triggered for modification operations.
Lastly, objects are managed in large groups and share similar
life cycles, so they can be efficiently managed in the exchange
space. Since representative big-data analytics systems like
Spark conform to the above assumptions, ZCOT works well
for them.

4 Memory Management

Since the global exchange space is built atop a DSM-like ab-
straction, ZCOT should manage objects distributed to differ-
ent machines. Furthermore, the managed runtimes complicate
the scenario as they introduce their own memory manage-
ment strategy: garbage collections (GC). This section will
introduce how ZCOT manages the distributed exchange space
while remaining harmonized with GC in JVMs.

4.1 Group-based management

Unlike traditional DSM-based systems, ZCOT introduces
group, a semantic-aware notion for distributed memory man-
agement. As analyzed in Section 2, big-data analytics frame-
works treat serialized objects as a whole dataset (monolithic
byte array) and retrieve them together. Therefore, ZCOT puts
all objects copied in the same writeObject invocation to a
group so that they are managed together. When a receiver
encounters a page fault, ZCOT will send all related data pages
belonging to the same group to the receiver and avoid fu-
ture faults. This mechanism, namely group-based prefetching,
leverages the semantics in the OSD scenario to mitigate the
page-based management overhead in traditional DSM.

4.2 Metadata server

The metadata server is the core module for ZCOT’s memory
management. JVMs communicate with the metadata server
through remote procedure calls (RPCs) to acquire or release
memory resources in the exchange space. Figure 8 illustrates
the core data structures in the metadata server. The metadata
server is agnostic to groups; groups are only managed by
individual JVMs. It partitions the shared exchange space into
equal-sized memory chunks (256MB by default) for memory
allocation and deallocation. It also maintains an allocation
bitmap to mark if a chunk has been allocated. Each chunk is
assigned with an integer ID, which is calculated by its relative
offset compared with the exchange space’s start address. To
track the stored locations of chunks, the metadata server main-
tains a copy set for each chunk, which is stored in a chunk
mapping table. The copy set contains JVMs storing a copy of
the corresponding chunk (in memory or disk), which are also
represented with integer IDs. The mapping between a JVM’s
ID and information (e.g., IP address) is stored in a separated
member table.
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Since each JVM needs to communicate with the metadata
server, its reliability becomes considerable. To tolerate fail-
ures on the metadata server, we can introduce replicas for
it, and the overhead would be acceptable given the low fre-
quency of communications between the metadata server and
worker JVMs (several times in a data-processing stage lasting
for seconds).

chunk mapping table member table

chunk | copy-set JVMID| ip:port
________ E-1 )~ 1- 0 [ ipo:7270

el Fa - -1 | ip1:2233

allocation bitmap|0100100...000
<

| N
N
! N

exchangespacel;-\l - | | | | | |

free chunk allocated chunk

Figure 8: Important data structures in the metadata server.

4.3 RPC interfaces

The metadata server provides four important RPC interfaces
listed below.

int register(std::string ip, int port);
Chunk* acquire();
Chunk* get_remote (Address addr);

int release (Chunk* chunk);

register. register is only invoked when a JVM is
launched. ZCOT has provided a JVM option -XX:+UseZCOT,
and a JVM enabling this option automatically spawns an RPC
thread and sends a register RPC to the metadata server with
its IP address and listening port. After receiving the RPC, the
metadata server saves the IP and port number to the member
table, generates an integer as the JVM'’s ID, and returns with
the ID. For subsequent RPCs, JVMs should always attach the
returned ID to help the metadata server maintain the stored
locations of objects (omitted in the interfaces above).

acquire. When a JVM runs out of allocated memory from
the exchange space, it should send acquire RPCs for more
memory resources. After receiving an acquire request, the
metadata server scans its bitmap to allocate an available chunk.
Afterward, the metadata server memorizes the relationship
between the allocated chunk and the JVM’s ID and returns
the chunk. To reduce the overhead of bitmap scanning, ZCOT
memorizes the address of the last successfully allocated chunk
and starts scanning there. If the scanned address reaches the
end of the exchange space, ZCOT will continue scanning from
the beginning. To handle simultaneous acquire requests,
ZCOT introduces a bitmap lock to ensure the bitmap is exclu-
sively accessed.

get_remote. The get_remote interface is used by JVMs
encountering a page fault when accessing a virtual address.
Since a page fault indicates the requested objects are not
stored locally, the JVM sends get_remote to fetch the corre-
sponding chunk. After receiving get_remote, the metadata
server gets the corresponding chunk containing the address
and finds which JVMs store the chunk by scanning the chunk
mapping table. As illustrated in Section 3.2, the metadata
server forwards the request to the corresponding JVM for
actual data transmission. Since the size of a chunk is rel-
atively large, sending chunks may introduce considerable
performance overhead. To reduce the transferred data size,
the sender JVM only sends used pages in the chunk, which
are represented as the length of data in the frontend trans-
mission (Figure 7). Due to ZCOT’s group-based prefetching
mechanism, the sender may directly send multiple chunks in
the same group to the receiver. In this case, the receiver is
responsible for sending an auxiliary RPC to update the copy
set in the metadata server.

release. The release interface is relatively simple. When
aJVM finds that objects in a chunk are no longer used, it sends
release to give up this chunk. After receiving release, the
metadata server removes the JVM’s ID from the correspond-
ing copy set in the chunk mapping table. If no JVM stores
this chunk, the metadata server will reclaim it by marking the
corresponding bit as free in the bitmap.

4.4 Garbage collection

JVMs have already implemented their garbage collection
(GC) algorithms to automatically reclaim unused memory.
When GC is triggered, JVMs track all live objects and re-
claim memory consumed by dead ones. Since objects in the
exchange space are reachable from individual JVMs, they
will also be affected by GC. To this end, ZCOT has integrated
its memory management strategy with G1, the default GC al-
gorithm in OpenJDK, to ensure the correctness of distributed
memory management and reduce GC overhead.

G1 basics. G1GC (short for Garbage-first Garbage Col-
lection [8] is the default garbage collector after OpenJDK
9 [29]. G1 divides the Java heap into equal-sized regions for
ease of management. It also maintains per-region metadata
named remember sets to memorize all references pointing to
objects in the same region. The remember set is updated by
instrumenting all write operations in Java code (also known
as write barriers). The G1 algorithm is mostly stop-the-world,
which means that application threads should be paused until
GC ends. During GC', each selected region is processed si-
multaneously: a dedicated GC thread scans the remember set
of a region, finds all reachable objects, and copies them to an
empty region (named survivor region).

Integrated with G1. ZCOT extends the region-based de-
sign of G1 to support the exchange space. It proposes ZCRe-

IFor simplicity, we only discuss the young GC and mixed GC in G1
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gion, a new kind of region allocated from the metadata server.
Compared with regions in G1, the size of ZCRegion is not
fixed. Each ZCRegion corresponds to a group in the exchange
space, and all objects therein are expected to have the same
life cycle. Since objects in ZCRegions have different behav-
iors compared with those in other regions, G1 should treat
them specially. First, we modify the behavior of write barriers
to consider ZCRegions. When a reference points to objects in
a ZCRegion, we do not memorize this reference but only mark
the ZCRegion as used. This is because objects in a ZCRegion
are only collected when no references point to any of them.
Similarly, GC threads do not need to scan ZCRegions during
GC because all objects are treated as alive if there exists any
reference pointing to the region. When GC ends, the JVM will
scan all ZCRegions and find those containing no incoming ref-
erences. For those ZCRegions, the JVM invokes the release
RPC to reclaim corresponding chunks. If objects in a group
are written into disks, the corresponding ZCRegion can also
be reclaimed by GC, but the JVM does not invoke release
since the virtual address is still reserved by the group.

In summary, our design successfully integrates the memory
management of the exchange space with G1IGC. When GC
ends, the memory resource in the exchange space is automati-
cally reclaimed by following the reachability-based algorithm.
Furthermore, by specially handling regions in the exchange
space, we avoid unnecessary metadata tracking and object
scanning. In some cases, this design can even reduce GC
pause time (as shown in Section 6.3).

5 Transmission Deduplication

Since ZCOT sends objects instead of byte arrays during trans-
mission, it would be much easier to track transmitted objects
and conduct deduplication. This section introduces the data
deduplication module in ZCOT based on its object-centric
transmission mechanism.

5.1 Overview

Figure 9 shows the effect of ZCOT’s data deduplication mod-
ule in the aforementioned page-rank example (compared
against Figure 2). When sending the URL-based network
topology in the first round, the sender has copied all URL
string pairs (together with two string objects) into their corre-
sponding addresses. In the next few rounds, the application
sends key-value pairs to update rank values for each URL.
Since all key-value pairs are sent as objects, it is much simpler
for ZCOT to find that all URL objects have been sent. There-
fore, the sender can directly update the references in those
key-value pairs with the addresses in the exchange space and
thus remove duplicated transmission on URL objects.
ZCOT runtime should be further extended to achieve data
deduplication. First, ZCOT should track copied objects to
rapidly find duplicated transmission. Second, ZCOT should

manage dependencies among object groups for safe memory
reclamation.

5.2 Duplication detection

A straw-man design for duplication detection would be scan-
ning all objects in the exchange space. However, this design
would induce considerable overhead given the large number
of objects. ZCOT instead follows a simple detection criterion:
if an object is in the exchange space, an attempt to copy it is
a duplicated one.

We still use page-rank as an example to explain ZCOT’s
duplication detection. Suppose a JVM receives the network
topology in round 1 (consider Figure 9); it reads URL objects
from the exchange space and uses them in the following
rounds. Therefore, when it propagates updated rank values to
other JVMs, it still uses the URL objects received from others.
When copying the URL-rank pairs in the next few rounds,
ZCOT checks each object’s address and thus avoids copying
those URL objects already in the exchange space.

5.3 Dependency management

Although data deduplication in ZCOT can reduce the net-
work overhead by avoiding repeated copying on the same
object, it also complicates memory management by intro-
ducing inter-group references. As mentioned in Section 4.1,
each invocation to writeObject creates a new group for
object management, and each group is separately used by call-
ing readObject. After deduplicating objects from different
groups, objects in a group can hold references to those in
another group, which should be correctly handled especially
when a group is being garbage collected. To this end, ZCOT
has managed those references as dependencies among groups.
Due to the large number of inter-group references, ZCOT
does not maintain reference-level dependencies. When a
group holds a reference to any objects in other groups, ZCOT
marks the group as dependent on others. The dependency
tracking is still achieved by extending the write barriers. To
memorize all dependencies, ZCOT extends the chunk map-
ping table in the metadata server to contain a dependency
set for each chunk, which stores all other chunks it relies on.
When a JVM finds that its group relies on another group af-
ter deduplication, it sends a new RPC add_dependency to
the metadata server. Since the metadata server is not aware
of groups, the RPC should specify all chunk IDs owned by
the group it relies on. Those chunk IDs will be added to the
corresponding dependency set by the metadata server.
Figure 10 uses an example to illustrate how ZCOT lever-
ages dependencies during object copying. After encounter-
ing a page fault on chunk 4, the receiver JVM sends a
get_remote RPC to the metadata server. By fetching the
dependency set in the chunk mapping table, the metadata
server finds all chunks that chunk 4 depends on. Afterward,
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Figure 9: ZCOT avoids duplicated object transmission in page-rank
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Figure 10: ZCOT avoids sending duplicated data with depen-
dency tracking

ZCOT checks the copy set for each chunk to find if the re-
ceiver JVM already has a copy. If the receiver does not have
a copy, ZCOT adds the corresponding chunk ID in a message,
which will be forwarded to the sender JVM later for real data
transmission. In our example, since the receiver JVM already
has copied chunk O and 1, it only needs to receive chunk 4
(requested) and chunk 3 (dependent). This example indicates
that ZCOT can avoid duplicated data submission with slight
modifications on the metadata server.

5.4 Garbage collection

Adding dependencies also complicates GC for individual
JVMs. Since a group (represented as ZCRegions) can be ref-
erenced by others stored in remote JVMs, local GC cannot
determine if a group can be safely reclaimed. For example,
suppose JVM 0 stores a group (chunk 0) that contains a refer-
ence to another group (chunk 1) stored on JVM 1. Although
JVM 1 no longer contains references to chunk 1, the chunk
should not be collected because JVM 0 may access it through
references in chunk 0. To this end, we extend G1GC to con-
sider remote inter-group references.

In our refined GC algorithm, once a JVM detects a ZCRe-
gion has incoming references from other ZCRegions (through
write barriers), it marks the region as pinned and thus cannot
be reclaimed. It also sends the dependency relationship to
the metadata server through RPCs. When GC ends, the JVM

skips all pinned ZCRegions and only collects those with no
incoming references. A pinned ZCRegion can be reclaimed
when the metadata server finds that all chunks relying on
it have been released. In this case, the metadata server will
send a canRelease message to all JVMs in the correspond-
ing copy set, and those JVMs will mark the ZCRegion as
unpinned to safely reclaim it in later GC cycles.

5.5 Internalization

Big-data analytics usually generate a large number of objects
with simple types, such as Integer, String, Double, etc. Open-
JDK has provided an internalization mechanism to merge
those objects with the same content together. For example,
Integer objects whose values are between -128 and 127 would
be merged into one if their values are equal. ZCOT also em-
braces this mechanism for deduplication, but in its distributed
exchange space. It extends DCDS so that all JVMs allocate
a small region at the same virtual address during start-up to
contain globally-shared Integer objects. Thanks to this opti-
mization, the number of transferred Integers can be greatly
reduced.

6 Evaluation

6.1 Experimental setup

ZCQOT is implemented atop the HotSpot JVM in OpenJDK
11.0.8-GA, with 8,327 lines of C code and 654 lines of Java
code. We leverage the following workloads to evaluate ZCOT.

Microbenchmark. The microbenchmark contains four dif-
ferent data types used in prior work [26, 39]: 2-dimension
points, key-value pairs, hashmaps, and media objects. To sim-
ulate big-data scenarios, we transfer them in large arrays
whose length is 65536. Since some baselines crashed for
large arrays of media objects, we reduced the length to 16384
for this data structure.

Spark. Spark (v3.0.0) is a data analytics engine that re-
quires massive data transmission among JVMs.
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Flink. Apache Flink [6] (v1.14) is a distributed data pro-
cessing engine for both batch and streaming workloads.

As for baselines, we compare ZCOT with two commonly-
used OSD libraries (JSL and Kryo) and two state-of-the-art
OSD optimizations (Naos and Skyway?).

Our test environment includes a cluster with four nodes
connected by 100 Gbit/s Mellanox ConnectX-5 NICs. Each
node contains dual Xeon E5-2650 CPUs and 128GB DRAM.

6.2 Microbenchmark

To directly compare ZCOT with state-of-the-art OSD opti-
mizations, we leverage the microperf tester in the Naos’ open-
source repository for evaluation. The tester involves a sender
and a receiver deployed on two separate machines and reports
the communication time with different type of data objects.
The heap size for all workloads is 16GB.

Figure 11 shows the results for ZCOT and other baselines,
which are the average of 1000 times of repetitive execution.
ZCOT achieves the best performance of all except for 2-
dimensional points. The average speedup is 2.28x, 1.94x,
2.19x%, 3.95x compared with Naos, Skyway, Kryo, and JSL,
respectively. The result also suggests that ZCOT performs
better for complicated data structures. The media class from
the Java serialization benchmark set (JSBS) [37] is the most
complicated one, so the improvement is the largest especially
against Naos (4.35x). This is because the computation over-
head increases when the data structure becomes more com-
plex. For simple data structures like points, ZCOT’s reduction
on data transformation is offset by larger network overhead,
so it performs slightly worse than Naos and Skyway.
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Figure 11: The evaluation results for microbenchmark

6.3 Spark

Ease of integration. To adopt ZCOT in Spark, we need to
implement a new data serializer ZCSerializer to replace
the default KryoSerializer. Although the name seems to
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Figure 12: The performance of Spark applications

involve OSD phases, it is only for compatibility consider-
ations and still remains zero-change during transmission.
7ZCSerializer contains 70 lines of code, and most of them
are inherited from the JSL serializer. Furthermore, we re-
place the original stream classes from JSL with ours. If a
Spark user wants to enable ZCOT, she only needs to (1) con-
figure the spark.serializer to ZCSerializer and (2) add -
XX:+UseZCOT to the launch option of all JVMs, which is
quite simple.

Evaluation results. We leverage five applications in the
example directory of Spark for evaluation. Their descriptions
and evaluated datasets are shown in Table 2. We configure
one node as the metadata server and Spark master while the
other three servers as Spark workers. The Java heap size for
each node is set to 80GB.

Figure 12 shows the results for all applications. The results
indicate that ZCOT can improve the performance by 13.9%
and 24.1% on average compared with Kryo and JSL, respec-
tively. Although Kryo has optimized the OSD performance
over JSL, our evaluation shows that the data transmission can
be further improved.

Application Dataset

PageRank (PR) LiveJournal [4]
Word Count (WC) LiveJournal
KMeans (KM) USCensus1990 [10]
Transitive Closure (TC) Blogs [1,17]
Logistic Regression (LR) ~ SUSY [5]

Table 2: Evaluated applications and datasets for Spark

We have further broken the results into four different
phases: write (serialization), read (deserialization), compu-
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tation, and garbage collection (GC). Since the four phases
are not overlapped in Spark (the GC phase only contains
stop-the-world time), the accumulated time is equal to the
overall execution time. Figure 12 indicates that the perfor-
mance mainly comes from the improvement in OSD-related
parts. Since OSD occupies a considerable portion in page-
rank execution, ZCOT can reach its best improvement (23.6%
and 38.1% w.r.t. Kryo and JSL). Averaged across all applica-
tions, ZCOT can reach 4.19x speedup in the write part and
2.95x in the read part over the default Kryo serializer (4.52x
and 3.81x speedup for write and read part in JSL). As for
GC, ZCOT shows comparable pause time with others. In PR,
LR, and TC, the GC time is even shorter than JSL and Kryo.
Although ZCOT needs to manage the copied groups (ZCRe-
gions), its coarse-grained collection strategy avoids scanning
objects inside ZCRegions. Moreover, ZCOT avoids generat-
ing monolithic byte arrays by eliminating the serialization
phase, which can mitigate the memory pressure and introduce
less frequent GC.

Note that the computation time in ZCOT is somewhat larger
than that in JSL and Kryo. This can be explained by two rea-
sons. First, since ZCOT does not compress the object contents
during transmission to achieve zero-change, the transferred
data size is larger than JSL and Kryo, which leads to larger
network overhead (included in the computation part). Second,
the data deduplication module makes objects in the same
dataset scattered into different virtual address ranges, which
may lead to more random memory accesses and cache misses.
Nevertheless, the overall performance improvement is satis-
fying.

Results for deduplication. We have also studied the ef-
fect of our data deduplication module. As shown in Table 3,
ZCOT can reduce the transferred data size for all four applica-
tions, ranging from 8.1% to 53.8%. Even for the non-iterative
application (WC), ZCOT is also helpful thanks to its inter-
nalization optimization technique. Meanwhile, LR and KM
receive smaller savings because they generate many different
Double objects in each iteration, which cannot be reused and
deduplicated. The result indicates that duplicated transmis-
sion is common in data analytics and ZCOT’s optimizations
are helpful. Note that the number of transferred bytes after
deduplication is still much larger than that in Kryo and JSL,
since both of them coverts objects in a compact format before
transmission. Therefore, it is still preferred to use ZCOT with
larger network bandwidth.

PR wC TC KM LR
dedup 1525 413 5.03 537 555
no-dedup 31.64 550 10.88 5.86 6.04

Table 3: Average transferred bytes (GB) for Spark executors

Various settings and overhead analysis. We evaluate the
performance of ZCOT with various settings on the heap size
and the chunk size by using PR as an example. The results in

Figure 13 show that ZCOT is not sensitive to different settings
and reaches similar performance. We have also studied the
overhead of write barriers by running Spark applications atop
ZCOT’s JVMs (with Kryo serializers) and comparing the per-
formance against vanilla JVMs. The average overhead among
all applications is 2.73%, which is much smaller compared
with the improvement brought by ZCOT. We also find the
average communication overhead with the metadata server is
only several milliseconds for each data-processing iteration,
which usually lasts for seconds.
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Figure 13: Results for PR under various settings

6.4 Flink

Ease of integration. We have also integrated ZCOT to Flink,
another big-data analytics framework. Although Flink adopts
its built-in serializer and deserializer for OSD, the integration
is not complicated since we only need to replace them with
ZCOT’s OSD-compatible interfaces and streams.

Evaluation results. We leverage four representative SQL
queries in the TPC-H benchmark for evaluation (Q1, Q3, Q6,
and Q10) and rely on its built-in generator to create input
data (10GB). The configuration is similar to Spark: we launch
three workers on different machines for evaluation, but the
Java heap for each node is 20GB. Since the read and write
phases are overlapped in Flink, we do not break the execution
time into parts. The results in Figure 14 show that ZCOT
outperforms the built-in serializer in Flink for three out of
four queries and leads to 2.3%-22.2% improvement in query
execution time. ZCOT does not improve Q6 since it does
not involve a reduce operator and the amount of transferred
data is limited. It performs the best for Q10 (22.2%) since it
reaches 4.40x improvement for the write part and 1.44 x for
the read part. The speedup is smaller compared with Spark
since Flink’s built-in serializers are manually optimized for
specific data structures (like tuples). Nevertheless, ZCOT still
shows better performance than the vanilla version of Flink,
which suggests the importance of zero-change transmission
mechanism.
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7 Related work

7.1 OSD optimizations

OSD has become a considerable performance bottleneck es-
pecially for large-scale communication-intensive applications.
To optimize the time-consuming phases in OSD, prior work
such as Kryo [38], Skyway [26], and Naos [39] has refined
the transmission data format or leveraged the advances in
network hardware technologies. ZCOT instead aims at elim-
inating the whole OSD process. Apart from software-based
techniques, another line of work adopts hardware-based ap-
proaches to reduce OSD overhead. Optimus Prime [32] builds
a data transformation accelerator (DTA) to improve the OSD
throughput for microservices. Cereal [16] co-designs the data
transmission format with hardware accelerators to improve
the performance and energy efficiency of Spark applications.
Morpheus [40] moves the deserialization phase into smart
SSDs, while Hgum [46] leverages FPGAs to handle OSD
tasks. ZCOT is based on off-the-shelf hardware and thus or-
thogonal to those hardware-based optimizations.

7.2 Distributed language runtimes

The idea for building a distributed language runtime (e.g., dis-
tributed JVMs) has been explored for decades. Java/DSM [43]
builds a distributed JVM atop DSM for heterogeneous com-
puting. JESSICA [21, 47] provides a single global thread
space and transparently migrates Java threads for load bal-
ance. Comet [ 14] builds a DSM-abstraction for JVMs running
on both mobile devices and the cloud and relies on its mem-
ory model to achieve effective code offloading. Semeru [41]
proposes a universal Java heap abstraction so that a Java appli-
cation can freely access all memory resources in a memory-
disaggregated architecture. Those systems leverage a shared
heap to synchronize data among different endpoints, but they
do not consider the performance overhead of inter-JVM com-
munication for large applications. XMem [42] enables effi-
cient type-safe object sharing among multiple JVMs on the
same physical machine, but it does not consider distributed en-
vironments. ZCOT also proposes a distributed runtime design,

but it mainly focuses on boosting data transmission among
multiple JVMs.

7.3 Runtime optimizations for Java

High-level languages like Java are intensively used in large-
scale, distributed applications, which stimulates research inter-
ests in runtime optimizations for performance improvement.
ITask [11] makes data processing tasks interruptible when
facing large memory pressure, which leads to better perfor-
mance and fewer out-of-memory errors. Yak [27] divides the
application execution into epochs and triggers GC when an
epoch ends. Broom [12] embraces a region-based design and
puts objects with the same lifecycle into the same region for
fast reclamation. ScissorGC [18, 19] proposes shadow regions
to improve the scalability of full GC phase. Taurus [22,23]
coordinates GC from different JVMs to reach better perfor-
mance or smaller tail latency. Facade [28] and Deca [36]
store massive data objects in off-heap memory to reduce GC
pressure, while Gerenuk [24] enables speculative execution
on serialized data to reduce both memory footprint and GC
overhead. ZCOT focuses on eliminating the OSD process and
duplicated object transmission, and it also collects objects by
coordinating with the metadata server.

8 Conclusion

This work introduces ZCOT, which aims to eliminate the
object serialization/deserialization phase in data exchange
among language runtimes (like JVMs). ZCOT provides an
exchange space where objects are interpretable for all JIVMs,
which removes the need for any data transformation during
object transmission. It also uncovers the duplicated object
transmission problem and provides a corresponding dedu-
plication mechanism. The evaluation shows that ZCOT can
significantly improve the performance of object transmission.
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A Artifact Appendix

Abstract

ZCOT, or Zero-Change Object Transmission, is proposed to
optimize data exchange among multiple Java virtual machines
(JVMs) in a distributed environment. Instead of sending and
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receiving data with the costly object serialization/deserial-
ization (OSD) phase, ZCOT allows JVMs to directly com-
municate with Java objects, which significantly improves the
data exchange time, especially for applications like big data
analytics.

Scope

This artifact (including binaries, source code, documents, and
scripts) is used to conduct the main experiments in ZCOT,
which consists of the following two parts:

¢ Micro-benchmark performance. The result should
show that ZCOT outperforms recent OSD optimizations
(Skyway [26] and Naos [39]) and state-of-the-art OSD
libraries (Kryo [38] and JSL) for most data structures
used in Naos’ microbenchmark.

* Spark performance. The result should show that ZCOT
outperforms Kryo and JSL-based Spark applications in
both data exchange and task execution.

Note that we only report numbers evaluated on our ma-
chines, so the results might be different with various hardware
configurations.

Contents

We pack all related files into a zipped one, which contains the
following contents.

« README. A file containing instructions for artifact
evaluation.

e ZCOT-jdk. The source code of a modified OpenJDK to
support ZCOT.

¢ Meta-server. The source code of the metadata server
used in ZCOT.

* Micro. Scripts and jars used for the micro-benchmark.

» Spark. Since the code size of Spark is quite large, we
provide an executable binary for Spark, which is slightly
modified to evaluate ZCOT.

* Naos-jdk. A slightly modified version of Naos’ Open-
JDK to compare with ZCOT.

Hosting

Currently our code is not ready for open-source. Nevertheless,
you can contact us viamingyuwu@sjtu.edu.cn to obtain the
artifact.

Requirements

Hardware requirements. We evaluate ZCOT on four nodes
connected by 100 Gbit/s Mellanox ConnectX-5 NICs. The
NIC bandwidth has a significant impact on ZCOT’s perfor-
mance.

Software requirements. The operating system used in our
machines is Ubuntu 16.04.2, but higher versions are also
acceptable. Note that huge pages should be enabled to run
ZCOT. Dependencies for installing OpenJDK have been listed
in the README file.
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Abstract

Distributed systems are hard to design and implement cor-
rectly. Recent work has tried to use formal verification tech-
niques to provide rigorous correctness guarantees. These
works present a hard choice, though. One must either opt
for the power of refinement-based approaches like IronFleet
and Verdi, at the cost of large amounts of manual effort; or
choose the more automated approach of 14, IC3PO, SWISS
and DistAI which give up the ability to prove refinement and
the power and scalability that come with it.

We propose an alternative approach, Sift, that combines
the power of refinement with the ability to automate proofs.
Sift is a two-tier methodology that uses a new technique,
refinement-guided automation, to leverage automation in a
refinement proof and a divide-and-conquer technique to split
a system into more refinement layers when necessary. This
combination advances the frontier of what systems can be
proven correct using a high degree of automation. Contrary
to what was possible before, our evaluation shows that our
novel approach allows us to prove the correctness of a num-
ber of systems with little manual effort, and to extend our
proofs to include not just the protocols, but also an executable
distributed implementation of these systems.

1 Introduction

Recently, formal verification has emerged as a potential alter-
native to the traditional approach of testing. The promise of
formal verification—to eliminate all bugs by construction—
is particularly attractive for distributed systems, which are
notoriously hard to design and implement correctly.

Despite recent efforts, however, formal verification of dis-
tributed systems is still not ready for real-world applications.
The most powerful techniques, such as IronFleet [34] and
Verdi [63], rely on refinement proofs [1,25,42] to reason
about complex systems and verify real implementations. Alas,
the power of those techniques comes at a high cost: perform-
ing these refinement proofs manually requires large amounts
of manual effort.

In an attempt to reduce the manual verification effort, the
Ivy tool [56] proposes to express distributed protocols using
decidable—and thus simpler to verify—reasoning [57]. The
Ivy tool achieves remarkable automation, but still requires
significant human effort to complete the proof. More recent
approaches, like 14 [50, 51], IC3PO [27], SWISS [33] and
DistAl [66], leverage model checking and SMT solvers to
automate the most challenging part of proving the correctness
of distributed protocols: finding an inductive invariant. Alas,
this automation comes at the expense of expressiveness and
applicability, because tools like 14 and DistAl were designed
to prove properties of monolithic protocols which consist of a
single layer. As such, they cannot prove refinement.

Refinement [1,25,42], however, is an essential concept in
proving the correctness of real, complex systems. It allows
us to prove the correctness of a system by showing that it is
equivalent to a simpler, more abstract version of that system.
The power of refinement comes in many forms:

Concise specification As Lamport has argued [45] and as
IronFleet demonstrated, specifications should be written as
simple, abstract state machines. Consider the specification
of a Paxos-based State Machine Replication in IronFleet,
where the goal is to prove that the entire service is lineariz-
able. Expressing linearizability as a set of properties on the
requests and responses is daunting and will likely yield a
complex specification. Using refinement, the task is simple:
just show that the entire service is equivalent to a single ma-
chine executing requests one at a time. Similarly, the sharded
key-value store in IronFleet was simply proven equivalent to
an abstract, logically centralized key-value store; i.e., a map.

Scaling to complex systems As IronFleet and Verdi demon-
strated, the key to dealing with the complexity of a real
system is to take a modular approach: split the proof into
multiple layers and show that each layer refines the one
above it. This is especially true when verifying actual im-
plementations, as these tend to be much more complex than
abstract protocols. In the absence of refinement, we are left
with the task of reasoning about a single, monolithic system,
whose complexity now becomes a limiting factor for both
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manual and automated approaches.

Dealing with undecidability Even when one only cares
about proving the correctness of the protocol, and not of the
implementation, being unable to split a monolithic system
into multiple layers can be a showstopper for automation.
As Padon et al. demonstrated [55], some protocols may be
undecidable by construction and thus not amenable to the
automation of I4 and IC3PO. In these cases, one can use re-
finement to split the protocol into two layers, each of which
is separately decidable [62].

We aim to get the best of what are currently two distinct
worlds: the power of refinement (i.e. IronFleet-style proofs)
but with only a fraction of the manual effort (i.e. using the
automation of monolithic provers like 14, IC3PO, SWISS and
DistAlI). This combination allows us to not only achieve sim-
ple, concise specifications, but also to scale our proofs to more
complicated distributed protocols, and even to distributed im-
plementations.

To achieve this goal, we introduce Sift, a two-tier methodol-
ogy that combines automated verification with a small amount
of manual effort to push the boundary on the kinds of systems
that can benefit from proof automation. Just like IronFleet
before it, Sift is a methodology, not a tool. Its contribution is a
way of structuring refinement proofs in order to leverage the
automation of existing tools. Similar to how IronFleet guided
developers to manually construct proofs based on the existing
tools (TLA+ and Dafny), so does Sift show developers how to
construct proofs that leverage the automation of more recent
tools, like IC3PO and Ivy.

The first tier of Sift introduces a new technique, called
refinement-guided automation, which leverages the automa-
tion of monolithic provers in the context of a refinement proof.
At the high level, this technique enables the automation of
refinement proofs between two layers by encapsulating the
state of the upper, more abstract, layer into the state of the
lower, more concrete layer. This encapsulation allows us to
transform a two-layer refinement proof into a single-layer,
monolithic proof that provers like 14, IC3PO, SWISS and
DistAl can perform.

Leveraging automation to prove refinement is not always
enough, though. Monolithic provers have their limits and thus
some refinement proofs are just too complex to prove auto-
matically. When that happens, we provide developers with
an escape hatch. The second tier of the Sift methodology
describes a divide-and-conquer technique for introducing in-
termediate layers, thus splitting a complex proof into chunks
that are small enough for the prover to handle.

The Sift methodology applies refinement-guided automa-
tion within each refinement step and uses our divide-and-
conquer technique to split a refinement step into smaller, more
manageable steps. As a result, Sift allows us to apply, for the
first time, automation to refinement-based proofs and scale
to much harder problems than was previously possible. We
use Sift to automate the verification of four distributed imple-

mentations, whose proof required minimal manual effort (less
than five minutes, in most cases).

We further use our divide-and-conquer technique to prove
the correctness of an implementation of Raft [54] and an im-
plementation of MultiPaxos [43,44] — a feat that was only
possible before by providing a fully manual proof of correct-
ness. Using Sift, we were able to automate most of the proof
for both Raft and MultiPaxos. The manual effort required to
complete the proof with Sift is not only significantly less than
that of previous approaches, it is also much less reliant on
having expertise in formal verification.

Overall, this paper makes the following contributions:

* We introduce refinement-guided automation, a technique
that leverages the automation of monolithic-oriented
tools to perform more complex, refinement-based proofs.

* We present a divide-and-conquer technique for splitting
a complex refinement proof into smaller pieces, such that
each piece is amenable to automated verification.

e We introduce Sift, a methodology that incorporates
refinement-guided automation and our divide-and-
conquer technique. We evaluate Sift on six distributed
implementations and find that it allows us to prove their
correctness in a mostly automated manner which dras-
tically reduces the manual effort required compared to
previous refinement-based approaches.

The rest of the paper is structured as follows. Section 2 dis-
cusses the tradeoff between automation and refinement. Sec-
tion 3 recaps some background material, while Section 4 gives
an overview of Sift. Section 5 introduces refinement-guided
automation and Section 6 shows how to introduce intermedi-
ate refinement layers when needed. Section 7 evaluates the
effectiveness of using Sift to automate the verification of a
number of distributed implementations. Section 8§ presents
the limitations of Sift and discusses future work. Section 9
discusses related work and Section 10 concludes.

2 The Price of Automation

As discussed earlier, there are currently two approaches for
verifying the correctness of distributed systems. The first is
the powerful but manual approach of IronFleet and Verdi [34,
35,63], where the developer uses refinement to show that a
complex implementation is equivalent—through a series of
layers or transformations—to an abstract specification.

The second approach is that of 14 [50], IC3PO [27],
SWISS [33] and DistAl [66] which leverage the power of
model-checking and SMT solving [5] to automatically prove
the correctness of abstract system descriptions at the proto-
col level. These approaches aim to prove that a given safety
property holds for the protocol at hand, by automatically iden-
tifying an inductive invariant that implies this safety property.

While such automation is undoubtedly a desirable property,
it comes at a heavy price. In particular, 14, IC3PO, SWISS and
DistAl can only perform monolithic proofs: they can prove
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that a protocol—defined as a single layer—satisfies a given
safety property. As we described in Section 1, this not only
limits the type of specifications we can use, but also severely
limits the scalability of the approach.

Most importantly, the scalability limitation is not an artifact
of the implementation of monolithic provers—Ilike 14, IC3PO,
SWISS and DistAl—but rather inherent in their design. By
asking the underlying solver to find an inductive invariant that
supports the desired safety property, they essentially adopt an
all-or-nothing approach: either the solver is powerful enough
to find an inductive invariant or it is not. If we consider more
and more complex systems, we soon reach a point where the
solver is simply not powerful enough to find an inductive
invariant.

In fact, a similar dichotomy presents itself when the proto-
col description has elements outside the decidable fragment
of logic [47,55]. In several of these cases, the solver struggles
considerably, even when it is trivial for a human to split the
problem into decidable sub-problems. Without the ability to
split this monolithic proof into multiple pieces, there is no
middle ground. For example, 14 simply fails when the prob-
lem lies outside the decidable fragment, even though it is still
possible to use refinement to split the protocol into two layers,
each of which is separately decidable [62].

In this paper, we show that there exists a middle ground
between the fully manual approaches that support refinement,
like IronFleet and Verdi; and the automated-but-monolithic
approaches, like 14, IC3PO, SWISS and DistAl. This middle
ground, enabled by our novel Sift methodology, allows for
refinement-based reasoning—and thus allows us to prove the
correctness of complex distributed implementations—while
making heavy use of automation to drastically reduce the
amount of manual effort required compared to IronFleet and
Verdi.

3 Background

3.1 Multi-Layer Refinement

Sift is heavily based on the notion of refinement. We will
therefore first recap the notion of refinement and how it can
be used to prove the correctness of complex systems.

A system P refines another system Q if the observable
outputs produced by any execution of Q can also be produced
by some execution of P. In the case of distributed systems,
the only outputs that are visible to external observers are the
messages produced by these systems.

In the simplest application of refinement, the developer
writes two layers: a specification and an implementation. The
specification is written as a simple, logically centralized state
machine. In the case of a sharded key-value store, for example,
the specification is a simple map, where the only possible
actions are to put something to the map, or to get something
from the map [34, 35]. The developer then shows that the

implementation refines the specification, thus proving the
correctness of the implementation.

In more complex systems, directly proving refinement from
the implementation to the specification can be difficult [34,
35, 63]. In that case, the developer must insert one or more
increasingly complex layers between the implementation and
specification, thus creating a multi-layer structure, where each
layer must be proven to refine the one above it. We explain
how to design and insert intermediate layers in Section 6.

3.2 Automated Reasoning and Monolithic
Provers

Traditional verification languages [4,46] rely on the devel-
oper to write a full proof, including a large number of manual
annotations. As a result, approaches like IronFleet [34,35]
and Verdi [63] incur a high proof-to-code ratio. To reduce
this manual effort, Ivy [56] uses decidable logic to guarantee
completeness. With Ivy, the developer only needs to find an
inductive invariant—an invariant which is closed (inductive)
under the system transitions—and the prover can automat-
ically identify if this inductive invariant is correct. Ivy sig-
nificantly simplifies the effort of proving the correctness of
distributed systems, but finding such inductive invariants is
still a non-trivial task that relies on human intuition and an
intimate understanding of the system at hand.

To push the automation a step further, 14 [50] leverages
the regularity of distributed protocols, so that the inductive
invariant can be automatically inferred from a small, finite
instance. Unfortunately, such a strategy only applies to mono-
lithic protocols, not refinement proofs. Thus, 14 doesn’t scale
well when the system has a large state space and complex
transitions. More recent tools [27, 33, 66] have followed the
direction of using finite instances to guide the verification
of distributed protocols. All these tools, however, apply only
to monolithic proofs and cannot support refinement. We call
such tools monolithic provers.

3.3 1IC3PO: Our Monolithic Prover of Choice

The design of Sift does not rely on the internals of the mono-
lithic prover that it uses. The refinement-guided automation
technique of Sift can leverage any tool designed for automat-
ing monolithic, single-layer proofs. In fact, we previously
tried I4 as the monolithic prover in Sift, but later found that
IC3PO performs better. Our experience so far shows that
IC3PO also outperforms SWISS and DistAl. As new and
more powerful monolithic provers become available, Sift can
adopt them to perform even larger refinement steps to fur-
ther reduce manual effort. The next paragraph gives a short
overview of IC3PO.

IC3PO [27,28] is a recently-developed prover that uses the
synergistic relationship between symmetry and quantification
to prove the safety of distributed protocols fully automatically,

USENIX Association

2022 USENIX Annual Technical Conference 153



@ Add a new

Fails, and there are no more preconditions to convert

refinement layer

@ Are there any
unchecked
preconditions?

specification

(intermediate )
layers

Yes
implementation

Target system

@ Use a monolithic
prover to find an
inductive invariant

Success

Fails, and there
are preconditions
to convert

@ Convert preconditions
to invariants

Refinement-Guided Automation

Figure 1: Summary of the Sift methodology. White boxes are fully automated, gray boxes indicate a trivial syntax change, and

black boxes denote manual effort.

by inferring compact inductive invariants with both universal
and existential quantifiers. At its core, IC3PO exploits the
inherent regularity present in distributed protocols to signifi-
cantly scale up IC3/PDR-style verification [10, 23] over finite
instances of the protocol. Starting with an initial instance size,
IC3PO systematically computes quantified inductive invari-
ants over protocol instances of increasing sizes, until protocol
behaviors saturate, concluding with an inductive proof that
works for all instances of the protocol.

4 Overview of Sift

This paper introduces Sift, a methodology that allows reason-
ing about complex systems while still using a large degree of
automation in proofs. Sift accomplishes this by employing a
small amount of manual effort, when needed, to split the sys-
tem into a number of layers, where each layer can be shown
to refine the layer above it.

Figure | shows an overview of the Sift methodology. Ini-
tially, the developer starts with an implementation of the sys-
tem, along with a specification, both written in the Ivy lan-
guage [56]. If one were to use the Ivy prover, they would
have to provide a manual proof of refinement between the
specification and implementation. Sift, instead, introduces our
encapsulation technique to merge the two layers into a single
proof that our monolithic prover can attempt to solve.

Indeed, the first step of the Sift methodology is to attempt
to prove refinement directly between the implementation and
specification layers. If this proof is too much for the prover to
handle, the developer adds an additional layer of refinement
and tries again. Each additional layer of refinement splits the
proof into smaller pieces that are more amenable to automa-
tion; but, of course, this comes at the cost of some manual
effort, as the developer must manually introduce the new layer.

In the next two sections, we describe the Sift methodol-
ogy in more detail. Section 5 describes how we can use the

Algorithm 1 Specification of the Sharded Hash Table (SHT)

1 function requests(R : request) : bool
2 function replies(R : reply) : bool

3 function map(K : key) : value

4 initialization {

5 VR. requests(R) < false

6 VR. replies(R) < false
7 VK. map(K) < 0

8}
9

action commit(req : request, rep : reply) = {

10 require rep.type = req.type

11 require rep.src = req.src

12 require rep.key = req.key

13 require req.type = read = rep.data = map(req.key)
14 if —requests(req) { > require —requests(req)
15 if req.type = write {

16 map(req.key) < req.data

17 IR

18 requests(req) < true;

19 replies(rep) < true;

20 }

automation of a monolithic prover to perform a refinement
proof between two layers (steps (1)-(4) in Figure 1). Section 6
presents the methodology for adding intermediate layers to
the refinement structure (step (3)).

Case Study: Sharded Hash Table Throughout this paper,
we use the example of a Sharded Hash Table application
(SHT) [34] to illustrate the Sift methodology. SHT imple-
ments a distributed key-value store, and consists of two layers,
a specification layer and an implementation layer. As shown
in Algorithm 1, the specification layer describes a key-value
store as a simple map from keys to values. It maintains two
local sets (modeled as boolean-valued functions, lines 1 and 2)
to keep track of which messages (requests and replies) have
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Figure 2: Encapsulation: to enable automatic refinement
proofs, the state of the upper layer (A, B, C) is encapsulated
inside the state of the lower layer (1, 2, 3, 4) refining it.

been sent. Initially, all keys are mapped to 0, and no messages
have been sent. Requests can either be read requests or write
requests. The only transition allowed by this specification is
to commit a request req and its reply rep: i.e., perform the
update (if this is a write request) and mark the corresponding
messages as sent by setting requests(req) and replies(rep) to
true. The specification layer consists of 32 lines of Ivy code.

In the implementation layer, every node contains a local
hash table containing some subset of the total keys in the
system and a delegation map. The node uses the delegation
map to maintain its knowledge of where keys are stored on
remote nodes. Each node can service a request using get
and set actions for the keys that are locally stored, or use
the delegation map to look up and forward requests to the
appropriate node in the system if the requested key is not
local. Nodes at the implementation layer can dynamically
exchange sets of keys they are responsible for, by exchanging
delegate messages (each carrying a key-value pair) among
themselves. The implementation layer consists of 127 lines
of Ivy code.

We aim to show that the implementation layer refines the
specification, i.e., that any observable output produced by any
execution of the implementation layer can also be produced
by some execution of the specification. A key property is
that for every key owned by a node at the implementation
layer, the data matches the value stored in the specification.
Additionally, every key is either owned by exactly one node
in the system, or part of an in-flight delegate message.

5 Refinement-Guided Automation

We first explain the key high-level idea behind automating
refinement proofs (step (4) in Fig. 1, Section 5.1). We then
present what modifications Sift makes to the layers of a tar-
get system description to ensure that the correspondences
between the layers are correctly represented before a proof is
attempted (steps (D-Q) in Fig. 1, Section 5.2).

Algorithm 2 Example of encapsulation in SHT

1 action set(req : request) = {

2 require req.type = write

3 owner < delegation.get_owner(req.key)
4 if owner = me {

5 hash(req.k) < req.v

6 rep < create_reply(req)

7 call spec.commit(req, rep)

8 call network.send_reply(rep)

9 } else {

10 call network.forward_request(req, owner)
11 }

12}

5.1 From Monolithic Proofs to Refinement

A key feature of Sift is that it uses the automation of mono-
lithic provers to perform more complex, refinement-based
proofs. As we explained in Section 2, monolithic (i.e. single-
layer) proofs do not scale to complex systems, either due to
complexity or undecidability. Yet, monolithic proofs are the
only type of proof supported by these provers. The first inno-
vation of Sift is that it converts a refinement proof between
two layers into a monolithic proof which can be given as input
to any monolithic prover.

We perform this transformation using our encapsulation
technique, depicted in Figure 2. The idea of encapsulation
is simple: if we want to show that a lower layer L refines
an upper layer U, then we augment the state of L with the
state of U. Additionally, whenever the state machine L makes
a transition, the encapsulated U state also makes an upper-
layer transition. In practice, this is expressed as a function
call in Ivy, where the lower layer invokes a transition on
its encapsulated state. For example, in the SHT application,
the lower layer includes an encapsulated spec object (see
Algorithm 1) and a lower-layer transition calls spec.commit ()
if it refines the commit transition of the upper layer.

Encapsulating the upper-layer state into the lower layer
effectively creates a single, augmented lower layer that can
be used to reason about the relation between the upper and
lower layer. Most importantly, we can now leverage traditional
single-layer provers to show whether a certain property—the
refinement property—holds for this augmented lower layer.

Case study: refinement proof for the SHT Algorithm 2
shows a simple example of encapsulation at the implemen-
tation layer of SHT. To perform this encapsulation, the im-
plementation layer imports (in Ivy) the specification layer. In
this example of handling a set request, the program checks if
this node (me) is the owner of the key in the request (line 4).
If it is the owner, the implementation layer internally makes
a call (line 7) to spec.commit (shown in Algorithm 1). This
transition corresponds to the transition from state 1 to state 2
in Figure 2: the implementation layer transitions from state 1
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to state 2, while each of these states encapsulates the corre-
sponding upper layer state, indicating a transition from state
A to state B at the upper layer.

If this node is not the owner, it simply redirects the request
to the owner. Such an implementation layer transition does
not entail a specification layer transition and so the code does
not call spec.commit or any specification-level function. This
is usually called a “stutterring” step of the specification layer—
essentially a no-op—and corresponds to the transition from
state 2 to state 3 in Figure 2.

To prove that the implementation refines the specification,
we ask our monolithic prover to prove a simple property:

VR :reply,N :node. net.replied(R,N) = spec.replies(R)

This property says that any reply R sent to any node N at
the network (implementation level) can only be present if the
same reply R is present at the specification level. Since replies
are the only observable outputs of the system, it ensures that
every output of the implementation is also an output of the
specification, thus ensuring that the implementation is indeed
a refinement of the specification. Note that the reply message
at the implementation layer is part of the network and thus
modeled as net.replied(M,N).

5.2 Enforcing pre- and postconditions across
layers

When calling functions from a lower layer to an upper layer,
an upper-layer transition’s precondition must be met. The
preconditions of the callee (in the upper layer) become post-
conditions (assertions) for the caller (in the lower layer) to
check. For example, on line 13 of SHT’s specification (Al-
gorithm 1), before committing a request, the precondition
concerning the request, req, and the corresponding reply, rep,
must be met:

req.type = read = rep.data = map(req.key)

This precondition ensures that every time a read request
is committed, the data contained in the response must corre-
spond to the data in the abstract map. Since it is the caller’s
responsibility to guarantee that this precondition is met be-
fore committing the request, this precondition is effectively
an assertion that needs to be checked by the monolithic prover.
Unfortunately, the current state-of-the-art monolithic provers
do not support checking these kinds of assertions, and can
only find an inductive invariant for a safety property.

If we attempt to ignore this assertion check and let the
monolithic prover prove the refinement property as is, the
result could be unsound—i.e., the proof may go through even
if the implementation is buggy. For example, let us consider
again the refinement property for SHT:

VR :reply,D:node. net.replied(R,D) = spec.replies(R)

Without precondition checks, a buggy implementation can
send a bogus reply message and call commit at the encap-
sulated specification layer. This would make the refinement
property trivially inductive—since the commit call adds the
message to the replies—without guaranteeing that contents
of that message are correct.

To avoid this problem, Sift needs to consider the asser-
tions in function calls to maintain soundness in automated
refinement proofs. In the rest of this section, we explain how
we transform the assertions to either conditionals (if/else) or
invariants that the monolithic prover can reason about.

5.2.1 Converting Assertions to Conditionals

A straightforward approach to model assertions in function
calls is to convert the callee to an always-enabled action
using a conditional if/else block [35]. The developer can
manually rewrite an assertion P as follows: if P holds, take
the transition; otherwise, do nothing. In this context, the entire
if/else block is always-enabled, in that it has no preconditions
and can always be taken.

For example, the original SHT specification had a precondi-
tion —requests(req) in the specification of the commit action,
which we convert to an if-statement (Algorithm 1, line 14).
This precondition ensures that the specification can never
execute the same request twice.

The benefit of this approach is that it does not rely on any
understanding of the system, which makes it very easy to
implement. It has, however, two downsides. First, adding an
if/else block in place of a precondition makes the proof a
little harder for monolithic provers, since it is harder to find
an inductive invariant for a weaker problem. Second, if the
if-statement refers to ghost state—i.e., proof-related state that
is not compiled to an executable—such as the sets correspond-
ing to network messages, these if-statements are not compiled
directly to executable code.Therefore, if there are any asser-
tions that refer to ghost states at the implementation layer, we
cannot rely on the approach of converting assertions to condi-
tionals. In these cases, we need to convert them to invariants,
as we describe below.

5.2.2 Converting Assertions to Invariants

A second, more involved approach to the problem is to convert
these assertions into invariants. Doing so requires human
intuition but reduces the difficulty for the monolithic prover.
For every assertion that needs to be checked, there must be
an invariant to support its proof. The key idea is simple: a
programmer can trace backward through a function call from
the upper layer (the callee) to the lower layer (the caller) to
find the enabling precondition. For the SHT precondition
example above, we observe that only the node who owns the
key can commit the reply. Leveraging this observation, we
can construct an invariant that if node N thinks it is the owner

156 2022 USENIX Annual Technical Conference

USENIX Association



of key K, the local value for key K at node N, which forms
the reply, must match the value in the spec:

VN :node,K : key. server(N).delmap(K,N) =
server(N).hash(K) = spec.map(K)

where server(N).delmap(K,N) indicates that from the per-
spective of server N, the owner of key K is N (delmap stands
for the delegation map). By maintaining this invariant, Sift
can ensure the associated assertion will never be violated dur-
ing the execution of the system. Note that the invariant is not
necessarily inductive, but Sift leverages the automation of the
monolithic prover to complete the proof.

Case study: converting assertions for the SHT The man-
ual effort involved in the SHT proof requires converting seven
assertions into two if-statements and five invariants. The as-
sertion —requests(rl) is converted from an assertion to an
if-statement, as described in Section 5.2.1. On the other hand,
the first three assertions (lines 10 to 12 in Algorithm 1) are
already enforced by the implementation layer and do not need
to be converted. We could further use the methodology de-
scribed above in Section 5.2.2 to convert the fourth assertion
(line 13) to an invariant, but it turns out that monolithic provers
are powerful enough to complete the proof even if we simply
convert it to a if-statement.

6 Introducing Intermediate Layers

We have discussed how to use automation to prove refinement
between two layers. However, sometimes, the automation
provided by the monolithic prover is not powerful enough to
prove the desired refinement. This can happen either due to
the complexity of the proof, or the presence of undecidable
reasoning. When faced with such complex proofs, monolithic
provers will either time out or run out of memory.

To perform such complex proofs, the solution is to intro-
duce an intermediate layer (step (5) in Figure 1), thereby split-
ting the proof into two simpler refinement proofs: one refine-
ment proof from the original lower layer to the intermediate
layer, and another refinement proof from the intermediate
layer to the original upper layer. By repeatedly using this
proof-splitting technique until every refinement proof is auto-
mated, we effectively execute a divide-and-conquer strategy
that allows us to tackle complicated refinements.

This idea is similar to IronFleet’s methodology of intro-
ducing an intermediate protocol layer to simplify the proof.
In IronFleet, however, the developer needed to both wrife an
intermediate layer and manually prove it correct. By contrast,
Sift uses the automation of monolithic provers to dispense
with most of the latter manual effort of writing the proof, and
only requires the user to write intermediate layers—a much
smaller effort than coming up with manual proofs.

Thankfully for developers, introducing an additional layer
is done incrementally. The new layer is essentially a variation
of the layer above or below it: either a more detailed version of
the layer above it or a more abstract version of the layer below
it. This helps keep the manual effort needed to introduce such
layers small.

In the rest of this section, we discuss the strategies that we
have developed and used to introduce intermediate layers, and
walk through the process on a MultiPaxos example.

6.1 Intermediate Layers for Complexity

In most cases, the biggest challenge for a monolithic prover
to automatically prove a refinement is its complexity. If the
system is too complex, the prover either times out or runs out
of memory. When this happens, we can split the refinement
proof into two simpler refinement proofs by introducing an
intermediate layer. We list here a number of ways in which
such a split can simplify the proof burden. This list is extracted
from our experience adding intermediate layers to facilitate
refinement, and is not meant to be a complete enumeration of
all possible layer-splitting strategies.

Abstract Away Messages Not Needed for Safety. Some of
the messages used in the implementation may only be needed
for liveness or performance, but not for safety. When trying
to prove safety, those messages can be abstracted away in an
intermediate layer: they are removed from the intermediate
layer but kept in the implementation layer—itself proven to
be a refinement of the intermediate layer.

For example, in MultiPaxos the current leader needs to
periodically broadcast a heartbeat message to indicate that
it is still alive. This message is not needed for safety and
can therefore be removed in an intermediate layer—though
it is preserved in the implementation layer. The resulting
intermediate layer is now simpler and thus easier to prove
equivalent to the specification.

Merge Multiple Transitions into One Abstract Transition.
Sometimes, the intermediate layer can take an abstract transi-
tion which is broken into multiple transitions in the low-level
implementation.

For example, in MultiPaxos the learner can only receive
one vote (two_b message) from an acceptor at a time. But
what the learner really needs is a quorum of messages to learn
a value. In this case we can merge multiple transitions of
receiving each message separately into one abstract transition
of receiving a quorum, and remove local variables for tem-
porary results. This significantly simplifies the intermediate
layer, with fewer state variables and simpler transitions.

Simplify Local State and Requirements for Transitions.
Implementation layers have to take into account implementa-
tion constraints: for example, a node can only read its local

USENIX Association

2022 USENIX Annual Technical Conference 157



state when taking a transition; and it cannot access messages
sitting in the network. But intermediate layers are essentially
proof constructs and thus do not need to respect such imple-
mentation constraints.

For example, in MultiPaxos, a node needs to maintain an
explicit local history of previous two_b votes to construct
its one_b promise to a new leader, since a promise message
depends on previous votes. In an intermediate layer however,
a node can directly access all sent messages in the network,
thus eliminating the need for this local history. Moreover,
in an implementation a node can only read its local history,
thus requiring a proof that the local history is consistent with
sent messages. In the intermediate layer, since the node has
access to all sent messages, it can directly check that the one_b
promise is consistent with the vote messages, thus eliminating
the need for this proof.

6.2 Intermediate Layers for Decidability

When the verifier returns an explicit decidability error, it
means our refinement is not in the EPR decidable logic [47]
and may take forever to check. Such an issue is typically re-
solved by introducing an intermediate layer and a ghost state
(also known as a derived relation [55]) to hide the existential
quantifier creating the undecidability [55, 62]. We apply a
similar technique in Sift.

For example, in MultiPaxos an acceptor needs to send its
last votes for different slots in a one_b message to a new leader
to decide what value to propose. When a proposer becomes a
leader, it needs to have a quorum of one_b messages, resulting
in the following VRound FVotes alternation:

VN : Node,R : Round. quorum_of(R).contains(N)
= JV :votes. one_b(N,R,V)

The alternation of the V and 3 quantifiers, along with the
inductive invariant, means that this proposition is outside
the decidable logic of EPR. We leverage results from a fol-
lowup work on Ivy [62], and introduce an intermediate layer
to abstract away the payload (previous votes), thereby break-
ing the quantifier alternation. In this case, we only need
an intermediate-layer state joined_round(N,R) to represent
V. one_b(N,R,V).

7 Evaluation

We evaluate Sift by using it to formally verify the correct-
ness of six implementations of distributed systems: a leader
election protocol (Section 7.1), a distributed lock protocol
(Section 7.2), a two-phase commit protocol (Section 7.3), a
sharded hash table (SHT, Section 7.4), and two consensus pro-
tocols: Raft (Section 7.5) and MultiPaxos (Section 7.6). We
use Ivy to implement these systems, and extract the executable

code to C++ using Ivy’s built-in translator. For the more com-
plex systems (SHT, Raft and MultiPaxos), we also perform
a performance evaluation (Section 7.7) to demonstrate our
automated approach does not impact the performance of im-
plementations.

For all systems in our evaluation, we consider crash failures
and an asynchronous network, which can arbitrarily delay,
drop, or duplicate messages. Both of these can be easily im-
plemented in Ivy. Note that since Sift (like all its predecessors
that also target automation) does not support liveness proofs,
it does not need to explicitly reason about crash failures—a
crash results in a machine no longer taking any steps and thus
has no effect on safety properties.

We find that we are able to prove these complex systems
with little manual effort within a reasonable memory and
time budget, using IC3PO [27] as our monolithic prover. Our
verification results are in Table 1. The complexity of different
systems is illustrated by the number of different types that
are needed to express state transitions for a given system.
For example, for the leader election protocol, there are just
two types: node and id. In contrast, MultiPaxos contains 14
different types, e.g., round, inst, value, time, node, etc.

We now give details about the proofs of the aforementioned
systems, followed with a performance evaluation (Section-
7.7) of three of the more complex resulting implementations
(i.e., SHT, Raft and Paxos). We ran our performance exper-
iments on a cluster where nodes have a 16-core Intel Xeon
E5-2667 v4 @3.20 GHz processor and are connected with
a 10 GB Ethernet connection running Ubuntu 16.04. All our
implementation and artifact can be found in GitHub [49]

7.1 Leader Election

The leader election protocol aims to elect a unique leader
from a ring with an unbounded number of nodes with unique
integer IDs [13, 50, 56]. The specification layer dictates a
single action the system can take: elect a node as the leader,
under the condition that no other node is already the leader.
This layer contains 13 lines of Ivy code.

In the implementation layer, the nodes are totally ordered
in a ring so that every node has a next node. A node n has
two valid actions: (a) periodically send its ID idn(n) to the
next node in the ring; or (b) forward an ID i received from its
predecessor if i > idn(n). Once n receives its idn(n), it knows
that no other node in the system has a larger ID, and can now
safely become the leader. The implementation layer consists
of 28 lines of Ivy code.

To prove refinement between the implementation and the
specification layers, we ensure that when a message stating
that a leader is elected is sent in the implementation, the
destination of the message should correspond to the leader
node in the specification.

We perform a manual, albeit trivial, syntactic change to
the specification layer to convert one precondition into an
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System Proof Refinement # of types Solution to # of Clauses | Time | Memory
y Effort P Preconditions | in Invariant | (sec) (MB)
Leader Election <5 min spec to impl 2 1 if-statement 6 196 1744
Distributed Lock <5 min spec to impl 2 1 if-statement 8 111 425
Two-Phase Commit < 5 min spec to impl 4 3 if-statements 12 613 815
. . 5 invariants,
SHT < 30 min spec to impl 7 2 if-statements 13 1021 856
spec to layer O 6 manual
1 person- | layer O to layer 1 6 15 invariants 22 787 4178
Rat month 15 invariants
layer 1 to impl 10 1 if-statement 17 1239 2981
Previously
proved spec to layer O 9 manual
7 invariants,
) layer O to layer 1 9 2 if-statements 12 49 249
MultiPaxos 3 person- 8 invariants
weeks layer 1 to layer 2 11 8 if-statements 21 258 719
layer 2 to layer 3 11 19 invariants 28 841 1935
layer 3 to impl 14 19 invariants 25 196 398

Table 1: Summary of our six distributed systems; “spec” stands for specification, “impl” stands for implementation, and “layer
i” represents intermediate layers. The number of different types that are needed to express the state transition illustrates the

complexity of different system.

if-statement, which takes less than 5 minutes. We then simply
use Sift’s encapsulation technique to convert the refinement
between the implementation and specification layers into a
monolithic proof that is proven automatically by IC3PO.

7.2 Distributed Lock

The distributed lock protocol [34, 50, 56] models an un-
bounded number of nodes that transfer the ownership of a
single lock. In this system, the ownership of a lock is associ-
ated with an ever-increasing epoch: only one node can own
the lock at each epoch. This makes for a concise specification
layer—12 lines of Ivy code—that only contains a lock history
to indicate which node holds the lock at every epoch.

In the implementation layer, there are two possible transi-
tions for a node: (a) transfer the lock if it holds the lock; or
(b) accept the lock and jump to a higher epoch by sending a
locked message to indicate ownership. This implementation
has 35 lines of Ivy code.

The refinement property in this system is that all locked
messages should have a corresponding node in the specifica-
tion layer’s lock history.

The only manual effort involved in this proof is converting
one precondition to an if-statement in the specification layer,
which takes less than 5 minutes. After this transformation,
we can use the encapsulation technique from Sift to convert
the refinement between the implementation and specification
layers into a monolithic proof, and prove the locked message
is equivalent to the lock history.

7.3 Two-Phase Commit

The two-phase commit protocol [31] is used by a group of
nodes, known as resource managers (RMs), to coordinate the
decision on whether to abort or commit a transaction. The
RMs vote to either commit or abort the proposed transac-
tion and a transaction manager (TM) node is in charge of
coordinating the decision-making procedure.

The specification layer of this system uses the Transaction
Commit protocol by Lamport [30, Sec. 2] translated from
TLA+ [45] to Ivy. The safety property does not allow a node
to commit if another node aborts. The specification contains
54 lines of Ivy code.

The implementation of this system is an Ivy translation in-
spired by the TLA+ specification of Two-Phase Commit [30,
Sec. 3]. This layer introduces a special TM node, which coor-
dinates all RMs. An RM can send a Prepared message to the
TM when transiting into the prepared state, or unilaterally de-
cide to abort. Upon receiving a Prepared message from every
RM, the TM can decide to commit, broadcasting a Commit
message to every RM node. The receipt of a Commit message
from the TM allows an RM to decide to commit the transac-
tion. This implementation of two-phase commit has 110 lines
of code.

The refinement property between the implementation and
specification ensures that all RMs commit or abort at the same
time between the implementation and the specification.

After a trivial syntactic change converting preconditions to
three if-statements in the specification layer, this refinement
property is proven automatically.
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7.4 Sharded Hash Table (SHT)

The Sharded Hash Table protocol was previously introduced
as a running example in Section 4. Its specification is a simple
key-value map processing read and write requests. We can au-
tomatically prove the refinement from the implementation to
the specification, after converting preconditions to five invari-
ants and two if-statements to guide IC3PO, as detailed in Sec-
tion 5.2. Compared to IronKV (IronFleet’s implementation of
SHT), we simplify the delegate messages by transferring one
key at a time. Transferring intervals of keys would require a
loop iterating over keys and a loop invariant [59, 65], which
cannot be found automatically by IC3PO.

The network interface for SHT is more complex than that of
other systems. In particular, SHT’s network interface requires
that messages are not delivered twice, so that requests can
only be committed once and only one node at a time can own
akey. As this is not part of refinement, we leverage an existing
proof [53] for these requirements.

7.5 Raft

Raft [54] implements a shared log among nodes, which can
be used to implement a fault-tolerant distributed service. The
log is maintained as a set of (index, value) pairs.

Raft is a term-based protocol. In each term, a node can be
elected as the leader, append values to the log, and replicate
its log to other nodes by sending an append message. For
safety, each node maintains its own log and only votes for
a leader whose log is not earlier than its own. When the
leader receives reply messages for its append message from
a majority of nodes , the leader can consider all previous log
entries committed. This strategy ensures that all future leaders
contain the committed log.

At the specification layer, Raft can commit a prefix to an
index in the leader’s log and ensure that only one value is
committed at each index. The refinement property from the
implementation to the specification ensures that they have the
same log.

7.5.1 Intermediate Layers and Proof Effort

Our Raft implementation is similar to the previous Ivy im-
plementation of Raft [62] with 212 lines of code. Due to
undecidability, we could not refine the implementation to the
specification directly. Instead, we build a first intermediate
layer—layer 0—to separate the quantifier alternation (as out-
lined in Section 6.2). We tried to prove the refinement from
specification to layer 0 automatically, but the inductive invari-
ant contains complex quantifier alternations, which IC3PO
was unable to handle. As a result, we manually prove the
refinement from specification to layer 0. The refinement from
spec to layer 0 took two person-weeks (including understand-
ing the protocol). Layer O contains 143 lines of code.

From layer 0, the implementation is still too complex to re-
fine directly using IC3PO. We introduce another intermediate
layer, layer 1, to help IC3PO automatically prove the refine-
ment. To write layer 1, we follow the strategies presented in
Section 6, specifically by merging actions into one abstract
action. In the abstract action a node can receive a quorum of
messages at once, rather than receiving each of them individ-
ually in separate transitions. Layer 1 changes 57 lines from
layer 0. We spent another two person-weeks to identify this
intermediate layer and debug our implementation.

Overall, we were able to complete the proof of Raft in
one person month, which compares favorably to the three
person months needed by the original proof [62] written in
Ivy. This reduction was the result of using a much higher
degree of automation, by splitting the proof into layers and
leveraging the power of IC3PO to prove each refinement
between consecutive layers.

7.6 MultiPaxos

MultiPaxos [43,44] is a common consensus protocol that is
widely used in industry (e.g., Chubby [11], Megastore [2], and
Spanner [19]). However, MultiPaxos is notoriously complex
and difficult to verify.

At the specification level, MultiPaxos maintains an array
of values; some that have been decided (i.e., agreed upon
and finalized) and some that are empty. The only possible
transition in the specification is to add a new decided value
to this array. Similar to Raft, our refinement ensures that the
implementation maintains the same values as the array in the
specification.

The implementation of MultiPaxos is very similar to that
of Raft but uses different strategies to ensure safety. In Raft,
the leader can only be a node with the most up-to-date logs,
while MultiPaxos relies on the messages from other nodes to
generate an up-to-date log for the new leader.

7.6.1 Intermediate Layers and Proof Effort

Our design of the MultiPaxos protocol is inspired by previ-
ous work on expressing Paxos and MultiPaxos in the EPR
decidable logic [55, 62]. Our evaluation uses the MultiPaxos
implementation from [62], removing certain re-transmissions
that are unnecessary for safety to simplify the refinement.

Since proving refinement directly between the implemen-
tation layer and the specification layer would introduce un-
decidability (see Section 6.2), we initially introduce a single
intermediate layer, layer O, to circumvent this undecidability.
Moreover, as the refinement from the specification to layer 0
contains complex quantifier alternations that are too hard for
IC3PO to prove automatically, we borrow the existing manual
proof from Ivy. Layer O contains 88 lines of Ivy code.

After addressing undecidability concerns through layer 0,
we found that a direct refinement from the implementation to
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Figure 3: SHT performance

layer O remains infeasible for IC3PO. Using our divide-and-
conquer technique, we added three additional intermediate
layers to simplify this refinement. Following the strategies
outlined in Section 6.1, we first added a layer 1 that abstracts
away liveness messages and merges transitions to receive a
quorum of messages. We augmented this by introducing a
layer 2 that uses a local variable to track the current round,
receives one two_b message, and keeps track of when a valid
quorum can be formed. We then introduced a final intermedi-
ate layer that more closely resembles the implementation by
using an array to track previous voted values for acceptors,
and restricting a node to only receive one message during a
transition.

With the addition of the four intermediate layers, Sift splits
the complex refinement proof into manageable pieces, where
each refinement between layers is amenable to automated
verification. Producing the three intermediate layers (layers
1, 2, and 3) and converting the necessary preconditions to
invariants is still a non-trivial task which takes about two
person-weeks. About one third of the time is spent waiting
for IC3PO to run out of time or memory, which indicates
that another layer is needed (step (5) in Figure 1). While
non-negligible, this manual effort is significantly less than
the original attempt in Ivy, which was two person-months to
refine layer O to the implementation [62].

7.7 Performance Evaluation
7.7.1 SHT Performance

We compare the throughput and latency of our verified Sift
implementation of SHT with IronKV [34], as shown in Fig-
ure 3. IronKYV is the closest verified implementation of a
SHT that we could compare against. The SHT cluster was
preloaded with 1,000 keys delegated evenly across the three
nodes and serviced requests from an increasing number of
clients in a closed loop. In one experiment, client processes
send an even 50/50 mix of randomized GET and SET requests.
We further increase the percentage of GET requests to 90%.
IronKV scales about 25% better than our version of SHT. The
disparity in performance between these two systems can be
attributed to both unoptimized generated C++ from Ivy and
design choices made in IronKV, which added extra manual
proof complexity for the sake of performance purposes, such
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Figure 4: Raft and MultiPaxos performance

as an efficient delegation map data structure that each node
maintains and consists of 833 lines of Dafny code.

7.7.2 Raft and MultiPaxos Performance

We evaluated the performance of the verified Sift implementa-
tions of Raft and MultiPaxos by varying the load of each sys-
tem with an increasing number of clients submitting requests
in a closed loop, as shown in Figure 4. For both systems, the
experimental setup consists of three replicas on separate ma-
chines, with a fourth machine containing the client processes.

We tried to compare the performance of these systems with
IronRSL, IronFleet’s verified Paxos-based replicated state ma-
chine library, but the performance results of IronRSL were
not reproducible for a direct comparison. By re-running the
original implementation from the IronFleet paper [34], we
found the performance for IronRSL to be lower than origi-
nally reported [34, Sec. 7]'. The performance of our imple-
mentation of MultiPaxos, which does not support batching, is
comparable to the results reported for IronRSL in non-batch
mode [34, Fig. 13].

We do compare both Raft and MultiPaxos with the Ivy-
based manually-verified implementations [62]. The perfor-
mance of Raft is almost identical to the version of Raft, but
we find that our MultiPaxos system exceeds the performance
of MultiPaxos from that work. These results show that the
automation and reduced proof effort gained by using Sift does
not impact the performance of either system.

8 Limitations and Future Directions

Our experience with Sift suggests that it advances what is
possible in the realm of automated verification of complex
systems. For all of its successes, however, there are still more
steps to be taken in this direction.

* Automating simple transformations. While Sift greatly
increases the automation of complex refinement proofs, parts
of the methodology still require manual effort that could po-
tentially be automated, such as converting assertions to if-

'Even after close discussions with two of the IronFleet authors, this
discrepancy was not resolved. They attributed this to possible code changes
between what was originally evaluated and the currently available code.
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statements and transforming to invariants through automatic
computation of weakest preconditions [22].

¢ Loop invariants. Certain complex systems, such as SHT,
may require loop invariants to prove optimizations that are
added to enhance the performance of executable code. Loop
invariants are similar to regular inductive invariants, in that
both are inductive under some transitions. As described in
Sections 7.4 and 7.6.1, any loop invariant in Sift must cur-
rently be written manually. In the future, we hope to add
support for automatic deriviation of loop invariants in Sift, by
building further on the existing literature [59, 65].

* Leveraging multiple monolithic provers. As shown in
recent works [27,33, 66], different monolithic provers show
complementary strengths in different scenarios. Since the de-
sign of Sift is independent of the choice of monolithic prover,
we plan to employ a portfolio of monolithic provers in parallel
to derive refinement proofs with even higher scalability.

9 Related Work

We now provide a summary on previous efforts relevant to
applying formal methods to verify distributed systems.
Automated Verification. With the advancements in auto-
mated reasoning [6,20,36] and abstraction techniques [3, 16,
29], automatically verifying correctness through model check-
ing [17,58] has significantly improved in different domains,
both for hardware [9,10,23,26,61] and software [3,7,8,37,41].
However, model checking still does not scale well to large
complex systems, due to state-space explosion [18,21].

More recently, several approaches [24,27,33,38,40,50,66]
have extended induction-based model checking [10, 23] to
automatically infer inductive invariants for infinite-state dis-
tributed protocols. 14 [50] leverages the regularity of dis-
tributed protocols, combining finite model checking with un-
bounded reasoning in distributed protocols. IC3PO [27], de-
scribed in detail in Section 3.3, incorporates invariant general-
ization with model checking for better scalability. SWISS [33]
derives an inductive invariant by performing an exhaustive
search over candidate invariants in an optimized invariant
search space. DistAl [66] uses a data-driven approach and is
guaranteed to find a universally-quantified inductive invariant
in finite time.

All the aforementioned techniques [24,27,33,38,40,50,66],
however, target monolithic, single-layer verification, primar-
ily at the protocol level, and cannot scale to detailed system
implementations. In contrast, our approach combines these
monolithic provers with the well-founded concepts of refine-
ment [1,25,42] to scale verification all the way to complex
executable implementations.

Systems Verification. Much effort has gone to verifying real
systems, including OS kernels [15,32,39,52], file, and storage
systems [12, 14,67]. These works provide strong guarantees
of correctness, but at the cost of extensive manual effort; Sift,

by contrast, requires little manual proof effort while verifying
systems of considerable complexity, such as MultiPaxos.

Within the realm of distributed systems, there have been
attempts at manually verifying implementations of proto-
cols [60, 64]. Ivy [56] requires the developer to iteratively
refine an invariant until an inductive invariant is identified.
IronFleet [34] and Verdi [63] have been used to verify practi-
cal implementations of distributed systems. In stark contrast to
our work, all three approaches rely on considerable amounts
of manual effort (in the order of person months) to complete
a proof of correctness. Additionally, while IronFleet always
uses three layers of refinement (i.e., specification, protocol,
and implementation), most of the distributed systems we ver-
ify are refined directly from an implementation to a specifi-
cation, with intermediate layers only added when needed to
reduce the proof complexity for our monolithic provers.

More recently, Lorch et al. [48] presented Armada, a tool
designed to verify concurrent programs. While Armada has
some superficial similarities to Sift—namely the use of re-
finement and automation—it is in fact drastically different.
It operates in an environment almost diametrically opposed
to that of Sift: single-machine, multi-threaded code where
communication happens via shared memory, as opposed to
Sift’s sequential execution on a distributed system where
communication happens via message passing. Additionally,
while Armada makes heavy use of automation to generate
proofs, it still requires its users to write significant parts of
the proof—hundreds of lines of code—manually.

10 Conclusion

This paper introduces Sift, a novel two-tier methodology that
combines the power of refinement with the ability to automate
proofs. Sift decomposes the proofs of complex distributed
implementations into a number of refinement steps, each of
which is amenable to automation. We use Sift to prove the
correctness of six distributed implementations—including
the notorious MultiPaxos—none of which had an automated
proof before. Our evaluation shows that this combination of
refinement and automation lets us verify complex distributed
implementations with little manual effort.
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Abstract

Transformer verification draws increasing attention in ma-
chine learning research and industry. It formally verifies the
robustness of transformers against adversarial attacks such as
exchanging words in a sentence with synonyms. However, the
performance of transformer verification is still not satisfac-
tory due to bound-centric computation which is significantly
different from standard neural networks. In this paper, we
propose Faith', an efficient framework for transformer verifi-
cation on GPUs. We first propose a semantic-aware compu-
tation graph transformation to identify semantic information
such as bound computation in transformer verification. We
exploit such semantic information to enable efficient kernel
fusion at the computation graph level. Second, we propose a
verification-specialized kernel crafter to efficiently map trans-
former verification to modern GPUs. This crafter exploits
a set of GPU hardware supports to accelerate verification-
specialized operations which are usually memory-intensive.
Third, we propose an expert-guided autotuning to incorpo-
rate expert knowledge on GPU backends to facilitate large
search space exploration. Extensive evaluations show that
Faith achieves 2.1x to 3.4 (2.6x on average) speedup over
state-of-the-art frameworks.

1 Introduction

Transformers [8, 21, 25, 32, 33, 38, 45] is an important cate-
gory of neural networks (NNs) in machine learning research
and industry. Transformers are first designed for natural lan-
guage processing (NLP) and have achieved state-of-the-art
accuracy across many NLP tasks such as neural machine trans-
lation [1, 26, 31] and sentiment analysis [7, 37, 48]. Due to its
success, transformers have been widely used in many indus-
trial products such as Facebook for hate speech detection [10]
and Alexa for question answering [14]. Recently, transformers
also show extraordinary accuracy for many computer vision
tasks [9, 19, 44, 47, 55] and become the new trending model.

I'The project is open-sourced at https://github.com/BoyuanFeng/Faith

— ——

lceis | Cold [ Transformer 0.4< P(“Pos”)<0.8

Verification 0.1 <P(“Neg”)<0.39
| Frigid |
—_—— Prediction Bounds

Figure 1: Illustration of transformer verification. Here, all
perturbed inputs share the same prediction “positive” since
the lower bound probability for “positive” (0.4) is higher than
the upper bound probability for “negative” (0.39).

However, similar to prior NNs, transformers are also vulnera-
ble to adversarial attacks that add imperceptible perturbations
to input data for maliciously changing transformer predictions
[2, 3, 16, 17, 22]. One specific example of adversarial attack
is to exchange words (e.g., cold) in a sentence with carefully
selected synonyms (e.g., frigid). This vulnerability may result
in security concerns for real-world applications. For example,
an intentionally crafted hate speech may spread widely on
social network.

Transformer verification has been proposed to formally
verify the robustness of a transformer against adversarial
attacks [4, 18, 35, 42]. Given an input data x and a trans-
former F(x), transformer verification identifies a maximal
bound &, such that all inputs x" that are “close” to the input
data (i.e., [x' — x| < &) cannot “mislead” the transformer (i.e.,
F(x) = F(x')). A larger € indicates better robustness. Early
verification approaches [18] enumerate all possible inputs x’
that satisfy |x’ — x| < € and conduct inference on each input to
check predictions. These approaches show prohibitive latency
due to the large number of inputs x’. Recent transformer verifi-
cation [35, 42] avoids such enumeration by providing a single
pair of lower and upper bounds for transformer predictions
over all these inputs, as illustrated in Fig. 1. We can verify the
robustness of a transformer if the lower bound of the correct
prediction is higher than the upper bound of other predictions.
The key computing pattern is a bound-centric computation,
which computes a pair of inequality bounds for individual
neurons. It first represents the input perturbations with in-
equality bounds over input neurons (e.g., x —€ < x’' < x+€)
and then propagates these bounds across layers to generate
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Figure 2: Overview of Faith Framework

the bounds for transformer predictions.

While transformer verification can formally verify the
robustness of transformers, it also introduces high latency
and limits its applications. In particular, transformer verifica-
tion usually leads to second-level latency [35] in contrast to
millisecond-level latency of standard transformers. We iden-
tify three challenges behind efficient transformer verification.

Lack of performance optimization over transformer
verification computing patterns. Existing transformer verifi-
cations usually utilize the existing deep learning (DL) frame-
works, such as PyTorch [30], which are designed for standard
NNs. However, transformer verification shows significantly
different computing patterns from standard NNs due to the
nature of bound-centric computation. For example, when com-
puting the upper bound of an output neuron, transformer ver-
ification needs to use the upper bound of the input neuron
if the weight is positive; and the lower bound of the input
neuron if negative. Straightforwardly deploying transformer
verification to the existing DL frameworks usually leads to
poor performance.

Lack of framework support for verifying diverse NN
layers. Transformer verification shows large diversity in the
bound computation for different types of NN layers such
as projection layer with only perturbed features and self-
attention layer with both perturbed weights and features. Even
for the same type of NN layers, diverse upper bounds and
lower bounds may be designed which requires different im-
plementations. For example, Crown [52] utilizes two ReL.U
bound designs for generating more precise bounds for verifica-
tion, where these bounds are selected dynamically according
to the range of input neurons. This diversity makes it challeng-
ing to hand optimize GPU kernels in transformer verification.

Lack of verification-specialized adaptability towards
modern GPUs. Transformer verification involves abundant
memory-intensive operations such as reduction and broadcast.
These memory-intensive operations can usually be signifi-
cantly accelerated with rich architecture supports (e.g., warp-
level synchronized reduction) in modern GPUs. However,
existing DL frameworks usually only focus on computation-
intensive operations (e.g., convolution) and ignore abundant
optimization opportunities for memory-intensive operations.
This leads to significant overhead in transformer verification
with a large number of memory-intensive operations.

In this paper, we build Faith, the first framework for effi-
cient transformer verification on GPUs. We show an overview

of the Faith framework in Fig. 2. First, we propose semantic-
aware computation graph transformation to fully exploit
fusion opportunities in transformer verification at the compu-
tation graph level. Our key insight is that transformer verifi-
cation shows significantly different computing patterns (e.g.,
two kernels for computing lower and upper bounds involve
similar input data) from standard NNs. These computing pat-
terns usually exhibit abundant data reuse opportunities. By
exploiting such semantic information, Faith can fully harvest
performance potential in transformer verification and achieve
significant speedup over existing DL frameworks.

Second, we propose a verification-specialized kernel
crafter to optimize transformer verification towards modern
GPUs. Transformer verification contains abundant memory-
intensive operations, such as elementwise computation, re-
duction, and broadcast. These operations may have complex
dependencies and lead to performance bottlenecks. To this
end, Faith automatically exploits a set of GPU architecture
supports to improve the parallelism of such operations. More-
over, Faith introduces a set of optimizations to effectively
mitigate memory access and improve performance by exploit-
ing GPU memory hierarchies.

Third, we propose expert-guided autotuning to efficiently
search optimized implementations in the large search space.
Existing DL frameworks [6, 54] usually conduct autotuning
in a hardware-agnostic approach where an ML-based cost
model is deployed to implicitly learn hardware impact over
performance from scratch. Instead, we propose a rule-based
expert knowledge metafile to explicitly provide a small set of
hardware characterizations and an expert-guided cost model
to incorporate the expert knowledge. Faith exploits these two
components to achieve efficient schedule exploration in the
large design space of transformer verification.

In summary, this paper makes the following contributions:

¢ We build Faith, the first efficient framework to optimize
the performance of transformer verification on GPUs.

We propose a set of verification tailored system optimiza-
tions. In particular, we design a semantic-aware com-
putation graph transformation to identify and exploit
novel fusion opportunities for transformer verification,
a verifier-specialized kernel crafter to effectively map
transformer verification kernels to GPU backends, and
an expert-guided autotuning to incorporate a set of ex-
pert knowledge on modern GPU architecture to guide
large design space exploration.

Extensive experiments show that Faith achieves up to
3.4x speedup (2.6x on average) over state-of-the-art
frameworks.

2 Related Work and Motivation

In this section, we first introduce the background of trans-
former verification (§2.1). Then, we discuss related work
on DL frameworks (§2.2). Finally, we present opportunities
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Figure 3: Illustration of transformer verification. (a) model prediction and verification bound; (b) an example of verifying a
model with a fully connected layer and a ReLU layer; (c) computation graph of projection layer in transformer verification;
(d)-(e) two types of bounds for ReLU layer; (f)-(g) two types of bounds for the Tanh layer.

and challenges for efficient transformer verification on GPUs
(§2.3).

2.1 Transformer Verification

Standard Transformers. Transformer [8, 25, 38, 45] takes
a sentence as input and predicts a label for this sentence (e.g.,
hate speech or benign speech). Given a sentence with Length
tokens, we usually first map each token to a pretrained embed-
ding [28] of dimension Dim_in and represent the feature of a
sentence as a tensor of shape Length x Dim_in. For a batch
of sentences, we have input feature X as a tensor of shape
Batch_size x Length x Dim_in, where Batch_size is the num-
ber of sentences in a batch. Since the number of tokens varies
across sentences, Length is set to the maximal number of
tokens over all sentences in a batch.

A transformer has three types of operators. The first
type is the elementwise operator that applies computation
on individual feature scalars. For example, on each scalar
x in the input feature, we have ReLU (x) = max(0,x) and

Tanh(x) = iiﬁ—;} The second type is the matrix multiplica-
tion operator that takes an input tensor X, a weight matrix
W, and generates an output tensor ¥ = XW. We note that
these two types are similar to operators in prior neural net-
works. The third type is the dot product operator, which is
the key idea behind the transformer model. Informally speak-
ing, it takes two input tensors Q and K of the same shape
Batch_size x Length x Dim_in. Then, it computes an output
tensor Y = QT K of shape Batch_size x Length x Length to
measure the pairwise similarity between individual words
in a sentence. This similarity can significantly improve the
learning capacity of the model and the prediction accuracy.
Adversarial Attack on Transformers. Adversarial attack
[2, 3, 15, 16, 17, 22] identifies small perturbations to input
data X that can change the transformer prediction. Formally,
consider a transformer f(-), an input sentence X, and a toler-
able input perturbation bound €, where the transformer cor-

rectly classifies X as a label i (e.g., hate speech). In other
words, the sentence has label i and y; > y; for any j # i where
y; is the predicted probability. Adversarial attack identifies a
slightly perturbed sentence X’ = X + 1 such that 1 € B(0,€)
and there exists a label j (e.g., benign speech) such that y; < ;.
This perturbed sentence X' is an adversarial example.

Transformer Verification. Transformer verification [4, 18,
35, 42] computes a maximum bound € and mathematically
proves that there does not exist an adversarial example X’
within the e-ball of X (i.e., (X' —X) € B(0,¢)). Verifying
transformers is challenging since transformers are essentially
non-convex functions. The key idea of transformer verifica-
tion is to utilize linear bounds as an approximation to NN
predictions. We illustrate transformer verification at the model
prediction layer in Fig. 3(a). Given these linear bounds, trans-
former verification can simply check if the predictions in-
sides the bounds satisfy certain linear requirements, such as
yi > yj+c, where c is a positive number. As illustrated in
Fig. 3(a), this bound-based approach is sound since the linear
bound covers the non-convex area of NN predictions.

We show an example of bound-centric computation of trans-
former verification in Fig. 3(b). Consider a fully connected
layer Y[l =Y7%  W[j,i]-X[i] where Y [j], W[}, i], and X[i] are
scalars. Here, we skip the index for batch size and length for
notation simplicity. A formal summary of notations can be
found in Table 1. For each neuron X[i], there is a lower and a
upper bound

X[i] > Xip[i] + X [i] %8, X[i] < X [i] -+ Xuno[i] €

where X[i] and X, [i] are scalars, X;,,[i], X,w[i], and € are
vectors. For the input neurons, we have Xj;[i] = X,5[i] = X[i],
X [i] and X,,,,[i] are one-hot vectors with 1 at the index i and
0 at other indices. Given this linear bound, we can compute
concretized bounds for each neuron as
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Table 1: Notations in transformer verification.

w Transformer weights. Shape: Dim_in x Dim_out
X Input feature tensor. Shape: Batch_size x Length x Dim_in

The tensor of lower and upper bound bias of input features.

Xib> Xup Shape: Batch_size X Length X Dim_in

X x The tensor of lower and upper bound weights of input
bw> Ruw | gontures. Shape: Batch_size X Length x Dim_in x Dim_out
X, X, The tensor of concretized lower and upper bounds of input

features. Shape: Batch_size x Length x Dim_in

When computing the bounds for output neuron Y |[j], we
note that bound computation depends on the sign of weights
W{j,i]. In particular, we have upper bounds Y,;|[;] as

Y[j] <Yup (] + Yo [j]*E
=( Z W Jsl ub[ + Z W[./?’] le[]
W[N] 0 W{j,i]<0 2
(Y Whil-Xwll+ Y W-Xli]) <€
W[J >0 W(j,i]<0

The lower bounds can be computed in a similar way. This
bound computation (Eq. 2) is significantly different from stan-
dard NN computation since it explicitly considers the sign of
weights. Previous transformer verification directly exploits
the standard DL frameworks to build a computation graph
(Fig. 3(c)) for computing bounds, which leads to inefficient
memory access and computation overhead. We will discuss
the opportunities and challenges of efficient transformer veri-
fication in §2.3.

For the same NN layer, diverse bound computation designs
may still be developed to provide tighter bounds on NN predic-
tions. We illustrate two types of bounds for the ReLU layer in
§2(d)-(e) and two types of bounds for the Tanh layer in §2(f)-
(g). A tighter bound (i.e., less space between linear bounds and
ReLU function) is preferred to provide a better linear bound
approximation to NN prediction. For example, consider the
concretized lower bound X;[i] and upper bound X,,[i] for an
input neuron X [i], when we have abs(X;[i]) > abs(X,[i]), lin-
ear bound in Fig. 3(d) is preferred over the linear bound in
Fig. 3(e) since the former one provides a tighter approxima-
tion. This diversity in bound design adds more complexity to
developing frameworks for transformer verification.

2.2 Deep Learning Frameworks on GPUs

GPUs have been widely exploited to accelerate deep learning
workload [13, 39, 40, 46, 49]. Efficiently mapping deep learn-
ing workloads to the GPU computing and memory hierarchy
is usually the key to improve performance [11, 23, 41, 50, 51].
GPU computing hierarchy contains threads, warps, and blocks
[29]. Each block has multiple warps and each warp has exactly
32 threads that compute with single-instruction-multiple-data
(SIMD). GPU memory can be generally treated as a hierarchy
of registers, shared memory, and global memory. Accessing
registers is much faster than accessing shared memory, which
is faster than accessing global memory. Each thread can only

E Dot Product OTanh RelU [MDense MESoftmax @O Other

| I

20

0% 20% 40% 60% 80% 100%
Latency Breakdown

Figure 4: Latency breakdown of transformer verification on
sentences with length 8 and 20. Here, we show the latency of
verifying individual operators such as dot product and Tanh.

access its own registers and threads in a block cannot access
shared memory from other blocks.

Many DL frameworks [6, 30, 54] have been developed
recently to efficiently support NN workload on GPUs. Early
works such as PyTorch [30] take user-specified computation
graphs for neural networks and maps towards hand-tuned
kernels on backend platforms (e.g., GPUs). However, this
approach usually builds upon kernels developed for standard
NN and cannot efficiently support transformer verification
computation. Recent works, such as TVM [6] and Ansor [54],
can automatically generate such backend kernels based on
a set of heuristic rules on fusion and operator optimizations.
However, these heuristic rules are developed specifically for
standard NNs. Naively incorporating these rules into trans-
former verification may lead to unsatisfactory performance
due to the significant difference in computation patterns. For
example, Fig. 3(c) shows the computation graph for utiliz-
ing the kernels of standard NNs on transformer verification.
This approach leads to heavy sparsity and redundant memory
access. In particular, only half of the elements in W),,; and
W,eq are non-zero values, leading to 50% sparsity. To this end,
we build Faith, the first framework for efficient transformer
verification on GPUs.

2.3 Opportunities and Challenges

In this section, we introduce optimization opportunities and
challenges in enabling efficient transformer verification.

We show the latency of verifying individual transformer
operators in Fig. 4. We profile this latency breakdown based
on the state-of-the-art transformer verification implemented
with PyTorch [30]. We have three major observations. First,
dot product accounts for around 45% latency. Dot product
takes two input tensors Q and K where both inputs may be
perturbed during adversarial attack, which is significantly dif-
ferent from matrix multiplication that only one input (i.e.,
feature X) may be perturbed. This adds complexity to the
verification of dot product operators [35] and longer latency.
Second, elementwise operators such as Tanh and ReLU ac-
count for a large portion of latency in transformer verification.
This is significantly different from standard NNs where el-
ementwise operators can usually be fused with remaining
operators and show low latency. Third, we observe that ma-
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Figure 5: Illustration of Semantic-aware Kernel Fusion. We
show the memory access pattern before and after applying
semantic-aware kernel fusion in (a) and (b), respectively.

trix multiplication and softmax accounts for certain latency.

Opportunities: There are two major opportunities to ac-
celerate transformer verification. The first opportunity is to
exploit the semantics of transformer verification to minimize
redundant memory access and computation. Our investigation
shows that transformer verification has rich semantic infor-
mation (e.g., 50% sparsity in W),,s and W), which can be
exploited to accelerate transformer verification. The second
opportunity is to exploit the modern GPU architectures to
efficiently support diverse computing patterns in transformer
verification. One example is to accelerate abundant reduction
computation in Eq. 1.

Challenges: Although these ideas sound promising, the
efforts to realize the benefits are non-trivial due to several
challenges. First, transformer verification shows significantly
different computing patterns from standard NNs. Straight-
forwardly borrowing optimizations for standard NNs such
as kernel fusion can hardly bring similar benefits. Second,
while exploiting GPU architecture supports may bring bene-
fits, we still need specialized designs as a synergy between
architecture and specialized computing patterns. Moreover,
exploiting advanced GPU architecture supports will add more
complexity to the search space of optimized kernels which
motivates novel autotuning optimizations.

3 Semantic-aware Computation Graph Trans-
formation

In this section, we propose semantic-aware computation
graph transformation for efficient transformer verification.
We first propose semantic-aware kernel fusion to fuse ker-
nels within a transformer layer. It contains two novel types
of fusions — weight-paring based fusion and double bound
based fusion. Then, we propose bound-aware cross-layer
fusion to efficiently fuse kernels across transformer layers.

3.1 Semantic-aware Kernel Fusion

The semantic-aware kernel fusion fuses operators in a single
transformer layer to minimize memory access. Different from
standard transformers, a single layer in transformer verifica-
tion usually involves multiple kernels to compute the bounds
adaptively to the sign of weights, as discussed in §2.1. Exist-
ing transformer verification [35, 42] usually uses a set of GPU
kernels developed for standard transformers to serve the need
for transformer verification. We illustrate the memory access
pattern of this baseline approach in Fig. 5(a). These kernels
need to independently read data from the global memory of
GPUs and lead to heavy memory overhead. Moreover, these
kernels fail to exploit semantic information in transformer ver-
ification and show heavy redundancy during memory access.
For example, baseline approaches usually first split the weight
matrix W into two weight matrices W,,s and W, according
to weight signs and then use each matrix for computing lower
and upper bounds. Here, these two split matrices W), and
W,ee have the same shape of M x N as the weight matrix W.
However, reading these matrices independently requires load-
ing 2MN scalars, which leads to redundant memory access.

We propose semantic-aware kernel fusion to minimize such
memory overhead by exploiting transformer verification se-
mantics and GPU memory hierarchies (i.e., global memory,
shared memory, and registers). We illustrate our semantic-
aware kernel fusion in Fig. 5(b). Our key insight is to first
load data collaboratively from global memory and only dis-
tinguish data semantics (e.g., W, and W,,.,) at the register
level to mitigate redundant memory access. In particular, we
identify weight-paring based fusion and double bound based
fusion as the two most important semantics in transformer
verification.

Weight-pairing based fusion. We first propose weight-
paring-based fusion to mitigate redundant memory access
when reading W,s and W,,.,. Our key observation is that
the zero values in W), are exactly the position of non-zero
values in W;,.. Formally, we have W5 + W,,ee = W. To this
end, instead of using an operator to split weight matrix W
into W, and W, we first load the matrix W from global
memory to shared memory without distinguishing the sign of
individual scalars. Then, we split the weight matrix W into
Wpos and W, when loading data from shared memory to
registers, as illustrated in Fig. 5(b). In our design, we only
need to load MN scalars from global memory, which leads to
significantly reduced memory access compared with loading
2MN scalars in baseline approaches.

Double bound based fusion. Our second optimization
is a double-bound-based fusion. One important semantics
in transformer verification is to multiply the same weight
matrix with lower and upper input bounds (e.g., X;» and X,;5)
to compute the output bounds (e.g., ¥;, and Yy, in Fig. 5(b)).
Meanwhile, when computing the bound for output neurons,
we usually need to read both lower and upper bounds for

USENIX Association

2022 USENIX Annual Technical Conference 171



computation. For example, when computing the upper bound
of output neurons, we need to read upper bound when weight
is positive and read lower bound when weight is negative.
Suppose the input bounds X, and X,;;, have shape N x K, we
need to load 4NK scalars during transformer verification.

Instead, we propose to fuse the computation of lower and
upper bounds such that the lower and upper bounds only need
to be loaded once to save memory access. In particular, we
first use threads across GPU blocks to collaboratively load
tiles of input matrices from global memory to shared mem-
ory, which can be accessed by different GPU threads. Here,
we use shared memory to enable data sharing across GPU
threads since different threads may multiply the same input
bound scalar with different weight scalars (e.g., multiplying
the first row in X}, and X,,;, with various columns in W). Then,
each thread loads independent data from shared memory to
registers and directly accumulates output bounds Y, and Y,
in registers. We note that this design further improves perfor-
mance by eliminating the redundant global memory access
during generating Y, and Y,;,.

3.2 Bound-aware Cross-layer Kernel Fusion

Bound-aware cross-layer kernel fusion fuses the verification
of kernels across multiple transformer layers to further mini-
mize memory access. Existing frameworks for accelerating
standard NNs usually rely on a set of rules to fuse kernels.
One popular example is to fuse convolution kernel with the
following elementwise kernels (e.g., ReLU kernel for ele-
mentwise comparison with 0). However, these rules usually
cannot be applied to fuse kernels for transformer verification.
For example, verifying the ReLU kernel requires first a con-
cretization operation with a global reduction to compute the
concretized bounds for a neuron and then applies different
computation according to the concretized bounds (see §2.1).

To this end, we propose a set of rules for cross-layer kernel
fusion in transformer verification. In particular, we recognize
three types of operators. The first type is input-reduction-
compute that conducts reduction or concretization operation
on the input data before computation. One example is veri-
fying nonlinear activation functions such as ReLU and Tanh
that requires concretized bounds to apply different computa-
tion. Another example is the softmax operator that computes
a global summation for normalization. The second type is
strict-elementwise that contains only elementwise computa-
tion and does not require concretization or global summation.
The third type is dense-computation such as matrix-matrix
multiplication kernels. In our cross-layer kernel fusion design,
we can always fuse a dense operator with its following strict-
elementwise operator. However, we cannot fuse dense opera-
tor with input-reduction-compute due to the concretization or
reduction operation. In addition, we can fuse input-reduction-
compute with its following strict-elementwise operator. Fi-
nally, we can fuse multiple strict-elementwise operators (e.g.,

elementwise addition and multiplication).

4 Verification-specialized Kernel Crafter

In this section, we propose a verification-specialized kernel
crafter to efficiently map transformer verification towards
modern GPUs. We exploit intrinsic properties (e.g., abundant
reduction operations) of transformer verification which are
significantly different from standard transformer operators.
One major challenge in building the kernel crafter is the large
diversity in verification designs across operators (see Fig. 3(d)-
(g)). To tackle this challenge, we first propose a verification
pattern categorization to abstract such diversity and provide
a small set of computing patterns over verification of diverse
operators. Then, we propose three optimizations to efficiently
support these computing patterns of transformer verification.

4.1 Verification Pattern Categorization

While there are diverse bound designs across different opera-
tors, we characterize transformer verification into four typical
computing patterns. Based on this characterization, Faith can
abstract the diversity in bound designs into a combination of
computing patterns and exploit optimizations towards individ-
ual computing patterns for improving performance. Similar to
standard NNs, one important computing pattern is generalized
matrix multiplication (GEMM) when verifying projection lay-
ers and fully connected layers. Matrix multiplication is the ma-
jor bottleneck in standard NNs and has been well-optimized
by existing DL frameworks. Besides GEMM, transformer ver-
ification introduces three other time-consuming computing
patterns, which are highlighted as follows:

The first computing pattern is generalized vector reduc-
tion. One typical source of generalized vector reduction is
concretization that computes the norm and generates the con-
cretized lower and upper bounds for individual neurons (see
Eq. 1). Formally, consider a matrix X = [X|,X3, - ,Xn] €
R™" where X; = [xi1,Xi2, - ,Xin] are vectors of length
n. The generalized vector reduction computes an output
Y =[y1,y2, - ,yn) € R" that satisfies

yi = reduction(X;) = Zn: fij)s i€ {1,2,--,m} )
=1

Here, f(x) is an elementwise function that takes a scalar input
and generates a scalar output. One example for f(x) is x?
when computing the L, norm for input vectors.

The second computing pattern is generalized elementwise
multiplication which appears frequently when verifying ele-
mentwise operators such as ReLU and Tanh. Formally, con-
sider a concretized lower bound / € R™*" and an upper bound
u € R™" where /; ; and u; ; are concretized lower and upper
bounds for the neuron at position (i, j). Let X € R™*" be
the input values. The generalized elementwise multiplication
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computes an output ¥ € R™*” that satisfies
Yij :f(li,,jvui7.]')*xi,jv i€ {17271’11}7] € {1727 3”} (4’)

Here, transformer verification introduces a function f(-,-)
that takes the lower and upper bounds for an input neuron and
computes a scaling parameter which is multiplied with the
input value of this neuron. One example is the tangent line
between the concretized lower and upper bounds when veri-
fying Tanh layer, which accounts for more than 20% latency
as we profiled in Fig. 4. Another example is f(J; j,u; ;) = 1
when verifying ReLU layer and /; ; is non-negative. While
f(-,-) shows large diversity across operators, we stress that
the same computing pattern is shared across these operators
such that a uniform framework can be applied to improve
performance.

The third computing pattern is generalized scalar-vector
multiplication. This computing pattern exists widely when
verifying dot products in the self-attention layer of transform-
ers. This computing pattern accounts for more than 40%
latency in transformer verification, as discussed in Fig. 4.
Formally, consider a vector S = [s1,s2, -+ ,5»] € R™ and a
matrix X = [¥[,X, -+ ,Xn] € R™*", where s; are scalars and
Xi = [Xi1,%i2, - ,Xin] are vectors of length n. The general-
ized scalar-vector multiplication computes an output ¥ =
1,52, ,¥u] € R"™ " that satisfies

Vi = f(si)#Xi = [f(si) % xi 1, f(50) % X2, -, f(8i) % Xi ]

ie{1,2,-,m} ©)

Here, f(-) is a function that takes a scalar input and generates
a scalar output.

Generability to diverse NN operators. Faith can effec-
tively support verifying diverse NN operators such as SiLU
and Leaky ReLU. Our key insight is that verifying diverse
NN operators usually share the same generalized comput-
ing pattern while the concrete computation formula might
be different. For example, SiLU (x) = {75~ is an activation
function that has significantly different concrete computation
formula from ReLU (x) = max(0,x). However, both verifying
SiLU and ReLU can be treated as the generalized element-
wise multiplication (Eq. 4) and the same optimizations can
be applied to improve performance.

In the following sections, we first demonstrate a workload-
adaptive reduction to improve the performance of generalized
vector reduction (Eq. 3). We then propose a sharing-oriented
workload scheduling to improve the performance of general-
ized elementwise multiplication (Eq. 4). Finally, we demon-
strate broadcast-aware super threading to efficiently support
the generalized scalar-vector multiplication (Eq. 5).

4.2 Workload-adaptive Reduction

Transformer verification contains abundant reduction opera-
tions where a sequence of scalars are summed up into one
scalar. One common reduction operation is the concretiza-
tion operation that computes the concretized lower and upper

(a)

32 iterations

Figure 6: Illustration of Workload-adaptive Reduction. (a)
Sequential Mode; (b) Parallel Mode. Here, x; and 7; are the
i-th data and thread, respectively.

bounds for individual neurons, as discussed in §2. Another
common reduction operation is the softmax operation that is
applied in each self-attention layer for measuring the relation-
ship between individual words. These reduction operations
pose challenges between parallelism and data locality. One
baseline approach is to use a single thread to read and ac-
cumulate a sequence of scalars as illustrated in Fig. 6(a).
However, this approach usually leads to low parallelism and
fails to exploit abundant threads in GPUs. For example, we
need 32 iterations to accumulate 32 scalars. Another baseline
approach is to first split this sequence of scalars into multiple
chunks and allocate one thread to each chunk for accumula-
tion. Then, each thread writes the accumulated results for each
chunk to global memory and uses an additional thread to fi-
nally accumulate the sum of each chunk. While this approach
improves parallelism, it requires expensive global memory
access and high overhead.

Workload-adaptive Reduction with length n = 32. We
propose a workload-adaptive reduction to fully exploit GPU
memory hierarchies and the inter-register communication
functionalities. We illustrate our design in Fig. 6(b). Our
design achieves high parallelism by enabling multiple threads
for reduction simultaneously. Meanwhile, we avoid the expen-
sive data communication through global memory and exploit
only efficient registers. In particular, we use 32 threads (i.e., a
warp) to read these 32 scalars simultaneously from global
memory. Considering these 32 scalars are consecutive in
global memory, we can efficiently load them with 32 threads
through coalesced memory access. Then, we exploit the spe-
cialized instruction _shfl_down_sync to directly communi-
cate data in registers across individual threads. As illustrated
in the parallel mode of Fig. 6(b), our design involves only five
iterations of cross-thread data communication to generate the
final accumulated result, rather than the 32 iterations in the
sequential mode of Fig. 6(a).

Workload-adaptive Reduction with Arbitrary Length 7.
For an arbitrary length n, one naive approach is to repeatedly
use 32 threads to reduce 32 scalars and then use 1 thread
to accumulate the final results. However, this approach may
lead to unnecessary communication across threads. Suppose
we are accumulating a vector of length n = 32k, we need 5
iterations for reducing every 32 scalars, leading to 5k itera-
tions in total for accumulating the vector. Instead, we propose
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Figure 7: Illustration of sharing-oriented workload scheduling

a hybrid mode to minimize the number of iterations while
still achieving high parallelism. In particular, we first split
the input sequence into chunks where each chunk contains
32 scalars. Then, we use 32 threads to read one chunk simul-
taneously from global memory and accumulate individual
chunks iteratively. For example, the 1-st thread accumulates
the 1-st scalar in each chunk. Here, the accumulation is con-
ducted in registers and does not require communication across
threads. Finally, we apply a single 5-iteration reduction across
32 threads. In total, our design has only k + 5 iterations which
are significantly less than 6k iterations in the naive approach.

4.3 Sharing-oriented Workload Scheduling

We propose sharing-oriented workload scheduling to effi-
ciently verify elementwise operators. Different from standard
transformers, verifying elementwise operators, especially non-
linear ones (e.g., ReLU and Tanh), accounts for a large portion
of latency in transformer verification as we discussed in Fig. 4.
Verifying these operators usually first requires computing a
concretized lower bound X; and upper bound X, for each input
neuron and then computes the bounds for the output neuron.
Different signs of concretized input bounds usually lead to
different computations for output bounds, which could eas-
ily lead to warp divergence and unsatisfactory performance.
Moreover, when computing the output bound weights (i.e.,
Y}, and Y,,,,) for a neuron, we need to repeatedly use the same
input bounds which leads to extra memory overhead.

To efficiently verify elementwise operators, we propose
sharing oriented workload scheduling to minimize memory
access and improve performance. Our key observation is that
the same set of input bound weights X}, and X,,,, are used to
compute the concretized input bounds X; and X,,, while these
input weights are also used for computing the output bound
weights Y}, and Y,,,. Instead of repeatedly loading X;,, and
X, we can exploit the GPU memory hierarchies to cache Xj,,
and X,,,, and minimize the global memory access to improve
the overall performance.

As illustrated in Fig. 7, we use a set of T(=32) threads
to first (Step 0) load input bound weights Xj,, and X,
from global memory to shared memory. Here, T is a hyper-

parameter to balance the parallelism and compute intensity,
which will be selected in §5. Then (Step 9), these T threads
load input bound weights from shared memory and collabora-
tively compute the concretized lower and upper bounds X; and
X, following our design in §4.2. These concretized lower and
upper bounds are stored in shared memory which can be ac-
cessed by individual threads. Finally (Step @), each thread in-
dependently loads individual Xj,, and X,,,, scalars from shared
memory and rescales according to the concretized bounds X;
and X,,. Here, all threads in a warp are computing the output
bound weights for the same neuron and the concretized in-
put bounds are the same across threads in a warp. Thus, all
threads in a warp can apply the same rescaling computation
and avoid warp divergence. We also note that input bound
weights are only loaded once from global memory which
mitigates redundant global memory access.

4.4 Broadcast-aware Super Threading

We propose broadcast-aware super threading to efficiently
support generalized scalar-vector multiplication, as discussed
in Eq. 5. One naive approach is to use one thread to read a
scalar s; and a vector X; and computes the generalized scalar
vector multiplication f(s;)X;. However, this approach fails
to exploit the parallelism opportunities in generalized scalar
vector multiplication. Another approach is to split the vector
X; into multiple chunks and use one thread for each chunk.
However, this approach requires threads to repeatedly read
the same scalar s; from global memory and shows redundant
MEemory access.

Instead, we propose a broadcast-aware super threading to
achieve high parallelism while minimizing memory access.
We consider two types of super threading for generalized
scalar vector multiplication. The first type is a group of 32
threads (i.e., a warp for one vector). When using 32 threads
to compute the multiplication between a scalar s; and a vector
X;, these 32 threads can read the scalar s; once, broadcast
across threads with modern GPU memory, and compute f(s;)
simultaneously. Based on this broadcast, we can mitigate the
redundant memory access that each thread repeatedly read
the same scalar s;. The second type is a group of 32¢ threads
(i.e., t warps for one vector). In this case, we use one warp
to read the scalar s; and use shared memory to broadcast s;
across warps.

S5 Expert-guided Autotuning Optimization

Considering the large design space of optimization towards
GPUs, one natural question arises: Can we effectively incor-
porate hardware knowledge to find optimal operator imple-
mentation?

Existing works such as TVM [6] and Ansor [54] usually au-
totune operator implementations in a hardware-agnostic way.
In particular, these works extract implementation-specific pa-
rameters such as tiling size and use a cost model to implicitly
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learn the relationship between these parameters and perfor-
mance. However, there are two drawbacks in this hardware-
agnostic approach. First, there is a complex interaction be-
tween implementation and the hardware properties, which
could be hard to be implicitly learned by the cost model. For
example, existing works [12, 20, 24, 43] on hand-tuning large
matrix-matrix multiplication operators usually maximize the
number of registers in use to improve cache performance.
However, this optimization is also limited by the number of
registers for each GPU thread since exceeding such limitation
may lead to register spilling [27] and a significant perfor-
mance drop. A careful reasoning on the interaction between
the implementation-specific parameters (e.g., the number of
registers for caching data) and the hardware properties (e.g.,
the number of registers per thread) is usually necessary to max-
imize the performance. To tackle this challenge, we propose
an expert-guided autotuning optimization to automatically rea-
son both implementation-specific parameters and hardware
properties. In particular, we have the following designs.

Rule-based Expert Knowledge Metafile. We propose a
rule-based expert knowledge metafile to capture hardware
properties. This metafile only needs to be set once for each
type of GPUs and requires limited manual efforts. In partic-
ular, we consider two types of rules. The first type is hard
rules which represents hardware limitation such as the maxi-
mal shared memory size and the maximal number of registers
per thread. Violating these rules may lead to significant per-
formance drop such as register spilling. The second type is
soft rules which represents intrinsic trade-offs related to the
hardware properties such as the number of streaming multipro-
cessors (SM) and the number of threads per SM. One typical
design choice is the number of threads per block which will be
mapped to threads on the same SM. Allocating more threads
per block usually leads to better parallelism for the sub-task
assigned to a block. However, allocating more threads per
block may also hinder executing multiple blocks on the same
GPU SM hardware and lead to worse overall parallelism.

Expert-guided Cost Model. We propose an expert-guided
cost model to automatically tackle the complex interaction
between implementation-specific parameters and hardware
properties. Given a set of candidate operator implementations,
we have two phases to select the optimal implementation.
The first phase is to estimate the shared memory and register
usage for each candidate. We rule out candidates that consume
more shared memory and registers than hardware capacity, as
specified in the expert knowledge metafile.

The second phase is to train a cost model for the remaining
candidates and use the cost model to select the best candi-
date. We use XGBoost [5] as the cost model. It takes as input
the implementation-specific parameters (e.g., tiling size) for
candidates and the hardware properties (e.g., shared memory
size). We use the cost model to predict the latency of ca